Birnie, Kate; Hay, Alastair D; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O'Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C; Sterne, Jonathan A C
2017-01-01
To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the "index test"), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service laboratories should consider adopting procedures used in the research laboratory for paediatric urine samples. Primary care clinicians should try to obtain clean catch samples, even in very young children.
Birnie, Kate; Hay, Alastair D.; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O’Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C.; Sterne, Jonathan A. C.
2017-01-01
Objectives To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. Population and methods We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the “index test”), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. Results 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. Conclusions The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service laboratories should consider adopting procedures used in the research laboratory for paediatric urine samples. Primary care clinicians should try to obtain clean catch samples, even in very young children. PMID:28199403
The National Health and Environmental Effects Research Laboratory (NHEERL), as part of the Environmental Protection Agency's (EPA's) Office of Research and Development (ORD), is responsible for conducting research to improve the risk assessment of chemicals for potential effects ...
NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY - ACCOMPLISHMENTS FOR FY 2001
This Annual Report showcases some of the scientific activities of the National Health and Environmental Effects Research Laboratory (NHEERL) in various health and environmental effects research areas. Where appropriate, the contributions of other collaborating research organizat...
Dr. Ronald Hines serves as Associate Director for Health for the National Health and Environmental Effects Research Laboratory (NHEERL) within the U.S. Environmental Protection Agency's Office of Research and Development (ORD).
This Internet site provides information about the Office of Research and Development's National Health and Environmental Effects Laboratory's Associate Director for Health (ADH) Internet site. The ADH is responsible for providing leadership for the health effects research program...
About the Director of EPA's National Health and Environmental Effects Research Laboratory (NHEERL)
Dr. Wayne Cascio serves as Acting Director for the National Health and Environmental Effects Research Laboratory (NHEERL) within the U.S. Environmental Protection Agency's Office of Research and Development (ORD).
Russ, Alissa L; Weiner, Michael; Russell, Scott A; Baker, Darrell A; Fahner, W Jeffrey; Saleem, Jason J
2012-12-01
Although the potential benefits of more usable health information technologies (HIT) are substantial-reduced HIT support costs, increased work efficiency, and improved patient safety--human factors methods to improve usability are rarely employed. The US Department of Veterans Affairs (VA) has emerged as an early leader in establishing usability laboratories to inform the design of HIT, including its electronic health record. Experience with a usability laboratory at a VA Medical Center provides insights on how to design, implement, and leverage usability laboratories in the health care setting. The VA Health Services Research and Development Service Human-Computer Interaction & Simulation Laboratory emerged as one of the first VA usability laboratories and was intended to provide research-based findings about HIT designs. This laboratory supports rapid prototyping, formal usability testing, and analysis tools to assess existing technologies, alternative designs, and potential future technologies. RESULTS OF IMPLEMENTATION: Although the laboratory has maintained a research focus, it has become increasingly integrated with VA operations, both within the medical center and on a national VA level. With this resource, data-driven recommendations have been provided for the design of HIT applications before and after implementation. The demand for usability testing of HIT is increasing, and information on how to develop usability laboratories for the health care setting is often needed. This article may assist other health care organizations that want to invest in usability resources to improve HIT. The establishment and utilization of usability laboratories in the health care setting may improve HIT designs and promote safe, high-quality care for patients.
This is an abstract of a proposed presentation and does not necessarily reflect EPA policy.
The Health Divisions of the US EPA National Health and Environmental Effects Research Laboratory have a guideline for conducting technical systems audits. As part of the guideline ...
The value-added laboratory: an opportunity to merge research and service objectives.
McDonald, J M
1997-01-01
The changing health-care environment is creating a new opportunities for laboratory medicine professionals that correspond with the new health services research agendas. Proving cost-effectiveness and conducting outcomes assessment are becoming vital functions of laboratories in this era of managed care. Laboratorians must take advantage of the resulting opportunities to show how they add value and medical relevance to the health-care delivery system.
GENETIC INDICATORS IN ENVIRONMENTAL PROTECTION
University of California, Davis, Bodega Bay Marine Laboratory; US EPA National Exposure Research Laboratory, Molecular Ecology Research Division, Cincinnati, OH; US EPA National Health and Environmental Effects Research Laboratory (NHEERL), Gulf Ecology Division, Gulf Breeze, FL;...
LONG-STANDING PE PROGRAM AT HERL->NHEERL-NC: BENEFITS & PITFALLS
The instrument performance evaluation (PE) program now in place at the health divisions of the National Health and Environmental Effects Research Laboratory originated with the predecessor Health Effects Research Laboratory a few years prior to the initial 1979 QA mandate by Admi...
Delany, Judy R; Pentella, Michael A; Rodriguez, Joyce A; Shah, Kajari V; Baxley, Karen P; Holmes, David E
2011-04-15
These guidelines for biosafety laboratory competency outline the essential skills, knowledge, and abilities required for working with biologic agents at the three highest biosafety levels (BSLs) (levels 2, 3, and 4). The competencies are tiered to a worker's experience at three levels: entry level, midlevel (experienced), and senior level (supervisory or managerial positions). These guidelines were developed on behalf of CDC and the Association of Public Health Laboratories (APHL) by an expert panel comprising 27 experts representing state and federal public health laboratories, private sector clinical and research laboratories, and academic centers. They were then reviewed by approximately 300 practitioners representing the relevant fields. The guidelines are intended for laboratorians working with hazardous biologic agents, obtained from either samples or specimens that are maintained and manipulated in clinical, environmental, public health, academic, and research laboratories.
The Western Ecology Division (WED) is one of four ecological effects divisions of the National Health and Environmental Effects Research Laboratory. The four divisions are distributed bio-geographically. WED's mission is 1) to provide EPA with national scientific leadership for t...
... PI CONNECT Research Network USIDNET Patient Registry IDF Survey Research IDF Surveys National Health Insurance Surveys Clinical Trials ... and Fellows Research USIDNET IDF Research Fund IDF Survey Research IDF Surveys Contact Us Search form Search Laboratory ...
NATIONAL RISK MANAGEMENT RESEARCH LABORATORY - PROVIDING SOLUTIONS FOR A BETTER TOMORROW
As part of the U.S. Environmental Protection Agency's Office of Research and Development, the National Risk Management Research Laboratory (NRMRL) conducts research into ways to prevent and reduce pollution risks that threaten human health and the environment. The laboratory inve...
Code of Federal Regulations, 2011 CFR
2011-10-01
... STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH... research, biomedical or behavioral research training, or activities related to that research or training... research laboratories, research and development centers, national user facilities, industrial laboratories...
Nájera Morrondo, Rafael
2006-01-01
The "Instituto de Salud Carlos III" is the Central Public Health Laboratory in Spain with an important component of scientific research in health related areas, such as cancer, cardiovascular diseases, infectious diseases and environmental health. The article describes the development of the Public Health Institutes. arising from the introduction and development of scientific and laboratory based medicine and the introduction of vaccination and sanitation with the control of water and food. At about the same time, the discoveries in microbiology and immunology were produced, being the research activities incardinated with the practical advances in the control of products. To cope with the practical needs, Institutions were created with the responsibility of providing smallpox vaccine but incorporating very soon production of sera and other vaccines and water and sanitation control and foods control. At the same time. colonization of countries specially in Africa, South East Asia and explorations in Central America confront the Europeans with new diseases and the need of laboratories where to study them. These circumstances gave rise to the birth of the Central Public Health Laboratories and the National institutes of Health at the beginning of the XX century in many countries. In Spain, the Spanish Civil War was a breaking point in the development of such an institution that finally was reinvented with the creation of the Instituto de Salud Carlos III, in 1986, incorporating research and epidemiological surveillance and control of diseases and also the responsibilities of the Food and Drug Control, lately separated from it.
NRMRL SCIENCE PUBLICATIONS (NATIONAL RISK MANAGEMENT RESEARCH LABORATORY, EPA, CINCINNATI, OH)
The National Risk Management Research Laboratory (NRMRL)is the U.S.EPA's center for investigating technological and management approaches for preventing and reducing risks from pollution that threaten human health and the environment. The focus of the Laboratory's research progra...
The Naval Health Research Center Respiratory Disease Laboratory.
Ryan, M; Gray, G; Hawksworth, A; Malasig, M; Hudspeth, M; Poddar, S
2000-07-01
Concern about emerging and reemerging respiratory pathogens prompted the development of a respiratory disease reference laboratory at the Naval Health Research Center. Professionals working in this laboratory have instituted population-based surveillance for pathogens that affect military trainees and responded to threats of increased respiratory disease among high-risk military groups. Capabilities of this laboratory that are unique within the Department of Defense include adenovirus testing by viral shell culture and microneutralization serotyping, influenza culture and hemagglutination inhibition serotyping, and other special testing for Streptococcus pneumoniae, Streptococcus pyogenes, Mycoplasma pneumonia, and Chlamydia pneumoniae. Projected capabilities of this laboratory include more advanced testing for these pathogens and testing for other emerging pathogens, including Bordetella pertussis, Legionella pneumoniae, and Haemophilus influenzae type B. Such capabilities make the laboratory a valuable resource for military public health.
[Prevention and protection of workers' reproductive health].
Sivochalova, O V; Fesenko, M A; Golovaneva, G V; Morozova, T V; Fedorova, E V; Irmiakova, A R; Gromova, E Iu; Stepanian, I V; Vuĭtsik, P A
2013-01-01
The article mentiones issues of preserving and strengthening the reproductive health of women workers, dealed by researchers of the laboratory, established in 1974. It describes the developed concept of the reproductive health problems and scientific research areas, developed documents, including legislative fields, formulates main prospects of the laboratory to meet the requirements of the present moment. Noted the role of the Problem Commission "Scientific basis for the reproductive health of workers", in the work of the Scientific Council on medical and environmental issues of workers' health.
EPIDEMIOLOGY AND EXPOSURE ASSESSMENT
Research collaborations between the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL) centered on the development and application of exposure analysis tools in environmental epidemiology include the El Paso...
Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
This report summarizes progress on OHER human health, biological, and general life sciences research programs conducted at PNL in FY 1990. The research develops the knowledge and scientific principles necessary to identify understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased of understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns epidemiological and statistical studiesmore » for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
1988-02-01
This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks.more » The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology.« less
75 FR 71737 - Energy Employees Occupational Illness Compensation Program Act of 2000, as Amended
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... 1984-1997. Laboratory for Energy-Related Health Davis 1958-1989; 1991-Present.[dagger] Research.... Environmental Health, University of California (San Francisco). Lawrence Berkeley National Laboratory... Physics Laboratory, James Princeton 1951-Present. Forrestal Campus of Princeton University. New Mexico DOE...
Laboratory for Energy-Related Health Research annual report, fiscal year 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abell, D.L.
1989-02-01
This report to the US Department of Energy summarizes research activities for the period from 1 October 1985--30 September 1986 at the Laboratory for Energy-related Health Research (LEHR) which is operated by the University of California, Davis. The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactivemore » substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear medical diagnostic and therapeutic methods are also involved. This is an interdisciplinary program spanning physics, chemistry, environmental engineering, biophysics and biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less
Status of marine biomedical research.
Bessey, O
1976-01-01
A meeting on Marine Biomedical Research, sponsored by the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health and the Smithsonian Institution Museum of Natural History, was attended by approximately 125 scientists, directors and representatives from many of the country's marine biological laboratories, and government agencies whose interests and responsibilites are in the marine biology and health areas. The purpose of the meeting was to explore the undeveloped research opportunities in the area of marine biology for the advancement of our understanding of human health problems and to provide information on the current status of marine biology laboratories. The meeting was devoted to presentations and discussions in four general areas: (1)Marine Species as Models for Human Disease; (2)Environmental Carcinogenesis and Mutagenesis; (3)Human Health and the Marine Environment--infectious agents and naturally occurring and foreign toxins; and (4)Drugs from the seas. Representatives from twelve of the country's approximatley 40 marine laboratories discussed their organization, developmental history, scientific programs, facilities, and present status of their support. The presentations served as a background and stimulated very lively analytical and constructive discussions of the undeveloped research and education potential residing in the marine environment and biological laboratories for a better understanding of many human health problems; some scientific areas that should be developed to realize this potential; and the needs and problems of marine laboratories that require attention and support if they are to survive and realize their possibilities. PMID:944630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, C.C.; Park, J.F.
1994-03-01
This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciencesmore » Research section reports research conducted for the OHER human genome program.« less
LOINC, a universal standard for identifying laboratory observations: a 5-year update.
McDonald, Clement J; Huff, Stanley M; Suico, Jeffrey G; Hill, Gilbert; Leavelle, Dennis; Aller, Raymond; Forrey, Arden; Mercer, Kathy; DeMoor, Georges; Hook, John; Williams, Warren; Case, James; Maloney, Pat
2003-04-01
The Logical Observation Identifier Names and Codes (LOINC) database provides a universal code system for reporting laboratory and other clinical observations. Its purpose is to identify observations in electronic messages such as Health Level Seven (HL7) observation messages, so that when hospitals, health maintenance organizations, pharmaceutical manufacturers, researchers, and public health departments receive such messages from multiple sources, they can automatically file the results in the right slots of their medical records, research, and/or public health systems. For each observation, the database includes a code (of which 25 000 are laboratory test observations), a long formal name, a "short" 30-character name, and synonyms. The database comes with a mapping program called Regenstrief LOINC Mapping Assistant (RELMA(TM)) to assist the mapping of local test codes to LOINC codes and to facilitate browsing of the LOINC results. Both LOINC and RELMA are available at no cost from http://www.regenstrief.org/loinc/. The LOINC medical database carries records for >30 000 different observations. LOINC codes are being used by large reference laboratories and federal agencies, e.g., the CDC and the Department of Veterans Affairs, and are part of the Health Insurance Portability and Accountability Act (HIPAA) attachment proposal. Internationally, they have been adopted in Switzerland, Hong Kong, Australia, and Canada, and by the German national standards organization, the Deutsches Instituts für Normung. Laboratories should include LOINC codes in their outbound HL7 messages so that clinical and research clients can easily integrate these results into their clinical and research repositories. Laboratories should also encourage instrument vendors to deliver LOINC codes in their instrument outputs and demand LOINC codes in HL7 messages they get from reference laboratories to avoid the need to lump so many referral tests under the "send out lab" code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, L.R.
1996-12-31
Inner-city high school students are disproportionately affected by health problems that stem from environmental conditions. Also, they are not adequately prepared in Science -- especially in the concepts, methods, and procedures of environmental-health science research -- and are generally unaware of the career opportunities in this field. A Superfund program was developed to increase Science literacy and expand career knowledge in environmental health among a cohort of minority high school students from New York City. The year-round program features lectures, laboratory tours, seminars, investigations, and research taught by faculty and Superfund investigators at Mount Sinai`s Environmental Health Sciences Center. Themore » students made remarkable progress in terms of gaining environmental health knowledge, laboratory and scientific research skills, and awareness of environmental health careers.« less
Birx, Deborah; de Souza, Mark; Nkengasong, John N
2009-06-01
Strengthening national health laboratory systems in resource-poor countries is critical to meeting the United Nations Millennium Development Goals. Despite strong commitment from the international community to fight major infectious diseases, weak laboratory infrastructure remains a huge rate-limiting step. Some major challenges facing laboratory systems in resource-poor settings include dilapidated infrastructure; lack of human capacity, laboratory policies, and strategic plans; and limited synergies between clinical and research laboratories. Together, these factors compromise the quality of test results and impact patient management. With increased funding, the target of laboratory strengthening efforts in resource-poor countries should be the integrating of laboratory services across major diseases to leverage resources with respect to physical infrastructure; types of assays; supply chain management of reagents and equipment; and maintenance of equipment.
Zhang, Lin; Wu, Zhi-Jun; Zhang, Shuang; Qin, Jian; Zhang, Xing
2011-08-01
To understand the allocation of instruments and equipment in major research institutions for occupational health and medicine in China. Questionnaire was designed for collecting the information of the equipment used in occupational health and medicine research. Questionnaires were distributed to 78 research agencies to investigate the situation of allocation of instrument and equipment. There was a great diversity of allocation in investigated agencies. The features in three kinds of agencies are different. The occupational health agencies in universities fit out the biological equipment in laboratories. The occupational health laboratories in CDCs were equipped with the chemical analytical devices. The institutes of occupational medicine were equipped with the clinical inspection instruments. The protocol of sharing resource and predominance complementation should be established among research institutions for occupational health and medicine in the same region or neighboring provinces.
Strategic Plan for the ORD National Exposure Research Laboratory (NERL)
The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...
History | Frederick National Laboratory for Cancer Research
The Frederick National Laboratory for Cancer Research was established as the Frederick Cancer Research and Development Center in 1972 when about 70 acres and 67 buildings of the U.S. Army were transferred to the U.S. Department of Health and Huma
2016-05-01
ARL-TR-7692•MAY 2016 US Army Research Laboratory ARL Support and Analysis to the Army Public Health Command Kabul Air Quality Data Collection (Spring...return it to the originator. ARL-TR-7692•MAY 2016 US Army Research Laboratory ARL Support and Analysis to the Army Public Health Command Kabul Air Quality ...and Analysis to the Army Public Health Command Kabul Air Quality Data Collection (Spring 2014) Alan Wetmore and Thomas DeFelice ARL-TR-7692 Approved
Building Cross-Country Networks for Laboratory Capacity and Improvement.
