Methyl methacrylate as a healing agent for self-healing cementitious materials
NASA Astrophysics Data System (ADS)
Van Tittelboom, K.; Adesanya, K.; Dubruel, P.; Van Puyvelde, P.; De Belie, N.
2011-12-01
Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice.
Phenomenological modelling of self-healing polymers based on integrated healing agents
NASA Astrophysics Data System (ADS)
Mergheim, Julia; Steinmann, Paul
2013-09-01
The present contribution introduces a phenomenological model for self-healing polymers. Self-healing polymers are a promising class of materials which mimic nature by their capability to autonomously heal micro-cracks. This self-healing is accomplished by the integration of microcapsules containing a healing agent and a dispersed catalyst into the matrix material. Propagating microcracks may then break the capsules which releases the healing agent into the microcracks where it polymerizes with the catalyst, closes the crack and 'heals' the material. The present modelling approach treats these processes at the macroscopic scale, the microscopic details of crack propagation and healing are thus described by means of continuous damage and healing variables. The formulation of the healing model accounts for the fact that healing is directly associated with the curing process of healing agent and catalyst. The model is implemented and its capabilities are studied by means of numerical examples.
A novel crack healing in steels by gas nitrocarburizing
NASA Astrophysics Data System (ADS)
Li, Ai; Chen, Xing; Zhang, Chengsong; Cui, Guodong; Zhao, Hui; Yang, Chuan
2018-06-01
In this paper, the gas nitrocarburizing technique was applied for the first time to solve the challenge in crack healing of metallic materials. The crack-healing behavior of 42CrMo steel was investigated. The gas nitrocarburizing was carried out in two steps with the decrease of the healing temperature. The mechanical properties after healing were measured using the three-point blending test. X-ray diffraction, optical microscope and scanning electron microscopy were applied to characterize the phase composition and microstructure of crack healing area and analyze healing mechanisms involved. The results show that the optimal healing effect could be obtained when it is healed at 760 °C for 2 h and then at 550 °C for 4 h. The maximum healing degree reached to 63.68%. The crack healing process could be divided into two stages, i.e. healing in crack tips at high temperatures and then in crack openings at low temperatures. The volumetric expansion and filling of formed nitrides contributed to the rapid healing of the large-sized cracks. The healing efficiency could be improved by decreasing the healing temperature. Moreover, high pressure gas nitrocarburizing was considered as another potential way to improve the healing efficiency and healing degree.
Heat transfer and fluid flow analysis of self-healing in metallic materials
NASA Astrophysics Data System (ADS)
Martínez Lucci, J.; Amano, R. S.; Rohatgi, P. K.
2017-03-01
This paper explores imparting self-healing characteristics to metal matrices similar to what are observed in biological systems and are being developed for polymeric materials. To impart self-healing properties to metal matrices, a liquid healing method was investigated; the met hod consists of a container filled with low melting alloy acting as a healing agent, embedded into a high melting metal matrix. When the matrix is cracked; self-healing is achieved by melting the healing agent allowing the liquid metal to flow into the crack. Upon cooling, solidification of the healing agent occurs and seals the crack. The objective of this research is to investigate the fluid flow and heat transfer to impart self-healing property to metal matrices. In this study, a dimensionless healing factor, which may help predict the possibility of healing is proposed. The healing factor is defined as the ratio of the viscous forces and the contact area of liquid metal and solid which prevent flow, and volume expansion, density, and velocity of the liquid metal, gravity, crack size and orientation which promote flow. The factor incorporates the parameters that control self-healing mechanism. It was observed that for lower values of the healing factor, the liquid flows, and for higher values of healing factor, the liquid remains in the container and healing does not occur. To validate and identify the critical range of the healing factor, experiments and simulations were performed for selected combinations of healing agents and metal matrices. The simulations were performed for three-dimensional models and a commercial software 3D Ansys-Fluent was used. Three experimental methods of synthesis of self-healing composites were used. The first method consisted of creating a hole in the matrices, and liquid healing agent was poured into the hole. The second method consisted of micro tubes containing the healing agent, and the third method consisted of incorporating micro balloons containing the healing agent in the matrix. The observed critical range of the healing factor is between 407 and 495; only for healing factor values below 407 healing was observed in the matrices.
Wound Healing Problems in the Mouth
Politis, Constantinus; Schoenaers, Joseph; Jacobs, Reinhilde; Agbaje, Jimoh O.
2016-01-01
Wound healing is a primary survival mechanism that is largely taken for granted. The literature includes relatively little information about disturbed wound healing, and there is no acceptable classification describing wound healing process in the oral region. Wound healing comprises a sequence of complex biological processes. All tissues follow an essentially identical pattern to complete the healing process with minimal scar formation. The oral cavity is a remarkable environment in which wound healing occurs in warm oral fluid containing millions of microorganisms. The present review provides a basic overview of the wound healing process and with a discussion of the local and general factors that play roles in achieving efficient would healing. Results of oral cavity wound healing can vary from a clinically healed wound without scar formation and with histologically normal connective tissue under epithelial cells to extreme forms of trismus caused by fibrosis. Many local and general factors affect oral wound healing, and an improved understanding of these factors will help to address issues that lead to poor oral wound healing. PMID:27853435
Interfacial self-healing of nanocomposite hydrogels: Theory and experiment
NASA Astrophysics Data System (ADS)
Wang, Qiming; Gao, Zheming; Yu, Kunhao
2017-12-01
Polymers with dynamic bonds are able to self-heal their fractured interfaces and restore the mechanical strengths. It is largely elusive how to analytically model this self-healing behavior to construct the mechanistic relationship between the self-healing properties (e.g., healed interfacial strength and equilibrium healing time) and the material compositions and healing conditions. Here, we take a self-healable nanocomposite hydrogel as an example to illustrate an interfacial self-healing theory for hydrogels with dynamic bonds. In the theory, we consider the free polymer chains diffuse across the interface and reform crosslinks to bridge the interface. We analytically reveal that the healed strengths of nanocomposite hydrogels increase with the healing time in an error-function-like form. The equilibrium self-healing time of the full-strength recovery decreases with the temperature and increases with the nanoparticle concentration. We further analytically reveal that the healed interfacial strength decreases with increasing delaying time before the healing process. The theoretical results quantitatively match with our experiments on nanosilica hydrogels, and also agree well with other researchers' experiments on nanoclay hydrogels. We expect that this theory would open promising avenues for quantitative understanding of the self-healing mechanics of various polymers with dynamic bonds, and offer insights for designing high-performance self-healing polymers.
Prediction of wound healing after minor amputations of the diabetic foot.
Caruana, Luana; Formosa, Cynthia; Cassar, Kevin
2015-08-01
To identify any significant differences in physiological test results between healing and non healing amputation sites. A single center prospective non-experimental study design was conducted on fifty subjects living with type 2 diabetes and requiring a forefoot or toe amputation. Subjects underwent non-invasive physiological testing preoperatively. These included assessment of pedal pulses, preoperative arterial spectral waveforms at the ankle, absolute toe pressures, toe-brachial pressure index and ankle-brachial pressure index. After 6 weeks, patients were examined to assess whether the amputation site was completely healed, was healing, had developed complications, or did not heal. There was no significant difference in ABPI between the healed/healing and the non-healing groups. Mean TBI (p=0.031) and toe pressure readings (p=0.014) were significantly higher in the healed/healing group compared to the non healing group. A significant difference was also found in ankle spectral waveforms between the two groups (p=0.028). TBIs, toe pressures and spectral waveforms at the ankle are better predictors of likelihood of healing and non-healing after minor amputation than ABPIs. ABPI alone is a poor indicator of the likelihood of healing of minor amputations and should not be relied on to determine need for revascularization procedures before minor amputation. Copyright © 2015 Elsevier Inc. All rights reserved.
Biological Perspectives of Delayed Fracture Healing
Hankenson, KD; Zmmerman, G; Marcucio, R
2015-01-01
Fracture healing is a complex biological process that requires interaction among a series of different cell types. Maintaining the appropriate temporal progression and spatial pattern is essential to achieve robust healing. We can temporally assess the biological phases via gene expression, protein analysis, histologically, or non-invasively using biomarkers as well as imaging techniques. However, determining what leads to normal verses abnormal healing is more challenging. Since the ultimate outcome of the process of fracture healing is to restore the original functions of bone, assessment of fracture healing should include not only monitoring the restoration of structure and mechanical function, but also an evaluation of the restoration of normal bone biology. Currently very few non-invasive measures of the biology of healing exist; however, recent studies that have correlated non-invasive measures with fracture healing outcome in humans have shown that serum TGFbeta1 levels appear to be an indicator of healing vs non-healing. In the future, developing additional serum measures to assess biological healing will improve the reliability and permit us to assess stages of fracture healing. Additionally, new functional imaging technologies could prove useful for better understanding both normal fracture healing and predicting dysfunctional healing in human patients. PMID:24857030
Holistic nurses' stories of healing of another.
Enzman Hines, Mary; Wardell, Diane Wind; Engebretson, Joan; Zahourek, Rothlyn; Smith, Marlaine C
2015-03-01
The purpose of this study was to uncover the essence and meaning of healing through narrative accounts of holistic nurses, using a qualitative, descriptive design integrating narrative and story inquiry. Twenty-five stories were collected. Seven stories revealed personal healing and have been published in a prior article. Eighteen stories, the focus of this analysis, revealed healing of another. A hybrid method blending narrative and story guided the overall process for the study. Nine themes emerged describing healing of another within three story segments: The Call to Healing, The Experience of Healing, and Insights. The theme within The Call to the Healing Encounter was Drawn by Compassion to the Vulnerability and/or Suffering of Another. Five themes describe the Experience of Healing: Connection: Cocreating Relationships; Taking Risks and Dealing With Skeptical Colleagues; Use of Modalities and Actions as Tools in Developing Self as an Instrument of Healing; Profound, Ineffable Events; and Using Metaphor and Rituals to Describe Healing. Three themes describe Insights: Mutual Transformation, Change, and Reciprocity; Gratitude for the Healing Encounter; and Leaving a Legacy. The metastory, a reconstructed story created by the researchers, was the final phase of research synthesizing and demonstrating themes of healing of another. Results were compared to existing healing literature. © The Author(s) 2014.
... wounds need care to prevent infection. Stages of Wound Healing Wounds heal in stages. The smaller the wound, ... How lacerations heal References Leong M, Phillips LG. Wound healing. In: Townsend CM, Beauchamp RD, Evers BM, Mattox ...
Monitoring the mechanical properties of healing bone.
Claes, L E; Cunningham, J L
2009-08-01
Fracture healing is normally assessed through an interpretation of radiographs, clinical evaluation, including pain on weight bearing, and a manual assessment of the mobility of the fracture. These assessments are subjective and their accuracy in determining when a fracture has healed has been questioned. Viewed in mechanical terms, fracture healing represents a steady increase in strength and stiffness of a broken bone and it is only when these values are sufficiently high to support unrestricted weight bearing that a fracture can be said to be healed. Information on the rate of increase of the mechanical properties of a healing bone is therefore valuable in determining both the rate at which a fracture will heal and in helping to define an objective and measurable endpoint of healing. A number of techniques have been developed to quantify bone healing in mechanical terms and these are described and discussed in detail. Clinical studies, in which measurements of fracture stiffness have been used to identify a quantifiable end point of healing, compare different treatment methods, predictably determine whether a fracture will heal, and identify factors which most influence healing, are reviewed and discussed.
Self-healing of damage in fibre-reinforced polymer-matrix composites.
Hayes, S A; Zhang, W; Branthwaite, M; Jones, F R
2007-04-22
Self-healing resin systems have been discussed for over a decade and four different technologies had been proposed. However, little work on their application as composite matrices has been published although this was one of the stated aims of the earliest work in the field. This paper reports on the optimization of a solid-state self-healing resin system and its subsequent use as a matrix for high volume fraction glass fibre-reinforced composites. The resin system was optimized using Charpy impact testing and repeated healing, while the efficiency of healing in composites was determined by analysing the growth of delaminations following repeated impacts with or without a healing cycle. To act as a reference, a non-healing resin system was subjected to the same treatments and the results are compared with the healable system. The optimized resin system displays a healing efficiency of 65% after the first healing cycle, dropping to 35 and 30% after the second and third healing cycles, respectively. Correction for any healability due to further curing showed that approximately 50% healing efficiency could be achieved with the bisphenol A-based epoxy resin containing 7.5% of polybisphenol-A-co-epichlorohydrin. The composite, on the other hand, displays a healing efficiency of approximately 30%. It is therefore clear that the solid-state self-healing system is capable of healing transverse cracks and delaminations in a composite, but that more work is needed to optimize matrix healing within a composite and to develop a methodology for assessing recovery in performance.
Effects of water-aging on self-healing dental composite containing microcapsules.
Wu, Junling; Weir, Michael D; Melo, Mary Anne S; Strassler, Howard E; Xu, Hockin H K
2016-04-01
The objectives of this study were to develop a self-healing dental composite containing poly(urea-formaldehyde) (PUF) shells with triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxyethyl-p-toluidine (DHEPT) as healing liquid, and to investigate the mechanical properties of the composite and its self-healing efficacy after water-aging for 6 months. PUF microspheres were synthesized encapsulating a TEGDMA-DHEPT healing liquid. Composite containing 30% of a resin matrix and 70% of glass fillers by mass was incorporated with 0%, 2.5%, 5%, 7.5% and 10% of microcapsules. A flexural test was used to measure flexural strength and elastic modulus. A single edge V-notched beam method was used to measure fracture toughness (KIC) and self-healing efficacy. Specimens were water-aged at 37 °C for 1 day to 6 months and then tested for self-healing. Fractured specimens were healed while being immersed in water to examine self-healing efficacy, in comparison with that in air. Incorporation of up to 7.5% of microcapsules into the resin composite achieved effective self-healing, without adverse effects on the virgin mechanical properties of the composite (p>0.1). An excellent self-healing efficacy of 64-77% recovery was obtained (mean±sd; n=6). Six months of water-aging did not decrease the self-healing efficacy compared to 1 day (p>0.1). Exposure to water did not decrease the healing efficacy, compared to that healed in air (p>0.1). A composite was developed with excellent self-healing efficacy even while being immersed in water. The self-healing efficacy did not decrease with increasing water-aging time for 6 months. The novel self-healing composite may be promising for dental applications to heal cracks, resist fracture, and increase the durability and longevity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of water-aging on self-healing dental composite containing microcapsules
Wu, Junling; Weir, Michael D.; Melo, Mary Anne S.; Strassler, Howard E.; Xu, Hockin H. K.
2016-01-01
Objectives The objectives of this study were to develop a self-healing dental composite containing poly(urea-formaldehyde) (PUF) shells with triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxyethyl-p-toluidine (DHEPT) as healing liquid, and to investigate the mechanical properties of the composite and its self-healing efficacy after water-aging for 6 months. Methods PUF microspheres were synthesized encapsulating a TEGDMA-DHEPT healing liquid. Composite containing 30% of a resin matrix and 70% of glass fillers by mass was incorporated with 0%, 2.5%, 5%, 7.5% and 10% of microcapsules. A flexural test was used to measure flexural strength and elastic modulus. A single edge V-notched beam method was used to measure fracture toughness (KIC) and self-healing efficacy. Specimens were water-aged at 37 °C for 1 d to 6 months and then tested for self-healing. Fractured specimens were healed while being immersed in water to examine self-healing efficacy, in comparison with that in air. Results Incorporation of up to 7.5% of microcapsules into the resin composite achieved effective self-healing, without adverse effects on the virgin mechanical properties of the composite (p > 0.1). An excellent self-healing efficacy of 64%–77% recovery was obtained (mean ± sd; n = 6). Six months of water-aging did not decrease the self-healing efficacy compared to 1 d (p > 0.1). Exposure to water did not decrease the healing efficacy, compared to that healed in air (p > 0.1). Conclusions A composite was developed with excellent self-healing efficacy even while being immersed in water. The self-healing efficacy did not decrease with increasing water-aging time for 6 months. Clinical significance The novel self-healing composite may be promising for dental applications to heal cracks, resist fracture, and increase the durability and longevity. PMID:26808158
NASA Astrophysics Data System (ADS)
Zhang, He; Yang, Jinglei
2014-06-01
Part I of this study (H Zhang and J Yang 2014 Smart Mater. Struct. 23 065003) reported the preparation and characterization of epoxy microcapsules (EP-capsules) and amine loaded hollow glass bubbles (AM-HGBs), and the modeling of a two-part self-healing system. In part II, the self-healing performance of this material system is systematically investigated. Various factors including the ratio, the total concentration and the size of the two carriers are studied as well as the healing temperature and the post heat treatment process. The best healing performance is obtained at a ratio of 1:3 of EP-capsules to AM-HGBs. It is observed that a higher concentration of larger carriers, together with a higher healing temperature, enables better healing behavior. Healing efficiency of up to 93% is obtained in these systems. In addition, post heat treatment decreases the healing efficiency due to stoichiometric mismatch of healing agents caused by leakage of amine in the HGBs at elevated temperature.
Correlation of bone defect dimensions with healing outcome one year after apical surgery.
von Arx, Thomas; Hänni, Stefan; Jensen, Simon Storgård
2007-09-01
This clinical study prospectively evaluated the healing outcome 1 year after apical surgery in relation to bony crypt dimensions measured intraoperatively. The study cohort included 183 teeth in an equal number of patients. For statistical analysis, results were dichotomized (healed versus non-healed cases). The overall success rate was 83% (healed cases). Healing outcome was not significantly related to the level and height of the facial bone plate. In contrast, a significant difference was found for the mean size of the bony crypt when healed cases (395 mm(3)) were compared with non-healed cases (554 mm(3)). In addition, healed cases had a significantly shorter mean distance (4.30 mm) from the facial bone surface to the root canal (horizontal access) compared with non-healed cases (5.13 mm). With logistic regression, however, the only parameter found to be significantly related to healing outcome was the length of the access window to the bony crypt.
Peng, Jianping; Ramesh, Ganesan; Sun, Lin
2012-01-01
Wound and subsequent healing are frequently associated with hypoxia. Although hypoxia induces angiogenesis for tissue remodeling during wound healing, it may also affect the healing response of parenchymal cells. Whether and how wound healing is affected by hypoxia in kidney cells and tissues is currently unknown. Here, we used scratch-wound healing and transwell migration models to examine the effect of hypoxia in cultured renal proximal tubular cells (RPTC). Wound healing and migration were significantly slower in hypoxic (1% oxygen) RPTC than normoxic (21% oxygen) cells. Hypoxia-inducible factor-1α (HIF-1α) was induced during scratch-wound healing in normoxia, and the induction was more evident in hypoxia. Nevertheless, HIF-1α-null and wild-type cells healed similarly after scratch wounding. Moreover, activation of HIF-1α with dimethyloxalylglycine in normoxic cells did not suppress wound healing, negating a major role of HIF-1α in wound healing in this model. Scratch-wound healing was also associated with glycogen synthase kinase 3β (GSK3β)/β-catenin signaling, which was further enhanced by hypoxia. Pharmacological inhibition of GSK3β resulted in β-catenin expression, accompanied by the suppression of wound healing and transwell cell migration. Ectopic expression of β-catenin in normoxic cells could also suppress wound healing, mimicking the effect of hypoxia. Conversely, inhibition of β-catenin via dominant negative mutants or short hairpin RNA improved wound healing and transwell migration in hypoxic cells. The results suggest that GSK3β/β-catenin signaling may contribute to defective wound healing in hypoxic renal cells and tissues. PMID:22010210
Carbon Dots as Fillers Inducing Healing/Self-Healing and Anticorrosion Properties in Polymers.
Zhu, Cheng; Fu, Yijun; Liu, Changan; Liu, Yang; Hu, Lulu; Liu, Juan; Bello, Igor; Li, Hao; Liu, Naiyun; Guo, Sijie; Huang, Hui; Lifshitz, Yeshayahu; Lee, Shuit-Tong; Kang, Zhenhui
2017-08-01
Self-healing is the way by which nature repairs damage and prolongs the life of bio entities. A variety of practical applications require self-healing materials in general and self-healing polymers in particular. Different (complex) methods provide the rebonding of broken bonds, suppressing crack, or local damage propagation. Here, a simple, versatile, and cost-effective methodology is reported for initiating healing in bulk polymers and self-healing and anticorrosion properties in polymer coatings: introduction of carbon dots (CDs), 5 nm sized carbon nanocrystallites, into the polymer matrix forming a composite. The CDs are blended into polymethacrylate, polyurethane, and other common polymers. The healing/self-healing process is initiated by interfacial bonding (covalent, hydrogen, and van der Waals bonding) between the CDs and the polymer matrix and can be optimized by modifying the functional groups which terminate the CDs. The healing properties of the bulk polymer-CD composites are evaluated by comparing the tensile strength of pristine (bulk and coatings) composites to those of fractured composites that are healed and by following the self-healing of scratches intentionally introduced to polymer-CD composite coatings. The composite coatings not only possess self-healing properties but also have superior anticorrosion properties compared to those of the pure polymer coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Osada, Toshio; Kamoda, Kiichi; Mitome, Masanori; Hara, Toru; Abe, Taichi; Tamagawa, Yuki; Nakao, Wataru; Ohmura, Takahito
2017-12-19
Self-crack-healing by oxidation of a pre-incorporated healing agent is an essential property of high-temperature structural ceramics for components with stringent safety requirements, such as turbine blades in aircraft engines. Here, we report a new approach for a self-healing design containing a 3D network of a healing activator, based on insight gained by clarifying the healing mechanism. We demonstrate that addition of a small amount of an activator, typically doped MnO localised on the fracture path, selected by appropriate thermodynamic calculation significantly accelerates healing by >6,000 times and significantly lowers the required reaction temperature. The activator on the fracture path exhibits rapid fracture-gap filling by generation of mobile supercooled melts, thus enabling efficient oxygen delivery to the healing agent. Furthermore, the activator promotes crystallisation of the melts and forms a mechanically strong healing oxide. We also clarified that the healing mechanism could be divided to the initial oxidation and additional two stages. Based on bone healing, we here named these stages as inflammation, repair, and remodelling stages, respectively. Our design strategy can be applied to develop new lightweight, self-healing ceramics suitable for use in high- or low-pressure turbine blades in aircraft engines.
Identification of a transcriptional signature for the wound healing continuum
Peake, Matthew A; Caley, Mathew; Giles, Peter J; Wall, Ivan; Enoch, Stuart; Davies, Lindsay C; Kipling, David; Thomas, David W; Stephens, Phil
2014-01-01
There is a spectrum/continuum of adult human wound healing outcomes ranging from the enhanced (nearly scarless) healing observed in oral mucosa to scarring within skin and the nonhealing of chronic skin wounds. Central to these outcomes is the role of the fibroblast. Global gene expression profiling utilizing microarrays is starting to give insight into the role of such cells during the healing process, but no studies to date have produced a gene signature for this wound healing continuum. Microarray analysis of adult oral mucosal fibroblast (OMF), normal skin fibroblast (NF), and chronic wound fibroblast (CWF) at 0 and 6 hours post-serum stimulation was performed. Genes whose expression increases following serum exposure in the order OMF < NF < CWF are candidates for a negative/impaired healing phenotype (the dysfunctional healing group), whereas genes with the converse pattern are potentially associated with a positive/preferential healing phenotype (the enhanced healing group). Sixty-six genes in the enhanced healing group and 38 genes in the dysfunctional healing group were identified. Overrepresentation analysis revealed pathways directly and indirectly associated with wound healing and aging and additional categories associated with differentiation, development, and morphogenesis. Knowledge of this wound healing continuum gene signature may in turn assist in the therapeutic assessment/treatment of a patient's wounds. PMID:24844339
Pressurized vascular systems for self-healing materials
Hamilton, A. R.; Sottos, N. R.; White, S. R.
2012-01-01
An emerging strategy for creating self-healing materials relies on embedded vascular networks of microchannels to transport reactive fluids to regions of damage. Here we investigate the use of active pumping for the pressurized delivery of a two-part healing system, allowing a small vascular system to deliver large volumes of healing agent. Different pumping strategies are explored to improve the mixing and subsequent polymerization of healing agents in the damage zone. Significant improvements in the number of healing cycles and in the overall healing efficiency are achieved compared with prior passive schemes that use only capillary forces for the delivery of healing agents. At the same time, the volume of the vascular system required to achieve this superior healing performance is significantly reduced. In the best case, nearly full recovery of fracture toughness is attained throughout 15 cycles of damage and healing, with a vascular network constituting just 0.1 vol% of the specimen. PMID:21957119
Sun, Daquan; Sun, Guoqiang; Zhu, Xingyi; Guarin, Alvaro; Li, Bin; Dai, Ziwei; Ling, Jianming
2018-06-01
Self-healing has great potential to extend the service life of asphalt pavement, and this capability has been regarded as an important strategy when designing a sustainable infrastructure. This review presents a comprehensive summary of the state-of-the-art investigations concerning the self-healing mechanism, model, characterization and enhancement, ranging from asphalt to asphalt pavement. Firstly, the self-healing phenomenon as a general concept in asphalt materials is analyzed including its definition and the differences among self-healing and some viscoelastic responses. Additionally, the development of self-healing in asphalt pavement design is introduced. Next, four kinds of possible self-healing mechanism and corresponding models are presented. It is pointed out that the continuum thermodynamic model, considering the whole process from damage initiation to healing recovery, can be a promising study field. Further, a set of self-healing multiscale characterization methods from microscale to macroscale as well as computational simulation scale, are summed up. Thereinto, the computational simulation shows great potential in simulating the self-healing behavior of asphalt materials from mechanical and molecular level. Moreover, the factors influencing self-healing capability are discussed, but the action mechanisms of some factors remain unclear and need to be investigated. Finally, two extrinsic self-healing technologies, induction heating and capsule healing, are recommended as preventive maintenance applications in asphalt pavement. In future, more effective energy-based healing systems or novel material-based healing systems are expected to be developed towards designing sustainable long-life asphalt pavement. Copyright © 2018 Elsevier B.V. All rights reserved.
Cho, Jin-Ho; Song, Jae-Gwang
2014-06-01
To identify the structural integrity of the healing site after arthroscopic repair of a posterior root tear of the medial meniscus by second-look arthroscopy and to determine the clinical relevance of the findings. From January 2005 to December 2010, 20 consecutive patients underwent arthroscopic modified pull-out suture repair for a posterior root tear of the medial meniscus. Thirteen patients were available for second-look arthroscopic evaluation. The healing status of the medial meniscus was classified as complete healing, lax healing, scar tissue healing, and failed healing. We evaluated the correlation between the clinical symptoms and second-look arthroscopic findings. Clinical evaluation was based on the Lysholm knee scores and Hospital for Special Surgery (HSS) scores. There were 4 cases of complete healing, 4 lax healing, 4 scar tissue healing, and 1 failed healing. The healing status of the repaired meniscus appeared to be related to the clinical symptoms. Patients who achieved complete tissue healing had no complaint. The healing status exhibited no relationship with age, mechanical axis, degree of subluxation, and symptom duration. The mean Lysholm score improved from 34.7 preoperatively to 75.6 at follow-up and the mean HSS score also significantly increased from 33.5 to 82.2. We achieved 4 complete and 8 partial healing (lax or scar) of the medial meniscus in this retrospective case series of posterior horn meniscus root repairs performed by 1 surgeon. Further research is needed to clarify why all patients showed clinical improvement despite findings of partial healing on second-look arthroscopy.
Healing Becomes a Fishy Business.
Morrow, Thomas
2016-12-01
Fish skin skews the contest between healing and the biodegradation of healing molecules toward the healing side. Fish skin is very high in omega-3 fatty acids, compounds that promote healing. And cod evokes virtually no inflammatory or immune response in humans.
Self-Healing composites for Mitigation of Impact Damage in US Army Applications
1976-12-01
triggering mechanism for self-healing, rupturing the embedded microcapsules and releasing healing agent into In this study, fiber-reinforced...through the inclusion of urea-formaldehyde properties in self-healing materials have focused on microcapsules containing dicyclopentadiene (DCPD) monotonic...systems, healing is Figure 1: (a) Optical micrograph and (b) schematic demonstrating accomplished by incorporating a microencapsulated the self-healing
Distinct Fibroblasts in the Papillary and Reticular Dermis: Implications for Wound Healing.
Woodley, David T
2017-01-01
Human skin wounds heal largely by reparative wound healing rather than regenerative wound healing. Human skin wounds heal with scarring and without pilosebaceous units or other appendages. Dermal fibroblasts come from 2 distinct lineages of cells that have distinct cell markers and, more importantly, distinct functional abilities. Human skin wound healing largely involves the dermal fibroblast lineage from the reticular dermis and not the papillary dermis. If scientists could find a way to stimulate the dermal fibroblast lineages from the papillary dermis in early wound healing, perhaps human skin wounds could heal without scarring and with skin appendages. Copyright © 2016 Elsevier Inc. All rights reserved.
Analytical model for effects of capsule shape on the healing efficiency in self-healing materials
Li, Songpeng; Chen, Huisu
2017-01-01
The fundamental requirement for the autonomous capsule-based self-healing process to work is that cracks need to reach the capsules and break them such that the healing agent can be released. Ignoring all other aspects, the amount of healing agents released into the crack is essential to obtain a good healing. Meanwhile, from the perspective of the capsule shapes, spherical or elongated capsules (hollow tubes/fibres) are the main morphologies used in capsule-based self-healing materials. The focus of this contribution is the description of the effects of capsule shape on the efficiency of healing agent released in capsule-based self-healing material within the framework of the theory of geometrical probability and integral geometry. Analytical models are developed to characterize the amount of healing agent released per crack area from capsules for an arbitrary crack intersecting with capsules of various shapes in a virtual capsule-based self-healing material. The average crack opening distance is chosen to be a key parameter in defining the healing potential of individual cracks in the models. Furthermore, the accuracy of the developed models was verified by comparison to the data from a published numerical simulation study. PMID:29095862
Parathyroid hormone and bone healing.
Ellegaard, M; Jørgensen, N R; Schwarz, P
2010-07-01
Fracture healing is a complex process, and a significant number of fractures are complicated by impaired healing and non-union. Impaired healing is prevalent in certain risk groups, such as the elderly, osteoporotics, people with malnutrition, and women after menopause. Currently, no pharmacological treatments are available. There is therefore an unmet need for medications that can stimulate bone healing. Parathyroid hormone (PTH) is the first bone anabolic drug approved for the treatment of osteoporosis, and intriguingly a number of animal studies suggest that PTH could be beneficial in the treatment of fractures and could thus be a potentially new treatment option for induction of fracture healing in humans. Furthermore, fractures in animals with experimental conditions of impaired healing such as aging, estrogen withdrawal, and malnutrition can heal in an expedited manner after PTH treatment. Interestingly, fractures occurring at both cancellous and cortical sites can be treated successfully, indicating that both osteoporotic and nonosteoporotic fractures can be the target of PTH-induced healing. Finally, the data suggest that PTH partly prevents the delay in fracture healing caused by aging. Recently, the first randomized, controlled clinical trial investigating the effect of PTH on fracture healing was published, indicating a possible clinical benefit of PTH treatment in inducing fracture healing. The aim of this article is therefore to review the evidence for the potential of PTH in bone healing, including the underlying mechanisms for this, and to provide recommendations for the clinical testing and use of PTH in the treatment of impaired fracture healing in humans.
Healing pressure ulcers with collagen or hydrocolloid: a randomized, controlled trial.
Graumlich, James F; Blough, Linda S; McLaughlin, Richard G; Milbrandt, Joseph C; Calderon, Cesar L; Agha, Syed Abbas; Scheibel, L William
2003-02-01
To compare the effects of topical collagen and hydrocolloid on pressure ulcer healing. Randomized (allocation concealed), single-blind (outcome assessors), controlled trial with 8-week follow-up. Eleven nursing homes in central Illinois. Sixty-five patient-residents with Stage II or III pressure ulcers: median age 83.1, median Braden score 12, 63% female, 80% Stage II ulcers, and 20% Stage III ulcers. Exclusion criteria included cellulitis and osteomyelitis. Thirty-five patients were allocated to topical collagen daily, 30 to topical hydrocolloid twice weekly. The primary outcome was complete healing within 8 weeks. Secondary outcomes were time to heal, ulcer area healed per day, linear healing of wound edge, and cost of therapy. Analysis by intention to treat revealed similar complete ulcer healing within 8 weeks in collagen (51%) and hydrocolloid (50%) recipients (difference 1%, 95% confidence interval (CI) = 26-29%). Mean healing time was similar: collagen healed in 5 weeks (95% CI = 4-6), hydrocolloid healed in 6 weeks (95% CI = 5-7). Mean area healed per day was 6 mm(2)/d in both treatment groups. Mean linear healing of the wound edge was 3 mm in both groups. In multivariate analysis, baseline ulcer depth was the only independent predictor of complete ulcer healing within 8 weeks (odds ratio = 0.56, 95% CI = 0.38-0.81). Cost analysis favored hydrocolloid. There were no significant differences in healing outcome between collagen and hydrocolloid. Collagen was more expensive and offered no major benefits to patients otherwise eligible for hydrocolloid treatment.
NASA Astrophysics Data System (ADS)
Yougoubare, Y. Quentin; Pang, Su-Seng
2014-02-01
In previous work, a biomimetic close-then-heal (CTH) healing mechanism was proposed and validated to repeatedly heal wide-open cracks in load carrying engineering structures by using constrained expansion of compression programmed thermoset shape memory polymers (SMPs). In this study, the effects on healing efficiencies of variation of temperature during both thermomechanical programming and shape recovery (healing) under three-dimensional (3D) confinement are evaluated. The polymer considered is a polystyrene shape memory polymer with 6% by volume of thermoplastic particle additives (copolyester) dispersed in the matrix. In addition to the programming and healing temperatures, some of the parameters investigated include the flexural strength, crack width and elemental composition at the crack interface. It is observed that while increase of the programming temperature is slightly beneficial to strength recovery, most of the strength recovered and damage repair are strongly dependent on the healing temperature. The best healing efficiency (63%) is achieved by a combination of a programming temperature above the glass transition temperature of the polymer and a healing temperature above the bonding point of the copolyester.
Autonomic self-healing in epoxidized natural rubber.
Rahman, Arifur; Sartore, Luciana; Bignotti, Fabio; Di Landro, Luca
2013-02-01
The development of polymers that can repair damage autonomously would be useful to improve the lifetime of polymeric materials. To date, limited attention has been dedicated to developing elastomers with autonomic self-healing ability, which can recover damages without need for an external or internal source of healing agents. This work investigates the self-healing behavior of epoxidized natural rubber (ENR) with two different epoxidation levels (25 and 50 mol % epoxidation) and of the corresponding unfunctionalized rubber, cis-1,4-polyisoprene (PISP). A self-adhesion assisted self-healing behavior was revealed by T-peel tests on slightly vulcanized rubbers. A higher epoxidation level was found to enhance self-healing. Self-healing of rubbers following ballistic damages was also investigated. A pressurized air flow test setup was used to evaluate the self-healing of ballistic damages in rubbers. Microscope (OM, SEM, and TEM) analyses were carried out to provide further evidence of healing in the impact zones. Self-healing of ballistic damages was observed only in ENR with 50 mol % epoxidation and it was found to be influenced significantly by the cross-link density. Finally, self-healing of ballistic damages was also observed in ENR50/PISP blends only when the content of the healing component (i.e., ENR50) was at least 25 wt %. From an analysis of the results, it was concluded that a synergistic effect between interdiffusion and interaction among polar groups leads to self-healing in ENR.
Definitions of healing and healing interventions across different cultures.
Lichtenstein, Ann H; Berger, Ann; Cheng, M Jennifer
2017-07-01
For centuries healing has been embedded in non-Western cultures. Traditional cultures believe that healing is derived from the divine and utilize a holistic approach to healing including the body, mind, and spirit. The community and environment are key elements in individual healing along with herbal remedies and ceremonies. Western cultures have accepted some traditional methods of relaxation and exercise, such as yoga and tai chi. In this paper we will examine some similar themes of traditional practices to better understand traditional patients' healing paradigm and find new tools as practitioners of Western medicine.
Song, Jae-Gwang
2014-01-01
Purpose To identify the structural integrity of the healing site after arthroscopic repair of a posterior root tear of the medial meniscus by second-look arthroscopy and to determine the clinical relevance of the findings. Materials and Methods From January 2005 to December 2010, 20 consecutive patients underwent arthroscopic modified pull-out suture repair for a posterior root tear of the medial meniscus. Thirteen patients were available for second-look arthroscopic evaluation. The healing status of the medial meniscus was classified as complete healing, lax healing, scar tissue healing, and failed healing. We evaluated the correlation between the clinical symptoms and second-look arthroscopic findings. Clinical evaluation was based on the Lysholm knee scores and Hospital for Special Surgery (HSS) scores. Results There were 4 cases of complete healing, 4 lax healing, 4 scar tissue healing, and 1 failed healing. The healing status of the repaired meniscus appeared to be related to the clinical symptoms. Patients who achieved complete tissue healing had no complaint. The healing status exhibited no relationship with age, mechanical axis, degree of subluxation, and symptom duration. The mean Lysholm score improved from 34.7 preoperatively to 75.6 at follow-up and the mean HSS score also significantly increased from 33.5 to 82.2. Conclusions We achieved 4 complete and 8 partial healing (lax or scar) of the medial meniscus in this retrospective case series of posterior horn meniscus root repairs performed by 1 surgeon. Further research is needed to clarify why all patients showed clinical improvement despite findings of partial healing on second-look arthroscopy. PMID:24944976
Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Kilicli, Volkan; Yan, Xiaojun; Salowitz, Nathan; Rohatgi, Pradeep K.
2018-04-01
Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.
Recent Advancements in Self-Healing Metallic Materials and Self-Healing Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Kilicli, Volkan; Yan, Xiaojun; Salowitz, Nathan; Rohatgi, Pradeep K.
2018-06-01
Engineered self-healing materials inspired by natural biological organisms that can repair damage are receiving increasing interest in recent years. Most studies have been focused on self-healing polymers, concretes, and ceramics. Self-healing metallic materials pose challenges due to the high temperatures used in manufacturing and the chemistries involved. This article summarizes and evaluates the self-healing mechanisms used in metallic materials and reviews recent studies into self-healing in aluminum, zinc, and Sn-Bi alloys. Generalizations about the various classifications are drawn from the review highlighting major hurdles in the widespread practical application of metallic self-healing materials, as well as the potential directions for future studies.
Design and testing of tubular polymeric capsules for self-healing of concrete
NASA Astrophysics Data System (ADS)
Araújo, M.; Van Tittelboom, K.; Feiteira, J.; Gruyaert, E.; Chatrabhuti, S.; Raquez, J.-M.; Šavija, B.; Alderete, N.; Schlangen, E.; De Belie, N.
2017-10-01
Polymeric healing agents have proven their efficiency to heal cracks in concrete in an autonomous way. However, the bottleneck for valorisation of self-healing concrete with polymeric healing agents is their encapsulation. In the present work, the suitability of polymeric materials such as poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(lactic acid) (PLA) as carriers for healing agents in self-healing concrete has been evaluated. The durability of the polymeric capsules in different environments (demineralized water, salt water and simulated concrete pore solution) and their compatibility with various healing agents have been assessed. Next, a numerical model was used to simulate capsule rupture when intersected by a crack in concrete and validated experimentally. Finally, two real-scale self-healing concrete beams were made, containing the selected polymeric capsules (with the best properties regarding resistance to concrete mixing and breakage upon crack formation) or glass capsules and a reference beam without capsules. The self-healing efficiency was determined after crack creation by 3-point-bending tests.
Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers
NASA Astrophysics Data System (ADS)
Hia, Iee Lee; Pasbakhsh, Pooria; Chan, Eng-Seng; Chai, Siang-Piao
2016-10-01
Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.
Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers.
Hia, Iee Lee; Pasbakhsh, Pooria; Chan, Eng-Seng; Chai, Siang-Piao
2016-10-03
Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.
Electrosprayed Multi-Core Alginate Microcapsules as Novel Self-Healing Containers
Hia, Iee Lee; Pasbakhsh, Pooria; Chan, Eng-Seng; Chai, Siang-Piao
2016-01-01
Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5–100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed. PMID:27694922
Li, Xin; Zhang, Qiang; Zhao, Changsong; Sun, Sheng; Cai, Juan
2014-09-09
To observe the healing status of surgical incisions in human immunodeficiency virus (HIV)-positive patients with fractures and explore the factors related with poor wound healing, treatment and preventive measures. Retrospective analyses were performed for the clinical data of 61 HIV-positive patients with fractures. And the influencing factors, treatment and outcomes of poor wound healing were analyzed. Among them, the healing status was good (n = 50) and poor (n = 11). And the outcomes included redness (n = 10), oozing (n = 8), split (n = 3), infection (n = 2), hematoma (n = 1), fat liquefaction (n = 2) and delayed healing (n = 2). All healed well after treatment. There was no infection or death during the follow-up period. Compared with HIV-negative patients, it was not statistically significant in wound infection. However, poor healing rates were significantly different (P < 0.05). The risk factors included advanced age, low body mass index, low albumin, low hemoglobin, low total lymphocyte count, low CD4⁺ T lymphocyte count, high HIV infection clinical stage, long operative duration, emergency surgery and incision contamination. In HIV-positive patients with fractures, the healing of surgical incision is generally good. However few have poor wound healing due to multiple factors. If poor healing is identified early and handled timely and correctly, good healing ensues.
Room-temperature healing of a thermosetting polymer using the Diels-Alder reaction.
Peterson, Amy M; Jensen, Robert E; Palmese, Giuseppe R
2010-04-01
Self-healing materials are particularly desirable for load-bearing applications because they offer the potential for increased safety and material lifetimes. A furan-functionalized polymer network was designed that can heal via covalent bonding across the crack surface with the use of a healing agent consisting of a bismaleimide in solution. Average healing efficiencies of approximately 70% were observed. The healing ability of fiber-reinforced composite specimens was investigated with flexural, short beam shear, and double cantilever beam specimens. It was found that solvent amount and maleimide concentration play key roles in determining healing efficiency.
The growth receptors and their role in wound healing.
Rolfe, Kerstin J; Grobbelaar, Adriaan O
2010-11-01
Abnormal wound healing is a major problem in healthcare today, with both scarring and chronic wounds affecting large numbers of individuals worldwide. Wound healing is a complex process involving several variables, including growth factors and their receptors. Chronic wounds fail to complete the wound healing process, while scarring is considered to be an overzealous wound healing process. Growth factor receptors and their ligands are being investigated to assess their potential in the development of therapeutic strategies to improve wound healing. This review discusses potential therapeutics for manipulating growth factors and their corresponding receptors for the treatment of abnormal wound healing.
Alrawi, Sara; Fetters, Michael D; Killawi, Amal; Hammad, Adnan; Padela, Aasim
2012-06-01
Despite growing numbers of American Muslims, little empirical work exists on their use of traditional healing practices. We explored the types of traditional healing practices used by American Muslims in southeast Michigan. Twelve semi-structured interviews with American Muslim community leaders identified through a community-academic steering committee were conducted. Using a framework coding structure, a multidisciplinary investigative team identified themes describing traditional healing practices. Traditional healing practices can be categorized into three domains: Islamic religious text based practices, Islamic worship practices, and folk healing practices. Each domain may further contain therapies such as spiritual healing, medicinal herbs, mind body therapy, and dietary prescriptions. Traditional healing practices are utilized in three capacities of care: primary, secondary, and integrative. Our findings demonstrate that American Muslims actively utilize traditional healing practices. Healthcare practitioners caring for this population should be aware of the potential influence of these practices on health behaviors.
Use of topical healing agents on scrotal wounds after surgical castration in weaned beef calves
Marti, Sonia; Schwartzkopf-Genswein, Karen S.; Janzen, Eugene D.; Meléndez, Daniela M.; Gellatly, Désirée; Pajor, Edmond A.
2017-01-01
Angus bulls (n = 48) were randomly assigned to control (castrated without the application of a postoperative healing agent) or surgical castration followed by either the application of a topical germicide, aluminum powder spray, or liquid bandage. The objective of this study was to determine the efficacy of commercial topical healing agents in improving wound healing and reducing inflammation and secondary infection after surgical castration. Indicators of wound healing included scrotal area temperature (determined by infrared thermography), scrotal circumference, clinical state of the scrotum score, and the wound healing score. Pain sensitivity was measured using a Von Frey anesthesiometer. The healing agents used in this study did not improve indicators of healing such as swelling and healing rate scores or indicators of inflammation including scrotal temperature and circumference of surgical castration lesions. Pain sensation associated with surgical castration was found to last 35 d after the procedure. PMID:28966358
Use of topical healing agents on scrotal wounds after surgical castration in weaned beef calves.
Marti, Sonia; Schwartzkopf-Genswein, Karen S; Janzen, Eugene D; Meléndez, Daniela M; Gellatly, Désirée; Pajor, Edmond A
2017-10-01
Angus bulls ( n = 48) were randomly assigned to control (castrated without the application of a postoperative healing agent) or surgical castration followed by either the application of a topical germicide, aluminum powder spray, or liquid bandage. The objective of this study was to determine the efficacy of commercial topical healing agents in improving wound healing and reducing inflammation and secondary infection after surgical castration. Indicators of wound healing included scrotal area temperature (determined by infrared thermography), scrotal circumference, clinical state of the scrotum score, and the wound healing score. Pain sensitivity was measured using a Von Frey anesthesiometer. The healing agents used in this study did not improve indicators of healing such as swelling and healing rate scores or indicators of inflammation including scrotal temperature and circumference of surgical castration lesions. Pain sensation associated with surgical castration was found to last 35 d after the procedure.
Self-healing cable for extreme environments
NASA Technical Reports Server (NTRS)
Huston, Dryver R. (Inventor); Tolmie, Bernard R. (Inventor)
2009-01-01
Self-healing cable apparatus and methods disclosed. The self-healing cable has a central core surrounded by an adaptive cover that can extend over the entire length of the self-healing cable or just one or more portions of the self-healing cable. The adaptive cover includes an axially and/or radially compressible-expandable (C/E) foam layer that maintains its properties over a wide range of environmental conditions. A tape layer surrounds the C/E layer and is applied so that it surrounds and axially and/or radially compresses the C/E layer. When the self-healing cable is subjected to a damaging force that causes a breach in the outer jacket and the tape layer, the corresponding localized axially and/or radially compressed portion of the C/E foam layer expands into the breach to form a corresponding localized self-healed region. The self-healing cable is manufacturable with present-day commercial self-healing cable manufacturing tools.
Low-Temperature Self-Healing of a Microcapsule-Type Protective Coating.
Kim, Dong-Min; Cho, Yu-Jin; Choi, Ju-Young; Kim, Beom-Jun; Jin, Seung-Won; Chung, Chan-Moon
2017-09-14
Low-temperature self-healing capabilities are essential for self-healing materials exposed to cold environments. Although low-temperature self-healing concepts have been proposed, there has been no report of a microcapsule-type low-temperature self-healing system wherein the healing ability was demonstrated at low temperature. In this work, low-temperature self-healing of a microcapsule-type protective coating was demonstrated. This system employed silanol-terminated polydimethylsiloxane (STP) as a healing agent and dibutyltin dilaurate (DD) as a catalyst. STP underwent a condensation reaction at -20 °C in the presence of DD to give a viscoelastic product. The reaction behavior of STP and the viscoelasticity of the reaction product were investigated. STP and DD were separately microencapsulated by in situ polymerization and interfacial polymerization methods, respectively. The STP- and DD-loaded microcapsules were mixed into a commercial enamel paint, and the resulting formulation was applied to glass slides, steel panels, and mortars to prepare self-healing coatings. When the self-healing coatings were damaged at a low temperature (-20 °C), STP and DD were released from broken microcapsules and filled the damaged area. This process was effectively visualized using a fluorescent dye. The self-healing coatings were scratched and subjected to corrosion tests, electrochemical tests, and saline solution permeability tests. The temperature of the self-healing coatings was maintained at -20 °C before and after scratching and during the tests. We successfully demonstrated that the STP/DD-based coating system has good low-temperature self-healing capability.
DuBuc, Timothy Q; Traylor-Knowles, Nikki; Martindale, Mark Q
2014-03-26
Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities.
2014-01-01
Background Wound healing is the first stage of a series of cellular events that are necessary to initiate a regenerative response. Defective wound healing can block regeneration even in animals with a high regenerative capacity. Understanding how signals generated during wound healing promote regeneration of lost structures is highly important, considering that virtually all animals have the ability to heal but many lack the ability to regenerate missing structures. Cnidarians are the phylogenetic sister taxa to bilaterians and are highly regenerative animals. To gain a greater understanding of how early animals generate a regenerative response, we examined the cellular and molecular components involved during wound healing in the anthozoan cnidarian Nematostella vectensis. Results Pharmacological inhibition of extracellular signal-regulated kinases (ERK) signaling blocks regeneration and wound healing in Nematostella. We characterized early and late wound healing events through genome-wide microarray analysis, quantitative PCR, and in situ hybridization to identify potential wound healing targets. We identified a number of genes directly related to the wound healing response in other animals (metalloproteinases, growth factors, transcription factors) and suggest that glycoproteins (mucins and uromodulin) play a key role in early wound healing events. This study also identified a novel cnidarian-specific gene, for a thiamine biosynthesis enzyme (vitamin B synthesis), that may have been incorporated into the genome by lateral gene transfer from bacteria and now functions during wound healing. Lastly, we suggest that ERK signaling is a shared element of the early wound response for animals with a high regenerative capacity. Conclusions This research describes the temporal events involved during Nematostella wound healing, and provides a foundation for comparative analysis with other regenerative and non-regenerative species. We have shown that the same genes that heal puncture wounds are also activated after oral-aboral bisection, indicating a clear link with the initiation of regenerative healing. This study demonstrates the strength of using a forward approach (microarray) to characterize a developmental phenomenon (wound healing) at a phylogenetically important crossroad of animal evolution (cnidarian-bilaterian ancestor). Accumulation of data on the early wound healing events across numerous systems may provide clues as to why some animals have limited regenerative abilities. PMID:24670243
Healing: through the lens of intentionality.
Zahourek, Rothlyn P
2012-01-01
Understanding and studying healing is one of our challenges as health care providers. This study is a presentation of a secondary analysis of data collected to study intentionality in the context of healing. Six healers and 6 healees, five of each who participate as dyads, described their experiences and their concepts of healing. The theory, Intentionality: the Matrix for Healing (IMH), is presented along with a more expanded definition of healing as an awareness of shift and a transformative process.
Öien, Rut F; Forssell, Henrik; Ragnarson Tennvall, Gunnel
2016-10-01
Resource use and costs for topical treatment of hard-to-heal ulcers based on data from the Swedish Registry of Ulcer Treatment (RUT) were analysed in patients recorded in RUT as having healed between 2009 and 2012, in order to estimate potential cost savings from reductions in frequency of dressing changes and healing times. RUT is used to capture areas of improvement in ulcer care and to enable structured wound management by registering patients with hard-to-heal leg, foot and pressure ulcers. Patients included in the registry are treated in primary care, community care, private care, and inpatient hospital care. Cost calculations were based on resource use data on healing time and frequency of dressing changes in Swedish patients with hard-to-heal ulcers who healed between 2009 and 2012. Per-patient treatment costs decreased from SEK38 223 in 2009 to SEK20 496 in 2012, mainly because of shorter healing times. Frequency of dressing changes was essentially the same during these years, varying from 1·4 to 1·6 per week. The total healing time was reduced by 38%. Treatment costs for the management of hard-to-heal ulcers can be reduced with well-developed treatment strategies resulting in shortened healing times as shown in RUT. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Zhao, Xin; Wu, Hao; Guo, Baolin; Dong, Ruonan; Qiu, Yusheng; Ma, Peter X
2017-04-01
Injectable self-healing hydrogel dressing with multifunctional properties including anti-infection, anti-oxidative and conductivity promoting wound healing process will be highly desired in wound healing application and its design is still a challenge. We developed a series of injectable conductive self-healed hydrogels based on quaternized chitosan-g-polyaniline (QCSP) and benzaldehyde group functionalized poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS-FA) as antibacterial, anti-oxidant and electroactive dressing for cutaneous wound healing. These hydrogels presented good self-healing, electroactivity, free radical scavenging capacity, antibacterial activity, adhesiveness, conductivity, swelling ratio, and biocompatibility. Interestingly, the hydrogel with an optimal crosslinker concentration of 1.5 wt% PEGS-FA showed excellent in vivo blood clotting capacity, and it significantly enhanced in vivo wound healing process in a full-thickness skin defect model than quaternized chitosan/PEGS-FA hydrogel and commercial dressing (Tegaderm™ film) by upregulating the gene expression of growth factors including VEGF, EGF and TGF-β and then promoting granulation tissue thickness and collagen deposition. Taken together, the antibacterial electroactive injectable hydrogel dressing prolonged the lifespan of dressing relying on self-healing ability and significantly promoted the in vivo wound healing process attributed to its multifunctional properties, meaning that they are excellent candidates for full-thickness skin wound healing. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Oshun Festival: An African Traditional Religious Healing Process.
ERIC Educational Resources Information Center
Idowu, Adeyemi I.
1992-01-01
Examines the Oshun Festival, an African traditional religious festival, from a healing perspective. Highlights the value of religion in the African culture and discusses various myths. Explores the role of myths in and the place of beliefs in the healing process. Explains rituals and the healing environment, healers, and healing methods. Offers…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghazali, Habibah; Ye, Lin; Zhang, Ming-Qiu
The aim of this work is to develop a self-healing polymeric adhesive formulation with epoxy/mercaptan microcapsules. Epoxy/mercaptan microcapsules were dispersed into a commercialize two-part epoxy adhesive for developing self-healing epoxy adhesive. The influence of different content of microcapsules on the shear strength and healing capability of epoxy adhesive were investigated using single-lap-joints with average thickness of adhesive layer of about 180 µm. This self-healing adhesive was used in bonding of 5000 series aluminum alloys adherents after mechanical and alkaline cleaning surface treatment. The adhesion strength was measured and presented as function of microcapsules loading. The results indicated that the virgin lapmore » shear strength was increased by about 26% with addition of 3 wt% of self-healing microcapsules. 12% to 28% recovery of the shear strength is achieved after self-healing depending on the microcapsules content. Scanning electron microscopy was used to study fracture surface of the joints. The self-healing adhesives exhibit recovery of both cohesion and adhesion properties with room temperature healing.« less
Self-healing in single and multiple fiber(s) reinforced polymer composites
NASA Astrophysics Data System (ADS)
Woldesenbet, E.
2010-06-01
You Polymer composites have been attractive medium to introduce the autonomic healing concept into modern day engineering materials. To date, there has been significant research in self-healing polymeric materials including several studies specifically in fiber reinforced polymers. Even though several methods have been suggested in autonomic healing materials, the concept of repair by bleeding of enclosed functional agents has garnered wide attention by the scientific community. A self-healing fiber reinforced polymer composite has been developed. Tensile tests are carried out on specimens that are fabricated by using the following components: hollow and solid glass fibers, healing agent, catalysts, multi-walled carbon nanotubes, and a polymer resin matrix. The test results have demonstrated that single fiber polymer composites and multiple fiber reinforced polymer matrix composites with healing agents and catalysts have provided 90.7% and 76.55% restoration of the original tensile strength, respectively. Incorporation of functionalized multi-walled carbon nanotubes in the healing medium of the single fiber polymer composite has provided additional efficiency. Healing is found to be localized, allowing multiple healing in the presence of several cracks.
Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion
Kim, Chang-Lae; Kim, Dae-Eun
2016-01-01
A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature. PMID:27010967
Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion
NASA Astrophysics Data System (ADS)
Kim, Chang-Lae; Kim, Dae-Eun
2016-03-01
A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.
The self-healing composite anticorrosion coating
NASA Astrophysics Data System (ADS)
Yang, Zhao; Wei, Zhang; Le-ping, Liao; Hong-mei, Wang; Wu-jun, Li
Self-healing coatings, which autonomically repair and prevent corrosion of the underlying substrate, are of particular interest for the researchers. In the article, effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resindroplets. Characteristics of these capsules were studied by scanning electron microscope (SEM), thermo gravimetric analyzer (TGA) and particle size analyzer. The model system of self-healing antisepsis coating consists of an epoxy resin matrix, 10 wt% microencapsulated healing agent, 2wt% catalyst solution. The self-healing function of this coating system is evaluated through corrosion testing of damaged and healed coated steel samples compared to control samples. Electrochemical testing provides further evidence of passivation of the substrate by self-healing coatings.
A hermeneutic phenomenological understanding of men's healing from childhood maltreatment.
Willis, Danny G; Rhodes, Alison M; Dionne-Odom, James N; Lee, Kayoung; Terreri, Pamela
2015-03-01
To describe and interpret men's experience of healing from childhood maltreatment. Hermeneutic phenomenological. In-depth interviews. Community-based purposive, maximum variation sampling approach. Recruitment occurred through posting flyers and advertisements. Verbatim data were analyzed and themes of the meaning of healing were identified. The meaning of healing was interpreted as "moving beyond suffering." Five themes were identified to capture the multidimensional nature of the phenomenon: (a) breaking through the masculine veneer, (b) finding meaning, (c) choosing to live well, (d) caring for the self using holistic healing methods, and (e) engaging in humanizing relationships. Men who survived childhood maltreatment have needs to heal holistically mind, body, and spirit. Meeting their needs requires the provision of highly compassionate humanistic healing environments and healing-promotive nursing care. © The Author(s) 2014.
Review of research and developments in self healing composite materials
NASA Astrophysics Data System (ADS)
Reddy Madara, Sahith; Sarath Raj, N. S.; Pon Selvan, Chithirai, Dr.
2018-04-01
Self-healing materials are artificial or synthetically created substances that have the built-in ability to automatically repair damage to themselves without any external diagnosis of the problem or human intervention. This article presents the current research and developments in self-healing composite materials. A detailed study is conducted on various types of self-healing composites with their self-healing mechanisms. The applications of self-healing materials in various fields including space sector is also discussed. Economics and Future outlooks for self-healing smart materials is highlighted at the end of the article. This research article will be useful to manufacturers, policy makers and researchers widely.
Nagai, Noriaki; Ogata, Fumihiko; Deguchi, Saori; Ueno, Akina; Kawasaki, Naohito; Ito, Yoshimasa
2017-01-01
We attempted to design a combination ointment containing solid tranilast nanoparticles and dissolved sericin as a wound-healing drug (TS-combination ointment), and evaluated its usefulness as therapy for wound-healing deficits in streptozotocin-induced diabetic rat (STZ rat) using kinetic analyses as an index. Solid tranilast nanoparticles were prepared by bead mill methods with low-substituted methylcellulose; the mean particle size of the tranilast nanoparticles was 70 nm. The ointment was designed to contain the tranilast nanoparticles plus sericin powder and/or Carbopol ® 934. Skin wound healing in STZ rats begins significantly later than in normal rats. Although the skin wound healing rate in STZ rats treated with an ointment containing tranilast nanoparticles was lower than in STZ rats treated with vehicle, the ointment was effective in reducing redness. An ointment containing sericin enhanced the skin-healing rate, but the preventive effect on redness was weak. On the other hand, the combination of tranilast and sericin increased both the skin healing rate and reduction in redness. In conclusion, we have adapted kinetic analyses to skin wound healing in rats, and found these analyses to be useful as an index of wound healing ability by a wound-healing drug. In addition, we show that treatment with the TS-combination ointment enhances the skin wound healing rate and reduces redness. These findings provide information significant to the search for new wound-healing therapies and for the design of wound-healing drugs.
Low-Temperature Self-Healing of a Microcapsule-Type Protective Coating
Cho, Yu-Jin; Choi, Ju-Young; Kim, Beom-Jun; Jin, Seung-Won; Chung, Chan-Moon
2017-01-01
Low-temperature self-healing capabilities are essential for self-healing materials exposed to cold environments. Although low-temperature self-healing concepts have been proposed, there has been no report of a microcapsule-type low-temperature self-healing system wherein the healing ability was demonstrated at low temperature. In this work, low-temperature self-healing of a microcapsule-type protective coating was demonstrated. This system employed silanol-terminated polydimethylsiloxane (STP) as a healing agent and dibutyltin dilaurate (DD) as a catalyst. STP underwent a condensation reaction at −20 °C in the presence of DD to give a viscoelastic product. The reaction behavior of STP and the viscoelasticity of the reaction product were investigated. STP and DD were separately microencapsulated by in situ polymerization and interfacial polymerization methods, respectively. The STP- and DD-loaded microcapsules were mixed into a commercial enamel paint, and the resulting formulation was applied to glass slides, steel panels, and mortars to prepare self-healing coatings. When the self-healing coatings were damaged at a low temperature (−20 °C), STP and DD were released from broken microcapsules and filled the damaged area. This process was effectively visualized using a fluorescent dye. The self-healing coatings were scratched and subjected to corrosion tests, electrochemical tests, and saline solution permeability tests. The temperature of the self-healing coatings was maintained at −20 °C before and after scratching and during the tests. We successfully demonstrated that the STP/DD-based coating system has good low-temperature self-healing capability. PMID:28906465
Healing efficiency and dynamic mechanical properties of self-healing epoxy systems
NASA Astrophysics Data System (ADS)
Guadagno, Liberata; Raimondo, Marialuigia; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Binder, Wolfgang H.
2014-03-01
Several systems to develop self-repairing epoxy resins have recently been formulated. In this paper the effect of matrix nature and curing cycle on the healing efficiency and dynamic mechanical properties of self-healing epoxy resins were investigated. We discuss several aspects by transferring self-healing systems from the laboratory scale to real applications in the aeronautic field, such as the possibility to choose systems with increased glass transition temperature, high storage modulus and high values in the healing functionality under real working conditions.
Wound Healing Trajectories in Burn Patients and Their Impact on Mortality
2014-12-01
nonsurvivors on OWS as a function of time (P<.001). Patients with a positive healing rate (+2%/day) after postburn day 20 had 100% survival whereas those...between patients with a positive healing rate (+2%/day, 100% survival) and those with a negative healing rate (−2%/day, 100% mortality, P < .05). (J...between patients with a positive healing rate (+2%/day, 100% survival) and those with a negative healing rate (−2%/day, 100% mortality, P < .05
Development of a Mechanistic-Based Healing Model for Self-Healing Glass Seals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Stephens, Elizabeth V.; Sun, Xin
Self-healing glass, a recent development of hermetic sealant materials, has the ability to effectively repair damage when heated to elevated temperatures; thus, able to extend its service life. Since crack healing morphological changes in the glass material are usually temperature and stress dependent, quantitative studies to determine the effects of thermo-mechanical conditions on the healing behavior of the self-healing glass sealants are extremely useful to accommodate the design and optimization of the sealing systems within SOFCs. The goal of this task is to develop a mechanistic-based healing model to quantify the stress and temperature dependent healing behavior. A two-step healingmore » mechanism was developed and implemented into finite element (FE) models through user-subroutines. Integrated experimental/kinetic Monte Carlo (kMC) simulation methodology was taken to calibrate the model parameters. The crack healing model is able to investigate the effects of various thermo-mechanical factors; therefore, able to determine the critical conditions under which the healing mechanism will be activated. Furthermore, the predicted results can be used to formulate the continuum damage-healing model and to assist the SOFC stack level simulations in predicting and evaluating the effectiveness and the performance of various engineering seal designs.« less
NASA Astrophysics Data System (ADS)
Lv, Zhong; Chen, Huisu
2014-10-01
Autonomous healing of cracks using pre-embedded capsules containing healing agent is becoming a promising approach to restore the strength of damaged structures. In addition to the material properties, the size and volume fraction of capsules influence crack healing in the matrix. Understanding the crack and capsule interaction is critical in the development and design of structures made of self-healing materials. Assuming that the pre-embedded capsules are randomly dispersed we theoretically model flat ellipsoidal crack interaction with capsules and determine the probability of a crack intersecting the pre-embedded capsules i.e. the self-healing probability. We also develop a probabilistic model of a crack simultaneously meeting with capsules and catalyst carriers in two-component self-healing system matrix. Using a risk-based healing approach, we determine the volume fraction and size of the pre-embedded capsules that are required to achieve a certain self-healing probability. To understand the effect of the shape of the capsules on self-healing we theoretically modeled crack interaction with spherical and cylindrical capsules. We compared the results of our theoretical model with Monte-Carlo simulations of crack interaction with capsules. The formulae presented in this paper will provide guidelines for engineers working with self-healing structures in material selection and sustenance.
Mechanophores for Self-Healing Applications
2013-09-09
macroscopic failure. One of the first discovered mechanochemical reactions was the self - healing of vulcanized rubber . Damaging mechanical force...therefore have potential self - healing features. Using the serendipitous case of rubber as a model, mechanophores that produce reactive species under...Mechanophores for Self - Healing Applications Supramolecular polymers held together by hydrogen bonds make efficient self - healing systems. A rubber -like polymer
Greek Tragedy and Ancient Healing: Poems as Theater and Asclepian Temple in Miniature.
ERIC Educational Resources Information Center
Gorelick, Kenneth
1987-01-01
Explores the healing processes at work in poetry therapy by examining two healing traditions that were contemporary in Athens of the fifth century B.C.: the tragic drama and the Asclepian healing procedure. Suggests that poetry therapy unites the powerful healing forces inherent in these ancient Greek practices, which accounts for some of its…
Self-healing concrete by use of microencapsulated bacterial spores
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.Y.; Laboratory of Microbial Ecology and Technology; Soens, H.
Microcapsules were applied to encapsulate bacterial spores for self-healing concrete. The viability of encapsulated spores and the influence of microcapsules on mortar specimens were investigated first. Breakage of the microcapsules upon cracking was verified by Scanning Electron Microscopy. Self-healing capacity was evaluated by crack healing ratio and the water permeability. The results indicated that the healing ratio in the specimens with bio-microcapsules was higher (48%–80%) than in those without bacteria (18%–50%). The maximum crack width healed in the specimens of the bacteria series was 970 μm, about 4 times that of the non-bacteria series (max 250 μm). The overall watermore » permeability in the bacteria series was about 10 times lower than that in non-bacteria series. Wet–dry cycles were found to stimulate self-healing in mortar specimens with encapsulated bacteria. No self-healing was observed in all specimens stored at 95%RH, indicating that the presence of liquid water is an essential component for self-healing.« less
Hernández, M; Grande, A M; van der Zwaag, S; García, S J
2016-04-27
Broadband dielectric spectroscopy (BDS) is introduced as a new and powerful technique to monitor network and macroscale damage healing in an elastomer. For the proof of concept, a partially cured sulfur-cured natural rubber (NR) containing reversible disulfides as the healing moiety was employed. The forms of damage healed and monitored were an invisible damage in the rubber network due to multiple straining and an imposed macroscopic crack. The relaxation times of pristine, damaged, and healed samples were determined and fitted to the Havriliak-Negami equation to obtain the characteristic polymer parameters. It is shown that seemingly full mechanical healing occurred regardless the type of damage, while BDS demonstrates that the polymer architecture in the healed material differs from that in the original one. These results represent a step forward in the understanding of damage and healing processes in intrinsic self-healing polymer systems with prospective applications such as coatings, tires, seals, and gaskets.