Schneidman, Miriam; Matu, Martin; Nkengasong, John; Githui, Willie; Kalyesubula-Kibuuka, Simeon; Silva, Kelly Araujo
2018-03-01
Laboratory networks are vital to well-functioning public health systems and disease control efforts. Cross-country laboratory networks play a critical role in supporting epidemiologic surveillance, accelerating disease outbreak response, and tracking drug resistance. The East Africa Public Health Laboratory Network was established to bolster diagnostic and disease surveillance capacity. The network supports the introduction of regional quality standards; facilitates the rollout and evaluation of new diagnostic tools; and serves as a platform for training, research, and knowledge sharing. Participating facilities benefitted from state-of-the art investments, capacity building, and mentorship; conducted multicountry research studies; and contributed to disease outbreak response. Copyright © 2017 Elsevier Inc. All rights reserved.
A LOTUS NOTES APPLICATION FOR PREPARING, REVIEWING, AND STORING NHEERL RESEARCH PROTOCOLS
Upon becoming QA Manager of the Health Effects Research Laboratory (HERL) in 1990, Ron became aware of the need to simplify and streamline the research planning process that Laboratory Principal Investigators (Pls) faced. Appropriately, animal studies require close scrutiny, both...
75 FR 3737 - Agency Forms Undergoing Paperwork Reduction Act Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-22
... days of this notice. Proposed Project Questionnaire Design Research Laboratory (QDRL) 2010-2012, (OMB... of health services in the United States. The Questionnaire Design Research Laboratory (QDRL) conducts... and more basic research on response errors in surveys. The most common questionnaire evaluation method...
USDA-ARS?s Scientific Manuscript database
Ticks and biting flies cause tremendous economic damage to the U.S. livestock industry while also being a health concern to humans. Research on their biology and control is done at the Knipling-Bushland U.S. Livestock Insects Research Laboratory, Tick and Biting Fly Research Unit with scientists loc...
CONSIDERATION OF CHILDREN'S DISTINCTIVE SUSCEPTIBILITY IN ENVIRONMENTAL HEALTH STUDIES
Consideration of children's distinctive susceptibility in environmental health studies.
Pauline Mendola (US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711)
Children are a particularly susceptible subpopulation with ...
Zhang, Helen L; Omondi, Michael W; Musyoka, Augustine M; Afwamba, Isaac A; Swai, Remigi P; Karia, Francis P; Muiruri, Charles; Reddy, Elizabeth A; Crump, John A; Rubach, Matthew P
2016-08-01
Using a clinical research laboratory as a case study, we sought to characterize barriers to maintaining Good Clinical Laboratory Practice (GCLP) services in a developing world setting. Using a US Centers for Disease Control and Prevention framework for program evaluation in public health, we performed an evaluation of the Kilimanjaro Christian Medical Centre-Duke University Health Collaboration clinical research laboratory sections of the Kilimanjaro Clinical Research Institute in Moshi, Tanzania. Laboratory records from November 2012 through October 2014 were reviewed for this analysis. During the 2-year period of study, seven instrument malfunctions suspended testing required for open clinical trials. A median (range) of 9 (1-55) days elapsed between instrument malfunction and biomedical engineer service. Sixteen (76.1%) of 21 suppliers of reagents, controls, and consumables were based outside Tanzania. Test throughput among laboratory sections used a median (range) of 0.6% (0.2%-2.7%) of instrument capacity. Five (55.6%) of nine laboratory technologists left their posts over 2 years. These findings demonstrate that GCLP laboratory service provision in this setting is hampered by delays in biomedical engineer support, delays and extra costs in commodity procurement, low testing throughput, and high personnel turnover. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zoonoses of occupational health importance in contemporary laboratory animal research.
Hankenson, F Claire; Johnston, Nancy A; Weigler, Benjamin J; Di Giacomo, Ronald F
2003-12-01
In contemporary laboratory animal facilities, workplace exposure to zoonotic pathogens, agents transmitted to humans from vertebrate animals or their tissues, is an occupational hazard. The primary (e.g., macaques, pigs, dogs, rabbits, mice, and rats) and secondary species (e.g., sheep, goats, cats, ferrets, and pigeons) of animals commonly used in biomedical research, as classified by the American College of Laboratory Animal Medicine, are established or potential hosts for a large number of zoonotic agents. Diseases included in this review are principally those wherein a risk to biomedical facility personnel has been documented by published reports of human cases in laboratory animal research settings, or under reasonably similar circumstances. Diseases are listed alphabetically, and each section includes information about clinical disease, transmission, occurrence, and prevention in animal reservoir species and humans. Our goal is to provide a resource for veterinarians, health-care professionals, technical staff, and administrators that will assist in the design and on-going evaluation of institutional occupational health and safety programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiologicalmore » studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.« less
What We Do | Frederick National Laboratory for Cancer Research
The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-08
...- Health Research, University of Present [dagger]. California (Davis). Laboratory of Biomedical and Los... Radiobiology and San Francisco..... 1951-1999. Environmental Health, University of California (San Francisco........... New Brunswick..... 1948-1977. Princeton Plasma Physics Princeton......... 1951-Present. Laboratory...
ERIC Educational Resources Information Center
Laboratory Design Notes, 1966
1966-01-01
A collection of laboratory design notes to set forth minimum criteria required in the design of basic medical research laboratory buildings. Recommendations contained are primarily concerned with features of design which affect quality of performance and future flexibility of facility systems. Subjects of economy and safety are discussed where…
Laboratory for Energy-Related Health Research: Annual report, fiscal year 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abell, D.L.
1989-04-01
The laboratory's research objective is to provide new knowledge for an improved understanding of the potential bioenvironmental and occupational health problems associated with energy utilization. Our purpose is to contribute to the safe and healthful development of energy resources for the benefit of mankind. This research encompasses several areas of basic investigation that relate to toxicological and biomedical problems associated with potentially toxic chemical and radioactive substances and ionizing radiation, with particular emphasis on carcinogenicity. Studies of systemic injury and nuclear-medical diagnostic and therapeutic methods are also involved. This program is interdisciplinary; it involves physics, chemistry, environmental engineering, biophysics andmore » biochemistry, cellular and molecular biology, physiology, immunology, toxicology, both human and veterinary medicine, nuclear medicine, pathology, hematology, radiation biology, reproductive biology, oncology, biomathematics, and computer science. The principal themes of the research at LEHR center around the biology, radiobiology, and health status of the skeleton and its blood-forming constituents; the toxicology and properties of airborne materials; the beagle as an experimental animal model; carcinogenesis; and the scaling of the results from laboratory animal studies to man for appropriate assessment of risk.« less
[The current clinical laboratory in the public health system and medical science: a lecture].
Men'shikov, V V
2011-11-01
The analytic and diagnostic possibilities of current clinical laboratories are discussed. The roles of laboratory information in the formation of new research directions are characterized. The proposals on the development of economic basics of the development of laboratory medicine.
The Translation of Health Research in Kinesiology
ERIC Educational Resources Information Center
Ainsworth, Barbara E.
2009-01-01
The translation of health research is a process of transforming scientific discoveries arising from laboratory, clinical, or population studies into clinical or population-based applications to improve health by reducing disease incidence, morbidity, and mortality. Initiated by the National Institutes for Health Roadmap Initiative and the U.S.…
ReactorHealth Physics operations at the NIST center for neutron research.
Johnston, Thomas P
2015-02-01
Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
... diseases who will be conducting applied research. This unit could easily be made available to laboratory... Institutes of Health Clinical Research Center, Bethesda, MD; (NIH Transportation EIS); Record of Decision... component of NIH, is the occupant of an Integrated Research Facility (IRF) at Fort Detrick, Maryland, as...
Unbridle biomedical research from the laboratory cage
Lahvis, Garet P
2017-01-01
Many biomedical research studies use captive animals to model human health and disease. However, a surprising number of studies show that the biological systems of animals living in standard laboratory housing are abnormal. To make animal studies more relevant to human health, research animals should live in the wild or be able to roam free in captive environments that offer a natural range of both positive and negative experiences. Recent technological advances now allow us to study freely roaming animals and we should make use of them. PMID:28661398
A TRIBUTE TO DR. WILLIAM PENN WATKINSON
Dr. William Penn Watkinson (known to colleagues as "Penn") of EPA¿s health research lab (National Health and Environmental Research Laboratory) of Research Triangle Park, North Carolina, died Wednesday, December 13 after a battle with lung cancer. He was a member of the Pulmonar...
IMPLEMENTATION OF QUALITY ASSURANCE OF MULTILABORATORY STUDIES WITHIN THE US EPA
Implementation of Quality Assurance on Multilaboratory Studies Within the U. S. EPA
Thomas J. Hughes1, Brenda Culpepper1, Nancy Adams2, and John Martinson3, 1National Health and Environmental Effects Research Laboratory (NHEERL), 2National Risk Management Research Laboratory...
RESPIRATORY DOSE TO SUSCEPTIBLE POPULATIONS ASSESSED BY EXPOSURE AND DOSIMETRY STUDIES
Respiratory Dose to Susceptible Populations Assessed by Exposure and Dosimetry Studies
Chong Kim1 and Ronald Williams2, 1USEPA National Health and Environmental Effects Research Laboratory and 2USEPA National Exposure Research Laboratory, RTP, NC.
Rationale: Parti...
Two collaborative studies have been conducted by the USEPA National Exposure Research Laboratory (NERL) and the National Health Effects and Ecological Research Laboratory (NHEERL) to determine personal exposures and physiological responses to particulate matter (PM) and gaseous...
FY2000 HIGHLIGHTS OF QA ACTIVITIES WITHIN ORD'S LARGEST MEGALAB--NHEERL
The EPA Office of Research and Development's National Health and Environmental Effects Research Laboratory (NHEERL) has more than 700 staff members in six states. NHEERL conducts research on the effects of contaminants and environmental stressors on human health and ecosystem i...
Human Toxocariasis: Prevalence and Factors Associated with Biosafety in Research Laboratories.
Mattos, Gabriela Torres; Santos, Paula Costa Dos; Telmo, Paula de Lima; Berne, Maria Elisabeth Aires; Scaini, Carlos James
2016-12-07
Human toxocariasis is a neglected parasitic disease worldwide. Researchers studying this disease use infectious strains of Toxocara for experiments. Health workers are at risk in the course of their daily routine and must adhere to biosafety standards while carrying out the activities. Researchers on biosafety concerning working with these parasites are insufficient. The aim of this study was to determine the rate of seroprevalence of Toxocara species among health-care research laboratory workers (professors, technicians, and students), and to investigate the risk factors of Toxocara infection associated with laboratory practices. This cross-sectional study involved 74 researchers at two federal universities in southern Brazil from February 2014 to February 2015; 29 researchers manipulated infective strains of Toxocara canis (test group) and 45 did not (control group). Serum samples were examined using enzyme-linked immunosorbent assay. Epidemiological data were obtained via a questionnaire containing information about laboratory routine, eating behavior, and contact with dogs. The seroprevalence of anti-T. canis IgG was 14.9% (11/74; 13.8% [4/29] in the test group and 15.6% [7/45] in the control group). Most individuals in the test group correctly understood the primary mode of infection; however, 13.8% did not use gloves while manipulating T. canis eggs. Knowledge of biosafety must be well understood by health-care professionals doing laboratory work with biological agents. To our knowledge, this is the first study to investigate the rate of seroprevalence of IgG against Toxocara spp. among professionals and students who handle infective forms of the nematode T. canis. © The American Society of Tropical Medicine and Hygiene.
Human Toxocariasis: Prevalence and Factors Associated with Biosafety in Research Laboratories
Mattos, Gabriela Torres; dos Santos, Paula Costa; Telmo, Paula de Lima; Berne, Maria Elisabeth Aires; Scaini, Carlos James
2016-01-01
Human toxocariasis is a neglected parasitic disease worldwide. Researchers studying this disease use infectious strains of Toxocara for experiments. Health workers are at risk in the course of their daily routine and must adhere to biosafety standards while carrying out the activities. Researchers on biosafety concerning working with these parasites are insufficient. The aim of this study was to determine the rate of seroprevalence of Toxocara species among health-care research laboratory workers (professors, technicians, and students), and to investigate the risk factors of Toxocara infection associated with laboratory practices. This cross-sectional study involved 74 researchers at two federal universities in southern Brazil from February 2014 to February 2015; 29 researchers manipulated infective strains of Toxocara canis (test group) and 45 did not (control group). Serum samples were examined using enzyme-linked immunosorbent assay. Epidemiological data were obtained via a questionnaire containing information about laboratory routine, eating behavior, and contact with dogs. The seroprevalence of anti-T. canis IgG was 14.9% (11/74; 13.8% [4/29] in the test group and 15.6% [7/45] in the control group). Most individuals in the test group correctly understood the primary mode of infection; however, 13.8% did not use gloves while manipulating T. canis eggs. Knowledge of biosafety must be well understood by health-care professionals doing laboratory work with biological agents. To our knowledge, this is the first study to investigate the rate of seroprevalence of IgG against Toxocara spp. among professionals and students who handle infective forms of the nematode T. canis. PMID:27698276
U.S. Air Force School of Aerospace Medicine Laboratory Sampling and Analysis Guide
2016-11-15
valuable information during the environmental health risk assessment. EPA Integrated Risk Information System (IRIS). IRIS is a human health assessment...information for more than 550 chemical substances containing information on human health effects that may result from exposure to various substances in the...Crystalyn E. Brown November 2016 Air Force Research Laboratory 711th Human Performance Wing School of Aerospace Medicine
The EPHD performs integrated epidemiological, clinical, animal and cellular biological research and statistical modeling to provide the scientific foundation in support of hazard identification, risk assessment, and standard setting.
Code of Federal Regulations, 2013 CFR
2013-10-01
... established under section 13(b) of the Animal Welfare Act of 1985 and the Health Research Extension Act of... Laboratory Animals. This Committee must be established if research as defined by the Animal Welfare Act Regulations and the Public Health Service Policy (research, teaching, testing, exhibition) is to be conducted...
Code of Federal Regulations, 2012 CFR
2012-10-01
... established under section 13(b) of the Animal Welfare Act of 1985 and the Health Research Extension Act of... Laboratory Animals. This Committee must be established if research as defined by the Animal Welfare Act Regulations and the Public Health Service Policy (research, teaching, testing, exhibition) is to be conducted...
Code of Federal Regulations, 2010 CFR
2010-10-01
... established under section 13(b) of the Animal Welfare Act of 1985 and the Health Research Extension Act of... Laboratory Animals. This Committee must be established if research as defined by the Animal Welfare Act Regulations and the Public Health Service Policy (research, teaching, testing, exhibition) is to be conducted...
Code of Federal Regulations, 2011 CFR
2011-10-01
... established under section 13(b) of the Animal Welfare Act of 1985 and the Health Research Extension Act of... Laboratory Animals. This Committee must be established if research as defined by the Animal Welfare Act Regulations and the Public Health Service Policy (research, teaching, testing, exhibition) is to be conducted...
Code of Federal Regulations, 2014 CFR
2014-10-01
... established under section 13(b) of the Animal Welfare Act of 1985 and the Health Research Extension Act of... Laboratory Animals. This Committee must be established if research as defined by the Animal Welfare Act Regulations and the Public Health Service Policy (research, teaching, testing, exhibition) is to be conducted...
Miller, Donald L; Klein, Lloyd W; Balter, Stephen; Norbash, Alexander; Haines, David; Fairobent, Lynne; Goldstein, James A
2010-09-01
The Multispecialty Occupational Health Group (MSOHG), formed in 2005, is an informal coalition of societies representing professionals who work in, or are concerned with, interventional fluoroscopy. The group's long-term goals are to improve occupational health and operator and staff safety in the interventional laboratory while maintaining quality patient care and optimal use of the laboratory. MSOHG has conducted a dialogue with equipment manufacturers and has developed a list of specific objectives for research and development. The group has also represented the member societies in educating regulators, in educating interventionalists, and in fostering and collaborating on research into occupational health issues affecting interventionalists. Not least of the group's accomplishments, as a result of their collaboration in MSOHG, the group's members have developed a mutual respect that can serve as a basis for joint efforts in the future among interventionalists of different medical specialties. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.
Scientists at the Oregon Health & Science University and the AIDS and Cancer Virus Program of the Frederick National Laboratory for Cancer Research have used a novel vaccine approach to achieve a “functional cure” and apparent eradication of infe
The Health Effects Research Laboratory, Research Triangle Park, conducts a coordinaged environmental health research program in toxicology, epidemiology, and clinical studies using human volunteer subjects. These studies address problems in air pollution, non-ionizing radiation, ...
Research microbiologist Dawn King works in EPA’s National Exposure Research Laboratory where she identifies and assesses the health risk of microbial pathogens in water. This is her researchers at work profile.
The Development of a Post-Baccalaureate Certificate Program in Molecular Diagnostics
Williams, Gail S.; Brown, Judith D.; Keagle, Martha B.
2000-01-01
A post-baccalaureate certificate program in diagnostic molecular sciences was created in 1995 by the Diagnostic Genetic Sciences Program in the School of Allied Health at the University of Connecticut. The required on-campus lecture and laboratory courses include basic laboratory techniques, health care issues, cell biology, immunology, human genetics, research, management, and molecular diagnostic techniques and laboratory in molecular diagnostics. These courses precede a 6-month, full-time practicum at an affiliated full-service molecular laboratory. The practicum includes amplification and blotting methods, a research project, and a choice of specialized electives including DNA sequencing, mutagenesis, in situ hybridization methods, or molecular diagnostic applications in microbiology. Graduates of the program are immediately eligible to sit for the National Credentialing Agency examination in molecular biology to obtain the credential Clinical Laboratory Specialist in Molecular Biology (CLSp(MB). This description of the University of Connecticut program may assist other laboratory science programs in creating similar curricula. PMID:11232107
Life sciences and environmental sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment,more » applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.« less
Biomonitoring at the UK Health and Safety Laboratory.
Cocker, J; Jones, K; Morton, J; Mason, H J
2007-05-01
The UK Health and Safety Laboratory (HSL) provides research and analytical support to the Health and Safety Executive, other Government Departments and employers. In the area of biomonitoring HSL conducts research studies and provides an analytical service for regular surveillance of worker exposure to hazardous substances. This paper gives brief examples of how data from such studies can be used to develop biological monitoring guidance values for isocyanates, polycyclic aromatic hydrocarbons and hexavalent chromium. In addition, a study of occupational exposure to copper chrome arsenic wood preservatives is briefly described to show how biological monitoring can be used for post-approval surveillance of a biocide.
This document describes a strategy for conducting wildlife effects research within the U.S. Environmental Protection Agencys (EPA) National Health and Environmental Effects Research Laboratory (NHEERL). The NHEEL wildlife research strategy is designed to address critical researc...
21 CFR 58.15 - Inspection of a testing facility.
Code of Federal Regulations, 2011 CFR
2011-04-01
....15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES General Provisions § 58.15 Inspection of a testing... Administration will not consider a nonclinical laboratory study in support of an application for a research or...
Profile of central research and application laboratory of Aǧrı İbrahim Çeçen University
NASA Astrophysics Data System (ADS)
Türkoǧlu, Emir Alper; Kurt, Murat; Tabay, Dilruba
2016-04-01
Aǧrı İbrahim Çeçen University built a central research and application laboratory (CRAL) in the east of Turkey. The CRAL possesses 7 research and analysis laboratories, 12 experts and researchers, 8 standard rooms for guest researchers, a restaurant, a conference hall, a meeting room, a prey room and a computer laboratory. The CRAL aims certain collaborations between researchers, experts, clinicians and educators in the areas of biotechnology, bioimagining, food safety & quality, omic sciences such as genomics, proteomics and metallomics. It also intends to develop sustainable solutions in agriculture and animal husbandry, promote public health quality, collect scientific knowledge and keep it for future generations, contribute scientific awareness of all stratums of society, provide consulting for small initiatives and industries. It has been collaborated several scientific foundations since 2011.
Inhalation Toxicology Research Institute. Annual report, October 1, 1995--September 30, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bice, D.E.; Hahn, F.F.; Henderson, R.F.
1996-12-01
The Inhalation Toxicology Research Institute (ITRI) is a Government-owned facility leased and operated by the Lovelace Biomedical and Environmental Research Institute (LBERI) as a private, nonprofit research and testing laboratory. LBERI is an operating subsidiary of the Lovelace Respiratory Research Institute. Through September 30, 1996, ITRI was a Federally Funded Research and Development Center operated by Lovelace for the US Department of Energy (DOE) as a {open_quotes}Single Program Laboratory{close_quotes} within the DOE Office of Health and Environmental Research, Office of Energy Research. Work for DOE continues in the privatized ITRI facility under a Cooperative Agreement. At the time of publication,more » approximately 70% of the Institute`s research is funded by DOE, and the remainder is funded by a variety of Federal agency, trade association, individual industry, and university customers. The principal mission of ITRI is to conduct basic and applied research to improve our understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disorders of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the country`s largest facility dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry.« less
Infrastructure for Personalized Medicine at Partners HealthCare
Weiss, Scott T.; Shin, Meini Sumbada
2016-01-01
Partners HealthCare Personalized Medicine (PPM) is a center within the Partners HealthCare system (founded by Massachusetts General Hospital and Brigham and Women’s Hospital) whose mission is to utilize genetics and genomics to improve the care of patients in a cost effective manner. PPM consists of five interconnected components: (1) Laboratory for Molecular Medicine (LMM), a CLIA laboratory performing genetic testing for patients world-wide; (2) Translational Genomics Core (TGC), a core laboratory providing genomic platforms for Partners investigators; (3) Partners Biobank, a biobank of samples (DNA, plasma and serum) for 50,000 Consented Partners patients; (4) Biobank Portal, an IT infrastructure and viewer to bring together genotypes, samples, phenotypes (validated diagnoses, radiology, and clinical chemistry) from the electronic medical record to Partners investigators. These components are united by (5) a common IT system that brings researchers, clinicians, and patients together for optimal research and patient care. PMID:26927187
Health Evaluation of Experimental Laboratory Mice.
Burkholder, Tanya; Foltz, Charmaine; Karlsson, Eleanor; Linton, C Garry; Smith, Joanne M
2012-06-01
Good science and good animal care go hand in hand. A sick or distressed animal does not produce the reliable results that a healthy and unstressed animal produces. This unit describes the essentials of assessing mouse health, colony health surveillance, common conditions, and determination of appropriate endpoints. Understanding the health and well-being of the mice used in research enables the investigator to optimize research results and animal care.
ERIC Educational Resources Information Center
Aquino, Cesar A.
2014-01-01
This study represents a research validating the efficacy of Davis' Technology Acceptance Model (TAM) by pairing it with the Organizational Change Readiness Theory (OCRT) to develop another extension to the TAM, using the medical Laboratory Information Systems (LIS)--Electronic Health Records (EHR) interface as the medium. The TAM posits that it is…
Laboratory containment practices for arthropod vectors of human and animal pathogens.
Tabachnick, Walter J
2006-03-01
Arthropod-borne pathogens have an impact on the health and well-being of humans and animals throughout the world. Research involving arthropod vectors of disease is often dependent on the ability to maintain the specific arthropod species in laboratory colonies. The author reviews current arthropod containment practices and discusses their importance from public health and ecological perspectives.
Sorte Junior, Waldemiro Francisco
2012-01-01
This article examines the use of governmental purchasing power and public laboratories to stimulate domestic production and research and development (R&D) activities in the Brazilian pharmaceutical industry. Three main areas in which public laboratories can play an important role are identified: (1) large-scale production of essential medications; (2) production of strategic drugs to reduce the trade deficit in the health sector; and (3) in-house research efforts and stimulation of R&D in the private sector through public-private partnerships (PPPs). The analysis of the production and R&D structure of the Brazilian pharmaceutical industry tends to show that the Ministry of Health (MOH) purchasing power can be used to nurture the growth of public laboratories and generate positive externalities for the private sector. Nonetheless, fieldwork data reveal that the lack of alignment between health policies and public laboratories' production are resulting in idle production capacity. In order for the current governmental strategy to promote industrial growth, there should be a division of tasks among public laboratories within a long-term framework, based on a stable set of priorities from the MOH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-04-01
This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.
ERIC Educational Resources Information Center
Sa, Creso M.; Oleksiyenko, Anatoly
2011-01-01
Organized research units--also known as centers, institutes, and laboratories--are increasingly prominent in the university. This paper examines how ORUs emerge to promote global agendas and international collaborations in an academic health center in North America. The roles these units play in helping researchers work across institutional and…
EPA’s Dan Nelson is the Director of the Human Research Protocol Office at the National Health and Environmental Effect Research Laboratory, Dan works to protect the rights and welfare of EPA’s research participants.
ENZYMOLOGY OF ARSENIC METHYLATION
Enzymology of Arsenic Methylation
David J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National
Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...
GLOBAL CHANGE RESEARCH NEWS #18: SYMPOSIUM SESSION ON "GLOBAL ATMOSPHERIC CHANGE"
A session on "Understanding and Managing Effects of Global Atmospheric Change" will be held at the Fifth Symposium of the U.S. EPA National Health and Environmental Effects Research Laboratory. The Symposium topic is "Indicators in Health and Ecological Risk Assessment." The s...
Health, Safety, and Environment Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, C
1992-01-01
The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from thesemore » applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.« less
Management of clandestine drug laboratories: need for evidence-based environmental health policies.
Al-Obaidi, Tamara A; Fletcher, Stephanie M
2014-01-01
Clandestine drug laboratories (CDLs) have been emerging and increasing as a public health problem in Australia, with methamphetamine being the dominant illegally manufactured drug. However, management and remediation of contaminated properties are still limited in terms of regulation and direction, especially in relation to public and environmental health practice. Therefore, this review provides an update on the hazards and health effects associated with CDLs, with a specific look at the management of these labs from an Australian perspective. Particularly, the paper attempts to describe the policy landscape for management of CDLs, and identifies current gaps and how further research may be utilised to advance understanding and management of CDLs and inform public health policies. The paper highlights a significant lack of evidence-based policies and guidelines to guide regulatory authority including environmental health officers in Australia. Only recently, the national Clandestine Drug Laboratory Guidelines were developed to assist relevant authority and specialists manage and carry out investigations and remediation of contaminated sites. However, only three states have developed state-based guidelines, some of which are inadequate to meet environmental health requirements. The review recommends well-needed inter-sectoral collaborations and further research to provide an evidence base for the development of robust policies and standard operating procedures for safe and effective environmental health management and remediation of CDLs.
[Biosafety in laboratories concerning exposure to biological agents].
Vonesch, N; Tomao, P; Di Renzi, S; Vita, S; Signorini, S
2006-01-01
Laboratory workers are exposed to a variety of potential occupational health hazards including those deriving from infectious materials and cultures, radiations, toxic and flammable chemicals, as well as mechanical and electrical hazard. Although all of them are significant, this paper will focus on biological hazards present in clinical and research laboratories. In fact, in spite of numerous publications, guidelines and regulations, laboratory workers are still subject to infections acquired in the course of their researches. This paper describes some aspects that include good microbiological practices (GMPs), appropriate containment equipment, practices and operational procedures to minimize workers' risk of injury or illness.
Research on Exposure to Perfluorinated Chemicals
Certain PFCs have been linked to adverse health effects in laboratory animals that may reflect associations between exposure to these chemicals and some health problems in the general human population.
Fostering a strategic alliance between patients' associations and health care professionals.
Mosconi, Paola; Colombo, Cinzia
2010-01-01
The Laboratory for Medical Research and Consumer Involvement was established in 2005 at Mario Negri Institute, a nonprofit institute for pharmacological research, as a consequence of the increasing interest in boosting citizens' and patients' involvement in the health care debate. It has developed several projects with patients' associations, researchers, and clinicians. Its objectives are to foster a strategic alliance among health care professionals, patients, and their organizations, developing activities with different levels of involvement. Among the laboratory' s activities, the PartecipaSalute project has organized training courses for consumers, published a Web site disseminating evidence-based information and critical appraisal tools, and collected research priorities set by patients. Two consensus conferences have been organized, one dealing with brain injury patients' assistance and the other with hormone therapy and menopause. The quality of health information covered by different sources (press articles, Web sites, and brochures) has also been assessed. Seventy consumers attended the training courses from 2006 to 2008, and between January 2008 and June 2009 the PartecipaSalute Web site registered a mean of 30 500 single visits monthly. At the consensus conference Informing women on hormone replacement therapy, 7 members of the 14-member panel defining the final recommendations were lay people. Other data from the laboratory's main activities are given in this article. The criteria for selecting patients and their organizations, the methods of involvement, and evaluation of the impact of the activities are still open questions. We are now developing ways of evaluating our activities, and trying to boost citizens' and patients' participation in decisional settings, concerning health care assistance and research studies.
78 FR 54261 - National Cancer Institute Amended; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
... Laboratory for Cancer Research, Advanced Technology Research Facility (ATRF), Room E111, 8560 Progress Drive... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Cancer Institute Amended; Notice of Meeting Notice is hereby given of a change in the meeting of the NCI- Frederick...
AQUATIC STRESSORS: FRAMEWORK AND IMPLEMENTATION PLAN FOR EFFECTS RESEARCH
This document describes the framework and research implementation plans for ecological effects research on aquatic stressors within the National Health and Environmental Effects Laboratory. The context for the research identified within the framework is the common management goal...
Heintzman, John; Gold, Rachel; Krist, Alexander; Crosson, Jay; Likumahuwa, Sonja; DeVoe, Jennifer E
2014-01-01
Dissemination and implementation science addresses the application of research findings in varied health care settings. Despite the potential benefit of dissemination and implementation work to primary care, ideal laboratories for this science have been elusive. Practice-based research networks (PBRNs) have a long history of conducting research in community clinical settings, demonstrating an approach that could be used to execute multiple research projects over time in broad and varied settings. PBRNs also are uniquely structured and increasingly involved in pragmatic trials, a research design central to dissemination and implementation science. We argue that PBRNs and dissemination and implementation scientists are ideally suited to work together and that the collaboration of these 2 groups will yield great value for the future of primary care and the delivery of evidence-based health care. © Copyright 2014 by the American Board of Family Medicine.
List of DOE radioisotope customers with summary of radioisotope shipments, FY 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burlison, J.S.
1982-09-01
The seventeenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of Energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory: Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopesmore » purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.« less
Community-Engaged Strategies to Increase Diversity of Participants in Health Education Research.
Khubchandani, Jagdish; Balls-Berry, Joyce; Price, James H; Webb, Fern J
2016-05-01
Minorities have historically been underrepresented in health-related research. Several strategies have been recommended to increase the participation of minorities in health-related research. However, most of the recommendations and guidelines apply to research in clinical or laboratory contexts. One of the more prominent methods to enhance minority participation in health-related research that has recently come to the fore is the use of community-engaged strategies. The purpose of this article is to summarize community-engaged outreach efforts that can be translated into useable strategies for health education research teams seeking to diversify the pool of research participants. Also, we provide a succinct overview of the various components of a research endeavor that may influence minority participation in health-related research. Finally, we analyze how health education specialists and SOPHE (Society of Public Health Education) can play a leading role in helping enhance minority participation in health-related research. © 2016 Society for Public Health Education.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-06-01
This report provided a transcript of an interview of Dr. Karl. Z. Morgan by representatives of the DOE Office of Human Radiation Experiments. Dr. Morgan was selected for this interview because of his research for the Manhattan Project at the Metallurgical Laboratory in Chicago and his work at the Oak Ridge National Laboratory (ORNL). The oral history covers Dr. Morgan`s work as a pioneer in the field of Health Physics, his research at ORNL and his work since he retired from ORNL.
GENOMIC AND PROTEOMIC TECHNIQUES APPLIED TO REPRODUCTIVE BIOLOGY
Genomic and proteomic techniques applied to reproductive biology
John C. Rockett
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Tria...
Strafella, Elisabetta; Bracci, M; Calisti, R; Governa, M; Santarelli, Lory
2008-01-01
Chemical risk assessment in research laboratories is complicated by factors such as the large number of agents to be considered, each present in small quantities, and the very short and erratic periods of exposure, all of which make reliable environmental and biological monitoring particularly difficult and at times impossible. In such environments, a preliminary evaluation procedure based on algorithms would be useful to establish the hazard potential of a given situation and to guide the appropriate intervention. The LaboRisCh model was expressly designed to assess the health risk due to chemicals in research laboratories and similar workplaces. The model is based on the calculation of the value of a synthetic single risk index for each substance and compound found in a laboratory and, subsequently, of a further synthetic single risk index for the whole laboratory or, where required, a section thereof. This makes LaboRisCh a compromise between need for information, ease of use, and resources required for the assessment. The risk index includes several items, chiefly the physical and chemical properties, intrinsic hazard potential, amount, dilution, and time of exposure to each agent; waste management; possible interactions; presence and efficiency of collective and individual protection devices, and staff training in good laboratory practices. The value of the synthetic single index corresponds to one of three areas: no risk (green), possible risk (yellow), and certain risk (red). Preliminary data confirm the model. LaboRisCh appears to be a reliable method for chemical risk assessment in research laboratories and similar workplaces.