Effect of link oriented self-healing on resilience of networks
NASA Astrophysics Data System (ADS)
Shang, Yilun
2016-08-01
Many real, complex systems, such as the human brain and skin with their biological networks or intelligent material systems consisting of composite functional liquids, exhibit a noticeable capability of self-healing. Here, we study a network model with arbitrary degree distributions possessing natural link oriented recovery mechanisms, whereby a failed link can be recovered if its two end nodes maintain a sufficient proportion of functional links. These mechanisms are pertinent for many spontaneous healing and manual repair phenomena, interpolating smoothly between complete healing and no healing scenarios. We show that the self-healing strategies have profound impact on resilience of homogeneous and heterogeneous networks employing a percolation threshold, fraction of giant cluster, and link robustness index. The self-healing effect induces distinct resilience characteristics for scale-free networks under random failures and intentional attacks, and a resilience crossover has been observed at certain level of self-healing. Our work highlights the significance of understanding the competition between healing and collapsing in the resilience of complex networks.
A novel methodology for self-healing at the nanoscale in CNT/epoxy composites
NASA Astrophysics Data System (ADS)
Quigley, E.; Datta, S.; Chattopadhyay, A.
2016-04-01
Self-healing materials have the potential to repair induced damage and extend the service life of aerospace or civil components as well as prevent catastrophic failure. A novel technique to provide self-healing capabilities at the nanoscale in carbon nanotube/epoxy nanocomposites is presented in this paper. Carbon nanotubes (CNTs) functionalized with the healing agent (dicyclopentadiene) were used to fabricate self-healing CNT/epoxy nanocomposite films. The structure of CNTs was considered suitable for this application since they are nanosized, hollow, and provide a more consistent size distribution than polymeric nanocapsules. Specimens with different weight fractions of the functionalized CNTs were fabricated to explore the effect of weight fraction of functionalized CNTs on the extent of healing. Optical micrographs with different fluorescent filters showed partial or complete healing of damage approximately two to three weeks after damage was induced. Results indicate that by using CNTs to encapsulate a healing agent, crack growth in self-healing CNT/epoxy nanocomposites can be retarded, leading to safer materials that can autonomously repair itself.
Stem cells from adipose tissue improve the time of wound healing in rats.
Ohashi, Camila Melo; Caldeira, Fabio Alves Morikawa; Feitosa-Junior, Denilson José Silva; Valente, André Lopes; Dutra, Paulo Roberto Witter; Miranda, Moysés Dos Santos; Santos, Simone do Socorro Damasceno; Brito, Marcus Vinicius Henriques; Ohashi, Otávio Mitio; Yasojima, Edson Yuzur
2016-12-01
To evaluate the Adipose Stem Cells (ACS) therapy efficacy on the time and quality of wound healing process in rats. Nine male Wistar rats were randomly distributed into three groups I) 7 days of healing; II) 14 days of healing; III) 21 days of healing. Four incisions were made on the dorsal surface of each rat and then treated with intralesional ACS, meloxicam, and no treatment and ACS+meloxicam. Macroscopic evaluation was measured by percentage of healing and histopathological by hematoxylin-eosin was performed. All groups have the wound reduced during the three weeks (p<0.001) and after 14 days of healing had greater reduction than others. Wounds treated with ASC had accelerated healing in relation to no treatment and only meloxicam (p<0.001), excepting the ASC+Meloxicam that was similar (p=0.13). There was no difference in histopathological analysis between lesions. Adipose stem cell have benefits in reducing time of healing of experimental model of wound in rats, observed 7 days of after application.
Understanding healing: a conceptual analysis.
Wendler, M C
1996-10-01
The practice of the healing arts has been a part of human history since ancient times. Despite the development of related scholarly concepts in nursing such as caring, healing remains an enigma. Using conceptual analysis a clear definition of healing within a Rogerian/Newmanian framework is explicated. Case development assists in the understanding of healing as a concept, and questions arising from this definition provide focus for further scholarly work. A result of this process of concept analysis was the development of a definition of healing which is clear and which fits the theoretical underpinnings of the unitary-transformative paradigm. Healing, as a core variable of interest in the study of health, provides important parameters for study. The definition of healing which arose from the concept analysis is: Healing is an experiential, energy-requiring process in which space is created through a caring relationship in a process of expanding consciousness and results in a sense of wholeness, integration, balance and transformation and which can never be fully known.
The Use of Stem Cells in Burn Wound Healing: A Review
Ghieh, Fadi; Jurjus, Rosalyn; Ibrahim, Amir; Geagea, Alice Gerges; El Baba, Bassel; Chams, Sana; Matar, Michel; Zein, Wadih
2015-01-01
Burn wound healing involves a series of complex processes which are subject to intensive investigations to improve the outcomes, in particular, the healing time and the quality of the scar. Burn injuries, especially severe ones, are proving to have devastating effects on the affected patients. Stem cells have been recently applied in the field to promote superior healing of the wounds. Not only have stem cells been shown to promote better and faster healing of the burn wounds, but also they have decreased the inflammation levels with less scar progression and fibrosis. This review aims to highlight the beneficial therapeutic effect of stem cells in burn wound healing and to discuss the involved pathways and signaling molecules. The review covers various types of burn wound healing like skin and corneal burns, along with the alternative recent therapies being studied in the field of burn wound healing. The current reflection of the attitudes of people regarding the use of stem cells in burn wound healing is also stated. PMID:26236731
Nanoparticles in wound healing; from hope to promise, from promise to routine.
Naderi, Naghmeh; Karponis, Dimitrios; Mosahebi, Afshin; Seifalian, Alexander M
2018-01-01
Chronic non-healing wounds represent a growing problem due to their high morbidity and cost. Despite recent advances in wound healing, several systemic and local factors can disrupt the weighed physiologic healing process. This paper critically reviews and discusses the role of nanotechnology in promoting the wound healing process. Nanotechnology-based materials have physicochemical, optical and biological properties unique from their bulk equivalent. These nanoparticles can be incorporated into scaffolds to create nanocomposite smart materials, which promote wound healing through their antimicrobial, as well as selective anti- and pro-inflammatory, and pro-angiogenic properties. Owed to their high surface area, nanoparticles have also been used for drug delivery as well as gene delivery vectors. In addition, nanoparticles affect wound healing by influencing collagen deposition and realignment and provide approaches for skin regeneration and wound healing.
Reflexive composites: self-healing composite structures
NASA Astrophysics Data System (ADS)
Margraf, Thomas W., Jr.; Barnell, Thomas J.; Havens, Ernie; Hemmelgarn, Christopher D.
2008-03-01
Cornerstone Research Group Inc. has developed reflexive composites achieving increased vehicle survivability through integrated structural awareness and responsiveness to damage. Reflexive composites can sense damage through integrated piezoelectric sensing networks and respond to damage by heating discrete locations to activate the healable polymer matrix in areas of damage. The polymer matrix is a modified thermoset shape memory polymer that heals based on phenomena known as reptation. In theory, the reptation healing phenomena should occur in microseconds; however, during experimentation, it has been observed that to maximize healing and restore up to 85 % of mechanical properties a healing cycle of at least three minutes is required. This paper will focus on work conducted to determine the healing mechanisms at work in CRG's reflexive composites, the optimal healing cycles, and an explanation of the difference between the reptation model and actual healing times.
Inflammation and Neuropeptides: The Connection in Diabetic Wound Healing
Pradhan, Leena; Nabzdyk, Christoph; Andersen, Nicholas D; LoGerfo, Frank W; Veves, Aristidis
2013-01-01
This article provides a broad overview of the interaction between neuropeptides and inflammatory mediators as it pertains to diabetic wound healing. Abnormal wound healing is a major complication of both type I and type II diabetes and is the most frequent cause of non-traumatic lower limb amputation. Wound healing requires the orchestrated integration of complex biological and molecular events. Inflammation, proliferation and migration of cells followed by angiogenesis and re-epithelization are essential phases of wound healing. The link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30–50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. The bidirectional connection between the nervous and the immune systems and the role it plays in wound healing has emerged as one of the focal features of the wound healing dogma. The mediators of this connection include neuropeptides and the cytokines released from different cells including immune and cutaneous cells. Therefore, to develop successful wound healing therapies, it is vital to understand in depth the signaling pathways in the neuro-immune axis and their implication in diabetic wound healing. PMID:19138453
Clinical study of Manjishthadi Ghrita in vrana ropana
Baria, Jyoti; Gupta, S. K.; Bhuyan, C.
2011-01-01
Healing of vrana (wound) is either primary or secondary by nature. Secondary healing requires more attention than primary healing. Basically, two things, shodhana (making free from undesirable healing factors) and ropana (closure of wound), are desirable for proper healing. Many drugs have been described in classics for healing, but none of them is capable of healing the wound individually. Hence, to fulfill the aim, manjishthadi ghrita was prepared with the help of 7 drugs having vrana ropana effects and was evaluated clinically for its healing properties in this study. It was used topically in postoperative wounds, mostly of ano-rectal cases, twice a day, for 21 days. The follow-up period was 1 month to observe the healing as well as vaikritapaham (reduced deformity) properties and any untoward effects of the drug. A randomized control clinical trial was done. Out of 45 patients, 24 patients in group A were treated with “Manjishthadi Ghrita” (treated group), while 21 patients in group B (standard group) treated with povidine iodine ointment. Better result was observed in the treated group in comparison to the standard group. No adverse effect was observed in any patient. Manjishthadi ghrita can be prescribed as a local healing agent for common wound. PMID:22131765
Exploring the Concept of Healing Spaces.
DuBose, Jennifer; MacAllister, Lorissa; Hadi, Khatereh; Sakallaris, Bonnie
2018-01-01
Evidence-based design (EBD) research has demonstrated the power of environmental design to support improved patient, family, and staff outcomes and to minimize or avoid harm in healthcare settings. While healthcare has primarily focused on fixing the body, there is a growing recognition that our healthcare system could do more by promoting overall wellness, and this requires expanding the focus to healing. This article explores how we can extend what we know from EBD about health impacts of spatial design to the more elusive goal of healing. By breaking the concept of healing into antecedent components (emotional, psychological, social, behavioral, and functional), this review of the literature presents the existing evidence to identify how healthcare spaces can foster healing. The environmental variables found to directly affect or facilitate one or more dimension of healing were organized into six groups of variables-homelike environment, access to views and nature, light, noise control, barrier-free environment, and room layout. While there is limited scientific research confirming design solutions for creating healing spaces, the literature search revealed relationships that provide a basis for a draft definition. Healing spaces evoke a sense of cohesion of the mind, body, and spirit. They support healing intention and foster healing relationships.
Assessment of Chicken-Egg Membrane as a Dressing for Wound Healing.
Guarderas, Fernando; Leavell, Yaowaree; Sengupta, Trisha; Zhukova, Mariya; Megraw, Timothy L
2016-03-01
To examine the efficacy of the folk remedy of chicken-egg membrane dressing on wound healing. Full-thickness excisional wounds were created on 14 male Sprague-Dawley rats in 2 separate trials. Each animal received 2 wounds on the upper back. One wound was untreated, and the other was dressed with chicken-egg membrane to assess its impact on wound healing. Half of the rats received egg membrane treatment on the inferior wound, whereas the other half received egg membrane treatment on the superior wound. Membrane replacement, wound debridement, and imaging were done on days 5, 8, and 10 and then imaging continued on days 12, 14, 16, 18, and 20 of the experiment. Healing rate was measured based on the wound area over the 20 days of the experiment. The wounds dressed with chicken-egg membrane had a significantly (P < .01) faster rate of healing compared with the control at the early stages of healing between days 0 and 5. This group healed 21% faster during this early phase, compared with the control group. Overall, however, wound healing rates were indistinguishable from days 5 to 20. Chicken-egg membrane dressing significantly improves healing of cutaneous wounds in the early stages of wound healing.
Does Physiological Stress Slow Down Wound Healing in Patients With Diabetes?
Razjouyan, Javad; Grewal, Gurtej Singh; Talal, Talal K.; Armstrong, David G.; Mills, Joseph L.; Najafi, Bijan
2017-01-01
Background: Poor healing is an important contributing factor to amputation among patients with diabetic foot ulcers (DFUs). Physiological stress may slow wound healing and increase susceptibility to infection. Objectives: The objective was to examine the association between heart rate variability (HRV) as an indicator of physiological stress response and healing speed (HealSpeed) among outpatients with active DFUs. Design and Methods: Ambulatory patients with diabetes with DFUs (n = 25, age: 59.3 ± 8.3 years) were recruited. HRV during pre–wound dressing was measured using a wearable sensor attached to participants’ chest. HRVs were quantified in both time and frequency domains to assess physiological stress response and vagal tone (relaxation). Change in wound size between two consecutive visits was used to estimate HealSpeed. Participants were then categorized into slow healing and fast healing groups. Between the two groups, comparisons were performed for demographic, clinical, and HRV derived parameters. Associations between different descriptors of HRV and HealSpeed were also assessed. Results: HealSpeed was significantly correlated with both vagal tone (r = –.705, P = .001) and stress response (r = .713, P = .001) extracted from frequency domain. No between-group differences were observed except those from HRV-derived parameters. Models based on HRVs were the highest predictors of slow/fast HealSpeed (AUC > 0.90), while models based on demographic and clinical information had poor classification performance (AUC = 0.44). Conclusion: This study confirms an association between stress/vagal tone and wound healing in patients with DFUs. In particular, it highlights the importance of vagal tone (relaxation) in expediting wound healing. It also demonstrates the feasibility of assessing physiological stress responses using wearable technology in outpatient clinic during routine clinic visits. PMID:28436270
Stojadinovic, Olivera; Yin, Natalie; Lehmann, Janin; Pastar, Irena; Kirsner, Robert S.; Tomic-Canic, Marjana
2015-01-01
Langerhans cells (LCs) are a specialized subset of epidermal dendritic cells. They represent one of the first cells of immunological barrier and play an important role during the inflammatory phase of acute wound healing. Despite considerable progress in our understanding of the immunopathology of diabetes mellitus and its associated co-morbidities such as diabetic foot ulcers (DFUs), considerable gaps in our knowledge exist. In this study, we utilized the human ex vivo wound model and confirmed the increased epidermal LCs at wound edges during early phases of wound healing. Next, we aimed to determine differences in quantity of LCs between normal human and diabetic foot skin and to learn if the presence of LCs correlates with the healing outcome in DFUs. We utilized immunofluorescence to detect CD207+ LCs in specimens from normal and diabetic foot skin and DFU wound edges. Specimens from DFUs were collected at the initial visit and 4 weeks at the time when the healing outcome was determined. DFUs that decreased in size by >50% were considered to be healing, while DFUs with a size reduction of <50% were considered non-healing. Quantitative assessment of LCs showed a higher number of LCs in healing when compared to non–healing DFU’s. Our findings provide evidence that LCs are present in higher number in diabetic feet than normal foot skin. Healing DFUs show a higher number of LCs compared to non-healing DFUs. These findings indicate that the epidermal immune barrier plays an important role in the DFU healing outcome and may offer new therapeutic avenues targeting LC in non-healing DFUs. PMID:24277309
Does Physiological Stress Slow Down Wound Healing in Patients With Diabetes?
Razjouyan, Javad; Grewal, Gurtej Singh; Talal, Talal K; Armstrong, David G; Mills, Joseph L; Najafi, Bijan
2017-07-01
Poor healing is an important contributing factor to amputation among patients with diabetic foot ulcers (DFUs). Physiological stress may slow wound healing and increase susceptibility to infection. The objective was to examine the association between heart rate variability (HRV) as an indicator of physiological stress response and healing speed (Heal Speed ) among outpatients with active DFUs. Ambulatory patients with diabetes with DFUs (n = 25, age: 59.3 ± 8.3 years) were recruited. HRV during pre-wound dressing was measured using a wearable sensor attached to participants' chest. HRVs were quantified in both time and frequency domains to assess physiological stress response and vagal tone (relaxation). Change in wound size between two consecutive visits was used to estimate Heal Speed . Participants were then categorized into slow healing and fast healing groups. Between the two groups, comparisons were performed for demographic, clinical, and HRV derived parameters. Associations between different descriptors of HRV and Heal Speed were also assessed. Heal Speed was significantly correlated with both vagal tone ( r = -.705, P = .001) and stress response ( r = .713, P = .001) extracted from frequency domain. No between-group differences were observed except those from HRV-derived parameters. Models based on HRVs were the highest predictors of slow/fast Heal Speed (AUC > 0.90), while models based on demographic and clinical information had poor classification performance (AUC = 0.44). This study confirms an association between stress/vagal tone and wound healing in patients with DFUs. In particular, it highlights the importance of vagal tone (relaxation) in expediting wound healing. It also demonstrates the feasibility of assessing physiological stress responses using wearable technology in outpatient clinic during routine clinic visits.
Identification and Functional Analysis of Healing Regulators in Drosophila
Álvarez-Fernández, Carmen; Tamirisa, Srividya; Prada, Federico; Chernomoretz, Ariel; Podhajcer, Osvaldo; Blanco, Enrique; Martín-Blanco, Enrique
2015-01-01
Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response. PMID:25647511
Sigmund Freud: pioneer in energy healing.
Edwards, Stephen D; Edwards, David J
2010-02-01
Energy healing is a popular contemporary term for forms of healing that facilitate a natural healing process through harmonizing, rebalancing, and releasing energy flow disturbed or blocked by disease and illness. Biographical evidence indicates that Freud used physical, suggestive, and radiant forms of energy healing, and that his personal life, metapsychology, and psychoanalysis were founded on dynamic, energetic experiences and conceptualizations. Analysis of Freud's life and work leads to the conclusion that in experience, theory, and practice, Freud typified the traditional role of therapist and was a pioneer in modern forms of energy healing.
Uccioli, Luigi; Izzo, Valentina; Meloni, Marco; Vainieri, Erika; Ruotolo, Valeria; Giurato, Laura
2015-04-01
Medical knowledge about wound management has improved as recent studies have investigated the healing process and its biochemical background. Despite this, foot ulcers remain an important clinical problem, often resulting in costly, prolonged treatment. A non-healing ulcer is also a strong risk factor for major amputation. Many factors can interfere with wound healing, including the patient's general health status (i.e., nutritional condition indicated by albumin levels) or drugs such as steroids that can interfere with normal healing. Diabetic complications (i.e., renal insufficiency) may delay healing and account for higher amputation rates observed in diabetic patients under dialysis treatment. Wound environment (e.g., presence of neuropathy, ischaemia, and infection) may significantly influence healing by interfering with the physiological healing cascade and adding local release of factors that may worsen the wound. The timely and well-orchestrated release of factors regulating the healing process, observed in acute wounds, is impaired in non-healing wounds that are blocked in a chronic inflammatory phase without progressing to healing. This chronic phase is characterised by elevated protease activity (EPA) of metalloproteinases (MMPs) and serine proteases (e.g., human neutrophil elastase) that interfere with collagen synthesis, as well as growth factor release and action. EPA (mainly MMP 9, MMP-8 and elastase) and inflammatory factors present in the wound bed (such as IL-1, IL-6, and TNFa) account for the catabolic state of non-healing ulcers. The availability of wound dressings that modulate EPA has added new therapeutic options for treating non-healing ulcers. The literature confirms advantages obtained by reducing protease activity in the wound bed, with better outcomes achieved by using these dressings compared with traditional ones. New technologies also allow a physician to know the status of the wound bed environment, particularly EPA, in a clinical setting. These may be helpful in guiding a clinician's options in treating very difficult-to-heal ulcers.
Providing cost-effective treatment of hard-to-heal wounds in the community through use of NPWT.
Hampton, Jane
2015-06-01
The treatment of non-healing wounds accounts for a high proportion of wound care costs. Advanced technology treatments, such as negative pressure wound therapy (NPWT), could be cost-effective if they result in faster healing. The objective of this study is to assess the effect on healing and the cost-effectiveness of a single-use NPWT (i.e PICO by Smith & Nephew) when used on hard-to-heal wounds in a community setting. This was a cohort case study in which wounds were treated with NWPT for 2 weeks. Wounds were assessed every 2-4 weeks to a healed state. The weekly cost of treatment prior to intervention, that is, the products used and nurse time, were compared with treatment costs associated with NWPT and after a return to standard treatment. The study included 9 patients with leg ulcers or pressure ulcers that had been slow healing or non-healing for at least 6 weeks. While treated with NPWT, the average weekly reduction in wound size was 21%. The wound size achieved with NPWT was reached on average 10 weeks earlier than predicted. The increased healing rate continued after PICO stopped and 5 wounds healed on average 8 weeks later. Frequency of dressing changes fell from 4 times weekly at baseline to 2 times a week with NPWT and to 1.8 after NPWT stopped. Weekly cost of treatment with NPWT was, on average, 1.6 times higher than the baseline, but fell to 3 times less when NPWT stopped owing to the reduction in dressing changes. The amount of change in healing rate was considerably higher than the increase in costs associated with NPWT. NWPT is a cost-effective treatment for hard-to-heal wounds. Wounds decreased in size and healed more quickly under NWPT treatment than under standard treatment. Additional NPWT costs can be quickly offset by faster healing and a shortened treatment period.
Healing kinetics of microneedle-formed pores in PLGA films.
Mazzara, J M; Balagna, M A; Thouless, M D; Schwendeman, S P
2013-10-28
The spontaneous healing of aqueous pores in poly(D,L-lactic-co-glycolic acid) (PLGA) drug delivery systems has been identified to play a key role in terminating the burst release of large molecules, and to provide a means for novel aqueous-based microencapsulation. To examine healing of PLGA, pores were created of defined size and depth on the surface of thin PLGA films by stamping with blunt-tip microneedles. Pore dimensions on the micron-scale were relevant to surface pores of common PLGA microspheres and could be easily monitored by light microscopy. Most pores healed reproducibly at temperatures above the glass-transition temperature (T(g)) of the films, with healing times decreasing sharply with increasing temperature according to Williams-Landel-Ferry (WLF) behavior. It is suggested that healing is driven by high surface tension in the films and occurs through viscoelastic creep. Hydrated films healed at lower temperatures than dry films, consistent with a drop in Tg upon polymer hydration. Larger pores took longer to heal than smaller ones, while pores larger than 20 μm did not heal before significant polymer degradation occurred. Films of a less hydrophobic PLGA showed slower healing kinetics, attributed to a weaker surface tension driving force. Deeper pores showed signs of in-plane stress from spin-coating, and either ruptured or only partially healed when incubated wet and dry, respectively. © 2013.
Proussaefs, Periklis
2016-11-01
This article describes a technique in which a custom-made computer-aided design and computer-aided manufacturing (CAD-CAM) healing abutment milled from a poly(methyl methacrylate) (PMMA) block is fabricated and bonded to a titanium metal insert. An impression is made during dental implant surgery, and the CAD-CAM custom-made healing abutment is fabricated before second-stage surgery while appropriate healing time is allowed for the dental implant to osseointegrate. The contours of the healing abutment are based on the contours of a tentatively designed definitive prosthesis. The healing tissue obtains contours that will be compatible with the contours of the definitive prosthesis. After the milling process is complete, a titanium metal insert is bonded to the healing abutment. Placement of the custom-made CAD-CAM healing abutment at second-stage surgery allows the tissue to obtain contours similar to those of the definitive prosthesis. A custom-made CAD-CAM impression coping milled from a PMMA block and with a titanium insert is used for the definitive impression after the soft tissue has healed. This technique allows guided soft tissue healing by using a custom-made CAD-CAM healing abutment and impression coping. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Scar-free cutaneous wound healing in the leopard gecko, Eublepharis macularius.
Peacock, Hanna M; Gilbert, Emily A B; Vickaryous, Matthew K
2015-11-01
Cutaneous wounds heal with two possible outcomes: scarification or near-perfect integumentary restoration. Whereas scar formation has been intensively investigated, less is known about the tissue-level events characterising wounds that spontaneously heal scar-free, particularly in non-foetal amniotes. Here, a spatiotemporal investigation of scar-free cutaneous wound healing following full-thickness excisional biopsies to the tail and body of leopard geckos (Eublepharis macularius) is provided. All injuries healed without scarring. Cutaneous repair involves the development of a cell-rich aggregate within the wound bed, similar to scarring wounds. Unlike scar formation, scar-free healing involves a more rapid closure of the wound epithelium, and a delay in blood vessel development and collagen deposition within the wound bed. It was found that, while granulation tissue of scarring wounds is hypervascular, scar-free wound healing conspicuously does not involve a period of exuberant blood vessel formation. In addition, during scar-free wound healing the newly formed blood vessels are typically perivascular cell-supported. Immunohistochemistry revealed widespread expression of both the pro-angiogenic factor vascular endothelial growth factor A and the anti-angiogenic factor thrombospondin-1 within the healing wound. It was found that scar-free wound healing is an intrinsic property of leopard gecko integument, and involves a modulation of the cutaneous scar repair program. This proportional revascularisation is an important factor in scar-free wound healing. © 2015 Anatomical Society.
Scar-free cutaneous wound healing in the leopard gecko, Eublepharis macularius
Peacock, Hanna M; Gilbert, Emily A B; Vickaryous, Matthew K
2015-01-01
Cutaneous wounds heal with two possible outcomes: scarification or near-perfect integumentary restoration. Whereas scar formation has been intensively investigated, less is known about the tissue-level events characterising wounds that spontaneously heal scar-free, particularly in non-foetal amniotes. Here, a spatiotemporal investigation of scar-free cutaneous wound healing following full-thickness excisional biopsies to the tail and body of leopard geckos (Eublepharis macularius) is provided. All injuries healed without scarring. Cutaneous repair involves the development of a cell-rich aggregate within the wound bed, similar to scarring wounds. Unlike scar formation, scar-free healing involves a more rapid closure of the wound epithelium, and a delay in blood vessel development and collagen deposition within the wound bed. It was found that, while granulation tissue of scarring wounds is hypervascular, scar-free wound healing conspicuously does not involve a period of exuberant blood vessel formation. In addition, during scar-free wound healing the newly formed blood vessels are typically perivascular cell-supported. Immunohistochemistry revealed widespread expression of both the pro-angiogenic factor vascular endothelial growth factor A and the anti-angiogenic factor thrombospondin-1 within the healing wound. It was found that scar-free wound healing is an intrinsic property of leopard gecko integument, and involves a modulation of the cutaneous scar repair program. This proportional revascularisation is an important factor in scar-free wound healing. PMID:26360824
Fitzmaurice, S D; Sivamani, R K; Isseroff, R R
2011-01-01
Many facets of wound healing under redox control require a delicate balance between oxidative stress and antioxidants. While the normal physiology of wound healing depends on low levels of reactive oxygen species and oxidative stress, an overexposure to oxidative stress leads to impaired wound healing. Antioxidants are postulated to help control wound oxidative stress and thereby accelerate wound healing. Many antioxidants are available over the counter or by prescription, but only one, Medihoney®, has been specifically FDA approved for wound healing. Here we review the existing evidence for the use of antioxidants for wound healing, with a review of the pertinent animal and clinical studies. Natural products and naturally derived antioxidants are becoming more popular, and we specifically review the evidence for the use of naturally derived antioxidants in wound healing. Antioxidant therapy for wound healing is promising, but only few animal studies and even fewer clinical studies are available. Because only few products have undergone FDA approval, the consumer is advised to scrutinize them for purity and contaminants prior to use, and this may require direct contact with the companies that sell them. As a field of science, the use of antioxidants for wound healing is in its infancy, and future studies will better elucidate the role of antioxidants in wound healing. Copyright © 2011 S. Karger AG, Basel.
Willis, Danny G; Griffith, Catherine A
2010-08-01
Although two of the primary risk factors for being bullied include "male" and "middle school" status, a gap in knowledge exists of middle school boys' personal accounts and meanings of being bullied and their healing. Giorgi's descriptive phenomenological approach using open-ended semi-structured individual interviews was used to collect and analyze evidence related to middle school boys' lived experiences of being bullied and healing. Roger's Science of Unitary Human Beings (SUHB) guided interpretation of the healing patterns. Three patterns of healing were identified in boys' experiences: meaning-making, self-transcendence, and nonviolently claiming personal power. Evidence of healing patterns exists in middle school boys' experiences of being bullied, offering a foundation for further research and practice focused on healing. When working with middle school boys who have been bullied, nurses need to ask about their experiences and promote their healing.
Advances in Wound Healing: A Review of Current Wound Healing Products
Murphy, Patrick S.; Evans, Gregory R. D.
2012-01-01
Successful wound care involves optimizing patient local and systemic conditions in conjunction with an ideal wound healing environment. Many different products have been developed to influence this wound environment to provide a pathogen-free, protected, and moist area for healing to occur. Newer products are currently being used to replace or augment various substrates in the wound healing cascade. This review of the current state of the art in wound-healing products looks at the latest applications of silver in microbial prophylaxis and treatment, including issues involving resistance and side effects, the latest uses of negative pressure wound devices, advanced dressings and skin substitutes, biologic wound products including growth factor applications, and hyperbaric oxygen as an adjunct in wound healing. With the abundance of available products, the goal is to find the most appropriate modality or combination of modalities to optimize healing. PMID:22567251
The molecular biology in wound healing & non-healing wound.
Qing, Chun
2017-08-01
The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Novel Therapy for Bone Regeneration in Large Segmental Defects
2016-10-01
reamed and nonreamed intrame- dullary nailing on fracture healing. Clin Orthop Relat Res. 1998;355(Suppl):S230–8. 37. Pape HC, Giannoudis PV. Fat embolism ...extension period (Year 4). 15. SUBJECT TERMS Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone...Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 3. OVERALL PROJECT
Healing: a qualitative study of women recovering from abusive relationships with men.
Farrell, M L
1996-01-01
The essence of the healing phenomenon in women who had been abused A qualitative study using a phenomenological approach (N = 7) Four major themes of healing were identified: flexibility, awakening, relationship, and empowerment. Each theme became an explication of the whole healing experience for each participant. The results of this research add to the knowledge of healing in women who have encountered abuse.
Autonomic Healing of Low-Velocity Impact Damage in Fiber-Reinforced Composites
2010-01-01
formaldehyde) microencapsulation using the method described by Brown et al. [37]. Two different size ranges of microcapsules were employed to promote even...agent. The components for self-healing, urea–formaldehyde microcapsules containing dicyclopentadiene (DCPD) liquid healing agent and paraffin wax...impact damage is the employment of self-healing materials. In particular, the strat- egy using microencapsulated healing agent, demonstrated by White
Characterization and role of the immune response during ligament healing
NASA Astrophysics Data System (ADS)
Chamberlain, Connie S.
Scar formation of ligaments after rupture remains a great challenge. Ligament healing involves a complex, coordinated series of events that form a neo-ligament, which is more disorganized and fibrotic in character than the native tissue. The repair process may extend from months to years, and the injured ligament never fully recovers its original mechanical properties. With little intrinsic healing potential, ruptures of the anterior cruciate ligament (ACL) are usually reconstructed. The "healed" tissues, however, do not regenerate native tissues or recapitulate their mechanical function. ACL grafts often lengthen (incidents range from 40-100%) and their strength can drop by ˜50% after remodeling. Reconstructed knees are often less stable and fail to restore normal joint kinematics. Our overall goal is to improve healing, making ligaments more regenerative. The first 2 studies characterized ligament healing in a spatial and temporal manner over 28 days. The experiments demonstrated creeping substitution and the potential role of the immune system to control the repair and/or regenerative process. From these studies, macrophages were identified as significant players during healing. Macrophages paralleled creeping substitution, were abundant within the healing ligament, and potentially played a destructive role via matrix phagocytosis. The role of macrophages during early ligament healing was then evaluated using liposome-encapsulated clodronate to inhibit phagocytosing macrophages. Clodronate attenuated the early infiltration of macrophages, resulting in delayed structural and functional healing. Macrophage re-infiltration into the wound resulted in continued ligament healing. These results suggested that early inhibition of phagocytosing macrophages is detrimental to ligament healing. The final experiment evaluated the effects of interleukin-4 on ligament healing. Interleukin-4 (IL-4) is reported to stimulate the Th2 lymphocyte/M2 macrophage pathway, reducing inflammation and stimulating remodeling. IL-4 dose- and time-dependently stimulated early ligament regeneration but was unable to maintain the response during later healing. In summary, this work demonstrated the association between the immune cells and ligament healing, indicating a potential for obtaining a more regenerative response by modulating the immune response in a time, dose, and spatial manner.
Translating 'Asian' Modes of Healing and Biomedicine.
Sleeboom-Faulkner, Margaret
2015-01-01
This review article discusses the 'translation of Asian modes of healing and medicine' in six recently published books by raising seven questions. They serve both to review the volumes and to ask how we have moved from understanding systems of healing in terms of tradition and modernity, science and nonscience, globalization and locality, innovation and cultural heritage, to translating them in terms of assemblages, products, modes of resistance, social (dis-)harmony, and ecological balance. The questions span subjects ranging from the meaning of 'Asian' in Asian modes of healing, the object of healing and classifications of systems of healing to their relation with 'biomedicine,' modernization and the state, the extents to which communities share healing tradition, and their existential meaning in context.
Intentionality forms the matrix of healing: a theory.
Zahourek, Rothlyn P
2004-01-01
The understanding of intentionality in a healing context has been incomplete and confusing. Attempts have been made to describe it as a concrete mental force in healing while healing has been accepted as a nonlocal phenomenon. This paper reviews several definitions and theoretical frameworks of intentionality. It proposes a new integrative theory of intentionality, Intentionality: the Matrix of Healing. The theory proposes definitions, forms, and phases of intentionality, a process of development and mediators that sculpt intentionality in healing. The theory has implications for conceptualizing intentionality and provides a framework for continued exploration of the nature of intentionality in healing for scholars as well as clinicians. This study was done as a Doctoral dissertation at New York University, School of Education, Division of Nursing.
Brochu, Alice B. W.; Craig, Stephen L.; Reichert, William M.
2010-01-01
The goal of this review is to introduce the biomaterials community to the emerging field of self-healing materials, and also to suggest how one could utilize and modify self-healing approaches to develop new classes of biomaterials. A brief discussion of the in vivo mechanical loading and resultant failures experienced by biomedical implants is followed by presentation of the self-healing methods for combating mechanical failure. If conventional composite materials that retard failure may be considered zeroth generation self-healing materials, then taxonomically-speaking, first generation self-healing materials describe approaches that “halt” and “fill” damage, whereas second generation self-healing materials strive to “fully restore” the pre-failed material structure. In spite of limited commercial use to date, primarily because the technical details have not been suitably optimized, it is likely from a practical standpoint that first generation approaches will be the first to be employed commercially, whereas second generation approaches may take longer to implement. For self-healing biomaterials the optimization of technical considerations is further compounded by the additional constraints of toxicity and biocompatibility, necessitating inclusion of separate discussions of design criteria for self-healing biomaterials. PMID:21171168
Local Arginase 1 Activity Is Required for Cutaneous Wound Healing
Campbell, Laura; Saville, Charis R; Murray, Peter J; Cruickshank, Sheena M; Hardman, Matthew J
2013-01-01
Chronic nonhealing wounds in the elderly population are associated with a prolonged and excessive inflammatory response, which is widely hypothesized to impede healing. Previous studies have linked alterations in local L-arginine metabolism, principally mediated by the enzymes arginase (Arg) and inducible nitric oxide synthase (iNOS), to pathological wound healing. Over subsequent years, interest in Arg/iNOS has focused on the classical versus alternatively activated (M1/M2) macrophage paradigm. Although the role of iNOS during healing has been studied, Arg contribution to healing remains unclear. Here, we report that Arg is dynamically regulated during acute wound healing. Pharmacological inhibition of local Arg activity directly perturbed healing, as did Tie2-cre-mediated deletion of Arg1, revealing the importance of Arg1 during healing. Inhibition or depletion of Arg did not alter alternatively activated macrophage numbers but instead was associated with increased inflammation, including increased influx of iNOS+ cells and defects in matrix deposition. Finally, we reveal that in preclinical murine models reduced Arg expression directly correlates with delayed healing, and as such may represent an important future therapeutic target. PMID:23552798
Local arginase 1 activity is required for cutaneous wound healing.
Campbell, Laura; Saville, Charis R; Murray, Peter J; Cruickshank, Sheena M; Hardman, Matthew J
2013-10-01
Chronic nonhealing wounds in the elderly population are associated with a prolonged and excessive inflammatory response, which is widely hypothesized to impede healing. Previous studies have linked alterations in local L-arginine metabolism, principally mediated by the enzymes arginase (Arg) and inducible nitric oxide synthase (iNOS), to pathological wound healing. Over subsequent years, interest in Arg/iNOS has focused on the classical versus alternatively activated (M1/M2) macrophage paradigm. Although the role of iNOS during healing has been studied, Arg contribution to healing remains unclear. Here, we report that Arg is dynamically regulated during acute wound healing. Pharmacological inhibition of local Arg activity directly perturbed healing, as did Tie2-cre-mediated deletion of Arg1, revealing the importance of Arg1 during healing. Inhibition or depletion of Arg did not alter alternatively activated macrophage numbers but instead was associated with increased inflammation, including increased influx of iNOS(+) cells and defects in matrix deposition. Finally, we reveal that in preclinical murine models reduced Arg expression directly correlates with delayed healing, and as such may represent an important future therapeutic target.
Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults
McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.
2012-01-01
Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip
Exploring Inpatients' Experiences of Healing and Healing Spaces
Bellanti, Dawn; Sakallaris, Bonnie R.
2016-01-01
In order to understand a patient’s healing experience it is essential to understand the elements that they, the patient, believes contributed to their healing. Previous research has focused on symptom reducers or contributors through environment such as stress. A person’s experience of healing happens over time not instantaneous. Therefore, in this study, the interviews with patients happened after forty-eight hours of hospitalization. This mixed methods study describes the experiences of seventeen inpatients from two healthcare systems using a phenomenological approach combined with evidence based design evaluation methods to document the setting. The qualitative data was analyzed first for reoccurring themes then further explored and defined through quantitative environmental observations. The seventeen patients defined healing as “getting better/well.” Seventy three statements were recorded about contributors and detractors to healing in the physical environment. Three primary themes emerged from the data as positive influencers of a healing experience: being cared for, being comfortable and experiencing something familiar or like home. These results demonstrate that patients perceive their inpatient healing experience through a supported environment. PMID:28725848
Self-Healing Polymer Dielectric for a High Capacitance Gate Insulator.
Ko, Jieun; Kim, Young-Jae; Kim, Youn Sang
2016-09-14
Self-healing materials are required for development of various flexible electronic devices to repair cracks and ruptures caused by repetitive bending or folding. Specifically, a self-healing dielectric layer has huge potential to achieve healing electronics without mechanical breakdown in flexible operations. Here, we developed a high performance self-healing dielectric layer with an ionic liquid and catechol-functionalized polymer which exhibited a self-healing ability for both bulk and film states under mild self-healing conditions at 55 °C for 30 min. Due to the sufficient ion mobility of the ionic liquid in the polymer matrix, it had a high capacitance value above 1 μF/cm(2) at 20 Hz. Moreover, zinc oxide (ZnO) thin-film transistors (TFTs) with a self-healing dielectric layer exhibited a high field-effect mobility of 16.1 ± 3.07 cm(2) V(-1) s(-1) at a gate bias of 3 V. Even after repetitive self-healing of the dielectric layer from mechanical breaking, the electrical performance of the TFTs was well-maintained.
Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing
Das, Subhamoy; Baker, Aaron B.
2016-01-01
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895
The Meaning Of Healing: Transcending Suffering
Egnew, Thomas R.
2005-01-01
PURPOSE Medicine is traditionally considered a healing profession, but it has neither an operational definition of healing nor an explanation of its mechanisms beyond the physiological processes related to curing. The objective of this study was to determine a definition of healing that operationalizes its mechanisms and thereby identifies those repeatable actions that reliably assist physicians to promote holistic healing. METHODS This study was a qualitative inquiry consisting of in-depth, open-ended, semistructured interviews with Drs. Eric J. Cassell, Carl A. Hammerschlag, Thomas S. Inui, Elisabeth Kubler-Ross, Cicely Saunders, Bernard S. Siegel, and G. Gayle Stephens. Their perceptions regarding the definition and mechanisms of healing were subjected to grounded theory content analysis. RESULTS Healing was associated with themes of wholeness, narrative, and spirituality. Healing is an intensely personal, subjective experience involving a reconciliation of the meaning an individual ascribes to distressing events with his or her perception of wholeness as a person. CONCLUSIONS Healing may be operationally defined as the personal experience of the transcendence of suffering. Physicians can enhance their abilities as healers by recognizing, diagnosing, minimizing, and relieving suffering, as well as helping patients transcend suffering. PMID:15928230
The meaning of healing: transcending suffering.
Egnew, Thomas R
2005-01-01
Medicine is traditionally considered a healing profession, but it has neither an operational definition of healing nor an explanation of its mechanisms beyond the physiological processes related to curing. The objective of this study was to determine a definition of healing that operationalizes its mechanisms and thereby identifies those repeatable actions that reliably assist physicians to promote holistic healing. This study was a qualitative inquiry consisting of in-depth, open-ended, semistructured interviews with Drs. Eric J. Cassell, Carl A. Hammerschlag, Thomas S. Inui, Elisabeth Kubler-Ross, Cicely Saunders, Bernard S. Siegel, and G. Gayle Stephens. Their perceptions regarding the definition and mechanisms of healing were subjected to grounded theory content analysis. Healing was associated with themes of wholeness, narrative, and spirituality. Healing is an intensely personal, subjective experience involving a reconciliation of the meaning an individual ascribes to distressing events with his or her perception of wholeness as a person. Healing may be operationally defined as the personal experience of the transcendence of suffering. Physicians can enhance their abilities as healers by recognizing, diagnosing, minimizing, and relieving suffering, as well as helping patients transcend suffering.
Factors affecting healing after arthroscopic rotator cuff repair
Abtahi, Amir M; Granger, Erin K; Tashjian, Robert Z
2015-01-01
Rotator cuff repair has been shown to have good long-term results. Unfortunately, a significant proportion of repairs still fail to heal. Many factors, both patient and surgeon related, can influence healing after repair. Older age, larger tear size, worse muscle quality, greater muscle-tendon unit retraction, smoking, osteoporosis, diabetes and hypercholesterolemia have all shown to negatively influence tendon healing. Surgeon related factors that can influence healing include repair construct-single vs double row, rehabilitation, and biologics including platelet rich plasma and mesenchymal stem cells. Double-row repairs are biomechanically stronger and have better healing rates compared with single-row repairs although clinical outcomes are equivalent between both constructs. Slower, less aggressive rehabilitation programs have demonstrated improved healing with no negative effect on final range of motion and are therefore recommended after repair of most full thickness tears. Additionally no definitive evidence supports the use of platelet rich plasma or mesenchymal stem cells regarding improvement of healing rates and clinical outcomes. Further research is needed to identify effective biologically directed augmentations that will improve healing rates and clinical outcomes after rotator cuff repair. PMID:25793161
Folk healing: a description and synthesis.
Ness, R C; Wintrob, R M
1981-11-01
All societies have developed ways of dealing with physical and mental illness, defined as folk healing systems. The authors review the systems of folk healing that have evolved in different cultural groups in the United States. They describe the faith healing practices of fundamentalist Christian groups, the belief in rootwork among white and black people in the southeastern United States, curanderismo among Mexican-Americans, and espiritismo among Americans from Puerto Rico. Most believers in folk healing also go to physicians for medical care. The authors argue that physicians should familiarize themselves with patients' folk healing beliefs in order to serve them more effectively.
Sacred space and the healing journey.
Alt, Paul L
2017-07-01
Sacred space and spirituality have long been used to heal the mind, body, and spirit. This article illuminates the origins of sacred space and its role as a healing environment from the first human construct, the burial mound, to the 5th Century BCE Greek healing city of Epidaurus. It then examines the role of spirituality as one of the necessary human institutions for a healthy society, according to the Italian philosopher Giambattista Vico. The conclusion then surveys three contemporary healing environments' architecture, the Department of Veteran Affairs Healing Environment Design Guideline (VAHEDG), and how these sacred spaces mend individual and community ailments.
Enzymetically regulating the self-healing of protein hydrogels with high healing efficiency.
Gao, Yuzhou; Luo, Quan; Qiao, Shanpeng; Wang, Liang; Dong, Zeyuan; Xu, Jiayun; Liu, Junqiu
2014-08-25
Enzyme-mediated self-healing of dynamic covalent bond-driven protein hydrogels was realized by the synergy of two enzymes, glucose oxidase (GOX) and catalase (CAT). The reversible covalent attachment of glutaraldehyde to lysine residues of GOX, CAT, and bovine serum albumin (BSA) led to the formation and functionalization of the self-healing protein hydrogel system. The enzyme-mediated protein hydrogels exhibit excellent self-healing properties with 100% recovery. The self-healing process was reversible and effective with an external glucose stimulus at room temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Advances in the effects of pH value of micro-environment on wound healing].
Tian, Ruirui; Li, Na; Wei, Li
2016-04-01
Wound healing is a complex regeneration process, which is affected by lots of endogenous and exogenous factors. Researches have confirmed that acid environment could prevent wound infection and accelerate wound healing by inhibiting bacteria proliferation, promoting oxygen release, affecting keratinocyte proliferation and migration, etc. In this article, we review the literature to identify the potential relationship between the pH value of wound micro-environment and the progress of wound healing, and summarize the clinical application of variation of pH value of micro-environment in wound healing, thereby to provide new treatment strategy for wound healing.
Pevec, Danira; Novinscak, Tomislav; Brcic, Luka; Sipos, Kristijan; Jukic, Ivana; Staresinic, Mario; Mise, Sandro; Brcic, Iva; Kolenc, Danijela; Klicek, Robert; Banic, Tihomir; Sever, Marko; Kocijan, Ana; Berkopic, Lidija; Radic, Bozo; Buljat, Gojko; Anic, Tomislav; Zoricic, Ivan; Bojanic, Ivan; Seiwerth, Sven; Sikiric, Predrag
2010-03-01
The effect of systemic and local peptide treatment effective in muscle contusion and then on counteraction of corticosteroid-induced impairment was tested. The pentadecapeptide BPC 157, given without a carrier, improved the healing of transected quadriceps muscle. It also improved muscle healing in rats with muscle crush injury when applied systemically or locally. Importantly, it counteracted corticosteroid-impairment in tendon to bone healing. Thus BPC 157 is proposed as an effective treatment that can improve muscle healing in spite of corticosteroid treatment. After the gastrocnemius muscle complex had been injured, rats received BPC 157 (intraperitoneally or locally as a cream) and/or 6alpha-methylprednisolone (intraperitoneally) only once (immediately after injury, sacrifice at 2 h) or once daily (final dose 24 hours before sacrifice and/or assessment procedure at days 1, 2, 4, 7, and 14). Muscle healing was evaluated functionally, macroscopically, and histologically. Without therapy, crushed gastrocnemius muscle complex controls showed limited improvement. 6alpha-methylprednisolone markedly aggravated healing. In contrast, BPC 157 induced faster muscle healing and full function restoration and improved muscle healing despite systemic corticosteroid treatment when given intraperitoneally or locally and demonstrated functionally, macroscopically, and histologically at all investigated intervals. BPC 157 completely reversed systemic corticosteroid-impaired muscle healing.
Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni
2012-01-01
Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977
Yokoyama, Hitoshi; Maruoka, Tamae; Aruga, Akio; Amano, Takanori; Ohgo, Shiro; Shiroishi, Toshihiko; Tamura, Koji
2011-12-01
Despite a strong clinical need for inducing scarless wound healing, the molecular factors required to accomplish it are unknown. Although skin-wound healing in adult mammals often results in scarring, some amphibians can regenerate injured body parts, even an amputated limb, without it. To understand the mechanisms of perfect skin-wound healing in regenerative tetrapods, we studied the healing process in young adult Xenopus "froglets" after experimental skin excision. We found that the excision wound healed completely in Xenopus froglets, without scarring. Mononuclear cells expressing a homeobox gene, prx1, accumulated under the new epidermis of skin wounds on the limb and trunk and at the regenerating limb. In transgenic Xenopus froglets expressing a reporter for the mouse prx1 limb-specific enhancer, activity was seen in the healing skin and in the regenerating limb. Comparable activity did not accompany skin-wound healing in adult mice. Our results suggest that scarless skin-wound healing may require activation of the prx1 limb enhancer, and competence to activate the enhancer is probably a prerequisite for epimorphic regeneration, such as limb regeneration. Finally, the induction of this prx1 enhancer activity may be useful as a reliable marker for therapeutically induced scarless wound healing in mammals.
Feng, Yi; Sanders, Andrew J.; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G.; Jiang, Wen G.
2016-01-01
Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound-healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine-induced signalling in the chronic wound-healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds. PMID:27635428
Feng, Yi; Sanders, Andrew J; Ruge, Fiona; Morris, Ceri-Ann; Harding, Keith G; Jiang, Wen G
2016-11-01
Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound‑healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine‑induced signalling in the chronic wound‑healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wounds.
Factors affecting the healing of pressure ulcers in a Korean acute care hospital.
Sung, Young Hee; Park, Kyung Hee
2011-01-01
We sought to determine the factors affecting pressure ulcer (PU) healing in an acute care facility in Korea. Data were collected between October 1, 2006, and September 30, 2007, regarding PU status and factors hypothesized to influence wound healing. We developed a form that queried factors thought to affect PU healing based on literature review. We also administered the Pressure Ulcer Scale for Healing (PUSH) tool to assess healing of PUs and calculated change in PUSH scale as the outcome variable reflecting the magnitude of the healing of PU. One hundred fifty eight patients with a total of 326 PUs in an acute care hospital located in Seoul, Korea, comprised the sample. The variables found to significantly affect PU healing included mean arterial pressure (MAP), serum albumin level, urinary incontinence, consultation with nutritionist, Braden Scale scale, wound size, and exudate amount. Pressure ulcer healing was improved when the MAP was higher (B = 0.034) and the serum albumin level was more than 2.8 g/dL (20.8 grams/liter) (B = 1.107). When managing patients in an acute care setting, PU healing may be improved by maintaining MAP and providing protein supplements to keep serum albumin level greater than 2.8 g/dL (20.8 grams/liter).
Comparison of pro-inflammatory cytokines of non-healing and healing cutaneous leishmaniasis.
Moafi, M; Rezvan, H; Sherkat, R; Taleban, R; Asilian, A; Hamid Zarkesh-Esfahani, S; Nilforoushzadeh, M A; Jaffary, F; Mansourian, M; Sokhanvari, F; Ansari, N
2017-04-01
Cutaneous leishmaniasis (CL) heals spontaneously within several weeks or months, but, in rare cases, CL-active lesions last for many years. In this study, we assessed cell-mediated immunity in non-healing CL through the measurement of three pro-inflammatory cytokines: Interferon-γ (IFN-γ), IL-17a and CXCL-11. For this, 32 patients afflicted with healing or non-healing CL were recruited in this study. Peripheral blood mononuclear cells (PBMCs) of every patient were treated with three antigens: purified protein derivative (PPD), soluble Leishmania antigen (SLA) and phytohaemagglutinin (PHA). Cytokine quantification was performed using enzyme-linked immunosorbent assay (ELISA) method. Results of our study showed that neither cytokine produced in the presence of a PPD stimulator (as an irrelevant antigen) significantly differed between the healing and non-healing groups (P-value ≥0.05 for all of them). However, IFN-γ, CXCL-11 and IL-17a levels produced in the presence of PHA or SLA were significantly higher within the healing than in the non-healing group (P-value <0.01 for all of them). It seems that appropriate levels of IFN-γ, as well as IL-17a and CXCL-11, contribute to the control of Leishmania infection. © 2017 The Foundation for the Scandinavian Journal of Immunology.
Abdennabi, Raed; Bardaa, Sana; Mehdi, Meriem; Rateb, Mostafa E; Raab, Andrea; Alenezi, Faizah N; Sahnoun, Zouheir; Gharsallah, Neji; Belbahri, Lassaad
2016-07-01
The sap of the date palm "Lagmi" is a clear liquid, rich in sugars and minerals, with a pleasant flavour. Folk remedies based on the use of "Lagmi" for wound healing are still practiced. However, no studies investigated the relevance of "Lagmi" for wound healing. Therefore, the aim of this study was to identify the in vivo healing properties of "lagmi" on mechanically wounded wistar rats. Injured rats were divided into three groups: a first group treated by "lagmi", a second reference group processed by CICAFLORA(®) and a third untreated control group. On the 12th day of the experiment, total healing in the first group was reached, while healing was incomplete in the other groups. The sap seems to accelerate cell proliferation and contribute to faster healing with a gain of more than 30% as compared to CICAFLORA(®). Chemical Analysis of "Lagmi" showed important radical scavenging activity and high total antioxidant capacity. Features reported to help healing process and/or provides a favourable environment for tissue healing in wound sites. Extensive characterization of "Lagmi" phenolic and flavonoid compounds by High Resolution LC-MS (LC-HRESIMS) analysis indicates "Lagmi" is an important source of known anti-inflammatory compounds as well as promising wound healing candidates. Copyright © 2016 Elsevier B.V. All rights reserved.
Systematic review of the efficacy of fat grafting and platelet-rich plasma for wound healing.
Smith, Oliver J; Kanapathy, Muholan; Khajuria, Ankur; Prokopenko, Max; Hachach-Haram, Nadine; Mann, Haroon; Mosahebi, Ash
2018-05-09
Adipose-derived stem cells found in fat grafts may have significant healing properties. When fat is combined with autologous platelet-rich plasma (PRP), there may be enhanced healing effects due to the pro-angiogenic and anti-inflammatory effects of PRP. This study aimed to evaluate the current evidence on fat grafting in combination with PRP for wound healing to establish the efficacy of this technique. A comprehensive search in the MEDLINE, EMBASE, CENTRAL, Science Citation Index, and Google Scholar databases (to March 2017) was conducted to identify studies on fat grafting and PRP for wound healing. Case series of less than 3 cases and studies only describing harvest technique were excluded. The database identified 571 articles, of which 3 articles that used a combination of fat and PRP for wound healing (1 RCT and 2 case series) were included in this review. A total of 69 wounds in 64 patients were treated with an average wound size of 36.32cm 2 . Of these, 67% of wounds achieved complete healing. When reported, the mean time to healing was 7.5 weeks for those who underwent a single treatment. There were no significant complications in any patients. The combination of fat grafting and PRP may achieve adequate wound healing with relatively quick wound healing time compared with standard wound management options. However, evidence is extremely limited, and further studies are required to evaluate its efficacy for wound healing. © 2018 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Dendritic cells modulate burn wound healing by enhancing early proliferation.
Vinish, Monika; Cui, Weihua; Stafford, Eboni; Bae, Leon; Hawkins, Hal; Cox, Robert; Toliver-Kinsky, Tracy
2016-01-01
Adequate wound healing is vital for burn patients to reduce the risk of infections and prolonged hospitalization. Dendritic cells (DCs) are antigen presenting cells that release cytokines and are central for the activation of innate and acquired immune responses. Studies have showed their presence in human burn wounds; however, their role in burn wound healing remains to be determined. This study investigated the role of DCs in modulating healing responses within the burn wound. A murine model of full-thickness contact burns was used to study wound healing in the absence of DCs (CD11c promoter-driven diphtheria toxin receptor transgenic mice) and in a DC-rich environment (using fms-like tyrosine kinase-3 ligand, FL- a DC growth factor). Wound closure was significantly delayed in DC-deficient mice and was associated with significant suppression of early cellular proliferation, granulation tissue formation, wound levels of TGFβ1 and formation of CD31+ vessels in healing wounds. In contrast, DC enhancement significantly accelerated early wound closure, associated with increased and accelerated cellular proliferation, granulation tissue formation, and increased TGFβ1 levels and CD31+ vessels in healing wounds. We conclude that DCs play an important role in the acceleration of early wound healing events, likely by secreting factors that trigger the proliferation of cells that mediate wound healing. Therefore, pharmacological enhancement of DCs may provide a therapeutic intervention to facilitate healing of burn wounds. © 2016 by the Wound Healing Society.
Conducted healing to treat large skin wounds.
Salgado, M I; Petroianu, A; Alberti, L R; Burgarelli, G L; Barbosa, A J A
2013-01-01
Improvement of the healing process to provide better aesthetical and functional results continues to be a surgical challenge. This study compared the treatment of skin wounds by means of conducted healing (an original method of treatment by secondary healing) and by the use of autogenous skin grafts. Two skin segments, one on each side of the dorsum,were removed from 17 rabbits. The side that served as a graft donor site was left open as to undergo conducted healing (A)and was submitted only to debridement and local care with dressings. The skin removed from the side mentioned above was implanted as a graft (B) to cover the wound on the other side. Thus, each animal received the two types of treatment on its dorsum (A and B). The rabbits were divided into two groups according to the size of the wounds: Group 1 - A and B (4 cm2)and Group 2 - A and B (25 cm2). The healing time was 19 days for Group 1 and 35 days for Group 2. The final macro- and microscopic aspects of the healing process were analysed comparatively among all subgroups. The presence of inflammatory cells, epidermal cysts and of giant cells was evaluated. No macro- or microscopic differences were observed while comparing the wounds that underwent conducted healing and those in which grafting was employed, although the wounds submitted to conducted healing healed more rapidly. Conducted wound healing was effective for the treatment of skin wounds. Celsius.
Rodriguez-Menocal, Luis; Shareef, Shahjahan; Salgado, Marcela; Shabbir, Arsalan; Van Badiavas, Evangelos
2015-03-13
Recent evidence has shown that bone marrow cells play critical roles during the inflammatory, proliferative and remodeling phases of cutaneous wound healing. Among the bone marrow cells delivered to wounds are stem cells, which can differentiate into multiple tissue-forming cell lineages to effect, healing. Gaining insight into which lineages are most important in accelerating wound healing would be quite valuable in designing therapeutic approaches for difficult to heal wounds. In this report we compared the effect of different bone marrow preparations on established in vitro wound healing assays. The preparations examined were whole bone marrow (WBM), whole bone marrow (long term initiating/hematopoietic based) cultured cells (BMC), and bone marrow derived mesenchymal stem cells (BM-MSC). We also applied these bone marrow preparations in two murine models of radiation induced delayed wound healing to determine which had a greater effect on healing. Angiogenesis assays demonstrated that tube formation was stimulated by both WBM and BMC, with WBM having the greatest effect. Scratch wound assays showed higher fibroblast migration at 24, 48, and 72 hours in presence of WBM as compared to BM-MSC. WBM also appeared to stimulate a greater healing response than BMC and BM-MSC in a radiation induced delayed wound healing animal model. These studies promise to help elucidate the role of stem cells during repair of chronic wounds and reveal which cells present in bone marrow might contribute most to the wound healing process.
IL-20 promotes epithelial healing of the injured mouse cornea
USDA-ARS?s Scientific Manuscript database
After corneal epithelial injury, the ensuing inflammatory response is necessary for efficient wound healing. While beneficial healing effects are attributed to recruited neutrophils and platelets, dysregulated inflammation (too little or too much) is associated with impaired wound healing. The purpo...
NASA Astrophysics Data System (ADS)
Zhang, Xiaoman; Yu, Biying; Weng, Cuncheng; Li, Hui
2014-11-01
The 632nm wavelength low intensity He-Ne laser was used to irradiated on 15 mice which had skin wound. The dynamic changes and wound healing processes were observed with nonlinear spectral imaging technology. We observed that:(1)The wound healing process was accelerated by the low-level laser therapy(LLLT);(2)The new tissues produced second harmonic generation (SHG) signals. Collagen content and microstructure differed dramatically at different time pointed along the wound healing. Our observation shows that the low intensity He-Ne laser irradiation can accelerate the healing process of skin wound in mice, and SHG imaging technique can be used to observe wound healing process, which is useful for quantitative characterization of wound status during wound healing process.
Assessment of Composite Delamination Self-Healing Via Micro-Encapsulation
NASA Technical Reports Server (NTRS)
O'Brien, T. Kevin; White, Scott R.
2008-01-01
Composite skin/stringer flange debond specimens manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin walled spheres were tested. As a crack develops and grows in the base polymer, the spheres fracture releasing the healing agent. The agent reacts with catalyst and polymerizes healing the crack. In addition, through-thickness reinforcement, in the form of pultruded carbon z-pins were included near the flange tips to improve the resistance to debonding. Specimens were manufactured with 14 plies in the skin and 10 plies in the stiffener flange. Three-point bend tests were performed to measure the skin/stiffener debonding strength and the recovered strength after healing. The first three tests performed indicated no healing following unloading and reloading. Micrographs showed that delaminations could migrate to the top of the interleaf layer due to the asymmetric loading, and hence, bypass most of the embedded capsules. For two subsequent tests, specimens were clamped in reverse bending before reloading. In one case, healing was observed as evidenced by healing agent that leaked to the specimen edge forming a visible "scar". The residual strength measured upon reloading was 96% of the original strength indicating healing had occurred. Hence, self-healing is possible in fiber reinforced composite material under controlled conditions, i.e., given enough time and contact with pressure on the crack surfaces. The micro-encapsulation technique may prove more robust when capsule sizes can be produced that are small enough to be embedded in the matrix resin without the need for using an interleaf layer. However, in either configuration, the amount of healing that can occur may be limited to the volume of healing agent available relative to the crack volume that must be filled.
Novel Therapy for Bone Regeneration in Large Segmental Defects
2017-12-01
healing. Clin Orthop Relat Res. 1998;355(Suppl):S230–8. 37. Pape HC, Giannoudis PV. Fat embolism and IM nailing. Injury. 2006;37(Suppl 4):S1–2. 38. Wenda...mechanisms to elicit bone healing. 15. SUBJECT TERMS Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing...thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 3. OVERALL PROJECT SUMMARY: Project start date 30/09/2013 Project end
Lee, Boon-Ooi; Kirmayer, Laurence J.; Groleau, Danielle
2016-01-01
This study focuses on the therapeutic process and perceived helpfulness of dang-ki, a form of Chinese shamanistic healing, in Singapore. It aims to understand the healing symbols employed in dang-ki, whether or not patients find them helpful and whether their perceived helpfulness can be explained by the symbolic healing model (Dow, Am Anthropol 88(1):56–69, 1986; Levi-Strauss, Structural anthropology. Basic Books, New York, 1963). Although many researchers have applied this model to explain the efficacy of shamanistic healings, they did not directly provide empirical support. Furthermore, the therapeutic process of a shared clinical reality as proposed by the model may be achievable in small-scale traditional societies that are culturally more homogeneous than in contemporary societies that are culturally more diversified due to globalization and immigration. Patients may hold multidimensional health belief systems, as biomedicine and alternative healing systems coexist. Thus, it would be interesting to see the relevance and applicability of the symbolic healing model to shamanistic healing in contemporary societies. In this study, ethnographic interviews were conducted with 21 patients over three stages: immediately before and after the healing and approximately 1 month later. The dang-ki healing symbols were identified by observing the healing sessions with video recording. Results show that dang-kis normally applied more than one method to treat a given problem. These methods included words, talismans and physical manipulations. Overall, 11 patients perceived their consultations as helpful, 4 perceived their consultations as helpful but were unable to follow all recommendations, 5 were not sure of the outcome because they had yet to see any concrete results and only 1 patient considered his consultation unhelpful. Although the symbolic healing model provides a useful framework to understand perceived helpfulness, processes such as enactment of a common meaning system and symbolic transformation are complex and dynamic, and may be carried over several healing sessions. PMID:20012176
Smith, Oliver J; Kanapathy, Muholan; Khajuria, Ankur; Prokopenko, Max; Hachach-Haram, Nadine; Mann, Haroon; Mosahebi, Ash
2017-06-06
The use of fat grafting as a reconstructive surgical option is becoming much more common. Adipose-derived stem cells found in fat grafts are believed to facilitate wound healing via differentiation into fibroblasts and keratinocytes and the release of pro-healing growth factors. Several small studies have shown a positive effect of fat grafting in healing of wounds of a variety of aetiologies. When fat is combined with autologous platelet-rich plasma (PRP), there may be enhanced healing effects. This may be due to the pro-angiogenic and anti-inflammatory effects of PRP. We aim to synthesise the current evidence on combination fat grafting and PRP for wound healing to establish the efficacy of this technique. We will conduct a comprehensive literature search in the MEDLINE, EMBASE, CENTRAL, Science Citation Index, and Google Scholar databases (up to July 2017) to identify studies on fat grafting and PRP for wound healing. All primary studies and systematic reviews of these studies will be included, except case reports and case series with fewer than three patients, to evaluate the outcome of fat grafting and PRP on wound healing either on its own or when compared to other studies. Primary outcome measures are expected to be the proportion of total wounds healed at 12 weeks and the average wound healing time (time for 100% re-epithelialisation). Expected secondary outcome measures are the proportion of wounds achieving 50% wound healing, the type of wound benefitting most from fat grafting, economic evaluation, health-related quality of life, and adverse events. Subgroup analysis will be performed for the proportions of wounds healed based on wound aetiology. This review will provide robust evidence of the efficacy of fat grafting and PRP for wound healing. This is an emerging technique, and this review is expected to guide clinical practice and ongoing research aimed at improving wound care. PROSPERO CRD42016049881.
Hosaka, Koji; Rojas, Kelley; Fazal, Hanain Z; Schneider, Matheus B; Shores, Jorma; Federico, Vincent; McCord, Matthew; Lin, Li; Hoh, Brian
2017-01-01
Background and Purpose We have previously demonstrated that the local delivery of monocyte chemotactic protein-1 (MCP-1) via a MCP-1-releasing poly(lactic-co-glycolic acid) (PLGA) -coated coil promotes intra-aneurysmal tissue healing. In this study, we demonstrate that interleukin-6 (IL-6) and osteopontin (OPN) are downstream mediators in the MCP-1-mediated aneurysm healing pathway. Methods Murine carotid aneurysms were created in C57BL/6 mice. Drug-releasing coils (MCP-1, IL-6 and OPN) and control PLGA coils were created and then implanted into the aneurysms in order to evaluate their intra-aneurysmal healing capacity. In order to investigate the downstream mediators for aneurysm healing, blocking antibodies for IL-6 receptor and OPN were given to the mice implanted with the MCP-1-releasing coils. A histological analysis of both murine and human aneurysms was utilized to cross-validate the data. Results We observed increased expression of IL-6 in MCP-1-coil treated aneurysms and not in control-PLGA-only treated aneurysms. MCP-1-mediated intra-aneurysmal healing is inhibited in mice given blocking antibody to IL-6 receptor. MCP-1-mediated intra-aneurysmal healing is also inhibited by blocking antibody to OPN. The role of IL-6 in intra-aneurysmal healing is in recruiting of endothelial cells and fibroblasts. Local delivery of OPN to murine carotid aneurysms via OPN-releasing coil significantly promotes intra-aneurysmal healing, but IL-6-releasing coil does not, suggesting that IL-6 cannot promote aneurysm healing independent of MCP-1. In the MCP-1-mediated aneurysm healing, OPN expression is dependent on IL-6; inhibition of IL-6 receptor significantly inhibits OPN expression in MCP-1-mediated aneurysm healing. Conclusions Our findings suggest that IL-6 and OPN are key downstream mediators of MCP-1-mediated intra-aneurysmal healing. PMID:28292871
Arndt, Stephanie; Unger, Petra; Wacker, Eva; Shimizu, Tetsuji; Heinlin, Julia; Li, Yang-Fang; Thomas, Hubertus M.; Morfill, Gregor E.; Zimmermann, Julia L.