Ned-Sykes, Renée; Johnson, Catherine; Ridderhof, John C; Perlman, Eva; Pollock, Anne; DeBoy, John M
2015-05-15
These competency guidelines outline the knowledge, skills, and abilities necessary for public health laboratory (PHL) professionals to deliver the core services of PHLs efficiently and effectively. As part of a 2-year workforce project sponsored in 2012 by CDC and the Association of Public Health Laboratories (APHL), competencies for 15 domain areas were developed by experts representing state and local PHLs, clinical laboratories, academic institutions, laboratory professional organizations, CDC, and APHL. The competencies were developed and reviewed by approximately 170 subject matter experts with diverse backgrounds and experiences in laboratory science and public health. The guidelines comprise general, cross-cutting, and specialized domain areas and are divided into four levels of proficiency: beginner, competent, proficient, and expert. The 15 domain areas are 1) Quality Management System, 2) Ethics, 3) Management and Leadership, 4) Communication, 5) Security, 6) Emergency Management and Response, 7) Workforce Training, 8) General Laboratory Practice, 9) Safety, 10) Surveillance, 11) Informatics, 12) Microbiology, 13) Chemistry, 14) Bioinformatics, and 15) Research. These competency guidelines are targeted to scientists working in PHLs, defined as governmental public health, environmental, and agricultural laboratories that provide analytic biological and/or chemical testing and testing-related services that protect human populations against infectious diseases, foodborne and waterborne diseases, environmental hazards, treatable hereditary disorders, and natural and human-made public health emergencies. The competencies support certain PHL workforce needs such as identifying job responsibilities, assessing individual performance, and providing a guiding framework for producing education and training programs. Although these competencies were developed specifically for the PHL community, this does not preclude their broader application to other professionals in a variety of different work settings.
George Lewis Addresses Staff during the Construction of the New Laboratory
1942-05-21
Construction Manager Raymond Sharp and the National Advisory Committee for Aeronautics (NACA) Director of Research George Lewis speak to employees during the May 8, 1942, Initiation of Research ceremony at the Aircraft Engine Research Laboratory. The event marked the first operation of a test facility at the new laboratory. The overall laboratory was still under construction, however, and behind schedule. Lewis traveled from his office in Washington, DC every week to personally assess the progress. Drastic measures were undertaken to accelerate the lab’s construction schedule. The military provided special supplies, contractors were given new agreements and pressured to meet deadlines, and Congress approved additional funds. The effort paid off and much of the laboratory was operational in early 1943. George Lewis managed the NACA’s aeronautical research for over 20 years. Lewis joined the NACA as Executive Officer in 1919, and was named Director of Aeronautical Research in 1924. In this role Lewis served as the liaison between the Executive Committee and the research laboratories. His most important accomplishment may have been the investigative tours of the research facilities in Germany in 1936 and 1939. The visits resulted in the NACA’s physical expansion and the broadening of the scope of its research. Lewis did not take a day of leave between the Pearl Harbor attack and the Armistice. He began suffering health problems in 1945 and was forced to retire two years later. The Aircraft Engine Research Laboratory was renamed the NACA Lewis Flight Propulsion Laboratory in September 1948.
A SUMMARY OF NHEERL ECOLOGICAL RESEARCH ON GLOBAL CLIMATE CHANGE
The purpose of this document is to review ecological research conducted by scientists at the National Health and Environmental Research Laboratory (NHEERL) under the Environmental Protection Agency's (EPA) contribution to the US Global Change Research Program (USGCRP). The inten...
I will first describe my role as a Research Ecologist with the EPA’s Office of Research and Development, National Health and Environmental Effects Research Laboratory, Western Ecology Division, in Corvallis, Oregon, an example of a government agency conducting research in E...
Health, Safety, and Environment Division annual report 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, C.
1992-01-01
The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting the responsibilities involves many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in the HSE Division often stem from these appliedmore » needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The result of these programs is to help develop better practices in occupational health and safety, radiation protection, and environmental sciences.« less
DoD Global, Laboratory-Based, Influenza Surveillance Program, End-of-Year Report, 2014-2015
2016-01-01
DeMarcus January 2016 Air Force Research Laboratory 711th Human Performance Wing U.S. Air Force School of Aerospace Medicine ...Public Health and Preventive Medicine Dept 2510 Fifth St. Wright-Patterson AFB, OH 45433-7913 DISTRIBUTION STATEMENT A. Approved for public release...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USAF School of Aerospace Medicine Public Health and Preventive Medicine Dept/PHR 2510 Fifth St
USE OF GENOMIC DATA IN RISK ASSESSMENT
Use of Genomic Data in Risk Assessment
John C. Rockett
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA<...
Medical technology advances from space research
NASA Technical Reports Server (NTRS)
Pool, S. L.
1972-01-01
Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.
Monitoring and investigating natural disease by veterinary pathologists in diagnostic laboratories.
O'Toole, D
2010-01-01
Many emerging diseases in animals are initially recognized by diagnostic pathologists in animal health laboratories using routine laboratory submissions, in conjunction with clinical veterinarians and wildlife biologists. Familiar recent examples are chronic wasting disease, bovine spongiform encephalopathy, West Nile encephalomyelitis in North America, and postweaning multisystemic wasting syndrome in pigs. The recognition of new diseases in animals requires that the curiosity of diagnosticians be articulated with the capacity of animal health laboratories to create effective diagnostic teams, solicit additional cases from the field at minimal cost to clients, and develop relationships with basic researchers. Bovine neosporosis is used as an example to illustrate how a disease investigation triggered by routine clinical accessions can have international ramifications. Between the late 1980s and 1995, diagnosticians with California's animal health laboratory system identified neosporosis as a cause of reproductive wastage in cattle, characterized the lesions, isolated the agent, defined routes of transmission, met Koch's postulates, and developed diagnostic assays. Diagnostic pathologists catalyzed the process. The neosporosis investigation in California suggests useful attributes of veterinary diagnostic laboratories that pursue emerging diseases identified through routine laboratory accessions.
Risks to health care workers from nano-enabled medical products.
Murashov, Vladimir; Howard, John
2015-01-01
Nanotechnology is rapidly expanding into the health care industry. However, occupational safety and health risks of nano-enabled medical products have not been thoroughly assessed. This manuscript highlights occupational risk mitigation practices for nano-enabled medical products throughout their life cycle for all major workplace settings including (1) medical research laboratories, (2) pharmaceutical manufacturing facilities, (3) clinical dispensing pharmacies, (4) health care delivery facilities, (5) home health care, (6) health care support, and (7) medical waste management. It further identifies critical research needs for ensuring worker protection in the health care industry.
Ulanova, Marina; Tsang, Raymond; Altman, Eleonora
2012-11-19
This report describes proceedings of a workshop entitled "Neglected Infectious Diseases in Aboriginal Communities" which took place in Thunder Bay, Ontario, Canada, on October 12, 2011. This workshop was jointly organized by the National Research Council of Canada (NRC), the National Microbiology Laboratory (Public Health Agency of Canada) and Northern Ontario School of Medicine (NOSM) with participants from the Medical Sciences Division and Clinical Sciences Division of NOSM, NRC, National Microbiology Laboratory (NML), Public Health Laboratory (Thunder Bay), Thunder Bay District Health Unit, and Regional Health Survey at Chiefs of Ontario. The main purpose of the workshop was to summarize the current state of knowledge on two less publicized infectious disease agents afflicting Canadian Aboriginal communities: Haemophilus influenzae serotype a (Hia) and Helicobacter pylori. Another highlight of this workshop was the discussion on novel approaches for vaccination strategies in the control and prevention of such disease agents. In conclusion, a long-term collaborative research framework was established between NRC, NML and NOSM to develop carbohydrate-based vaccines against these pathogens that may benefit the health of Canadian Aboriginal peoples and other population groups at risk. Copyright © 2012. Published by Elsevier Ltd.. All rights reserved.
Research Triangle Park, NC Laboratory at a Glance
Among many other things, EPA's Research Triangle Park scientists simulate many different types of air pollution under varying meteorological conditions and study the health effects of air pollution mixtures.
Building international genomics collaboration for global health security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.
Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less
Building international genomics collaboration for global health security
Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; ...
2015-12-07
Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less
National Health Care Skill Standards.
ERIC Educational Resources Information Center
National Consortium on Health Science and Technology Education, Okemos, MI.
This document presents the National Health Care Skill Standards, which were developed by the National Consortium on Health Science and Technology and West Ed Regional Research Laboratory, in partnership with educators and health care employers. The document begins with an overview of the purpose and benefits of skill standards. Presented next are…
77 FR 46438 - Findings of Research Misconduct
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-03
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Office of the Secretary Findings of Research Misconduct... Research Integrity (ORI) has taken final action in the following case: Mepur H. Ravindranath, Ph.D., John... H. Ravindranath, former Director of the Laboratory of Glycoimmunotheraphy, JWCI, engaged in research...
Overview of USEPA/NERL Cooperative Agreement Research Program on Air Pollution Exposure and Health
USEPA's National Exposure Research Laboratory (NERL) recently initiated a two-year Cooperative Agreement Research Program between EPA and three academic institutions: Emory University, Rutgers University and University of Washington. Under this EPA/NERL sponsored research, nov...
DEVELOPMENT OF AN ETD SURVEILLANCE CHECKLIST FOR MONITORING EPA RESEARCH ACTIVITIES
DEVELOPMENT OF AN ETD SURVEILLANCE CHECKLIST FOR MONITORING EPA RESEARCH ACTIVITIES, Thomas J. Hughes, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Experimental Toxicology Division (ETD), MD 66, RTP, NC 27711
Research studies condu...
78 FR 28295 - SES Positions That Were Career Reserved During CY 2012
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-14
... Management. of Agriculture Virtual University. Office of Advocacy Director, Office of and Outreach. Advocacy.... Executive Associate, Laboratory Services, Office of Public Health Science. Assistant Administrator, Office... Laboratory (Madison). Director, Southern Research Station (Asheville). Director, Pacific Southwest Forest and...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
1989-06-01
This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1988. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The nextmore » section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals.« less
Biodefense research: can secrecy and safety coexist?
Kahn, Laura H
2004-01-01
Over the next 10 years, the United States will spend 6 billion US dollars to develop countermeasures against biological and chemical weapons. Much of this research on highly virulent pathogens will be done in academic settings around the country. This article explores the challenges in ensuring secrecy to protect national security while accommodating the right of local communities to have access to safety information regarding select agents and laboratory-acquired infections. Secrecy has been defended as being vital for protecting national security. Problems with secrecy can include the misinterpretation of intentions, particularly in laboratories located in nuclear weapons design facilities, and the restricted access to information relevant to public health and safety. While federal select agent legislation requires laboratories to have emergency plans in place with first responders, these plans do not necessarily include public health professionals, who will be responsible for any future public health action, such as quarantine, surveillance, or mass vaccinations, in the unlikely event that a laboratory-acquired infection spreads into a community. Laboratory-acquired infections do occur, even with the best safety mechanisms in place; however, the epidemiology of the incidence and severity of these infections are not known since there is no national surveillance reporting system. Evidence suggests that many of these infections occur in the absence of an actual laboratory accident. The best emergency plans and surveillance systems are only as good as the participation and vigilance of the laboratory workers themselves. Thus, laboratory workers have a responsibility to themselves and others to report all laboratory accidents and spills, regardless how minor. In addition, they should have a lower threshold than normal in seeking medical attention when feeling ill, and their physicians should be aware of what pathogens they work with to reduce the risk of a delay in diagnosis.
List of DOE radioisotope customers with summary of radioisotope shipments, FY 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burlison, J.S.
1981-08-01
The sixteenth edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research, Office of energy Research, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboraory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: (1) isotope suppliers, facility, contracts and isotopes or services supplied; (2) alphabetical list of customers, and isotopesmore » purchased; (3) alphabetical list of isotopes cross-referenced to customer numbers; (4) geographical location of radioisotope customers; and (5) radioisotope sales and transfers-FY 1980.« less
Ishii, Junichi
2009-08-01
Fujita Health University Hospital, located in Toyoake, is a large teaching hospital with 1,505 beds. The Department of Clinical Laboratory in our hospital, in which 136 medical technologists work, is one of the largest clinical laboratories in Japan. Medical technologists in our hospital are required not only to perform accurate laboratory examinations, but also to contribute to the medical care team. In addition, they must educate students and trainee medical technologists. Furthermore, they conduct research to develop and evaluate new laboratory methods. Thus, we hope that education in graduate schools of medical technology (Master's course), along with promoting the specialty of laboratory techniques, will develop students' clinical skills to examine patients and research skills to conduct studies.
Inside EPA: A Closer Look at Some of EPA’s Laboratory Research Facilities
Ever wondered what’s happening behind the scenes at EPA research labs? Scientists and engineers are conducting research to address geographically-based environmental issues and advance science to support public health and the environment.
CHIPPING AWAY AT THE MYSTERY OF DRUG RESPONSES
Chipping away at the mystery of drug responses
John C. Rockett
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 2771...
Quality assurance in military medical research and medical radiation accident management.
Hotz, Mark E; Meineke, Viktor
2012-08-01
The provision of quality radiation-related medical diagnostic and therapeutic treatments cannot occur without the presence of robust quality assurance and standardization programs. Medical laboratory services are essential in patient treatment and must be able to meet the needs of all patients and the clinical personnel responsible for the medical care of these patients. Clinical personnel involved in patient care must embody the quality assurance process in daily work to ensure program sustainability. In conformance with the German Federal Government's concept for modern departmental research, the international standard ISO 9001, one of the relevant standards of the International Organization for Standardization (ISO), is applied in quality assurance in military medical research. By its holistic approach, this internationally accepted standard provides an excellent basis for establishing a modern quality management system in line with international standards. Furthermore, this standard can serve as a sound basis for the further development of an already established quality management system when additional standards shall apply, as for instance in reference laboratories or medical laboratories. Besides quality assurance, a military medical facility must manage additional risk events in the context of early recognition/detection of health risks of military personnel on deployment in order to be able to take appropriate preventive and protective measures; for instance, with medical radiation accident management. The international standard ISO 31000:2009 can serve as a guideline for establishing risk management. Clear organizational structures and defined work processes are required when individual laboratory units seek accreditation according to specific laboratory standards. Furthermore, international efforts to develop health laboratory standards must be reinforced that support sustainable quality assurance, as in the exchange and comparison of test results within the scope of external quality assurance, but also in the exchange of special diagnosis data among international research networks. In summary, the acknowledged standard for a quality management system to ensure quality assurance is the very generic standard ISO 9001.Health Phys. 103(2):221-225; 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Türkoğlu, Emir Alper, E-mail: eaturkoglu@yandex.com; Ağrı İbrahim Çeçen University, Central Research and Application Laboratory, Ağrı; Kurt, Murat, E-mail: muratkurt60@hotmail.com
Ağrı İbrahim Çeçen University built a central research and application laboratory (CRAL) in the east of Turkey. The CRAL possesses 7 research and analysis laboratories, 12 experts and researchers, 8 standard rooms for guest researchers, a restaurant, a conference hall, a meeting room, a prey room and a computer laboratory. The CRAL aims certain collaborations between researchers, experts, clinicians and educators in the areas of biotechnology, bioimagining, food safety & quality, omic sciences such as genomics, proteomics and metallomics. It also intends to develop sustainable solutions in agriculture and animal husbandry, promote public health quality, collect scientific knowledge and keepmore » it for future generations, contribute scientific awareness of all stratums of society, provide consulting for small initiatives and industries. It has been collaborated several scientific foundations since 2011.« less
Biodegradation of Perchlorate in Laboratory Reactors Under Different Environmental Conditions
2010-07-01
California Office of Environmental Health Hazard Assessment (OEHHA) 2004). Massachusetts has proposed a regulatory standard of 2 µg/L (Massachusetts...perchlorate has been detected in some animal feed crops, dairy, and meat. Alfalfa, a beef cattle and dairy cow feed, tested at 109–555 µg/kg for samples...transported to the Engineer Research and Development Center (ERDC), Environmental Laboratory, Hazardous Waste Research Center, Vicksburg, MS. The
Psycho Educational Group Intervention for Women at Increased Risk for Breast Cancer
1997-11-01
INVESTIGATOR: Kathryn M. Kash, Ph.D. CONTRACTING ORGANIZATION: Strang-Come11 Cancer Research Laboratory New York, New York 10021 REPORT DATE: November...Cornell Cancer Research Laboratory New York, New York 10021 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...utilizing recombinant DNA technology , the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health. In the conduct
Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe
2015-01-01
Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science. PMID:25836964
Turner, Patricia V; Pekow, Cynthia; Clark, Judy MacArthur; Vergara, Patri; Bayne, Kathryn; White, William J; Kurosawa, Tsutomu Miki; Seok, Seung-Hyeok; Baneux, Philippe
2015-03-01
Practical implementation of the 3Rs at national and regional levels around the world requires long-term commitment, backing, and coordinated efforts by international associations for laboratory animal medicine and science, including the International Association of Colleges of Laboratory Animal Medicine (IACLAM) and the International Council for Laboratory Animal Science (ICLAS). Together these organizations support the efforts of regional organization and communities of laboratory animal science professionals as well as the development of local associations and professional colleges that promote the training and continuing education of research facility personnel and veterinary specialists. The recent formation of a World Organization for Animal Health (OIE) Collaborating Center for Laboratory Animal Science and Welfare emphasizes the need for research into initiatives promoting laboratory animal welfare, particularly in emerging economies and regions with nascent associations of laboratory animal science.
Pacific Coastal Ecology Branch: Research Overview
The Pacific Coastal Ecology Branch, Newport, Oregon is part of the Western Ecology Division of the National Health and Environmental Effects Research Laboratory of the U.S. EPA. The Branch conducts research and provides scientific technical support to Headquarters and Regional O...
Abstracts of Research Papers 1970.
ERIC Educational Resources Information Center
Drowatzky, John N., Ed.
This publication includes the abstracts of 199 research papers presented at the 1970 American Association for Health, Physical Education, and Recreation convention in Seattle, Washington. Abstracts from symposia on environmental quality education, obesity, motor development, research methods, and laboratory equipment are also included. Each…
The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...
INTEGRIN-MEDIATED CELL ATTACHMENT SHOWS TIME-DEPENDENT UPREGULATION OF GAP JUNCTION COMMUNICATION.
Integrin-mediated Cell Attachment Shows Time-Dependent Upregulation of Gap Junction
Communication
Rachel Grindstaff and Carl Blackman, National Health & Environmental Effects Research
Laboratory, Office of Research and Development, US EPA, Research Triang...
Senior Laboratory Animal Technician | Center for Cancer Research
PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused on the design, generation, characterization and application of genetically engineered and biological animal models of human disease, which are aimed at the development of targeted diagnostics and therapies. LASP contributes to advancing human health, developing new treatments, and improving existing treatments for cancer and other diseases while ensuring safe and humane treatment of animals. KEY ROLES/RESPONSIBILITIES The Senior Laboratory Animal Technician will be responsible for: Daily tasks associated with the care, breeding and treatment of research animals for experimental purposes Management of rodent breeding colonies consisting of multiple, genetically complex strains and associated record keeping and database management Colony management procedures including: tail clipping, animal identification, weaning Data entry consistent with complex colony management Collection of routine diagnostic samples Coordinating shipment of live animals and specimens Performing rodent experimental procedures including basic necropsy and blood collection Observation and recording of physical signs of animal health Knowledge of safe working practices using chemical carcinogen and biological hazards Work schedule may include weekend and holiday hours This position is in support of the Center for Cancer Research (CCR).
The US Environmental Protection Agency is a regulatory agency of the federal government whose mission it is to protect human health and to safeguard the natural environment -- air, water, land -- upon which life depends. The EPA has several Program and Regional Offices that for...
Hobbie, Kevin A; Peterson, Elena S; Barton, Michael L; Waters, Katrina M; Anderson, Kim A
2012-08-01
Large collaborative centers are a common model for accomplishing integrated environmental health research. These centers often include various types of scientific domains (e.g., chemistry, biology, bioinformatics) that are integrated to solve some of the nation's key economic or public health concerns. The Superfund Research Center (SRP) at Oregon State University (OSU) is one such center established in 2008 to study the emerging health risks of polycyclic aromatic hydrocarbons while using new technologies both in the field and laboratory. With outside collaboration at remote institutions, success for the center as a whole depends on the ability to effectively integrate data across all research projects and support cores. Therefore, the OSU SRP center developed a system that integrates environmental monitoring data with analytical chemistry data and downstream bioinformatics and statistics to enable complete "source-to-outcome" data modeling and information management. This article describes the development of this integrated information management system that includes commercial software for operational laboratory management and sample management in addition to open-source custom-built software for bioinformatics and experimental data management.
Hobbie, Kevin A.; Peterson, Elena S.; Barton, Michael L.; Waters, Katrina M.; Anderson, Kim A.
2012-01-01
Large collaborative centers are a common model for accomplishing integrated environmental health research. These centers often include various types of scientific domains (e.g. chemistry, biology, bioinformatics) that are integrated to solve some of the nation’s key economic or public health concerns. The Superfund Research Center (SRP) at Oregon State University (OSU) is one such center established in 2008 to study the emerging health risks of polycyclic aromatic hydrocarbons while utilizing new technologies both in the field and laboratory. With outside collaboration at remote institutions, success for the center as a whole depends on the ability to effectively integrate data across all research projects and support cores. Therefore, the OSU SRP center developed a system that integrates environmental monitoring data with analytical chemistry data and downstream bioinformatics and statistics to enable complete ‘source to outcome’ data modeling and information management. This article describes the development of this integrated information management system that includes commercial software for operational laboratory management and sample management in addition to open source custom built software for bioinformatics and experimental data management. PMID:22651935
Naval Health Research Center 1985 Annual Report
1985-01-01
research. While much of our earlier work addressed organizational issues within the shote -based health care delivery sytem, more recent efforts have focused...Laboratory, Groton, Connecticut, cn the Neurometric Program. Dr. Naitoh met with Dr. Charles Winget of NASA Amen Rasearch Center for a research consultation...lag in commercial aircrews. Collaborators on the project include LT COL R. Curtis Graeber from NASA -Ames, Dr. Hans-Martin Wegmann from the West German
Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory
Barton, Carrie L.; Johnson, Eric W.
2016-01-01
Abstract The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility. PMID:26981844
Facility Design and Health Management Program at the Sinnhuber Aquatic Research Laboratory.
Barton, Carrie L; Johnson, Eric W; Tanguay, Robert L
2016-07-01
The number of researchers and institutions moving to the utilization of zebrafish for biomedical research continues to increase because of the recognized advantages of this model. Numerous factors should be considered before building a new or retooling an existing facility. Design decisions will directly impact the management and maintenance costs. We and others have advocated for more rigorous approaches to zebrafish health management to support and protect an increasingly diverse portfolio of important research. The Sinnhuber Aquatic Research Laboratory (SARL) is located ∼3 miles from the main Oregon State University campus in Corvallis, Oregon. This facility supports several research programs that depend heavily on the use of adult, larval, and embryonic zebrafish. The new zebrafish facility of the SARL began operation in 2007 with a commitment to build and manage an efficient facility that diligently protects human and fish health. An important goal was to ensure that the facility was free of Pseudoloma neurophilia (Microsporidia), which is very common in zebrafish research facilities. We recognize that there are certain limitations in space, resources, and financial support that are institution dependent, but in this article, we describe the steps taken to build and manage an efficient specific pathogen-free facility.
Work organization research at the National Institute for Occupational Safety and Health.
Rosenstock, L
1997-01-01
For 25 years, the National Institute for Occupational Safety and Health (NIOSH) has conducted and sponsored laboratory, field, and epidemiological studies that have helped define the role of work organization factors in occupational safety and health. Research has focused on the health effects of specific job conditions, occupational stressors in specific occupations, occupational difference in the incidence of stressors and stress-related disorders, and intervention strategies. NIOSH and the American Psychological Association have formalized the concept of occupational health psychology and developed a postdoctoral training program. The National Occupational Research Agenda recognizes organization of work as one of 21 national occupational safety and health research priority areas. Future research should focus on industries, occupations, and populations at special risk; the impact of work organization on overall health; the identification of healthy organization characteristics; and the development of intervention strategies.
MSPR-2 installation and checkout
2015-09-01
ISS044E079682 (09/01/2015) --- NASA Astronaut Scott Kelly works inside the U.S. Destiny Laboratory. Destiny is the primary research laboratory for U.S. payloads, supporting a wide range of experiments and studies contributing to health, safety and quality of life for people all over the world.
Goossens, Kenneth; Van Uytfanghe, Katleen; Twomey, Patrick J; Thienpont, Linda M
2015-05-20
"The Percentiler" project provides quasi real-time access to patient medians across laboratories and manufacturers. This data can serve as "clearinghouse" for electronic health record applications, e.g., use of laboratory data for global health-care research. Participants send their daily outpatient medians to the Percentiler application. After 6 to 8weeks, the laboratory receives its login information, which gives access to the user interface. Data is assessed by peer group, i.e., 10 or more laboratories using the same test system. Participation is free of charge. Participation is global with, to date, >120 laboratories and >250 instruments. Up to now, several reports have been produced that address i) the general features of the project, ii) peer group observations; iii) synergisms between "The Percentiler" and dedicated external quality assessment surveys. Reasons for long-term instability and bias (calibration- or lot-effects) have been observed for the individual laboratory and manufacturers. "The Percentiler" project has the potential to build a continuous, global evidence base on in vitro diagnostic test comparability and stability. As such, it may be beneficial for all stakeholders and, in particular, the patient. The medical laboratory is empowered for contributing to the development, implementation, and management of global health-care policies. Copyright © 2015 Elsevier B.V. All rights reserved.
Zenina, L P; Godkov, M A
2013-08-01
The article presents the experience of implementation of system of quality management into the practice of multi-field laboratory of emergency medical care hospital. The analysis of laboratory errors is applied and the modes of their prevention are demonstrated. The ratings of department of laboratory diagnostic of the N. V. Sklifosofskiy research institute of emergency care in the program EQAS (USA) Monthly Clinical Chemistry from 2007 are presented. The implementation of the system of quality management of laboratory analysis into department of laboratory diagnostic made it possible to support physicians of clinical departments with reliable information. The confidence of clinicians to received results increased. The effectiveness of laboratory diagnostic increased due to lowering costs of analysis without negative impact to quality of curative process.
76 FR 14977 - Statement of Organization, Functions, and Delegations of Authority
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... surveillance programs; (5) conducts epidemiologic, and basic and applied laboratory research to identify new... enhance antimicrobial resistance prevention and control, surveillance and response, and applied research..., response, surveillance, applied research, health communication, and public policy; and (15) advises the...
GENE EXPRESSION PROFILING TO IDENTIFY MECHANISMS OF MALE REPRODUCTIVE TOXICITY
Gene Expression Profiling to Identify Mechanisms of Male Reproductive Toxicity
David J. Dix
National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
Ab...
AQUATIC ECOSYSTEM MONITORING AND ASSESSMENT ACROSS SCALES
The mission of the United States Environmental Protection Agency (USEPA) is to protect human health and the environment. As part of the Office of Research and Development within the USEPA, the Ecosystems Research Branch of the National Exposure Research Laboratory, located in Ci...
BIRTH DEFECTS IN FOUR U.S. WHEAT-PRODUCING STATES
Birth Defects in Four U.S. Wheat - Producing States
Dina M. Schreinemachers, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
Wheat agriculture in Mi...
International Research: Its Role in Environmental Biology
ERIC Educational Resources Information Center
Higginson, John
1970-01-01
Proposes an international research laboratory to investigate environmental factors in human health. By international cooperation unnecessary duplication and waste of resources can be avoided and long-term studies can examine various world-wide environments. (JM)
The Western Ecology Division (WED) conducts innovative research on watershed ecological epidemiology and the development of tools to achieve sustainable and resilient watersheds for application by stakeholders.
INTERSPECIES DOSIMETRY MODELS FOR PULMONARY PHARMACOLOGY
Interspecies Dosimetry Models for Pulmonary Pharmacology
Ted B. Martonen, Jeffry D. Schroeter, and John S. Fleming
Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangl...
America's "undiscovered" laboratory for health services research.
Gimbel, Ronald W; Pangaro, Louis; Barbour, Galen
2010-08-01
Debate over reforming the nation's healthcare system has stimulated a need for health services research (HSR) models that are nationally applicable. Toward this end, the authors identify the Military Health System (MHS) as America's "undiscovered" laboratory for HSR. Although many may confuse the MHS with the Department of Veterans Affairs (VA), the 2 systems vary dramatically with respect to their beneficiary populations, access to care, and other important attributes. In this article, the authors describe key characteristics of the MHS including its large beneficiary base, its direct care operating environment, its dedicated medical school and graduate education programs, and its fully operational integrated health information system. Although a few health systems (eg, Kaiser Permanente, Partners Healthcare, and Department of Veterans Affairs) possess some characteristics, no other has all of these components in place. This article sets the stage for contemporary HSR studies with broad applicability to current issues in American healthcare that could be performed within the MHS. Inclusion of the MHS environment in HSR studies of health services delivery modalities, adoption of health information technology, access to care, relationship of medical education to effective safe care delivery, health disparities, child health, and behavioral health would provide strong underpinnings for proposed changes in American healthcare delivery. Finally, the article highlights current regulatory barriers to research within the MHS whereas suggesting steps to minimize their impact in conducting HSR.
DEVELOPMENT OF THE U.S. EPA HEALTH EFFECTS RESEARCH LABORATORY FROZEN BLOOD CELL REPOSITORY PROGRAM
In previous efforts, we suggested that proper blood cell freezing and storage is necessary in longitudinal studies with reduced between tests error, for specimen sharing between laboratories and for convenient scheduling of assays. e continue to develop and upgrade programs for o...
Environmental exposures and health impacts of PFAS ...
Environmental exposures and health impacts of PFAS The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.
Gumede, Nicksy; Coulibaly, Sheick Oumar; Yahaya, Ali Ahmed; Ndihokubwayo, Jean-Bosco; Nsubuga, Peter; Okeibunor, Joseph; Dosseh, Annick; Salla, Mbaye; Mihigo, Richard; Mkanda, Pascal; Byabamazima, Charles
2016-10-10
The laboratory has always played a very critical role in diagnosis of the diseases. The success of any disease programme is based on a functional laboratory network. Health laboratory services are an integral component of the health system. Efficiency and effectiveness of both clinical and public health functions including surveillance, diagnosis, prevention, treatment, research and health promotion are influenced by reliable laboratory services. The establishment of the African Regional polio laboratory for the Polio Eradication Initiative (PEI) has contributed in supporting countries in their efforts to strengthen laboratory capacity. On the eve of the closing of the program, we have shown through this article, examples of this contribution in two countries of the African region: Côte d'Ivoire and the Democratic Republic of Congo. Descriptive studies were carried out in Côte d'Ivoire (RCI) and Democratic Republic of Congo (DRC) from October to December 2014. Questionnaires and self-administered and in-depth interviews and group discussions as well as records and observation were used to collect information during laboratory visits and assessments. The PEI financial support allows to maintain the majority of the 14 (DRC) and 12 (RCI) staff involved in the polio laboratory as full or in part time members. Through laboratory technical staff training supported by the PEI, skills and knowledge were gained to reinforce laboratories capacity and performance in quality laboratory functioning, processes and techniques such as cell culture. In the same way, infrastructure was improved and equipment provided. General laboratory quality standards, including the entire laboratory key elements was improved through the PEI accreditation process. The Polio Eradication Initiative (PEI) is a good example of contribution in strengthening public health laboratories systems in the African region. It has established strong Polio Laboratory network that contributed to the strengthening of capacities and its expansion to surveillance of other viral priority diseases such as measles, yellow fever, Influenza, MERS-CoV and Ebola. This could serve as lesson and good example of laboratory based surveillance to improving diseases prevention, detection and control in our middle and low income countries as WHO and partners are heading to polio eradication in the world. Copyright © 2016. Published by Elsevier Ltd.
Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
1992-09-01
This report summarizes progress in OHER biological research and general life sciences research programs conducted conducted at PNL in FLY 1991. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long- term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and newly developed energy-related technologies through an increased understanding of the ways in which radiation and chemicals cause biological damage.
ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS
ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...
ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED AMBIENT AEROSOLS FOR DIFFERENT DOSE METRICS
ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED AMBIENT AEROSOLS FOR DIFFERENT DOSE METRICS.
Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *South...
[Approval of ISO/IEC 17025 and quality control of laboratory testing].
Yamamoto, Shigeki; Asakura, Hiroshi; Machii, Kenji; Igimi, Shizunobu
2010-01-01
First section of Division of Biomedical Food Research, National Institute of Health Sciences (NIHS) was approved by ISO/IEC 17025 as a laboratory having an appropriate laboratory testing technique. NIHS is the first national laboratory approved by ISO/IEC 17025. NIHS has also been accepted the appropriate technique and facility for the BSL3 level pathogens by ISO/IEC 17025. NIHS is necessary to take an external audit almost every year. This approval is renewed every 4 years.
Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It alsomore » summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baalman, R.W.; Dotson, C.W.
1980-02-01
Part 5 of the 1979 Annual Report to the Department of Energy Assistant Secretary for the Environment presents Pacific Northwest Laboratory's progress on work performed for the Office of Technology Impacts, the Office of Environmental Compliance and Overview, and the Office of Health and Environmental Research. The report is in four sections, corresponding to the program elements: technology impacts, environmental control engineering, operational and environmental compliance, and human health studies. In each section, articles describe progress made during FY 1979 on individual projects.
Farmworker Exposure to Pesticides: Methodologic Issues for the Collection of Comparable Data
Arcury, Thomas A.; Quandt, Sara A.; Barr, Dana B.; Hoppin, Jane A.; McCauley, Linda; Grzywacz, Joseph G.; Robson, Mark G.