2013-01-01
Cold atmospheric plasma (CAP) has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time) in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model. Our in vitro analysis revealed that the CAP treatment induces the expression of important key genes crucial for the wound healing response like IL-6, IL-8, MCP-1, TGF-ß1, TGF-ß2, and promotes the production of collagen type I and alpha-SMA. Scratch wound healing assays showed improved cell migration, whereas cell proliferation analyzed by XTT method, and the apoptotic machinery analyzed by protein array technology, was not altered by CAP in dermal fibroblasts. An in vivo wound healing model confirmed that the CAP treatment affects above mentioned genes involved in wound healing, tissue injury and repair. Additionally, we observed that the CAP treatment improves wound healing in mice, no relevant side effects were detected. We suggest that improved wound healing might be due to the activation of a specified panel of cytokines and growth factors by CAP. In summary, our in vitro human and in vivo animal data suggest that the 2 min treatment with the MicroPlaSter ß® is an effective technique for activating wound healing relevant molecules in dermal fibroblasts leading to improved wound healing, whereas the mechanisms which contribute to these observed effects have to be further investigated. PMID:24265766
NASA Astrophysics Data System (ADS)
Chao Yuan, Yan; Ye, Yueping; Zhi Rong, Min; Chen, Haibin; Wu, Jingshen; Qiu Zhang, Ming; Qin, Shi Xiang; Yang, Gui Cheng
2011-01-01
Self-healing woven glass fabric-reinforced epoxy composite laminates were made by embedding epoxy- and mercaptan-loaded microcapsules. After being subjected to low-velocity impact, the laminates were able to heal the damage in an autonomic way at room temperature. The healing-induced reduction in the damaged areas was visualized using a scanning acoustic microscope. The rate of damage area reduction, which is closely related to the effect of crack rehabilitation and mechanical recovery, is a function of impact energy, content and size of the healing microcapsules. Minor damage, such as microcracks in the matrix, can be completely repaired by the healing system without manual intervention, including external pressure. Microcapsules with larger size and/or higher concentration are propitious for delivering more healing agent to cracked portions, while imposition of lateral pressure on damaged specimens forces the separated faces to approach each other. Both can improve the rate of damage area reduction in the case of severe damage.
NASA Astrophysics Data System (ADS)
Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza
2018-03-01
Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.
NASA Astrophysics Data System (ADS)
Poormir, Mohammad Amin; Khalili, Seyed Mohammad Reza; Eslami-Farsani, Reza
2018-06-01
Utilizing intelligent materials such as shape memory alloys as reinforcement in metal matrix composites is a novel method to mimic self-healing behavior. In this study, the bending behavior of a self-healing metal matrix composite made from Sn-13 wt.% Bi alloy as matrix and NiTi shape memory alloy (SMA) strips as reinforcement is investigated. Specimens were fabricated in different reinforcement vol.% (0.78, 1.55, 2.33) and in various pre-strains (0, 2, 6%) and were healed at three healing temperatures (170°C, 180°C, 190°C). Results showed that shape recovery was accomplished in all the specimens, but not all of them were able to withstand second loading after healing. Only specimens with 2.33 vol.% of SMA strips, 1.55 vol.% of SMA, and 6% pre-strain could endure bending force after healing, and they gained 35.31-51.83% of bending force self-healing efficiency.
NASA Astrophysics Data System (ADS)
Arifur Rahman, Md; Penco, Maurizio; Peroni, Isabella; Ramorino, Giorgio; Janszen, Gerardus; Di Landro, Luca
2012-03-01
The development of autonomous healing material has an enormous scientific and technological interest. In this context, this research work deals with the investigation of autonomous healing behavior of epoxidized natural rubber (ENR) and its blends with ethylene methacrylic acid ionomers. The autonomous healing behavior of ENR and its blends containing two different ionomers [poly(ethylene-co-methacrylic acid sodium salt) (EMNa) and poly(ethylene-co-methacrylic acid zinc salt) (EMZn)] has been studied by ballistic puncture tests. Interestingly, EMNa/ENR blends exhibit complete healing just after the ballistic test but EMZn/ENR blends do not show full self-repairing. The healing efficiency has been evaluated by optical microscopy and a depressurized air-flow test. The healing mechanism has been investigated by characterizing thermal and mechanical properties of the blends. The chemical structure studied by FTIR and thermal analysis show that the ion content of ionomers and functionality of ENR has a significant influence on the self-healing behavior.
The Third Therapeutic System: Faith Healing Strategies in the Context of a Generalized AIDS Epidemic
Manglos, Nicolette D.; Trinitapoli, Jenny
2014-01-01
Faith healing in sub-Saharan Africa has primarily been studied qualitatively among Pentecostal-Charismatic groups, and considered as its own phenomenon with little attention to its relationship to other modes of healing. Using data from Malawi, a religiously diverse African country with high HIV prevalence, we find that faith healing is pervasive across multiple religious traditions. For individuals, attending a faith healing congregation is associated with lower levels of generalized worry about AIDS, and this association is driven by those who switched churches before AIDS became widespread in rural areas. Use of condoms and traditional medicine are, on the other hand, positively associated with worry about AIDS. We argue that faith healing can be understood as a third therapeutic system that coexists with the well-documented biomedical and traditional systems. The success of faith healing approaches lies in their unique ability to combine individual-pragmatic and communal-ritualized aspects of healing to inform interpretations of the AIDS epidemic and its consequences. PMID:21362615
Ahn, Eunjong; Kim, Hyunjun; Sim, Sung-Han; Shin, Sung Woo; Shin, Myoungsu
2017-01-01
Recently, self-healing technologies have emerged as a promising approach to extend the service life of social infrastructure in the field of concrete construction. However, current evaluations of the self-healing technologies developed for cementitious materials are mostly limited to lab-scale experiments to inspect changes in surface crack width (by optical microscopy) and permeability. Furthermore, there is a universal lack of unified test methods to assess the effectiveness of self-healing technologies. Particularly, with respect to the self-healing of concrete applied in actual construction, nondestructive test methods are required to avoid interrupting the use of the structures under evaluation. This paper presents a review of all existing research on the principles of ultrasonic test methods and case studies pertaining to self-healing concrete. The main objective of the study is to examine the applicability and limitation of various ultrasonic test methods in assessing the self-healing performance. Finally, future directions on the development of reliable assessment methods for self-healing cementitious materials are suggested. PMID:28772640
Healable thermoset polymer composite embedded with stimuli-responsive fibres
Li, Guoqiang; Meng, Harper; Hu, Jinlian
2012-01-01
Severe wounds in biological systems such as human skin cannot heal themselves, unless they are first stitched together. Healing of macroscopic damage in thermoset polymer composites faces a similar challenge. Stimuli-responsive shape-changing polymeric fibres with outstanding mechanical properties embedded in polymers may be able to close macro-cracks automatically upon stimulation such as heating. Here, a stimuli-responsive fibre (SRF) with outstanding mechanical properties and supercontraction capability was fabricated for the purpose of healing macroscopic damage. The SRFs and thermoplastic particles (TPs) were incorporated into regular thermosetting epoxy for repeatedly healing macroscopic damages. The system works by mimicking self-healing of biological systems such as human skin, close (stitch) then heal, i.e. close the macroscopic crack through the thermal-induced supercontraction of the SRFs, and bond the closed crack through melting and diffusing of TPs at the crack interface. The healing efficiency determined using tapered double-cantilever beam specimens was 94 per cent. The self-healing process was reasonably repeatable. PMID:22896563
Estrogen Effects on Wound Healing
Horng, Huann-Cheng; Chang, Wen-Hsun; Yeh, Chang-Ching; Huang, Ben-Shian; Chang, Chia-Pei; Chen, Yi-Jen; Tsui, Kuan-Hao
2017-01-01
Wound healing is a physiological process, involving three successive and overlapping phases—hemostasis/inflammation, proliferation, and remodeling—to maintain the integrity of skin after trauma, either by accident or by procedure. Any disruption or unbalanced distribution of these processes might result in abnormal wound healing. Many molecular and clinical data support the effects of estrogen on normal skin homeostasis and wound healing. Estrogen deficiency, for example in postmenopausal women, is detrimental to wound healing processes, notably inflammation and re-granulation, while exogenous estrogen treatment may reverse these effects. Understanding the role of estrogen on skin might provide further opportunities to develop estrogen-related therapy for assistance in wound healing. PMID:29099810
Adhesion strength of norbornene-based self-healing agents to an amine-cured epoxy
NASA Astrophysics Data System (ADS)
Huang, Guang Chun; Lee, Jong Keun; Kessler, Michael R.; Yoon, Sungho
2009-07-01
Self-healing is triggered by crack propagation through embedded microcapsules in an epoxy matrix, which then release the liquid healing agent into the crack plane. Subsequent exposure of the healing agent to the chemical catalyst initiates ring-opening metathesis polymerization (ROMP) and bonding of the crack faces. In order to improve self-healing functionality, it is necessary to enhance adhesion of polymerized healing agent within the crack to the matrix resin. In this study, shear bond strength between different norbornene-based healing agents and an amine-cured epoxy resin was evaluated using the single lap shear test method (ASTM D3163, modified). The healing agents tested include endodicyclopentadiene (endo-DCPD), 5-ethylidene-2-norbornene (ENB) and DCPD/ENB blends. 5-Norbornene-2-methanol (NBM) was used as an adhesion promoter, containing hydroxyl groups to form hydrogen bonds with the amine-cured epoxy. A custom synthesized norbornene-based crosslinking agent was also added to improve adhesion for ENB by increasing the crosslinking density of the adhesive after ROMP. The healing agents were polymerized with varying loadings of the 1st generation Grubbs' catalyst at different reaction times and temperatures.
Bone fracture healing in mechanobiological modeling: A review of principles and methods.
Ghiasi, Mohammad S; Chen, Jason; Vaziri, Ashkan; Rodriguez, Edward K; Nazarian, Ara
2017-06-01
Bone fracture is a very common body injury. The healing process is physiologically complex, involving both biological and mechanical aspects. Following a fracture, cell migration, cell/tissue differentiation, tissue synthesis, and cytokine and growth factor release occur, regulated by the mechanical environment. Over the past decade, bone healing simulation and modeling has been employed to understand its details and mechanisms, to investigate specific clinical questions, and to design healing strategies. The goal of this effort is to review the history and the most recent work in bone healing simulations with an emphasis on both biological and mechanical properties. Therefore, we provide a brief review of the biology of bone fracture repair, followed by an outline of the key growth factors and mechanical factors influencing it. We then compare different methodologies of bone healing simulation, including conceptual modeling (qualitative modeling of bone healing to understand the general mechanisms), biological modeling (considering only the biological factors and processes), and mechanobiological modeling (considering both biological aspects and mechanical environment). Finally we evaluate different components and clinical applications of bone healing simulation such as mechanical stimuli, phases of bone healing, and angiogenesis.
Steiner, Malte; Claes, Lutz; Ignatius, Anita; Simon, Ulrich; Wehner, Tim
2014-07-01
The outcome of secondary fracture healing processes is strongly influenced by interfragmentary motion. Shear movement is assumed to be more disadvantageous than axial movement, however, experimental results are contradictory. Numerical fracture healing models allow simulation of the fracture healing process with variation of single input parameters and under comparable, normalized mechanical conditions. Thus, a comparison of the influence of different loading directions on the healing process is possible. In this study we simulated fracture healing under several axial compressive, and translational and torsional shear movement scenarios, and compared their respective healing times. Therefore, we used a calibrated numerical model for fracture healing in sheep. Numerous variations of movement amplitudes and musculoskeletal loads were simulated for the three loading directions. Our results show that isolated axial compression was more beneficial for the fracture healing success than both isolated shearing conditions for load and displacement magnitudes which were identical as well as physiological different, and even for strain-based normalized comparable conditions. Additionally, torsional shear movements had less impeding effects than translational shear movements. Therefore, our findings suggest that osteosynthesis implants can be optimized, in particular, to limit translational interfragmentary shear under musculoskeletal loading. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Holistic nurses' stories of personal healing.
Smith, Marlaine C; Zahourek, Rothlyn; Hines, Mary Enzman; Engebretson, Joan; Wardell, Diane Wind
2013-09-01
The purpose of this study was to uncover the nature, experiences, and meaning of personal healing for holistic nurses through their narrative accounts. The study employed a qualitative descriptive design with methods of narrative and story inquiry. Participants were nurse attendees at an American Holistic Nurses' Association conference who volunteered for the study. They were invited to share a story about healing self or another. Twenty-five stories were collected; seven were about personal healing, and these are the focus of this analysis. Data were analyzed using a hybrid approach from narrative and story inquiry methods. Eleven themes were clustered under three story segments. The themes within the Call to the Healing Encounter are the following: recognition of the need to resolve a personal or health crisis, knowledge of or engagement in self-care practices, and reliance on intuitive knowing. Themes under the Experience of Healing are the following: connections; profound sensations, perceptions, and events; awareness of the reciprocal nature of healing; inner resolution: forgiveness, awakening, and acceptance; use of multiple holistic approaches; and witnessing manifestations of healing. The themes for Insights are the following: gratitude and appreciation and ongoing journey. A metastory synthesizing the themes is presented, and findings are related to existing literature on healing.
The Role of Matrix Metalloproteinases in Diabetic Wound Healing in relation to Photobiomodulation.
Ayuk, Sandra Matabi; Abrahamse, Heidi; Houreld, Nicolette Nadene
2016-01-01
The integration of several cellular responses initiates the process of wound healing. Matrix Metalloproteinases (MMPs) play an integral role in wound healing. Their main function is degradation, by removal of damaged extracellular matrix (ECM) during the inflammatory phase, breakdown of the capillary basement membrane for angiogenesis and cell migration during the proliferation phase, and contraction and remodelling of tissue in the remodelling phase. For effective healing to occur, all wounds require a certain amount of these enzymes, which on the contrary could be very damaging at high concentrations causing excessive degradation and impaired wound healing. The imbalance in MMPs may increase the chronicity of a wound, a familiar problem seen in diabetic patients. The association of diabetes with impaired wound healing and other vascular complications is a serious public health issue. These may eventually lead to chronic foot ulcers and amputation. Low intensity laser irradiation (LILI) or photobiomodulation (PBM) is known to stimulate several wound healing processes; however, its role in matrix proteins and diabetic wound healing has not been fully investigated. This review focuses on the role of MMPs in diabetic wound healing and their interaction in PBM.
Circadian rhythms accelerate wound healing in female Siberian hamsters
Cable, Erin J.; Onishi, Kenneth G.; Prendergast, Brian J.
2017-01-01
Circadian rhythms (CRs) provide temporal regulation and coordination of numerous physiological traits, including immune function. CRs in multiple aspects of immune function are absent in rodents that have been rendered circadian-arrhythmic through various methods. In Siberian hamsters, circadian arrhythmia can be induced by disruptive light treatments (DPS). Here we examined CRs in wound healing, and the effects of circadian disruption on wound healing in DPS-arrhythmic hamsters. Circadian entrained/rhythmic (RHYTH) and behaviorally-arrhythmic (ARR) female hamsters were administered a cutaneous wound either 3 h after light onset (ZT03) or 2 h after dark onset (ZT18); wound size was quantified daily using image analyses. Among RHYTH hamsters, ZT03 wounds healed faster than ZT18 wounds, whereas in ARR hamsters, circadian phase did not affect wound healing. In addition, wounds healed slower in ARR hamsters. The results document a clear CR in wound healing, and indicate that the mere presence of organismal circadian organization enhances this aspect of immune function. Faster wound healing in CR-competent hamsters may be mediated by CR-driven coordination of the temporal order of mechanisms (inflammation, leukocyte trafficking, tissue remodeling) underlying cutaneous wound healing. PMID:27998755
Rethinking 'Efficacy': Ritual Healing and Trance in the Mahanubhav Shrines in India.
Ranganathan, Shubha
2015-09-01
Ritual healing has been one of the core topics in anthropology and, to a lesser extent, in psychology as well. Much of the research on ritual healing has focused on how healing works, and what factors constitute the efficacy of healing. In answering this question, scholars have focused primarily on two main factors-the symbolic significance of rituals, and the relationship between the healer and the patient. This paper explores understandings about efficacy in a context where elaborate rituals do not occur, the role of the healer is minimal, and the sufferers do not have expectations of complete wellness. In the Mahanubhav temples in India, healing is not understood as the removal of symptoms. The healing process involves amplifying unpleasant and painful symptoms, thereby 'drawing out' the illness from the body. Moreover, the temple narratives emphasize the transient nature of temple healing, where people rarely become completely well. They therefore frequently return to stay in the temple as and when their symptoms recur, thus forging long-term bond with the temple community and sect. These findings suggest that temple healing is powerful not so much for the practice of specific exorcist rituals, but for providing a refuge and a community for suffering individuals.
Hyperbaric Oxygen, Vasculogenic Stem Cells, and Wound Healing
Fosen, Katina M.
2014-01-01
Abstract Significance: Oxidative stress is recognized as playing a role in stem cell mobilization from peripheral sites and also cell function. Recent Advances: This review focuses on the impact of hyperoxia on vasculogenic stem cells and elements of wound healing. Critical Issues: Components of the wound-healing process in which oxidative stress has a positive impact on the various cells involved in wound healing are highlighted. A slightly different view of wound-healing physiology is adopted by departing from the often used notion of sequential stages: hemostatic, inflammatory, proliferative, and remodeling and instead organizes the cascade of wound healing as overlapping events or waves pertaining to reactive oxygen species, lactate, and nitric oxide. This was done because hyperoxia has effects of a number of cell signaling events that converge to influence cell recruitment/chemotaxis and gene regulation/protein synthesis responses which mediate wound healing. Future Directions: Our alternative perspective of the stages of wound healing eases recognition of the multiple sites where oxidative stress has an impact on wound healing. This aids the focus on mechanistic events and the interplay among various cell types and biochemical processes. It also highlights the areas where additional research is needed. Antioxid. Redox Signal. 21, 1634–1647. PMID:24730726
Genetic factors responsible for long bone fractures non-union.
Szczęsny, Grzegorz; Olszewski, Waldemar L; Zagozda, Małgorzata; Rutkowska, Joanna; Czapnik, Zanetta; Swoboda-Kopeć, Ewa; Górecki, Andrzej
2011-02-01
Approximately 10-15% of all fractures of long bones heal with delay, prolonged immobilization and repetitive operative interventions. Despite intense investigations, the pathomechanism of impaired healing of skeletal tissue remains unclear. An important role in the pathomechanism of mal-union of close fractures plays subclinically proceeding infections. The question arises whether colonization and proliferation of bacteria in the fracture gap could be related to the mutation of genes for factors regulating local antimicrobial response, such as pathogen recognizing receptors (PRR), cytokines and chemokines. We carried out studies in patients with delayed long bone fractures estimating the frequency of mutation of genes crucial for pathogen recognition (TLR2, TLR4 and CD14), and elimination (CRP, IL-6, IL-1ra), as well as wound healing (TGF-β). The molecular milieu regulating healing process (IGF-1, COLL1a, TGF-β, BMP-2, and PDGF) was validated by Western blot analysis of the gap tissue. Microbiological investigations showed the presence of viable bacterial strains in 34 out of 108 gaps in patients with non-healing fractures (31.5%) and in 20 out of 122 patients with uneventful healing (16.4%) (P < 0.05). The occurrence of mutated TLR4 1/W but not 2/W gene was significantly higher (P < 0.05) in the non-healing infected than sterile group. In the non-healing infected group 1/W mutated gene frequency was also higher than in healing infected. In the TGF-β codon 10 a significantly higher frequency of mutated homozygote T and heterozygote C/T in the non-healing infected versus non-healing sterile subgroup was observed (P < 0.05). Similar difference was observed in the non-healing infected versus healing infected subgroup (P < 0.05). The CRP (G1059C), IL1ra (genotype 2/2), IL-6 (G176C), CD14 (G-159T), TLR2 (G2259A) and TLR4/2 (Thr399Ile) polymorphisms did not play evident role in the delay of fracture healing. Individuals bearing the mutant TLR 4 gene 1/W (Asp299Gly) and TGF-β gene codon 10 mutant T and T/C allele may predispose to impaired pathogen recognition and elimination, leading to prolonged pathogen existence in the fracture gaps and healing delays.
Meniscal healing after meniscal repair: a CT arthrography assessment.
Pujol, Nicolas; Panarella, Ludovico; Selmi, Tarik Ait Si; Neyret, Philippe; Fithian, Donald; Beaufils, Philippe
2008-08-01
Studies evaluating healing of repaired meniscus are rare and primarily retrospective. The aim of this study was to assess whether there were different healing rates for arthroscopic meniscal repair with respect to the different zones of the meniscus. This study was conducted to assess outcomes and to document anatomic characteristics of the repaired meniscus with postoperative arthrography combined with computed tomography (arthro-CT), particularly the dimensions and healing of the repaired meniscus. Case series; Level of evidence, 4. Fifty-three arthroscopic meniscal repairs were prospectively evaluated between 2002 and 2004 in 2 orthopaedic departments. There were 36 medial and 17 lateral torn menisci. All ACL tears (n = 31, 58.5%) underwent reconstruction. Patients were preoperatively evaluated by magnetic resonance imaging. Clinical evaluation included International Knee Documentation Committee (IKDC) scores before the operation and 6 and 12 months afterward. Healing criteria were evaluated at 6 months by arthro-CT scan. Three parameters were evaluated--healing in thickness (Henning criteria), overall healing rate, and reduction in the width of the remaining meniscus. According to the objective IKDC score, 26 patients were graded A, 20 B, and 4 C (92% good results). The mean subjective IKDC score was 78.9 (standard deviation [SD], 16.2). According to Henning's criteria, 58% of the menisci healed completely, 24% partially, and 18% failed. The overall healing rate was 73.1% (SD, 38.5). Twenty tears located in the posterior part had a healing rate of 59.8% (SD, 46.0). Nineteen tears extending from the posterior to the middle part had a healing rate of 79.2% (SD, 28.2). Isolated tears located in the posterior part had a lower healing rate (P < .05). There was a 9% +/- 1.2% reduction in the width of the remaining medial meniscus in the middle and posterior repaired portions (P < .02). There was a 15% +/- 14% reduction in the width of the remaining lateral meniscus in the middle repaired portion (P < .01). Complete healing of the posterior segment was associated with reduction in the width of the meniscus (P < .04). A modern technique using all-inside fixation or outside-in sutures provided good clinical and anatomic outcomes. No statistically significant effect on ACL reconstruction or laterality (medial vs lateral) on overall healing after meniscal repair was identified. Partial healing occurred often, with a stable tear on a narrowed and painless meniscus. The posterior segment healing rate remained low, suggesting a need for further technical improvements.
The microstructure of capsule containing self-healing materials: A micro-computed tomography study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Stappen, Jeroen, E-mail: Jeroen.Vanstappen@uge
Autonomic self-healing materials are materials with built-in (micro-) capsules or vessels, which upon fracturing release healing agents in order to recover the material's physical and mechanical properties. In order to better understand and engineer these materials, a thorough characterization of the material's microstructural behavior is essential and often overlooked. In this context, micro-computed tomography (μCT) can be used to investigate the three dimensional distribution and (de)bonding of (micro-) capsules in their native state in a polymer system with self-healing properties. Furthermore, in-situ μCT experiments in a self-healing polymer and a self-healing concrete system can elucidate the breakage and leakage behaviormore » of (micro-) capsules at the micrometer scale. While challenges related to image resolution and contrast complicate the characterization in specific cases, non-destructive 3D imaging with μCT is shown to contribute to the understanding of the link between the microstructure and the self-healing behavior of these complex materials. - Highlights: • μCT imaging allows for the analysis of microcapsule distribution patterns in self-healing materials. • μCT allows for qualitative and quantitative measurements of healing agent release from carriers in self-healing materials. • Experimental set-ups can be optimized by changing chemical compounds in the system to ensure maximum quality imaging.« less
Ackerman, Jessica E.; Geary, Michael B.; Orner, Caitlin A.; Bawany, Fatima
2017-01-01
Type II Diabetes (T2DM) dramatically impairs the tendon healing response, resulting in decreased collagen organization and mechanics relative to non-diabetic tendons. Despite this burden, there remains a paucity of information regarding the mechanisms that govern impaired healing of diabetic tendons. Mice were placed on either a high fat diet (T2DM) or low fat diet (lean) and underwent flexor tendon transection and repair surgery. Healing was assessed via mechanical testing, histology and changes in gene expression associated with collagen synthesis, matrix remodeling, and macrophage polarization. Obese/diabetic tendons healed with increased scar formation and impaired mechanical properties. Consistent with this, prolonged and excess expression of extracellular matrix (ECM) components were observed in obese/T2DM tendons. Macrophages are involved in both inflammatory and matrix deposition processes during healing. Obese/T2DM tendons healed with increased expression of markers of pro-inflammatory M1 macrophages, and elevated and prolonged expression of M2 macrophages markers that are involved in ECM deposition. Here we demonstrate that tendons from obese/diabetic mice heal with increased scar formation and increased M2 polarization, identifying excess M2 macrophage activity and matrix synthesis as a potential mechanism of the fibrotic healing phenotype observed in T2DM tendons, and as such a potential target to improve tendon healing in T2DM. PMID:28686669
Chipp, Elizabeth; Charles, Lisa; Thomas, Clare; Whiting, Kate; Moiemen, Naiem; Wilson, Yvonne
2017-01-01
It is commonly accepted that burns taking longer than 3 weeks to heal have a much higher rate of hypertrophic scarring than those which heal more quickly. However, some of our patients develop hypertrophic scars despite healing within this 3-week period. We performed a prospective study of 383 paediatric burns treated non-operatively at a regional burns centre over a 2-year period from May 2011 to April 2013. Scar assessment was performed by a senior burns therapist using the Vancouver Scar Scale. Overall rates of hypertrophic scarring were 17.2%. Time to healing was the strongest predictor of developing hypertrophic scarring, and the earliest hypertrophic scar developed in a patient who was healed after 8 days. The risk of hypertrophic scarring was multiplied by 1.138 for every additional day taken for the burn wound to heal. There was a trend towards higher rates of hypertrophic scarring in non-white skin types but this did not reach statistical significance. The risk of hypertrophic scarring increases with every day and, therefore, every effort should be made to get the wound healed as quickly as possible, even within the traditional 3-week period usually allowed for healing. We believe that the traditional dogma of aiming for healing within 3 weeks is overly simplistic and should be abandoned: in paediatric burns, every day counts. Not applicable.
NASA Astrophysics Data System (ADS)
Araújo, Maria; Van Tittelboom, Kim; Dubruel, Peter; Van Vlierberghe, Sandra; De Belie, Nele
2017-05-01
The repair of cracks in concrete is an unavoidable practice since these cracks endanger the durability of the structure. Inspired by nature, the self-healing concept has been widely investigated in concrete as a promising solution to solve the limitations of manual repair. This self-healing functionality may be realized by the incorporation of encapsulated healing agents in concrete. Depending on the nature of the cracks, different healing agents can be used. For structures subjected to repeated loads, elastic materials should be considered to cope with the crack opening and closing movement. In this study, various acrylate-endcapped polymer precursors were investigated for their suitability to heal active cracks. The strain capacity of the polymers was assessed by means of visual observation together with water flow tests after widening of the healed cracks in a stepwise manner. A strain of at least 50% could be sustained by epoxy- and siloxane-based healing agents. For polyester- and urethane/poly(propylene glycol)-based precursors, failure occurred at 50% elongation due to detachment of the polymer from the crack walls. However, for urethane/poly(propylene glycol)-based healing agent, debonding was limited to some local spots. The resistance of the polymerized healing agents against degradation in the strong alkaline environment characteristic for concrete has also been evaluated, with the urethane/poly(propylene glycol)-based precursor showing the best performance to withstand degradation.
Tsai, Stanley; Bliven, Emily K.; von Rechenberg, Brigitte; Kindt, Philipp; Augat, Peter; Henschel, Julia; Fitzpatrick, Daniel C.; Madey, Steven M.
2017-01-01
Objectives: Active plates dynamize a fracture by elastic suspension of screw holes within the plate. We hypothesized that dynamic stabilization with active plates delivers stronger healing relative to standard compression plating. Methods: Twelve sheep were randomized to receive either a standard compression plate (CP) or an active plate (ACTIVE) for stabilization of an anatomically reduced tibial osteotomy. In the CP group, absolute stabilization was pursued by interfragmentary compression with 6 cortical screws. In the ACTIVE group, dynamic stabilization after bony apposition was achieved with 6 elastically suspended locking screws. Fracture healing was analyzed weekly on radiographs. After sacrifice 9 weeks postsurgery, the torsional strength of healed tibiae and contralateral tibiae was measured. Finally, computed tomography was used to assess fracture patterns and healing modes. Results: Healing in both groups included periosteal callus formation. ACTIVE specimens had almost 6 times more callus area by week 9 (P < 0.001) than CP specimens. ACTIVE specimens recovered on average 64% of their native strength by week 9, and were over twice as strong as CP specimens, which recovered 24% of their native strength (P = 0.008). Microcomputed tomography demonstrated that compression plating induced a combination of primary bone healing and gap healing. Active plating consistently stimulated biological bone healing by periosteal callus formation. Conclusions: Compared with compression plating, dynamic stabilization of simple fractures with active plates delivers significantly stronger healing. PMID:27861456
Chemokine Involvement in Fetal and Adult Wound Healing
Balaji, Swathi; Watson, Carey L.; Ranjan, Rajeev; King, Alice; Bollyky, Paul L.; Keswani, Sundeep G.
2015-01-01
Significance: Fetal wounds heal with a regenerative phenotype that is indistinguishable from surrounding skin with restored skin integrity. Compared to this benchmark, all postnatal wound healing is impaired and characterized by scar formation. The biologic basis of the fetal regenerative phenotype can serve as a roadmap to recapitulating regenerative repair in adult wounds. Reduced leukocyte infiltration, likely mediated, in part, through changes in the chemokine milieu, is a fundamental feature of fetal wound healing. Recent Advances: The contributions of chemokines to wound healing are a topic of active investigation. Recent discoveries have opened the possibility of targeting chemokines therapeutically to treat disease processes and improve healing capability, including the possibility of achieving a scarless phenotype in postnatal wounds. Critical Issues: Successful wound healing is a complex process, in which there is a significant interplay between multiple cell types, signaling molecules, growth factors, and extracellular matrix. Chemokines play a crucial role in this interplay and have been shown to have different effects in various stages of the healing process. Understanding how these chemokines are locally produced and regulated during wound healing and how the chemokine milieu differs in fetal versus postnatal wounds may help us identify ways in which we can target chemokine pathways. Future Directions: Further studies on the role of chemokines and their role in the healing process will greatly advance the potential for using these molecules as therapeutic targets. PMID:26543680
Androgen actions in mouse wound healing: Minimal in vivo effects of local antiandrogen delivery.
Wang, Yiwei; Simanainen, Ulla; Cheer, Kenny; Suarez, Francia G; Gao, Yan Ru; Li, Zhe; Handelsman, David; Maitz, Peter
2016-05-01
The aims of this work were to define the role of androgens in female wound healing and to develop and characterize a novel wound dressing with antiandrogens. Androgens retard wound healing in males, but their role in female wound healing has not been established. To understand androgen receptor (AR)-mediated androgen actions in male and female wound healing, we utilized the global AR knockout (ARKO) mouse model, with a mutated AR deleting the second zinc finger to disrupt DNA binding and transcriptional activation. AR inactivation enhanced wound healing rate in males by increasing re-epithelialization and collagen deposition even when wound contraction was eliminated. Cell proliferation and migration in ARKO male fibroblasts was significantly increased compared with wild-type (WT) fibroblasts. However, ARKO females showed a similar healing rate compared to WT females. To exploit local antiandrogen effects in wound healing, while minimizing off-target systemic effects, we developed a novel electrospun polycaprolactone (PCL) scaffold wound dressing material for sustained local antiandrogen delivery. Using the antiandrogen hydroxyl flutamide (HF) at 1, 5, and 10 mg/mL in PCL scaffolds, controlled HF delivery over 21 days significantly enhanced in vitro cell proliferation of human dermal fibroblasts and human keratinocytes. HF-PCL scaffolds also promoted in vivo wound healing in mice compared with open wounds but not to PCL scaffolds. © 2016 by the Wound Healing Society.
Elements affecting wound healing time: An evidence based analysis.
Khalil, Hanan; Cullen, Marianne; Chambers, Helen; Carroll, Matthew; Walker, Judi
2015-01-01
The purpose of this study was to identify the predominant client factors and comorbidities that affected the time taken for wounds to heal. A prospective study design used the Mobile Wound Care (MWC) database to capture and collate detailed medical histories, comorbidities, healing times and consumable costs for clients with wounds in Gippsland, Victoria. There were 3,726 wounds documented from 2,350 clients, so an average of 1.6 wounds per client. Half (49.6%) of all clients were females, indicating that there were no gender differences in terms of wound prevalence. The clients were primarily older people, with an average age of 64.3 years (ranging between 0.7 and 102.9 years). The majority of the wounds (56%) were acute and described as surgical, crush and trauma. The MWC database categorized the elements that influenced wound healing into 3 groups--factors affecting healing (FAH), comorbidities, and medications known to affect wound healing. While there were a multitude of significant associations, multiple linear regression identified the following key elements: age over 65 years, obesity, nonadherence to treatment plan, peripheral vascular disease, specific wounds associated with pressure/friction/shear, confirmed infection, and cerebrovascular accident (stroke). Wound healing is a complex process that requires a thorough understanding of influencing elements to improve healing times.© 2015 by the Wound Healing Society. © 2015 by the Wound Healing Society.
Lindaman, L M
2001-01-01
Just as pediatric fractures and bones are basically similar to adult fractures and bones, pediatric bone healing is basically similar to adult bone healing. They both go through the three same phases of inflammation, reparation, and remodeling. It is those differences between pediatric and adult bone, however, that affect the differences in the healing of pediatric bone. Because pediatric bone can fail in compression, less initial stability and less callus formation is required to achieve a clinically stable or healed fracture. The greater subperiosteal hematoma and the stronger periosteum all contribute to a more rapid formation of callous strong enough to render the fracture healed more rapidly than the adult. Genes and hormones that are necessary for the initial formation of the skeleton are the same as, or at least similar in most instances, to those necessary for the healing of fractures. This osteogenic environment of the pediatric bone means that these fracture healing processes are already ongoing in the child at the time of the fracture. In the adult, these factors must be reawakened, leading to the slower healing time in the adult. Once the fracture is healed, the still-growing pediatric bone can correct any "sins" of fracture alignment or angulation leaving the bone with no signs of having ever been broken. The final result is bone that is, in the child's words, "as good as new."
Life, death, and humor: approaches to storytelling in Native America.
Turner, Edith
2003-01-01
Edith Turner has been studying healing as a sensitive, spiritually attuned participant-observer for a long time. Despite her academic background, experiential learning and knowing are important parts of Turner’s approach to research. Her efforts to understand healing have taken her on journeys to Africa, Mexico, Ireland, and more recently, Alaska’s North Slope. In these contexts, she has experienced healing offered by others, and learned to heal in various traditional ways herself. In her book, The Hands Feel It (1996), Turner focuses on the role that touch and spirit presence have in healing in a North Slope Iñupiat community. However, her book makes clear that narrative and storytelling are important parts of the healing process, as well. In this paper, Turner elaborates on some aspects of the connection between narrative and healing based on her North Slope experience.
Healing of the bone with anti-fracture drugs.
Vannucci, Letizia; Brandi, Maria Luisa
2016-12-01
Fracture healing is a complex physiological process. As impaired fracture healing is more frequent in osteoporotic subjects, anti-osteoporotic drugs could have some impact on this process. Areas covered: We reviewed the current literature to evaluate the effects of these drugs on fracture healing and their potential role in supporting this process, especially when impaired. A PubMed/Medline search was undertaken combining the terms 'fracture healing', 'anti-resorptive drugs', 'anabolic agents', 'anti-osteoporotic drugs'. Expert opinion: As clinical evidence on the role of anti-osteoporotic drugs in the process of fracture healing consists mainly of case reports or studies with a relatively small number of patients, large randomized clinical trials are needed in order to extend to the human setting the promising results on these agents as inductors or co-adjuvants of bone healing derived from animal studies.
Like mother, like offspring: maternal and offspring wound healing correlate in snakes.
Hopkins, Brittney C; Chin, Stephanie Y; Willson, John D; Hopkins, William A
2013-07-15
Immune function early in life can be influenced by parental effects and the environment, but it remains unclear how these two factors may interact to influence immunocompetence. We evaluated maternal and environmental contributions to offspring healing ability in a viviparous reptile, the northern watersnake (Nerodia sipedon). We measured wound healing rates, a highly integrative and biologically relevant measure of innate immunity, of females and their offspring collected from sites contaminated with a toxic heavy metal and compared them with those of individuals from reference sites. We found that female watersnakes that healed the fastest produced offspring that also exhibited faster healing rates. However, we detected no influence of environmental pollution on maternal or offspring healing rates. To our knowledge, our study is the first to correlate maternal and offspring wound healing ability in a wild vertebrate.
The TallyHo polygenic mouse model of diabetes: implications in wound healing.
Buck, Donald W; Jin, Da P; Geringer, Matthew; Hong, Seok Jong; Galiano, Robert D; Mustoe, Thomas A
2011-11-01
Impairments in wound healing represent a significant source of morbidity and mortality in patients with diabetes. To help uncover the derangements associated with diabetic wound healing, murine animal models have been extensively used. In this article, the authors present results, and the accompanying wound healing implications, from experiments across three validated wound healing models using a newer polygenic strain of diabetes. The authors investigated the wound healing impairments of the TallyHo/JnJ diabetic mouse strain, using three validated wound healing models: an incisional model, a splinted excisional model, and a cutaneous ischemia-reperfusion injury model. Appropriate control strain mice were used for comparison. Wounds were analyzed using gross, histologic, and molecular techniques. TallyHo mice displayed deficits across all three wound healing models. There was a reduced resistance/response to oxidative stress and a global decrease in the initial inflammatory response to healing. In addition, there was a global decrease in the stimulus for angiogenesis and collagen formation, ultimately leading to reduced reepithelialization, granulation tissue formation, wound contraction, and wound tensile strength. Gross and histologic findings were corroborated with molecular data, which revealed a significant down-regulation of important cytokines, including vascular endothelial growth factor, neutrophilic attractant protein-2, monocyte chemoattractant protien-1, heme oxygenase-1, interleukin-1β, and interleukin-6, when normalized to the control strain (p<0.05). The TallyHo polygenic mouse model of diabetes demonstrates predictable and clinically relevant wound healing impairments that offer important implications into the derangements of diabetic wound healing observed clinically. Therapeutics targeting these specific derangements could provide improvements in the care of diabetic wounds.
Lee, Min Wook; An, Seongpil; Yoon, Sam S; Yarin, Alexander L
2018-02-01
Here, we review the state-of-the-art in the field of engineered self-healing materials. These materials mimic the functionalities of various natural materials found in the human body (e.g., the healing of skin and bones by the vascular system). The fabrication methods used to produce these "vascular-system-like" engineered self-healing materials, such as electrospinning (including co-electrospinning and emulsion spinning) and solution blowing (including coaxial solution blowing and emulsion blowing) are discussed in detail. Further, a few other approaches involving the use of hollow fibers are also described. In addition, various currently used healing materials/agents, such as dicyclopentadiene and Grubbs' catalyst, poly(dimethyl siloxane), and bisphenol-A-based epoxy, are described. We also review the characterization methods employed to verify the physical and chemical aspects of self-healing, that is, the methods used to confirm that the healing agent has been released and that it has resulted in healing, as well as the morphological changes induced in the damaged material by the healing agent. These characterization methods include different visualization and spectroscopy techniques and thermal analysis methods. Special attention is paid to the characterization of the mechanical consequences of self-healing. The effects of self-healing on the mechanical properties such as stiffness and adhesion of the damaged material are evaluated using the tensile test, double cantilever beam test, plane strip test, bending test, and adhesion test (e.g., blister test). Finally, the future direction of the development of these systems is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Increasing age and tear size reduce rotator cuff repair healing rate at 1 year.
Rashid, Mustafa S; Cooper, Cushla; Cook, Jonathan; Cooper, David; Dakin, Stephanie G; Snelling, Sarah; Carr, Andrew J
2017-12-01
Background and purpose - There is a need to understand the reasons why a high proportion of rotator cuff repairs fail to heal. Using data from a large randomized clinical trial, we evaluated age and tear size as risk factors for failure of rotator cuff repair. Patients and methods - Between 2007 and 2014, 65 surgeons from 47 hospitals in the National Health Service (NHS) recruited 447 patients with atraumatic rotator cuff tendon tears to the United Kingdom Rotator Cuff Trial (UKUFF) and 256 underwent rotator cuff repair. Cuff integrity was assessed by imaging in 217 patients, at 12 months post-operation. Logistic regression analysis was used to determine the influence of age and intra-operative tear size on healing. Hand dominance, sex, and previous steroid injections were controlled for. Results - The overall healing rate was 122/217 (56%) at 12 months. Healing rate decreased with increasing tear size (small tears 66%, medium tears 68%, large tears 47%, and massive tears 27% healed). The mean age of patients with a healed repair was 61 years compared with 64 years for those with a non-healed repair. Mean age increased with larger tear sizes (small tears 59 years, medium tears 62 years, large tears 64 years, and massive tears 66 years). Increasing age was an independent factor that negatively influenced healing, even after controlling for tear size. Only massive tears were an independent predictor of non-healing, after controlling for age. Interpretation - Although increasing age and larger tear size are both risks for failure of rotator cuff repair healing, age is the dominant risk factor.
A Bioengineered Living Cell Construct Activates an Acute Wound Healing Response in Venous Leg Ulcers
Stone, Rivka C.; Stojadinovic, Olivera; Rosa, Ashley M.; Ramirez, Horacio A.; Badiavas, Evangelos; Blumenberg, Miroslav; Tomic-Canic, Marjana
2017-01-01
Chronic non-healing venous leg ulcers (VLUs) are widespread and debilitating, with high morbidity and associated costs; approximately $15 billion is spent annually on the care of VLUs in the US. Despite this, there is a paucity of treatments for VLUs, due to the lack of pathophysiologic insight into ulcer development as well as the lack of knowledge regarding biologic actions of existing VLU-targeted therapies. The bioengineered bilayered living cellular construct (BLCC) skin substitute is an FDA-approved biologic treatment for healing VLUs. To elucidate the mechanisms through which the BLCC promotes healing of chronic VLUs, we conducted a clinical trial (NCT01327937) in which patients with non-healing VLUs were treated with either standard care (compression therapy) or the BLCC together with standard care. Tissue was collected from the VLU edge before and 1 week after treatment, and samples underwent comprehensive microarray, mRNA, and protein analyses. Ulcers treated with the BLCC skin substitute displayed three distinct transcriptomic patterns, suggesting that BLCC induced a shift from a non-healing to a healing tissue response involving modulation of inflammatory and growth factor signaling, keratinocyte activation, and attenuation of Wnt/β-catenin signaling. In these ways, BLCC application orchestrated a shift from the chronic non-healing ulcer microenvironment to a distinctive healing milieu resembling that of an acute, healing wound. Our findings provide in vivo evidence in patient VLU biopsies of pathways that can be targeted in the design of new therapies to promote healing of chronic VLUs. PMID:28053158
Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade
Levy, Seth; Feduska, Joseph M.; Sawant, Anandi; Gilbert, Shawn; Hensel, Jonathan A.; Ponnazhagan, Selvarangan
2016-01-01
Bone fractures heal with overlapping phases of inflammation, cell proliferation, and bone remodeling. Osteogenesis and angiogenesis work in concert to control many stages of this process, and when one is impaired it leads to failure of bone healing, termed a nonunion. During fracture repair, there is an infiltration of immune cells at the fracture site that not only mediate the inflammatory responses, but we hypothesize they also exert influence on neovasculature. Thus, further understanding the effects of immune cell participation throughout fracture healing will reveal additional knowledge as to why some fractures heal while others form nonunions, and lead to development of novel therapeutics modulating immune cells, to increase fracture healing and prevent nonunions. Using novel femoral segmental and critical-size defect models in mice, we identified a systemic and significant increase in immature myeloid cell (IMC) infiltration during the initial phase of fracture healing until boney union is complete. Using gemcitabine to specifically ablate the IMC population, we confirmed delayed bone healing. Further, adoptive transfer of IMC increased bone growth in a nonunion model, signifying the role of this unique cell population in fracture healing. We also identified IMC post-fracture have the ability to increase endothelial cell migration, and tube formation, signaling the essential communication between the immune system and angiogenesis as a requirement for proper bone healing. Based on this data we propose that IMC may play a significant role in fracture healing and therapeutic targeting of IMC after fracture would minimize the chances of eventual nonunion pathology. PMID:27664567
Immature myeloid cells are critical for enhancing bone fracture healing through angiogenic cascade.
Levy, Seth; Feduska, Joseph M; Sawant, Anandi; Gilbert, Shawn R; Hensel, Jonathan A; Ponnazhagan, Selvarangan
2016-12-01
Bone fractures heal with overlapping phases of inflammation, cell proliferation, and bone remodeling. Osteogenesis and angiogenesis work in concert to control many stages of this process, and when one is impaired it leads to failure of bone healing, termed a nonunion. During fracture repair, there is an infiltration of immune cells at the fracture site that not only mediate the inflammatory responses, but we hypothesize they also exert influence on neovasculature. Thus, further understanding the effects of immune cell participation throughout fracture healing will reveal additional knowledge as to why some fractures heal while others form nonunions, and lead to development of novel therapeutics modulating immune cells, to increase fracture healing and prevent nonunions. Using novel femoral segmental and critical-size defect models in mice, we identified a systemic and significant increase in immature myeloid cell (IMC) infiltration during the initial phase of fracture healing until boney union is complete. Using gemcitabine to specifically ablate the IMC population, we confirmed delayed bone healing. Further, adoptive transfer of IMC increased bone growth in a nonunion model, signifying the role of this unique cell population in fracture healing. We also identified IMC post-fracture have the ability to increase endothelial cell migration, and tube formation, signaling the essential communication between the immune system and angiogenesis as a requirement for proper bone healing. Based on this data we propose that IMC may play a significant role in fracture healing and therapeutic targeting of IMC after fracture would minimize the chances of eventual nonunion pathology. Copyright © 2016 Elsevier Inc. All rights reserved.
Development of Micro and Nanostructured Materials for Interfacial Self-Healing
ERIC Educational Resources Information Center
Blaiszik, Benjamin James
2009-01-01
Damage in polymeric coatings, adhesives, microelectronic components, and composites spans many length scales. For small scale damage, autonomic self-healing can repair multiple damage modes without manual intervention. In autonomic self-healing materials, a healing response is triggered by damage to the material. Size scale considerations, such as…
DOT National Transportation Integrated Search
2001-06-01
Volume 1 is a summary report which chronicles the research highlights of the entire study of microdamage healing in asphalt concrete. The primary objectives of the study were to: (1) Demonstrate that microdamage healing occurs and that it can be meas...
Cold temperature delays wound healing in postharvest sugarbeet roots
USDA-ARS?s Scientific Manuscript database
Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...
Wakayama symposium: new therapies for modulation of epithelialization in corneal wound healing.
Choi, Jun-Sub; Joo, Choun-Ki
2013-01-01
Many factors are involved in the corneal wound healing mechanism, including adhesion, migration, and proliferation of corneal epithelial cells. Abnormal corneal wound healing leads to corneal edema, neovascularization, scar formation, and poor vision. Three agents, 17β-estradiol, nicergoline, and β-glucan, have demonstrated positive effects on the wound healing response in laboratory experiments and may be of help in controlling wound healing in corneas that have suffered epithelial damage or have undergone refractive surgery. Copyright © 2013 Elsevier Inc. All rights reserved.
2014-10-01
Long Bone Fracture: Influence of Method of Repair and External Beam Irradiation on the Pathway and Efficacy of Fracture Healing 5a. CONTRACT NUMBER...in the fifth quarter of the award. 15. SUBJECT TERMS Fracture healing , bone healing , endochondral ossification, intramembranous ossification...of radiation on the two pathways of bone healing and propose an optimal method of surgical fracture repair for managing malignant osteoporotic
The wound healing, chronic fibrosis, and cancer progression triad
Rybinski, Brad; Franco-Barraza, Janusz
2014-01-01
For decades tumors have been recognized as “wounds that do not heal.” Besides the commonalities that tumors and wounded tissues share, the process of wound healing also portrays similar characteristics with chronic fibrosis. In this review, we suggest a tight interrelationship, which is governed as a concurrence of cellular and microenvironmental reactivity among wound healing, chronic fibrosis, and cancer development/progression (i.e., the WHFC triad). It is clear that the same cell types, as well as soluble and matrix elements that drive wound healing (including regeneration) via distinct signaling pathways, also fuel chronic fibrosis and tumor progression. Hence, here we review the relationship between fibrosis and cancer through the lens of wound healing. PMID:24520152
Oxygen in acute and chronic wound healing.
Schreml, S; Szeimies, R M; Prantl, L; Karrer, S; Landthaler, M; Babilas, P
2010-08-01
Oxygen is a prerequisite for successful wound healing due to the increased demand for reparative processes such as cell proliferation, bacterial defence, angiogenesis and collagen synthesis. Even though the role of oxygen in wound healing is not yet completely understood, many experimental and clinical observations have shown wound healing to be impaired under hypoxia. This article provides an overview on the role of oxygen in wound healing and chronic wound pathogenesis, a brief insight into systemic and topical oxygen treatment, and a discussion of the role of wound tissue oximetry. Thus, the aim is to improve the understanding of the role of oxygen in wound healing and to advance our management of wound patients.
Surface self-organization: From wear to self-healing in biological and technical surfaces
NASA Astrophysics Data System (ADS)
Nosonovsky, Michael; Bhushan, Bharat
2010-04-01
Wear occurs at most solid surfaces that come in contact with other solid surfaces. While biological surfaces and tissues usually have the ability for self-healing, engineered self-healing materials only started to emerge recently. These materials are currently created using the trial-and-error approach and phenomenological models, so there is a need of a general first-principles theory of self-healing. We discuss the conditions under which the self-healing occurs and provide a general theoretical framework and criteria for self-healing using the concept of multiscale organization of entropy and non-equilibrium thermodynamics. The example of epicuticular wax regeneration of plant leaves is discussed as a case study.
Healing through prayer: a qualitative study.
Helming, Mary Blaszko
2011-01-01
A qualitative study using a semistructured interview process explored the experience of being healed through prayer in 20 participants from several Protestant Christian faith traditions. Five cluster themes and their subthemes were identified, such as Spirituality and Suffering (subthemes of Purpose of Suffering and Spiritual Meaning of Suffering); The Healing Experience (subthemes of Problems that Were Healed, Incomplete Healings or Recurrences, and Healing of Friends and Family Members); The Connecting Network of Prayer (subthemes of Connection to God, Connection to Others, Meaning of Prayer, Methods of Prayer, and Unanswered Prayer); Spiritual Transformation of Prayer (subthemes of Changed Lives and Sense of Purpose); and Spiritual Phenomena (subthemes of Sense of God's Presence, Use of Complementary and Alternative Practices, and Mysterious Phenomena).
Platelet Rich Plasma: New Insights for Cutaneous Wound Healing Management
Chicharro-Alcántara, Deborah; Damiá-Giménez, Elena; Carrillo-Poveda, José M.; Peláez-Gorrea, Pau
2018-01-01
The overall increase of chronic degenerative diseases associated with ageing makes wound care a tremendous socioeconomic burden. Thus, there is a growing need to develop novel wound healing therapies to improve cutaneous wound healing. The use of regenerative therapies is becoming increasingly popular due to the low-invasive procedures needed to apply them. Platelet-rich plasma (PRP) is gaining interest due to its potential to stimulate and accelerate the wound healing process. The cytokines and growth factors forming PRP play a crucial role in the healing process. This article reviews the emerging field of skin wound regenerative therapies with particular emphasis on PRP and the role of growth factors in the wound healing process. PMID:29346333
Post-Surgical Clinical Monitoring of Soft Tissue Wound Healing in Periodontal and Implant Surgery
Pippi, Roberto
2017-01-01
Clinical features of surgical soft tissue wound healing in dentistry have been rarely discussed in the international literature. The aim of the present paper is to highlight both the main clinical findings of surgical wound healing, especially in periodontal and implant dentistry, and the wound healing monitoring procedures which should be followed. Wound inspection after careful food and plaque debridement is the essential part of wound healing monitoring. Periodontal and peri-implant probing should be performed only after tissue healing has been completed and not on a weekly basis in peri-implant tissue monitoring. Telephone follow-up and patient self-assessment scales can also be used the days following surgery to monitor the most common surgical complications such as pain, swelling, bleeding, and bruising. Wound healing monitoring is an important concern in all surgical procedures since it allows to identify signs or/and symptoms possibly related to surgical complications. PMID:28824306
American Muslim Perceptions of Healing: Key Agents in Healing, and Their Roles
Padela, Aasim I.; Killawi, Amal; Forman, Jane; DeMonner, Sonya; Heisler, Michele
2015-01-01
American Muslims represent a growing and diverse community. Efforts at promoting cultural competence, enhancing cross-cultural communication skills, and improving community health must account for the religio-cultural frame through which American Muslims view healing. Using a community-based participatory research model, we conducted 13 focus groups at area mosques in southeast Michigan to explore American Muslim views on healing and to identify the primary agents, and their roles, within the healing process. Participants shared a God-centric view of healing. Healing was accessed through direct means such as supplication and recitation of the Qur'an, or indirectly through human agents including imams, health care practitioners, family, friends, and community. Human agents served integral roles, influencing spiritual, psychological, and physical health. Additional research into how religiosity, health care systems, and community factors influence health-care-seeking behaviors is warranted. PMID:22393065
Bioinspired self-healing materials: lessons from nature
Cremaldi, Joseph C
2018-01-01
Healing is an intrinsic ability in the incredibly biodiverse populations of the plant and animal kingdoms created through evolution. Plants and animals approach healing in similar ways but with unique pathways, such as damage containment in plants or clotting in animals. After analyzing the examples of healing and defense mechanisms found in living nature, eight prevalent mechanisms were identified: reversible muscle control, clotting, cellular response, layering, protective surfaces, vascular networks or capsules, exposure, and replenishable functional coatings. Then the relationship between these mechanisms, nature’s best (evolutionary) methods of mitigating and healing damage, and existing technology in self-healing materials are described. The goals of this top-level overview are to provide a framework for relating the behavior seen in living nature to bioinspired materials, act as a resource to addressing the limitations/problems with existing materials, and open up new avenues of insight and research into self-healing materials. PMID:29600152
Segmented molecular design of self-healing proteinaceous materials
Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.
2015-01-01
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure–property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials. PMID:26323335
Ghayempour, Soraya; Montazer, Majid; Mahmoudi Rad, Mahnaz
2016-12-01
Application of natural materials in wound healing is an interest topic due to effective treatment with no side effects. In this paper, Aloe Vera extract was encapsulated into Tragacanth Gum through a sonochemical microemulsion process to prepare a wound healing product. FESEM/EDX and FT-IR proved the successfully formation of the nanocapsules with spherical shape by cross-linking aluminum ions with Tragacanth Gum. The therapeutic characteristics of the prepared wound healing product were investigated using antimicrobial, cytotoxicity and wound healing assays. Relative high antimicrobial activities with the microbial reduction of 84, 91 and 80% against E. coli, S. aureus and C. albicans, a cell viability of 98% against human fibroblast cells and a good wound healing activity with considerable migration rate of fibroblast cells are the important advantages of the new formed wound healing product. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nji, Jones; Li, Guoqiang
2012-02-01
The purpose of this study is to investigate the potential of a shape-memory-polymer (SMP)-based particulate composite to heal structural-length scale damage with small thermoplastic additive contents through a close-then-heal (CTH) self-healing scheme that was introduced in a previous study (Li and Uppu 2010 Comput. Sci. Technol. 70 1419-27). The idea is to achieve reasonable healing efficiencies with minimal sacrifice in structural load capacity. By first closing cracks, the gap between two crack surfaces is narrowed and a lesser amount of thermoplastic particles is required to achieve healing. The particulate composite was fabricated by dispersing copolyester thermoplastic particles in a shape memory polymer matrix. It is found that, for small thermoplastic contents of less than 10%, the CTH scheme followed in this study heals structural-length scale damage in the SMP particulate composite to a meaningful extent and with less sacrifice of structural capacity.
Post-Surgical Clinical Monitoring of Soft Tissue Wound Healing in Periodontal and Implant Surgery.
Pippi, Roberto
2017-01-01
Clinical features of surgical soft tissue wound healing in dentistry have been rarely discussed in the international literature. The aim of the present paper is to highlight both the main clinical findings of surgical wound healing, especially in periodontal and implant dentistry, and the wound healing monitoring procedures which should be followed. Wound inspection after careful food and plaque debridement is the essential part of wound healing monitoring. Periodontal and peri-implant probing should be performed only after tissue healing has been completed and not on a weekly basis in peri-implant tissue monitoring. Telephone follow-up and patient self-assessment scales can also be used the days following surgery to monitor the most common surgical complications such as pain, swelling, bleeding, and bruising. Wound healing monitoring is an important concern in all surgical procedures since it allows to identify signs or/and symptoms possibly related to surgical complications.
PREVALENCE OF HEALED LONG-BONE FRACTURES IN WILD CARNIVORES FROM THE NORTHEASTERN UNITED STATES.
Argyros, George C; Roth, Aaron J
2016-09-01
Museum specimens representing 12 species of terrestrial carnivores from the northeastern United States were inspected for evidence of healed long-bone fractures. Of 413 individuals, 18 (4.4%) exhibited healed fractures. Thirteen (72.2%) occurred in hind limbs; five (27.8%) occurred in forelimbs. Mustelids had the highest prevalence of healed long-bone fractures (38.8%) of all observed fractures. Within family, 5.6% of Canidae and 2.8% of Mustelidae exhibited healed fractures. Bobcats had the highest taxon prevalence of fractures, 18%. Observational data to assess use of and behavior near roads could provide insight to causes of fracture. Capture in combination with noninvasive examination techniques could be employed to determine incidence of healed fractures in wild populations. Individuals with healed fractures could then be tracked via radio telemetry to determine if these animals behave differently than uninjured conspecifics, and assess long-term survivability and fitness.
Segmented molecular design of self-healing proteinaceous materials
NASA Astrophysics Data System (ADS)
Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C.
2015-09-01
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.
Electrical Stimulation Technologies for Wound Healing
Kloth, Luther C.
2014-01-01
Objective: To discuss the physiological bases for using exogenously applied electric field (EF) energy to enhance wound healing with conductive electrical stimulation (ES) devices. Approach: To describe the types of electrical currents that have been reported to enhance chronic wound-healing rate and closure. Results: Commercial ES devices that generate direct current (DC), and mono and biphasic pulsed current waveforms represent the principal ES technologies which are reported to enhance wound healing. Innovation: Wafer-thin, disposable ES technologies (wound dressings) that utilize mini or micro-batteries to deliver low-level DC for wound healing and antibacterial wound-treatment purposes are commercially available. Microfluidic wound-healing chips are currently being used with greater accuracy to investigate the EF effects on cellular electrotaxis. Conclusion: Numerous clinical trials described in subsequent sections of this issue have demonstrated that ES used adjunctively with standard wound care (SWC), enhances wound healing rate faster than SWC alone. PMID:24761348
Regulation of wound healing and fibrosis by hypoxia and hypoxia-inducible factor-1.
Ruthenborg, Robin J; Ban, Jae-Jun; Wazir, Anum; Takeda, Norihiko; Kim, Jung-Whan
2014-09-01
Wound healing is a complex multi-step process that requires spatial and temporal orchestration of cellular and non-cellular components. Hypoxia is one of the prominent microenvironmental factors in tissue injury and wound healing. Hypoxic responses, mainly mediated by a master transcription factor of oxygen homeostasis, hypoxia-inducible factor-1 (HIF-1), have been shown to be critically involved in virtually all processes of wound healing and remodeling. Yet, mechanisms underlying hypoxic regulation of wound healing are still poorly understood. Better understanding of how the wound healing process is regulated by the hypoxic microenvironment and HIF-1 signaling pathway will provide insight into the development of a novel therapeutic strategy for impaired wound healing conditions such as diabetic wound and fibrosis. In this review, we will discuss recent studies illuminating the roles of HIF-1 in physiologic and pathologic wound repair and further, the therapeutic potentials of HIF-1 stabilization or inhibition.
Segmented molecular design of self-healing proteinaceous materials.
Sariola, Veikko; Pena-Francesch, Abdon; Jung, Huihun; Çetinkaya, Murat; Pacheco, Carlos; Sitti, Metin; Demirel, Melik C
2015-09-01
Hierarchical assembly of self-healing adhesive proteins creates strong and robust structural and interfacial materials, but understanding of the molecular design and structure-property relationships of structural proteins remains unclear. Elucidating this relationship would allow rational design of next generation genetically engineered self-healing structural proteins. Here we report a general self-healing and -assembly strategy based on a multiphase recombinant protein based material. Segmented structure of the protein shows soft glycine- and tyrosine-rich segments with self-healing capability and hard beta-sheet segments. The soft segments are strongly plasticized by water, lowering the self-healing temperature close to body temperature. The hard segments self-assemble into nanoconfined domains to reinforce the material. The healing strength scales sublinearly with contact time, which associates with diffusion and wetting of autohesion. The finding suggests that recombinant structural proteins from heterologous expression have potential as strong and repairable engineering materials.
The clinical evaluation of platelet-rich plasma on free gingival graft's donor site wound healing.
Samani, Mahmoud Khosravi; Saberi, Bardia Vadiati; Ali Tabatabaei, S M; Moghadam, Mahdjoube Goldani
2017-01-01
It has been proved that platelet-rich plasma (PRP) can promote wound healing. In this way, PRP can be advantageous in periodontal plastic surgeries, free gingival graft (FGG) being one such surgery. In this randomized split-mouth controlled trial, 10 patients who needed bilateral FGG were selected, and two donor sites were randomly assigned to experience either natural healing or healing-assisted with PRP. The outcome was assessed based on the comparison of the extent of wound closure, Manchester scale, Landry healing scale, visual analog scale, and tissue thickness between the study groups at different time intervals. Repeated measurements of analysis of variance and paired t -test were used. Statistical significance was P ≤ 0.05. Significant differences between the study groups and also across different time intervals were seen in all parameters except for the changes in tissue thickness. PRP accelerates the healing process of wounds and reduces the healing time.
Emerging drugs for the treatment of wound healing.
Zielins, Elizabeth R; Brett, Elizabeth A; Luan, Anna; Hu, Michael S; Walmsley, Graham G; Paik, Kevin; Senarath-Yapa, Kshemendra; Atashroo, David A; Wearda, Taylor; Lorenz, H Peter; Wan, Derrick C; Longaker, Michael T
2015-06-01
Wound healing can be characterized as underhealing, as in the setting of chronic wounds, or overhealing, occurring with hypertrophic scar formation after burn injury. Topical therapies targeting specific biochemical and molecular pathways represent a promising avenue for improving and, in some cases normalizing, the healing process. A brief overview of both normal and pathological wound healing has been provided, along with a review of the current clinical guidelines and treatment modalities for chronic wounds, burn wounds and scar formation. Next, the major avenues for wound healing drugs, along with drugs currently in development, are discussed. Finally, potential challenges to further drug development, and future research directions are discussed. The large body of research concerning wound healing pathophysiology has provided multiple targets for topical therapies. Growth factor therapies with the ability to be targeted for localized release in the wound microenvironment are most promising, particularly when they modulate processes in the proliferative phase of wound healing.
Multimodal Composing as Healing: Toward a New Model for Writing as Healing Courses
ERIC Educational Resources Information Center
Molloy, Cathryn
2016-01-01
The course the author describes here, WRTC 426: Rhetorical "Ethos" and Personal Disclosures: Explorations in Trauma Writing and Writing as Healing, asks students to explore the "writing as healing" movement in English studies and beyond in order to evaluate the efficacy of claims that writing personal narratives can heal…
Faith healing and faith in healing.
Gopichandran, Vijayaprasad
2015-01-01
Sarkar and Seshadri have presented an interesting paper in this issue on the ethical approach that a physician should take when faced with requests for faith healing (1). The paper describes four approaches that the physician can take. These are rejecting the request, keeping oneself detached from the issue, endorsing the request and trying to understand the practices concerned so as to make a reasoned decision. This commentary attempts to explore the issue of faith healing further, from the point of view of clinical care. It shall discuss five important dimensions which can supplement the arguments by Sarkar and Seshadri. These are the concepts of faith, spirituality and religion and faith healing; the difference between cure and healing; patient-centred care; the various factors influencing a doctor's response to requests for faith healing; and finally, the ethical issues to be considered while making a decision. Before launching into the discussion, it should be made clear that this commentary refers mainly to those faith healing practices which are not overtly harmful, such as prayers, and wearing rings and amulets.
A continuum thermo-inelastic model for damage and healing in self-healing glass materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Sun, Xin; Koeppel, Brian J.
Self-healing glass, a recent advancement in the class of smart sealing materials, has attracted great attention from both research and industrial communities because of its unique capability of repairing itself at elevated temperatures. However, further development and optimization of this material rely on a more fundamental and thorough understanding of its essential thermo-mechanical response characteristics, which is also pivotal in predicting the coupling and interactions between the nonlinear stress and temperature dependent damage and healing behaviors. In the current study, a continuum three-dimensional thermo-inelastic damage-healing constitutive framework has been developed for the compliant self-healing glass material. The important feature ofmore » the present model is that various phenomena governing the mechanical degradation and recovery process, i.e. the nucleation, growth, and healing of the cracks and pores, are described with distinct mechanism-driven kinetics, where the healing constitutive relations are propagated from lower-length scale simulations. The proposed formulations are implemented into finite element analyses and the effects of various loading conditions and material properties on the material’s mechanical resistance are investigated.« less
A Mechanistic-Based Healing Model for Self-Healing Glass Seals Used in Solid Oxide Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wei; Sun, Xin; Stephens, Elizabeth V.
The usage of self-healing glass as hermetic seals is a recent advancement in sealing technology development for the planar solid oxide fuel cells (SOFCs). Because of its capability of restoring the mechanical properties at elevated temperatures, the self-healing glass seal is expected to provide high reliability in maintaining the long-term structural integrity and functionality of SOFCs. In order to accommodate the design and to evaluate the effectiveness of such engineering seals under various thermo-mechanical operating conditions, computational modeling framework needs to be developed to accurately capture and predict the healing behavior of the glass material. In the present work, amore » mechanistic-based two-stage model was developed to study the stress and temperature-dependent crack healing of the self-healing glass materials. The model was first calibrated by experimental measurements combined with the kinetic Monte Carlo (kMC) simulation results and then implemented into the finite element analysis (FEA). The effects of various factors, i.e. stress, temperature, crack morphology, on the healing behavior of the glass were investigated and discussed.« less
Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco
2017-01-07
Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.