2006-01-01
The exposure of migrant and seasonal farmworkers and their families to agricultural and residential pesticides is a continuing public health concern. Pesticide exposure research has been spurred on by the development of sensitive and reliable laboratory techniques that allow the detection of minute amounts of pesticides or pesticide metabolites. The power of research on farmworker pesticide exposure has been limited because of variability in the collection of exposure data, the predictors of exposure considered, the laboratory procedures used in analyzing the exposure, and the measurement of exposure. The Farmworker Pesticide Exposure Comparable Data Conference assembled 25 scientists from diverse disciplinary and organizational backgrounds to develop methodologic consensus in four areas of farmworker pesticide exposure research: environmental exposure assessment, biomarkers, personal and occupational predictors of exposure, and health outcomes of exposure. In this introduction to this mini-monograph, first, we present the rationale for the conference and its organization. Second, we discuss some of the important challenges in conducting farmworker pesticide research, including the definition and size of the farmworker population, problems in communication and access, and the organization of agricultural work. Third, we summarize major findings from each of the conference’s four foci—environmental exposure assessment, biomonitoring, predictors of exposure, and health outcomes of exposure—as well as important laboratory and statistical analysis issues that cross-cut the four foci. PMID:16759996
APOPTOSIS IN WHOLE MOUSE OVARIES
Apoptosis in Whole Mouse Ovaries
Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.
MANAGING EXPOSURES TO NEUROTOXIC AIR POLLUTANTS.
Researchers at EPA's National Health and Environmental Effects Research Laboratory are developing a biologically-based dose-response model to describe the neurotoxic effects of exposure to volatile organic compounds (VOCs). The model is being developed to improve risk assessment...
CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: AXIAL RESOLUTION
Abstract
Confocal Microscopy System Performance: Axial resolution.
Robert M. Zucker, PhD
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Re...
The Mid-Continent Ecology Division (MED) conducts innovative research and predictive modeling to document and forecast the effects of pollutants on the integrity of watersheds and freshwater ecosystems.
The Frederick National Laboratory for Cancer Research was established as the Frederick Cancer Research and Development Center in 1972 when about 70 acres and 67 buildings of the U.S. Army were transferred to the U.S. Department of Health and Huma
EPA Water Strategy: Advancing Technologies
National Risk Management Research Laboratory conducts innovative research to manage contaminants in water supplies that pose a threat to human health and the environment, and to develop approaches and tools to monitor, treat, characterize, protect, and restore impaired waterways,...
EPA'S BENTHIC HABITAT DATA FOR YAQUINA ESTUARY
Scientists at EPA's National Health and Environmental Effects Research Laboratory, Western Ecology Division (WED) have been studying seafloor (benthic) habitats in Yaquina estuary for several years. Those studies were conducted as parts of several research projects, including: e...
Du, Lanying; Li, Ye; Gao, Jimin; Zhou, Yusen; Jiang, Shibo
2013-01-01
Summary Influenza A viruses (IAVs), particularly the highly pathogenic avian influenza (HPAI) H5N1, have posed a substantial threat to public health worldwide. Although the laboratory generation of the mutant influenza virus H5N1 with airborne transmissibility among mammals, which has been considered as a dual-use research, may benefit the development of effective vaccines and therapeutics against the emerging infectious agents, it may also pose threats to national biosecurity, laboratory biosafety, and/or public health. This review introduces the classification and characterization of IAVs, pinpoints historic pandemics and epidemics caused by IAVs, emphasizes the significance and necessity of biosafety, summarizes currently established biosafety-related protocols for IAV research, and provides potential strategies to improve biosafety protocols for dual-use research on the highly pathogenic avian influenza viruses and other emerging infectious agents. PMID:22987727
Du, Lanying; Li, Ye; Gao, Jimin; Zhou, Yusen; Jiang, Shibo
2012-11-01
Influenza A viruses (IAVs), particularly the highly pathogenic avian influenza H5N1, have posed a substantial threat to public health worldwide. Although the laboratory generation of the mutant influenza virus H5N1 with airborne transmissibility among mammals, which has been considered as a dual-use research, may benefit the development of effective vaccines and therapeutics against the emerging infectious agents, it may also pose threats to national biosecurity, laboratory biosafety, and/or public health. This review introduces the classification and characterization of IAVs, pinpoints historic pandemics and epidemics caused by IAVs, emphasizes the significance and necessity of biosafety, summarizes currently established biosafety-related protocols for IAV research, and provides potential strategies to improve biosafety protocols for dual-use research on the highly pathogenic avian influenza viruses and other emerging infectious agents. Copyright © 2012 John Wiley & Sons, Ltd.
Oversight of High-Containment Biological Laboratories: Issues for Congress
2009-03-27
construction of two BSL-4 National Biocontainment Laboratories ( NBLs ) and thirteen BSL-3 Regional Biocontainment Laboratories (RBLs). The NBLs and...Congressional Research Service 13 to assist public health efforts during a bioterrorism emergency.50 The two NBLs are being built in Boston, MA, and Galveston...TX.51 The RBLs are geographically dispersed throughout the United States.52 The NBLs and RBLs are being constructed through a grant-making process
Oversight of High-Containment Biological Laboratories: Issues for Congress
2009-05-04
construction of two BSL-4 National Biocontainment Laboratories ( NBLs ) and thirteen BSL-3 Regional Biocontainment Laboratories (RBLs). The NBLs and RBLs...Research Service 13 to assist public health efforts during a bioterrorism or emerging infectious disease emergency.50 The two NBLs are being built in...Boston, MA, and Galveston, TX.51 The RBLs are geographically dispersed throughout the United States.52 The NBLs and RBLs are being constructed
Fisheries and aquatic resources--fish health
Panek, Frank
2008-01-01
Fish health research at Leetown had its origin in the 1930’s when the Leetown Fish Hatchery and Experiment Station was constructed. In 1978, the National Fish Health Research Laboratory, now a component of the Leetown Science Center, was established to solve emerging and known disease problems affecting fish and other aquatic organisms critical to species restoration programs. Center scientists develop methods for the isolation, detection, and identification of fish pathogens and for prevention and control of fish diseases.
Shelton, Shoshana R; Connor, Kathryn; Uscher-Pines, Lori; Pillemer, Francesca Matthews; Mullikin, James M; Kellermann, Arthur L
2012-12-01
The federal government plays a critical role in achieving national health security by providing strategic guidance and funding research to help prevent, respond to, mitigate, and recover from disasters, epidemics, and acts of terrorism. In this article we describe the first-ever inventory of nonclassified national health security-related research funded by civilian agencies of the federal government. Our analysis revealed that the US government's portfolio of health security research is currently weighted toward bioterrorism and emerging biological threats, laboratory methods, and development of biological countermeasures. Eight of ten other priorities identified in the Department of Health and Human Services' National Health Security Strategy-such as developing and maintaining a national health security workforce or incorporating recovery into planning and response-receive scant attention. We offer recommendations to better align federal spending with health security research priorities, including the creation of an interagency working group charged with minimizing research redundancy and filling persistent gaps in knowledge.
Colon Cleansing: Health or Hype?
... Clinical Trials Cancer Genomics Laboratory Cancer Prevention and ... Shot is revolutionizing the conventional medical research approach to rapidly translate findings into patient treatment options ...
Andrade, Luís Renato Balbão; Amaral, Fernando Gonçalves
2012-01-01
Nanotechnologies is a multidisciplinary set of techniques to manipulate matter on nanoscale level, more precisely particles below 100 nm whose characteristic due to small size is essentially different from those found in macro form materials. Regarding to these new properties of the materials there are knowledge gaps about the effects of these particles on human organism and the environment. Although it still being considered emerging technology it is growing increasingly fast as well as the number of products using nanotechnologies in some production level and so the number of researchers involved with the subject. Given this scenario and based on literature related, a comprehensive methodology for health and safety at work for researching laboratories with activities in nanotechnologies was developed, based on ILO structure guidelines for safety and health at work system on which a number of nanospecific recommendations were added to. The work intends to offer food for thought on controlling risks associated to nanotechnologies.
Inhalation Toxicology Research Institute annual report, October 1, 1994--September 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bice, D.E.; Hahn, F.F.; Hoover, M.D.
1995-12-01
The mission of the Inhalation Toxicology Research Institute (ITRI) is to conduct basic and applied research to improve the understanding of the nature and magnitude of the human health impacts of inhaling airborne materials in the home, workplace, and general environment. Institute research programs have a strong basic science orientation with emphasis on the nature and behavior of airborne materials, the fundamental biology of the respiratory tract, the fate of inhaled materials and the mechanisms by which they cause disease, and the means by which data produced in the laboratory can be used to estimate risks to human health. Disordersmore » of the respiratory tract continue to be a major health concern, and inhaled toxicants are thought to contribute substantially to respiratory morbidity. As the largest laboratory dedicated to the study of basic inhalation toxicology, ITRI provides a national resource of specialized facilities, personnel, and educational activities serving the needs of government, academia, and industry. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
Gomez, Leah M; Conlee, Kathleen M; Stephens, Martin L
2010-01-01
The National Institutes of Health (NIH) is a major biomedical research-funding body in the United States. Approximately 40% of NIH-funded research involves experimentation on nonhuman animals (Monastersky, 2008). Institutions that conduct animal research with NIH funds must adhere to the Public Health Service (PHS) care and use standards of the Office of Laboratory Animal Welfare (OLAW, 2002a). Institutions deviating significantly from the PHS's animal care and use standards must report these incidents to the NIH's OLAW. This study is an exploratory analysis of all the significant deviations reported by animal-research facilities to OLAW during a 3-month period. The study identifies the most common issues reported and species involved. The study found that the majority of the incidents resulted in animal pain and distress and that 75% ended in animal death. This study offers preliminary recommendations to address the most common problems identified in this analysis. This study urges OLAW and other stakeholders to analyze larger, more recent samples of reported deviations to compare with these results and ultimately improve adherence to animal welfare standards.
Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizesmore » current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.« less
HLA-B Sequencing in Patients with Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis
2017-03-03
Behavioral Research. " ~: All abstracts, papers, posters, etc .. should contain the following disclaimer statement for research involving animals , as...required by AFMAN 40-401_1P, The Care and Use of Laboratory Animals in DoD Programs: " The experiments reported herein were conducted according to the...principles set forth in the National Institute of Health Publication No. 80-23, Guide for the Care and Use of Laboratory Animals and the Animal
CUMULATIVE RISK ASSESSMENT: GETTING FROM TOXICOLOGY TO QUANTITATIVE ANALYSIS
INTRODUCTION: GETTING FROM TOXICOLOGY TO QUANTITATIVE ANALYSIS FOR CUMULATIVE RISK
Hugh A. Barton1 and Carey N. Pope2
1US EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC
2Department of...
2 CFR Appendix C to Part 230 - Non-Profit Organizations Not Subject to This Part
Code of Federal Regulations, 2010 CFR
2010-01-01
..., Michigan 11. Georgia Institute of Technology/Georgia Tech Applied Research Corporation/Georgia Tech Research Institute, Atlanta, Georgia 12. Hanford Environmental Health Foundation, Richland, Washington 13... Institutes of Research (AIR), Washington DC 4. Argonne National Laboratory, Chicago, Illinois 5. Atomic...
USDA research and honey bee health
USDA-ARS?s Scientific Manuscript database
The USDA - Agricultural Research Service Bee Research Laboratory (BRL) is comprised of nine full-time federal employees and a team of 20+ students and collaborators from the U.S., England, Thailand, Spain, and China. The mission of the BRL is to provide innovative tools and insights for building and...
Wilson, S H; Merkle, S; Brown, D; Moskowitz, J; Hurley, D; Brown, D; Bailey, B J; McClain, M; Misenhimer, M; Buckalew, J; Burks, T
2000-01-01
The National Association of Physicians for the Environment (NAPE) has assumed a leadership role in protecting environmental health in recent years. The Committee of Biomedical Research Leaders was convened at the recent NAPE Leadership Conference: Biomedical Research and the Environment held on 1--2 November 1999, at the National Institutes of Health, Bethesda, Maryland. This report summarizes the discussion of the committee and its recommendations. The charge to the committee was to raise and address issues that will promote and sustain environmental health, safety, and energy efficiency within the biomedical community. Leaders from every important research sector (industry laboratories, academic health centers and institutes, hospitals and care facilities, Federal laboratories, and community-based research facilities) were gathered in this committee to discuss issues relevant to promoting environmental health. The conference and this report focus on the themes of environmental stewardship, sustainable development and "best greening practices." Environmental stewardship, an emerging theme within and outside the biomedical community, symbolizes the effort to provide an integrated, synthesized, and concerted effort to protect the health of the environment in both the present and the future. The primary goal established by the committee is to promote environmentally responsible leadership in the biomedical research community. Key outcomes of the committee's discussion and deliberation were a) the need for a central organization to evaluate, promote, and oversee efforts in environmental stewardship; and b) immediate need to facilitate efficient information transfer relevant to protecting the global environment through a database/clearinghouse. Means to fulfill these needs are discussed in this report. PMID:11121363
Wilson, S H; Merkle, S; Brown, D; Moskowitz, J; Hurley, D; Brown, D; Bailey, B J; McClain, M; Misenhimer, M; Buckalew, J; Burks, T
2000-12-01
The National Association of Physicians for the Environment (NAPE) has assumed a leadership role in protecting environmental health in recent years. The Committee of Biomedical Research Leaders was convened at the recent NAPE Leadership Conference: Biomedical Research and the Environment held on 1--2 November 1999, at the National Institutes of Health, Bethesda, Maryland. This report summarizes the discussion of the committee and its recommendations. The charge to the committee was to raise and address issues that will promote and sustain environmental health, safety, and energy efficiency within the biomedical community. Leaders from every important research sector (industry laboratories, academic health centers and institutes, hospitals and care facilities, Federal laboratories, and community-based research facilities) were gathered in this committee to discuss issues relevant to promoting environmental health. The conference and this report focus on the themes of environmental stewardship, sustainable development and "best greening practices." Environmental stewardship, an emerging theme within and outside the biomedical community, symbolizes the effort to provide an integrated, synthesized, and concerted effort to protect the health of the environment in both the present and the future. The primary goal established by the committee is to promote environmentally responsible leadership in the biomedical research community. Key outcomes of the committee's discussion and deliberation were a) the need for a central organization to evaluate, promote, and oversee efforts in environmental stewardship; and b) immediate need to facilitate efficient information transfer relevant to protecting the global environment through a database/clearinghouse. Means to fulfill these needs are discussed in this report.
A DATABASE FOR TRACKING REPRODUCTIVE TOXICOGENOMIC DATA
A Database for Tracking Reproductive Toxicogenomic Data
Wenjun Bao, Judy Schmid, Amber Goetz, Hongzu Ren and David Dix
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Pr...
CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE OVARIES
Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle...
USDA dietary supplement ingredient database, release 2
USDA-ARS?s Scientific Manuscript database
The Nutrient Data Laboratory (NDL),Beltsville Human Nutrition Research Center (BHNRC), Agricultural Research Service (ARS), USDA, in collaboration with the Office of Dietary Supplements, National Institutes of Health (ODS/NIH) and other federal agencies has developed a Dietary Supplement Ingredient ...
Behavorial assessments of larval zebrafish neurotoxicology
Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...
The Arthropod-Borne Animal Diseases Research Laboratory: Research Program: Update and Current Status
USDA-ARS?s Scientific Manuscript database
The ABADRL has three 5-year project plans under two ARS National Research Programs. One project plan under the Animal Health National Program is entitled “Countermeasures to control and eradicate Rift Valley fever (RVF)”. Research objectives in this plan are 1) to determine the vector competence of ...
Wright, M. Jerry; Valentine, Gerald
2017-01-01
Objective The 2009 Family Smoking Prevention and Tobacco Control Act (TCA) created unprecented enabling conditions for establishing national regulatory policy that reduces the burden of public health and societal problems associated with tobacco product use. The Center for Tobacco Products (CTP), created by the FDA to implement the TCA, developed a first-of-its-kind FDA/National Institutes of Health (NIH) collaborative program to fund Tobacco Centers of Regulatory Science (TCORS). Methods To assist the TCORS with addressing research priorites, working groups (WGs) comprised of FDA-CTP liasions and TCORS investigators were formed. Under the direction of the Center for Evaluation and Coordination of Trainin and Research (CECTR), the TCORS WGs seek to develop tangible work products in their respective areas of focus. Results The focus of the behavioral pharmacology WG evolved from publishing a narrow paper on behavioral methods in electronic cigarette research to a collection of papers on advances in behavioral laboratory methods that may inform tobacco regulatory science. Conclusion This Special Issue contains articles that address all of the CTP research priorities and demonstrates how advances in behavioral laboratory methods made by TCORS investigators can inform FDA efforst to regulate tobacco products. PMID:29152546
Liu, Liyue; Pan, Luyuan; Li, Kuoyu; Zhang, Yun; Zhu, Zuoyan; Sun, Yonghua
2016-07-01
In China, the use of zebrafish as an experimental animal in the past 15 years has widely expanded. The China Zebrafish Resource Center (CZRC), which was established in 2012, is becoming one of the major resource centers in the global zebrafish community. Large-scale use and regular exchange of zebrafish resources have put forward higher requirements on zebrafish health issues in China. This article reports the current aquatic infrastructure design, animal husbandry, and health-monitoring programs in the CZRC. Meanwhile, through a survey of 20 Chinese zebrafish laboratories, we also describe the current health status of major zebrafish facilities in China. We conclude that it is of great importance to establish a widely accepted health standard and health-monitoring strategy in the Chinese zebrafish research community.
Program director`s overview report for the Office of Health & Environmental Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, D.
1994-02-01
LBL performs basic and applied research and develops technologies in support of the Office of Health and Environmental Research`s mission to explore and mitigate the long-term health and environmental consequences of energy use and to advance solutions to major medical challenges. The ability of the Laboratory to engage in this mission depends upon the strength of its core competencies. In addition, there are several key capabilities that are cross-cutting, or underlie, many of the core competencies. Attention is focused on the following: Facilities and resources; research management practices; research in progress; program accomplishments and research highlights; program orientation; work formore » non-OHER organizations DOE; critical issues; and resource orientation.« less
Horby, Peter; Wertheim, Heiman; Ha, Nguyen Hong; Trung, Nguyen Vu; Trinh, Dao Tuyet; Taylor, Walter; Ha, Nguyen Minh; Lien, Trinh Thi Minh; Farrar, Jeremy; Van Kinh, Nguyen
2010-06-01
Streptococcus suis is a common cause of adult bacterial meningitis in Viet Nam, and possibly other parts of Asia, yet this disabling infection has been largely neglected. Prevention, diagnosis and treatment are relatively straightforward and affordable but, in early 2007, no national diagnostic, case management or prevention guidelines existed in Viet Nam. Enhanced detection of S. suis infections was established in 2007 as part of a collaborative research programme between the National Hospital for Tropical Diseases, a key national hospital with very close links to the Ministry of Health, and a research group affiliated with Oxford University based in Viet Nam. The results were reported directly to policy-makers at the Ministry of Health. Viet Nam is a low-income country with a health-care system that has seen considerable improvements and increased autonomy. However, parts of the system remain fairly centralized the Ministry of Health. Following the improved detection and reporting of S. suis cases, the Ministry of Health issued guidance to all hospitals in Viet Nam on the clinical and laboratory diagnosis, treatment and prevention of S. suis. A public health laboratory diagnostic service was established at the National Institute of Hygiene and Epidemiology and training courses were conducted for clinicians and microbiologists. Ministry of Health guidance on surveillance and control of communicable diseases was updated to include a section on S. suis. Research collaborations can efficiently inform and influence national responses if they are well positioned to reach policy-makers.
77 FR 75639 - National Cancer Institute Notice of Closed Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-21
... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Cancer Institute... Proposed Frederick National Laboratory for Cancer Research Strategic Plan. Place: The Lawrence Berkeley..., Berkeley, CA 94720. Contact Person: Thomas M. Vollberg, Sr., Ph.D., Executive Secretary, National Cancer...
Standardization of Laboratory Methods for the PERCH Study
Karron, Ruth A.; Morpeth, Susan C.; Bhat, Niranjan; Levine, Orin S.; Baggett, Henry C.; Brooks, W. Abdullah; Feikin, Daniel R.; Hammitt, Laura L.; Howie, Stephen R. C.; Knoll, Maria Deloria; Kotloff, Karen L.; Madhi, Shabir A.; Scott, J. Anthony G.; Thea, Donald M.; Adrian, Peter V.; Ahmed, Dilruba; Alam, Muntasir; Anderson, Trevor P.; Antonio, Martin; Baillie, Vicky L.; Dione, Michel; Endtz, Hubert P.; Gitahi, Caroline; Karani, Angela; Kwenda, Geoffrey; Maiga, Abdoul Aziz; McClellan, Jessica; Mitchell, Joanne L.; Morailane, Palesa; Mugo, Daisy; Mwaba, John; Mwansa, James; Mwarumba, Salim; Nyongesa, Sammy; Panchalingam, Sandra; Rahman, Mustafizur; Sawatwong, Pongpun; Tamboura, Boubou; Toure, Aliou; Whistler, Toni; O’Brien, Katherine L.; Murdoch, David R.
2017-01-01
Abstract The Pneumonia Etiology Research for Child Health study was conducted across 7 diverse research sites and relied on standardized clinical and laboratory methods for the accurate and meaningful interpretation of pneumonia etiology data. Blood, respiratory specimens, and urine were collected from children aged 1–59 months hospitalized with severe or very severe pneumonia and community controls of the same age without severe pneumonia and were tested with an extensive array of laboratory diagnostic tests. A standardized testing algorithm and standard operating procedures were applied across all study sites. Site laboratories received uniform training, equipment, and reagents for core testing methods. Standardization was further assured by routine teleconferences, in-person meetings, site monitoring visits, and internal and external quality assurance testing. Targeted confirmatory testing and testing by specialized assays were done at a central reference laboratory. PMID:28575358
Guo, David P; Thomas, I-Chun; Mittakanti, Harsha R; Shelton, Jeremy B; Makarov, Danil V; Skolarus, Ted A; Cooperberg, Mathew R; Sonn, Geoffrey A; Chung, Benjamin I; Brooks, James D; Leppert, John T
2018-04-06
We sought to characterize the effects of prostate specific antigen registry errors on clinical research by comparing cohorts based on cancer registry prostate specific antigen values with those based directly on results in the electronic health record. We defined sample cohorts of men with prostate cancer using data from the VHA (Veterans Health Administration), including those with a prostate specific antigen value less than 4.0, 4.0 to 10.0, 10.0 to 20.0 and 20.0 to 98.0 ng/ml, respectively. We compared the composition of each cohort and overall patient survival when using PSA values from the VACCR (Veteran Affairs Central Cancer Registry) vs the gold standard electronic health record laboratory file results. There was limited agreement among cohorts when defined by cancer registry PSA values vs the laboratory file of the electronic health record. The least agreement of 58% was seen in patients with PSA less than 4.0 ng/ml and greatest agreement of 89% was noted among patients with PSA between 4.0 and 10.0 ng/ml. In each cohort patients assigned to a cohort based only on the cancer registry PSA value had significantly different overall survival when compared with patients assigned based on registry and laboratory file PSA values. Cohorts based exclusively on cancer registry PSA values may have high rates of misclassification that can introduce concerning differences in key characteristics and result in measurable differences in clinical outcomes. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...
QUALITY CONTROL FOR RESEARCH STUDIES: A CRITICAL PART OF THE QUALITY SYSTEM AT THE U. S. EPA
QUALITY CONTROL FOR RESEARCH STUDIES: A CRITICAL PART OF THE QUALITY SYSTEM AT THE U.S. EPA Mette C.J. Schladweiler, Scientist, and Thomas J. Hughes, QA and Records Manager, Experimental Toxicology Division (ETD), National Health and Environmental Effects Research Laboratory (NHE...
In July 2012, members of a multidisciplinary research team of both SAIC-Frederick and NCI Center for Cancer Research scientists were recognized with the NIH Director’s Award for their outstanding work to rapidly evaluate a potential threat to the n
BASE (Basin-Scale Assessments for Sustainable Ecosystems) is a research program developed by the Ecosystems Research Division of the National Exposure Research Laboratory to explore and formulate approaches for assessing the sustainability of ecological resources within watershed...
Spatiotemporally-Resolved Air Exchange Rate as a Modifier of Acute Air Pollution-Related Morbidity
The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...
Ficca, S A; Chyun, Y D; Ebrahimi, M; Kutlak, F; Memarzadeh, F
2000-01-01
The National Institutes of Health (NIH) is one of the world's premier biomedical research centers. Although NIH owns and operates more than 1,300 acres and 197 buildings across the country, the main campus is in Bethesda, Maryland. This campus consists of over 312 acres and 75 laboratories and other buildings, which consume vast amounts of energy. Aware of the NIH role in setting biomedical research agendas and priorities, its administrators strive to set good examples in energy efficiency and pollution prevention. Three current projects are presented as "best practices" examples of meeting the stated commitment of NIH to leadership in environmental stewardship: a) design and current construction of a 250-bed clinical research hospital designed to allow conversion of patient care units to research laboratories and vice-versa; b) design and construction of a six-story research laboratory that combines energy-saving innovations with breakthroughs in research technologies; and c) a massive, $200-million modernization of the campus utility infrastructure that involves generation systems for steam and chilled water and distribution systems for chilled water, steam, potable water, electricity, communications and computer networking, compressed air, and natural gas. Based on introduction of energy-efficiency measures, millions of dollars in savings for energy needs are projected; already the local electric utility has granted several million dollars in rebates. The guiding principles of NIH environmental stewardship help to ensure that energy conservation measures maximize benefits versus cost and also balance expediency with efficiency within available funding resources. This is a committee report for the Leadership Conference: Biomedical Research and the Environment held 1--2 November 1999 at the National Institutes of Health, Bethesda, Maryland. PMID:11121359
ENVIRONMENTAL TOXICANTS AND DISRUPTED MAMMARY GLAND DEVELOPMENT: THE WINDOW OF SUSCEPTIBILITY
Environmental Toxicants and Altered Mammary Gland Development: The window of susceptibility. Suzanne E. Fenton, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
There are several enviro...
UV RADIATION MEASUREMENTS/ATMOSPHERIC CHARACTERIZATION
Because exposure to ultraviolet (UV) radiation is an ecosystem stressor and poses a human health risk, the National Exposure Research Laboratory (NERL) has undertaken a research program to measure the intensity of UV-B radiation at various locations throughout the U.S. In Septem...
CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: QA TESTS, QUANTITATION AND SPECTROSCOPY
Confocal Microscopy System Performance: QA tests, Quantitation and Spectroscopy.
Robert M. Zucker 1 and Jeremy M. Lerner 2,
1Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research Development, U.S. Environmen...
EVALUATION OF CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: PRETTY PICTURES OR CONFOCAL QA
Evaluation of confocal microscopy system performance: Pretty pictures or confocal QA?
Robert M. Zucker
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, N...
PULMONARY HYPERRESPONSIVENESS FOLLOWING DERMAL EXPOSURE TO SELECTED DIISOCYANATES
PULMONARY HYPERRESPONSIVENESS FOLLOWING DERMAL EXPOSURE TO SELECTED DIISOCYANATES
M.J.K. Selgrade, E.H. Boykin, N.H. Coates, D.L. Doerfler, S.H. Gavett
Experimental Toxicology Div., National Health and Environmental Research Laboratory, Office of Research and Developmen...
ENVIRONMENTAL TOXICANTS AND ALTERED MAMMARY GLAND DEVELOPMENT: THE WINDOW OF SUSCEPTIBILITY
Environmental Toxicants and Altered Mammary Gland Development: The window of susceptibility. Suzanne E. Fenton, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
There are several environm...
GENOMIC ANALYSIS OF THE TESTICULAR TOXICITY OF HALOACETIC ACIDS
Genomic analysis of the testicular toxicity of haloacetic acids
David J. Dix and John C. Rockett
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, R...
The Atlantic Ecology Division (AED), conducts innovative research and predictive modeling to assess and forecast the risks of anthropogenic stressors to near coastal waters and their watersheds, to develop tools to support resilient watersheds.
Journal of Undergraduate Research, Volume IX, 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiner, K. S.; Graham, S.; Khan, M.
Each year more than 600 undergraduate students are awarded paid internships at the Department of Energy’s (DOE) National Laboratories. Th ese interns are paired with research scientists who serve as mentors in authentic research projects. All participants write a research abstract and present at a poster session and/or complete a fulllength research paper. Abstracts and selected papers from our 2007–2008 interns that represent the breadth and depth of undergraduate research performed each year at our National Laboratories are published here in the Journal of Undergraduate Research. The fields in which these students worked included: Biology; Chemistry; Computer Science; Engineering; Environmentalmore » Science; General Science; Materials Science; Medical and Health Sciences; Nuclear Science; Physics; Science Policy; and Waste Management.« less
Experiences from the National Institute of Nursing Research: Summer Genetics Institute 2004.
Whitt, Karen J
2005-02-01
The National Institute of Nursing Research (NINR) Summer Genetics Institute (SGI) prepares nurses with training in molecular genetics for use in clinical practice, research, and education. Experiences from the SGI 2004 are recounted. More than 35 genetic experts from National Institutes of Health and surrounding universities in Washington, D.C., provided lecture and laboratory experiences. The lecture portion of the SGI focused on the molecular aspect of genetics and the laboratory component included experiments designed to provide an understanding of genetic approaches for diagnostic and research purposes. The SGI prepares nurses with the genetic foundation to meet the healthcare challenges of the future.
Overview and challenges of molecular technologies in the veterinary microbiology laboratory.
Cunha, Mónica V; Inácio, João
2015-01-01
Terrestrial, aquatic, and aerial animals, either domestic or wild, humans, and plants all face similar health threats caused by infectious agents. Multifaceted anthropic pressure caused by an increasingly growing and resource-demanding human population has affected biodiversity at all scales, from the DNA molecule to the pathogen, to the ecosystem level, leading to species declines and extinctions and, also, to host-pathogen coevolution processes. Technological developments over the last century have also led to quantic jumps in laboratorial testing that have highly impacted animal health and welfare, ameliorated animal management and animal trade, safeguarded public health, and ultimately helped to "secure" biodiversity. In particular, the field of molecular diagnostics experienced tremendous technical progresses over the last two decades that significantly have contributed to our ability to study microbial pathogens in the clinical and research laboratories. This chapter highlights the strengths, weaknesses, opportunities, and threats (or challenges) of molecular technologies in the framework of a veterinary microbiology laboratory, in view of the latest advances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Lonkhuyzen, R.; Stull, L.; Butler, J.
The National Institutes of Health (NIH) has proposed to partially fund the construction of the Howard T. Ricketts (HTR) regional biocontainment laboratory (RBL) by the University of Chicago at the U.S. Department of Energy's (DOE's) Argonne National Laboratory in Argonne, Illinois. The HTR Laboratory (HTRL) would be constructed, owned, and operated by the University of Chicago on land leased to it by DOE. The preferred project site is located north of Eastwood Drive and west of Outer Circle Road and is near the biological sciences building. This environmental assessment addresses the potential environmental effects resulting from construction and operation ofmore » the proposed facility. The proposed project involves the construction of a research facility with a footprint up to approximately 44,000 ft{sup 2} (4,088 m{sup 2}). The proposed building would house research laboratories, including Biosafety Level 2 and 3 biocontainment space, animal research facilities, administrative offices, and building support areas. The NIH has identified a need for new facilities to support research on potential bioterrorism agents and emerging and re-emerging infectious diseases, to protect the nation from such threats to public health. This research requires specialized laboratory facilities that are designed, managed, and operated to protect laboratory workers and the surrounding community from accidental exposure to agents. The proposed HTRL would provide needed biocontainment space to researchers and promote the advancement of knowledge in the disciplines of biodefense and emerging and re-emerging infectious diseases. Several alternatives were considered for the location of the proposed facility, as well as a no action alternative. The preferred alternative includes the construction of a research facility, up to 44,000 ft{sup 2} (4,088 m{sup 2}), at Argonne National Laboratory, a secure government location. Potential impacts to natural and cultural resources have been evaluated in this document. The proposed activities would result in the conversion of approximately 4 acres (2 ha) of old field and open woodland for the proposed facility and landscaped areas. Impacts of the proposed project on the following resources would be minor or negligible: human health, socioeconomics, air quality, noise levels, water quality, waste management, land use, the visual environment, cultural resources, soils, terrestrial biota, wetlands or aquatic biota, threatened and endangered species, transportation, utilities and services, and environmental justice. This environmental assessment has been completed to satisfy the requirements of the National Environmental Policy Act of 1969 and has been prepared in accordance with NIH guidelines and in coordination with federal, state, and local agency requirements. On the basis of the results of this assessment, impacts to environmental resources from the proposed project would be minor or negligible, provided that the project is implemented in accordance with the impact avoidance and mitigation measures described herein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
1986-02-01
This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, whichmore » contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology.« less
NASA Technical Reports Server (NTRS)
Mayor, Antoinette C.
1999-01-01
The Chemical Management Team is responsible for ensuring compliance with the OSHA Laboratory Standard. The program at Lewis Research Center (LeRC) evolved over many years to include training, developing Standard Operating Procedures (SOPS) for each laboratory process, coordinating with other safety and health organizations and teams at the Center, and issuing an SOP binder. The Chemical Hygiene Policy was first established for the Center. The Chemical Hygiene Plan was established and reviewed by technical, laboratory and management for viability and applicability to the Center. A risk assessment was conducted for each laboratory. The laboratories were prioritized by order of risk, higher risk taking priority. A Chemical Management Team staff member interviewed the lead researcher for each laboratory process to gather the information needed to develop the SOP for the process. A binder containing the Chemical Hygiene Plan, the SOP, a map of the laboratory identifying the personal protective equipment and best egress, and glove guides, as well as other guides for safety and health. Each laboratory process has been captured in the form of an SOP. The chemicals used in the procedure have been identified and the information is used to reduce the number of chemicals in the lab. The Chemical Hygiene Plan binder is used as a training tool for new employees. LeRC is in compliance with the OSHA Standard. The program was designed to comply with the OSHA standard. In the process, we have been able to assess the usage of chemicals in the laboratories, as well as reduce or relocate the chemicals being stored in the laboratory. Our researchers are trained on the hazards of the materials they work with and have a better understanding of the hazards of the process and what is needed to prevent any incident. From the SOP process, we have been able to reduce our chemical inventory, determine and implement better hygiene procedures and equipment in the laboratories, and provide specific training to our employees. As a result of this program, we are adding labeling to the laboratories for emergency responders and initiating a certified chemical user program.