Brand, Henk S; Ligtenberg, Antoon J M; Veerman, Enno C I
2014-01-01
Oral wounds heal faster and with less scar formation than skin wounds. One of the key factors involved is saliva, which promotes wound healing in several ways. Saliva creates a humid environment, thus improving the survival and functioning of inflammatory cells that are crucial for wound healing. In addition, saliva contains several proteins which play a role in the different stages of wound healing. Saliva contains substantial amounts of tissue factor, which dramatically accelerates blood clotting. Subsequently, epidermal growth factor in saliva promotes the proliferation of epithelial cells. Secretory leucocyte protease inhibitor inhibits the tissue-degrading activity of enzymes like elastase and trypsin. Absence of this protease inhibitor delays oral wound healing. Salivary histatins in vitro promote wound closure by enhancing cell spreading and cell migration, but do not stimulate cell proliferation. A synthetic cyclic variant of histatin exhibits a 1,000-fold higher activity than linear histatin, which makes this cyclic variant a promising agent for the development of a new wound healing medication. Conclusively, recognition of the many roles salivary proteins play in wound healing makes saliva a promising source for the development of new drugs involved in tissue regeneration.
Pressure ulcer healing promoted by adequate protein intake in rats
Qin, Zhanfen; Wang, Yao; Zhao, Wei; Zhang, Yanan; Tian, Yiqing; Sun, Sujuan; Li, Xian
2018-01-01
The effect of protein intake on rat pressure ulcer healing was evaluated. One hundred rats were numbered according to body weight and then they were randomly divided into 4 groups (n=25) using the random number table. After rat models of stage II pressure ulcer were established, they were fed with feed containing different protein levels (10, 15, 20 and 25%). Healing time, pressure ulcer area, body weight, albumin (ALB) and hemoglobin (Hb) levels among groups were compared. Hematoxylin and eosin (H&E) staining was also performed to observe pressure ulcer tissue structure. In the healing process of pressure ulcer, rats with 20% protein intake had the shortest healing time and the smallest pressure ulcer area. Body weight, ALB and Hb levels were much closer to the normal level. H&E staining result also suggested that the pressure ulcer healing degree of rats with 20% protein intake was much better than the others. Adequate protein intake is therefore conducive to pressure ulcer healing, while excessive or insufficient protein intake has negative impact on healing. PMID:29731816
Pressure ulcer healing promoted by adequate protein intake in rats.
Qin, Zhanfen; Wang, Yao; Zhao, Wei; Zhang, Yanan; Tian, Yiqing; Sun, Sujuan; Li, Xian
2018-05-01
The effect of protein intake on rat pressure ulcer healing was evaluated. One hundred rats were numbered according to body weight and then they were randomly divided into 4 groups (n=25) using the random number table. After rat models of stage II pressure ulcer were established, they were fed with feed containing different protein levels (10, 15, 20 and 25%). Healing time, pressure ulcer area, body weight, albumin (ALB) and hemoglobin (Hb) levels among groups were compared. Hematoxylin and eosin (H&E) staining was also performed to observe pressure ulcer tissue structure. In the healing process of pressure ulcer, rats with 20% protein intake had the shortest healing time and the smallest pressure ulcer area. Body weight, ALB and Hb levels were much closer to the normal level. H&E staining result also suggested that the pressure ulcer healing degree of rats with 20% protein intake was much better than the others. Adequate protein intake is therefore conducive to pressure ulcer healing, while excessive or insufficient protein intake has negative impact on healing.
A Practice-Based Theory of Healing Through Therapeutic Touch: Advancing Holistic Nursing Practice.
Hanley, Mary Anne; Coppa, Denise; Shields, Deborah
2017-08-01
For nearly 50 years, Therapeutic Touch (TT) has contributed to advancing holistic nursing practice and has been recognized as a uniquely human approach to healing. This narrative explores the development of a practice-based theory of healing through TT, which occurred between 2010 and 2016. Through the in-depth self-inquiry of participatory reflective dialogue in concert with constant narrative analysis, TT practitioners revealed the meaning of healing within the context of their TT practice. As the community of TT experts participated in an iterative process of small group and community dialogues with analysis and synthesis of emerging themes, the assumptions and concepts central to a theory of healing emerged, were clarified and verified. Exemplars of practice illustrate the concepts. A model of the theory of healing illuminates the movement and relationship among concepts and evolved over time. Feedback from nursing and inter-professional practitioners indicate that the theory of healing, while situated within the context of TT, may be useful in advancing holistic nursing practice, informing healing and caring approaches, stimulating research and education, and contributing to future transformations in health care.
Self-Healing in Cementitious Materials—A Review
Van Tittelboom, Kim; De Belie, Nele
2013-01-01
Concrete is very sensitive to crack formation. As wide cracks endanger the durability, repair may be required. However, these repair works raise the life-cycle cost of concrete as they are labor intensive and because the structure becomes in disuse during repair. In 1994, C. Dry was the first who proposed the intentional introduction of self-healing properties in concrete. In the following years, several researchers started to investigate this topic. The goal of this review is to provide an in-depth comparison of the different self-healing approaches which are available today. Among these approaches, some are aimed at improving the natural mechanism of autogenous crack healing, while others are aimed at modifying concrete by embedding capsules with suitable healing agents so that cracks heal in a completely autonomous way after they appear. In this review, special attention is paid to the types of healing agents and capsules used. In addition, the various methodologies have been evaluated based on the trigger mechanism used and attention has been paid to the properties regained due to self-healing. PMID:28809268
A Primer on Wound Healing in Colorectal Surgery in the Age of Bioprosthetic Materials
Lundy, Jonathan B.
2014-01-01
Wound healing is a complex, dynamic process that is vital for closure of cutaneous injuries, restoration of abdominal wall integrity after laparotomy closure, and to prevent anastomotic dehiscence after bowel surgery. Derangements in healing have been described in multiple processes including diabetes mellitus, corticosteroid use, irradiation for malignancy, and inflammatory bowel disease. A thorough understanding of the process of healing is necessary for clinical decision making and knowledge of the current state of the science may lead future researchers in developing methods to enable our ability to modulate healing, ultimately improving outcomes. An exciting example of this ability is the use of bioprosthetic materials used for abdominal wall surgery (hernia repair/reconstruction). These bioprosthetic meshes are able to regenerate and remodel from an allograft or xenograft collagen matrix into site-specific tissue; ultimately being degraded and minimizing the risk of long-term complications seen with synthetic materials. The purpose of this article is to review healing as it relates to cutaneous and intestinal trauma and surgery, factors that impact wound healing, and wound healing as it pertains to bioprosthetic materials. PMID:25435821
Howden, C W; Larsen, L M; Perez, M C; Palmer, R; Atkinson, S N
2009-11-01
Dexlansoprazole MR, a modified-release formulation of dexlansoprazole, an enantiomer of lansoprazole, effectively heals erosive oesophagitis. To assess dexlansoprazole MR in maintaining healed erosive oesophagitis. Patients (n = 451) with erosive oesophagitis healed in either of two dexlansoprazole MR healing trials randomly received dexlansoprazole MR 60 or 90 mg or placebo once daily in this double-blind trial. The percentage of patients who maintained healing at month 6 was analysed using life table and crude rate methods. Secondary endpoints were percentages of nights and of 24-h days without heartburn based on daily diaries. Dexlansoprazole MR 60 and 90 mg were superior to placebo for maintaining healing (P < 0.0025). Maintenance rates were 87% and 82% for the 60 and 90 mg doses, respectively, vs. 26% for placebo (life table), and 66% and 65% vs. 14%, respectively (crude rate). Both doses were superior to placebo for the percentage of 24-h heartburn-free days (60 mg, 96%; 90 mg, 94%; placebo, 19%) and nights (98%, 97%, and 50%, respectively). Diarrhoea, flatulence, gastritis (symptoms) and abdominal pain occurred more frequently with dexlansoprazole MR than placebo, but were not dose-related. Dexlansoprazole MR effectively maintained healed erosive oesophagitis and symptom relief compared with placebo, and was well tolerated.
Alteration of blood clot structures by interleukin-1 beta in association with bone defects healing
Wang, Xin; Friis, Thor E.; Masci, Paul P.; Crawford, Ross W.; Liao, Wenbo; Xiao, Yin
2016-01-01
The quality of hematomas are crucial for successful early bone defect healing, as the structure of fibrin clots can significantly influence the infiltration of cells, necessary for bone regeneration, from adjacent tissues into the fibrin network. This study investigated if there were structural differences between hematomas from normal and delayed healing bone defects and whether such differences were linked to changes in the expression of IL-1β. Using a bone defect model in rats, we found that the hematomas in the delayed healing model had thinner fibers and denser clot structures. Moreover, IL-1β protein levels were significantly higher in the delayed healing hematomas. The effects of IL-1β on the structural properties of human whole blood clots were evaluated by thrombelastograph (TEG), scanning electronic microscopy (SEM), compressive study, and thrombolytic assays. S-nitrosoglutathione (GSNO) was applied to modulate de novo hematoma structure and the impact on bone healing was evaluated in the delayed healing model. We found that GSNO produced more porous hematomas with thicker fibers and resulted in significantly enhanced bone healing. This study demonstrated that IL-1β and GSNO had opposing effects on clot architecture, the structure of which plays a pivotal role in early bone healing. PMID:27767056
NASA Astrophysics Data System (ADS)
Hernández, Marianella; Mar Bernal, M.; Grande, Antonio M.; Zhong, Nan; van der Zwaag, Sybrand; García, Santiago J.
2017-08-01
In the present work we show the effect of graphene loading on the restoration of the mechanical properties and thermal and electrical conductivity of a self-healing natural rubber nanocomposite. The graphene loading led to a minimal enhancement of mechanical properties and yielded a modest increase in thermal and electrical conduction. The polymer nanocomposites were macroscopically damaged (cut) and thermally healed for 7 h in a healing cell. Different healing trends as function of the graphene content were found for each of the functionalities: (i) thermal conductivity was fully restored independently of the graphene filler loading; (ii) electrical conductivity was only restored to a high degree above the percolation threshold; and (iii) tensile strength restoration increased more or less linearly with graphene content but was never complete. A dedicated molecular dynamics analysis by dielectric spectroscopy of the pristine and healed samples highlighted the role of graphene-polymer interactions at the healed interphase on the overall restoration of the different functionalities. Based on these results it is suggested that the dependence of the various healing efficiencies with graphene content is due to a combination of the graphene induced lower crosslinking density, as well as the presence of strong polymer-graphene interactions at the healed interphase.
Ihara, H; Miwa, M; Takayanagi, K; Nakayama, A
1994-10-01
The purpose of this study was to evaluate arthroscopically the natural healing of an acute torn meniscus combined with an acute cruciate ligament injury treated nonoperatively. There were 30 lateral and 10 medial meniscus tears associated with 25 acute anterior cruciate ligament and 7 posterior cruciate ligament injuries in 32 patients. There was more than 1 tear on some menisci for a total of 51 tear sites. Injuries to the menisci and ligaments were allowed to heal without surgery, but were given protective mobilization immediately in order to stimulate stress oriented healing of injured collagen fibers and promote circulation of synovial fluid to the meniscus and ligament. A Kyuro knee brace with a coil spring traction system was used to add adequate but not excessive stress to the associated injured cruciate ligament. All knees were examined and arthroscoped before and after a 3-month treatment period. Results indicated that 69% of the lateral menisci healed completely and 18% healed partially, whereas 58% of the medial menisci healed completely and none healed partially. Twenty of 25 anterior cruciate ligaments and 3 of 7 posterior cruciate ligaments healed satisfactorily. This study indicated that acute tears of the meniscus, even when they occur in association with a cruciate ligament injury, can heal morphologically with nonsurgical treatment.
Paul-Victor, Cloé; Dalle Vacche, Sara; Sordo, Federica; Fink, Siegfried; Speck, Thomas; Michaud, Véronique; Speck, Olga
2017-01-01
As plant fibres are increasingly used in technical textiles and their composites, underlying principles of wound healing in living plant fibres are relevant to product quality, and provide inspiration for biomimetic healing in synthetic materials. In this work, two Linum usitatissimum cultivars differing in their stem mechanical properties, cv. Eden (stems resistant to lodging) and cv. Drakkar (with more flexible stems), were grown without wound or with stems previously wounded with a cut parallel or transversal to the stem. To investigate wound healing efficiency, growth traits, stem biomechanics with Dynamic Mechanical Analysis and anatomy were analysed after 25-day recovery. Longitudinal incisions formed open wounds while transversal incisions generated stem growth restoring the whole cross-section but not the original stem organisation. In the case of transversal wound healing, all the bast fibre bundles in the perturbed area became lignified and pulled apart by parenchyma cells growth. Both Linum cultivars showed a healing efficiency from 79% to 95% with higher scores for transversal healing. Morphological and anatomical modifications of Linum were related to mechanical properties and healing ability. Alongside with an increased understanding of wound healing in plants, our results highlight their possible impact on textile quality and fibre yield.
Paul-Victor, Cloé; Dalle Vacche, Sara; Sordo, Federica; Fink, Siegfried; Speck, Thomas; Michaud, Véronique
2017-01-01
As plant fibres are increasingly used in technical textiles and their composites, underlying principles of wound healing in living plant fibres are relevant to product quality, and provide inspiration for biomimetic healing in synthetic materials. In this work, two Linum usitatissimum cultivars differing in their stem mechanical properties, cv. Eden (stems resistant to lodging) and cv. Drakkar (with more flexible stems), were grown without wound or with stems previously wounded with a cut parallel or transversal to the stem. To investigate wound healing efficiency, growth traits, stem biomechanics with Dynamic Mechanical Analysis and anatomy were analysed after 25-day recovery. Longitudinal incisions formed open wounds while transversal incisions generated stem growth restoring the whole cross-section but not the original stem organisation. In the case of transversal wound healing, all the bast fibre bundles in the perturbed area became lignified and pulled apart by parenchyma cells growth. Both Linum cultivars showed a healing efficiency from 79% to 95% with higher scores for transversal healing. Morphological and anatomical modifications of Linum were related to mechanical properties and healing ability. Alongside with an increased understanding of wound healing in plants, our results highlight their possible impact on textile quality and fibre yield. PMID:28982196
Promising role of ANGPTL4 gene in diabetic wound healing.
Arya, Awadhesh K; Tripathi, Kamlakar; Das, Parimal
2014-03-01
Diabetes mellitus (DM) is one of the severe metabolic disorders of carbohydrate metabolism worldwide. Developing countries are at higher risk of DM, and there is significant evidence that it is epidemic in many economically developing and newly industrialized countries. Among all other complications associated with DM, delayed wound healing is a major concern in diabetic patients. Wound healing is a natural healing process that starts immediately after injury. This involves interaction of a complex cascade of cellular events that generates resurfacing, reconstitution, and restoration of the tensile strength of injured skin. There are multiple factors responsible for delayed wound healing among which the contribution of DM has been well documented. The wound healing process is also delayed by the metabolic, vascular, neurological, and inflammatory alterations, which are well known in both type 1 and type 2 diabetes. Keratinocytes are crucial for wound re-epithelialization, and defects in directed migration of keratinocytes due to DM are associated with the delayed wound healing process. Many factors responsible for re-epithelialization have been identified, characterized, and well described; however, the genes responsible for the healing process have only partially been illustrated. This article will therefore focus on the efficacy of ANGPTL4 (angiopoietin-like 4) gene, which plays a novel role in keratinocyte migration during wound healing.
Lumican as a multivalent effector in wound healing.
Karamanou, Konstantina; Perrot, Gwenn; Maquart, Francois-Xavier; Brézillon, Stéphane
2018-03-01
Wound healing, a complex physiological process, is responsible for tissue repair after exposure to destructive stimuli, without resulting in complete functional regeneration. Injuries can be stromal or epithelial, and most cases of wound repair have been studied in the skin and cornea. Lumican, a small leucine-rich proteoglycan, is expressed in the extracellular matrices of several tissues, such as the cornea, cartilage, and skin. This molecule has been shown to regulate collagen fibrillogenesis, keratinocyte phenotypes, and corneal transparency modulation. Lumican is also involved in the extravasation of inflammatory cells and angiogenesis, which are both critical in stromal wound healing. Lumican is the only member of the small leucine-rich proteoglycan family expressed by the epithelia during wound healing. This review summarizes the importance of lumican in wound healing and potential methods of lumican drug delivery to target wound repair are discussed. The involvement of lumican in corneal wound healing is described based on in vitro and in vivo models, with critical emphasis on its underlying mechanisms of action. Similarly, the expression and role of lumican in the healing of other tissues are presented, with emphasis on skin wound healing. Overall, lumican promotes normal wound repair and broadens new therapeutic perspectives for impaired wound healing. Copyright © 2018. Published by Elsevier B.V.
Sunlight-induced self-healing of a microcapsule-type protective coating.
Song, Young-Kyu; Jo, Ye-Hyun; Lim, Ye-Ji; Cho, Sung-Youl; Yu, Hwan-Chul; Ryu, Byung-Cheol; Lee, Sang-In; Chung, Chan-Moon
2013-02-01
Photopolymerization behavior of a methacryloxypropyl-terminated polydimethylsiloxane (MAT-PDMS) healing agent was investigated in the presence of benzoin isobutyl ether (BIE) photoinitiator by Fourier transform infrared (FT-IR) spectroscopy. MAT-PDMS and BIE were microencapsulated with urea-formaldehyde polymer. The surface and shell morphology of the microcapsules was investigated by scanning electron microscopy (SEM). Mean diameter and size distribution of the microcapsules could be controlled by agitation rate. A coating matrix formulation was prepared by sol-gel reaction of tetraethyl orthosilicate (TEOS) in the presence of a polysiloxane and by subsequent addition of an adhesion promoter. The formulation and microcapsules were mixed to give a self-healing coating formulation, which was then sprayed to surface of cellulose-fiber-reinforced-cement (CRC) board or mortar. Contact angle measurements showed that both the polymerized MAT-PDMS and the prepared coating matrix are hydrophobic, and the coating matrix has good wettability with MAT-PDMS. It was confirmed by optical microscopy and SEM that, when the self-healing coating is damaged, the healing agent is released from ruptured microcapsules and fills the damaged region. The self-healing coating was evaluated as protective coating for mortar, and it was demonstrated by water permeability and chloride ion penetration tests that our system has sunlight-induced self-healing capability. Our self-healing coating is the first example of capsule-type photoinduced self-healing system, and offers the advantages of catalyst-free, environmentally friendly, inexpensive, practical healing.
Ajioka, H; Miyake, H; Matsuura, N
2000-08-01
We investigated the recurrence of ulcers in rats after treatment with FRG-8813, (+/-)-2-(furfurylsulfinyl)-N-[4- [4-(piperidinomethyl)-2-pyridyl] oxy-(Z)-2-butenyl] acetamide, a novel histamine H(2)-receptor antagonist. Chronic gastric ulcers were induced by serosa-searing with a hot metal bar, and the ulcer healing and recurrence after treatment with FRG-8813 or famotidine were evaluated by endoscopy for 160 days. At the dose of 30 mg/kg p. o., once daily, the treatment with FRG-8813 or famotidine for 60 days, which was stopped earlier if the ulcer had healed, accelerated the ulcer healing significantly. A subsequent follow-up study on the healed rats showed that the cumulative recurrence rate of rats healed by FRG-8813 was lower than that of naturally healed rats or rats healed by famotidine. In many cases of rats healed by FRG-8813, the regenerated mucosa was normal in contrast with the control of famotidine-healed animals. The mucosal regeneration index of the gastric ulcer after 10 days' administration of FRG-8813 was significantly higher than that obtained with famotidine. After cessation of the treatment with famotidine for 7 days, rebound hyperacidity was induced; but such rebound did not occur with FRG-8813. Considering the low recurrence rate of ulcers after FRG-8813 treatment, we suggest that FRG-8813 treatment may provide additional benefits in peptic ulcer therapy. Copyright 2000 S. Karger AG, Basel
Murakami, Kaoru; Ishihara, Masayuki; Aoki, Hiroshi; Nakamura, Shingo; Nakamura, Shin-Ichiro; Yanagibayashi, Satoshi; Takikawa, Megumi; Kishimoto, Satoko; Yokoe, Hidetaka; Kiyosawa, Tomoharu; Sato, Yasunori
2010-01-01
To create a moist environment for rapid wound healing, a hydrosheet composed of alginate, chitin/chitosan, and fucoidan (ACF-HS) has been developed as a functional wound dressing. The aim of this study was to evaluate the accelerating effect of ACF-HS on wound healing for rat mitomycin C-treated healing-impaired wounds. Full-thickness skin defects were made on the back of rats and mitomycin C was applied onto the wound for 10 minutes to prepare a healing-impaired wound. After thoroughly washing out the mitomycin C, ACF-HS was applied to the healing-impaired wounds. The rats were later euthanized and histological sections of the wounds were prepared. The histological examinations showed significantly advanced granulation tissue and capillary formations in the healing-impaired wounds treated with ACF-HS on days 7 and 14, in comparison with that in alginate fiber (Kaltostat), hydrogel wound dressing (DuoACTIVE), and nontreatment (negative control). Furthermore, in cell culture studies, ACF-HS-absorbed serum and fibroblast growth factor-2 was found to be proliferative for fibroblasts and endothelial cells, respectively, and ACF-HS-absorbed serum was found to be chemoattractive for fibroblasts. However, our results may not be strictly comparable with general healing-impaired wound models in humans because of the cell damage by mitomycin C. In addition, more biocompatibility studies of fucoidan are essential due to the possibility of renal toxicity. © 2010 by the Wound Healing Society.
Bischofberger, Andrea S; Dart, Christina M; Perkins, Nigel R; Kelly, Ashley; Jeffcott, Leo; Dart, Andrew J
2013-02-01
To compare the effects of manuka honey and manuka honey gel on second intention healing of noncontaminated distal limb wounds and those contaminated with feces. Experimental study. Standardbred horses (n = 10). Five full-thickness wounds (2 × 2 cm) were created on both metacarpi. Wounds on 1 forelimb were covered with horse feces for 24 hours. Wounds on the contralateral limb were left uncontaminated. Wounds were assigned to the following 5 different treatments: manuka honey, manuka honey gel or gel applied for 12 days, manuka honey gel applied throughout healing and untreated control. Wound area was measured on day 1 then weekly until day 42 and time to complete healing was recorded. Wounds treated with manuka honey gel throughout healing healed faster than all other wounds (P < .05). Wounds treated with manuka honey and manuka honey gel for 12 days healed faster than gel control and untreated control wounds (P < .05). Wounds treated with manuka honey and manuka honey gel for 12 days and throughout healing were smaller than gel control and untreated control wounds until day 35 (P < .05). Wounds contaminated with feces had greater retraction for 7 days, but healed faster than noncontaminated wounds (P < .05). Treatment of wounds with manuka honey and manuka honey gel reduced wound retraction and overall healing time compared with gel and untreated control wounds. © Copyright 2012 by The American College of Veterinary Surgeons.
Advances and Perspectives on Tissue Repair and Healing
NASA Astrophysics Data System (ADS)
Pinheiro, Antonio L. B.; Marques, Aparecida M. C.; de Sousa, Ana Paula C.; Aciole, Jouber M. S.; Soares, Luiz G. P.
2011-08-01
Wound healing involves local and systemic responses that reflect the etiology of the lesion, type of tissue, systemic condition and others. Despite being essentially the same for different wounds, the pattern of healing may change due to intrinsic and/or extrinsic factors. The type of tissue has also to be considered. Several therapeutic approaches have been used to improve healing including phototherapies such as Laser, LEDs and Lamps. Their effects on soft and mineralized tissues are well reported. The choice of appropriated parameters is essential for the results of the treatment and includes wavelength, power density, energy, duration and frequency of application and others. We studied the effects of different types of light on the healing of both soft and mineralized tissues using different models. We found that the use of Laser and polarized light are effective on improving the healing of diabetic and undernourished animals. We also found that Laser light is capable of improving the healing of drug-induced impairment and on increasing the survival rate of flaps on both diabetic and non-diabetic animals. We have also studied and shown the influence of the laser parameters on the healing of surgical and laser wounds. Lately we verified the positive effect of LEDs on healing. We used Laser/LED light for improving bone healing in conditions such as in dental implants, autologous grafts, biomaterials and fractures. From these reports and our own experience we have no doubt whatsoever that the use of phototherapies, carried out with appropriate parameters, promotes quicker tissue repair.
Dwivedi, Deepak; Dwivedi, Mona; Malviya, Sourabh; Singh, Vinod
2017-01-01
To investigate wound healing, antimicrobial and antioxidant activity of leaf extract of Pongamia Pinnata . Methanolic extracts of P. pinnata leaf were studied for wound healing efficiency, and was assessed by the rate of wound contraction, tensile strength, breaking strength, hydroxyproline and hexosamine content, along with its effect on pro-inflammatory and anti-inflammatory cytokines was assessed using excision and incision model of wound repair in Wistar rats. Antimicrobial activity against ten microorganisms was also assessed. In vivo antioxidant activity was performed to understand the mechanism of wound healing potency. The results indicated that P. pinnata extract has potent wound healing capacity as evident from the wound contraction and increased tensile strength. Hydroxyproline and hexosamine expression were also well correlated with the healing pattern observed. extract exhibited significant antimicrobial activity, Staphylococcus aureus, Staphylococcus pyogenes, Staphylococcus epidermidis, Escherichia coli, Micrococcus luteus, Enterobacter aerogenes, Salmonella typhi, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger also indicate that P. pinnata posses potent antioxidant activity by inhibition lipid peroxidation, reduce glutathione, superoxide dismutase level and increases catalase activity. During early wound healing phase TNF-α and IL-6 level were found to be up-regulated by P. pinnata treatment. Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content, antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by P. pinnata . Induction in cytokine production may be one of the mechanisms in accelerating the wound healing. Results suggest that P. pinnata may be useful in tropical management of wound healing.
He, Bing; Zhang, Zong-Kang; Liu, Jin; He, Yi-Xin; Tang, Tao; Li, Jie; Guo, Bao-Sheng; Lu, Ai-Ping; Zhang, Bao-Ting; Zhang, Ge
2016-01-01
Impaired fracture healing in aged females is still a challenge in clinics. MicroRNAs (miRNAs) play important roles in fracture healing. This study aims to identify the miRNAs that potentially contribute to the impaired fracture healing in aged females. Transverse femoral shaft fractures were created in adult and aged female mice. At post-fracture 0-, 2- and 4-week, the fracture sites were scanned by micro computed tomography to confirm that the fracture healing was impaired in aged female mice and the fracture calluses were collected for miRNA microarray analysis. A total of 53 significantly differentially expressed miRNAs and 5438 miRNA-target gene interactions involved in bone fracture healing were identified. A novel scoring system was designed to analyze the miRNA contribution to impaired fracture healing (RCIFH). Using this method, 11 novel miRNAs were identified to impair fracture healing at 2- or 4-week post-fracture. Thereafter, function analysis of target genes was performed for miRNAs with high RCIFH values. The results showed that high RCIFH miRNAs in aged female mice might impair fracture healing not only by down-regulating angiogenesis-, chondrogenesis-, and osteogenesis-related pathways, but also by up-regulating osteoclastogenesis-related pathway, which implied the essential roles of these high RCIFH miRNAs in impaired fracture healing in aged females, and might promote the discovery of novel therapeutic strategies. PMID:27527150
Langås-Larsen, Anette; Salamonsen, Anita; Kristoffersen, Agnete Egilsdatter; Hamran, Torunn; Evjen, Bjørg; Stub, Trine
2017-01-01
People with Sami and Norwegian background are frequent users of traditional folk medicine (TM). Traditional healing, such as religious prayers of healing (reading) and the laying on of hands, are examples of commonly used modalities. The global aim of this study is to examine whether health personnel's knowledge, attitudes and experiences of traditional healing affect their clinical practice. Semi-structured individual interviews (n=32) and focus group interviews (n=2) were conducted among health personnel in two communities in Northern Norway. The text data was transcribed verbatim and analysed based on the criteria for content analysis. Six themes were identified. The participants had acquired their knowledge of traditional healing through their childhood, adolescence and experience as health personnel in the communities. They all expressed that they were positive to the patients' use of traditional healing. They justified their attitudes, stating that "there are more things in heaven and earth" and they had faith in the placebo effects of traditional healing. The health personnel respected their patients' faith and many facilitated the use of traditional healing. In some cases, they also applied traditional healing tools if the patients asked them to do so. The health personnel were positive and open-minded towards traditional healing. They considered reading as a tool that could help the patients to handle illness in a good way. Health personnel were willing to perform traditional healing and include traditional tools in their professional toolkit, even though these tools were not documented as evidence-based treatment. In this way they could offer their patients integrated health services which were tailored to the patients' treatment philosophy.
The role of social relationship in HIV healing and its implications in HIV cure in China
Qiao, Shan; Nie, Jing-Bao; Tucker, Joseph; Rennie, Stuart; Li, Xiao-Ming
2016-01-01
HIV is both a biomedical disease and a social phenomenon that is constructed in particular cultural contexts. A successful and humane HIV cure requires not only the science of eradicating pathogens, but also the art of healing to restore harmony between mind and body. Healing in the context of HIV cure will be both personal and interpersonal, biological and social, and will involve rebuilding connections between HIV patients and their social environment. Social conceptions of healing have been highlighted in many regions with rich non-biomedical healing traditions, including China. Based on an adapted theoretical model on social relationships and health, we address the essential role of social relations for HIV healing in Chinese cultural context, and propose several recommendations for reforming practices and policies regarding HIV healing. In general, family is still a core social unit in HIV patients’ medical journey from diagnosis to treatment. A positive patient–physician relationship based on mutual respect and trust also has critical impact on patients’ physical and mental health. Physicians may become a key or the main source of social support in circumstances when families are not actively engaged in healing. Reconnecting HIV patients with their communities should be a necessary component of HIV cure, as this will help patients engage more fully in the HIV healing process. We call for a family-centered approach in HIV healing intervention to strengthen patient–family ties; a series of policies to build up and sustain positive patient–physician ties; and multi-level strategies to empower patients and rebuild their bonds to community and larger society. We also call for more empirical research on how non-biomedical healing approaches in various cultural settings could (directly or indirectly) inform HIV cure research. PMID:27042386
The role of social relationship in HIV healing and its implications in HIV cure in China.
Qiao, Shan; Nie, Jing-Bao; Tucker, Joseph; Rennie, Stuart; Li, Xiao-Ming
HIV is both a biomedical disease and a social phenomenon that is constructed in particular cultural contexts. A successful and humane HIV cure requires not only the science of eradicating pathogens, but also the art of healing to restore harmony between mind and body. Healing in the context of HIV cure will be both personal and interpersonal, biological and social, and will involve rebuilding connections between HIV patients and their social environment. Social conceptions of healing have been highlighted in many regions with rich non-biomedical healing traditions, including China. Based on an adapted theoretical model on social relationships and health, we address the essential role of social relations for HIV healing in Chinese cultural context, and propose several recommendations for reforming practices and policies regarding HIV healing. In general, family is still a core social unit in HIV patients' medical journey from diagnosis to treatment. A positive patient-physician relationship based on mutual respect and trust also has critical impact on patients' physical and mental health. Physicians may become a key or the main source of social support in circumstances when families are not actively engaged in healing. Reconnecting HIV patients with their communities should be a necessary component of HIV cure, as this will help patients engage more fully in the HIV healing process. We call for a family-centered approach in HIV healing intervention to strengthen patient-family ties; a series of policies to build up and sustain positive patient-physician ties; and multi-level strategies to empower patients and rebuild their bonds to community and larger society. We also call for more empirical research on how non-biomedical healing approaches in various cultural settings could (directly or indirectly) inform HIV cure research.
Merlo, Marco; Stolfo, Davide; Anzini, Marco; Negri, Francesco; Pinamonti, Bruno; Barbati, Giulia; Ramani, Federica; Lenarda, Andrea Di; Sinagra, Gianfranco
2015-01-13
An important number of patients with idiopathic dilated cardiomyopathy have dramatically improved left ventricular function with optimal treatment; however, little is known about the evolution and long-term outcome of this subgroup, which shows apparent healing. This study assesses whether real healing actually exists in dilated cardiomyopathy. Persistent apparent healing was evaluated among 408 patients with dilated cardiomyopathy receiving tailored medical treatment and followed over the very long-term. Persistent apparent healing was defined as left ventricular ejection fraction ≥50% and indexed left ventricular end-diastolic diameter ≤33 mm/m(2) at both mid-term (19±4 months) and long-term (103±9 months) follow-up. At mid-term, 63 of 408 patients (15%) were apparently healed; 38 (60%; 9%of the whole population) showed persistent apparent healing at long-term evaluation. No predictors of persistent apparent healing were found. Patients with persistent apparent healing showed better heart transplant–free survival at very long-term follow-up (95% versus 71%; P=0.014) compared with nonpersistently normalized patients. Nevertheless, in the very longterm, 37% of this subgroup experienced deterioration of left ventricular systolic function, and 5% died or had heart transplantation. Persistent long-term apparent healing was evident in a remarkable proportion of dilated cardiomyopathy patients receiving optimal medical treatment and was associated with stable normalization of main clinical and laboratory features. This condition can be characterized by a decline of left ventricular function over the very long term, highlighting the relevance of serial nd individualized follow-up in all patients with dilated cardiomyopathy, especially considering the absence of predictors for longterm apparent healing.
Tonaco, Luís A B; Gomes, Flavia L; Velasquez-Melendez, Gustavo; Lopes, Miriam T P; Salas, Carlos E
2018-04-01
The aim of the study was to investigate the role of the proteolytic fraction from Vasconcellea cundinamarcensis, designated as P1G10, on the healing of chronic foot ulcers in neuropathic patients with diabetes 2. Fifty patients were enrolled in a prospective, randomized, double-blind trial, to verify the efficacy and safety of a topical dressing formulated with 0.1% P1G10, intended for wound healing, versus a hydrogel (control) protocol. Upon completion of the intervention, the outcome evaluated the number of patients attaining full epithelization (100%), or at least 80% healing. Statistical analysis compared the data on each group for the significance of the differences. Collection of data was finished in week 16, and the results were analyzed by intention to treat. The results showed that, in the control group, 5 patients attained 100% ulcer healing, 3 patients ≥ 80% healing and 11 experienced ulcer changes ≤ 80%, and the remainder showed no changes or their wounds became worse. Meanwhile, in the P1G10 group, 11 patients experienced full healing, 4 had healing ≥ 80% and 5 had ulcer changes ≤ lower than 80%, and the remainder showed no changes or their wounds became worse. The healing incidence for the first endpoint (100% healing) showed that the P1G10 group was 2.95-fold more efficacious than the control group (CI 95%) and 2.52-fold (CI, 95%) higher than its control for the second endpoint (80% healing). These data support the hypothesis that topical application of the proteolytic fraction identified as P1G10 significantly enhances foot ulcer healing compared to hydrogel treatment.
Publicly Reported Wound Healing Rates: The Fantasy and the Reality
Fife, Caroline E.; Eckert, Kristen A.; Carter, Marissa J.
2018-01-01
Significance: We compare real-world data from the U.S. Wound Registry (USWR) with randomized controlled trials and publicly reported wound outcomes and develop criteria for honest reporting of wound outcomes, a requirement of the new Quality Payment Program (QPP). Recent Advances: Because no method has existed by which wounds could be stratified according to their likelihood of healing among real-world patients, practitioners have reported fantastically high healing rates. The USWR has developed several risk-stratified wound healing quality measures for diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) as part of its Qualified Clinical Data Registry (QCDR). This allows practitioners to report DFU and VLU healing rates in comparison to the likelihood of whether the wound would have healed. Critical Issues: Under the new QPP, practitioners must report at least one practice-relevant outcome measure, and it must be risk adjusted so that clinicians caring for the sickest patients do not appear to have worse outcomes than their peers. The Wound Healing Index is a validated risk-stratification method that can predict whether a DFU or VLU will heal, leveling the playing field for outcome reporting and removing the need to artificially inflate healing rates. Wound care practitioners can report the USWR DFU and VLU risk-stratified outcome measure to satisfy the quality reporting requirements of the QPP. Future Directions: Per the requirements of the QPP, the USWR will begin publicly reporting of risk-stratified healing rates once quality measure data have met the reporting standards of the Centers for Medicare and Medicaid Services. Some basic rules for data censoring are proposed for public reporting of healing rates, and others are needed, which should be decided by consensus among the wound care community. PMID:29644145
Langås-Larsen, Anette; Salamonsen, Anita; Kristoffersen, Agnete Egilsdatter; Hamran, Torunn; Evjen, Bjørg; Stub, Trine
2017-01-01
ABSTRACT People with Sami and Norwegian background are frequent users of traditional folk medicine (TM). Traditional healing, such as religious prayers of healing (reading) and the laying on of hands, are examples of commonly used modalities. The global aim of this study is to examine whether health personnel’s knowledge, attitudes and experiences of traditional healing affect their clinical practice. Semi-structured individual interviews (n=32) and focus group interviews (n=2) were conducted among health personnel in two communities in Northern Norway. The text data was transcribed verbatim and analysed based on the criteria for content analysis. Six themes were identified. The participants had acquired their knowledge of traditional healing through their childhood, adolescence and experience as health personnel in the communities. They all expressed that they were positive to the patients’ use of traditional healing. They justified their attitudes, stating that “there are more things in heaven and earth” and they had faith in the placebo effects of traditional healing. The health personnel respected their patients’ faith and many facilitated the use of traditional healing. In some cases, they also applied traditional healing tools if the patients asked them to do so. The health personnel were positive and open-minded towards traditional healing. They considered reading as a tool that could help the patients to handle illness in a good way. Health personnel were willing to perform traditional healing and include traditional tools in their professional toolkit, even though these tools were not documented as evidence-based treatment. In this way they could offer their patients integrated health services which were tailored to the patients’ treatment philosophy. PMID:29130420
Increasing age and tear size reduce rotator cuff repair healing rate at 1 year
Rashid, Mustafa S; Cooper, Cushla; Cook, Jonathan; Cooper, David; Dakin, Stephanie G; Snelling, Sarah; Carr, Andrew J
2017-01-01
Background and purpose — There is a need to understand the reasons why a high proportion of rotator cuff repairs fail to heal. Using data from a large randomized clinical trial, we evaluated age and tear size as risk factors for failure of rotator cuff repair. Patients and methods — Between 2007 and 2014, 65 surgeons from 47 hospitals in the National Health Service (NHS) recruited 447 patients with atraumatic rotator cuff tendon tears to the United Kingdom Rotator Cuff Trial (UKUFF) and 256 underwent rotator cuff repair. Cuff integrity was assessed by imaging in 217 patients, at 12 months post-operation. Logistic regression analysis was used to determine the influence of age and intra-operative tear size on healing. Hand dominance, sex, and previous steroid injections were controlled for. Results — The overall healing rate was 122/217 (56%) at 12 months. Healing rate decreased with increasing tear size (small tears 66%, medium tears 68%, large tears 47%, and massive tears 27% healed). The mean age of patients with a healed repair was 61 years compared with 64 years for those with a non-healed repair. Mean age increased with larger tear sizes (small tears 59 years, medium tears 62 years, large tears 64 years, and massive tears 66 years). Increasing age was an independent factor that negatively influenced healing, even after controlling for tear size. Only massive tears were an independent predictor of non-healing, after controlling for age. Interpretation — Although increasing age and larger tear size are both risks for failure of rotator cuff repair healing, age is the dominant risk factor. PMID:28880113
A unified theory of bone healing and nonunion: BHN theory.
Elliott, D S; Newman, K J H; Forward, D P; Hahn, D M; Ollivere, B; Kojima, K; Handley, R; Rossiter, N D; Wixted, J J; Smith, R M; Moran, C G
2016-07-01
This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This 'bone-healing unit' produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff's law, Perren's strain theory and Frost's concept of the "mechanostat". In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture - healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884-91. ©2016 The British Editorial Society of Bone & Joint Surgery.
The contribution of interleukin-2 to effective wound healing.
Doersch, Karen M; DelloStritto, Daniel J; Newell-Rogers, M Karen
2017-02-01
Ineffective skin wound healing is a significant source of morbidity and mortality. Roughly 6.5 million Americans experience chronically open wounds and the cost of treating these wounds numbers in the billions of dollars annually. In contrast, robust wound healing can lead to the development of either hypertrophic scarring or keloidosis, both of which can cause discomfort and can be cosmetically undesirable. Appropriate wound healing requires the interplay of a variety of factors, including the skin, the local microenvironment, the immune system, and the external environment. When these interactions are perturbed, wounds can be a nidus for infection, which can cause them to remain open an extended period of time, or can scar excessively. Interleukin-2, a cytokine that directs T-cell expansion and phenotypic development, appears to play an important role in wound healing. The best-studied role for Interleukin-2 is in influencing T-cell development. However, other cell types, including fibroblasts, the skin cells responsible for closing wounds, express the Interleukin-2 receptor, and therefore may respond to Interleukin-2. Studies have shown that treatment with Interleukin-2 can improve the strength of healed skin, which implicates Interleukin-2 in the wound healing process. Furthermore, diseases that involve impaired wound healing, such as diabetes and systemic lupus erythematosus, have been linked to deficiencies in Interleukin-2 or defects Interleukin-2-receptor signaling. The focus of this review is to summarize the current understanding of the role of Interleukin-2 in wound healing, to highlight diseases in which Interleukin-2 and its receptor may contribute to impaired wound healing, and to assess Interleukin-2-modulating approaches as potential therapies to improve wound healing.
Honey dilution impact on in vitro wound healing: Normoxic and hypoxic condition.
Chaudhary, Amrita; Bag, Swarnendu; Barui, Ananya; Banerjee, Provas; Chatterjee, Jyotirmoy
2015-01-01
Honey is known as a popular healing agent against tropical infections and wounds. However, the effects of honey dilutions on keratinocyte (HaCaT) wound healing under hypoxic condition is still not explored. In this study, we examined whether honey dilution have wound healing potential under hypoxic stress. The antioxidant potential and healing efficacy of honey dilution on in vitro wound of human epidermal keratinocyte (HaCaT cells) under hypoxia (3% O2 ), and normoxia is explored by nitro blue tetrazolium assay. The cell survival % quantified by MTT assay to select four honey dilutions like 10, 1, 0.1, and 0.01 v/v% and the changes in cellular function was observed microscopically. Further, the cell proliferation, migration, cell-cell adhesion, and relevant gene expression were studied by flow cytometry, migration/scratch assay, immunocytochemistry, and reverse transcription-polymerase chain reaction, respectively. The expression pattern of cardinal molecular features viz. E-cadherin, cytoskeletal protein F-actin, p63, and hypoxia marker Hif 1α were examined. Honey dilution in 0.1% v/v combat wound healing limitations in vitro under normoxia and hypoxia (3%). Its wound healing potential was quantified by immunocytochemistry and real-time PCR for the associated molecular features that were responsible for cell proliferation and migration. Our data showed that honey dilution can be effective in hypoxic wound healing. Additionally, it reduced superoxide generation and supplied favorable bioambience for cell proliferation, migration, and differentiation during hypoxic wound healing. These findings may reveal the importance of honey as an alternative and cost effective therapeutic natural product for wound healing in hypoxic condition. © 2015 by the Wound Healing Society.
The contribution of interleukin-2 to effective wound healing
DelloStritto, Daniel J; Newell-Rogers, M Karen
2016-01-01
Ineffective skin wound healing is a significant source of morbidity and mortality. Roughly 6.5 million Americans experience chronically open wounds and the cost of treating these wounds numbers in the billions of dollars annually. In contrast, robust wound healing can lead to the development of either hypertrophic scarring or keloidosis, both of which can cause discomfort and can be cosmetically undesirable. Appropriate wound healing requires the interplay of a variety of factors, including the skin, the local microenvironment, the immune system, and the external environment. When these interactions are perturbed, wounds can be a nidus for infection, which can cause them to remain open an extended period of time, or can scar excessively. Interleukin-2, a cytokine that directs T-cell expansion and phenotypic development, appears to play an important role in wound healing. The best-studied role for Interleukin-2 is in influencing T-cell development. However, other cell types, including fibroblasts, the skin cells responsible for closing wounds, express the Interleukin-2 receptor, and therefore may respond to Interleukin-2. Studies have shown that treatment with Interleukin-2 can improve the strength of healed skin, which implicates Interleukin-2 in the wound healing process. Furthermore, diseases that involve impaired wound healing, such as diabetes and systemic lupus erythematosus, have been linked to deficiencies in Interleukin-2 or defects Interleukin-2-receptor signaling. The focus of this review is to summarize the current understanding of the role of Interleukin-2 in wound healing, to highlight diseases in which Interleukin-2 and its receptor may contribute to impaired wound healing, and to assess Interleukin-2-modulating approaches as potential therapies to improve wound healing. PMID:27798123
Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing
Pakyari, Mohammadreza; Farrokhi, Ali; Maharlooei, Mohsen Khosravi; Ghahary, Aziz
2013-01-01
Significance This review highlights the critical role of transforming growth factor beta (TGF-β)1–3 within different phases of wound healing, in particular, late-stage wound healing. It is also very important to identify the TGF-β1–controlling factors involved in slowing down the healing process upon wound epithelialization. Recent Advances TGF-β1, as a growth factor, is a known proponent of dermal fibrosis. Several strategies to modulate or regulate TGF's actions have been thoroughly investigated in an effort to create successful therapies. This study reviews current discourse regarding the many roles of TGF-β1 in wound healing by modulating infiltrated immune cells and the extracellular matrix. Critical Issues It is well established that TGF-β1 functions as a wound-healing promoting factor, and thereby if in excess it may lead to overhealing outcomes, such as hypertrophic scarring and keloid. Thus, the regulation of TGF-β1 in the later stages of the healing process remains as critical issue of which to better understand. Future Directions One hypothesis is that cell communication is the key to regulate later stages of wound healing. To elucidate the role of keratinocyte/fibroblast cross talk in controlling the later stages of wound healing we need to: (1) identify those keratinocyte-released factors which would function as wound-healing stop signals, (2) evaluate the functionality of these factors in controlling the outcome of the healing process, and (3) formulate topical vehicles for these antifibrogenic factors to improve or even prevent the development of hypertrophic scarring and keloids as a result of deep trauma, burn injuries, and any type of surgical incision. PMID:24527344
Roy, Purabi; Amdekar, Sarika; Kumar, Avnish; Singh, Rambir; Sharma, Poonam; Singh, Vinod
2012-03-06
Pyrostegia venusta (Ker Gawl) Miers. (Bignoniaceae), has been traditionally used as a remedy for treating white patches and infections on the skin (leukoderma, vitiligo). To investigate wound healing and antimicrobial activity of flower extract of Pyrostegia venusta, including in vivo antioxidant activity. Methanolic extracts of Pyrostegia venusta flowers were studied for wound healing efficiency along with its effect on pro-inflammatory and anti-inflammatory cytokines was assessed using excision and incision model of wound repair in Wistar rats. Healing was assessed by the rate of wound contraction, tensile strength, breaking strength, hydroxyproline and hexosamine content. Antimicrobial activity of the flower extract against twelve microorganisms was also assessed. In vivo antioxidant activity was performed to understand the mechanism of wound healing potency. The results indicated that Pyrostegia venusta extract has potent wound healing capacity as evident from the wound contraction and increased tensile strength. Hydroxyproline and hexosamine expression were also correlative with the healing pattern observed. Pyrostegia venusta extract exhibited moderate antimicrobial activity against the organisms: Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus pyogenes, Staphylococcus aureus, Escherichia coli, Micrococcus luteus, Enterobacter aerogenes, Salmonella typhi, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger and Candida tropicana. During early wound healing phase TNF-α and IL-6 level were found to be up regulated by Pyrostegia venusta treatment. Increased wound contraction and tensile strength, augmented hydroxyproline and hexosamine content along with antioxidative activity and moderate antimicrobial activity support the early wound healing exhibited by Pyrostegia venusta flower extract. Induction in cytokine production may be one of the mechanisms involved in accelerating the wound healing by Pyrostegia venusta extract. Results suggest that Pyrostegia venusta may be useful in the tropical management of wound healing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Guo, Wanchun; Jia, Yin; Tian, Kesong; Xu, Zhaopeng; Jiao, Jiao; Li, Ruifei; Wu, Yuehao; Cao, Ling; Wang, Haiyan
2016-08-17
UV-triggered self-healing of single microcapsules has been a good candidate to enhance the life of polymer-based aerospace coatings because of its rapid healing process and healing chemistry based on an accurate stoichiometric ratio. However, free radical photoinitiators used in single microcapsules commonly suffer from possible deactivation due to the presence of oxygen in the space environment. Moreover, entrapment of polymeric microcapsules into coatings often involves elevated temperature or a strong solvent, probably leading to swelling or degradation of polymer shell, and ultimately the loss of active healing species into the host matrix. We herein describe the first single robust SiO2 microcapsule self-healing system based on UV-triggered cationic polymerization for potential application in aerospace coatings. On the basis of the similarity of solubility parameters of the active healing species and the SiO2 precursor, the epoxy resin and cationic photoinitiator are successfully encapsulated into a single SiO2 microcapsule via a combined interfacial/in situ polymerization. The single SiO2 microcapsule shows solvent resistance and thermal stability, especially a strong resistance for thermal cycling in a simulated space environment. In addition, the up to 89% curing efficiency of the epoxy resin in 30 min, and the obvious filling of scratches in the epoxy matrix demonstrate the excellent UV-induced healing performance of SiO2 microcapsules, attributed to a high load of healing species within the capsule (up to 87 wt %) and healing chemistry based on an accurate stoichiometric ratio of the photoinitiator and epoxy resin at 9/100. More importantly, healing chemistry based on a UV-triggered cationic polymerization mechanism is not sensitive to oxygen, extremely facilitating future embedment of this single SiO2 microcapsule in spacecraft coatings to achieve self-healing in a space environment with abundant UV radiation and oxygen.
Unicameral Bone Cysts in the Humerus: Treatment Outcomes.
Kadhim, Muayad; Sethi, Samir; Thacker, Mihir M
2016-06-01
Several treatment modalities have been described for the treatment of unicameral bone cysts (UBC). The aim of this study was to examine the outcome of various treatment modalities of UBC in a specific anatomic location, the humerus. This study is a retrospective case-only study of patients with humeral UBC with minimum follow-up of 1 year. Medical records and radiographs were assessed and UBC healing status was determined based on most recent follow-up radiographs and divided into 3 groups (healed, partially healed, and not healed). Descriptive statistics were utilized to summarize study outcome. Sixty-eight patients (54 boys and 14 girls) with humeral UBC comprised the study population. Sixty-four cases (94.1%) presented with a pathologic fracture. Fifty-one cases were in the proximal metaphysis and 17 were in the diaphysis. Mean age at diagnosis was 9.2±3.7 years, and mean follow-up was 4.0±2.6 years. Twenty-five patients were treated with observation, 38 by injection (27 with steroids and 11 with bone marrow), and 5 by open surgery. Patients who underwent open surgery had relatively larger cyst length, width, and cyst index, and all healed or partially healed at last follow-up. UBC persistence was observed in 29% of diaphyseal and 27.5% of metaphyseal cysts. Of the 19 patients with persistence, 8 were treated with observation, 9 with steroid injection, and 2 with bone marrow injection. Inner wall disruption before injection was performed in 17 patients (24% did not heal), whereas 21 patients did not have inner wall disruption (33% did not heal). Twenty patients received >1 injection. Eleven patients complained of pain at the last visit (8 had a persistent cyst, 2 were partially healed, and 1 had a healed UBC). Complete healing of humeral UBC is challenging to achieve irrespective of treatment modality. UBCs treated with open surgery tended to heal better. Unhealed cysts were more likely to be associated with pain. Level III-a retrospective comparative study.
Laboratory Evidence of Strength Recovery of Healed Faults
NASA Astrophysics Data System (ADS)
Masuda, K.
2015-12-01
Fault zones consist of a fault core and a surrounding damage zone. Fault zones are typically characterized by the presence of many healed surfaces, the strength of which is unknown. If a healed fault recovers its strength such that its cohesion is equal to or greater than that of the host rock, repeated cycles of fracture and healing may be one mechanism producing wide fault zones. I present laboratory evidence supporting the strength recovery of healed fault surface, obtained by AE monitoring, strain measurements and X-ray CT techniques. The loading experiment was performed with a specimen collected from an exhumed fault zone. Healed surfaces of the rock sample were interpreted to be parallel to slip surfaces. The specimen was a cylinder with 50 mm diameter and 100 mm long. The long axis of the specimen was inclined with respect to the orientation of the healed surfaces. The compression test used a constant loading rate under 50 MPa of confining pressure. Macroscopic failure occurred when the applied differential stress reached 439 MPa. The macro-fracture surface created during the experiment was very close to the preexisting plane. The AE hypocenters closely match the locations of the preexisting healed surface and the new fault plane. The experiment also revealed details of the initial stage of fault development. The new fault zone developed near, but not precisely on the preexisting healed fault plane. An area of heterogeneous structure where stress appears to have concentrated, was where the AEs began, and it was also where the fracture started. This means that the healed surface was not a weak surface and that healing strengthened the fault such that its cohesion was equal to or greater than that of the intact host rock. These results suggest that repeated cycles of fracture and healing may be the main mechanism creating wide fault zones with multiple fault cores and damage zones.
Second-look arthroscopic findings after repairs of posterior root tears of the medial meniscus.
Seo, Hee-Soo; Lee, Su-Chan; Jung, Kwang-Am
2011-01-01
A posterior root tear of the medial meniscus disrupts hoop tension and causes extrusion of the meniscus, which results in progressive cartilage degeneration. To identify the structural integrity of healing after arthroscopic repair of a posterior root tear of the medial meniscus by second-look arthroscopy and to determine the clinical relevance of the findings. Case series; Level of evidence, 4. From December 2006 to August 2008, 21 consecutive patients underwent arthroscopic pullout suture repair for a posterior root tear of the medial meniscus. Eleven were available for second-look arthroscopy evaluation (mean, 13.4 months; range, 10 to 22 months). The healing status of the repaired meniscus was classified as complete healing, lax healing, scar tissue healing, and failed healing. Chondral lesions were reviewed using arthroscopic photographs, and clinical evaluation was based on the Lysholm knee scores and the Hospital for Special Surgery scores. There was no case with complete healing. Five knees had lax healing (symptomatic in 2 and asymptomatic in 3); 4, scar tissue healing (asymptomatic in all 4); and 2, failed healing (symptomatic in 1 and asymptomatic in 1). Progression of the chondral lesion was found in 1 case. Mean Lysholm scores improved from 56.1 preoperatively (range, 41 to 71) to 83.0 at follow-up (range, 69 to 91; P = .003); mean Hospital for Special Surgery score also significantly increased, from 64.1 (range, 50 to 76) to 87.4 (range, 77 to 95; P = .003). Complete healing was not observed in this retrospective case series of posterior horn meniscus repairs performed by 2 surgeons using a single technique. Further research is needed to clarify why all patients showed clinical improvement despite findings of incomplete or failed healing on second-look arthroscopy. Treatment modalities for managing posterior root tears of the medial meniscus require further investigation to determine their efficacy.
Sclerostin Antibody Treatment Enhances Rotator Cuff Tendon-to-Bone Healing in an Animal Model.
Shah, Shivam A; Kormpakis, Ioannis; Havlioglu, Necat; Ominsky, Michael S; Galatz, Leesa M; Thomopoulos, Stavros
2017-05-17
Rotator cuff tears are a common source of pain and disability, and poor healing after repair leads to high retear rates. Bone loss in the humeral head before and after repair has been associated with poor healing. The purpose of the current study was to mitigate bone loss near the repaired cuff and improve healing outcomes. Sclerostin antibody (Scl-Ab) treatment, previously shown to increase bone formation and strength in the setting of osteoporosis, was used in the current study to address bone loss and enhance rotator cuff healing in an animal model. Scl-Ab was administered subcutaneously at the time of rotator cuff repair and every 2 weeks until the animals were sacrificed. The effect of Scl-Ab treatment was evaluated after 2, 4, and 8 weeks of healing, using bone morphometric analysis, biomechanical evaluation, histological analysis, and gene expression outcomes. Injury and repair led to a reduction in bone mineral density after 2 and 4 weeks of healing in the control and Scl-Ab treatment groups. After 8 weeks of healing, animals receiving Scl-Ab treatment had 30% greater bone mineral density than the controls. A decrease in biomechanical properties was observed in both groups after 4 weeks of healing compared with healthy tendon-to-bone attachments. After 8 weeks of healing, Scl-Ab-treated animals had improved strength (38%) and stiffness (43%) compared with control animals. Histological assessment showed that Scl-Ab promoted better integration of tendon and bone by 8 weeks of healing. Scl-Ab had significant effects on gene expression in bone, indicative of enhanced bone formation, and no effect on the expression of genes in tendon. This study provides evidence that Scl-Ab treatment improves tendon-to-bone healing at the rotator cuff by increasing attachment-site bone mineral density, leading to improved biomechanical properties. Scl-Ab treatment may improve outcomes after rotator cuff repair.
Hourani, Siham; Motwani, Kartik; Wajima, Daisuke; Fazal, Hanain; Jones, Chad H; Doré, Sylvain; Hosaka, Koji; Hoh, Brian L
2018-01-01
Local delivery of monocyte chemotactic protein-1 (MCP-1/CCL2) via our drug-eluting coil has been shown to promote intrasaccular aneurysm healing via an inflammatory pathway. In this study, we validate the importance of local MCP-1 in murine aneurysm healing. Whether systemic, rather than local, delivery of MCP-1 can direct site-specific aneurysm healing has significant translational implications. If systemic MCP-1 is effective, then MCP-1 could be administered as a pill rather than by endovascular procedure. Furthermore, we confirm that MCP-1 is the primary effector in our MCP-1 eluting coil-mediated murine aneurysm healing model. We compare aneurysm healing with repeated intraperitoneal MCP-1 versus vehicle injection, in animals with control poly(lactic-co-glycolic) acid (PLGA)-coated coils. We demonstrate elimination of the MCP-1-associated tissue-healing response by knockout of MCP-1 or CCR2 (MCP-1 receptor) and by selectively inhibiting MCP-1 or CCR2. Using immunofluorescent probing, we explore the cell populations found in healed aneurysm tissue following each intervention. Systemically administered MCP-1 with PLGA coil control does not produce comparable aneurysm healing, as seen with MCP-1 eluting coils. MCP-1-directed aneurysm healing is eliminated by selective inhibition of MCP-1 or CCR2 and in MCP-1-deficient or CCR2-deficient mice. No difference was detected in M2 macrophage and myofibroblast/smooth muscle cell staining with systemic MCP-1 versus vehicle in aneurysm wall, but a significant increase in these cell types was observed with MCP-1 eluting coil implant and attenuated by MCP-1/CCR2 blockade or deficiency. We show that systemic MCP-1 concurrent with PLGA-coated platinum coil implant is not sufficient to produce site-specific aneurysm healing. MCP-1 is a critical, not merely complementary, actor in the aneurysm healing pathway.
Traditional healing practices in rural Bangladesh: a qualitative investigation.
Haque, Md Imdadul; Chowdhury, A B M Alauddin; Shahjahan, Md; Harun, Md Golam Dostogir
2018-02-15
Traditional healing practice is an important and integral part of healthcare systems in almost all countries of the world. Very few studies have addressed the holistic scenario of traditional healing practices in Bangladesh, although these serve around 80% of the ailing people. This study explored distinctive forms of traditional healing practices in rural Bangladesh. During July to October 2007, the study team conducted 64 unstructured interviews, and 18 key informant interviews with traditional healers and patients from Bhabanipur and Jobra, two adjacent villages in Chittagong district, Bangladesh. The study also used participatory observations of traditional healing activities in the treatment centers. Majority of the community members, especially people of low socioeconomic status, first approached the traditional healers with their medical problems. Only after failure of such treatment did they move to qualified physicians for modern treatment. Interestingly, if this failed, they returned to the traditional healers. This study identified both religious and non-religious healing practices. The key religious healing practices reportedly included Kalami, Bhandai, and Spiritual Healing, whereas the non-religious healing practices included Sorcery, Kabiraji, and Home Medicine. Both patients and healers practiced self-medication at home with their indigenous knowledge. Kabiraji was widely practiced based on informal use of local medicinal plants in rural areas. Healers in both Kalami and Bhandari practices resorted to religious rituals, and usually used verses of holy books in healing, which required a firm belief of patients for the treatment to be effective. Sorcerers deliberately used their so-called supernatural power not only to treat a patient but also to cause harm to others upon secret request. The spiritual healing reportedly diagnosed and cured the health problems through communication with sacred spirits. Although the fee for diagnosis was small, spiritual healing required different types of treatment instruments, which made the treatment implicitly expensive. Traditional healing was widely practiced as the means of primary healthcare in rural areas of Bangladesh, especially among the people with low socioeconomic status. The extent of services showed no decline with the advancement of modern medical sciences; rather it has increased with the passage of time.
Tashjian, Robert Z; Erickson, Gregory A; Robins, Richard J; Zhang, Yue; Burks, Robert T; Greis, Patrick E
2017-06-01
The primary purpose of this study was to determine the effect of the preoperative position of the musculotendinous junction (MTJ) on rotator cuff healing after double-row arthroscopic rotator cuff repair. A secondary purpose was to evaluate how tendon length and MTJ position change when the rotator cuff heals. Preoperative and postoperative magnetic resonance imaging (MRI) scans of 42 patients undergoing arthroscopic double-row rotator cuff repair were reviewed. Patients undergoing repairs with other constructs or receiving augmented repairs (platelet-rich fibrin matrix) who had postoperative MRI scans were excluded. Preoperative MRI scans were evaluated for anteroposterior tear size, tendon retraction, tendon length, muscle quality, and MTJ position with respect to the glenoid in the coronal plane. The position of the MTJ was referenced off the glenoid face as either lateral or medial. Postoperative MRI scans were evaluated for healing, tendon length, and MTJ position. Of 42 tears, 36 (86%) healed, with 27 of 31 small to medium tears (87%) and 9 of 11 large to massive tears (82%) healing. Healing occurred in 94% of tears that had a preoperative MTJ lateral to the face of the glenoid but only 56% of tears that had a preoperative MTJ medial to the glenoid face (P = .0135). The measured tendon length increased an average of 14.4 mm in patients whose tears healed compared with shortening by 6.4 mm in patients with tears that did not heal (P < .001). The MTJ lateralized an average of 6.1 mm in patients whose tears healed compared with medializing 1.9 mm in patients whose tears did not heal (P = .026). The overall follow-up period of the study was from April 2005 to September 2014 (113 months). The preoperative MTJ position is predictive of postoperative healing after double-row rotator cuff repair. The position of the MTJ with respect to the glenoid face is a reliable, identifiable marker on MRI scans that can be predictive of healing. Level IV, retrospective review of case series; therapeutic study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Tashjian, Robert Z; Hung, Man; Burks, Robert T; Greis, Patrick E
2013-11-01
The purpose of this study was to evaluate the correlation of rotator cuff musculotendinous junction (MTJ) retraction with healing after rotator cuff repair and with preoperative sagittal tear size. We reviewed preoperative and postoperative magnetic resonance imaging (MRI) studies of 51 patients undergoing arthroscopic single-row rotator cuff repair between March 1, 2005, and February 20, 2010. Preoperative MRI studies were evaluated for anteroposterior tear size, tendon retraction, tendon length, muscle quality, and MTJ position with respect to the glenoid. The position of the MTJ was referenced off the glenoid face as either lateral or medial. Postoperative MRI studies obtained at a minimum of 1 year postoperatively (mean, 25 ± 13.9 months) were evaluated for healing, tendon length, and MTJ position. We found that 39 of 51 tears (76%) healed, with 26 of 30 small/medium tears (87%) and 13 of 21 large/massive tears (62%) healing. Greater tendon retraction, worse preoperative muscle quality, and a more medialized MTJ were all associated with worse tendon healing (P < .05). Of tears that had a preoperative MTJ lateral to the face of the glenoid, 93% healed, whereas only 55% of tears that had a preoperative MTJ medial to the face of the glenoid healed (P < .05). Healed repairs that had limited tendon lengthening (<1 cm) and limited MTJ position change (<1 cm) from preoperative were found to be smaller, had less preoperative tendon retraction, had less preoperative MTJ medialization, and had less preoperative rotator cuff fatty infiltration (P < .05). Preoperative MTJ medialization, tendon retraction, and muscle quality are all predictive of tendon healing postoperatively when using a single-row rotator cuff repair technique. The position of the MTJ with respect to the glenoid face can be predictive of healing, with over 90% healing if lateral and 50% if medial to the face. Lengthening of the tendon accounts for a significant percentage of the musculotendinous unit lengthening that occurs in healed tears as opposed to muscle elongation. Level IV, therapeutic case series. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Progress in corneal wound healing
Ljubimov, Alexander V.; Saghizadeh, Mehrnoosh
2015-01-01
Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells. PMID:26197361
Progress in corneal wound healing.
Ljubimov, Alexander V; Saghizadeh, Mehrnoosh
2015-11-01
Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Syndecan-4 enhances PDGF-BB activity in diabetic wound healing.
Das, Subhamoy; Majid, Marjan; Baker, Aaron B
2016-09-15
Non-healing ulcers are a common consequence of long-term diabetes and severe peripheral vascular disease. These non-healing wounds are a major source of morbidity in patients with diabetes and place a heavy financial burden on the healthcare system. Growth factor therapies are an attractive strategy for enhancing wound closure in non-healing wounds but have only achieved mixed results in clinical trials. Platelet derived growth factor-BB (PDGF-BB) is the only currently approved growth factor therapy for non-healing wounds. However, PDGF-BB therapy is not effective in many patients and requires high doses that increase the potential for side effects. In this work, we demonstrate that syndecan-4 delivered in a proteoliposomal formulation enhances PDGF-BB activity in diabetic wound healing. In particular, syndecan-4 proteoliposomes enhance the migration of keratinocytes derived from patients with diabetes. In addition, syndecan-4 proteoliposomes sensitize keratinocytes to PDGF-BB stimulation, enhancing the intracellular signaling response to PDGF-BB. We further demonstrated that co-therapy with syndecan-4 proteoliposomes enhanced wound closure in diabetic, hyperlipidemic ob/ob mice. Wounds treated with both syndecan-4 proteoliposomes and PDGF-BB had increased re-epithelization and angiogenesis in comparison to wounds treated with PDGF-BB alone. Moreover, the wounds treated with syndecan-4 proteoliposomes and PDGF-BB also had increased M2 macrophages and reduced M1 macrophages, suggesting syndecan-4 delivery induces immunomodulation within the healing wounds. Together our findings support that syndecan-4 proteoliposomes markedly improve PDGF-BB efficacy for wound healing and may be useful in enhancing treatments for non-healing wounds. Non-healing wounds are major healthcare issue for patients with diabetes and peripheral vascular disease. Growth factor therapies have potential for healing chronic wounds but have not been effective for many patients. PDGF-BB is currently the only approved growth factor for enhancing wound healing. However, it has not seen widespread adoption due to limited efficacy and high cost. In this work, we have developed an enhancing agent that improves the activity of PDGF-BB in promoting wound healing in animals with diabetes. This co-therapy may be useful in improving the efficacy of PDGFBB and enhance its safety through lowering the dose of growth factor needed to improve wound healing. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effects of fiber pre-strain on the healing efficiency of thermoset polymers
NASA Astrophysics Data System (ADS)
Ajisafe, Oludayo
One major challenge that has been facing material self healing is how to heal bigger macroscopic or structural scale damage autonomously, repeatedly, efficiently and at molecular length scale. Different approaches have been used to heal materials. However, none of them can heal macroscopic cracks. Our research group has proposed a novel shape-memory polymer (SMP) based, bio-inspired Close-Then-Heal (CTH) scheme to heal macroscopic cracks in SMP matrix. The most recent development in our group is to use SMP fibers to heal conventional thermosetting polymers according to the CTH scheme. The aim of this study is to further investigate the effect of pre-tension of SMP fibers during the cold-drawing programming on the self-healing efficiency of the conventional thermosetting polymer composites. This was done by fabricating a composite with thermoplastic particles (polycaprolactone) dispersed in a thermosetting polymer matrix (Epon 828). Shape memory fiber pre-tensioned into 3 different groups of 0%, 50% and 100% prestrain, was also embedded into the composite in the longitudinal direction. In this composite, the shape memory effect of the shape memory fibers is utilized for sealing (closing) the cracks and the thermoplastic particles are used for molecular-length scale healing. In this study, 7% by volume of thermoplastic particles was used. Beam specimens were prepared and controlled structural length scale damage was created prior to curing by inserting an aluminum foil of designed thickness in a perpendicular direction to the shape memory fibers before the matrix was allowed to cure. The aluminum sheet was removed post cure to leave a controlled damage. The specimen was healed by fixing the two ends of the beam and heating the sample above the Tg of the shape memory fiber. The recovery force of the sample was recorded and then the beam was tested again to fracture. This fracture healing cycle lasted 7 times. The healing efficiency was evaluated per the peak-tensile load. The Ultrasonic C-scan and SEM were used to examine the healed cracks. It was found that the beams with 100% pre-strained fiber were able to recover repeatedly about 50% of its peak tensile strength; the beams with 50% pre-strained fiber, 43%; and the beams with un-stretched fibers were able to recover about 21% of its original peak tensile strength. Also it was found that the higher the pre-tension the higher the recovery stress seen during the healing cycle.
42 CFR 60.61 - Responsibilities of a HEAL school.
Code of Federal Regulations, 2012 CFR
2012-10-01
... depart from the school without receiving an exit interview. A school may meet this requirement through... 42 Public Health 1 2012-10-01 2012-10-01 false Responsibilities of a HEAL school. 60.61 Section 60... EDUCATION ASSISTANCE LOAN PROGRAM The School § 60.61 Responsibilities of a HEAL school. (a) A HEAL school is...
42 CFR 60.61 - Responsibilities of a HEAL school.
Code of Federal Regulations, 2014 CFR
2014-10-01
... depart from the school without receiving an exit interview. A school may meet this requirement through... 42 Public Health 1 2014-10-01 2014-10-01 false Responsibilities of a HEAL school. 60.61 Section 60... EDUCATION ASSISTANCE LOAN PROGRAM The School § 60.61 Responsibilities of a HEAL school. (a) A HEAL school is...
42 CFR 60.61 - Responsibilities of a HEAL school.
Code of Federal Regulations, 2013 CFR
2013-10-01
... depart from the school without receiving an exit interview. A school may meet this requirement through... 42 Public Health 1 2013-10-01 2013-10-01 false Responsibilities of a HEAL school. 60.61 Section 60... EDUCATION ASSISTANCE LOAN PROGRAM The School § 60.61 Responsibilities of a HEAL school. (a) A HEAL school is...
A Cost-Benefit Analysis of Hollow Water's Community Holistic Circle Healing Process.
ERIC Educational Resources Information Center
Couture, Joe; Parker, Ted; Couture, Ruth; Laboucane, Patti
Four Native American communities in Manitoba (Canada) known as Hollow Water devised a healing system for sexual abuse--the Hollow Water First Nation Community Holistic Circle Healing (CHCH). While integrating elements of a number of federal and provincially funded services, the 13-step CHCH healing process is based on the seven Midewin teachings…
An Assessment of Self-Healing Fiber Reinforced Composites
NASA Technical Reports Server (NTRS)
Smith, Joseph G., Jr.
2012-01-01
Several reviews and books have been written concerning self-healing polymers over the last few years. These have focused primarily on the types of self-healing materials being studied, with minor emphasis given to composite properties. The purpose of this review is to assess the self-healing ability of these materials when utilized in fiber reinforced composites
42 CFR 60.61 - Responsibilities of a HEAL school.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Responsibilities of a HEAL school. 60.61 Section 60... EDUCATION ASSISTANCE LOAN PROGRAM The School § 60.61 Responsibilities of a HEAL school. (a) A HEAL school is... loan. The school must inform the loan recipient during the entrance interview of his or her rights and...
Wound healing effects of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica in rats.
Reddy, J Suresh; Rao, P Rajeswara; Reddy, Mada S
2002-02-01
The ethanolic extracts of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica were evaluated for their wound healing activity in rats. Wound healing activity was studied using excision and incision wound models in rats following topical application. Animals were divided into four groups with six in each group. Ten percent w/v extract of each plant was prepared in saline for topical application. H. indicum possesses better wound healing activity than P. zeylanicum and A. indica. Tensile strength results indicate better activity of H. indicum on remodeling phase of wound healing.
NASA Astrophysics Data System (ADS)
Shao, Qing; Hu, Zhen; Xu, Xirong; Yu, Long; Zhang, Dayu; Huang, Yudong
2018-05-01
The composites with interfacial self-healing ability are smart and promising materials in the future. Although some approaches have been used to heal the micro-cracks in composite materials, it is still a great challenge to develop a versatile strategy to fabricate multifunctional interface for self-healing. Here, boron nitride nanosheets (BN) are immobilized onto PBO fibers by facile polydopamine (PDA) chemistry. Benefiting from the photothermal effect of BN-PDA, the obtained surface layer displays interfacial self-healing properties under Xenon light irradiation.
Diabetes and Wound Angiogenesis.
Okonkwo, Uzoagu A; DiPietro, Luisa A
2017-07-03
Diabetes Mellitus Type II (DM2) is a growing international health concern with no end in sight. Complications of DM2 involve a myriad of comorbidities including the serious complications of poor wound healing, chronic ulceration, and resultant limb amputation. In skin wound healing, which has definite, orderly phases, diabetes leads to improper function at all stages. While the etiology of chronic, non-healing diabetic wounds is multi-faceted, the progression to a non-healing phenotype is closely linked to poor vascular networks. This review focuses on diabetic wound healing, paying special attention to the aberrations that have been described in the proliferative, remodeling, and maturation phases of wound angiogenesis. Additionally, this review considers therapeutics that may offer promise to better wound healing outcomes.
Factors Affecting Wound Healing
Guo, S.; DiPietro, L.A.
2010-01-01
Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds. PMID:20139336
Why Cancer Patients Seek Islamic Healing.
Suhami, Norhasmilia; Muhamad, Mazanah Bt; Krauss, Steven Eric
2016-10-01
Islamic healing is frequently referred to as the treatment of choice by many Muslim cancer patients in Malaysia. Despite its widespread use, there is limited information relating to patients' healing preferences. With rising cancer rates in the country, this issue has become a concern to public health policy makers. The purpose of this study was to understand why cancer patients seek Islamic healing. This qualitative study utilized in-depth interviews with 18 cancer patients. The findings indicate three main reasons: (1) recommendations from family, friends and doctors; (2) belief in Islamic healing and (3) the perceived ineffectiveness and dissatisfaction with conventional treatments. Islamic healing will likely continue to be popular complementary cancer treatment in Malaysia as it is grounded in strong cultural and religious beliefs.
Diabetes and Wound Angiogenesis
Okonkwo, Uzoagu A.; DiPietro, Luisa A.
2017-01-01
Diabetes Mellitus Type II (DM2) is a growing international health concern with no end in sight. Complications of DM2 involve a myriad of comorbidities including the serious complications of poor wound healing, chronic ulceration, and resultant limb amputation. In skin wound healing, which has definite, orderly phases, diabetes leads to improper function at all stages. While the etiology of chronic, non-healing diabetic wounds is multi-faceted, the progression to a non-healing phenotype is closely linked to poor vascular networks. This review focuses on diabetic wound healing, paying special attention to the aberrations that have been described in the proliferative, remodeling, and maturation phases of wound angiogenesis. Additionally, this review considers therapeutics that may offer promise to better wound healing outcomes. PMID:28671607
Factors affecting wound healing.
Guo, S; Dipietro, L A
2010-03-01
Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds.
Sarhan, Wessam A; Azzazy, Hassan Me
2017-09-01
Develop green wound dressings which exhibit enhanced wound-healing ability and potent antibacterial effects. Honey, polyvinyl alcohol, chitosan nanofibers were electrospun and loaded with bee venom, propolis and/or bacteriophage against the multidrug-resistant Pseudomonas aeruginosa and examined for their antibacterial, wound-healing ability and cytotoxicity. Among different formulations of nanofibers, honey, polyvinyl alcohol, chitosan-bee venom/bacteriophage exhibited the most potent antibacterial activity against all tested bacterial strains (Gram-positive and -negative strains) and achieved nearly complete killing of multidrug-resistant P. aeruginosa. In vivo testing revealed enhanced wound-healing results and cytotoxicity testing proved improved biocompatibility. The developed biocompatible nanofibers represent competitive wound-healing dressings with potent antibacterial and wound-healing activity.
Marshall, Clement D; Hu, Michael S; Leavitt, Tripp; Barnes, Leandra A; Cheung, Alexander T M; Malhotra, Samir; Lorenz, H Peter; Delp, Scott L; Quake, Stephen R; Longaker, Michael T
2017-02-01
Sanativo is an over-the-counter Brazilian product derived from Amazon rainforest plant extract that is purported to improve the healing of skin wounds. Two experimental studies have shown accelerated closure of nonsplinted excisional wounds in rat models. However, these models allow for significant contraction of the wound and do not approximate healing in the tight skin of humans. Full-thickness excisional wounds were created on the dorsal skin of mice and were splinted with silicone rings, a model that forces the wound to heal by granulation and reepithelialization. Sanativo or a control solution was applied either daily or every other day to the wounds. Photographs were taken every other day, and the degree of reepithelialization of the wounds was determined. With both daily and every-other-day applications, Sanativo delayed reepithelialization of the wounds. Average time to complete healing was faster with control solution versus Sanativo in the daily application group (9.4 versus 15.2 days; p < 0.0001) and the every-other-day application group (11 versus 13 days; p = 0.017). The size of visible scar at the last time point of the study was not significantly different between the groups, and no differences were found on histologic examination. Sanativo wound healing compound delayed wound reepithelialization in a mouse splinted excisional wound model that approximates human wound healing. The size of visible scar after complete healing was not improved with the application of Sanativo. These results should cast doubt on claims that this product can improve wound healing in humans.
Racial and ethnic disparities in the healing of pressure ulcers present at nursing home admission.
Bliss, Donna Z; Gurvich, Olga; Savik, Kay; Eberly, Lynn E; Harms, Susan; Mueller, Christine; Garrard, Judith; Cunanan, Kristen; Wiltzen, Kjerstie
2017-09-01
Pressure ulcers increase the risk of costly hospitalization and mortality of nursing home residents, so timely healing is important. Disparities in healthcare have been identified in the nursing home population but little is known about disparities in the healing of pressure ulcers. To assess racial and ethnic disparities in the healing of pressure ulcers present at nursing home admission. Multi-levels predictors, at the individual resident, nursing home, and community/Census tract level, were examined in three large data sets. Minimum Data Set records of older individuals admitted to one of 439 nursing homes of a national, for-profit chain over three years with a stages 2-4 pressure ulcer (n=10,861) were searched to the 90-day assessment for the first record showing pressure ulcer healing. Predictors of pressure ulcer healing were analyzed for White admissions first using logistic regression. The Peters-Belson method was used to assess racial or ethnic disparities among minority group admissions. A significantly smaller proportion of Black nursing home admissions had their pressure ulcer heal than expected had they been part of the White group. There were no disparities in pressure ulcer healing disadvantaging other minority groups. Significant predictors of a nonhealing of pressure ulcer were greater deficits in activities of daily living and pressure ulcer severity. Reducing disparities in pressure ulcer healing is needed for Blacks admitted to nursing homes. Knowledge of disparities in pressure ulcer healing can direct interventions aiming to achieve equity in healthcare for a growing number of minority nursing home admissions. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of phytochemicals in piper betle linn leaf extract on wound healing.
Lien, Le Thi; Tho, Nguyen Thi; Ha, Do Minh; Hang, Pham Luong; Nghia, Phan Tuan; Thang, Nguyen Dinh
2015-01-01
Wound healing has being extensively investigated over the world. Healing impairment is caused by many reasons including increasing of free-radicals-mediated damage, delaying in granulation tissue formation, reducing in angiogenesis and decreasing in collagen reorganization. These facts consequently lead to chronic wound healing. Piper betle Linn (Betle) leaves have been folklore used as an ingredient of drugs for cutaneous wound treatment. However, the effect of betle leaf on wound healing is not yet well elucidated. In this study, we aimed to investigate the healing efficacy of methanol leaf extract of Piper betle Linn on proliferation of fibroblast NIH3T3 cells as well as full-thickness burn and excision wounds in swiss mice. Scratch wound healing assays were conducted to examine the effects of betle leaf extract on healing activity of fibroblast cells. Burn and excision wounds on swiss mouse skins were created for investigating the wound healing progress caused by the betle leaf extract. Malondialdehyde (MDA) was also evaluated to examine the products of lipid hydroperoxide (LPO) under conditions of with or without betle leaf extract treatment. The results of this study showed that Piper betle Linn leaf extract in methanol increased proliferation of NIH3T3 cells and promoted wound healing in vitro and in vivo with both burn wound and excision wound models. In addition, this extract significant decreased level of malondialdehyde (MDA) in liver of treated-mice compared with that in non-treated mice. Our results suggest that Piper betle Linn can be used as an ingredient in developing natural origin drugs for treatment of cutaneous wounds.
Fontanilla, M R; Casadiegos, S; Bustos, R H; Patarroyo, M A
2018-04-24
Cytokines, chemokines, and growth and remodeling factors orchestrate wound healing when skin damage occurs. During early stages, when the wound is still open, detection and quantification of these compounds might provide biomarkers of skin wound healing, which could aid to complete the scenario provided by clinical follow-up data and histological and histomorphometric analyses. This work assessed and compared the healing of full-thickness skin wounds grafted with artificial dermis made with autologous skin fibroblasts and unidirectional or multidirectional type I collagen scaffolds to test this hypothesis. Biomarkers of healing were detected and quantified in the culture medium of artificial dermis and exudates from the grafted wounds. Clinical follow-up of animals and histological and histomorphometric analysis showed differences in graft integration, wound closure, and histological and histomorphometric parameters. Surface plasmon resonance quantification of 13 healing biomarkers indicated differential secretion of most of the quantified factors in culture medium by the multidirectional and unidirectional artificial dermis. Also, there were significant differences between the concentration of some of the factors analyzed in the exudates of wounds grafted with the evaluated artificial dermis. These findings suggest that differential delivery of healing biomarkers induced by the directionality of the scaffold used to produce the multidirectional and unidirectional dermis was sufficient to create two skin wound microenvironments that determined a different outcome of healing. Overall, data indicate that healing of wounds grafted with multidirectional autologous artificial dermis is better than that of the wounds grafted with the unidirectional one.
Silver oxysalts promote cutaneous wound healing independent of infection.
Thomason, Helen A; Lovett, Jodie M; Spina, Carla J; Stephenson, Christian; McBain, Andrew J; Hardman, Matthew J
2018-03-12
Chronic wounds often exist in a heightened state of inflammation whereby excessive inflammatory cells release high levels of proteases and reactive oxygen species (ROS). While low levels of ROS play a fundamental role in the regulation of normal wound healing, their levels need to be tightly regulated to prevent a hostile wound environment resulting from excessive levels of ROS. Infection amplifies the inflammatory response, augmenting levels of ROS which creates additional tissue damage that supports microbial growth. Antimicrobial dressings are used to combat infection; however, the effects of these dressing on the wound environment and healing independent of infection are rarely assessed. Cytotoxic or adverse effects on healing may exacerbate the hostile wound environment and prolong healing. Here we assessed the effect on healing independent of infection of silver oxysalts which produce higher oxidative states of silver (Ag 2+ /Ag 3+ ). Silver oxysalts had no adverse effect on fibroblast scratch wound closure whilst significantly promoting closure of keratinocyte scratch wounds (34% increase compared with control). Furthermore, dressings containing silver oxysalts accelerated healing of full-thickness incisional wounds in wild-type mice, reducing wound area, promoting reepithelialization, and dampening inflammation. We explored the mechanisms by which silver oxysalts promote healing and found that unlike other silver dressings tested, silver oxysalt dressings catalyze the breakdown of hydrogen peroxide to water and oxygen. In addition, we found that silver oxysalts directly released oxygen when exposed to water. Collectively, these data provide the first indication that silver oxysalts promote healing independent of infection and may regulate oxidative stress within a wound through catalysis of hydrogen peroxide. © 2018 by the Wound Healing Society.
Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong
2013-01-01
Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks. PMID:24312328
Effect of systemic insulin treatment on diabetic wound healing.
Vatankhah, Nasibeh; Jahangiri, Younes; Landry, Gregory J; Moneta, Gregory L; Azarbal, Amir F
2017-04-01
This study investigates if different diabetic treatment regimens affect diabetic foot ulcer healing. From January 2013 to December 2014, 107 diabetic foot ulcers in 85 patients were followed until wound healing, amputation or development of a nonhealing ulcer at the last follow-up visit. Demographic data, diabetic treatment regimens, presence of peripheral vascular disease, wound characteristics, and outcome were collected. Nonhealing wound was defined as major or minor amputation or those who did not have complete healing until the last observation. Median age was 60.0 years (range: 31.1-90.1 years) and 58 cases (68.2%) were males. Twenty-four cases reached a complete healing (healing rate: 22.4%). The median follow-up period in subjects with classified as having chronic wounds was 6.0 months (range: 0.7-21.8 months). Insulin treatment was a part of diabetes management in 52 (61.2%) cases. Insulin therapy significantly increased the wound healing rate (30.3% [20/66 ulcers] vs. 9.8% [4/41 ulcers]) (p = 0.013). In multivariate random-effect logistic regression model, adjusting for age, gender, smoking status, type of diabetes, hypertension, chronic kidney disease, peripheral arterial disease, oral hypoglycemic use, wound infection, involved side, presence of Charcot's deformity, gangrene, osteomyelitis on x-ray, and serum hemoglobin A1C levels, insulin treatment was associated with a higher chance of complete healing (beta ± SE: 15.2 ± 6.1, p = 0.013). Systemic insulin treatment can improve wound healing in diabetic ulcers after adjusting for multiple confounding covariates. © 2017 by the Wound Healing Society.
Li, Wenting; Jiang, Zhengwu; Yang, Zhenghong; Zhao, Nan; Yuan, Weizhong
2013-01-01
Autonomous crack healing of cementitious composite, a construction material that is susceptible to cracking, is of great significance to improve the serviceability and to prolong the longevity of concrete structures. In this study, the St-DVB microcapsules enclosing epoxy resins as the adhesive agent were embedded in cement paste to achieve self-healing capability. The self-healing efficiency was firstly assessed by mechanical restoration of the damaging specimens after being matured. The flexural and compressive configurations were both used to stimulate the localized and distributed cracks respectively. The effects of some factors, including the content of microcapsules, the curing conditions and the degree of damage on the healing efficiency were investigated. Water absorption was innovatively proposed to monitor and characterize the evolution of crack networks during the healing process. The healing cracks were observed by SEM-EDS following. The results demonstrated that the capsule-containing cement paste can achieve the various mechanical restorations depending on the curing condition and the degree of damage. But the voids generated by the surfactants compromised the strength. Though no noticeable improved stiffness obtained, the increasing fracture energy was seen particularly for the specimen acquiring 60% pre-damage. The sorptivity and amount of water decreased with cracks healing by the adhesive, which contributed to cut off and block ingress of water. The micrographs by SEM-EDS also validated that the cracks were bridged by the hardened epoxy as the dominated elements of C and O accounted for 95% by mass in the nearby cracks.
Boon and Bane of Inflammation in Bone Tissue Regeneration and Its Link with Angiogenesis.
Schmidt-Bleek, Katharina; Kwee, Brian J; Mooney, David J; Duda, Georg N
2015-08-01
Delayed healing or nonhealing of bone is an important clinical concern. Although bone, one of the two tissues with scar-free healing capacity, heals in most cases, healing is delayed in more than 10% of clinical cases. Treatment of such delayed healing condition is often painful, risky, time consuming, and expensive. Tissue healing is a multistage regenerative process involving complex and well-orchestrated steps, which are initiated in response to injury. At best, these steps lead to scar-free tissue formation. At the onset of healing, during the inflammatory phase, stationary and attracted macrophages and other immune cells at the fracture site release cytokines in response to injury. This initial reaction to injury is followed by the recruitment, proliferation, and differentiation of mesenchymal stromal cells, synthesis of extracellular matrix proteins, angiogenesis, and finally tissue remodeling. Failure to heal is often associated with poor revascularization. Since blood vessels mediate the transport of circulating cells, oxygen, nutrients, and waste products, they appear essential for successful healing. The strategy of endogenous regeneration in a tissue such as bone is interesting to analyze since it may represent a blueprint of successful tissue formation. This review highlights the interdependency of the time cascades of inflammation, angiogenesis, and tissue regeneration. A better understanding of these inter-relations is mandatory to early identify patients at risk as well as to overcome critical clinical conditions that limit healing. Instead of purely tolerating the inflammatory phase, modulations of inflammation (immunomodulation) might represent a valid therapeutic strategy to enhance angiogenesis and foster later phases of tissue regeneration.
Kato, Toshiki; Khanh, Vuong Cat; Sato, Kazutoshi; Takeuchi, Kosuke; Carolina, Erica; Yamashita, Toshiharu; Sugaya, Hisashi; Yoshioka, Tomokazu; Mishima, Hajime; Ohneda, Osamu
2017-11-18
Glucocorticoids cause the delayed wound healing by suppressing inflammation that is required for wound healing process. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) play an important role for wound healing by their cytokine productions including stromal derived factor 1 (SDF-1). However, it has not been clear how glucocorticoids affect the wound healing ability of AT-MSCs. In this study, we found that glucocorticoid downregulated SDF-1 expression in AT-MSCs. In addition, glucocorticoid-treated AT-MSCs induced less migration of inflammatory cells and impaired wound healing capacity compared with glucocorticoid-untreated AT-MSCs. Of note, prostaglandin E2 (PGE2) synthesis-related gene expression was downregulated by glucocorticoid and PGE2 treatment rescued not only SDF-1 expression in the presence of glucocorticoid but also their wound healing capacity in vivo. Furthermore, we found SDF-1-overexpressed AT-MSCs restored wound healing capacity even after treatment of glucocorticoid. Consistent with the results obtained from glucocorticoid-treated AT-MSCs, we found that AT-MSCs isolated from steroidal osteonecrosis donors (sAT-MSCs) who received chronic glucocorticoid therapy showed less SDF-1 expression and impaired wound healing capacity compared with traumatic osteonecrosis donor-derived AT-MSCs (nAT-MSCs). Moreover, the SDF-1 level was also reduced in plasma derived from steroidal osteonecrosis donors compared with traumatic osteonecrosis donors. These results provide the evidence that concomitant application of AT-MSCs with glucocorticoid shows impaired biological modulatory effects that induce impaired wound healing. Copyright © 2017 Elsevier Inc. All rights reserved.
High probability of healing without amputation of plantar forefoot ulcers in patients with diabetes.
Örneholm, Hedvig; Apelqvist, Jan; Larsson, Jan; Eneroth, Magnus
2015-01-01
Diabetic foot ulcer is an important entity which in many cases is the first serious complication in diabetes. Although a plantar forefoot location is common, there are few studies on larger cohorts and in such studies there is often a combination of various types of ulcer and ulcer locations. The purpose of this study is to discern the outcome of plantar forefoot ulcers and their specific characteristics in a large cohort. All patients (n = 770), presenting with a plantar forefoot ulcer at a multidisciplinary diabetes foot clinic from January 1, 1983 to December 31, 2012 were considered for the study. Seven hundred one patients (median age 67 [22-95]) fulfilled the inclusion criteria and were followed according to a preset protocol until final outcome (healing or death). Severe peripheral vascular disease was present in 26% of the patients and 14% had evidence of deep infection upon arrival at the foot clinic. Fifty-five percent (385/701) of the patients healed without foot surgery, 25% (173/701) healed after major debridement, 9% (60/701) healed after minor or major amputation and 12% (83/701) died unhealed. Median healing time was 17 weeks. An ulcer classified as Wagner grade 1 or 2 at inclusion and independent living were factors associated with a higher healing rate. Seventy-nine percent of 701 patients with diabetes and a plantar forefoot ulcer treated at a multidisciplinary diabetes foot clinic healed without amputation. For one third some form of foot surgery was needed to achieve healing. © 2015 by the Wound Healing Society.
YEOMANS, N D; SVEDBERG, L-E; NAESDAL, J
2006-01-01
Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) increases the risk of serious gastroduodenal events. To minimise these risks, patients often require concomitant acid-suppressive therapy. We conducted a literature review of clinical trials examining use of ranitidine 150 mg twice daily to heal gastroduodenal ulcers (GU) in NSAID recipients. Seven studies were identified. After 8 weeks’ treatment with ranitidine, GU healing rates ranged from 50% to 74% and rates of duodenal ulcer (DU) healing ranged from 81% to 84%. Ranitidine was more effective when NSAIDs were discontinued (healing rates reaching 95% and 100%, respectively). The ulcer healing rate with sucralfate was similar to that of ranitidine. However, proton pump inhibitor (PPI) therapy was associated with significantly greater rates of both GU and DU healing than ranitidine; 8-week GU rates were 92% and 88% with esomeprazole 40 mg and 20 mg, respectively (vs. 74% with ranitidine, p < 0.01). For omeprazole, 8-week healing rates were 87% with omeprazole 40 mg and 84% with omeprazole 20 mg (vs. 64% for ranitidine, p < 0.001), and for lansoprazole the corresponding values were 73–74% and 66–69% for the 30 mg and 15 mg doses, respectively (vs. 50–53% for ranitidine, p < 0.05). In the PPI study reporting DU healing the values were 92% for omeprazole 20 mg (vs. 81% for ranitidine, p < 0.05) and 88% for omeprazole 40 mg (p = 0.17 vs. ranitidine). NSAID-associated GU are more likely to heal when patients receive concomitant treatment with a PPI rather than ranitidine. PMID:17073837
Chen, Mei; Wong, Alex K.; Woodley, David T.; Li, Wei
2014-01-01
Chronic and non-healing skin wounds represent a significant clinical, economic and social problem worldwide. Currently, there are few effective treatments. Lack of well-defined animal models to investigate wound healing mechanisms and furthermore to identify new and more effective therapeutic agents still remains a major challenge. Pig skin wound healing is close to humans. However, standardized pig wound healing models with demonstrated validity for testing new wound healing candidates are unavailable. Here we report a systematic evaluation and establishment of both acute and diabetic wound healing models in pigs, including wound-creating pattern for drug treatment versus control, measurements of diabetic parameters and the time for detecting delayed wound healing. We find that treatment and control wounds should be on the opposite and corresponding sides of a pig. We demonstrate a strong correlation between duration of diabetic conditions and the length of delay in wound closure. Using these new models, we narrow down the minimum therapeutic entity of secreted Hsp90α to a 27-amino acid peptide, called fragment-8 (F-8). In addition, results of histochemistry and immunohistochemistry analyses reveal more organized epidermis and dermis in Hsp90α-healed wounds than the control. Finally, Hsp90α uses a similar signaling mechanism to promote migration of isolated pig and human keratinocytes and dermal fibroblasts. This is the first report that shows standardized pig models for acute and diabetic wound healing studies and proves its usefulness with both an approved drug and a new therapeutic agent. PMID:25464502
Protocol for a systematic review of the efficacy of epidermal grafting for wound healing.
Kanapathy, Muholan; Smith, Oliver J; Hachach-Haram, Nadine; Bystrzonowski, Nicola; Mosahebi, Afshin; Richards, Toby
2016-06-03
Autologous skin grafting is an important modality for wound coverage; however, it can result in donor site morbidity. Epidermal grafting is an emerging option to overcome this challenge. Furthermore, it can be done in an outpatient setting with minimal or no pain. To date, the evidence on the efficacy of this technique for wound healing has yet to be outlined. We aim to synthesise the current evidence on epidermal grafting for wound healing to establish the efficacy of this technique. We will conduct a comprehensive search in the MEDLINE, EMBASE, and CENTRAL databases (up to May 2016) to identify studies on epidermal grafting for wound healing. We will include any primary studies (excluding case reports or case series lesser than three patients) or systematic reviews of such studies to assess the outcome of epidermal grafting for wound healing either on its own or compared to other methods. The expected primary outcome measures are the efficacy of epidermal grafting for wound healing (measured by the proportion of wounds healed at 6 weeks) and the mean wound-healing time (time for complete re-epithelialisation). Secondary outcome measures are the mean donor site-healing time, need for anaesthesia, costs associated with resource use, health-related quality of life, and proportion of patients with adverse event. Subgroup analysis will be performed for the proportions of wounds healed based on wound aetiology. This is a timely systematic review, and the finding of this systematic review is expected to guide research and clinical practice aimed at improving wound care. PROSPERO CRD42016033051.
O'Brien, Kathryn; Bhatia, Ayesha; Tsen, Fred; Chen, Mei; Wong, Alex K; Woodley, David T; Li, Wei
2014-01-01
Chronic and non-healing skin wounds represent a significant clinical, economic and social problem worldwide. Currently, there are few effective treatments. Lack of well-defined animal models to investigate wound healing mechanisms and furthermore to identify new and more effective therapeutic agents still remains a major challenge. Pig skin wound healing is close to humans. However, standardized pig wound healing models with demonstrated validity for testing new wound healing candidates are unavailable. Here we report a systematic evaluation and establishment of both acute and diabetic wound healing models in pigs, including wound-creating pattern for drug treatment versus control, measurements of diabetic parameters and the time for detecting delayed wound healing. We find that treatment and control wounds should be on the opposite and corresponding sides of a pig. We demonstrate a strong correlation between duration of diabetic conditions and the length of delay in wound closure. Using these new models, we narrow down the minimum therapeutic entity of secreted Hsp90α to a 27-amino acid peptide, called fragment-8 (F-8). In addition, results of histochemistry and immunohistochemistry analyses reveal more organized epidermis and dermis in Hsp90α-healed wounds than the control. Finally, Hsp90α uses a similar signaling mechanism to promote migration of isolated pig and human keratinocytes and dermal fibroblasts. This is the first report that shows standardized pig models for acute and diabetic wound healing studies and proves its usefulness with both an approved drug and a new therapeutic agent.
Vaghela, C; Robinson, N; Gore, J; Peace, B; Lorenc, A
2007-11-01
The real-life practice of 'healing' for cancer in the community as perceived by clients and healers was investigated in a multi-method pilot study. Fifteen clients received six weekly healing sessions. Pre- and post-changes in perception towards well-being and client experience were assessed by EuroQol (EQ-5D), measure yourself concerns and well-being (MYCaW) and a client satisfaction tool. Qualitative methods, including focus groups, explored the perceived effects of healing in more depth and the participants' experience of taking part in research. The study was not designed to test the effect of healing on disease. Quantitative data showed perceived significant improvements in 'concerns/problems' for which clients wanted help (p<0.01), well-being (p<0.01) and anxiety/depression (p<0.05) over the course of healing. Significant effects were not seen in all areas of quality of life. Qualitative analysis showed clients mainly sought help for psychological and emotional concerns and reported only beneficial effects of healing. Clients attributed many of the quantitative improvements to healing itself. Despite some concerns, healers and clients engaged fully with the research process, and were enthusiastic about the importance of research into healing. Our study suggests that, while there are some confounding issues and study limitations to address, clients and healers perceive healing to have a range of benefits, particularly in terms of coping with cancer, and regard it as a useful approach that can be applied in a community setting alongside conventional medicine.
Zhang, Qing; Dong, Hua; Li, Yuli; Zhu, Ye; Zeng, Lei; Gao, Huichang; Yuan, Bo; Chen, Xiaofeng; Mao, Chuanbin
2015-10-21
Surface topography can affect cell adhesion, morphology, polarity, cytoskeleton organization, and osteogenesis. However, little is known about the effect of topography on the fracture healing in repairing nonunion and large bone defects. Microgrooved topography on the surface of bone implants may promote cell migration into the fracture gap to accelerate fracture healing. To prove this hypothesis, we used an in vitro fracture (wound) healing assay on the microgrooved polycaprolactone substrates to study the effect of microgroove widths and depths on the osteoblast-like cell (MG-63) migration and the subsequent healing. We found that the microgrooved substrates promoted MG-63 cells to migrate collectively into the wound gap, which serves as a fracture model, along the grooves and ridges as compared with the flat substrates. Moreover, the groove widths did not show obvious influence on the wound healing whereas the smaller groove depths tended to favor the collective cell migration and thus subsequent healing. The microgrooved substrates accelerated the wound healing by facilitating the collective cell migration into the wound gaps but not by promoting the cell proliferation. Furthermore, microgrooves were also found to promote the migration of human mesenchymal stem cells (hMSCs) to heal the fracture model. Though osteogenic differentiation of hMSCs was not improved on the microgrooved substrate, collagen I and minerals deposited by hMSCs were organized in a way similar to those in the extracellular matrix of natural bone. These findings suggest the necessity in using microgrooved implants in enhancing fracture healing in bone repair.
Repetitive Biomimetic Self-healing of Ca2+-Induced Nanocomposite Protein Hydrogels
NASA Astrophysics Data System (ADS)
Chen, Jun; Dong, Qiuchen; Ma, Xiaoyu; Fan, Tai-Hsi; Lei, Yu
2016-08-01
Self-healing is a capacity observed in most biological systems in which the healing processes are autonomously triggered after the damage. Inspired by this natural behavior, researchers believed that a synthetic material possessing similar self-recovery capability could also be developed. Albeit various intrinsic self-healing systems have been developed over the past few decades, restriction on the biocompatibility due to the required synthetic conditions under extreme pH and with poisonous cross-linker significantly limits their application in biomedical field. In this study, a highly biocompatible nanocomposite protein hydrogel with excellent biomimetic self-healing property is presented. The self-healing protein gel is made by inducing calcium ions into the mixture of heat-induced BSA nano-aggregates and pristine BSA molecules at room temperature and under physiological pH due to the ion-mediated protein-protein association and the bridging effect of divalent Ca2+ ions. The as-prepared protein hydrogel shows excellent repetitive self-healing properties without using any external stimuli at ambient condition. Such outstanding self-recovery performance was quantitatively evaluated/validated by both dynamic and oscillatory rheological analysis. Moreover, with the presence of calcium ions, the self-healing behavior can be significantly facilitated/enhanced. Finally, the superior biocompatibility demonstrated by in vitro cytotoxicity analysis suggests that it is a promising self-healing material well-suited for biomedical applications.
Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10.
Mao, Zhigang; Wu, Jeffrey H; Dong, Tingting; Wu, Mei X
2016-02-02
Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.
Repetitive Biomimetic Self-healing of Ca2+-Induced Nanocomposite Protein Hydrogels
Chen, Jun; Dong, Qiuchen; Ma, Xiaoyu; Fan, Tai-Hsi; Lei, Yu
2016-01-01
Self-healing is a capacity observed in most biological systems in which the healing processes are autonomously triggered after the damage. Inspired by this natural behavior, researchers believed that a synthetic material possessing similar self-recovery capability could also be developed. Albeit various intrinsic self-healing systems have been developed over the past few decades, restriction on the biocompatibility due to the required synthetic conditions under extreme pH and with poisonous cross-linker significantly limits their application in biomedical field. In this study, a highly biocompatible nanocomposite protein hydrogel with excellent biomimetic self-healing property is presented. The self-healing protein gel is made by inducing calcium ions into the mixture of heat-induced BSA nano-aggregates and pristine BSA molecules at room temperature and under physiological pH due to the ion-mediated protein-protein association and the bridging effect of divalent Ca2+ ions. The as-prepared protein hydrogel shows excellent repetitive self-healing properties without using any external stimuli at ambient condition. Such outstanding self-recovery performance was quantitatively evaluated/validated by both dynamic and oscillatory rheological analysis. Moreover, with the presence of calcium ions, the self-healing behavior can be significantly facilitated/enhanced. Finally, the superior biocompatibility demonstrated by in vitro cytotoxicity analysis suggests that it is a promising self-healing material well-suited for biomedical applications. PMID:27545280
An ordinary differential equation model for full thickness wounds and the effects of diabetes.
Bowden, L G; Maini, P K; Moulton, D E; Tang, J B; Wang, X T; Liu, P Y; Byrne, H M
2014-11-21
Wound healing is a complex process in which a sequence of interrelated phases contributes to a reduction in wound size. For diabetic patients, many of these processes are compromised, so that wound healing slows down. In this paper we present a simple ordinary differential equation model for wound healing in which attention focusses on the dominant processes that contribute to closure of a full thickness wound. Asymptotic analysis of the resulting model reveals that normal healing occurs in stages: the initial and rapid elastic recoil of the wound is followed by a longer proliferative phase during which growth in the dermis dominates healing. At longer times, fibroblasts exert contractile forces on the dermal tissue, the resulting tension stimulating further dermal tissue growth and enhancing wound closure. By fitting the model to experimental data we find that the major difference between normal and diabetic healing is a marked reduction in the rate of dermal tissue growth for diabetic patients. The model is used to estimate the breakdown of dermal healing into two processes: tissue growth and contraction, the proportions of which provide information about the quality of the healed wound. We show further that increasing dermal tissue growth in the diabetic wound produces closure times similar to those associated with normal healing and we discuss the clinical implications of this hypothesised treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wound Healing in PatientsWith Cancer
Payne, Wyatt G.; Naidu, Deepak K.; Wheeler, Chad K.; Barkoe, David; Mentis, Marni; Salas, R. Emerick; Smith, David J.; Robson, Martin C.
2008-01-01
Objective: The treatment of patients with cancer has advanced into a complex, multimodal approach incorporating surgery, radiation, and chemotherapy. Managing wounds in this population is complicated by tumor biology, the patient's disease state, and additional comorbidities, some of which may be iatrogenic. Radiation therapy, frequently employed for local-regional control of disease following surgical resection, has quantifiable negative healing effects due to local tissue fibrosis and vascular effects. Chemotherapeutic agents, either administered alone or as combination therapy with surgery and radiation, may have detrimental effects on the rapidly dividing tissues of healing wounds. Overall nutritional status, often diminished in patients with cancer, is an important aspect to the ability of patients to heal after surgical procedures and/or treatment regimens. Methods: An extensive literature search was performed to gather pertinent information on the topic of wound healing in patients with cancer. The effects that surgical procedures, radiation therapy, chemotherapy, and nutritional deficits play in wound healing in these patients were reviewed and collated. Results: The current knowledge and treatment of these aspects of wound healing in cancer patients are discussed, and observations and recommendations for optimal wound healing results are considered. Conclusion: Although wound healing may proceed in a relatively unimpeded manner for many patients with cancer, there is a potential for wound failure due to the nature and effects of the oncologic disease process and its treatments. PMID:18264518
Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10
NASA Astrophysics Data System (ADS)
Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.
2016-02-01
Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.
Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10
Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.
2016-01-01
Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study. PMID:26830658
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suryanto, B., E-mail: b.suryanto@hw.ac.uk; Buckman
Environmental Scanning Electron Microscopy (ESEM) is used to study the origin of micro-crack healing in an Engineered Cementitious Composite (ECC). ESEM images were acquired from ECC specimens cut from pre-cracked, dog-bone samples which then subjected to submerged curing followed by exposure to the natural environment. The mineralogical and chemical compositions of the healing products were determined using the EDX facility in the ESEM. It is shown that the precipitation of calcium carbonate is the main contributor to micro-crack healing at the crack mouth. The healing products initially appeared in an angular rhombohedral morphology which then underwent a discernable transformation inmore » size, shape and surface texture, from relatively flat and smooth to irregular and rough, resembling the texture of the original surface areas surrounding the micro-cracks. It is also shown that exposure to the natural environment, involving intermittent wetting/drying cycles, promotes additional crystal growth, which indicates enhanced self-healing capability in this environment. - Highlights: •ESEM with EDX used to characterize the origin of micro-crack healing in an ECC •Evolution of healing precipitates studied at three specific locations over four weeks •Specimens exposed to laboratory environment, followed by the natural environment •Calcium carbonate is the main contributor to crack healing at the crack mouth. •Outdoor exposure involving intermittent rain promotes additional crystal growth.« less
Kieves, N R; MacKay, C S; Adducci, K; Rao, S; Goh, C; Palmer, R H; Duerr, F M
2015-01-01
To evaluate the influence of shock wave therapy (SWT) on radiographic evidence of bone healing after tibial plateau leveling osteotomy (TPLO). Healthy dogs between two to nine years of age that underwent TPLO were randomly assigned to receive either electro-hydraulic SWT (1,000 shocks) or sham treatment (SHAM). Treatment or SHAM was administered to the osteotomy site immediately postoperatively and two weeks postoperatively. Three blinded radiologists evaluated orthogonal radiographs performed eight weeks postoperatively with both a 5-point and a 10-point bone healing scale. Linear regression analysis was used to compare median healing scores between groups. Forty-two dogs (50 stifles) were included in the statistical analysis. No major complications were observed and all osteotomies healed uneventfully. The median healing scores were significantly higher at eight weeks postoperatively for the SWT group compared to the SHAM group for the 10-point (p <0.0002) and 5-point scoring systems (p <0.0001). Shock wave therapy applied immediately and two weeks postoperatively led to more advanced bone healing at the eight week time point in this study population. The results of this study support the use of electro-hydraulic SWT as a means of accelerating acute bone healing of canine osteotomies. Additional studies are needed to evaluate its use for acceleration of bone healing following fracture, or with delayed union.
2007 Beyond SBIR Phase II: Bringing Technology Edge to the Warfighter
2007-08-23
Systems Trade-Off Analysis and Optimization Verification and Validation On-Board Diagnostics and Self - healing Security and Anti-Tampering Rapid...verification; Safety and reliability analysis of flight and mission critical systems On-Board Diagnostics and Self - Healing Model-based monitoring and... self - healing On-board diagnostics and self - healing ; Autonomic computing; Network intrusion detection and prevention Anti-Tampering and Trust
2015-07-21
typically degrade quickly and are not capable of forming new bonds. In the 1930s it was already found that vulcanized rubber could self - heal in the...To overcome this limitation, Diesendruck et al. demonstrated Scheme 1. Mechanochemical scission and self - healing in vulcanized rubber . Long-lived...effective autonomic self - healing for soft materials. Cordier et al. prepared supramolecular rubbers based on hydrogen bonding between urea-functionalized
ERIC Educational Resources Information Center
Dufrene, Phoebe
This report on how Native American healing methods can be utilized in Western creative art therapy emphasizes that for Native Americans, art is an element of life--not a separate aesthetic ideal. Furthermore, American Indian philosophy does not separate healing from art or religion; the belief is that traditional healing, which uses shamanic…
[Wound healing is still a game of " blind men and an elephant"].
Han, C M
2016-10-20
The wound healing includes non-healing and overhealing of the wounds. The results of wound healing are well known by people such as non-healing of the diabetic ulcer or hypertrophic scar after deep burn. In this issue, three papers involve in wound healing, one about autologous adipose-derived mesenchymal stem cells injected into wound or scar of rabbit ear, one about severe hypoxia and hypoalbuminemia inducing human hypertrophic scar derived fibroblast apoptosis in vitro, and another about the dysfunction of protein kinase B/mammalian target of rapamycin signaling pathway contributing to the pathophysiological characteristics of diabetic skin and non-healing wound. The basic problem of hypertrophic scar study is lacking an ideal animal model. Although rabbit ear model or red Duroc pig model has been used widely for study on hypertrophic scar, they can not fully represent human dermal fibrosis after deep trauma on the skin. I recommend A novel nude mouse model of hypertrophic scarring using scratched full thickness human skin grafts recently published in Advances in Wound Care to the readers. The author emphasizes that the wound healing study is still in the situation like the game of " blind men and an elephant" .
Self-healing of damage inside metals triggered by electropulsing stimuli.
Song, Hui; Wang, Zhong-Jin; He, Xiao-Dong; Duan, Jie
2017-08-02
The microscopic defects that distributed randomly in metals are not only hard to detect, but also may inevitably cause catastrophic failure. Thus, autonomic probing and healing for damage inside metals continue to be a challenging. Here we show a novel approach for self-healing using electropulsing as a stimulus to trigger repairing of damaged metals. This is achieved via a process that through expelling absolutely currents, the microcrack causes them to be redistributed to form a concentrated and a diluted region around it, thereby inducing an extremely high temperature gradient and a large compressive stress, which drive material flow to close microcracks. Simultaneously, a large enough heat for bonding atoms was produced. That is, the microcrack as an empty cavity can be regarded as a special micro-device to shape a localized microscopic energy field, which in turn activates a healing process. The microstructure and mechanical property verified the extrinsic self-healing of a titanium alloy. The process is performed on a short timescale, is enable to detect automatically and act directly on the internal defects in metals, and to heal damage without any healing agent, long time heating as well as applied high pressure, offering unique advantages over conventional healing approaches.
The experience of being an Anishinabe man healer: ancient healing in a modern world.
Struthers, Roxanne; Eschiti, Valerie S; Patchell, Beverly
2008-01-01
The purpose was to understand the experience of being an Anishinabe man healer. Of particular relevance, healers explained how they provide Indigenous health care in a world dominated by Western biomedicine. A phenomenological approach was utilized to interview four Anishinabe men healers who reside in the United States and Canada. In-person interviews were conducted using an interview guide. The interviews were audiotaped when permitted; otherwise notes were taken. Data analysis was conducted using techniques from Colaizzi and van Manen. Seven themes were identified: (1) The Healer's Path, (2) Health as Wholeness, (3) Healing Ways, (4) Healing Stories, (5) Culture Interwoven with Healing, (6) Healing Exchange, and (7) Connection with Western Medicine. The themes identified inform nursing practice by pointing out the importance of culture within traditional Indigenous healing, as well as the need for a holistic approach when caring for Indigenous people. Additionally, the Indigenous men healers acknowledged their connection with Western medicine as part of the process of healing for their clients. This emphasizes the need for nurses and other health care providers to become knowledgeable regarding traditional Indigenous healing that their clients may be receiving, in order to foster open communication.
A Human Model of Small Fiber Neuropathy to Study Wound Healing
Illigens, Ben M. W.; Gibbons, Christopher H.
2013-01-01
The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001) and day 14 (P<0.001). Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01). In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy. PMID:23382960
Lee, Yong-Soo; Ryou, Jae-Suk
2016-01-01
Various self-healing methods for concrete, such as the use of supplementary cementitious materials, adhesive agents, mineral admixtures, and bacteria, have been suggested to date, and each of these has merits and demerits. Among these, however, the use of cementitious materials may be appropriate due to their good healing efficiency, low cost, and compatibility with the cement matrix. In this study, granulation and coating methods were applied to a new cementitious composite material. The self-healing property of these materials was controlled by the polyvinyl alcohol (PVA) coating until cracks were created. Water dissolved the PVA coating after entering through the cracks, and reacted with the healing materials to generate healing products. The self-healing performance was evaluated at various elapsed times through the measurement of the crack widths, visual observation, and examination of the microscopic images. Simultaneously, a water permeability test was performed and the dynamic modulus of elasticity was measured to verify the recovery of the cracks. In addition, the healing products that had been formed in the cracks were analyzed via X-ray diffraction (XRD) and scanning electron microscopy (SEM). PMID:28773677
Autonomous stimulus triggered self-healing in smart structural composites
NASA Astrophysics Data System (ADS)
Norris, C. J.; White, J. A. P.; McCombe, G.; Chatterjee, P.; Bond, I. P.; Trask, R. S.
2012-09-01
Inspired by the ability of biological systems to sense and autonomously heal damage, this research has successfully demonstrated the first autonomous, stimulus triggered, self-healing system in a structural composite material. Both the sensing and healing mechanisms are reliant on microvascular channels incorporated within a laminated composite material. For the triggering mechanism, a single air filled vessel was pressurized, sealed and monitored. Upon drop weight impact (10 J), delamination and microcrack connectivity between the pressurized vessel and those open to ambient led to a pressure loss which, with the use of a suitable sensor, triggered a pump to deliver a healing agent to the damage zone. Using this autonomous healing approach, near full recovery of post-impact compression strength was achieved (94% on average). A simplified alternative system with healing agent continuously flowing through the vessels, akin to blood flow, was found to offer 100% recovery of the material’s virgin strength. Optical microscopy and ultrasonic C-scanning provided further evidence of large-scale infusion of matrix damage with the healing agent. The successful implementation of this bioinspired technology could substantially enhance the integrity and reliability of aerospace structures, whilst offering benefits through improved performance/weight ratios and extended lifetimes.
Lee, Yong-Soo; Ryou, Jae-Suk
2016-07-09
Various self-healing methods for concrete, such as the use of supplementary cementitious materials, adhesive agents, mineral admixtures, and bacteria, have been suggested to date, and each of these has merits and demerits. Among these, however, the use of cementitious materials may be appropriate due to their good healing efficiency, low cost, and compatibility with the cement matrix. In this study, granulation and coating methods were applied to a new cementitious composite material. The self-healing property of these materials was controlled by the polyvinyl alcohol (PVA) coating until cracks were created. Water dissolved the PVA coating after entering through the cracks, and reacted with the healing materials to generate healing products. The self-healing performance was evaluated at various elapsed times through the measurement of the crack widths, visual observation, and examination of the microscopic images. Simultaneously, a water permeability test was performed and the dynamic modulus of elasticity was measured to verify the recovery of the cracks. In addition, the healing products that had been formed in the cracks were analyzed via X-ray diffraction (XRD) and scanning electron microscopy (SEM).
Tawfick, Wael A; Sultan, Sherif
2013-01-01
Topical wound oxygen (TWO(2)) proposes an option in the management of refractory nonhealing venous ulcers (RVUs). End points are proportion of ulcers healed at 12 weeks, recurrence rates, reduction in ulcer size, and time to full healing. A total of 67 patients with RVU were managed using TWO(2) and 65 patients with conventional compression dressings (CCDs) for 12 weeks or till full healing. Mean reduction in ulcer surface area at 12 weeks was 96% in patients managed with TWO(2) and 61% in patients managed with CCD. At 12 weeks, 76% of the TWO(2)-managed ulcers had completely healed, compared to 46% of the CCD-managed ulcers (P < .0001). Median time to full healing was 57 days in patients managed with TWO(2) and 107 days in patients managed with CCD (P< .0001). After 36 months follow-up, 14 of the 30 healed CCD ulcers showed recurrence compared to 3 of the 51 TWO(2)-healed ulcers. The TWO(2) is effective and valuable in managing RVU. The TWO(2) slashes the time required for RVU healing and radically decreases the recurrence rates.
Armstrong, David G; Lavery, Lawrence A; Wu, Stephanie; Boulton, Andrew J M
2005-03-01
The purpose of this study was to evaluate the effectiveness of a removable cast walker (RCW) and an "instant" total contact cast (iTCC) in healing neuropathic diabetic foot ulcerations. We randomly assigned 50 patients with University of Texas grade 1A diabetic foot ulcerations into one of two off-loading treatment groups: an RCW or the same RCW wrapped with a cohesive bandage (iTCC) so patients could not easily remove the device. Subjects were evaluated weekly for 12 weeks or until wound healing. An intent-to-treat analysis showed that a higher proportion of patients had ulcers that were healed at 12 weeks in the iTCC group than in the RCW group (82.6 vs. 51.9%, P = 0.02, odds ratio 1.8 [95% CI 1.1-2.9]). Of the patients with ulcers that healed, those treated with an iTCC healed significantly sooner (41.6 +/- 18.7 vs. 58.0 +/- 15.2 days, P = 0.02). Modification of a standard RCW to increase patient adherence to pressure off-loading may increase both the proportion of ulcers that heal and the rate of healing of diabetic neuropathic wounds.
Efficacy of Jasminum grandiflorum L. leaf extract on dermal wound healing in rats.
Chaturvedi, Adya P; Kumar, Mohan; Tripathi, Yamini B
2013-12-01
Wound healing is a fundamental response to tissue injury and natural products accelerate the healing process. Here, we have explored the efficacy of topical administration of an ointment, prepared by methanolic extract of Jasminum grandiflorum L. (Oleaceae) leaves, on cutaneous wound healing in rats. The topical application of the Jasminum ointment on full thickness excision wounds accelerated the healing process. Tissue growth and collagen synthesis were significantly higher determined by total hydroxyl proline, hexosamine, protein and DNA content. The response was concentration- and time-dependent, when observed on days 4, 8 and 12 after wound creation. The rate of wound healing was faster as determined by wound contraction, tensile strength and other histopathological changes. In addition, this ointment also raised the activity of superoxide dismutase (SOD) and catalase (CAT) with high GSH content and low lipid peroxidation products in wound tissue. Thus, it could be suggested that the ointment from the methanolic extract of J. grandiflorum leaf improves the rate of wound healing by enhancing the rate of collagen synthesis and also by improving the antioxidant status in the newly synthesised healing wound tissue. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.
Assessment of the relation between prealbumin serum level and healing of skin-grafted burn wounds.
Moghazy, A M; Adly, O A; Abbas, A H; Moati, T A; Ali, O S; Mohamed, B A
2010-06-01
Nutritional status is an important factor in graft healing. Prealbumin (transthyretin) is a better nutritional marker than the widely used albumin serum level. Prealbumin serum levels were estimated in an endeavour to correlate them to graft healing and to serve as a predictor of graft healing in burn wounds. Fifty burned patients undergoing graft in the Suez Canal University Hospital Burn Unit were subjected to this cross-sectional study. Prealbumin levels were assessed on preoperative day and on the fourth postoperative day. Graft healing was considered complete when the take was 90% or more of the grafted area. The most significantly correlated factor to graft healing was serum prealbumin. Serum albumin levels were not in significant correlation with graft healing or prealbumin levels. In addition, serum prealbumin levels were significantly higher in the younger age group and significantly lower in patients with chronic diseases. Serum prealbumin level is a sensitive tool in predicting graft take in burned patients when all local conditions are favourable and optimised. Nevertheless, it seems less sensitive in the prediction of graft healing in small raw areas less than 5% of total body surface area (TBSA). (c) 2009 Elsevier Ltd and ISBI. All rights reserved.
Tuttle, Marie S.; Mostow, Eliot; Mukherjee, Pranab; Hu, Fen Z.; Melton-Kreft, Rachael; Ehrlich, Garth D.; Dowd, Scot E.; Ghannoum, Mahmoud A.
2011-01-01
Microbial infections delay wound healing, but the effect of the composition of the wound microbiome on healing parameters is unknown. To better understand bacterial communities in chronic wounds, we analyzed debridement samples from lower-extremity venous insufficiency ulcers using the following: conventional anaerobic and aerobic bacterial cultures; the Ibis T5000 universal biosensor (Abbott Molecular); and 16S 454 FLX titanium series pyrosequencing (Roche). Wound debridement samples were obtained from 10 patients monitored clinically for at least 6 months, at which point 5 of the 10 sampled wounds had healed. Pyrosequencing data revealed significantly higher bacterial abundance and diversity in wounds that had not healed at 6 months. Additionally, Actinomycetales was increased in wounds that had not healed, and Pseudomonadaceae was increased in wounds that had healed by the 6-month follow-up. Baseline wound surface area, duration, or analysis by Ibis or conventional culture did not reveal significant differences between wounds that healed after 6 months and those that did not. Thus, pyrosequencing identified distinctive baseline characteristics of wounds that did not heal by the 6-month follow-up, furthering our understanding of potentially unique microbiome characteristics of chronic wounds. PMID:21880958
Substance P Promotes Wound Healing in Diabetes by Modulating Inflammation and Macrophage Phenotype
Leal, Ermelindo C.; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E.; Kokkotou, Efi; Mooney, David J.; LoGerfo, Frank W.; Pradhan-Nabzdyk, Leena; Veves, Aristidis
2016-01-01
Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. PMID:25871534
Effect of animal products and extracts on wound healing promotion in topical applications: a review.
Napavichayanun, Supamas; Aramwit, Pornanong
2017-06-01
Wound healing is a natural process of body reaction to repair itself after injury. Nonetheless, many internal and external factors such as aging, comorbidity, stress, smoking, alcohol drinking, infections, malnutrition, or wound environment significantly affect the quality and speed of wound healing. The unsuitable conditions may delay wound healing process and cause chronic wound or scar formation. Therefore, many researches have attempted to search for agents that can accelerate wound healing with safety and biocompatibility to human body. Widely studied wound healing agents are those derived from either natural sources including plants and animals or chemical synthesis. The natural products seem to be safer and more biocompatible to human tissue. This review paper demonstrated various kinds of the animal-derived products including chitosan, collagen, honey, anabolic steroids, silk sericin, peptides, and proteoglycan in term of mechanisms of action, advantages, and disadvantages when applied as wound healing accelerator. The benefits of these animal-derived products are wound healing promotion, anti-inflammatory, antimicrobial activity, moisturizing effect, biocompatibility, and safety. However, the drawbacks such as allergy, low stability, batch-to-batch variability, and high extraction and purification costs could not be avoided in some products.
Walach, H
2006-08-01
Spiritual healing and healing through prayer have been among the methods for healing diseases of mankind since time immemorial. Even today they are quite popular in many parts of the Western world, as epidemiological data testify. Also in Germany, although less systematic data are available, spiritual healing is being used quite a lot. This interest is driven mainly by word of mouth and media presentation of spectacular single case descriptions of healing. Scientifically speaking, such cases present a challenge to science to understand the mechanisms at work. Systematic scientific studies, however, are rather sporadic and sometimes amateur-like efforts. However, the data available show two general results: patients seeking out healing normally profit to a clinically significant degree. At the same time, there is little evidence that these effects are specific in nature. It could be the case that the mechanisms at work--if there are any specific mechanisms at all--do not follow the normal expected causal routes of activity, and hence the methodology applied might be misguided or incapable of capturing the effects. If there are generalised non-local effects at work, a hypothesis worth testing, then this has profound consequences both for research and for the interpretation of results.
Assessment of Composite Delamination Self-Healing Under Cyclic Loading
NASA Technical Reports Server (NTRS)
O'Brien, T. Kevin
2009-01-01
Recently, the promise of self-healing materials for enhanced autonomous durability has been introduced using a micro-encapsulation technique where a polymer based healing agent is encapsulated in thin walled spheres and embedded into a base polymer along with a catalyst phase. For this study, composite skin-stiffener flange debonding specimens were manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin-walled spheres. Constant amplitude fatigue tests in three-point bending showed the effect of self-healing on the fatigue response of the skin-stiffener flange coupons. After the cycling that created debonding, fatigue tests were held at the mean load for 24 hours. For roughly half the specimens tested, when the cyclic loading was resumed a decrease in compliance (increase in stiffness) was observed, indicating that some healing had occurred. However, with continued cycling, the specimen compliance eventually increased to the original level before the hold, indicating that the damage had returned to its original state. As was noted in a prevoius study conducted with specimens tested under monotonically increasing loads to failure, healing achieved via the micro-encapsulation technique may be limited to the volume of healing agent available relative to the crack volume.
Biomarkers for wound healing and their evaluation.
Patel, S; Maheshwari, A; Chandra, A
2016-01-01
A biological marker (biomarker) is a substance used as an indicator of biological state. Advances in genomics, proteomics and molecular pathology have generated many candidate biomarkers with potential clinical value. Research has identified several cellular events and mediators associated with wound healing that can serve as biomarkers. Macrophages, neutrophils, fibroblasts and platelets release cytokines molecules including TNF-α, interleukins (ILs) and growth factors, of which platelet-derived growth factor (PDGF) holds the greatest importance. As a result, various white cells and connective tissue cells release both matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). Studies have demonstrated that IL-1, IL-6, and MMPs, levels above normal, and an abnormally high MMP/TIMP ratio are often present in non-healing wounds. Clinical examination of wounds for these mediators could predict which wounds will heal and which will not, suggesting use of these chemicals as biomarkers of wound healing. There is also evidence that the application of growth factors like PDGF will alleviate the recuperating process of chronic, non-healing wounds. Finding a specific biomarker for wound healing status would be a breakthrough in this field and helping treat impaired wound healing.
Gizaw, Mulugeta; Thompson, Jeffrey; Faglie, Addison; Lee, Shih-Yu; Neuenschwander, Pierre; Chou, Shih-Feng
2018-01-01
Wound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g., gels and creams) have demonstrated only a slow improvement with current available technologies. Among all available current technologies, electrospun fibers exhibit several characteristics that may provide novel replacement dressing materials for the above-mentioned wounds. Therefore, in this review, we focus on recent achievements in electrospun drug-eluting fibers for wound healing applications. In particular, we review drug release, including small molecule drugs, proteins and peptides, and gene vectors from electrospun fibers with respect to wound healing. Furthermore, we provide an overview on multifunctional dressing materials based on electrospun fibers, including those that are capable of achieving wound debridement and wound healing simultaneously as well as multi-drugs loading/types suitable for various stages of the healing process. Our review provides important and sufficient information to inform the field in development of fiber-based dressing materials for clinical treatment of non-healing wounds. PMID:29382065
Krzyszczyk, Paulina; Schloss, Rene; Palmer, Andre; Berthiaume, François
2018-01-01
Macrophages play key roles in all phases of adult wound healing, which are inflammation, proliferation, and remodeling. As wounds heal, the local macrophage population transitions from predominantly pro-inflammatory (M1-like phenotypes) to anti-inflammatory (M2-like phenotypes). Non-healing chronic wounds, such as pressure, arterial, venous, and diabetic ulcers indefinitely remain in inflammation—the first stage of wound healing. Thus, local macrophages retain pro-inflammatory characteristics. This review discusses the physiology of monocytes and macrophages in acute wound healing and the different phenotypes described in the literature for both in vitro and in vivo models. We also discuss aberrations that occur in macrophage populations in chronic wounds, and attempts to restore macrophage function by therapeutic approaches. These include endogenous M1 attenuation, exogenous M2 supplementation and endogenous macrophage modulation/M2 promotion via mesenchymal stem cells, growth factors, biomaterials, heme oxygenase-1 (HO-1) expression, and oxygen therapy. We recognize the challenges and controversies that exist in this field, such as standardization of macrophage phenotype nomenclature, definition of their distinct roles and understanding which phenotype is optimal in order to promote healing in chronic wounds. PMID:29765329
A human model of small fiber neuropathy to study wound healing.
Illigens, Ben M W; Gibbons, Christopher H
2013-01-01
The aim of this study was to develop a human model of acute wound healing that isolated the effects of small fiber neuropathy on the healing process. Twenty-five healthy subjects had the transient receptor vanilloid 1 agonist capsaicin and placebo creams topically applied to contralateral areas on the skin of the thigh for 48 hours. Subjects had shallow (1.2 millimeter) and deep (>3 millimeter) punch skin biopsies from each thigh on days 1 and 14. Biopsy wound healing was monitored photographically until closure. Intra-epidermal and sweat-gland nerve fiber densities were measured for each biopsy. Shallow wounds in capsaicin-treated sites healed more slowly than in placebo treated skin with biopsies taken on day 1 (P<0.001) and day 14 (P<0.001). Deep biopsies in the capsaicin and placebo areas healed at similar rates at both time points. Nerve fiber densities were reduced only in capsaicin treated regions (P<0.01). In conclusion, topical application of capsaicin causes a small fiber neuropathy and is associated with a delay in healing of shallow, but not deep wounds. This novel human model may prove valuable in the study of wound healing in patients with neuropathy.
Healing of corneal epithelial wounds in marine and freshwater fish.
Ubels, J L; Edelhauser, H F
The corneal epithelium of a fish is in direct contact with the aquatic environment and is a barrier to movement of ions and water into and through the cornea. This tissue layer is thus important in maintenance of corneal transparency. When the epithelium is wounded, its protective function is lost and corneal transparency remains compromised until the epithelial barrier is re-established. This study was undertaken to investigate the healing response of the fish cornea to epithelial abrasion. Wounds were stained with fluorescein and photographed during healing. Wound areas were measured by planimetry. The cornea of the sculpin, a marine teleost, becomes edematous after wounding and heals at 2.54 to 3.42 mm2/hr. Nonswelling corneas of the elasmobranchs--dogfish shark and skate--heal at 1.29 mm2/hr, respectively. The wounded eye of the rainbow trout, a freshwater teleost, is stressed by the low osmolality of the environment. Severe corneal edema and cataracts develop following epithelial wounding, and the cornea heals at 0.64 mm2/hr. Although the healing rates in teleosts differ from those in mammals, histology shows that the corneal healing mechanism is essentially the same in fish and mammals.
Ritual and ceremony in intraoperative magnetic resonance imaging-assisted brain surgery.
Gellert, Vance
2012-01-01
Previous photographic research into traditional and shamanic healing practices in Peru and Bolivia and a review of the literature suggested that all medical practices have cultural determined nonmedical activities as integral parts of the healing encounter. These include costume, ritual, ceremony, environment factors that were looked for in a western clinical encounter for this paper. A patient was followed through pre-op preparation and iMRI assisted brain surgery. All activities were photographed extensively and evaluated in a broader healing context. A number of activities were visually and metaphorically comparable with those seen in other practices. These are discussed as rituals of intention on the part of the caregivers to focus their skills on healing and also to mindfully engage the patient in the healing process. Artistic observation and analysis may be an effective way to identify these non quantifiable elements of the healing encounter and suggest directions for further research into the emotional components of the healing process. Copyright © 2012 Elsevier Inc. All rights reserved.
Puncture Self-Healing Polymers for Aerospace Applications
NASA Technical Reports Server (NTRS)
Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.
2011-01-01
Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.
Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay
Zhou, Enhua H; Watson, Christa; Pizzo, Richard; Cohen, Joel; Dang, Quynh; de Barros, Pedro Macul Ferreira; Park, Chan Young; Chen, Cheng; Brain, Joseph D; Butler, James P; Ruberti, Jeffrey W; Fredberg, Jeffrey J; Demokritout, Philip
2015-01-01
Aim As engineered nanoparticles (ENPs) increasingly enter consumer products, humans become increasingly exposed. The first line of defense against ENPs is the epithelium, the integrity of which can be compromised by wounds induced by trauma, infection, or surgery, but the implications of ENPs on wound healing are poorly understood. Materials & methods Herein, we developed an in vitro assay to assess the impact of ENPs on the wound healing of cells from human cornea. Results & discussion We show that industrially relevant ENPs impeded wound healing and cellular migration in a manner dependent on the composition, dose and size of the ENPs as well as cell type. CuO and ZnO ENPs impeded both viability and wound healing for both fibroblasts and epithelial cells. Carboxylated polystyrene ENPs retarded wound healing of corneal fibroblasts without affecting viability. Conclusion Our results highlight the impact of ENPs on cellular wound healing and provide useful tools for studying the physiological impact of ENPs. PMID:24823434
NASA Astrophysics Data System (ADS)
Zhang, He; Yang, Jinglei
2014-06-01
Two types of healing agent carriers (microcapsules containing epoxy solution, referred to as EP-capsules, and etched hollow glass bubbles (HGBs) loaded with amine solution, referred to as AM-HGBs) used in self-healing epoxy systems were prepared and characterized in this study. The core percentages were measured at about 80 wt% and 33 wt% for EP-capsules and AM-HGBs, respectively. The loaded amine in AM-HGB, after incorporation into the epoxy matrix, showed high stability at ambient temperature, but diffused out gradually during heat treatment at 80 °C. The amount and the mass ratio of the two released healants at the crack plane were correlated with the size, concentration, and core percentage of the healing agent carriers. A simplified cubic array model for randomly distributed healing agent carriers was adopted to depict the longest diffusion distance of the released healants, which is inversely proportional to the cubic root of the carrier concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palin, D., E-mail: d.palin@tudelft.nl; Jonkers, H. M.; Wiktor, V.
Concrete has an autogenous ability to heal cracks potentially contributing to its functional water tightness and durability. Here, we quantify the crack-healing capacity of sea-water submerged mortar specimens through a simple and rapid permeability test. Defined crack width geometries were created in blast furnace slag cement specimens allowing healed specimens to be quantified against unhealed specimens. Specimens with 0.2 mm wide cracks were not permeable after 28 days submersion. Specimens with 0.4 mm cracks had decreases in permeability of 66% after 28 days submersion, and 50–53% after 56 days submersion. Precipitation of aragonite and brucite in the cracks was themore » main cause of crack healing. Healing potential was dependent on the initial crack width, thermodynamic considerations and the amount of ions available in the crack. To our knowledge, this is the first study to quantify the functional autogenous healing capacity of cracked sea-water exposed cementitious specimens.« less
Kim, Dong-Min; Yu, Hwan-Chul; Yang, Hye-In; Cho, Yu-Jin; Lee, Kwang-Myong; Chung, Chan-Moon
2017-01-26
A microcapsule-type self-healing protective coating with secondary crack preventing capability has been developed using a silanol-terminated polydimethylsiloxane (STP)/dibutyltin dilaurate (DD) healing agent. STP undergoes condensation reaction in the presence of DD to give a viscoelastic substance. STP- and DD-containing microcapsules were prepared by in-situ polymerization and interfacial polymerization methods, respectively. The microcapsules were characterized by Fourier-transform infrared (FT-IR) spectroscopy, optical microscopy, and scanning electron microscopy (SEM). The microcapsules were integrated into commercial enamel paint or epoxy coating formulations, which were applied on silicon wafers, steel panels, and mortar specimens to make dual-capsule self-healing protective coatings. When the STP/DD-based coating was scratched, self-healing of the damaged region occurred, which was demonstrated by SEM, electrochemical test, and water permeability test. It was also confirmed that secondary crack did not occur in the healed region upon application of vigorous vibration to the self-healing coating.
Tumen, Ibrahim; Süntar, Ipek; Keleş, Hikmet; Küpeli Akkol, Esra
2012-01-01
Juniperus and Cupressus genera are mainly used as diuretic, stimulant, and antiseptic, for common cold and wound healing in Turkish folk medicine. In the present study, essential oils obtained from cones of Cupressus and berries of Juniperus were evaluated for their wound healing and anti-inflammatory effects. In vivo wound healing activity was evaluated by linear incision and circular excision experimental wound models, assessment of hydroxyproline content, and subsequently histopathological analysis. The healing potential was comparatively assessed with a reference ointment Madecassol. Additionally acetic-acid-induced capillary permeability test was used for the oils' anti-inflammatory activity. The essential oils of J. oxycedrus subsp. oxycedrus and J. phoenicea demonstrated the highest activities, while the rest of the species did not show any significant wound healing effect. The experimental study revealed that J. oxycedrus subsp. oxycedrus and J. phoenicea display remarkable wound healing and anti-inflammatory activities, which support the folkloric use of the plants. PMID:21941588
Determination of the Wound Healing Potentials of Medicinal Plants Historically Used in Ghana
Freiesleben, Sara H.; Soelberg, Jens; Nyberg, Nils T.
2017-01-01
The present study was carried out to investigate the wound healing potentials of 17 medicinal plants historically used in Ghana for wound healing. Warm and cold water extracts were prepared from the 17 dried plant species and tested in vitro in the scratch assay with NIH 3T3 fibroblasts from mice. The wound healing scratch assay was used to evaluate the effect of the plants on cell proliferation and/or migration in vitro, as a test for potential wound healing properties. After 21 hours of incubation increased proliferation and/or migration of fibroblasts in the scratch assay was obtained for 5 out of the 17 plant species. HPLC separation of the most active plant extract, which was a warm water extract of Philenoptera cyanescens, revealed the wound healing activity to be attributed to rutin and a triglycoside of quercetin. The present study suggests that Allophylus spicatus, Philenoptera cyanescens, Melanthera scandens, Ocimum gratissimum, and Jasminum dichotomum have wound healing activity in vitro. PMID:28326125
Oral Wound Healing Effects of Acai Berry Water Extracts in Rat Oral Mucosa.
Kang, Mi Hyun; Kim, Bae-Hwan
2018-04-01
The objective of this study was to determine the oral wound healing effects of acai berry water extracts (ABWE) in rat oral mucosa. To estimate the anti-oxidative effects of ABWE, the contents of phenolic compounds, and DPPH (1,1-diphenyl-2-picryl hydrazyl) and ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) abilities were evaluated. Wound healing effects of ABWE were tested following 6-day exposure after induction of wound by applying 50% acetic acid to oral mucosa of Sprague-Dawley rats. Macroscopic and histopathological analyses were performed to determine wound healing effects of ABWE. Sodium fusidate (20 mg/g) was used as positive control. ABWE showed significantly high antioxidant effects in all assays, although its potency was weaker than the positive control. From day 3 after treatment, wound healing effects of ABWE were observed in oral mucosa. These wound healing effects were also consistent with histopathological evaluation results. Taken together, these results indicate that ABWE might have potential as an oral wound healing agent in the future.
Evaluation of dressings to aid healing of mulesing wounds on sheep.
Levot, G W; Hughes, P B; Kaldor, C J
1989-11-01
Five proprietary and one experimental dressing were compared with no treatment in their ability to aid healing of mulesing wounds in over 1900 young lambs. Healing was judged as the completeness of shrinkage of the mulesing cuts and the condition of scabs on the new skin surface. When assessed at 21 d it was found that treatment with Heriots Crown Wound Powder or Coopers Mulesing Powder offered a significant advantage over leaving the wounds untreated. Neither aqueous organophosphate washes, Defiance nor Defiance containing 0.08% chlorfenvinphos offered any healing advantage over controls. However, washing the wounds with an aqueous organophosphate solution aided healing more than the Defiance-based dressings. It was considered that the powders or the washes encouraged quick scab formation either by creating a dry covering (powders) or by washing away blood and allowing fast drying of the wound. The Defiance-type dressings slowed healing by keeping the wound moist for up to 10 d, but healing was not significantly different to the untreated group by 21 d.
Effectivity of artrihpi irrigation for diabetic ulcer healing: A randomized controlled trial
NASA Astrophysics Data System (ADS)
Gayatri, Dewi; Asmorohadi, Aries; Dahlia, Debie
2018-02-01
The healing process of diabetic ulcer is often impeded by inflammation, infection, and decreased immune state. High pressure irrigation (10-15 psi) may be used to control the infection level. This research was designed to identify the effectiveness of artrihpi irrigation device towards diabetic ulcers in public hospitals in the Central Java. This research is a randomized control trial with cross over design. Sixty four subjects were selected using block randomization technique, and were divided into control and intervention group. The intervention was given in 6 days along with wound healing evaluation in every 3 days. The results demonstrated that there was a significant difference decrease scoring healing after treatment, even though the difference scoring healing between both groups was not statistically significant. However, it means difference was found that in the intervention artrihpi the wound healing was better than the spuit. These results illustrates the artrihpi may be solution of using high pressure irrigation to help healing process diabetic ulcers.
Kim, Dong-Min; Yu, Hwan-Chul; Yang, Hye-In; Cho, Yu-Jin; Lee, Kwang-Myong; Chung, Chan-Moon
2017-01-01
A microcapsule-type self-healing protective coating with secondary crack preventing capability has been developed using a silanol-terminated polydimethylsiloxane (STP)/dibutyltin dilaurate (DD) healing agent. STP undergoes condensation reaction in the presence of DD to give a viscoelastic substance. STP- and DD-containing microcapsules were prepared by in-situ polymerization and interfacial polymerization methods, respectively. The microcapsules were characterized by Fourier-transform infrared (FT-IR) spectroscopy, optical microscopy, and scanning electron microscopy (SEM). The microcapsules were integrated into commercial enamel paint or epoxy coating formulations, which were applied on silicon wafers, steel panels, and mortar specimens to make dual-capsule self-healing protective coatings. When the STP/DD-based coating was scratched, self-healing of the damaged region occurred, which was demonstrated by SEM, electrochemical test, and water permeability test. It was also confirmed that secondary crack did not occur in the healed region upon application of vigorous vibration to the self-healing coating. PMID:28772475
The Effect of Oral Medication on Wound Healing.
Levine, Jeffrey M
2017-03-01
The purpose of this learning activity is to provide information about the effects of oral medications on wound healing. This continuing education activity is intended for physicians, physician assistants, nurse practitioners, and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Identify oral medications that aid in wound healing.2. Recognize oral medications that interfere with wound healing. Given the accelerated medical discoveries of recent decades, there is a surprising lack of oral medications that directly improve wound healing. Of the oral medications available, most target ancillary aspects of wound care such as pain management, infection mitigation, and nutrition. This article describes oral pharmacologic agents intended to build new tissue and aid in wound healing, as well as an introduction to oral medications that interfere with wound healing. This review will not discuss the pharmacology of pain management or treatment of infection, nor will it address nutritional supplements.
Inflammation and wound healing: The role of the macrophage
Koh, Timothy J.; DiPietro, Luisa Ann
2013-01-01
The macrophage is a prominent inflammatory cell in wounds, but its role in healing remains incompletely understood. Macrophages have been described to have many functions in wounds, including host defense, the promotion and resolution of inflammation, the removal of apoptotic cells, and the support of cell proliferation and tissue restoration following injury. Recent studies suggest that macrophages exist in several different phenotypic states within the healing wound, and that the influence of these cells on each stage of repair varies with the specific phenotypes. While the macrophage is beneficial to the repair of normally healing wounds, this pleotropic cell type may promote excessive inflammation and/or fibrosis in certain circumstances. Emerging evidence suggests that macrophage dysfunction is a component of the pathogenesis of non-healing and poorly healing wounds. Due to advances in the understanding of this multi-functional cell, the macrophage continues to be an attractive therapeutic target both to reduce fibrosis and scarring, and to improve healing of chronic wounds. PMID:21740602
NASA Astrophysics Data System (ADS)
Finegold, Leonard
2000-03-01
Many people are convinced that static magnets—applied to their skin—will heal ills, and many businesses sell such magnets. The biophysics of such healing was reviewed [1] together with the general biophysics of static fields. Birds and insects do use the earth’s magnetic field for navigation. While insect and frog egg development can clearly be influenced by high fields (7 T and 17 T respectively), there is no experimental evidence that small magnetic fields (of less than 0.5 T) might heal, and much evidence that they cannot heal. A puzzle to the physics community is: How to show laypersons that simple magnets (very probably) do not heal, however attractive that idea might be. [1] L. Finegold, The Physics of "Alternative Medicine": Magnet Therapy, The Scientific Review of Alternative Medicine 3:26-33 (1999).
Swatting flies: modelling wound healing and inflammation in Drosophila
Razzell, William; Wood, Will; Martin, Paul
2011-01-01
Aberrant wound healing can lead to a variety of human pathologies, from non-healing chronic wounds that can become dangerously infected, to exuberant fibrotic healing in which repair is accompanied by excessive inflammation. To guide therapeutic intervention, we need a better understanding of the fundamental mechanisms driving tissue repair; this will require complementary wound-healing studies in several model organisms. Drosophila has been used to model genetic aspects of numerous human pathologies, and is being used increasingly to gain insight into the molecular and genetic aspects of tissue repair and inflammation, which have classically been modelled in mice or cultured cells. This review discusses the advantages and disadvantages of Drosophila as a wound-healing model, as well as some exciting new research opportunities that will be enabled by its use. PMID:21810906
Low energy laser irradiation treatment for second intention wound healing in horses
Fretz, Peter B.; Li, Zhong
1992-01-01
Low energy helium-neon laser irradiation was administered to full thickness skin wounds (3 cm × 3 cm) on the dorsal surface of the metacarpophalangeal/metatarsophalangeal joints and cranial surface of the tarsocrural joints of eight horses. The effects on wound healing were analyzed statistically. There were no differences (p > 0.55) observed in the rate of wound healing between the low energy laser irradiated wounds and the control wounds. There was a significant difference (p < 0.006) observed in the rate of healing between the anatomical sites. Tarsal wounds healed more rapidly than fetlock wounds. PMID:17424089
Recent advances in electrospun nanofibers for wound healing.
Chen, Shixuan; Liu, Bing; Carlson, Mark A; Gombart, Adrian F; Reilly, Debra A; Xie, Jingwei
2017-06-01
Electrospun nanofibers represent a novel class of materials that show great potential in many biomedical applications including biosensing, regenerative medicine, tissue engineering, drug delivery and wound healing. In this work, we review recent advances in electrospun nanofibers for wound healing. This article begins with a brief introduction on the wound, and then discusses the unique features of electrospun nanofibers critical for wound healing. It further highlights recent studies that have used electrospun nanofibers for wound healing applications and devices, including sutures, multifunctional dressings, dermal substitutes, engineered epidermis and full-thickness skin regeneration. Finally, we finish with conclusions and future perspective in this field.
Proteinaceous Resin and Hydrophilic Encapsulation: A Self-Healing-Related Study
NASA Astrophysics Data System (ADS)
Zheng, Ting
Inspired by living organisms, self-healing materials have been designed as smart materials. Their automatic healing nature is achieved through the use of capsule in which the healing agent is encapsulated. The occurrence of cracks leads to ripping of the capsule, along with crack propagation and release of the healing agent that wets the crack surface to eventually heal (bond) the crack. Such automatic repair of the crack significantly extends the service life of the material. A vast majority of existing self-healing systems have been designed for the epoxy matrix - the most common commercially used thermoset - that possesses low crack resistance. Currently, self-healing systems have not yet been introduced for fully protein-based materials, despite their great potential to replace currently used synthesis precursors for the latter and the eco-friendly nature of self-healing materials. This has been probably due to two major obstacles: poor mechanical properties of the protein-based matrix, and extreme difficulty associated with the encapsulation of hydrophilic healing agents suitable for the protein-based matrix. This study provides possible solutions towards addressing both these obstacles. To improve the inherent mechanical properties of protein-based resin, soy protein isolate (SPI) was chosen as the model in this study. Dialdehyde carboxymethyl cellulose (DCMC) was synthesized and used as the crosslinking agent to modify the SPI film. As-synthesized DCMC - a fully bio-based material - exhibited high mechanical strength, excellent thermal stability, and reduced moisture sensitivity. Good compatibility and effective crosslinking were believed to be the key reasons for such property enhancements. However, these were accompanied by poor crack resistance, where self-healing is a pertinent solution. A novel healing system for the protein matrix was designed in this work via the use of formaldehyde as a healing agent. Subsequently, the well-acknowledged challenge, e.g. hydrophilic agent encapsulation, was addressed through the development of novel polyurethane-Poly(melamine-formaldehyde) (PU-PMF) dual-component capsules. Remarkably, the external PU insulation layer was fabricated through interfacial polymerization based on a water-in-oil-in-oil (W/O/O) emulsion template. Surface tension was identified as the main driving factor for the formation of the external oil phase. The internal PMF layer was observed to strongly influence the internal morphology of the capsule. A protocol was developed, and a typical capsule with dense and neat shell morphology with a shell/capsule diameter (around 3 %) was fabricated. This study provides solutions for the two aforementioned obstacles related to the development of the healing system for the protein-based materials.
Hämmerle, Christoph H F; Giannobile, William V
2014-04-01
The scope of this consensus was to review the biological processes of soft tissue wound healing in the oral cavity and to histologically evaluate soft tissue healing in clinical and pre-clinical models. To review the current knowledge regarding the biological processes of soft tissue wound healing at teeth, implants and on the edentulous ridge. Furthermore, to review soft tissue wound healing at these sites, when using barrier membranes, growth and differentiation factors and soft tissue substitutes. Searches of the literature with respect to recessions at teeth and soft tissue deficiencies at implants, augmentation of the area of keratinized tissue and soft tissue volume were conducted. The available evidence was collected, categorized and summarized. Oral mucosal and skin wound healing follow a similar pattern of the four phases of haemostasis, inflammation, proliferation and maturation/matrix remodelling. The soft connective tissue determines the characteristics of the overlaying oral epithelium. Within 7-14 days, epithelial healing of surgical wounds at teeth is completed. Soft tissue healing following surgery at implants requires 6-8 weeks for maturation. The resulting tissue resembles scar tissue. Well-designed pre-clinical studies providing histological data have been reported describing soft tissue wound healing, when using barrier membranes, growth and differentiation factors and soft tissue substitutes. Few controlled clinical studies with low numbers of patients are available for some of the treatments reviewed at teeth. Whereas, histological new attachment has been demonstrated in pre-clinical studies resulting from some of the treatments reviewed, human histological data commonly report a lack of new attachment but rather long junctional epithelial attachment and connective tissue adhesion. Regarding soft tissue healing at implants human data are very scarce. Oral soft tissue healing at teeth, implants and the edentulous ridge follows the same phases as skin wound healing. Histological studies in humans have not reported new attachment formation at teeth for the indications studied. Human histological data of soft tissue wound healing at implants are limited. The use of barriers membranes, growth and differentiation factors and soft tissue substitutes for the treatment of localized gingival/mucosal recessions, insufficient amount of keratinized tissue and insufficient soft tissue volume is at a developing stage. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Park, Kyung Hee
2014-09-01
Stage II pressure ulcers (PUs) should be managed promptly and appropriately in order to prevent complications. To identify the factors affecting Stage II PU healing and optimize care, the electronic medical records of patients with a Stage II PU in an acute care hospital were examined. Patient and ulcer characteristics as well as nutritional assessment variables were retrieved, and ulcer variables were used to calculate Pressure Ulcer Scale for Healing (PUSH) scores. The effect of all variables on healing status (healed versus nonhealed) and change in PUSH score for healing rate were compared. Records of 309 Stage II PUs from 155 patients (mean age 61.2 ± 15.2 [range 5-89] years, 182 [58.9%] male) were retrieved and analyzed. Of those, 221 healed and 88 were documented as not healed at the end of the study. The variables that were significantly different between patients with PUs that did and did not heal were: major diagnosis (P = 0.001), peripheral arterial disease (P = 0.007), smoking (P = 0.048), serum albumin ( <2.5 g/dL) (P = 0.002), antidepressant use (P = 0.035), vitamin use (P = 0.006), history of surgery (P <0.001), PU size (P = 0.003), Malnutrition Universal Screening Tool (MUST) score (P = 0.020), Braden scale score (P = 0.003), and mean arterial pressure (MAP, mm Hg) (P = 0.026). The Cox proportional hazard model showed a significant positive difference in PUSH score change -indicative of healing - when pressure-redistribution surfaces were used (P <0.001, HR = 2.317), PU size was small (≤3.0 cm2, P = 0.006, HR = 1.670), MAP (within a range of 52-112 mm Hg) was higher P = 0.010, HR = 1.016), and patients were provided multivitamins (P = 0.037, HR=1.431). The results of this study suggest strategies for healing Stage II PUs in the acute care setting should include early recognition of lower-stage PUs, the provision of static pressure-redistribution surfaces and multivitamins, and maintaining higher MAP may facilitate healing and prevent deterioration. Further prospective research is warranted to verify the effect of these interventions.
... after surgery using a needle and syringe. Poor wound healing. Sometimes areas along the incision line heal poorly ... might be given antibiotics if there is a wound healing problem. Scarring. Incision scars from a buttock lift ...
Novel Therapy for Bone Regeneration in Large Segmental Defects
2017-12-01
on fracture healing. Clin Orthop Relat Res. 1998;355(Suppl):S230–8. 37. Pape HC, Giannoudis PV. Fat embolism and IM nailing. Injury. 2006;37(Suppl 4...BMP), thrombopoietin (TPO), therapy, fracture healing, bone regeneration, minipig, pig 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...2, TPO, or saline control. 2. KEYWORDS: Bone healing, bone morphogenetic protein (BMP), thrombopoietin (TPO), therapy, fracture healing, bone
Health Education Assistance Loan (HEAL) Program. Final rule.
2017-11-15
On July 1, 2014, the HEAL Program was transferred from the U.S. Department of Health and Human Services (HHS) to the U.S. Department of Education (the Department). To reflect this transfer and to facilitate the servicing of all HEAL loans that are currently held by the Department, the Secretary adds the HEAL Program regulations to the Department's chapter in the Code of Federal Regulations (CFR).
ERIC Educational Resources Information Center
Sirridge, Marjorie S.; Martin, Jennifer
2006-01-01
For several years an interdisciplinary course called "Healing and the Arts" has been offered to undergraduates and medical students in a BA/MD program at the University of Missouri-Kansas City. Its stated purpose is to give students a theoretical and practical understanding of how the arts can be a healing force in people's lives.…
Mechanical Unloading Impairs Keratinocyte Migration and Angiogenesis During Cutaneous Wound Healing
2008-02-01
Research, Fort Sam Houston, Texas; and 4Center for Wound Healing and Tissue Regeneration, College of Dentistry , University of Illinois at Chicago... generation of degradative enzymes, additional matrix proteins, and cross- linking of collagen, processes which can continue for years to months following the...tissue repair during normal physiological wound healing (5). In an uncompromised individual, the wound healing process generally proceeds with- out
Mii, Shinsuke; Tanaka, Kiyoshi; Kyuragi, Ryoichi; Ishimura, Hiroshi; Yasukawa, Shinsuke; Guntani, Atsushi; Kawakubo, Eisuke
2017-05-01
A long period is generally required for ischemic ulcer to heal after revascularization. The strategy of postoperative wound care can affect wound healing. This study was conducted to investigate the degree to which aggressive wound care (AWC) by a team of multidisciplinary specialists actually shortens the time to wound healing and increases the rate of wound healing in limbs undergoing surgical bypass for ischemic tissue loss in a real clinical setting. A total of consecutive 126 patients undergoing infrainguinal bypass for tissue loss from April 2011 to March 2015 were reviewed. Prior to March 2013, standard wound care (SWC) including typical daily dressing change with disinfection and irrigation, occasional surgical debridement, and negative pressure wound therapy (when necessary) was performed by vascular surgeons. Thereafter, in addition to SWC, AWC including intense daily bedside surgical debridement under a sciatic nerve block by an anesthesiologist and active skin grafting by a dermatologist, if necessary, was performed. Wound healing and major amputation were defined as the end points. The 1-year outcomes of the 2 groups were calculated using the Kaplan-Meier method and compared, and the significant predictors of each outcome were determined by a Cox proportional hazards analysis. The wound healing of the AWC group was superior to that of the SWC group (AWC versus SWC, 1-year wound healing rate: 92% vs. 80%; mean wound healing time: 48 days vs. 82 days; P = 0.011), and no significant difference between the 2 regimens in the freedom from major amputation was observed. AWC, Rutherford 5, no wound infection, normal serum albumin, direct angiosome, and cilostazol use were significant predictors of wound healing, and female gender and no cilostazol use were significant predictors of major amputation by a multivariate analysis. Aggressive wound care by the team consisting of multidisciplinary specialists remarkably shortened the time to wound healing and increased the rate of wound healing within 1 year. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of genistein on early-stage cutaneous wound healing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Eunkyo; Lee, Seung Min; Jung, In-Kyung
2011-07-08
Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected bymore » antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results suggest that genistein supplementation reduces oxidative stress by increasing antioxidant capacity and modulating proinflammatory cytokine expression during the early stage of wound healing.« less
Mainetti, Tomaso; Lang, Niklaus P; Bengazi, Franco; Favero, Vittorio; Soto Cantero, Luis; Botticelli, Daniele
2016-01-01
To compare the sequential healing at implants installed in a healed alveolar bony ridge or immediately after tooth extraction without functional load. In the mandible of 12 dogs, the mesial roots of the first molars were endodontically treated, the tooth hemisected, and the distal roots extracted. After 3 months, the mesial roots of the fourth premolars were endodontically treated, the tooth hemisected, and the distal roots extracted in one side of the mandible. Implants were placed immediately into extraction sockets (IPIES) of the fourth premolar and in the healed sites in the molar regions. Healing abutments were placed, and the flaps were sutured to allow a non-submerged healing. The time of surgery and of sacrifices were planned in such a way to obtain biopsies representing the healing after 1 and 2 weeks and 1 and 3 months, respectively. Ground sections were prepared for histological evaluation of tissues components on the implant surface and the coronal termination level of osseointegration (M-B). New bone apposition on the implant surface was slightly higher at the healed compared to the IPIES sites, being 7.4% and 4.1% after 1 week, and 67.3% and 65.3% after 3 months, respectively. Old bone was progressively resorbed, from 27.0% and 21.9% after 1 week, to 2.5% and 2.0% after 3 months, at healed and IPIES sites, respectively. M-B was 1.4 mm and 2.6 mm after 1 week, 1.2 mm and 1.2 mm after 3 months, at healed and IPIES sites, respectively. Similar patterns of sequential osseointegration were found at implants installed in healed alveolar bone or in alveolar sockets immediately after tooth extraction. The coronal termination level of osseointegration, that was different after 1 week, was found similar at the 3-month observation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Healing efficiency of shape memory polyurethane fiber reinforced syntactic foam under applied load
NASA Astrophysics Data System (ADS)
Ogunmekan, Babatunde
Shape memory composite materials have received a great deal of interest in recent structural developments, both in sandwich and in lightweight structures. Experimental procedures involving the free body healing of these materials have been carried out; however, it is important to investigate the healing behaviors of these SMP materials while under load. In this study, syntactic foams reinforced with strain-hardened short-shape memory polyurethane fibers (SMPUFs) were prepared to evaluate their ability to heal wide-opened cracks using the two-step biomimetic close-then-heal (CTH) self-healing scheme while under varying loads. The syntactic foam samples manufactured consisted of an epoxy matrix with dispersed thermoplastic particles, glass microballoons and short SMPUFs. The SMPUF strands were cold-drawn (stretched-then-released) for up to four cycles and then cut to 10 mm short fibers before casting the polymer matrix. Three types of syntactic foam specimens, consisting of 5%, 10%, and 15% thermoplastic particle volume fraction compositions, respectively, were manufactured, and notched beam samples were then prepared. Fracture-healing by uniaxial tension was conducted for five cycles on each sample. Material characterization techniques, such as scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), were utilized to highlight the crack healing characteristics and thermal properties. In addition, a high-resolution charge-coupled device (CCD) camera with a resolution of 3.7 x 3.7 μm/pixel was used to capture the crack tip opening displacement (CTOD). It is seen that the healing ability of the composite varies with changes in both the load carried and the volume fraction of thermoplastic particles. As the thermoplastic volume fraction increased from 5% to 10% to 15%, the tensile strength values recorded decreased, but there was also an increase in the healing efficiency. Moreover, SEM images revealed partial healing in samples with lower thermoplastic particle contents.
Reynolds, Gloria E; Gao, Qing; Miller, Douglas; Snow, Bryan E; Harrington, Lea A; Murnane, John P
2011-11-10
Telomerase serves to maintain telomeric repeat sequences at the ends of chromosomes. However, telomerase can also add telomeric repeat sequences at DNA double-strand breaks (DSBs), a process called chromosome healing. Here, we employed a method of inducing DSBs near telomeres to query the role of two proteins, PIF1 and NBS1, in chromosome healing in mammalian cells. PIF1 was investigated because the PIF1 homolog in Saccharomyces cerevisiae inhibits chromosome healing, as shown by a 1000-fold increase in chromosome in PIF1-deficient cells. NBS1 was investigated because the functional homolog of NBS1 in S. cerevisiae, Xrs2, is part of the Mre11/Rad50/Xrs2 complex that is required for chromosome healing due to its role in the processing of DSBs and recruitment of telomerase. We found that disruption of mPif1 had no detectable effect on the frequency of chromosome healing at DSBs near telomeres in murine embryonic stem cells. Moreover, the Nbs1(ΔB) hypomorph, which is defective in the processing of DSBs, also had no detectable effect on the frequency of chromosome healing, DNA degradation, or gross chromosome rearrangements (GCRs) that result from telomeric DSBs. Although we cannot rule out small changes in chromosome healing using this system, it is clear from our results that knockout of PIF1 or the Nbs1(ΔB) hypomorph does not result in large differences in chromosome healing in murine cells. These results represent the first genetic assessment of the role of these proteins in chromosome healing in mammals, and suggest that murine cells have evolved mechanisms to ensure the functional redundancy of Pif1 or Nbs1 in the regulation of chromosome healing. Copyright © 2011 Elsevier B.V. All rights reserved.
Novel dental adhesive resin with crack self-healing, antimicrobial and remineralization properties.
Yue, Shichao; Wu, Junling; Zhang, Qiang; Zhang, Ke; Weir, Michael D; Imazato, Satoshi; Bai, Yuxing; Xu, Hockin H K
2018-05-18
Secondary caries at the tooth-restoration margins is a primary reason for restoration failure. Cracks at the margins lead to leakage which can trap bacteria, producing acids to cause caries. To date, there has been no report on developing an adhesive resin that has self-healing, antibacterial and remineralizing capabilities. The objectives of this study were to: (1) develop the first self-healing adhesive with antimicrobial and remineralizing capabilities, and (2) investigate the effects of incorporating microcapsules, dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) for the first time. Self-healing microcapsules were synthesized with poly(urea-formaldehyde) (PUF) shells containing triethylene glycol dimethacrylate (TEGDMA) as the healing liquid. The new adhesive contained 7.5% microcapsules, 10% DMAHDM and 20% NACP. A single edge V-notched beam (SEVNB) method was used to measure the fracture toughness K IC and the autonomous crack-healing efficiency. An oral plaque microcosm biofilm model was tested. The new self-healing, antimicrobial and remineralizing dental adhesive matched the dentin bond strength of a commercial control (p > 0.1). The new adhesive achieved successful crack-healing, with an excellent K IC recovery of 67%. The new adhesive had strong antimicrobial activity, reducing biofilm colony-forming units by four orders of magnitude, and reducing biofilm acid production to 1/100th that of biofilms on the commercial control resin. A self-healing adhesive with antibacterial and remineralizing capabilities was developed for the first time. Excellent dentin bond strength, autonomous crack-healing and K IC recovery, and strong anti-biofilm properties were achieved for the new adhesive resin. The novel method of using triple agents (self-healing microcapsules + DMAHDM + NACP) is promising for applications in dental adhesives, cements, sealants and composites to combat the two main challenges: fracture and secondary caries. Copyright © 2018 Elsevier Ltd. All rights reserved.
Li, Haiyan; He, Jin; Yu, Hongfei; Green, Colin R; Chang, Jiang
2016-04-01
It is well known that gap junctions play an important role in wound healing, and bioactive glass (BG) has been shown to help healing when applied as a wound dressing. However, the effects of BG on gap junctional communication between cells involved in wound healing is not well understood. We hypothesized that BG may be able to affect gap junction mediated cell behavior to enhance wound healing. Therefore, we set out to investigate the effects of BG on gap junction related behavior of endothelial cells in order to elucidate the mechanisms through which BG is operating. In in vitro studies, BG ion extracts prevented death of human umbilical vein endothelial cells (HUVEC) following hypoxia in a dose dependent manner, possibly through connexin hemichannel modulation. In addition, BG showed stimulatory effects on gap junction communication between HUVECs and upregulated connexin43 (Cx43) expression. Furthermore, BG prompted expression of vascular endothelial growth factor and basic fibroblast growth factor as well as their receptors, and vascular endothelial cadherin in HUVECs, all of which are beneficial for vascularization. In vivo wound healing results showed that the wound closure of full-thickness excisional wounds of rats was accelerated by BG with reduced inflammation during initial stages of healing and stimulated angiogenesis during the proliferation stage. Therefore, BG can stimulate wound healing through affecting gap junctions and gap junction related endothelial cell behaviors, including prevention of endothelial cell death following hypoxia, stimulation of gap junction communication and upregulation of critical vascular growth factors, which contributes to the enhancement of angiogenesis in the wound bed and finally to accelerate wound healing. Although many studies have reported that BG stimulates angiogenesis and wound healing, this work reveals the relationship between BG and gap junction connexin 43 mediated endothelial cell behavior and elucidates one of the possible mechanisms through which BG stimulates wound healing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nha, Kyung-Wook; Lee, Yong Seuk; Hwang, Dae-Hee; Kwon, Jae Ho; Chae, Dong Ju; Park, Young Jee; Kim, Jong In
2013-02-01
This study examined, at second-look arthroscopy, the results of open-wedge high tibial osteotomy (HTO) focusing on root tear of the medial meniscus posterior horn (RTMMP). Among 31 consecutive patients who underwent HTO without a meniscectomy or pullout repair for RTMMP, 20 patients were available for second-look arthroscopic evaluation. All patients had medial unicompartmental arthritis. The healing status of the RTMMP was classified as complete, incomplete, and no healing. The difference in the weight bearing line from presurgery to the last follow-up was evaluated. Osteoarthritis and chondral lesions were evaluated, as were clinical results. Correlations between healing status and other variables (weight bearing line, cartilage status, and clinical scores) were assessed. The healed (10 patients) and nonhealed (incomplete 6 patients + no healing 4 patients) groups were also evaluated with respect to other variables. There were 10 (50%) cases with complete healing, 6 (30%) with incomplete healing, and 4 (20%) with no healing. Kellgren-Lawrence grade did not improve according to the standing plain radiograph (P = .09). Progression of chondral lesions was not observed at second-look arthroscopy; some improvement was even observed (P = .002). The median Lysholm score improved from 58 preoperatively to 88.5 at the last follow-up. The median Hospital for Special Surgery (HSS) score also increased significantly from 62.4 (range, 50 to 76) to 87.2 (range, 80 to 92; P = .003). The comparison between healed and nonhealed groups revealed no statistical differences in all variables. This study revealed a high rate of healing of RTMMP after HTO without attempted repair. Healing of the meniscus was not associated with an improved clinical outcome. Level IV, therapeutic case series. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing.
Yoon, Dong Suk; Lee, Yunki; Ryu, Hyun Aae; Jang, Yeonsue; Lee, Kyoung-Mi; Choi, Yoorim; Choi, Woo Jin; Lee, Moses; Park, Kyung Min; Park, Ki Dong; Lee, Jin Woo
2016-07-01
In this study, we developed horseradish peroxidase (HRP)-catalyzed sprayable gelatin hydrogels (GH) as a bioactive wound dressing that can deliver cell-attracting chemotactic cytokines to the injured tissues for diabetic wound healing. We hypothesized that topical administration of chemokines using GH hydrogels might improve wound healing by inducing recruitment of the endogenous cells. Two types of chemokines (interleukin-8; IL-8, macrophage inflammatory protein-3α; MIP-3α) were simply loaded into GH hydrogels during in situ cross-linking, and then their wound-healing effects were evaluated in streptozotocin-induced diabetic mice. The incorporation of chemokines did not affect hydrogels properties including swelling ratio and mechanical stiffness, and the bioactivities of IL-8 and MIP-3α released from hydrogel matrices were stably maintained. In vivo transplantation of chemokine-loaded GH hydrogels facilitated cell infiltration into the wound area, and promoted wound healing with enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or the GH hydrogel alone. Based on our results, we suggest that cell-recruiting chemokine-loaded GH hydrogel dressing can serve as a delivery platform of various therapeutic proteins for wound healing applications. Despite development of materials combined with therapeutic agents for diabetic wound treatment, impaired wound healing by insufficient chemotactic responses still remain as a significant problem. In this study, we have developed enzyme-catalyzed gelatin (GH) hydrogels as a sprayable dressing material that can deliver cell-attracting chemokines for diabetic wound healing. The chemotactic cytokines (IL-8 and MIP-3α) were simply loaded within hydrogel during in situ gelling, and wound healing efficacy of chemokine-loaded GH hydrogels was investigated in STZ-induced diabetic mouse model. These hydrogels significantly promoted wound-healing efficacy with faster wound closure, neovascularization, and thicker granulation. Therefore, we expect that HRP-catalyzed in situ forming GH hydrogels can serve as an injectable/sprayable carrier of various therapeutic agents for wound healing applications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Pang, Jian; Ye, Meina; Gu, Xinfeng; Cao, Yuelong; Zheng, Yuxin; Guo, Hailing; Zhao, Yongfang; Zhan, Hongsheng; Shi, Yinyu
2015-08-01
It is known that bone healing is delayed in the presence of osteoporosis in humans. However, due to the complexities of the healing of osteoporotic fractures, animal models may be more appropriate for studying the effects of osteoporosis in more detail and for testing drugs on the fracture repair process. The purpose of this study was to investigate the influence of ovariectomy-induced osteopenia in bone healing in an open femoral osteotomy model, and to test the feasibility of this model for evaluating the healing process under osteopenic conditions. Ovariectomized (OVX) mouse models were employed to assess the effects of osteopenia on fracture healing, A mid-shaft femur osteotomy model was also established 3 weeks after ovariectomy as an osteopenic fracture group (OVX group). Femurs were then harvested at 2 weeks and 6 weeks after fracture for X-ray radiography, micro-computed tomography (micro-CT), histology, and biomechanical analysis. A sham-operated group (sham group) was used for comparison. The OVX mice had significantly lower bone volume density (BVF), volumetric bone mineral density (vBMD), and tissue mineral density (TMD) in the fracture calluses at 6 weeks (p<0.05), and similar trend was observed in 2 weeks. Additionally, larger calluses in OVX animals were observed via micro-CT and X-ray, but these did not result in better healing outcomes, as determined by biomechanical test at 6 weeks. Histological images of the healing fractures in the OVX mice found hastening of broken end resorption and delay of hard callus remodeling. The impaired biomechanical measurements in the OVX group (p<0.05) were consistent with micro-CT measurements and radiographic scoring, which also indicated delay in fracture healing of the OVX group. This study provided evidence that ovariectomy-induced osteopenia impair the middle and late bone healing process. These data also supported the validity of the mouse femoral osteotomy model in evaluating the process of bone healing under osteopenic conditions.
Pang, Jian; Ye, Meina; Cao, Yuelong; Zheng, Yuxin; Guo, Hailing; Zhao, Yongfang; Zhan, Hongsheng; Shi, Yinyu
2014-10-09
Objective It is known that bone healing was delayed in the presence of osteoporosis in humans. However, due to the complexities of the healing of osteoporotic fractures, animal models may be more appropriate to study the effects of osteoporosis in more details and to test drugs on the fracture repair process. The purpose of this study was to investigate the influence of ovariectomy-induced osteopenia in bone healing in an open femoral osteotomy model, and to test the feasibility of this model for evaluating the healing process under osteopenic conditions. Methods In assessing the effects of osteopenia on fracture healing, ovariectomized mouse models were employed. A mid-shaft femur osteotomy model was also established 3 weeks after ovariectomy as an osteopenic fracture group (OVX group). Femurs were then harvested at 2 weeks and 6 weeks after fracture for X-ray radiography, micro-computed tomography (micro-CT), histology and biomechanical analysis. A sham-operated group (Sham group) was used for comparison. Results The OVX mice had significantly lower BVF, vBMD and TMD in the fracture calluses at 6 weeks (P < 0.05), and similar trend was observed in 2 weeks. Additionally, larger calluses in OVX animals were observed via micro-CT and X-ray, but these did not result in better healing outcomes as determined by biomechanical test at 6 weeks. Histological images of the healing fractures in the OVX mice found forward of broken end resorption and delay of hard callus remodeling. The impaired biomechanical measurements in the OVX group (P < 0.05) were consistent with micro-CT measurements and radiographic scoring, which also indicated delay in fracture healing of the OVX group. Conclusions This study provided evidences that ovariectomy-induced osteopenia impair the middle and late bone healing process once more. These data also supported the validity of the mouse femoral osteotomy model in evaluating the process of bone healing under osteopenic conditions.
Vedhara, K; Miles, J N V; Wetherell, M A; Dawe, K; Searle, A; Tallon, D; Cullum, N; Day, A; Dayan, C; Drake, N; Price, P; Tarlton, J; Weinman, J; Campbell, R
2010-08-01
Experimental evidence suggests that the healing of diabetic foot ulcers is affected by psychosocial factors such as distress. We examined this proposal in a prospective study, in which we considered the role of psychological distress and coping style in the healing of diabetic foot ulcers over a 24 week period. We also explored the role of salivary cortisol and matrix metalloproteinases (MMPs) as potential mechanisms. For this prospective observational study we recruited 93 (68 men; mean age 60 years) patients with neuropathic or neuroischaemic diabetic foot ulcers from specialist podiatry clinics in secondary care. Clinical and demographic determinants of healing, psychological distress, coping, salivary cortisol and both MMP2 and MMP9 were assessed at baseline. Ulcers were assessed at baseline and at 6, 12 and 24 weeks post-baseline. The primary outcome was ulcer status at 24 weeks, i.e. healed vs not healed. After controlling for clinical and demographic determinants of healing, ulcer healing at 24 weeks was predicted by confrontation coping, but not by depression or anxiety. Patients with unhealed ulcers exhibited greater confrontation coping (model including depression: OR 0.809, 95% CI 0.704-0.929, p = 0.003; model including anxiety: OR 0.810, 95% CI 0.704-0.930, p = 0.003). However, change in ulcer size over the observation period was associated with depression only (p = 0.04, d = 0.31). Healed ulcers by 24 weeks were also associated with lower evening cortisol, higher precursor MMP2 and a greater cortisol awakening response. Confrontation coping and depression predict ulcer healing. Our preliminary enquiry into biological mechanisms suggests that cortisol and precursor MMP2 may underlie these relationships.
Osthole Promotes Bone Fracture Healing through Activation of BMP Signaling in Chondrocytes.
Wang, Pinger; Ying, Jun; Luo, Cheng; Jin, Xing; Zhang, Shanxing; Xu, Taotao; Zhang, Lei; Mi, Meng; Chen, Di; Tong, Peijian; Jin, Hongting
2017-01-01
Osthole is a bioactive coumarin derivative and has been reported to be able to enhance bone formation and improve fracture healing. However, the molecular mechanism of Osthole in bone fracture healing has not been fully defined. In this study we determined if Osthole enhances bone fracture healing through activation of BMP2 signaling in mice. We performed unilateral open transverse tibial fracture procedure in 10-week-old C57BL/6 mice which were treated with or without Osthole. Our previous studies demonstrated that chondrocyte BMP signaling is required for bone fracture healing, in this study we also performed tibial fracture procedure in Cre-negative and Col2-Cre;Bmp2 flox/flox conditional knockout (KO) mice ( Bmp2 Col2Cre ) to determine if Osthole enhances fracture healing in a BMP2-dependent manner. Fracture callus tissues were collected and analyzed by X-ray, micro-CT (μCT), histology, histomorphometry, immunohistochemistry (IHC), biomechanical testing and quantitative gene expression analysis. In addition, mouse chondrogenic ATDC5 cells were cultured with or without Osthole and the expression levels of chondrogenic marker genes were examined. The results demonstrated that Osthole promotes bone fracture healing in wild-type (WT) or Cre - control mice. In contrast, Osthole failed to promote bone fracture healing in Bmp2 Col2Cre conditional KO mice. In the mice receiving Osthole treatment, expression of cartilage marker genes was significantly increased. We conclude that Osthole could promote bone strength and enhance fracture healing by activation of BMP2 signaling. Osthole may be used as an alternative approach in the orthopaedic clinic for the treatment of fracture healing.
Osthole Promotes Bone Fracture Healing through Activation of BMP Signaling in Chondrocytes
Wang, Pinger; Ying, Jun; Luo, Cheng; Jin, Xing; Zhang, Shanxing; Xu, Taotao; Zhang, Lei; Mi, Meng; Chen, Di; Tong, Peijian; Jin, Hongting
2017-01-01
Osthole is a bioactive coumarin derivative and has been reported to be able to enhance bone formation and improve fracture healing. However, the molecular mechanism of Osthole in bone fracture healing has not been fully defined. In this study we determined if Osthole enhances bone fracture healing through activation of BMP2 signaling in mice. We performed unilateral open transverse tibial fracture procedure in 10-week-old C57BL/6 mice which were treated with or without Osthole. Our previous studies demonstrated that chondrocyte BMP signaling is required for bone fracture healing, in this study we also performed tibial fracture procedure in Cre-negative and Col2-Cre;Bmp2flox/flox conditional knockout (KO) mice (Bmp2Col2Cre) to determine if Osthole enhances fracture healing in a BMP2-dependent manner. Fracture callus tissues were collected and analyzed by X-ray, micro-CT (μCT), histology, histomorphometry, immunohistochemistry (IHC), biomechanical testing and quantitative gene expression analysis. In addition, mouse chondrogenic ATDC5 cells were cultured with or without Osthole and the expression levels of chondrogenic marker genes were examined. The results demonstrated that Osthole promotes bone fracture healing in wild-type (WT) or Cre- control mice. In contrast, Osthole failed to promote bone fracture healing in Bmp2Col2Creconditional KO mice. In the mice receiving Osthole treatment, expression of cartilage marker genes was significantly increased. We conclude that Osthole could promote bone strength and enhance fracture healing by activation of BMP2 signaling. Osthole may be used as an alternative approach in the orthopaedic clinic for the treatment of fracture healing. PMID:28924381
Kavros, Steven J; Dutra, Timothy; Gonzalez-Cruz, Renier; Liden, Brock; Marcus, Belinda; McGuire, James; Nazario-Guirau, Luis
2014-08-01
The objective of this multicenter study was to prospectively evaluate the healing outcomes of chronic diabetic foot ulcers (DFUs) treated with PriMatrix (TEI Biosciences, Boston, Massachusetts), a fetal bovine acellular dermal matrix. Inclusion criteria required the subjects to have a chronic DFU that ranged in area from 1 to 20 cm² and failed to heal more than 30% during a 2-week screening period when treated with moist wound therapy. For qualifying subjects, PriMatrix was secured into a clean, sharply debrided wound; dressings were applied to maintain a moist wound environment, and the DFU was pressure off-loaded. Wound area measurements were taken weekly for up to 12 weeks, and PriMatrix was reapplied at the discretion of the treating physician. A total of 55 subjects were enrolled at 9 US centers with 46 subjects progressing to study completion. Ulcers had been in existence for an average of 286 days, and initial mean ulcer area was 4.34 cm². Of the subjects completing the study, 76% healed by 12 weeks with a mean time to healing of 53.1 ± 21.9 days. The mean number of applications for these healed wounds was 2.0 ± 1.4, with 59.1% healing with a single application of PriMatrix and 22.9% healing with 2 applications. For subjects not healed by 12 weeks, the average wound area reduction was 71.4%. The results of this multicenter prospective study demonstrate that the use of PriMatrix integrated with standard-of-care therapy is a successful treatment regimen to heal DFUs.
Bamorovat, Mehdi; Sharifi, Iraj; Mohammadi, Mohammad Ali; Eybpoosh, Sana; Nasibi, Saeid; Aflatoonian, Mohammad Reza; Khosravi, Ahmad
2018-03-01
The precise identification of the parasite species causing leishmaniasis is essential for selecting proper treatment modality. The present study aims to compare the nucleotide variations of the ITS1, 7SL RNA, and Hsp70 sequences between non-healed and healed anthroponotic cutaneous leishmaniasis (ACL) patients in major foci in Iran. A case-control study was carried out from September 2015 to October 2016 in the cities of Kerman and Bam, in the southeast of Iran. Randomly selected skin-scraping lesions of 40 patients (20 non-healed and 20 healed) were examined and the organisms were grown in a culture medium. Promastigotes were collected by centrifugation and kept for further molecular examinations. The extracted DNA was amplified and sequenced. After global sequence alignment with BioEdit software, maximum likelihood phylogenetic analysis was performed in PhyML for typing of Leishmania isolates. Nucleotide composition of each genetic region was also compared between non-healed and healed patients. Our results showed that all isolates belonged to the Leishmania tropica complex, with their genetic composition in the ITS1 region being different among non-healed and healed patients. 7SL RNA and Hsp70 regions were genetically identical between both groups. Variability in nucleotide patterns observed between both groups in the ITS1 region may serve to encourage future research on the function of these polymorphisms and may improve our understanding of the role of parasite genome properties on patients' response to Leishmania treatment. Our results also do not support future use of 7SL RNA and Hsp70 regions of the parasite for comparative genomic analyses. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhao, Xin; Jiang, Shichao; Liu, Shen; Chen, Shuai; Lin, Zhi Yuan William; Pan, Guoqing; He, Fan; Li, Fengfeng; Fan, Cunyi; Cui, Wenguo
2015-08-01
To balance intrinsic and extrinsic healing during tendon repair is challenging in tendon surgery. We hypothesized that by mediating apoptotic gene and collagen synthesis of exogenous fibroblasts, the adhesion formation induced by extrinsic healing could be inhibited. With the maintenance of intrinsic healing, the tendon could be healed with proper function with no adhesion. In this study, we loaded hydrophilic mitomycin-C (MMC) into hyaluronan (HA) hydrosols, which were then encapsulated in poly(L-lactic acid) (PLLA) fibers by micro-sol electrospinning. This strategy successfully provided a controlled release of MMC to inhibit adhesion formations with no detrimental effect on intrinsic healing. We found that micro-sol electrospinning was an effective and facile approach to incorporate and control hydrophilic drug release from hydrophobic polyester fibers. MMC exhibited an initially rapid, and gradually steadier release during 40 days, and the release rates could be tuned by its concentration. In vitro studies revealed that low concentrations of MMC could inhibit fibroblast adhesion and proliferation. When lacerate tendons were healed using the MMC-HA loaded PLLA fibers in vivo, they exhibited comparable mechanical strength to the naturally healed tendons but with no significant presence of adhesion formation. We further identified the up-regulation of apoptotic protein Bax expression and down-regulation of proteins Bcl2, collage I, collagen III and α-SMA during the healing process associated with minimum adhesion formations. This approach presented here leverages new advances in drug delivery and nanotechnology and offers a promising strategy to balance intrinsic and extrinsic tendon healing through modulating genes associated with fibroblast apoptosis and collagen synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Junling; Weir, Michael D.; Melo, Mary Anne S.; Xu, Hockin H. K.
2015-01-01
Objectives Fracture and secondary caries are the primary reasons for dental restoration failure. The objective of this study was to develop a self-healing composite to heal cracks, while containing dimethylaminohexadecyl methacrylate (DMAHDM) for antibacterial function and nanoparticles of amorphous calcium phosphate (NACP) for remineralization. Methods Microcapsules were synthesized with poly(urea-formaldehyde) (PUF) shells containing triethylene glycol dimethacrylate (TEGDMA) and N,N-dihydroxyethyl-p-toluidine (DHEPT) as healing liquid. Composite contained 20 mass% of NACP and 35% glass fillers. In addition, composite contained 0%, 2.5%, 5%, 7.5%, or 10% of microcapsules. A single edge V-notched beam method measured fracture toughness (KIC) and self-healing efficiency. A dental plaque microcosm biofilm model was used to test the antibacterial properties. Results Incorporation of microcapsules up to 7.5% into the composite did not adversely affect the mechanical properties (p > 0.1). Successful self-healing was achieved, with KIC recovery of 65–81% (mean ± sd; n = 6) to regain the load-bearing capability after composite fracture. The self-healing DMAHDM-NACP composite displayed a strong antibacterial potency, inhibiting biofilm viability and lactic acid production, and reducing colony-forming units by 3–4 orders of magnitude, compared to control composite without DMAHDM. Conclusions A dental composite was developed with triple benefits of self-healing after fracture, antibacterial activity, and remineralization capability for the first time. Clinical significance The self-healing, antibacterial and remineralizing composite may be promising for tooth cavity restorations to combat bulk fracture and secondary caries. The method of using triple agents (self-healing microcapsules, DMAHDM, and NACP) may have wide applicability to other dental composites, adhesives, sealants and cements. PMID:25625674
Weinheimer-Haus, Eileen M.; Mirza, Rita E.; Koh, Timothy J.
2015-01-01
The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing. PMID:25793779
Wound-healing outcomes using standardized assessment and care in clinical practice.
Bolton, Laura; McNees, Patrick; van Rijswijk, Lia; de Leon, Jean; Lyder, Courtney; Kobza, Laura; Edman, Kelly; Scheurich, Anne; Shannon, Ron; Toth, Michelle
2004-01-01
Wound-healing outcomes applying standardized protocols have typically been measured within controlled clinical trials, not natural settings. Standardized protocols of wound care have been validated for clinical use, creating an opportunity to measure the resulting outcomes. Wound-healing outcomes were explored during clinical use of standardized validated protocols of care based on patient and wound assessments. This was a prospective multicenter study of wound-healing outcomes management in real-world clinical practice. Healing outcomes from March 26 to October 31, 2001, were recorded on patients in 3 long-term care facilities, 1 long-term acute care hospital, and 12 home care agencies for wounds selected by staff to receive care based on computer-generated validated wound care algorithms. After diagnosis, wound dimensions and status were assessed using a tool adapted from the Pressure Sore Status Toolfor use on all wounds. Wound, ostomy, and continence nursing professionals accessed consistent protocols of care, via telemedicine in home care or paper forms in long-term care. A physician entered assessments into a desktop computer in the wound clinic. Based on evidence that healing proceeds faster with fewer infections in environments without gauze, the protocols generally avoided gauze dressings. Most of the 767 wounds selected to receive the standardized-protocols of care were stage III-IV pressure ulcers (n = 373; mean healing time 62 days) or full-thickness venous ulcers (n = 124; mean healing time 57 days). Partial-thickness wounds healed faster than same-etiology full-thickness wounds. These results provide benchmarks for natural-setting healing outcomes and help to define and address wound care challenges. Outcomes primarily using nongauze protocols of care matched or surpassed best previously published results on similar wounds using gauze-based protocols of care, including protocols applying gauze impregnated with growth factors or other agents.
Berge, Jerica M; Adamek, Margaret; Caspi, Caitlin; Loth, Katie A; Shanafelt, Amy; Stovitz, Steven D; Trofholz, Amanda; Grannon, Katherine Y; Nanney, Marilyn S
2017-08-01
Despite intense nationwide efforts to improve healthy eating and physical activity across the lifespan, progress has plateaued. Moreover, health inequities remain. Frameworks that integrate research, clinical practice, policy, and community resources to address weight-related behaviors are needed. Implementation and evaluation of integration efforts also remain a challenge. The purpose of this paper is to: (1) Describe the planning and development process of an integrator entity, HEAL (Healthy Eating and Activity across the Lifespan); (2) present outcomes of the HEAL development process including the HEAL vision, mission, and values statements; (3) define the planned integrator functions of HEAL; and (4) describe the ongoing evaluation of the integration process. HEAL team members used a theoretically-driven, evidence-based, systemic, twelve-month planning process to guide the development of HEAL and to lay the foundation for short- and long-term integration initiatives. Key development activities included a review of the literature and case studies, identifying guiding principles and infrastructure needs, conducting stakeholder/key informant interviews, and continuous capacity building among team members. Outcomes/deliverables of the first year of HEAL included a mission, vision, and values statements; definitions of integration and integrator functions and roles; a set of long-range plans; and an integration evaluation plan. Application of the HEAL integration model is currently underway through community solicited initiatives. Overall, HEAL aims to lead real world integrative work that coalesce across research, clinical practice, and policy with community resources to inspire a culture of health equity aimed at improving healthy eating and physical activity across the lifespan. Copyright © 2017 Elsevier Inc. All rights reserved.
Epithelial mechanobiology, skin wound healing, and the stem cell niche.
Evans, Nicholas D; Oreffo, Richard O C; Healy, Eugene; Thurner, Philipp J; Man, Yu Hin
2013-12-01
Skin wound healing is a vital process that is important for re-establishing the epithelial barrier following disease or injury. Aberrant or delayed skin wound healing increases the risk of infection, causes patient morbidity, and may lead to the formation of scar tissue. One of the most important events in wound healing is coverage of the wound with a new epithelial layer. This occurs when keratinocytes at the wound periphery divide and migrate to re-populate the wound bed. Many approaches are under investigation to promote and expedite this process, including the topical application of growth factors and the addition of autologous and allogeneic tissue or cell grafts. The mechanical environment of the wound site is also of fundamental importance for the rate and quality of wound healing. It is known that mechanical stress can influence wound healing by affecting the behaviour of cells within the dermis, but it remains unclear how mechanical forces affect the healing epidermis. Tensile forces are known to affect the behaviour of cells within epithelia, however, and the material properties of extracellular matrices, such as substrate stiffness, have been shown to affect the morphology, proliferation, differentiation and migration of many different cell types. In this review we will introduce the structure of the skin and the process of wound healing. We will then discuss the evidence for the effect of tissue mechanics in re-epithelialisation and, in particular, on stem cell behaviour in the wound microenvironment and in intact skin. We will discuss how the elasticity, mechanical heterogeneity and topography of the wound extracellular matrix impact the rate and quality of wound healing, and how we may exploit this knowledge to expedite wound healing and mitigate scarring. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Extracorporeal shock wave therapy in treatment of delayed bone-tendon healing.
Wang, Lin; Qin, Ling; Lu, Hong-bin; Cheung, Wing-hoi; Yang, Hu; Wong, Wan-nar; Chan, Kai-ming; Leung, Kwok-sui
2008-02-01
Extracorporeal shock wave therapy is indicated for treatment of chronic injuries of soft tissues and delayed fracture healing and nonunion. No investigation has been conducted to study the effect of shock wave on delayed healing at the bone-tendon junction. Shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling of healing tissue in delayed healing of bone-tendon junction surgical repair. Controlled laboratory study. Twenty-eight mature rabbits were used for establishing a delayed healing model at the patella-patellar tendon complex after partial patellectomy and then divided into control and shock wave groups. In the shock wave group, a single shock wave treatment was given at week 6 postoperatively to the patella-patellar tendon healing complex. Seven samples were harvested at week 8 and 7 samples at week 12 for radiologic, densitometric, histologic, and mechanical evaluations. Radiographic measurements showed 293.4% and 185.8% more new bone formation at the patella-patellar tendon healing junction in the shock wave group at weeks 8 and 12, respectively. Significantly better bone mineral status was found in the week 12 shock wave group. Histologically, the shock wave group showed more advanced remodeling in terms of better alignment of collagen fibers and thicker and more mature regenerated fibrocartilage zone at both weeks 8 and 12. Mechanical testing showed 167.7% and 145.1% higher tensile load and strength in the shock wave group at week 8 and week 12, respectively, compared with controls. Extracorporeal shock wave promotes osteogenesis, regeneration of fibrocartilage zone, and remodeling in the delayed bone-to-tendon healing junction in rabbits. These results provide a foundation for future clinical studies toward establishment of clinical indication for treatment of delayed bone-to-tendon junction healing.
Healing microstructures of experimental and natural fault gouge
NASA Astrophysics Data System (ADS)
Keulen, Nynke; Stünitz, Holger; Heilbronner, RenéE.
2008-06-01
The healing of fault gouge was studied by examining microstructures of naturally and experimentally produced granitoid fault rock. We performed deformation experiments on intact granitoid rock samples at T = 300-500°C, Pc = 500 MPa, and ? = 1.2 × 10-4 - 1.3 × 10-7 s-1 with 0.2 wt% H2O added. Healing experiments were carried out on deformed samples at T = 200-500°C, Pc = 500 MPa, for 4 h to 14 days under hydrostatic and nonhydrostatic conditions. The grain size distributions (GSD) of the deformed samples were quantified using the D> value (slope of log(frequency) -log(radius) of the GSD) for quartz and feldspar fault gouge. Healing causes a decrease in the D> value from >2.0 to ˜1.5. The time dependence of the D> decrease is described by a hydrostatic healing law of the form ΔD = D>(t) - Df = A · e(-λ·t). The results of the laboratory experiments were compared to three natural fault systems, (1) Nojima Fault Zone (Japan), (2) fault zones in the Black Forest (Germany), and (3) Orobic Thrust (Italian Alps). Natural and experimental gouges have similar D> values. Healing is only observed in monomineralic aggregates; polymineralic (i.e., mixed) fault gouges retain their high D> value after extended healing times because grain growth is inhibited. Healing under nonhydrostatic conditions is more rapid than hydrostatic healing. The low strain rates, which were measured during nonhydrostatic healing, are temperature-dependent and suggest that diffusive mass transfer processes take place during deformation. Thus, fault rocks at upper to midcrustal depth may deform by combined cataclasis and diffusive mass transfer.
Synthetic Self-Healing Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bello, Mollie
Given enough time, pressure, temperature fluctuation, and stress any material will fail. Currently, synthesized materials make up a large part of our everyday lives, and are used in a number of important applications such as; space travel, under water devices, precise instrumentation, transportation, and infrastructure. Structural failure of these material scan lead to expensive and dangerous consequences. In an attempt to prolong the life spans of specific materials and reduce efforts put into repairing them, biologically inspired, self-healing systems have been extensively investigated. The current review explores recent advances in three methods of synthesized self-healing: capsule based, vascular, and intrinsic.more » Ideally, self-healing materials require no human intervention to promote healing, are capable of surviving all the steps of polymer processing, and heal the same location repeatedly. Only the vascular method holds up to all of these idealities.« less
Maze solving automatons for self-healing of open interconnects: Modular add-on for circuit boards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nair, Aswathi; Raghunandan, Karthik; Yaswant, Vaddi
We present the circuit board integration of a self-healing mechanism to repair open faults. The electric field driven mechanism physically restores fractured interconnects in electronic circuits and has the ability to solve mazes. The repair is performed by conductive particles dispersed in an insulating fluid. We demonstrate the integration of the healing module onto printed circuit boards and the ability of maze solving. We model and perform experiments on the influence of the geometry of conductive particles as well as the terminal impedances of the route on the healing efficiency. The typical heal rate is 10 μm/s with healed route havingmore » mean resistance of 8 kΩ across a 200 micron gap and depending on the materials and concentrations used.« less
Students' perceptions of the impact a creative arts journal has on their medical education.
Rodriguez, Jose E; Welch, Tana J; Saunders, Charles; Edwards, Janine C
2013-09-01
Student-produced creative arts journals now exist in several medical schools. The Florida State University College of Medicine (FSUCOM) has created HEAL: Humanism Evolving through Arts and Literature. This study sought to determine what influence, if any, HEAL publications may have on medical students. A survey utilizing Likert scale questions was sent to Florida State University medical students. Student responses were tabulated and analyzed using SAS 9.2 and MS Excel. A total of 241 (49.5%) students responded to the survey. About 81% of the respondents enjoyed reading HEAL. Many respondents agreed that HEAL promoted patient-centered care (55.9%) and could prevent burnout (61.8%). Sixty-four percent thought that HEAL helped them to understand their colleagues and classmates. This survey found that the medical students perceive HEAL as having positive value.
Lafont, U; van Zeijl, H; van der Zwaag, S
2012-11-01
Synthetic systems with intrinsic self-repairing or self-healing abilities have emerged during the past decade. In this work, the influence of the cross-linker and chain rigidity on the healing ability of thermoset rubbers containing disulfide bonds have been investigated. The produced materials exhibit adhesive and cohesive self-healing properties. The recovery of these two functionalities upon the thermally triggered healing events has shown to be highly dependent on the network cross-link density and chain rigidity. As a result, depending on the rubber thermoset intrinsic physical properties, the thermal mending leading to full cohesive recovery can be achieved in 20-300 min at a modest healing temperature of 65 °C. The adhesive strength ranges from 0.2 to 0.5 MPa and is fully recovered even after multiple failure events.
Exploring scarless healing of oral soft tissues.
Larjava, Hannu; Wiebe, Colin; Gallant-Behm, Corrie; Hart, David A; Heino, Jyrki; Häkkinen, Lari
2011-01-01
Our research group is comparing clinical, histological and molecular healing profiles of oral and skin wounds using human and pig models. The goal is to determine the molecular cues that lead to scarless healing in the oral mucosa and use that information to develop scar prevention therapies for skin and prevent aberrant wound healing in the oral cavity. Wound healing in human and pig palatal mucosa is almost identical, and scar formation is reduced in oral wounds compared with skin. The striking difference between these tissues is transient and rapidly resolving inflammation in oral wounds compared with long-lasting inflammation in the skin wounds. Currently, we are looking at wound transcriptomes (genes differentially regulated) and proteomes (a set of proteins) to investigate how these wound healing responses in skin and oral mucosa are regulated at the molecular level.
Emergence of healing in the Antarctic ozone layer.
Solomon, Susan; Ivy, Diane J; Kinnison, Doug; Mills, Michael J; Neely, Ryan R; Schmidt, Anja
2016-07-15
Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or "healing") is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption. Copyright © 2016, American Association for the Advancement of Science.
A review of infrared laser energy absorption and subsequent healing in the cornea
NASA Astrophysics Data System (ADS)
Saunders, Latica L.; Johnson, Thomas E.; Neal, Thomas A.
2004-07-01
The purpose of this review is to compile information on the optical and healing properties of the cornea when exposed to infrared lasers. Our long-term goal is to optimize the treatment parameters for corneal injuries after exposure to infrared laser systems. The majority of the information currently available in the literature focuses on corneal healing after therapeutic vision correction surgery with LASIK or PRK. Only a limited amount of information is available on corneal healing after injury with an infrared laser system. In this review we will speculate on infrared photon energy absorption in corneal injury and healing to include the role of the tear layer. The aim of this review is to gain a better understanding of infrared energy absorption in the cornea and how it might impact healing.
The Flexibility Hypothesis of Healing.
Hinton, Devon E; Kirmayer, Laurence J
2017-03-01
Theories of healing have attempted to identify general mechanisms that may work across different modalities. These include altering expectations, remoralization, and instilling hope. In this paper, we argue that many forms of healing and psychotherapy may work by inducing positive psychological states marked by flexibility or an enhanced ability to shift cognitive sets. Healing practices may induce these states of cognitive and emotional flexibility through specific symbolic interventions we term "flexibility primers" that can include images, metaphors, music, and other media. The flexibility hypothesis suggests that cognitive and emotional flexibility is represented, elicited, and enacted through multiple modalities in healing rituals. Identifying psychological processes and cultural forms that evoke and support cognitive and emotional flexibility provides a way to understand the cultural specificity and potential efficacy of particular healing practices and can guide the design of interventions that promote resilience and well-being.
Julovi, Sohel M.; Xue, Meilang; Dervish, Suat; Sambrook, Philip N.; March, Lyn; Jackson, Christopher John
2011-01-01
Activated protein C (APC) is a natural anticoagulant that exerts anti-inflammatory and cytoprotective properties mediated through the protease activated receptor (PAR)-1. APC can also proteolytically cleave PAR-2, although subsequent function is unknown. On the basis of recent evidence that APC promotes wound healing, the aim of this study was to determine whether APC acts through PARs to heal murine excisional wounds or to regulate human cultured keratinocyte function and to determine the signaling mechanisms. Topical administration of APC accelerated wound healing in wild-type mice and, unexpectedly, in PAR-1 knockout mice. PAR-2 knockout mice healed significantly slower than wild-type mice, and healing was not altered by adding APC, indicating that APC acts through PAR-2 to heal wounds. In cultured human primary keratinocytes, APC enhanced PAR-2, stimulated proliferation, activated phosphatidylinositol 3-kinase/Src/Akt, and inhibited phosphorylated (P)-p38. Inhibiting PAR-1 or PAR-2, by small-interfering RNA or blocking antibody, reversed APC-induced keratinocyte proliferation and Akt activation. Blocking PAR-2, but not PAR-1, reversed the inhibition of P-p38 by APC. Furthermore, inhibition of P-p38 accelerated wound healing in wild-type mice. In summary, although APC acts through both PAR-1 and PAR-2 to activate Akt and to increase keratinocyte proliferation, APC-induced murine wound healing depends on PAR-2 activity and inhibition of P-p38. PMID:21907694
Scott, John Glenn; Warber, Sara L; Dieppe, Paul; Jones, David; Stange, Kurt C
2017-01-01
Objectives To elucidate pathways to healing for people having suffered injury to the integrity of their function as a human being. Methods A team of physician-analysts conducted thematic analyses of in-depth interviews of 23 patients who experienced healing, as identified by six primary care physicians purposefully selected as exemplary healers. Results People in the sample experienced healing journeys that spanned a spectrum from overcoming unspeakable trauma and then becoming healers themselves to everyday heroes functioning well despite ongoing serious health challenges. The degree and quality of suffering experienced by each individual is framed by contextual factors that include personal characteristics, timing of their initial or ongoing wounding in the developmental life cycle and prior and current relationships. In the healing journey, bridges from suffering are developed to healing resources/skills and connections to helpers outside themselves. These bridges often evolve in fits and starts and involve persistence and developing a sense of safety and trust. From the iteration between suffering and developing resources and connections, a new state emerges that involves hope, self-acceptance and helping others. Over time, this leads to healing that includes a sense of integrity and flourishing in the pursuit of meaningful goals and purpose. Conclusion Moving from being wounded, through suffering to healing, is possible. It is facilitated by developing safe, trusting relationships and by positive reframing that moves through the weight of responsibility to the ability to respond. PMID:28903969
Effect of blast furnace slag on self-healing of microcracks in cementitious materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Haoliang, E-mail: haoliang.huang@tudelft.nl; Ye, Guang; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University
The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling,more » when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.« less
Phase Transformation Induced Self-Healing Behavior of Al-Ag Alloy.
Michalcová, Alena; Marek, Ivo; Knaislová, Anna; Sofer, Zdeněk; Vojtěch, Dalibor
2018-01-27
Self-healing alloys are promising materials that can decrease the consequences of accidents. To detect crack formation in a material is simple task that can be performed by e.g., sonic or ultrasound detection, but it is not always possible to immediately replace the damaged parts. In this situation, it is very advantageous to have the chance to heal the crack during operation, which can be done e.g., by annealing. In this paper, self-healing behavior was proven by TEM (Transmission electron microscope) observation of crack healing after annealing. The crack was observed in the rapidly solidified Al-30Ag alloy with non-equilibrium phase composition formed by a minor amount of Ag₂Al and a supersaturated solid solution of Ag in an fcc-Al matrix (fcc = face centered cubic). After annealing at 450 °C, equilibrium phase composition was obtained by forming a higher amount of Ag₂Al. This phase transformation did not allow the crack to be healed. Subsequent annealing at 550 °C caused recrystallization to a supersaturated solid solution of Ag in fcc-Al, followed by a return to the mixture of fcc-Al and Ag₂Al by cooling, and this process was accompanied by the closing of the crack. This observation proved the self-healing possibilities of the Ag₂Al phase. Practical application of this self-healing behavior could be achieved through the dispersion of fine Ag₂Al particles in a structural material, which will enrich the material with self-healing properties.
Bigham-Sadegh, Amin; Oryan, Ahmad
2015-06-01
Fracture healing is a complex physiological process, which involves a well-orchestrated series of biological events. Repair of large bone defects resulting from trauma, tumours, osteitis, delayed unions, non-unions, osteotomies, arthrodesis and multifragmentary fractures is a current challenge of surgeons and investigators. Different therapeutic modalities have been developed to enhance the healing response and fill the bone defects. Different types of growth factors, stem cells, natural grafts (autografts, allografts or xenografts) and biologic- and synthetic-based tissue-engineered scaffolds are some of the examples. Nevertheless, these organic and synthetic materials and therapeutic agents have some significant limitations, and there are still no well-approved treatment modalities to meet all the expected requirements. Bone tissue engineering is a newer option than the traditional grafts and may overcome many limitations of the bone graft. To select an appropriate treatment strategy in achieving a successful and secure healing, more information concerning injuries of bones, their healing process and knowledge of the factors involved are required. The main goals of this work are to present different treatment modalities of the fractured bones and to explain how fractures normally heal and what factors interfere with fracture healing. This study provides an overview of the processes of fracture healing and discusses the current therapeutic strategies that have been claimed to be effective in accelerating fracture healing. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway.
Wu, Xue; Yang, Longlong; Zheng, Zhao; Li, Zhenzhen; Shi, Jihong; Li, Yan; Han, Shichao; Gao, Jianxin; Tang, Chaowu; Su, Linlin; Hu, Dahai
2016-03-01
Wound healing is a highly orchestrated, multistep process, and delayed wound healing is a significant symptomatic clinical problem. Keratinocyte migration and re-epithelialization play the most important roles in wound healing, as they determine the rate of wound healing. In our previous study, we found that Src, one of the oldest proto‑oncogenes encoding a membrane-associated, non-receptor protein tyrosine kinase, promotes keratinocyte migration. We therefore hypothesized that Src promotes wound healing through enhanced keratinocyte migration. In order to test this hypothesis, vectors for overexpressing Src and small interfering RNAs (siRNAs) for silencing of Src were used in the present study. We found that the overexpression of Src accelerated keratinocyte migration in vitro and promoted wound healing in vivo without exerting a marked effect on cell proliferation. The extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways play important roles in Src-accelerated keratinocyte migration. Further experiments demonstrated that Src induced the protein expression of matrix metalloproteinase-2 (MMP-2) and decreased the protein expression of E-cadherin. We suggest that ERK signaling is involved in the Src-mediated regulation of MMP-2 expression. The present study provided evidence that Src promotes keratinocyte migration and cutaneous wound healing, in which the regulation of MMP-2 through the ERK pathway plays an important role, and thus we also demonstrated a potential therapeutic role for Src in cutaneous wound healing.
Hartmann, William E; Gone, Joseph P
2012-10-01
Facing severe mental health disparities rooted in a complex history of cultural oppression, members of many urban American Indian (AI) communities are reaching out for indigenous traditional healing to augment their use of standard Western mental health services. Because detailed descriptions of approaches for making traditional healing available for urban AI communities do not exist in the literature, this community-based project convened 4 focus groups consisting of 26 members of a midwestern urban AI community to better understand traditional healing practices of interest and how they might be integrated into the mental health and substance abuse treatment services in an Urban Indian Health Organization (UIHO). Qualitative content analysis of focus group transcripts revealed that ceremonial participation, traditional education, culture keepers, and community cohesion were thought to be key components of a successful traditional healing program. Potential incorporation of these components into an urban environment, however, yielded 4 marked tensions: traditional healing protocols versus the realities of impoverished urban living, multitribal representation in traditional healing services versus relational consistency with the culture keepers who would provide them, enthusiasm for traditional healing versus uncertainty about who is trustworthy, and the integrity of traditional healing versus the appeal of alternative medicine. Although these tensions would likely arise in most urban AI clinical contexts, the way in which each is resolved will likely depend on tailored community needs, conditions, and mental health objectives. (c) 2012 APA, all rights reserved.
[The Process of Healing Child Physical Abuse: Sprouting and Twining].
Chang, Hsin-Yi; Feng, Jui-Ying; Tseng, Ren-Mei
2018-06-01
Child physical abuse impacts the physical and psychological health of survivors. Healing child abuse is an essential process that helps survivors reorganize the meaning of the trauma and pursue a normal life. Considering the trauma of child physical abuse within the social context allows the experiences of individual survivors to be reflected in their process of healing. To explore the social interaction and construction process of healing experienced by survivors of child physical abuse. A qualitative research design using grounded theory was applied. Purposive and theoretical sampling was used to recruit survivors of childhood physical abuse who had experienced healing. Semi-structured, in-depth interviews were used and data were analyzed using open, axial, and selective coding. The process of healing child physical abuse in this study was a process of sprouting and twining. Three core categories emerged: thriving, relationships, and ethics. The healing process was analogous to a seed growing in poor soil, sprouting out from the ground, and striving to live by seeking support. The survivors constantly established interactive relationships with their selves and with others and struggled to keep family bonds grounded and growing within the frame of ethics. The healing process of sprouting and twining for child physical abuse survivors in Taiwan integrates thriving, relationships, and ethics. Professionals working with child-physical-abuse survivors must recognize conflicts in ethics. Strategies should be developed to assist survivors to cope with the impact of childhood trauma in order to facilitate the healing process.
Tissue repair genes: the TiRe database and its implication for skin wound healing.
Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E
2016-04-19
Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org.
Hartmann, William E.; Gone, Joseph P.
2013-01-01
Facing severe mental health disparities rooted in a complex history of cultural oppression, members of many urban American Indian (AI) communities are reaching out for indigenous traditional healing to augment their use of standard Western mental health services. Because detailed descriptions of approaches for making traditional healing available for urban AI communities do not exist in the literature, this community-based project convened 4 focus groups consisting of 26 members of a midwestern urban AI community to better understand traditional healing practices of interest and how they might be integrated into the mental health and substance abuse treatment services in an Urban Indian Health Organization (UIHO). Qualitative content analysis of focus group transcripts revealed that ceremonial participation, traditional education, culture keepers, and community cohesion were thought to be key components of a successful traditional healing program. Potential incorporation of these components into an urban environment, however, yielded 4 marked tensions: traditional healing protocols versus the realities of impoverished urban living, multitribal representation in traditional healing services versus relational consistency with the culture keepers who would provide them, enthusiasm for traditional healing versus uncertainty about who is trustworthy, and the integrity of traditional healing versus the appeal of alternative medicine. Although these tensions would likely arise in most urban AI clinical contexts, the way in which each is resolved will likely depend on tailored community needs, conditions, and mental health objectives. PMID:22731113
Wound Blush Obtainment Is the Most Important Angiographic Endpoint for Wound Healing.
Utsunomiya, Makoto; Takahara, Mitsuyoshi; Iida, Osamu; Yamauchi, Yasutaka; Kawasaki, Daizo; Yokoi, Yoshiaki; Soga, Yoshimistu; Ohura, Norihiko; Nakamura, Masato
2017-01-23
This study aimed to assess the optimal angiographic endpoint of endovascular therapy (EVT) for wound healing. Several reports have demonstrated acceptable patency and limb salvage rates following infrapopliteal interventions for the treatment of critical limb ischemia (CLI). However, the optimal angiographic endpoint of EVT remains unclear. We conducted a subanalysis of the prospective multicenter OLIVE (Endovascular Treatment for Infrainguinal Vessels in Patients with Critical Limb Ischemia) registry investigation assessing patients who received infrainguinal EVT for CLI. We analyzed data from 185 limbs with ischemic ulcerations classified as Rutherford class 5 or 6, managed with EVT alone (i.e., not undergoing bypass surgery). The wound healing rate after EVT was estimated by the Kaplan-Meier method. The association between final angiographic data and wound healing was assessed employing a Cox proportional hazards model. The overall wound healing rate was 73.5%. The probabilities of wound healing in patients with wound blush obtainment was significantly higher than that of those without wound blush (79.6% vs. 46.5%; p = 0.01). In the multivariate analysis, wound blush obtainment was an independent predictor of wound healing. The presence of wound blush after EVT is significantly associated with wound healing. Wound blush as an angiographic endpoint for EVT may serve as a novel predictor of wound healing in patients with CLI. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Tissue repair genes: the TiRe database and its implication for skin wound healing
Yanai, Hagai; Budovsky, Arie; Tacutu, Robi; Barzilay, Thomer; Abramovich, Amir; Ziesche, Rolf; Fraifeld, Vadim E.
2016-01-01
Wound healing is an inherent feature of any multicellular organism and recent years have brought about a huge amount of data regarding regular and abnormal tissue repair. Despite the accumulated knowledge, modulation of wound healing is still a major biomedical challenge, especially in advanced ages. In order to collect and systematically organize what we know about the key players in wound healing, we created the TiRe (Tissue Repair) database, an online collection of genes and proteins that were shown to directly affect skin wound healing. To date, TiRe contains 397 entries for four organisms: Mus musculus, Rattus norvegicus, Sus domesticus, and Homo sapiens. Analysis of the TiRe dataset of skin wound healing-associated genes showed that skin wound healing genes are (i) over-conserved among vertebrates, but are under-conserved in invertebrates; (ii) enriched in extracellular and immuno-inflammatory genes; and display (iii) high interconnectivity and connectivity to other proteins. The latter may provide potential therapeutic targets. In addition, a slower or faster skin wound healing is indicative of an aging or longevity phenotype only when assessed in advanced ages, but not in the young. In the long run, we aim for TiRe to be a one-station resource that provides researchers and clinicians with the essential data needed for a better understanding of the mechanisms of wound healing, designing new experiments, and the development of new therapeutic strategies. TiRe is freely available online at http://www.tiredb.org. PMID:27049721
Kanapathy, Muholan; Hachach-Haram, Nadine; Bystrzonowski, Nicola; Harding, Keith; Mosahebi, Afshin; Richards, Toby
2016-05-17
Split-thickness skin grafting (SSG) is an important modality for wound closure. However, the donor site becomes a second, often painful wound, which may take more time to heal than the graft site itself and holds the risk of infection and scarring. Epidermal grafting (EG) is an alternative method of autologous skin grafting that harvests only the epidermal layer of the skin by applying continuous negative pressure on the normal skin to raise blisters. This procedure has minimal donor site morbidity and is relatively pain-free, allowing autologous skin grafting in an outpatient setting. We plan to compare EG to SSG and to further investigate the cellular mechanism by which each technique achieves wound healing. EPIGRAAFT is a multicentre, randomised, controlled trial that compares the efficacy and wound-healing mechanism of EG with SSG for wound healing. The primary outcome measures are the proportion of wounds healed in 6 weeks and the donor site healing time. The secondary outcome measures include the mean time for complete wound healing, pain score, patient satisfaction, health care utilisation, cost analysis, and incidence of adverse events. This study is expected to define the efficacy of EG and promote further understanding of the mechanism of wound healing by EG compared to SSG. The results of this study can be used to inform the current best practise for wound care. Clinicaltrials.gov identifier, NCT02535481 . Registered on 11 August 2015.
Bevis, Paul; Earnshaw, Jonothan
2011-01-01
Clinical question: What is the best treatment for venous ulcers? Results: Compression aids ulcer healing. Pentoxifylline can aid ulcer healing. Artificial skin grafts are more effective than other skin grafts in helping ulcer healing. Correction of underlying venous incompetence reduces ulcer recurrence. Implementation: Potential pitfalls to avoid are: Failure to exclude underlying arterial disease before application of compression.Unusual-looking ulcers or those slow to heal should be biopsied to exclude malignant transformation. PMID:21673869
Comparing the effects of nebivolol and dexpanthenol on wound healing: an experimental study.
Ulger, Burak V; Kapan, Murat; Uslukaya, Omer; Bozdag, Zubeyir; Turkoglu, Ahmet; Alabalık, Ulas; Onder, Akın
2016-06-01
Wound healing is a dynamic, interactive process that is initiated in response to injury. A number of investigations and clinical studies have been performed to determine new approaches for the improvement of wound healing. The aim of this study was to compare the effects of dexpanthenol, a molecule that is widely used for improving wound healing, and nebivolol, a molecule that increases nitric oxide release, on wound healing. A total of 30 rats were divided into three equal groups (n = 10). A linear 2 cm incision was made in the rats' skin. No treatment was administered in the first (control) group. Dexpanthenol cream was administered to the rats in the second group and 5% nebivolol cream was administered to the rats in the third group. The wound areas of all of the rats were measured on certain days. On the 21(st) day, all wounds were excised and histologically evaluated. The wound healing rates of the dexpanthenol and nebivolol groups were higher than those of the control group (P < 0·05). However, the wound healing rates of the dexpanthenol and nebivolol groups were not significantly different. Nebivolol and dexpanthenol have comparable effects on wound healing. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Overcoming wound complications in head and neck salvage surgery.
Kwon, Daniel; Genden, Eric M; de Bree, Remco; Rodrigo, Juan P; Rinaldo, Alessandra; Sanabria, Alvaro; Rapidis, Alexander D; Takes, Robert P; Ferlito, Alfio
2018-04-21
Loco-regional treatment failure after radiotherapy with or without chemotherapy and/or prior surgery represents a significant portion of head and neck cancer patients. Due to a wide array of biological interactions, these patients have a significantly increased risk of complications related to wound healing. Review of the current literature was performed for wound healing pathophysiology, head and neck salvage surgery, and wound therapy. The biology of altered wound healing in the face of previous surgery and chemoradiotherapy is well described in the literature. This is reflected in multiple clinical studies demonstrating increased rates of wound healing complications in salvage surgery, most commonly in the context of previous irradiation. Despite these disadvantages, multiple studies have described strategies to optimize healing outcomes. The literature supports preoperative optimization of known wound healing factors, adjunctive wound care modalities, and microvascular free tissue transfer for salvage surgery defects and wounds. Previously treated head and neck patients requiring salvage surgery have had a variety of disadvantages related to wound healing. Recognition and treatment of these factors can help to reverse adverse tissue conditions. A well-informed approach to salvage surgery with utilization of free vascularized or pedicled tissue transfer as well as optimizing wound healing factors is essential to obtaining favorable outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.
Van den Heede, Philip; Van Belleghem, Bjorn; Alderete, Natalia; Van Tittelboom, Kim; De Belie, Nele
2016-01-01
Given their low tensile strength, cement-based materials are very susceptible to cracking. These cracks serve as preferential pathways for corrosion inducing substances. For large concrete infrastructure works, currently available time-consuming manual repair techniques are not always an option. Often, one simply cannot reach the damaged areas and when making those areas accessible anyway (e.g., by redirecting traffic), the economic impacts involved would be enormous. Under those circumstances, it might be useful to have concrete with an embedded autonomous healing mechanism. In this paper, the effectiveness of incorporating encapsulated high and low viscosity polyurethane-based healing agents to ensure (multiple) crack healing has been investigated by means of capillary absorption tests on mortar while monitoring the time-dependent water ingress with neutron radiography. Overall visual interpretation and water front/sample cross-section area ratios as well as water profiles representing the area around the crack and their integrals do not show a preference for the high or low viscosity healing agent. Another observation is that in presence of two cracks, only one is properly healed, especially when using the latter healing agent. Exposure to water immediately after release of the healing agent stimulates the foaming reaction of the polyurethane and ensures a better crack closure. PMID:28773436
Self-Care-Based Treatment Using Ordinary Elastic Bandages for Venous Leg Ulcers
Suehiro, Kotaro; Morikage, Noriyasu; Harada, Takasuke; Samura, Makoto; Takeuchi, Yuriko; Mizoguchi, Takahiro; Hamano, Kimikazu
2017-01-01
Objective: We aimed to study venous leg ulcer (VLU) healing and recurrence rates of VLU using a self-care-based treatment strategy. Methods: The study included 36 patients (43 legs) who visited our clinic between April 2009 and June 2015 because of non-healing VLUs and who had been treated by us for more than a year (until June 2016). Patients or their caregivers were first provided instructions for performing the “no-intentional-stretch” bandaging technique using ordinary elastic bandages. Wounds were cleansed with tepid water daily, and bandages were re-applied by patients or their caregivers; this was continued until VLUs were healed. Compression was discontinued after healing, but was restarted if persistent swelling and/or dermatitis was noticed on their legs. Results: The median ulcer size was 6.5 cm2 (range, 1–105 cm2). The median number of clinic visits until healing was six (range, 3–35). The 6- and 12-month healing rates were 67% and 86%, respectively. Twenty (44%) legs required compression therapy after VLU healing. The cumulative recurrence-free rate at 60 months was 86%. Conclusion: Reasonable healing and recurrence rates were achieved by applying a self-care-based VLU treatment strategy. PMID:29147163
Thomas, David R; Diebold, Marilyn R; Eggemeyer, Linda M
2005-01-01
Pressure ulcers, like other chronic wounds, fail to proceed through an orderly and timely process to produce anatomical or functional integrity. Treatment of pressure ulcers is directed to improving host factors and providing an optimum wound environment. In addition to providing a moist wound environment, it has been theorized that preventing hypothermia in a wound and maintaining a normothermic state might improve wound healing. Forty-one subjects with a stage 3 or stage 4 truncal pressure ulcer >1.0 cm(2) were recruited from outpatient clinics, long-term care nursing homes, and a rehabilitation center. The experimental group was randomized to a radiant-heat dressing device and the control group was randomized to a hydrocolloid dressing, with or without a calcium alginate filler. Subjects were followed until healed or for 12 weeks. Eight subjects (57%) in the experimental group had complete healing of their pressure ulcer compared with 7 subjects (44%) with complete healing in the control group (P = .46). Although a 13% difference in healing rate between the two arms of the study was found, this difference was not statistically significant. At almost all points along the healing curve, the proportion not healed was higher in the control arm.
NASA Astrophysics Data System (ADS)
Luterbacher, R.; Trask, R. S.; Bond, I. P.
2016-01-01
The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown.
Self-Healing of Microcracks in Engineered Cementitious Composites (ECC) Under a Natural Environment
Herbert, Emily N.; Li, Victor C.
2013-01-01
This paper builds on previous self-healing engineered cementitious composites (ECC) research by allowing ECC to heal outdoors, in the natural environment, under random and sometimes extreme environmental conditions. Development of an ECC material that can heal itself in the natural environment could lower infrastructure maintenance costs and allow for more sustainable development in the future by increasing service life and decreasing the amount of resources and energy needed for repairs. Determining to what extent current ECC materials self-heal in the natural environment is the first step in the development of an ECC that can completely heal itself when exposed to everyday environmental conditions. This study monitored outdoor ECC specimens for one year using resonant frequency (RF) and mechanical reloading to determine the rate and extent of self-healing in the natural environment. It was found that the level of RF, stiffness, and first cracking strength recovery increased as the duration of natural environment exposure increased. For specimens that underwent multiple damage cycles, it was found that the level of recovery was highly dependent on the average temperature and amount of precipitation between each damage event. However, RF, stiffness, and first cracking strength recovery data for specimens that underwent multiple loading cycles suggest that self-healing functionality can be maintained under multiple damage events. PMID:28811411
Rolling contact fatigue strengths of shot-peened and crack-healed ceramics
NASA Astrophysics Data System (ADS)
Takahashi, K.; Oki, T.
2018-06-01
The effects of shot-peening (SP) and crack-healing on the rolling contact fatigue (RCF) strengths of Al2O3/SiC composite ceramics were investigated. Non-shot-peened, shot- peened, and shot-peened + crack-healed specimens were prepared. SP was performed using ZrO2 beads. The shot-peened + crack-healed specimen was crack-healed after SP. X-ray diffraction clearly showed that SP induced a compressive residual stress up to 300 MPa at the specimen surfaces. Furthermore, the shot-peened + crack-healed specimen retained a compressive residual stress of 200 MPa. The apparent surface fracture toughness of the shot- peened specimens increased owing to the positive effects of the compressive residual stress. RCF tests were performed using a thrust load-bearing test device. The RCF lives of the shot- peened specimens did not improve compared to that of the non-shot-peened specimen, because the numerous SP-introduced surface cracks could act as crack initiation sites during the RCF tests. However, the RCF life of the shot-peened + crack-healed specimen did improve compared to those of non-shot-peened and shot-peened specimens, implying that combining SP and crack-healing was an effective strategy for improving the RCF lives of Al2O3/SiC composite ceramics.
Esophageal healing in the pony: comparison of sutured vs nonsutured esophagotomy.
Stick, J A; Krehbiel, J D; Kunze, D J; Wortman, J A
1981-09-01
Esophageal healing was evaluated in 10 ponies after sutured and nonsutured cervical esophagotomy techniques. Mucosal healing occurred significantly (P less than 0.005) faster after sutured esophagotomies (x = 7.5 days after surgery) than after nonsutured esophagotomies (x = 25.6 days after surgery), based on endoscopic and clinical evaluations. Although endoscopy was an accurate assessment of the return of normal passage of a food bolus through the esophagus, 4 of 10 ponies had radiographic evidence of a sinus tract after the mucosa was considered healed, based on endoscopic and clinical examinations. The surgical skin wound also healed significantly sooner after sutured esophagotomies (x = 10 days) than after nonsutured esophagotomies (x = 33.4 days). A traction diverticulum developed in all ponies with nonsutured esophagotomies, but occurred in only 1 pony with sutured esophagotomy. Minor complications were seen more frequently with sutured esophagotomy than with a nonsutured esophagotomy, but were resolved with local therapy. Saliva appeared to inhibit wound healing. All ponies were fed through esophagostomy tubes until the mucosa at the esophagotomy site was considered healed. Except for 1 sutured esophagotomy that dehisced, sutured esophagotomy was superior to nonsutured esophagotomy, because earlier establishment of a mucosal seal resulted in more rapid healing and reduced nursing care.
Damage initiated self-healing in ionomer blends
NASA Astrophysics Data System (ADS)
Rahman, Md. Arifur; Penco, Maurizio; Spagnoli, Gloria; Peroni, Isabella; Ramorino, Giorgio; Sartore, Luciana; Bignotti, Fabio; Landro, Luca Di
2012-07-01
The development and understanding of self-healing mechanisms have been investigated in blends of ionomers (Poly(ethyelene-co-methacrylic acid), sodium & zinc ions) (EMNa & EMZn) containing both elastomers (Epoxidized natural rubbers (ENR) and cis-1,4-Polyisoprene (PISP)) and crystalline component (Poly(vinly alcohol-co-ethylene) [PVAcE]) as secondary phases. All the blends were prepared by melt-blending and self-healing behavior was studied in ballistic puncture tests. Self-healing behavior of each material was evaluated by observing the impact zones under a stereo-optical microscope and the micrographic results were further supported by the fluid flow test in the punctured zones. Interestingly, ENR50 blends of sodium ion containing ionomers exhibited complete self-repairing behavior while zinc ion containing ionomer showed limited mending but EMNa/ENR25 and EMNa/PISP blends did not show any self-healing behavior following the damage. On the other hand, a composition dependent healing behavior was observed in the EMNa/PVAcE blends where healing was observed up to 30wt% PVAcE containing blends. The chemical structure studied by FTIR analysis showed that both ion content of ionomer and functionality of ENR have significant influence on the self-repairing behavior of blends. TEM analysis revealed that self-healing occurs in the blends when the dispersed phase has a dimension of 100 to 400 nm.
Evaluation of lipoic acid topical application on rats skin wound healing.
Külkamp-Guerreiro, Irene Clemes; Souza, Marielly Nunes; Bianchin, Mariana Domingues; Isoppo, Mateus; Freitas, Joana Sachetti; Alves, João Alex; Piovezan, Anna Paula; Pohlmann, Adriana Raffin; Guterres, Sílvia Stanisçuaski
2013-10-01
To evaluate the effects of lipoic acid (thioctic acid) topical application on wound healing on rats skin, and the consequences of lipoic acid nanoencapsulation on this process. The model used was the healing activity on wounds induced by surgical incision on rats skin (n = 44). The parameters analyzed (11 days) were wound healing rate and histology (vascular proliferation, polymorphonuclear or mononuclear cells, and collagen synthesis or reepithelialization), after application of free lipoic acid or lipoic acid- loaded nanocapsules. The antioxidant activity of these formulations was evaluated by lipid peroxidation test. It was demonstrated for the first time that the topical application of lipoic acid improves wound healing. On the seventh day after surgery, the animals treated with lipoic acid showed increased healing rate (60.7 ± 8.4%) compared to the negative control group (43.0 ± 17.4%), as so improvement of histological parameters. The nanoencapsulation reverted the pro-oxidant activity presented in vitro by lipoic acid, whereas diminished wound repair. The topical application of lipoic acid produced an increase in the skin wound healing, which may be related to its pro-oxidant activity. On the other hand, the nanoencapsulation of the lipoic acid reversed the pro-oxidant activity, although presented minor healing activity.
Mast Cells Regulate Wound Healing in Diabetes
Tellechea, Ana; Leal, Ermelindo C.; Kafanas, Antonios; Auster, Michael E.; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M.; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C.
2016-01-01
Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P < 0.05). Conversely, postwounding MC degranulation increases in nondiabetic mice, but not in diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P < 0.05). Nevertheless, nondiabetic and diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. PMID:27207516
Djafarzadeh, Roghieh; Conrad, Claudius; Notohamiprodjo, Susan; Hipp, Stephanie; Niess, Hanno; Bruns, Christiane J; Nelson, Peter J
2014-01-01
The balance between matrix metalloproteinases and their endogenous tissue inhibitors (TIMPs) is an important component in effective wound healing. The biologic action of these proteins is linked in part to the stoichiometry of TIMP/matrix metalloproteinases/surface protein interactions. We recently described the effect of a glycosylphosphatidylinositol (GPI) anchored version of TIMP-1 on dermal fibroblast biology. Here, cell proliferation assays, in vitro wound healing, electrical wound, and impedance measurements were used to characterize effects of TIMP-1-GPI treatment on primary human epidermal keratinocytes. TIMP-1-GPI stimulated keratinocyte proliferation, as well as mobilization and migration. In parallel, it suppressed the migration and matrix secretion of dermal myofibroblasts, and reduced their secretion of active TGF-β1. Topical application of TIMP-1-GPI in an in vivo excisional wound model increased the rate of wound healing. The agent positively influenced different aspects of wound healing depending on the cell type studied. TIMP-1-GPI counters potential negative effects of overactive myofibroblasts and enhances the mobilization and proliferation of keratinocytes essential for effective wound healing. The application of TIMP-1-GPI represents a novel and practical clinical solution for facilitating healing of difficult wounds. © 2014 by the Wound Healing Society.
Substance P promotes wound healing in diabetes by modulating inflammation and macrophage phenotype.
Leal, Ermelindo C; Carvalho, Eugénia; Tellechea, Ana; Kafanas, Antonios; Tecilazich, Francesco; Kearney, Cathal; Kuchibhotla, Sarada; Auster, Michael E; Kokkotou, Efi; Mooney, David J; LoGerfo, Frank W; Pradhan-Nabzdyk, Leena; Veves, Aristidis
2015-06-01
Diabetic foot ulceration is a major complication of diabetes. Substance P (SP) is involved in wound healing, but its effect in diabetic skin wounds is unclear. We examined the effect of exogenous SP delivery on diabetic mouse and rabbit wounds. We also studied the impact of deficiency in SP or its receptor, neurokinin-1 receptor, on wound healing in mouse models. SP treatment improved wound healing in mice and rabbits, whereas the absence of SP or its receptor impaired wound progression in mice. Moreover, SP bioavailability in diabetic skin was reduced as SP gene expression was decreased, whereas the gene expression and protein levels of the enzyme that degrades SP, neutral endopeptidase, were increased. Diabetes and SP deficiency were associated with absence of an acute inflammatory response important for wound healing progression and instead revealed a persistent inflammation throughout the healing process. SP treatment induced an acute inflammatory response, which enabled the progression to the proliferative phase and modulated macrophage activation toward the M2 phenotype that promotes wound healing. In conclusion, SP treatment reverses the chronic proinflammatory state in diabetic skin and promotes healing of diabetic wounds. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Wound size measurement of lower extremity ulcers using segmentation algorithms
NASA Astrophysics Data System (ADS)
Dadkhah, Arash; Pang, Xing; Solis, Elizabeth; Fang, Ruogu; Godavarty, Anuradha
2016-03-01
Lower extremity ulcers are one of the most common complications that not only affect many people around the world but also have huge impact on economy since a large amount of resources are spent for treatment and prevention of the diseases. Clinical studies have shown that reduction in the wound size of 40% within 4 weeks is an acceptable progress in the healing process. Quantification of the wound size plays a crucial role in assessing the extent of healing and determining the treatment process. To date, wound healing is visually inspected and the wound size is measured from surface images. The extent of wound healing internally may vary from the surface. A near-infrared (NIR) optical imaging approach has been developed for non-contact imaging of wounds internally and differentiating healing from non-healing wounds. Herein, quantitative wound size measurements from NIR and white light images are estimated using a graph cuts and region growing image segmentation algorithms. The extent of the wound healing from NIR imaging of lower extremity ulcers in diabetic subjects are quantified and compared across NIR and white light images. NIR imaging and wound size measurements can play a significant role in potentially predicting the extent of internal healing, thus allowing better treatment plans when implemented for periodic imaging in future.
Identifying the trends in wound-healing patents for successful investment strategies
Gwak, Jae Ha
2017-01-01
Background Recently, the need for rapid wound-healing has significantly increased because of the increasing number of patients who are diagnosed with diabetes and obesity. These conditions have contributed to a surge in the number of patients with chronic wounds worldwide. Furthermore, many cost-effective wound-healing technologies have been developed in order to keep up with the increased demand. In this paper, we performed a quantitative study of the trends associated with wound-healing technologies using patent data. Methodology We analyzed the trends considering four different groups of patent applicants: firms, universities, research institutes, and individuals using a structural topic model. In addition, we analyzed the knowledge flow between patent applicants using citation analysis, and confirmed the role of applicants in the knowledge-flow network using k-means clustering. As a result, the primary wound-healing technology patents applied for by the four groups varied considerably, and we classified the roles of patent applicants were found in the knowledge-flow network. Conclusions Our results showed the organizations that are leading each area of wound-healing technology. Furthermore, from the results, we identified specific institutions that are efficient for spreading knowledge related to wound-healing technology based on the patents. This information can contribute to the planning of investment strategies and technology policies related to wound-healing. PMID:28306732
Development of a wound healing index for patients with chronic wounds.
Horn, Susan D; Fife, Caroline E; Smout, Randall J; Barrett, Ryan S; Thomson, Brett
2013-01-01
Randomized controlled trials in wound care generalize poorly because they exclude patients with significant comorbid conditions. Research using real-world wound care patients is hindered by lack of validated methods to stratify patients according to severity of underlying illnesses. We developed a comprehensive stratification system for patients with wounds that predicts healing likelihood. Complete medical record data on 50,967 wounds from the United States Wound Registry were assigned a clear outcome (healed, amputated, etc.). Factors known to be associated with healing were evaluated using logistic regression models. Significant variables (p < 0.05) were determined and subsequently tested on a holdout sample of data. A different model predicted healing for each wound type. Some variables predicted significantly in nearly all models: wound size, wound age, number of wounds, evidence of bioburden, tissue type exposed (Wagner grade or stage), being nonambulatory, and requiring hospitalization during the course of care. Variables significant in some models included renal failure, renal transplant, malnutrition, autoimmune disease, and cardiovascular disease. All models validated well when applied to the holdout sample. The "Wound Healing Index" can validly predict likelihood of wound healing among real-world patients and can facilitate comparative effectiveness research to identify patients needing advanced therapeutics. © 2013 by the Wound Healing Society.
The Electrical Response to Injury: Molecular Mechanisms and Wound Healing
Reid, Brian; Zhao, Min
2014-01-01
Significance: Natural, endogenous electric fields (EFs) and currents arise spontaneously after wounding of many tissues, especially epithelia, and are necessary for normal healing. This wound electrical activity is a long-lasting and regulated response. Enhancing or inhibiting this electrical activity increases or decreases wound healing, respectively. Cells that are responsible for wound closure such as corneal epithelial cells or skin keratinocytes migrate directionally in EFs of physiological magnitude. However, the mechanisms of how the wound electrical response is initiated and regulated remain unclear. Recent Advances: Wound EFs and currents appear to arise by ion channel up-regulation and redistribution, which are perhaps triggered by an intracellular calcium wave or cell depolarization. We discuss the possibility of stimulation of wound healing via pharmacological enhancement of the wound electric signal by stimulation of ion pumping. Critical Issues: Chronic wounds are a major problem in the elderly and diabetic patient. Any strategy to stimulate wound healing in these patients is desirable. Applying electrical stimulation directly is problematic, but pharmacological enhancement of the wound signal may be a promising strategy. Future Directions: Understanding the molecular regulation of wound electric signals may reveal some fundamental mechanisms in wound healing. Manipulating fluxes of ions and electric currents at wounds might offer new approaches to achieve better wound healing and to heal chronic wounds. PMID:24761358
Mast cells contribute to scar formation during fetal wound healing.
Wulff, Brian C; Parent, Allison E; Meleski, Melissa A; DiPietro, Luisa A; Schrementi, Megan E; Wilgus, Traci A
2012-02-01
Scar formation is a potentially detrimental process of tissue restoration in adults, affecting organ form and function. During fetal development, cutaneous wounds heal without inflammation or scarring at early stages of development; however, they begin to heal with significant inflammation and scarring as the skin becomes more mature. One possible cell type that could regulate the change from scarless to fibrotic healing is the mast cell. We show here that dermal mast cells in scarless wounds generated at embryonic day 15 (E15) are fewer in number, less mature, and do not degranulate in response to wounding as effectively as mast cells of fibrotic wounds made at embryonic day 18 (E18). Differences were also observed between cultured mast cells from E15 and E18 skin, with regard to degranulation and preformed cytokine levels. Injection of mast cell lysates into E15 wounds disrupted scarless healing, suggesting that mast cells interfere with scarless repair. Finally, wounds produced at E18, which normally heal with a scar, healed with significantly smaller scars in mast cell-deficient Kit(W/W-v) mice compared with Kit(+/+) littermates. Together, these data suggest that mast cells enhance scar formation, and that these cells may mediate the transition from scarless to fibrotic healing during fetal development.
The Influence of Interleukin-4 on Ligament Healing
Chamberlain, Connie S; Leiferman, Ellen M; Frisch, Kayt E; Wang, Sijian; Yang, Xipei; Brickson, Stacey L; Vanderby, Ray
2011-01-01
Despite a complex cascade of cellular events to reconstruct the damaged extracellular matrix, ligament healing results in a mechanically inferior scarred ligament. During normal healing, granulation tissue expands into any residual normal ligamentous tissue (creeping substitution), resulting in a larger region of healing, greater mechanical compromise, and an inefficient repair process. To control creeping substitution and possibly enhance the repair process, the anti-inflammatory cytokine, interleukin-4 (IL-4) was administered to rats prior to and after rupture of their medial collateral ligaments. In vitro experiments demonstrated a time-dependent effect on fibroblast proliferation after interleukin-4 treatment. In vivo treatments with interleukin-4 (100 ng/ml i.v.) for 5 days resulted in decreased wound size and type III collagen and increased type I procollagen, indicating a more regenerative early healing in response to the interleukin-4 treatment. However, continued treatment of interleukin-4 to day 11 antagonized this early benefit and slowed healing. Together, these results suggest that interleukin-4 influences the macrophages and T-lymphocytes but also stimulates fibroblasts associated with the proliferative phase of healing in a dose-, cell-, and time-dependent manner. Although treatment significantly influenced healing in the first week after injury, interleukin-4 alone was unable to maintain this early regenerative response. PMID:21518087
Risk factors of delayed ulcer healing after gastric endoscopic submucosal dissection.
Lim, Joo Hyun; Kim, Sang Gyun; Choi, Jeongmin; Im, Jong Pil; Kim, Joo Sung; Jung, Hyun Chae
2015-12-01
Although post-endoscopic submucosal dissection (ESD) iatrogenic ulcer is known to heal faster than peptic ulcer, some iatrogenic ulcers show delayed healing. The aim of this study was to clarify risk factors of delayed ulcer healing after gastric ESD. We retrospectively reviewed medical records of all patients who had ESD for gastric neoplasms (866 adenomas and 814 early gastric cancers) between January 2005 and February 2011. Of 1680 subjects, 95 had delayed ulcer healing in 3-month follow-up. Multivariate analysis showed that diabetes (OR 1.743; 95% CI 1.017-2.989, p = 0.043), coagulation abnormality (OR 3.195; 95% CI 1.535-6.650, p = 0.002), specimen size greater than 4 cm (OR 2.999; 95% CI 1.603-5.611, p = 0.001), and electrocoagulation (OR 7.149; 95% CI 1.738-29.411, p = 0.006) were revealed to be independent risk factors of delayed ulcer healing. Meanwhile, persistent Helicobacter pylori infection was not related to the delayed ulcer healing. Large iatrogenic ulcer by ESD with massive hemostasis, especially in patients with diabetes mellitus or coagulation abnormalities, tends to take more than 3 months to heal. For such cases, initial dosage increment of PPI or addition of other anti-ulcer agents after ESD may be beneficial.
Chung, Yih-Lin; Pui, Newman N M
2015-01-01
We hypothesized the histone deacetylase inhibitor phenylbutyrate (PB) has beneficial effects on radiation-induced injury by modulating the expression of DNA repair and wound healing genes. Hamsters received a radiosurgical dose of radiation (40 Gy) to the cheek and were treated with varying PB dosing regimens. Gross alteration of the irradiated cheeks, eating function, histological changes, and gene expression during the course of wound healing were compared between treatment groups. Pathological analysis showed decreased radiation-induced mucositis, facilitated epithelial cell growth, and preventing ulcerative wound formation, after short-term PB treatment, but not after vehicle or sustained PB. The radiation-induced wound healing gene expression profile exhibited a sequential transition from the inflammatory and DNA repair phases to the tissue remodeling phase in the vehicle group. Sustained PB treatment resulted in a prolonged wound healing gene expression profile and delayed the wound healing process. Short-term PB shortened the duration of inflammatory cytokine expression, triggered repeated pulsed expression of cell cycle and DNA repair-regulating genes, and promoted earlier oscillatory expression of tissue remodeling genes. Distinct gene expression patterns between sustained and short-term treatment suggest dynamic profiling of wound healing gene expression can be an important part of a biological therapeutic strategy to mitigate radiation-related tissue injury. © 2015 by the Wound Healing Society.
Multiple roles of tumor necrosis factor-alpha in fracture healing.
Karnes, Jonathan M; Daffner, Scott D; Watkins, Colleen M
2015-09-01
This review presents a summary of basic science evidence examining the influence of tumor necrosis factor-alpha (TNF-α) on secondary fracture healing. Multiple studies suggest that TNF-α, in combination with the host reservoir of peri-fracture mesenchymal stem cells, is a main determinant in the success of bone healing. Disease states associated with poor bone healing commonly have inappropriate TNF-α responses, which likely contributes to the higher incidence of delayed and nonunions in these patient populations. Appreciation of TNF-α in fracture healing may lead to new therapies to augment recovery and reduce the incidence of complications. Copyright © 2015 Elsevier Inc. All rights reserved.
Monitoring of self-healing composites: a nonlinear ultrasound approach
NASA Astrophysics Data System (ADS)
Malfense Fierro, Gian-Piero; Pinto, Fulvio; Dello Iacono, Stefania; Martone, Alfonso; Amendola, Eugenio; Meo, Michele
2017-11-01
Self-healing composites using a thermally mendable polymer, based on Diels-Alder reaction were fabricated and subjected to various multiple damage loads. Unlike traditional destructive methods, this work presents a nonlinear ultrasound technique to evaluate the structural recovery of the proposed self-healing laminate structures. The results were compared to computer tomography and linear ultrasound methods. The laminates were subjected to multiple loading and healing cycles and the induced damage and recovery at each stage was evaluated. The results highlight the benefit and added advantage of using a nonlinear based methodology to monitor the structural recovery of reversibly cross-linked epoxy with efficient recycling and multiple self-healing capability.
Current and Future Targets for Mucosal Healing in Inflammatory Bowel Disease
Atreya, Raja; Neurath, Markus F.
2017-01-01
The induction and subsequent maintenance of mucosal healing has emerged as one of the central therapeutic goals in the management of patients with inflammatory bowel disease (IBD) (Crohn's disease and ulcerative colitis). Current and novel treatment options are assessed regarding their therapeutic efficacy on the basis of their ability to induce mucosal healing. However, there is still substantial debate about the precise definition of mucosal healing. Here, we will give an overview regarding the definitions of mucosal healing as well as its probable effects on long-term disease behavior and finally focus on current and potential therapeutic targets to achieve this therapeutic goal in IBD patients. PMID:28612022
Principles of Wound Management and Wound Healing in Exotic Pets.
Mickelson, Megan A; Mans, Christoph; Colopy, Sara A
2016-01-01
The care of wounds in exotic animal species can be a challenging endeavor. Special considerations must be made in regard to the animal's temperament and behavior, unique anatomy and small size, and tendency toward secondary stress-related health problems. It is important to assess the entire patient with adequate systemic evaluation and consideration of proper nutrition and husbandry, which could ultimately affect wound healing. This article summarizes the general phases of wound healing, factors that affect healing, and principles of wound management. Emphasis is placed on novel methods of treating wounds and species differences in wound management and healing. Copyright © 2016 Elsevier Inc. All rights reserved.
Principles of Wound Management and Wound Healing in the Exotic Pets
Mickelson, Megan A.; Mans, Christoph; Colopy, Sara A.
2015-01-01
Synopsis The care of wounds in exotic animal species can be a challenging endeavor. Special considerations must be made in regards to the animal’s temperament and behavior, unique anatomy and small size, and tendency towards secondary stress-related health problems. It is important to assess the entire patient with adequate systemic evaluation and consideration of proper nutrition and husbandry, which could ultimately impact wound healing. This article summarizes the general phases of wound healing, factors that impact healing, and principles of wound management. Emphasis is placed on novel methods of treating wounds and species differences in wound management and healing. PMID:26611923
Factors affecting rotator cuff healing.
Mall, Nathan A; Tanaka, Miho J; Choi, Luke S; Paletta, George A
2014-05-07
Several studies have noted that increasing age is a significant factor for diminished rotator cuff healing, while biomechanical studies have suggested the reason for this may be an inferior healing environment in older patients. Larger tears and fatty infiltration or atrophy negatively affect rotator cuff healing. Arthroscopic rotator cuff repair, double-row repairs, performing a concomitant acromioplasty, and the use of platelet-rich plasma (PRP) do not demonstrate an improvement in structural healing over mini-open rotator cuff repairs, single-row repairs, not performing an acromioplasty, or not using PRP. There is conflicting evidence to support postoperative rehabilitation protocols using early motion over immobilization following rotator cuff repair.
Wound Healing Potential of Formulated Extract from Hibiscus Sabdariffa Calyx
Builders, P. F.; Kabele-Toge, B.; Builders, M.; Chindo, B. A.; Anwunobi, Patricia A.; Isimi, Yetunde C.
2013-01-01
Wound healing agents support the natural healing process, reduce trauma and likelihood of secondary infections and hasten wound closure. The wound healing activities of water in oil cream of the methanol extract of Hibiscus sabdariffa L. (Malvaceae) was evaluated in rats with superficial skin excision wounds. Antibacterial activities against Pseudomonas aeroginosa, Staphylococcus aureus and Echerichia coli were determined. The total flavonoid content, antioxidant properties and thin layer chromatographic fingerprints of the extract were also evaluated. The extract demonstrated antioxidant properties with a total flavonoid content of 12.30±0.09 mg/g. Six reproducible spots were obtained using methanol:water (95:5) as the mobile phase. The extract showed no antimicrobial activity on the selected microorganisms, which are known to infect and retard wound healing. Creams containing H. sabdariffa extract showed significant (P<0.05) and concentration dependent wound healing activities. There was also evidence of synergism with creams containing a combination of gentamicin and H. sabdariffa extract. This study, thus, provides evidence of the wound healing potentials of the formulated extract of the calyces of H. sabdariffa and synergism when co-formulated with gentamicin. PMID:23901160
Development of structural ceramics having large crack-healing ability and fracture toughness
NASA Astrophysics Data System (ADS)
Takahashi, Koji; Yokouchi, Masahiro; Lee, Sang-Kee; Ando, Kotoji
2004-02-01
Al2O3 reinforced by SiC whiskers (Al2O3/SiC-W) was hot pressed to investigate the crack-healing behavior. Semi-elliptical surface cracks of 50 to 450μm in surface length were introduced using a Vickers indenter. The specimens containing pre-cracks were crack-healed at temperatures between 1000°C and 1300°C for 1h in air, and their strengths were measured by three-point bending tests at room temperature and elevated temperatures between 400°C and 1300°C. The results show that Al2O3/SiC-W possesses considerable crack-healing ability. The surface cracks with length of 2c=100μm could be healed by crack-healing at 1200°C or 1300°C for 1h in air. The maximum crack size that can be healed for Al2O3/SiC-W is 2c=200μm. Fracture toughness of the material was also determined. As expected, the SiC whiskers made their Al2O3 tougher.
Su, Jun-Feng; Yang, Peng; Wang, Ying-Yuan; Han, Shan; Han, Ning-Xu; Li, Wei
2016-01-01
The aim of this work was to evaluate the self-healing behaviors of bitumen using microcapsules containing rejuvenator by a modified fracture healing–refracture method through a repetitive tension test. Microcapsules had mean size values of 10, 20 and 30 μm with a same core/shell ratio of 1/1. Various microcapsules/bitumen samples were fabricated with microcapsule contents of 1.0, 3.0 and 5.0 wt. %, respectively. Tension strength values of microcapsules/bitumen samples were measured by a reparative fracture-healing process under different temperatures. It was found that these samples had tensile strength values larger than the data of pure bitumen samples under the same conditions after the four tensile fracture-healing cycles. Fracture morphology investigation and mechanism analysis indicated that the self-healing process was a process consisting of microcapsules being broken, penetrated and diffused. Moreover, the crack healing of bitumen can be considered as a viscosity driven process. The self-healing ability partly repaired the damage of bitumen during service life by comparing the properties of virgin and rejuvenated bitumen. PMID:28773722
Sheikh, Emran S; Sheikh, Ednan S; Fetterolf, Donald E
2014-12-01
Non healing wounds present a significant social and economic burden. Chronic non healing wounds are estimated to affect as many as 1-2% of individuals during their lifetime, and account for billions of dollars of expense annually on both a national and global basis. Our purpose is to describe the use of a novel dehydrated amniotic membrane allograft (EpiFix(®) ; MiMedx Group, Inc., Kennesaw, GA) for the treatment of chronic non healing wounds. We describe the results of EpiFix treatment in four patients who had not achieved wound closure with both conservative and advanced measures, and had been referred for a definitive plastic surgery procedure. Healing was observed in a variety of wounds with one to three applications of the dehydrated amniotic membrane material. The material was well tolerated by patients. Healed wounds did not recur in long-term follow-up. Further investigation of the use of dehydrated amniotic membrane in broader application to various types of dermal wounds should be considered. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
THE ROLE OF MECHANOBIOLOGY IN TENDON HEALING
Killian, Megan L.; Cavinatto, Leonardo; Galatz, Leesa M.; Thomopoulos, Stavros
2011-01-01
Mechanical cues affect tendon healing, homeostasis, and development in a variety of settings. Alterations in the mechanical environment are known to result in changes in the expression of extracellular matrix proteins, growth factors, transcription factors, and cytokines that can alter tendon structure and cell viability. Loss of muscle force in utero or in the immediate postnatal period delays tendon and enthesis development. The response of healing tendons to mechanical load varies depending on anatomic location. Flexor tendons require motion to prevent adhesion formation, yet excessive force results in gap formation and subsequent weakening of the repair. Excessive motion in the setting of anterior cruciate ligament reconstruction causes accumulation of macrophages, which are detrimental to tendon graft healing. Complete removal of load is detrimental to rotator cuff healing, yet large forces are also harmful. Controlled loading can enhance healing in most settings; however, a fine balance must be reached between loads that are too low (leading to a catabolic state) and too high (leading to micro-damage). This review will summarize existing knowledge of the mechanobiology of tendon development, homeostasis, and healing. PMID:22244066
Zhang, Xiao-na; Ma, Ze-jun; Wang, Ying; Li, Yu-zhu; Sun, Bei; Guo, Xin; Pan, Cong-qing; Chen, Li-ming
2016-01-01
Impaired wound healing in diabetic patients is a serious complication that often leads to amputation or even death with limited effective treatments. Tuo-Li-Xiao-Du-San (TLXDS), a traditional Chinese medicine formula for refractory wounds, has been prescribed for nearly 400 years in China and shows good efficacy in promoting healing. In this study, we explored the effect of TLXDS on healing of diabetic wounds and investigated underlying mechanisms. Four weeks after intravenous injection of streptozotocin, two full-thickness excisional wounds were created with a 10 mm diameter sterile biopsy punch on the back of rats. The ethanol extract of TLXDS was given once daily by oral gavage. Wound area, histological change, inflammation, angiogenesis, and collagen synthesis were evaluated. TLXDS treatment significantly accelerated healing of diabetic rats and improved the healing quality. These effects were associated with reduced neutrophil infiltration and macrophage accumulation, enhanced angiogenesis, and increased collagen deposition. This study shows that TLXDS improves diabetes-impaired wound healing. PMID:27057551
Self-healing coatings containing microcapsule
NASA Astrophysics Data System (ADS)
Zhao, Yang; Zhang, Wei; Liao, Le-ping; Wang, Si-jie; Li, Wu-jun
2012-01-01
Effectiveness of epoxy resin filled microcapsules was investigated for healing of cracks generated in coatings. Microcapsules were prepared by in situ polymerization of urea-formaldehyde resin to form shell over epoxy resin droplets. Characteristics of these capsules were studied by 3D measuring laser microscope, particle size analyzer, Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) to investigate their surface morphology, size distribution, chemical structure and thermal stability, respectively. The results indicate that microcapsules containing epoxy resins can be synthesized successfully. The size is around 100 μm. The rough outer surface of microcapsule is composed of agglomerated urea-formaldehyde nanoparticles. The size and surface morphology of microcapsule can be controlled by selecting different processing parameters. The microcapsules basically exhibit good storage stability at room temperature, and they are chemically stable before the heating temperature is up to approximately 200 °C. The model system of self-healing coating consists of epoxy resin matrix, 10 wt% microencapsulated healing agent, 2 wt% catalyst solution. The self-healing function of this coating system is evaluated through self-healing testing of damaged and healed coated steel samples.
Activation-deactivation of self-healing in supramolecular rubbers
NASA Astrophysics Data System (ADS)
Corte, Laurent; Maes, Florine; Montarnal, Damien; Cantournet, Sabine; Tournilhac, Francois; Leibler, Ludwik; Mines-Paristech Cnrs (Umr7633) Team; Espci-Paristech Cnrs (Umr7167) Team
2011-03-01
Self-healing materials have the ability to restore autonomously their structural integrity after damage. Such a remarkable property was obtained recently in supramolecular rubbers formed by a network of small molecules associated via hydrogen bonds. Here we explore this self-healing through an original tack experiment where two parts of supramolecular rubber are brought into contact and then separated. These experiments reveal that a strong self-healing ability is activated by damage even though the surfaces of a molded part are weakly self-adhesive. In our testing conditions, a five minute contact between crack faces is sufficient to recover most mechanical properties of the bulk while days are required to obtain such adhesion levels with melt-pressed surfaces. We show that the deactivation of this self-healing ability seems unexpectedly slow as compared to the predicted dynamics of supramolecular networks. Fracture faces stored apart at room temperature still self-heal after days but are fully deactivated within hours by annealing. Combining these results with microstructural observations gives us a deeper insight into the mechanisms involved in this self-healing process.
Computational characterization of fracture healing under reduced gravity loading conditions.
Gadomski, Benjamin C; Lerner, Zachary F; Browning, Raymond C; Easley, Jeremiah T; Palmer, Ross H; Puttlitz, Christian M
2016-07-01
The literature is deficient with regard to how the localized mechanical environment of skeletal tissue is altered during reduced gravitational loading and how these alterations affect fracture healing. Thus, a finite element model of the ovine hindlimb was created to characterize the local mechanical environment responsible for the inhibited fracture healing observed under experimental simulated hypogravity conditions. Following convergence and verification studies, hydrostatic pressure and strain within a diaphyseal fracture of the metatarsus were evaluated for models under both 1 and 0.25 g loading environments and compared to results of a related in vivo study. Results of the study suggest that reductions in hydrostatic pressure and strain of the healing fracture for animals exposed to reduced gravitational loading conditions contributed to an inhibited healing process, with animals exposed to the simulated hypogravity environment subsequently initiating an intramembranous bone formation process rather than the typical endochondral ossification healing process experienced by animals healing in a 1 g gravitational environment. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1206-1215, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
von Arx, Thomas; Jensen, Simon Storgård; Hänni, Stefan
2007-02-01
This clinical study prospectively evaluated the influence of various predictors on healing outcome 1 year after periapical surgery. The study cohort included 194 teeth in an equal number of patients. Three teeth were lost for the follow-up (1.5% drop-out rate). Clinical and radiographic measures were used to determine the healing outcome. For statistical analysis, results were dichotomized (healed versus nonhealed). The overall success rate was 83.8% (healed cases). The only individual predictors to prove significant for the outcome were pain at initial examination (p=0.030) and other clinical signs or symptoms at initial examination (p=0.042), meaning that such teeth had lower healing rates 1 year after periapical surgery compared with teeth without such signs or symptoms. Logistic regression revealed that pain at initial examination (odds ratio=2.59, confidence interval=1.2-5.6, p=0.04) was the only predictor reaching significance. Several predictors almost reached statistical significance: lesion size (p=0.06), retrofilling material (p=0.06), and postoperative healing course (p=0.06).
Hunter, Eric J.; Titze, Ingo R.
2012-01-01
Objectives To quantify the recovery of voice following a 2-hour vocal loading exercise (oral reading). Methods 86 adult participants tracked their voice recovery using short vocal tasks and perceptual ratings after an initial vocal loading exercise and for the following two days. Results Short-term recovery was apparent with 90% recovery within 4-6 hours and full recovery at 12-18 hours. Recovery was shown to be similar to a dermal wound healing trajectory. Conclusions The new recovery trajectory highlighted by the vocal loading exercise in the current study is called a vocal recovery trajectory. By comparing vocal fatigue to dermal wound healing, this trajectory is parallel to a chronic wound healing trajectory (as opposed to an acute wound healing trajectory). This parallel suggests that vocal fatigue from the daily use of the voice could be treated as a chronic wound, with the healing and repair mechanisms in a state of constant repair. In addition, there is likely a vocal fatigue threshold at which point the level of tissue damage would shift the chronic healing trajectory to an acute healing trajectory. PMID:19663377
Effect of astaxanthin on cutaneous wound healing.
Meephansan, Jitlada; Rungjang, Atiya; Yingmema, Werayut; Deenonpoe, Raksawan; Ponnikorn, Saranyoo
2017-01-01
Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing.
A computational model for the flow of resin in self-healing composites
NASA Astrophysics Data System (ADS)
Hall, J.; Qamar, I. P. S.; Rendall, T. C. S.; Trask, R. S.
2015-03-01
To explore the flow characteristics of healing agent leaving a vascular network and infusing a damage site within a fibre reinforced polymer composite, a numerical model of healing agent flow from an orifice has been developed using smoothed particle hydrodynamics. As an initial validation the discharge coefficient for low Reynolds number flow from a cylindrical tank is calculated numerically, using two different viscosity formulations, and compared to existing experimental data. Results of this comparison are very favourable; the model is able to reproduce experimental results for the discharge coefficient in the high Reynolds number limit, together with the power-law behaviour for low Reynolds numbers. Results are also presented for a representative delamination geometry showing healing fluid behaviour and fraction filled inside the delamination for a variety of fluid viscosities. This work provides the foundations for the vascular self-healing community in calculating not only the flow rate through the network, but also, by simulating a representative damage site, the final location of the healing fluid within the damage site in order to assess the improvement in local and global mechanical properties and thus healing efficiency.
Banerjee, Debashish; Hassarajani, Sham A; Maity, Biswanath; Narayan, Geetha; Bandyopadhyay, Sandip K; Chattopadhyay, Subrata
2010-12-01
The healing activity of black tea (BT) and BT fermented with Candida parapsilosis and kombucha culture, designated as CT and KT respectively against the indomethacin-induced stomach ulceration has been studied in a mouse model. The KT sample (KT4) produced by fermenting BT for four days, showed the best DPPH radical scavenging capacity and phenolics contents. Hence the ulcer-healing activity of KT4 was compared with those of CT4 and BT. All the tea extracts (15 mg kg(-1)) could effectively heal the gastric ulceration as revealed from the histopathological and biochemical studies, with relative efficacy as KT4 > CT4 ∼ BT. The healing capacities of the tea extracts could be attributed to their antioxidant activity as well as the ability to protect the mucin content of the gastric tissues. In addition, the ability of KT4 to reduce gastric acid secretion might also contribute to its ulcer-healing activity. The tea preparation KT4 (15 mg kg(-1)) was as effective as the positive control, omeprazole (3 mg kg(-1)) in ulcer healing.
Baldwin, C J; Kelly, E J; Batchelor, A G
2010-04-01
The proportions of glandular and adipose tissue within the breast vary. This study records the variation in density of breast tissue excised at 40 consecutive bilateral breast reductions. Age, body mass index (BMI), breast size and wound healing problems were related to breast density. The removed breast tissue was weighed and volume determined by water displacement. Delayed wound healing was defined as any breast unhealed after 2 weeks. The density of excised tissue varied between 0.8 and 1.2g/cm(3). There was no correlation between age or BMI and breast density. Delayed wound healing occurred in 32% of patients. There was no correlation between delayed wound healing and breast density. However, there was a direct relationship between increasing BMI and delayed wound healing. In this study, breast density varied by up to 50%. The density of breast tissue cannot be predicted by age, BMI or breast size. There is no relationship between delayed wound healing and breast density. Copyright 2009. Published by Elsevier Ltd.
Self-Healing Textile: Enzyme Encapsulated Layer-by-Layer Structural Proteins.
Gaddes, David; Jung, Huihun; Pena-Francesch, Abdon; Dion, Genevieve; Tadigadapa, Srinivas; Dressick, Walter J; Demirel, Melik C
2016-08-10
Self-healing materials, which enable an autonomous repair response to damage, are highly desirable for the long-term reliability of woven or nonwoven textiles. Polyelectrolyte layer-by-layer (LbL) films are of considerable interest as self-healing coatings due to the mobility of the components comprising the film. In this work mechanically stable self-healing films were fabricated through construction of a polyelectrolyte LbL film containing squid ring teeth (SRT) proteins. SRTs are structural proteins with unique self-healing properties and high elastic modulus in both dry and wet conditions (>2 GPa) due to their semicrystalline architecture. We demonstrate LbL construction of multilayers containing native and recombinant SRT proteins capable of self-healing defects. Additionally, we show these films are capable of utilizing functional biomolecules by incorporating an enzyme into the SRT multilayer. Urease was chosen as a model enzyme of interest to test its activity via fluorescence assay. Successful construction of the SRT films demonstrates the use of mechanically stable self-healing coatings, which can incorporate biomolecules for more complex protective functionalities for advanced functional fabrics.
Rao, Angela; Hickman, Louise D; Phillips, Jane L; Sibbritt, David
2016-08-01
To determine the prevalence and characteristics of users of prayer or spiritual healing among Australian women aged 31-36 years. This cross-sectional study was conducted as a part of the Australian Longitudinal Study on Women's Health (ALSWH). The sample used in the current sub-study were participants from the 'young' cohort (1973-78) (n=8180) aged between 31 and 36 years. Use of prayer or spiritual healing Prayer or spiritual healing was used on a regular basis by 20% of women aged between 31 and 36 years in 2009. Women who had symptoms of chronic illnesses (p=0.001), women who had never smoked (p=0.001) and women who used other forms of CAM (p<0.001) were significantly more likely to use prayer or spiritual healing. A significant proportion of women use prayer or spiritual healing on a regular basis. Further research is required to better understand their rationale for using prayer or spiritual healing and its perceived impact on health related outcomes and general well-being. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of astaxanthin on cutaneous wound healing
Meephansan, Jitlada; Rungjang, Atiya; Yingmema, Werayut; Deenonpoe, Raksawan; Ponnikorn, Saranyoo
2017-01-01
Wound healing consists of a complex series of convoluted processes which involve renewal of the skin after injury. ROS are involved in all phases of wound healing. A balance between oxidative and antioxidative forces is necessary for a favorable healing outcome. Astaxanthin, a member of the xanthophyll group, is considered a powerful antioxidant. In this study, we investigated the effect of topical astaxanthin on cutaneous wound healing. Full-thickness dermal wounds were created in 36 healthy female mice, which were divided into a control group and a group receiving 78.9 µM topical astaxanthin treatment twice daily for 15 days. Astaxanthin-treated wounds showed noticeable contraction by day 3 of treatment and complete wound closure by day 9, whereas the wounds of control mice revealed only partial epithelialization and still carried scabs. Wound healing biological markers including Col1A1 and bFGF were significantly increased in the astaxanthin-treated group since day 1. Interestingly, the oxidative stress marker iNOS showed a significantly lower expression in the study. The results indicate that astaxanthin is an effective compound for accelerating wound healing. PMID:28761364
A Consideration of the Perspectives of Healing Practitioners on Research Into Energy Healing
Bruyere, Rosalyn L.; Weintrub, Ken; Dieppe, Paul
2015-01-01
Energy healing is a complex intervention with the purpose of enhancing wholeness within the client. Approaches to complex interventions require thoughtful utilization of a wide range of research methods. In order to advance the research in this field, we sought to understand the healing practitioners' point of view by reviewing qualitative literature, research reviews, and commentary written by and about practitioners. Further, we conducted a brief survey among healers, asking their opinions on types and topics of research in this field. Emerging from this inquiry is an overview of the healers' state required for successful healing, the importance of the clients' contribution, the heterogeneity of the process of healing, and the importance of choosing appropriate outcomes to reflect the goal of wholeness. Beyond attending to measurement of these nuanced aspects, we propose utilization of research designs appropriate for complex interventions, more use of qualitative research techniques, consideration of large data registries, and adoption of the perspectives of realist research. An important gap identified was the overall lack of understanding of the clients' experience and contribution to the healing encounter. PMID:26665045
All-printed magnetically self-healing electrochemical devices
Bandodkar, Amay J.; López, Cristian S.; Vinu Mohan, Allibai Mohanan; Yin, Lu; Kumar, Rajan; Wang, Joseph
2016-01-01
The present work demonstrates the synthesis and application of permanent magnetic Nd2Fe14B microparticle (NMP)–loaded graphitic inks for realizing rapidly self-healing inexpensive printed electrochemical devices. The incorporation of NMPs into the printable ink imparts impressive self-healing ability to the printed conducting trace, with rapid (~50 ms) recovery of repeated large (3 mm) damages at the same or different locations without any user intervention or external trigger. The permanent and surrounding-insensitive magnetic properties of the NMPs thus result in long-lasting ability to repair extreme levels of damage, independent of ambient conditions. This remarkable self-healing capability has not been reported for existing man-made self-healing systems and offers distinct advantages over common capsule and intrinsically self-healing systems. The printed system has been characterized by leveraging crystallographic, magnetic hysteresis, microscopic imaging, electrical conductivity, and electrochemical techniques. The real-life applicability of the new self-healing concept is demonstrated for the autonomous repair of all-printed batteries, electrochemical sensors, and wearable textile-based electrical circuits, indicating considerable promise for widespread practical applications and long-lasting printed electronic devices. PMID:27847875
PLGA based drug delivery systems: Promising carriers for wound healing activity.
Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique
2016-03-01
Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned. © 2016 by the Wound Healing Society.
Retrospective study of factors affecting non-healing of wounds during hyperbaric oxygen therapy.
Oubre, C M; Roy, A; Toner, C; Kalns, J
2007-06-01
To identify potential factors, including cigarette smoking and diabetes status, that affect wound-healing outcomes during a six-week course of hyperbaric oxygen therapy (HBOT). Seventy-three patients with 85 non-healing lower extremity wounds were treated with hyperbaric oxygen therapy (100% oxygen, 2.4 atmosphere absolute, (ATA), for 90 minutes). The wound area was evaluated over the six-week treatment period. A non-hierarchical clustering analysis of normalised wound-area data revealed that healing responses could be segregated into three groups: robust healing (n=31, over 50% reduction in area), minimal healing (n=33, 15% reduction) and non-healing (n=21,60% increase in area). Further analysis revealed that cigarette smoking was associated with poor response (p<0.0001), whereas diabetes was not. Robust responders had higher blood levels of creatinine and urea nitrogen, increased peripheral oxygenation (TcpO2), and were younger than less responsive patients. The results suggest that response to HBOT is variable and some patients do not benefit from it. Clinicians should evaluate available laboratory values, age and social history to determine if a patient is likely to benefit from HBOT.
Pawar, Rajesh Singh; Toppo, Fedelic Ashish; Mandloi, Avinash Singh; Shaikh, Shabnam
2015-01-01
The aim of the study was to assess the curcumin containing ethanolic extract (EtOH) obtained from Curcuma longa (Cl) against retardation of wound healing by aspirin. Wound healing process was retarded by administering the dose of 150 mg/kg body weight of aspirin orally for 9 days to observe the effect of EtOH obtained from Cl using excision and incision wound model in rats. The various parameters such as % wound contraction, epithelialization period, hydroxyproline, tensile strength were observed at variant time intervals and histopathological study was also performed. Curcumin containing 5% and 10% ethanolic extract ointment have shown significant (P < 0.01) wound healing activity against an aspirin (administered 150 mg/kg body weight orally for 9 days) retarded wound healing process. Topical application of ointment showed significant (P < 0.01) difference as compared to the control group. Histopathological studies also showed healing of the epidermis, increased collagen, fibroblasts and blood vessels. Ethanolic extract of Cl ointment (EtOHCl) containing 10% curcumin displayed remarkable healing process against wound retardation by aspirin.
Albaugh, Vance L; Mukherjee, Kaushik; Barbul, Adrian
2017-11-01
Wound healing is a complex process marked by highly coordinated immune fluxes into an area of tissue injury; these are required for re-establishment of normal tissue integrity. Along with this cascade of cellular players, wound healing also requires coordinated flux through a number of biochemical pathways, leading to synthesis of collagen and recycling or removal of damaged tissues. The availability of nutrients, especially amino acids, is critical for wound healing, and enteral supplementation has been intensely studied as a potential mechanism to augment wound healing-either by increasing tensile strength, decreasing healing time, or both. From a practical standpoint, although enteral nutrient supplementation may seem like a reasonable strategy to augment healing, a number of biochemical and physiologic barriers exist that limit this strategy. In this critical review, the physiology of enteral amino acid metabolism and supplementation and challenges therein are discussed in the context of splanchnic physiology and biochemistry. Additionally, a review of studies examining various methods of amino acid supplementation and the associated effects on wound outcomes are discussed. © 2017 American Society for Nutrition.
Self Healing Coating/Film Project
NASA Technical Reports Server (NTRS)
Summerfield, Burton; Thompson, Karen; Zeitlin, Nancy; Mullenix, Pamela; Calle, Luz; Williams, Martha
2015-01-01
Kennedy Space Center (KSC) has been developing self healing materials and technologies. This project seeks to further develop self healing functionality in thin films for applications such as corrosion protective coatings, inflatable structures, space suit materials, and electrical wire insulation.
HEALing Higher Education: An Innovative Approach to Preparing HSI Leaders
ERIC Educational Resources Information Center
Freeman, Melissa L.
2015-01-01
This chapter is a case study of the Higher Education Administration and Leadership (HEAL) program at Adams State University. HEAL focuses on preparing the next generation of leaders at the nation's Hispanic-serving institutions.
... produce chemicals that help the ulcer heal. Taking Pressure off Your Foot Ulcer Foot ulcers are partly caused by too much ... ulcer has healed. These devices will take the pressure off of the ulcer area. This will help speed healing. Be sure ...
Healing efficiency of epoxy-based materials for structural application
NASA Astrophysics Data System (ADS)
Raimondo, Marialuigia; Guadagno, Liberata
2012-07-01
This paper describes a self-healing composite exhibiting high levels of healing efficiency under working conditions typical of aeronautic applications. The self-healing material is composed of a thermosetting epoxy matrix in which a catalyst of Ring Opening Metathesis Polymerization (ROMP) and nanocapsules are dispersed. The nanocapsules contain a monomer able to polymerize via ROMP. The preliminary results demonstrate an efficient self-repair function which is also active at very low temperatures.
Hyper-hydration: a new perspective on wound cleansing, debridement and healing.
2016-06-01
In a recent symposium organised by Hartmann, the involvement of moisture and hydration in healing was re-evaluated and the use of hyper-hydration in promoting healing was examined. The distinction between hyperhydration and maceration was also discussed. Clinical studies were presented to give an overview of the clinical evidence to how Hydro-Responsive Wound Dressings can aid in healing via cleansing, debridement and desloughing of several wound types.
Modulatory effect of gastric pentadecapeptide BPC 157 on angiogenesis in muscle and tendon healing.
Brcic, L; Brcic, I; Staresinic, M; Novinscak, T; Sikiric, P; Seiwerth, S
2009-12-01
Angiogenesis is a natural and complex process controlled by angiogenic and angiostatic molecules, with a central role in healing process. One of the most important modulating factors in angiogenesis is the vascular endothelial growth factor (VEGF). Pentadecapeptide BPC 157 promotes healing demonstrating particular angiogenic/angiomodulatory potential. We correlated the angiogenic effect of BPC 157 with VEGF expression using in vitro (cell culture) and in vivo (crushed muscle and transected muscle and tendon) models. Results revealed that there is no direct angiogenic effect of BPC 157 on cell cultures. On the other hand, immunohistochemical analysis of muscle and tendon healing using VEGF, CD34 and FVIII antibodies showed adequately modulated angiogenesis in BPC 157 treated animals, resulting in a more adequate healing. Therefore the angiogenic potential of BPC 157 seems to be closely related to the healing process in vivo with BPC 157 stimulating angiogenesis by up-regulating VEGF expression.
Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment
Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian
2016-01-01
In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing. PMID:28773761
Real Time Radiation Monitoring Using Nanotechnology
NASA Technical Reports Server (NTRS)
Li, Jing (Inventor); Hanratty, James J. (Inventor); Wilkins, Richard T. (Inventor); Lu, Yijiang (Inventor)
2016-01-01
System and method for monitoring receipt and estimating flux value, in real time, of incident radiation, using two or more nanostructures (NSs) and associated terminals to provide closed electrical paths and to measure one or more electrical property change values .DELTA.EPV, associated with irradiated NSs, during a sequence of irradiation time intervals. Effects of irradiation, without healing and with healing, of the NSs, are separately modeled for first order and second order healing. Change values.DELTA.EPV are related to flux, to cumulative dose received by NSs, and to radiation and healing effectivity parameters and/or.mu., associated with the NS material and to the flux. Flux and/or dose are estimated in real time, based on EPV change values, using measured .DELTA.EPV values. Threshold dose for specified changes of biological origin (usually undesired) can be estimated. Effects of time-dependent radiation flux are analyzed in pre-healing and healing regimes.
Ua neeb khu: a Hmong American healing ceremony.
Capps, Lisa L
2011-06-01
Ua neeb khu (pronounced "oo-ah neng kue") is a ceremonial healing practice engaged in by Hmong Americans for the treatment of various health problems involving spiritually focused concerns that only a shaman practitioner is qualified to treat. A qualitative ethnographic case study method with participant observation was used to analyze a spiritual healing ceremony performed by a shaman healer (txiv neeb) for an elderly Hmong American male residing in a midwestern city in the United States. The healing ritual was filmed and reviewed with the shaman healer to identify symbolic meanings and processes. Through ritual exchange and reciprocal transaction between the spirit and living world, the shaman facilitated the resolution of the spiritual problem and promoted the patient's healing and sense of well-being. Awareness of the symbolic aspects of ritual in ua neeb khu and the relationship to the patient's world view is useful to health practitioners for a holistic understanding of Hmong American healing practices.
NASA Astrophysics Data System (ADS)
Scala, Antonio
2015-03-01
We introduce the concept of self-healing in the field of complex networks modelling; in particular, self-healing capabilities are implemented through distributed communication protocols that exploit redundant links to recover the connectivity of the system. Self-healing is a crucial in implementing the next generation of smart grids allowing to ensure a high quality of service to the users. We then map our self-healing procedure in a percolation problem and analyse the interplay between redundancies and topology in improving the resilience of networked infrastructures to multiple failures. We find exact results both for planar lattices and for random lattices, hinting the role of duality in the design of resilient networks. Finally, we introduce a cavity method approach to study the recovery of connectivity after damage in self-healing networks. CNR-PNR National Project ``Crisis-Lab,'' EU HOME/2013/CIPS/AG/4000005013 project CI2C and EU FET project MULTIPLEX nr.317532.
Bioinspired self-healing of advanced composite structures using hollow glass fibres.
Trask, R S; Williams, G J; Bond, I P
2007-04-22
Self-healing is receiving an increasing amount of worldwide interest as a method to autonomously address damage in materials. The incorporation of a self-healing capability within fibre-reinforced polymers has been investigated by a number of workers previously. The use of functional repair components stored inside hollow glass fibres (HGF) is one such bioinspired approach being considered. This paper considers the placement of self-healing HGF plies within both glass fibre/epoxy and carbon fibre/epoxy laminates to mitigate damage occurrence and restore mechanical strength. The study investigates the effect of embedded HGF on the host laminates mechanical properties and also the healing efficiency of the laminates after they were subjected to quasi-static impact damage. The results of flexural testing have shown that a significant fraction of flexural strength can be restored by the self-repairing effect of a healing resin stored within hollow fibres.
Prediction of venous wound healing with laser speckle imaging.
van Vuuren, Timme Maj; Van Zandvoort, Carina; Doganci, Suat; Zwiers, Ineke; tenCate-Hoek, Arina J; Kurstjens, Ralph Lm; Wittens, Cees Ha
2017-12-01
Introduction Laser speckle imaging is used for noninvasive assessment of blood flow of cutaneous wounds. The aim of this study was to assess if laser speckle imaging can be used as a predictor of venous ulcer healing. Methods After generating the flux speckle images, three regions of interest (ROI) were identified to measure the flow. Sensitivity, specificity, negative predictive value, and positive predictive value for ulcer healing were calculated. Results In total, 17 limbs were included. A sensitivity of 92.3%, specificity of 75.0%, PPV of 80.0%, and NPV 75.0% were found in predicting wound healing based on laser speckle images. Mean flux values were lowest in the center (ROI I) and showed an increase at the wound edge (ROI II, p = 0.03). Conclusion Laser speckle imaging shows acceptable sensitivity and specificity rates in predicting venous ulcer healing. The wound edge proved to be the best probability for the prediction of wound healing.
Life extension of self-healing polymers with rapidly growing fatigue cracks.
Jones, A S; Rule, J D; Moore, J S; Sottos, N R; White, S R
2007-04-22
Self-healing polymers, based on microencapsulated dicyclopentadiene and Grubbs' catalyst embedded in the polymer matrix, are capable of responding to propagating fatigue cracks by autonomic processes that lead to higher endurance limits and life extension, or even the complete arrest of the crack growth. The amount of fatigue-life extension depends on the relative magnitude of the mechanical kinetics of crack propagation and the chemical kinetics of healing. As the healing kinetics are accelerated, greater fatigue life extension is achieved. The use of wax-protected, recrystallized Grubbs' catalyst leads to a fourfold increase in the rate of polymerization of bulk dicyclopentadiene and extends the fatigue life of a polymer specimen over 30 times longer than a comparable non-healing specimen. The fatigue life of polymers under extremely fast fatigue crack growth can be extended through the incorporation of periodic rest periods, effectively training the self-healing polymeric material to achieve higher endurance limits.
Anti-ulcer and ulcer healing potentials of Musa sapientum peel extract in the laboratory rodents.
Onasanwo, Samuel Adetunji; Emikpe, Benjamin Obukowho; Ajah, Austin Azubuike; Elufioye, Taiwo Olayemi
2013-07-01
This study investigated the anti-ulcer and ulcer healing potentials of the methanol extract of Musa sapientum peel in the laboratory rats. Methanol extract of the peels on Musa sapientum (MEMS) was evaluated for its anti-ulcer using alcohol-induced, aspirin-induced, and pyloric ligation-induced models, and for its ulcer healing employing acetic acid-induced ulcer models in rats. The findings from this experiment showed that MEMS (50, 100 and 200 mg/kg, b.w.) anti-ulcer and ulcer healing activity (P ≤ 0.05) is dose-dependent. Also, MEMS exhibited healing of the ulcer base in all the treated groups when compared with the control group. The outcomes of this experiment revealed that the anti-ulcer effect of MEMS may be due to its anti-secretory and cyto-protective activity. The healing of the ulcer base might not be unconnected with basic fibroblast growth factors responsible for epithelial regeneration.
Himes, D
1999-03-01
Protein-calorie malnutrition and involuntary weight loss continue to be prevalent among hospitalized and long-term care patients, particularly the elderly. Studies on nutritional intervention have established a correlation between nutritional status, body weight, and rate of wound healing. Nutritional intervention, however, must be provided early enough to prevent a catabolic-induced decline in lean muscle mass, which can further impair wound healing. Chronic, nonhealing wounds are particularly difficult to treat and contribute to significant morbidity, mortality, and hospitalizations. More aggressive nutritional management and a greater understanding of the role of nutrition and weight gain in wound healing can result in more effective patient care. This article discusses the role of protein-calorie malnutrition and involuntary weight loss in hindering the wound-healing process, and the need to establish an optimal anabolic environment for weight gain and improved wound healing.
Tang, Qian-Li; Han, Shan-Shan; Feng, Jing; Di, Jia-Qi; Qin, Wen-Xi; Fu, Jun; Jiang, Qiu-Yan
2014-04-01
Cutaneous delayed wounds are a challenging clinical problem, and vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) exhibit key roles in wound healing. Moist exposed burn ointment (MEBO), a Chinese burn ointment with a USA patented formulation, has been reported to promote chronic ischemic and neurogenic ulcer healing in patients; however, the underlying mechanisms remain unclear. In the present study, MEBO significantly promoted the formation of granulation tissue in cutaneous excisional wounds, shortened the time of wound healing, and increased neovascularization and the number of fibroblasts. Furthermore, as well as enhancing the protein expression, MEBO application also increased the gene expression of VEGF and bFGF. The results indicate that MEBO promotes cutaneous excisional wound healing by at least partially enhancing VEGF and bFGF production, implicating the potential uses of MEBO for delayed cutaneous wound healing.
Self Healing Composite for Aircraft's Structural Application
NASA Astrophysics Data System (ADS)
Teoh, S. H.; Chia, H. Y.; Lee, M. S.; Nasyitah, A. J. N.; Luqman, H. B. S. M.; Nurhidayah, S.; Tan, Willy. C. K.
When one cuts himself, it is amazing to watch how quickly the body acts to mend the wound. Immediately, the body works to pull the skin around the cut back together. The concept of repair by bleeding of enclosed functional agents serves as the biomimetic inspiration of synthetic self repair systems. Such synthetic self repair systems are based on advancement in polymeric materials; the process of human thrombosis is the inspiration for the application of self healing fibres within the composite materials. Results based on flexural 3 point bend test on the prepared samples have shown that the doubled layer healed hollow fibre laminate subjected to a healing regime of 3 weeks has a healed strength increase of 27% compared to the damaged baseline laminate. These results gave us confidence that there is a great potential to adopt such self healing mechanism on actual composite parts like in aircraft's composite structures.
A Novel Design of Autonomously Healed Concrete: Towards a Vascular Healing Network
Minnebo, Pieter; Thierens, Glenn; De Valck, Glenn; Van Tittelboom, Kim; De Belie, Nele; Van Hemelrijck, Danny; Tsangouri, Eleni
2017-01-01
Concrete is prone to crack formation in the tensile zone, which is why steel reinforcement is introduced in these zones. However, small cracks could still arise, which give liquids and gasses access to the reinforcement causing it to corrode. Self-healing concrete repairs and seals these small (300 µm) cracks, preventing the development of corrosion. In this study, a vascular system, carrying the healing agent, is developed. It consists of tubes connected to a 3D printed distribution piece. This distribution piece has four outlets that are connected to the tubes and has one inlet, which is accessible from outside. Several materials were considered for the tubes, i.e., polymethylmethacrylate, starch, inorganic phosphate cement and alumina. Three-point-bending and four-point-bending tests proved that self-healing and multiple self-healing is possible with this developed vascular system. PMID:28772409
Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials
Azuma, Kazuo; Izumi, Ryotaro; Osaki, Tomohiro; Ifuku, Shinsuke; Morimoto, Minoru; Saimoto, Hiroyuki; Minami, Saburo; Okamoto, Yoshiharu
2015-01-01
Chitin (β-(1-4)-poly-N-acetyl-d-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review, the studies on the wound-healing effects of chitin, chitosan, and its derivatives are summarized. Moreover, the development of adhesive-based chitin and chitosan are also described. The evidence indicates that chitin, chitosan, and its derivatives are beneficial for the wound healing process. More recently, it is also indicate that some nano-based materials from chitin and chitosan are beneficial than chitin and chitosan for wound healing. Clinical applications of nano-based chitin and chitosan are also expected. PMID:25780874
Self-Healing Composite of Thermoset Polymer and Programmed Super Contraction Fibers
NASA Technical Reports Server (NTRS)
Li, Guoqiang (Inventor); Meng, Harper (Inventor)
2016-01-01
A composition comprising thermoset polymer, shape memory polymer to facilitate macro scale damage closure, and a thermoplastic polymer for molecular scale healing is disclosed; the composition has the ability to resolve structural defects by a bio-mimetic close-then heal process. In use, the shape memory polymer serves to bring surfaces of a structural defect into approximation, whereafter use of the thermoplastic polymer for molecular scale healing allowed for movement of the thermoplastic polymer into the defect and thus obtain molecular scale healing. The thermoplastic can be fibers, particles or spheres which are used by heating to a level at or above the thermoplastic's melting point, then cooling of the composition below the melting temperature of the thermoplastic. Compositions of the invention have the ability to not only close macroscopic defects, but also to do so repeatedly even if another wound/damage occurs in a previously healed/repaired area.
Zahourek, Rothlyn P
2016-01-01
The purpose of this article is to amplify the results section of a grounded theory study on how men in nursing view and experience intention, intentionality, caring, and healing. This is the second grounded theory study addressing intentionality in healing. The first study included a female population. The theory that was generated-Intentionality: The Matrix of Healing (IMH)-is examined with these new data. The results are compared with issues generally faced by men in nursing and how they described their beliefs and experiences with intentionality and healing. The theory (IMH) is supported; the importance of action in this cohort was an additional emphasis. This article provides an expanded view of men in nursing and their experiences as nurses and with intentionality, caring, and healing and has implications for the development of holistic nursing theory as well.
Intentionality: evolutionary development in healing: a grounded theory study for holistic nursing.
Zahourek, Rothlyn P
2005-03-01
Although intentionality has been implicated as a causal variable in healing research, its definition has been inconsistent and vague. The objective of this grounded theory study is to develop a substantive theory of intentionality in a naturalistic encounter between nurse-healers and their healee-clients, and to consider the implications for practice and research. Six expert nurse-healers and six healee-clients were interviewed as individuals and in dyads before and after treatments. Interviews and observational data were analyzed using the constant comparative method and synthesized analysis. Participants described their experience of intentionality in healing as an evolutionary process characterized by distinctive shifts. The theory of intentionality: the matrix for healing (IMH) includes definitions of intentionality and a conceptual framework of three developmental phases of intentionality (generic, healing, and transforming intentionalities). The predominant attribute, development, is described. The theory contributes to knowledge about healing and intentionality and has implications for practice and future research.
Hosseinkhani, Ayda; Falahatzadeh, Maryam; Raoofi, Elahe; Zarshenas, Mohammad M.
2016-01-01
Research on wound healing agents is a developing area in biomedical sciences. Traditional Persian medicine is one of holistic systems of medicine providing valuable information on natural remedies. To collect the evidences for wound-healing medicaments from traditional Persian medicine sources, 5 main pharmaceutical manuscripts in addition to related contemporary reports from Scopus, PubMed, and ScienceDirect were studied. The underlying mechanisms were also saved and discussed. Totally, 65 herbs used in traditional Persian medicine for their wound healing properties was identified. Related anti-inflammatory, antioxidant, antimicrobial, and wound-healing activities of those remedies were studied. Forty remedies had at least one of those properties and 10 of the filtered plants possessed all effects. The medicinal plants used in wound healing treatment in traditional Persian medicine could be a good topic for further in vivo and clinical research. This might lead to development of effective products for wound treatment. PMID:27330012
Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.
Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian
2016-07-29
In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing.
Developing Flexible, High Performance Polymers with Self-Healing Capabilities
NASA Technical Reports Server (NTRS)
Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.
2011-01-01
Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface tension forces to flow, mix and react to achieve healing. Vascular networks small enough to fit into such films must also overcome these same flow limitations. Self-healing has also been demonstrated in ionomeric substrates such as Surlyn , wherein the heat generated by a projectile impact triggers the latent ability of this substrate to flow back to its original shape. Recent work using Diels-Alder reactions have shown promise in bringing about actual reforming of broken chemical bonds to achieve self-healing [2]. All self-healing mechanisms that rely on the use of inherent latent substrate properties require some degree of polymer chain flow to achieve any significant level of healing.
Plichta, Jennifer K.; Radek, Katherine A.
2011-01-01
Thousands of patients suffer from burn injuries each year, yet few therapies have been developed to accelerate the wound healing process. Most fibroblast growth factors (FGFs) have been extensively evaluated, but only a few have been found to participate in wound healing. In particular, FGF-10 is robustly increased in the wound microenvironment following injury and has demonstrated some ability to promote wound healing in vitro and in vivo. Glycosaminoglycans (GAGs) are linear carbohydrates that participate in wound repair by influencing cytokine/growth factor localization and interaction with cognate receptors. Dermatan sulfate (DS) is the most abundant GAG in human wound fluid and has been postulated to be directly involved in the healing process. Recently, the combination of FGF-10 and DS demonstrated the potential to accelerate wound healing via increased keratinocyte proliferation and migration. Based on these preliminary studies, DS may serve as a cofactor for FGF-10, and together, they are likely to expedite the healing process by stimulating keratinocyte activity. As a specific subtype of wounds, the overall healing process of burn injuries does not significantly differ from other types of wounds, where optimal repair results in matrix regeneration and complete re-epithelialization. At present, standard burn treatment primarily involves topical application of anti-microbial agents, while no routine therapies target acceleration of re-epithelialization, the key to wound closure. Thus, this novel therapeutic combination could be used in conjunction with some of the current therapies, but it would have the unique ability to initiate wound healing by stimulating keratinocyte epithelialization. PMID:22561305
Ma, Li; del Soldato, Piero; Wallace, John L.
2002-01-01
Delayed gastric ulcer healing is a well recognized problem associated with the use of cyclooxygenase (COX) inhibitors. In contrast, NO-releasing COX inhibitors do not interfere with ulcer healing. These divergent effects may in part be due to differences in their effects on platelets, which are known to influence ulcer healing. Therefore, we compared the effects of a nonselective COX inhibitor (flurbiprofen), a nitric oxide-releasing COX inhibitor (HCT-1026), and a selective COX-2 inhibitor (celecoxib) on gastric ulcer healing, angiogenesis, and platelet/serum levels of vascular endothelial growth factor (VEGF) and endostatin. Gastric ulcers were induced in rats by serosal application of acetic acid. Daily treatment with the test drugs was started 3 days later and continued for 1 week. Celecoxib and flurbiprofen impaired angiogenesis and delayed ulcer healing, as well as increasing serum endostatin levels relative to those of VEGF. HCT-1026 did not delay ulcer healing nor impair angiogenesis, and also did not change the ratio of serum endostatin to VEGF. Incubation of human umbilical vein endothelial cells with serum from celecoxib- or flurbiprofen-treated rats resulted in suppressed proliferation and increased apoptosis, effects that were reversed by an antiendostatin antibody. These results demonstrate a previously unrecognized mechanism through which nonsteroidal antiinflammatory drugs can delay ulcer healing, namely, through altering the balance of anti- and proangiogenic factors in the serum. The absence of a delaying effect of HCT-1026 on ulcer healing may be related to the maintenance of a more favorable balance in serum levels of pro- and antiangiogenic growth factors. PMID:12232050
Tawfick, W; Sultan, S
2009-07-01
Topical wound oxygen (TWO(2)) may help wound healing in the management of refractory venous ulcers (RVU). The aim of this study was to measure the effect of TWO(2) on wound healing using the primary end-point of the proportion of ulcers healed at 12 weeks. Secondary end-points were time to full healing, percentage of reduction in ulcer size, pain reduction, recurrence rates and Quality-Adjusted Time Spent Without Symptoms of disease and Toxicity of Treatment (Q-TWiST). A parallel observational comparative study. Patients with CEAP C(6,s) RVU, assessed by duplex ultrasonography, were managed with either TWO(2) (n=46) or conventional compression dressings (CCD) (n=37) for 12 weeks or till full healing. Patients were followed up at 3 monthly intervals. At 12 weeks, 80% of TWO(2) managed ulcers were completely healed, compared to 35% of CCD ulcers (p<0.0001). Median time to full healing was 45 days in TWO(2) patients and 182 days in CCD patients (p<0.0001). The pain score threshold in TWO(2) managed patients improved from 8 to 3 by 13 days. After 12-month follow-up, 5 of the 13 healed CCD ulcers showed signs of recurrence compared to none of the 37 TWO(2) healed ulcers. TWO(2) patients experienced a significantly improved Q-TWiST. TWO(2) reduces recurrence rates, alleviates pain and improves the Q-TWiST. We believe it is a valuable tool in the armamentarium of management of RVU.
Improved scar quality following primary and secondary healing of cutaneous wounds.
Atiyeh, Bishara S; Amm, Christian A; El Musa, Kusai A
2003-01-01
Poor wound healing remains a critical problem in our daily practice of surgery, exerting a heavy toll on our patients as well as on the health care system. In susceptible individuals, scars can become raised, reddish, and rigid, may cause itching and pain, and might even lead to serious cosmetic and functional problems. Hypertrophic scars do not occur spontaneously in animals, which explains the lack of experimental models for the study of pathologic scar modulation. We present the results of three clinical comparative prospective studies that we have conducted. In the first study, secondary healing and cosmetic appearance following healing of partial thickness skin graft donor sites under dry (semi-open Sofra-Tulle dressing) and moist (moist exposed burn ointment, MEBO) was assessed. In the second study, healing of the donor sites was evaluated following treatment with Tegaderm or MEBO, two different types of moisture-retentive dressings. In the third study, 3 comparable groups of primarily healed wounds were evaluated. One group was treated by topical antibiotic ointment, the second group was treated by Moist Exposed Burn Ointment (MEBO), and the third group did not receive any topical treatment. In the second study, secondary healing of partial thickness skin graft donor sites was evaluated following treatment with Tegaderm or MEBO, two different types of moisture-retentive dressings. In the second and third studies, healed wounds were evaluated with the quantitative scale for scar assessment described by Beausang et al. Statistical analysis revealed that for both types of wound healing, scar quality was significantly superior in those wounds treated with MEBO.
Hong, Bujung; Winkel, Andreas; Ertl, Philipp; Stumpp, Sascha Nico; Schwabe, Kerstin; Stiesch, Meike; Krauss, Joachim K
2018-03-01
Wound healing impairment is a serious problem in surgical disciplines which may be associated with chronic morbidity, increased cost and patient discomfort. Here we aimed to investigate the relevance of bacterial colonisation on suture material using polymerase chain reaction (PCR) to detect and taxonomically classify bacterial DNA in patients with and without wound healing problems after routine neurosurgical procedures. Repeat surgery was performed in 25 patients with wound healing impairment and in 38 patients with well-healed wounds. To determine the presence of bacteria, a 16S rDNA-based PCR detection method was applied. Fragments of 500 bp were amplified using universal primers which target hypervariable regions within the bacterial 16S rRNA gene. Amplicons were separated from each other by single-strand conformation polymorphism (SSCP) analysis, and finally classified using Sanger sequencing. PCR/SSCP detected DNA of various bacteria species on suture material in 10/38 patients with well-healed wounds and in 12/25 patients with wound healing impairment including Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes and Escherichia coli. Microbiological cultures showed bacterial growth in almost all patients with wound healing impairment and positive results in PCR/SSCP (10/12), while this was the case in only one patient with a well-healed wound (1/10). Colonisation of suture material with bacteria occurs in a relevant portion of patients with and without wound healing impairment after routine neurosurgical procedures. Suture material may provide a nidus for bacteria and subsequent biofilm formation. Most likely, however, such colonisation of sutures is not a general primer for subsequent wound infection.
Effect of Zoledronate on Oral Wound Healing in Rats
Yamashita, Junro; Koi, Kiyono; Yang, Dong-Ye; McCauley, Laurie K.
2010-01-01
Purpose Osteonecrosis of the jaw (ONJ) is a growing concern in patients who receive bisphosphonates which target osteoclasts. Since osteoclasts play multifunctional roles in the bone marrow, their suppression likely affects bone homeostasis and alters wound healing of the jaw. The objective was to delineate the impact of osteoclast suppression in the bone marrow and wound healing of the jaw. Experimental Design Zoledronate was administered to senile rats for 14 weeks. A portion of the gingiva was removed to denude the palatal bone. Gene expression in the bone marrow was assessed and histologic sections analyzed to determine the wound healing status. Results Angiogenesis-related genes, CD31 and VEGF-A, were not altered by zoledronate. VEGF-C, which plays a role in lymphangiogenesis, was suppressed. There was a decrease in gene expression of Tcirg1 and MMP-13. Bone denudation caused extensive osteocyte death indicative of bone necrosis. In zoledronate-treated rats, the necrotic bone was retained in the wound while, in controls, osteoclastic resorption of the necrotic bone was prominent. Even though large necrotic bone areas existed in zoledronate-treated rats, overlaying soft tissue healed clinically. Immunohistochemical staining showed rich vascularity in the overlaying soft tissue. Conclusions Zoledronate therapy impacts bone marrow by suppressing genes associated with lymphoangiogenesis and tissue remodeling, such as VEGF-C and MMP-13. Zoledronate was associated with impaired osseous wound healing but had no effect on angiogenic markers in the bone marrow or soft tissue wound healing. Zoledronate selectively blunts healing in bone but does not effect soft tissue healing in the oral cavity. PMID:21149614
Monitoring of self-healing phenomena towards enhanced sustainability of historic mortars
NASA Astrophysics Data System (ADS)
Amenta, M.; Karatasios, I.; Maravelaki, P.; Kilikoglou, V.
2016-05-01
Mortars are known for their ability to heal their defects in an autogenic way. This phenomenon is expressed by the filling of microcracks by secondary products, restoring or enhancing the material's performance. Parameterization of self-healing phenomenon could be a key factor for the enhanced sustainability of these materials in terms of reduced repair cost and consumption of natural raw materials and thus reduced environmental fingerprint. The fact that this phenomenon takes place autogenously suggests that the material can self-repair its defects, without external intervention, thus leading to a prolonged life cycle. In the present study, the autogenic self-healing phenomenon was studied in natural hydraulic lime mortars, considering aspects of curing time before initial cracking, duration and conditions of the healing period. Furthermore, strength recovery due to autogenic self-healing was measured under high humidity conditions, and thermo-gravimetric analysis (DTA/TG) was performed in all specimens in order to quantitatively assess the available unreacted components in the binder at all ages. Regarding the microstructure of the healing phases, the main products formed during healing consist of calcite and various C-S-H/C-A-H phases. Depending on the parameters mentioned above, there is a wide diversity in the intensity, typology and topography of the secondary phases inside the cracks. The main differences discussed were observed between specimens cracked at very early age and those damaged after 30 days of curing. Similarly, the mechanical properties of the crack-healed specimens were associated with the above findings and especially with the available each-time amount of lime, determined by thermo-gravimetric analysis.
Zins, Stephen R; Amare, Mihret F; Tadaki, Douglas K; Elster, Eric A; Davis, Thomas A
2010-12-01
Impaired wound healing is a persistent clinical problem which has been treated with mixed results. Studies aimed at elucidating the mechanism of impaired wound healing have focused on small cohorts of genes which leave an incomplete picture of the wound healing process. We aimed to investigate impaired wound healing via a comprehensive panel of angiogenic/inflammation-related genes and wound closure kinetics with and without the application of extracorporeal shock wave therapy (ESWT), which has been demonstrated to improve wound healing. Full-thickness skin from the dorsal surface of "normal" (BALB/c) and "impaired" (db (+)/db (+)) mice was excised, and wound margin tissue was harvested 2, 7, and 10 days post injury. A separate, but identical wound model was established over 40 days in order to measure wound closure kinetics. Over time, the normal non-ESWT treated wounds exhibited varying patterns of elevated expression of 25-30 genes, whereas wounds with impaired healing displayed prolonged elevated expression of only a few genes (CXCL2, CXCL5, CSF3, MMP9, TGF-α). In response to ESWT, gene expression was augmented in both types of wounds, especially in the expression of PECAM-1; however, ESWT had no effect on wound closure in either model. In addition, multiple doses of ESWT exacerbated the delayed wound healing, and actually caused the wounds to initially increase in size. These data provide a more complete picture of impaired wound healing, and a way to evaluate various promising treatments.
Multiple functions of gingival and mucoperiosteal fibroblasts in oral wound healing and repair.
Chiquet, Matthias; Katsaros, Christos; Kletsas, Dimitris
2015-06-01
Fibroblasts are cells of mesenchymal origin. They are responsible for the production of most extracellular matrix in connective tissues and are essential for wound healing and repair. In recent years, it has become clear that fibroblasts from different tissues have various distinct traits. Moreover, wounds in the oral cavity heal under very special environmental conditions compared with skin wounds. Here, we reviewed the current literature on the various interconnected functions of gingival and mucoperiosteal fibroblasts during the repair of oral wounds. The MEDLINE database was searched with the following terms: (gingival OR mucoperiosteal) AND fibroblast AND (wound healing OR repair). The data gathered were used to compare oral fibroblasts with fibroblasts from other tissues in terms of their regulation and function during wound healing. Specifically, we sought answers to the following questions: (i) what is the role of oral fibroblasts in the inflammatory response in acute wounds; (ii) how do growth factors control the function of oral fibroblasts during wound healing; (iii) how do oral fibroblasts produce, remodel and interact with extracellular matrix in healing wounds; (iv) how do oral fibroblasts respond to mechanical stress; and (v) how does aging affect the fetal-like responses and functions of oral fibroblasts? The current state of research indicates that oral fibroblasts possess unique characteristics and tightly controlled specific functions in wound healing and repair. This information is essential for developing new strategies to control the intraoral wound-healing processes of the individual patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chen, Xiao-Dong; Ruan, Shu-Bin; Lin, Ze-Peng; Zhou, Ziheng; Zhang, Feng-Gang; Yang, Rong-Hua; Xie, Ju-Lin
2018-02-08
Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.
2013-01-01
Background The healing knowledge of a Sami (Saami) hunter and reindeer herder was surveyed as a window into the concepts of health, healing, and disease in early twentieth-century Sapmi (Northern Sweden). The two books of Johan Turi (1854–1936)—An Account of the Sami (1910) and Lappish Texts (1918–19) were examined to determine the varieties of recorded zootherapeutic, mineral, chemical, and ethnobotanical lore, as well as the therapeutic acts, identified conditions, and veterinary knowledge included. Methods Tabulation of the materials and species mentioned in Turi’s descriptions (n = 137) permitted analysis of the relative frequency of differing types of healing in Turi’s overall therapeutic repertoire, his relative attention to chronic vs. acute ailments, and the frequency of magic as a component of healing. A qualitative appraisal was made of the degree to which outside influences affected Sami healing of the period. A further assessment of the possible clinical efficacy of the recorded remedies was undertaken. Results Turi’s remedies consist most often of zootherapeutics (31%), followed by physical acts such as massage, moxibustion, or manipulation (22%). Ethnobotanical cures make up a significantly smaller portion of his repertoire (17%), followed by mineral and chemical cures (12%). Magic rituals (including incantations and ritual acts) make up a significant portion of Turi’s repertoire, and could be used alone (17%) or in conjunction with other types of healing (38%). Turi’s healing aimed primarily at acute ailments (65%), with chronic conditions addressed less often (35%). A literature review revealed that Turi’s remedies held a marked frequency of likely efficacy, at least in cases in which it was possible to ascertain the precise species, conditions, or substances described. Although it is possible at times to recognize foreign sources in Turi’s repertoire, it is clear that Turi understood all his healing methods as distinctively Sami. Conclusion The research illustrates the variety and depth of a single informant’s healing knowledge, and demonstrates the value of both historical sources and in-depth data collection with single experts as useful means of assessing and characterizing an indigenous population’s healing traditions. PMID:23941666
Modeling the effect of topical oxygen therapy on wound healing
NASA Astrophysics Data System (ADS)
Agyingi, Ephraim; Ross, David; Maggelakis, Sophia
2011-11-01
Oxygen supply is a critical element for the healing of wounds. Clinical investigations have shown that topical oxygen therapy (TOT) increases the healing rate of wounds. The reason behind TOT increasing the healing rate of a wound remains unclear and hence current protocols are empirical. In this paper we present a mathematical model of wound healing that we use to simulate the application of TOT in the treatment of cutaneous wounds. At the core of our model is an account of the initiation of angiogenesis by macrophage-derived growth factors. The model is expressed as a system of reaction-diffusion equations. We present results of simulations for a version of the model with one spatial dimension.
Burn Wound Healing and Tissue Engineering.
Singer, Adam J; Boyce, Steven T
In 2016 the American Burn Association held a State of the Science conference to help identify burn research priorities for the next decade. The current paper summarizes the work of the sub-committee on Burn Wound Healing and Tissue Engineering. We first present the priorities in wound healing research over the next 10 years. We then summarize the current state of the science related to burn wound healing and tissue engineering including determination of burn depth, limiting burn injury progression, eschar removal, management of microbial contamination and wound infection, measuring wound closure, accelerating wound healing and durable wound closure, and skin substitutes and tissue engineering. Finally, a summary of the round table discussion is presented.
Wound healing and skin regeneration.
Takeo, Makoto; Lee, Wendy; Ito, Mayumi
2015-01-05
The skin is a complex organ consisting of the epidermis, dermis, and skin appendages, including the hair follicle and sebaceous gland. Wound healing in adult mammals results in scar formation without any skin appendages. Studies have reported remarkable examples of scarless healing in fetal skin and appendage regeneration in adult skin following the infliction of large wounds. The models used in these studies have offered a new platform for investigations of the cellular and molecular mechanisms underlying wound healing and skin regeneration in mammals. In this article, we will focus on the contribution of skin appendages to wound healing and, conversely, skin appendage regeneration following injuries. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.
[Pathophysiological aspects of wound healing in normal and diabetic foot].
Maksimova, N V; Lyundup, A V; Lubimov, R O; Melnichenko, G A; Nikolenko, V N
2014-01-01
The main cause of long-term healing of ulcers in patients with diabetic foot is considered to be direct mechanical damage when walking due to reduced sensitivity to due to neuropathy, hyperglycemia, infection and peripheral artery disease. These factors determine the standard approaches to the treatment of diabeticfoot, which include: offloading, glycemic control, debridement of ulcers, antibiotic therapy and revascularization. Recently, however, disturbances in the healing process of the skin in diabetes recognized an additional factor affecting the timing of healing patients with diabetic foot. Improved understanding and correction of cellular, molecular and biochemical abnormalities in chronic wound in combination with standard of care for affords new ground for solving the problem of ulcer healing in diabetes.
Harvey, Carol
2005-01-01
Wound healing in orthopaedic care is affected by the causes of the wound, as well as concomitant therapies used to repair musculoskeletal structures. Promoting the health of the host and creating an environment to foster natural healing processes is essential for helping to restore skin integrity. Normal wound healing physiologic processes, factors affecting wound healing, wound classification systems, unique characteristics of orthopaedic wounds, wound contamination and drainage characteristics, and potential complications are important to understand in anticipation of patient needs. Accurate wound assessment and knowledge of nursing implications with specific wound care measures (cleansing, debridement, and dressings) is important for quality care. New technologies are enhancing traditional wound care measures with goals of effective comfortable wound care to promote restoration of skin integrity.
Krivic, Andrija; Anic, Tomislav; Seiwerth, Sven; Huljev, Dubravko; Sikiric, Predrag
2006-05-01
Stable gastric pentadecapeptide BPC 157 (BPC 157, as an antiulcer agent in clinical trials for inflammatory bowel disease; PLD-116, PL 14736, Pliva, no toxicity reported) alone (without carrier) ameliorates healing of tendon and bone, respectively, as well as other tissues. Thereby, we focus on Achilles tendon-to-bone healing: tendon to bone could not be healed spontaneously, but it was recovered by this peptide. After the rat's Achilles tendon was sharply transected from calcaneal bone, agents [BPC 157 (10 microg, 10 ng, 10 pg), 6alpha-methylprednisolone (1 mg), 0.9% NaCl (5 mL)] were given alone or in combination [/kg body weight (b.w.) intraperitoneally, once time daily, first 30-min after surgery, last 24 h before analysis]. Tested at days 1, 4, 7, 10, 14, and 21 after Achilles detachment, BPC 157 improves healing functionally [Achilles functional index (AFI) values substantially increased], biomechanically (load to failure, stiffness, and Young elasticity modulus significantly increased), macro/microscopically, immunohistochemistry (better organization of collagen fibers, and advanced vascular appearance, more collagen type I). 6alpha-Methylprednisolone consistently aggravates the healing, while BPC 157 substantially reduces 6alpha-methylprednisolone healing aggravation. Thus, direct tendon-to-bone healing using stabile nontoxic peptide BPC 157 without a carrier might successfully exchange the present reconstructive surgical methods. Copyright 2006 Orthopaedic Research Society.
Imaizumi, Mitsuyoshi; Thibeault, Susan L; Leydon, Ciara
2014-11-01
Extent of vocal fold injury impacts the nature and timing of wound healing and voice outcomes. However, depth and extent of the lesion created to study wound healing in animal models vary across studies, likely contributing to different outcomes. Our goal was to create a surgery classification system to enable comparison of postoperative outcomes across animal vocal fold wound-healing studies. Prospective, controlled animal study. Rats underwent one of three types of unilateral vocal fold surgeries classified by depth and length of resection. The surgeries were: for subepithelial injury, resection of epithelium and superficial layer of the lamina propria at the midmembranous portion of the vocal fold; for transmucosal injury, resection of epithelium and lamina propria; and for transmuscular injury, resection of epithelium, lamina propria, and superficial portion of the vocalis muscle. Wound healing was evaluated histologically at various time points up to 35 days postinjury. Complete healing occurred by 14 days postsurgery for subepithelial injury, and by day 35 for transmucosal injury. Injury remained present at day 35 for transmuscular injury. Timing and completeness of healing varied by extent and depth of resection. Scarless healing occurred rapidly following subepithelial injury, whereas scarring was observed at 5 weeks after transmuscular injury. The proposed classification system may facilitate comparison of surgical outcomes across vocal fold wound-healing studies. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.
The effect of whole body vibration on fracture healing - a systematic review.
Wang, J; Leung, K S; Chow, S K; Cheung, W H
2017-09-07
This systematic review examines the efficacy and safety of whole body vibration (WBV) on fracture healing. A systematic literature search was conducted with relevant keywords in PubMed and Embase, independently, by two reviewers. Original animal and clinical studies about WBV effects on fracture healing with available full-text and written in English were included. Information was extracted from the included studies for review. In total, 19 articles about pre-clinical studies were selected. Various vibration regimes are reported; of those, the frequencies of 35 Hz and 50 Hz show better results than others. Most of the studies show positive effects on fracture healing after vibration treatment and the responses to vibration are better in ovariectomised (OVX) animals than non-OVX ones. However, several studies provide insufficient evidence to support an improvement of fracture healing after vibration and one study even reports disruption of fracture healing after vibration. In three studies, vibration results in positive effects on angiogenesis at the fracture site and surrounding muscles during fracture healing. No serious complications or side effects of vibration are found in these studies. WBV is suggested to be beneficial in improving fracture healing in animals without safety problem reported. In order to apply vibration on fractured patients, more well-designed randomised controlled clinical trials are needed to examine its efficacy, regimes and safety.
Glatt, Vaida; Evans, Christopher H.; Tetsworth, Kevin
2017-01-01
In order to achieve consistent and predictable fracture healing, a broad spectrum of growth factors are required to interact with one another in a highly organized response. Critically important, the mechanical environment around the fracture site will significantly influence the way bone heals, or if it heals at all. The role of the various biological factors, the timing, and spatial relationship of their introduction, and how the mechanical environment orchestrates this activity, are all crucial aspects to consider. This review will synthesize decades of work and the acquired knowledge that has been used to develop new treatments and technologies for the regeneration and healing of bone. Moreover, it will discuss the current state of the art in experimental and clinical studies concerning the application of these mechano-biological principles to enhance bone healing, by controlling the mechanical environment under which bone regeneration takes place. This includes everything from the basic principles of fracture healing, to the influence of mechanical forces on bone regeneration, and how this knowledge has influenced current clinical practice. Finally, it will examine the efforts now being made for the integration of this research together with the findings of complementary studies in biology, tissue engineering, and regenerative medicine. By bringing together these diverse disciplines in a cohesive manner, the potential exists to enhance fracture healing and ultimately improve clinical outcomes. PMID:28174539
Yotsu, Rie Roselyne; Pham, Ngoc Minh; Oe, Makoto; Nagase, Takeshi; Sanada, Hiromi; Hara, Hisao; Fukuda, Shoji; Fujitani, Junko; Yamamoto-Honda, Ritsuko; Kajio, Hiroshi; Noda, Mitsuhiko; Tamaki, Takeshi
2014-01-01
To identify differences in the characteristics of patients with diabetic foot ulcers (DFUs) according to their etiological classification and to compare their healing time. Over a 4.5-year period, 73 patients with DFUs were recruited. DFUs were etiologically classified as being of neuropathic, ischemic, or neuro-ischemic origin. Descriptive analyses were performed to characterize study subjects, foot-related factors, and healing outcome and time. Duration of healing was assessed using the Kaplan-Meier method. Healing time among the three types was compared using the log rank test. The number of patients manifesting neuropathic, ischemic, and neuro-ischemic ulcers was 30, 20, and 14, respectively. Differences were identified for age, diabetes duration, body mass index, hypertension, and estimated glomerular filtration rate. Patients with neuro-ischemic ulcers had better ankle-brachial index, skin perfusion pressure (SPP), and transcutaneous oxygen pressure values compared to those with ischemic ulcers. The average time in which 50% of patients had healed wounds was 70, 113, and 233 days for neuropathic, neuro-ischemic, and ischemic ulcers, respectively. Main factors associated with healing were age and SPP values. Based on the etiological ulcer type, DFU healing course and several patient factors differed. Failure to consider the differences in DFU etiology may have led to heterogeneity of results in previous studies on DFUs. Copyright © 2014 Elsevier Inc. All rights reserved.
Saboo, Apoorva; Rathnayake, Ayeshmanthe; Vangaveti, Venkat N; Malabu, Usman H
2016-01-01
Dipeptidyl peptidase-4 (DPP-4) inhibitors have a well-known effect on glycaemic control in patients with diabetes but little is known on their wound healing role in this group of population. This paper reviews the effects of DPP-4 inhibitors on wound healing of diabetic foot ulcers. Published data on effects and mechanism of DDP-4 inhibitors on wound healing were derived from Medline, PubMed and Google Scholar search of English language literature from 1994 to 2014 using the key words such as "DPP-4 inhibitors", "endothelial healing" "diabetes" and "chronic ulcers". DPP-4 inhibitors show a potential benefit in processes of wound healing in diabetic chronic foot ulcers. The enzyme inhibitors promote recruitment of endothelial progenitor cells and allow the final scaffolding of wounds. Furthermore DPP-4 inhibitors augment angiogenesis and have widespread effects on optimising the immune response to persistent hypoxia in chronic diabetes wounds. DPP-4 inhibitors show promise in the local wound healing of diabetic foot ulcers in addition to its already established glycaemic control. In the light of high rate of amputations due to non-healing ulcers with profound psychological and economical liability, more investigations on the usefulness of DPP-4 inhibitors in the high risk diabetes population are needed. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Langås-Larsen, Anette; Salamonsen, Anita; Kristoffersen, Agnete Egilsdatter; Stub, Trine
2018-01-01
ABSTRACT In Northern Norway, traditional healing has been preserved by passing down the knowledge through generations. Religious prayers of healing (reading) and Sami rituals (curing) are examples of methods that are used. We have examined traditional healers’ understanding of traditional healing, the healing process and their own practice, as well as what characteristics healers should have. Semi-structured individual interviews and focus group interviews were conducted among 15 traditional healers in two coastal Sami municipalities in Norway. The traditional healers understood traditional healing as the initiation of the patient’s self-healing power. This power was initiated through healing rituals and explained as the power of God and placebo effect. During the healing ritual, the doctor’s medical diagnoses, the patient’s personal data and a prayer in the name of The Father, The Son and The Holy Spirit were used in combination with steel and elements from the nature. The traditional healers stated that they had to be trustworthy, calm and mentally strong. Healers who claimed that they had supernatural abilities (clairvoyant or warm hands) were regarded as extra powerful. According to the participants in this study, the healers must be trustworthy, calm and mentally strong. Moreover, these traditional healers drew on information from conventional medicine when performing their rituals. PMID:29848221
Skin Regeneration in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates
Seifert, Ashley W.; Monaghan, James R.; Voss, S. Randal; Maden, Malcolm
2012-01-01
While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair. PMID:22485136
Paranormal healing and hypertension
Beutler, Jaap J; Attevelt, Johannes T M; Schouten, Sybo A; Faber, Joop A J; Mees, Evert J Dorhout; Geijskes, Gijsbert G
1988-01-01
A prospective randomised trial was carried out to see whether paranormal healing by laying on of hands might reduce blood pressure in essential hypertension and whether such an effect might be due to a paranormal, psychological, or placebo factor. Patients were randomised to three treatment groups: paranormal healing by laying on of hands (n=40), paranormal healing at a distance (n=37), and no paranormal healing (controls; n=38). Healing at a distance and no paranormal healing were investigated double blind. Systolic and diastolic blood pressures were significantly reduced in all three groups at week 15 (mean reduction (95% confidence interval) 17·1 (14·0 to 20·2)/8·3 (6·6 to 10·0) mm Hg). Only the successive reductions in diastolic blood pressures among the groups from week to week were significantly different. Each week diastolic pressure was consistently lower (average 1·9 mm Hg) after healing at a distance compared with control, but on paired comparison these differences were not significant. Probably week to week variations among the groups accounted for any differences noted. In this study no treatment was consistently better than another and the data cannot therefore be taken as evidence of a paranormal effect on blood pressure. Probably the fall in blood pressure in all three groups either was caused by the psychosocial approach or was a placebo effect of the trial itself. PMID:3134082
Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O
2016-01-01
The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423
Wound healing of critical limb ischemia with tissue loss in patients on hemodialysis.
Honda, Yohsuke; Hirano, Keisuke; Yamawaki, Masahiro; Mori, Shinsuke; Shirai, Shigemitsu; Makino, Kenji; Tokuda, Takahiro; Takama, Takuro; Tsutumi, Masakazu; Sakamoto, Yasunari; Takimura, Hideyuki; Kobayashi, Norihiro; Araki, Motoharu; Ito, Yoshiaki
2017-06-01
We assessed wound healing in patients on hemodialysis (HD) with critical limb ischemia (CLI). This study enrolled 267 patients (including 120 patients on HD and 147 patients not on HD) who underwent endovascular therapy (EVT) for CLI. The primary endpoint was wound-healing rate at two years. Secondary endpoints were time to wound healing, wound recurrence rate, and limb salvage at two years. The percentage of male and young patients was higher in the HD patients ( p < 0.01). A lower patency of the pedal arch after EVT was observed frequently in HD patients ( p < 0.01). The wound-healing rate was significantly lower in HD patients (79.5% vs. 92.4%, p < 0.001). Time to wound healing was significantly longer in HD patients (median 132 days vs. 82 days, p = 0.005). Wound recurrence was observed more frequently in HD patients (25.0% vs. 10.2%, p = 0.007). Limb salvage (72.8% vs. 86.4%, p = 0.002) was significantly lower in HD patients. In a cox proportional hazard model, HD was an independent predictor of wound healing (risk ratio (RR), 0.46; 95% confidence interval (CI), 0.33-0.62; p < 0.001) and wound recurrence (RR, 1.58; 95% CI, 1.11-2.22; p = 0.01). HD was independently associated with lower and delayed wound healing, and wound recurrence.
Bischofberger, Andrea S; Dart, Christina M; Perkins, Nigel R; Dart, Andrew J
2011-10-01
To determine the effect of manuka honey on second-intention healing of contaminated, full-thickness skin wounds in horses. Experimental. Adult Standardbred horses (n = 8). One wound was created on the dorsomedial aspect of the third metacarpus in both forelimbs, contaminated with feces, and bandaged for 24 hours. Bandages were removed and wounds rinsed with isotonic saline solution. Wounds on 1 limb had manuka honey applied daily (n = 8) whereas wounds on the contralateral limb received no treatment (n = 8). Bandages were replaced and changed daily for 12 days, after which treatment stopped, bandages were removed, leaving wounds open to heal. Wound area was measured 24 hours after wound creation (day 1), then weekly for 8 weeks. Overall time for healing was recorded. Wound area and rate of healing of treated and control wounds were compared statistically. Treatment with manuka honey decreased wound retraction and treated wounds remained significantly smaller than control wounds until day 42; however, there was no difference in overall healing time between treatment and control wounds. Treatment with manuka honey reduced wound area by reducing retraction but did not affect overall healing time of full-thickness distal limb wounds using this wound-healing model. © Copyright 2011 by The American College of Veterinary Surgeons.
Mechanical and structural properties of bone in non-critical and critical healing in rat.
Hoerth, Rebecca M; Seidt, Britta M; Shah, Miheer; Schwarz, Carolin; Willie, Bettina M; Duda, Georg N; Fratzl, Peter; Wagermaier, Wolfgang
2014-09-01
A fracture in bone results in a dramatic change of mechanical loading conditions at the site of injury. Usually, bone injuries heal normally but with increasing fracture gaps, healing is retarded, eventually leading to non-unions. The clinical situation of these two processes with different outcomes is well described. However, the exact relation between the mechanical environment and characteristics of the tissues at all levels of structural hierarchy remains unclear. Here we studied the differences in material formation of non-critical (1mm) and critical (5mm gap) healing. We employed a rat osteotomy model to explore bone material structure depending upon the different mechanical conditions. In both cases, primary bone formation was followed by secondary bone deposition with mineral particle sizes changing from on average short and thick to long and thin particles. Bony bridging occurred at first in the endosteal callus and the nanostructure and microstructure developed towards cortical ordered material organization. In contrast, in critical healing, instead of bridging, a marrow cavity closure was formed endosteal, exhibiting tissue structure oriented along the curvature and a periosteal callus with less mature material structure. The two healing processes separated between 4 and 6 weeks post-osteotomy. The outcome of healing was determined by the varied geometrical conditions in critical and non-critical healing, inducing completely different mechanical situations. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
SCF increases in utero-labeled stem cells migration and improves wound healing.
Zgheib, Carlos; Xu, Junwang; Mallette, Andrew C; Caskey, Robert C; Zhang, Liping; Hu, Junyi; Liechty, Kenneth W
2015-01-01
Diabetic skin wounds lack the ability to heal properly and constitute a major and significant complication of diabetes. Nontraumatic lower extremity amputations are the number one complication of diabetic skin wounds. The complexity of their pathophysiology requires an intervention at many levels to enhance healing and wound closure. Stem cells are a promising treatment for diabetic skin wounds as they have the ability to correct abnormal healing. Stem cell factor (SCF), a chemokine expressed in the skin, can induce stem cells migration, however the role of SCF in diabetic skin wound healing is still unknown. We hypothesize that SCF would correct the impairment and promote the healing of diabetic skin wounds. Our results show that SCF improved wound closure in diabetic mice and increased HIF-1α and vascular endothelial growth factor (VEGF) expression levels in these wounds. SCF treatment also enhanced the migration of red fluorescent protein (RFP)-labeled skin stem cells via in utero intra-amniotic injection of lenti-RFP at E8. Interestingly these RFP+ cells are present in the epidermis, stain negative for K15, and appear to be distinct from the already known hair follicle stem cells. These results demonstrate that SCF improves diabetic wound healing in part by increasing the recruitment of a unique stem cell population present in the skin. © 2015 by the Wound Healing Society.
Wound healing in pre-tibial injuries--an observation study.
McClelland, Heather M; Stephenson, John; Ousey, Karen J; Gillibrand, Warren P; Underwood, Paul
2012-06-01
Pre-tibial lacerations are complex wounds affecting a primarily aged population, with poor healing and a potentially significant impact on social well-being. Management of these wounds has changed little in 20 years, despite significant advances in wound care. A retrospective observational study was undertaken to observe current wound care practice and to assess the effect of various medical factors on wound healing time on 24 elderly patients throughout their wound journey. Wound length was found to be substantively and significantly associated with wound healing time, with a reduction in instantaneous healing rate of about 30% for every increase of 1 cm in wound length. Hence, longer wounds are associated with longer wound healing times. Prescription of several categories of drugs, including those for ischaemic heart disease (IHD), hypertension, respiratory disease or asthma; and the age of the patient were not significantly associated with wound healing times, although substantive significance could be inferred in the case of prescription for IHD and asthma. Despite the small sample size, this study identified a clear association between healing and length of wound. Neither the comorbidities nor prescriptions explored showed any significant association although some seem to be more prevalent in this patient group. The study also highlighted other issues that require further exploration including the social and economic impact of these wounds. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.
Edwards, Ruth; Harding, Keith G
2004-04-01
Wound healing is a complex process with many potential factors that can delay healing. There is increasing interest in the effects of bacteria on the processes of wound healing. All chronic wounds are colonized by bacteria, with low levels of bacteria being beneficial to the wound healing process. Wound infection is detrimental to wound healing, but the diagnosis and management of wound infection is controversial, and varies between clinicians. There is increasing recognition of the concept of critical colonization or local infection, when wound healing may be delayed in the absence of the typical clinical features of infection. The progression from wound colonization to infection depends not only on the bacterial count or the species present, but also on the host immune response, the number of different species present, the virulence of the organisms and synergistic interactions between the different species. There is increasing evidence that bacteria within chronic wounds live within biofilm communities, in which the bacteria are protected from host defences and develop resistance to antibiotic treatment. An appreciation of the factors affecting the progression from colonization to infection can help clinicians with the interpretation of clinical findings and microbiological investigations in patients with chronic wounds. An understanding of the physiology and interactions within multi-species biofilms may aid the development of more effective methods of treating infected and poorly healing wounds. The emergence of consensus guidelines has helped to optimize clinical management.
Tautenhahn, Joerg; Lobmann, Ralf; Koenig, Brigitte; Halloul, Zuhir; Lippert, Hans; Buerger, Thomas
2008-01-01
An ulcer categorized as Fontaine's stage IV represents a chronic wound, risk factor of arteriosclerosis, and co-morbidities which disturb wound healing. Our objective was to analyze wound healing and to assess potential factors affecting the healing process. 199 patients were included in this 5-year study. The significance levels were determined by chi-squared and log-rank tests. The calculation of patency rate followed the Kaplan-Meier method. Mean age and co-morbidities did not differ from those in current epidemiological studies. Of the patients with ulcer latency of more than 13 weeks (up to one year), 40% required vascular surgery. Vascular surgery was not possible for 53 patients and they were treated conservatively. The amputation rate in the conservatively treated group was 37%, whereas in the revascularizated group it was only 16%. Ulcers in patients with revascularization healed in 92% of cases after 24 weeks. In contrast, we found a healing rate of only 40% in the conservatively treated group (p<0.001). Revascularization appeared more often in diabetic patients (n=110; p<0.01) and the wound size and number of infections were elevated (p=0.03). Among those treated conservatively, wound healing was decelerated (p=0.01/0.02; chi(2) test). The success of revascularization, presence of diabetes mellitus, and wound treatment proved to be prognostic factors for wound healing in arterial ulcers.
Micera, Alessandra; Lambiase, Alessandro; Puxeddu, Ilaria; Aloe, Luigi; Stampachiacchiere, Barbara; Levi-Schaffer, Francesca; Bonini, Sergio; Bonini, Stefano
2006-10-01
In response to corneal injury, cytokines and growth factors play a crucial role by influencing epithelial-stromal interaction during the healing and reparative processes which may resolve in tissue remodeling and fibrosis. While transforming growth factor-beta1 (TGF-beta1) is considered the main profibrogenic modulator of these process, recently the nerve growth factor (NGF) appears as a pleiotropic modulator of wound-healing and inflammatory responses. Interestingly in the cornea, where NGF, trkA(NGFR) and p75(NTR) are expressed by epithelial cells and keratocytes, the NGF eye-drop induces the healing of neurotrophic or autoimmune corneal ulcers. During corneal healing, quiescent keratocytes are replaced by active fibroblast-like keratocytes/myofibroblasts. While the NGF effect on epithelial cells has been investigated, no data are reported for NGF effects on fibroblastic-keratocytes, during corneal healing. NGF, trkA(NGFR) and p75(NTR) were found expressed by fibroblastic-keratocytes. NGF was able to induce fibroblastic-keratocyte differentiation into myofibroblasts, migration, Metalloproteinase-9 expression/activity and contraction of a 3D collagen gel, without affecting their proliferation and collagen production. These data also show a two-directional control of fibroblastic-keratocytes by NGF and TGF-beta1. To sum up, the findings of this study indicate that NGF can modulate some functional activities of fibroblastic-keratocytes, thus substantiating the healing effects of NGF on corneal wound-healing.
Look Up for Healing: Embodiment of the Heal Concept in Looking Upward.
Leitan, N D; Williams, B; Murray, G
2015-01-01
Conceptual processing may not be restricted to the mind. The heal concept has been metaphorically associated with an "up" bodily posture. Perceptual Symbol Systems (PSS) theory suggests that this association is underpinned by bodily states which occur during learning and become instantiated as the concept. Thus the aim of this study was to examine whether processing related to the heal concept is promoted by priming the bodily state of looking upwards. We used a mixed 2x2 priming paradigm in which 58 participants were asked to evaluate words as either related to the heal concept or not after being primed to trigger the concept of looking up versus down (Direction--within subjects). A possible dose-response effect of priming was investigated via allocating participants to two 'strengths' of prime, observing an image of someone whose gaze was upward/downward (low strength) and observing an image of someone whose gaze was upward/downward while physically tilting their head upwards or downwards in accord with the image (high strength) (Strength--between subjects). Participants responded to words related to heal faster than words unrelated to heal across both "Strength" conditions. There was no evidence that priming was stronger in the high strength condition. The present study found that, consistent with a PSS view of cognition, the heal concept is embodied in looking upward, which has important implications for cognition, general health, health psychology, health promotion and therapy.
Tamaki, Naofumi; Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O
2016-01-01
The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses.
Laser biostimulation of wound healing: bioimpedance measurements support histology.
Solmaz, Hakan; Dervisoglu, Sergulen; Gulsoy, Murat; Ulgen, Yekta
2016-11-01
Laser biostimulation in medicine has become widespread supporting the idea of therapeutic effects of photobiomodulation in biological tissues. The aim of this study was to investigate the biostimulation effect of laser irradiation on healing of cutaneous skin wounds, in vivo, by means of bioimpedance measurements and histological examinations. Cutaneous skin wounds on rats were subjected to 635 nm diode laser irradiations at two energy densities of 1 and 3 J/cm 2 separately. Changes in the electrical properties of the wound sites were examined with multi-frequency electrical impedance measurements performed on the 3rd, 7th, 10th, and 14th days following the wounding. Tissue samples were both morphologically and histologically examined to determine the relationship between electrical properties and structure of tissues during healing. Laser irradiations of both energy densities stimulated the wound healing process. In particular, laser irradiation of lower energy density had more evidence especially for the first days of healing process. On the 7th day of healing, 3 J/cm 2 laser-irradiated tissues had significantly smaller wound areas compared to non-irradiated wounds (p < 0.05). The electrical impedance results supported the idea of laser biostimulation on healing of cutaneous skin wounds. Thus, bioimpedance measurements may be considered as a non-invasive supplementary method for following the healing process of laser-irradiated tissues.
Vitamin D and the immunomodulation of rotator cuff injury
Dougherty, Kaitlin A; Dilisio, Matthew F; Agrawal, Devendra K
2016-01-01
Tendon-to-bone healing after rotator cuff repair surgery has a failure rate of 20%–94%. There has been a recent interest to determine the factors that act as determinants between successful and unsuccessful rotator cuff repair. Vitamin D level in patients is one of the factors that have been linked to bone and muscle proliferation and healing, and it may have an effect on tendon-to-bone healing. The purpose of this article is to critically review relevant published research that relates to the effect of vitamin D on rotator cuff tears and subsequent healing. A review of the literature was conducted to identify all studies that investigate the relationship between vitamin D and tendon healing, in addition to its mechanism of action. The data were then analyzed in order to summarize what is currently known about vitamin D, rotator cuff pathology, and tendon-to-bone healing. The activated metabolite of vitamin D, 1α,25-dihydroxyvitamin D3, affects osteoblast proliferation and differentiation. Likewise, vitamin D plays a significant role in the tendon-to-bone healing process by increasing the bone mineral density and strengthening the skeletal muscles. The 1α,25-dihydroxyvitamin D3 binds to vitamin D receptors on myocytes to stimulate growth and proliferation. The form of vitamin D produced by the liver, calcifediol, is a key initiator of the myocyte healing process by moving phosphate into myocytes, which improves function and metabolism. Investigation into the effect of vitamin D on tendons has been sparse, but limited studies have been promising. Matrix metalloproteinases play an active role in remodeling the extracellular matrix (ECM) of tendons, particularly deleterious remodeling of the collagen fibers. Also, the levels of transforming growth factor-β3 positively influence the success of the surgery for rotator cuff repair. In the tendon-to-bone healing process, vitamin D has been shown to successfully influence bone and muscle healing, but more research is needed to delve into the mechanisms of vitamin D as a factor in skeletal tendon health and healing. PMID:27366101