Health and Environmental Research. Summary of Accomplishments
DOE R&D Accomplishments Database
1984-04-01
This is a short account of a 40-year-old health and environmental research program performed in national laboratories, universities, and research institutes. Under the sponsorship of the federal agencies that were consecutively responsible for the national energy mission, this research program has contributed to the understanding of the human health and environmental effects of emergining energy technologies. In so doing, it has also evolved several nuclear techniques for the diagnosis and treatment of human ills. The form of this presentation is through examples of significant, tangible accomplishments in each of these areas at certain times to illustrate the role and impact of the research program. The narrative of this research program concludes with a perspective of its past and a prospectus on its future.
1991-03-01
SAIC Editors: Cynthia A. Marut Ellsabeth M. Smoda SCIENCE APPLICATIONS EPIDEMIOLOGY RESEARCH DIVISION INTERNATIONAL CORPORATION ARMSTRONG LABORATORY...8400 Westpark Drive HUMAN SYSTEMS DIVISION (AFSC) McLean, VA 22102 Brooks Air Force Base, TX 78235 in con/unction WithS~DTIC SCRIPPS CLINIC & RESEARCH ...FOUNDATION, LET LA JOLLA. CA ELECTEJ•UL 011991, NATIONAL OPINION RESEARCH CENTER. CHICAGO. IL Marchl 1tO1 Introduction. Backgroend and Conclusions
The protection of laboratory animals: a response to Stephenson.
Parker, J
1994-08-01
This paper clarifies certain issues raised by Wendell Stephenson (The Journal of Medicine and Philosophy 18: 375-388, 1993) about research programs and animal care practices at the Oregon Regional Primate Research Center. It also responds to Stephenson's critique of the National Institute of Health's Guide for the Care and Use of Laboratory Animals. It identifies utilitarianism as the ethical theory underlying Stephenson's critique. Arguing that such an ethical theory is unworkable in addressing concerns about biomedical research and the use of animals, the paper defends the Guide's reliance on a wider tradition of ethical theories.
Health Effects of Chronic Exposure to Arsenic via Drinking Water in Inner Mongolia: V. Biomarker Studies - a Pilot Study
Michael T. Schmitt, M.S.P.H., Judy S. Mumford, Ph.D., National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agenc...
ERIC Educational Resources Information Center
Prusin, Todd
2012-01-01
Medical librarianship is changing in health care environments. Since 1996, by which time the standards that determine how hospitals acquire accreditation changed, many hospitals have been acquiring accreditation without a qualified medical librarian on site. For that reason, it has become even more important that health care professionals,…
1983-04-01
Environmental Samples, ~ Health Effects Research Laboratory, U. S. Environmental Protection Agency, Research Triangle Park, North Carolina, December, 1976. 7...Family Sapindaceae Genus cardiosperrum halicacabwn Family Malvaceae Genus Hibiscus moecheutos 0 H. militaris Family Hypericaceae Genus Hypericwn waiteri...Algal metabolites 4 can produce taste, coloration and even health problems whicn might limit water use. Orthophosphates and inorganic nitrogen (TIN) are
ROLE OF MONOCYTES AND EOSINOPHILS IN RESPIRATORY SYNCTIAL VIRUS (RSV) INFECTION
Role of Monocytes and Eosinophils
in Respiratory Syncytial Virus (RSV) Infection
Joleen M. Soukup and Susanne Becker
US Environmental Protection Agency, National Health and Environmental
Effects Research Laboratory, Research Triangle Park, NC 27711;
...
NUTRIENT AND HABITAT INDICATORS FOR CRITERIA DEVELOPMENT IN THE GREAT LAKES COASTAL WETLANDS
EPA?s National Health and Environmental Effects Research Laboratory (NHEERL) has developed a national research program with the goal of demonstrating approaches for establishing scientifically sound nutrient and biological criteria for coastal ecosystems. Mid-Continent Ecology D...
CONFOCAL LASER SCANNING MICROSCOPY OF APOPTOSIS IN WHOLE MOUSE AND RAT OVARIES
Confocal Laser Scanning Microscopy of Apoptosis in Whole Mouse and Rat Ovaries. Robert M. Zucker Susan C. Jeffay and Sally D. Perreault Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research ...
ROLE OF MONOCYTES IN RESPIRATORY SYNCTIAL VIRUS (RSV) INFECTION.
ROLE OF MONOCYTES IN RESPIRATORY SYNCYTIAL VIRUS (RSV) INFECTION.
Joleen M. Soukup and Susanne Becker, National Health and Environmental Effects Research
Laboratory, US EPA, Research Traingle Park, NC USA.
RSV infection in airway epithelial cells (EC) results i...
75 FR 70002 - Senior Executive Service Performance Review Board; Membership
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-16
... CONTACT: Karen D. Higginbotham, Director, Executive Resources Division, 3606A, Office of Human Resources... Human Resources, Office of Administration and Resources Management; William H. Benson, Director, Gulf Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and...
GENDER-SPECIFIC DIFFERENCES IN THE RESPONSE OF MATURING GAMETES TO TOXIC INSULT
GENDER-SPECIFIC DIFFERENCES IN THE RESPONSE OF MATURING GAMETES TO TOXIC INSULT
Sally D. Perreault, U. S. Environmental Toxicology Division, National Health and Environmental Effects Research Laboratory, Reproductive Toxicology Division, Research Triangle Park, NC 27711
ASSESSMENT OF ESTROGENICITY BY USING THE DELAYED IMPLANTING RAT MODEL AND EXAMPLES
Assessment of estrogenicity by using the delayed implanting rat model and examples.
Cummings AM, Laws SC.
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, N...
ANALYSIS OF SERLOGICAL RESPONSES TO CRYPTOSPORIDIUM ANTIGEN AMONG NHANES III PARTICIPANTS
Lovelace Respiratory Research Institute, Albuquerque, New Mexico (F.J.F., T.B.M.); National Health and Environmental Effects Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina (R.L.C.); and Gunther F. Craun and Associates, Staunton, Virginia (G...
Pacific Northwest Laboratory Annual Report for 1992 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreml, S.A.; Park, J.F.
1993-06-01
This report summarizes progress in OHER biological research and general life sciences research programs conducted at PNL in FY 1992. The research develops the knowledge and fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from energy-related technologies through an increase understanding of the ways in which radiation and chemicals cause biological damage. Descriptors of individual research projects as detailed in this report one separately abstracted and indexed for the database.
ETD QA CORE TEAM: AN ELOQUENT SOLUTION TO A COMPLEX PROBLEM
ETD QA CORE TEAM: AN ELOQUENT SOLUTION TO A COMPLEX PROBLEMThomas J. Hughes, QA and Records Manager, Experimental Toxicology Division (ETD), National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, RTP, NC 27709
ETD is the largest health divis...
The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...
The talk will highlight key aspects and results of analytical methods the EPA National Health and Environmental Effects Research Laboratory (NHEERL) Analytical Chemistry Research Core (ACRC) develops and uses to provide data on disposition, metabolism, and effects of environmenta...
The U.S. Environmental Protection Agency’s “Four Lab Study” involved participation of researchers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from the water industry and academia. The study evaluated toxicological...
Tenure Track/Tenure Eligible Positions | Center for Cancer Research
The newly established RNA Biology Laboratory at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting Tenure-eligible or Tenure Track Investigators to join the Intramural Research Program’s mission of high impact, high reward science. These positions, which are supported with stable
Tenure Track/Tenure Eligible Positions | Center for Cancer Research
The newly established Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), in Bethesda, Maryland is recruiting Tenure-eligible or Tenure Track Investigators to join the Intramural Research Program’s mission of high-impact, high reward science. These positions, which are supported with
Review of recent trends in cholera research and control
Felsenfeld, O.
1966-01-01
Since 1961 cholera El Tor has been sweeping through the Far East, and this dissemination of the disease has stimulated research not only in the countries afflicted but also in Europe and the Americas. New laboratories and workers have entered the field and many fresh ideas and concepts have emerged. The time seemed ripe, therefore, to survey the most important papers published since 1959, when the literature on cholera was thoroughly reviewed by Pollitzer, for the benefit both of those engaged in research and of those concerned with public health practice. This review covers history and incidence, causative agents (including the ”classical”, ”El Tor” and ”incomplete” forms), pathophysiology, diagnosis, treatment, mode of spreading and control measures (with particular reference to public health education and the International Sanitary Regulations). An annex, intended for laboratory use, contains selected procedures for the isolation and identification of cholera vibrios. PMID:5328492
Biosecurity through Public Health System Design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyeler, Walter E.; Finley, Patrick D.; Arndt, William
We applied modeling and simulation to examine the real-world tradeoffs between developingcountry public-health improvement and the need to improve the identification, tracking, and security of agents with bio-weapons potential. Traditionally, the international community has applied facility-focused strategies for improving biosecurity and biosafety. This work examines how system-level assessments and improvements can foster biosecurity and biosafety. We modeled medical laboratory resources and capabilities to identify scenarios where biosurveillance goals are transparently aligned with public health needs, and resource are distributed in a way that maximizes their ability to serve patients while minimizing security a nd safety risks. Our modeling platform simulatesmore » key processes involved in healthcare system operation, such as sample collection, transport, and analysis at medical laboratories. The research reported here extends the prior art by provided two key compone nts for comparative performance assessment: a model of patient interaction dynamics, and the capability to perform uncertainty quantification. In addition, we have outlined a process for incorporating quantitative biosecurity and biosafety risk measures. Two test problems were used to exercise these research products examine (a) Systemic effects of technological innovation and (b) Right -sizing of laboratory networks.« less
Recommendations for Health Monitoring and Reporting for Zebrafish Research Facilities
Crim, Marcus J.; Lieggi, Christine
2016-01-01
Abstract The presence of subclinical infection or clinical disease in laboratory zebrafish may have a significant impact on research results, animal health and welfare, and transfer of animals between institutions. As use of zebrafish as a model of disease increases, a harmonized method for monitoring and reporting the health status of animals will facilitate the transfer of animals, allow institutions to exclude diseases that may negatively impact their research programs, and improve animal health and welfare. All zebrafish facilities should implement a health monitoring program. In this study, we review important aspects of a health monitoring program, including choice of agents, samples for testing, available testing methodologies, housing and husbandry, cost, test subjects, and a harmonized method for reporting results. Facilities may use these recommendations to implement their own health monitoring program. PMID:26991393
Shurtleff, Amy C; Garza, Nicole; Lackemeyer, Matthew; Carrion, Ricardo; Griffiths, Anthony; Patterson, Jean; Edwin, Samuel S; Bavari, Sina
2012-12-01
We describe herein, limitations on research at biosafety level 4 (BSL-4) containment laboratories, with regard to biosecurity regulations, safety considerations, research space limitations, and physical constraints in executing experimental procedures. These limitations can severely impact the number of collaborations and size of research projects investigating microbial pathogens of biodefense concern. Acquisition, use, storage, and transfer of biological select agents and toxins (BSAT) are highly regulated due to their potential to pose a severe threat to public health and safety. All federal, state, city, and local regulations must be followed to obtain and maintain registration for the institution to conduct research involving BSAT. These include initial screening and continuous monitoring of personnel, controlled access to containment laboratories, accurate and current BSAT inventory records. Safety considerations are paramount in BSL-4 containment laboratories while considering the types of research tools, workflow and time required for conducting both in vivo and in vitro experiments in limited space. Required use of a positive-pressure encapsulating suit imposes tremendous physical limitations on the researcher. Successful mitigation of these constraints requires additional time, effort, good communication, and creative solutions. Test and evaluation of novel vaccines and therapeutics conducted under good laboratory practice (GLP) conditions for FDA approval are prioritized and frequently share the same physical space with important ongoing basic research studies. The possibilities and limitations of biomedical research involving microbial pathogens of biodefense concern in BSL-4 containment laboratories are explored in this review.
Shurtleff, Amy C.; Garza, Nicole; Lackemeyer, Matthew; Carrion, Ricardo; Griffiths, Anthony; Patterson, Jean; Edwin, Samuel S.; Bavari, Sina
2012-01-01
We describe herein, limitations on research at biosafety level 4 (BSL-4) containment laboratories, with regard to biosecurity regulations, safety considerations, research space limitations, and physical constraints in executing experimental procedures. These limitations can severely impact the number of collaborations and size of research projects investigating microbial pathogens of biodefense concern. Acquisition, use, storage, and transfer of biological select agents and toxins (BSAT) are highly regulated due to their potential to pose a severe threat to public health and safety. All federal, state, city, and local regulations must be followed to obtain and maintain registration for the institution to conduct research involving BSAT. These include initial screening and continuous monitoring of personnel, controlled access to containment laboratories, accurate and current BSAT inventory records. Safety considerations are paramount in BSL-4 containment laboratories while considering the types of research tools, workflow and time required for conducting both in vivo and in vitro experiments in limited space. Required use of a positive-pressure encapsulating suit imposes tremendous physical limitations on the researcher. Successful mitigation of these constraints requires additional time, effort, good communication, and creative solutions. Test and evaluation of novel vaccines and therapeutics conducted under good laboratory practice (GLP) conditions for FDA approval are prioritized and frequently share the same physical space with important ongoing basic research studies. The possibilities and limitations of biomedical research involving microbial pathogens of biodefense concern in BSL-4 containment laboratories are explored in this review. PMID:23342380
Modular laboratories--cost-effective and sustainable infrastructure for resource-limited settings.
Bridges, Daniel J; Colborn, James; Chan, Adeline S T; Winters, Anna M; Dengala, Dereje; Fornadel, Christen M; Kosloff, Barry
2014-12-01
High-quality laboratory space to support basic science, clinical research projects, or health services is often severely lacking in the developing world. Moreover, the construction of suitable facilities using traditional methods is time-consuming, expensive, and challenging to implement. Three real world examples showing how shipping containers can be converted into modern laboratories are highlighted. These include use as an insectary, a molecular laboratory, and a BSL-3 containment laboratory. These modular conversions have a number of advantages over brick and mortar construction and provide a cost-effective and timely solution to offer high-quality, user-friendly laboratory space applicable within the developing world. © The American Society of Tropical Medicine and Hygiene.
GENOMIC AND PROTEOMIC ANALYSIS OF SURROGATE TISSUES FOR ASSESSING TOXIC EXPOSURES AND DISEASE STATES
Genomic and Proteomic Analysis of Surrogate Tissues for Assessing Toxic Exposures and Disease States
David J. Dix and John C. Rockett
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, USEPA, ...
EFFECTS OF INGESTED ARSENIC ON DNA AND CHROMOSOME IN HUMAN EXFOLIATED EPITHELIA
Effects of Ingested Arsenic on DNA and Chromosome in Human Exfoliated Epithelia
Judy L. Mumford, Human Studies Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711
Arsenic...
COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES
COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES
T Martonen1 and J Schroeter2
1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711 USA and 2Curriculum in Toxicology, Unive...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
... other health care 325411 facilities, commercial 325412 research laboratories, 562213 commercial waste... hearing is held, it will be held at EPA's Campus located at 109 T.W. Alexander Drive in Research Triangle... (E143-03), [[Page 27250
HUMAN INFECTION WITH NONTUBERCULOUS MYCOBACTERIA SPP. IN KING COUNTY, WASHINGTON, 1999-2002
Human infection with nontuberculous Mycobacteria spp. in King County, Washington, 1999 - 2002
E Hilborn, T Covert, M Yakrus, G Stelma, M Schmitt
1) US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Research Laboratory,...
FREQUENCY-DEPENDENT CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES
FREQUENCY-DEPENDENT CHANGES IN GAP JUNCTION FUNCTION IN PRIMARY HEPATOCYTES. X. Wang1 *, D.E. Housel *, J. Page2, C.F. Blackmanl. 1 National Health and Environmental Effects Research Laboratory, USEPA, Research Triangle Park, North Carolina 27711 USA, 2Oakland, California USA
...
Computational Toxicology Advances: Emerging capabilities for data exploration and SAR model development
Ann M. Richard and ClarLynda R. Williams, National Health & Environmental Effects Research Laboratory, US EPA, Research Triangle Park, NC, USA; email: richard.ann@epa.gov
TARGETED DELIVERY OF INHALED PROTEINS
ETD-02-047 (Martonen) GPRA # 10108
TARGETED DELIVERY OF INHALED PROTEINS
T. B. Martonen1, J. Schroeter2, Z. Zhang3, D. Hwang4, and J. S. Fleming5
1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Research Triangle Park...
Health surveillance of specific pathogen-free and conventionally-housed mice and rats in Korea.
Seok, Seunghyeok; Park, Jonghwan; Cho, Suna; Baek, Minwon; Lee, Huiyoung; Kim, Dongjae; Yang, Kihwa; Jang, Dongdeuk; Han, Beomseok; Nam, Kitaek; Park, Jaehak
2005-01-01
The present study contains information about proper microbiological monitoring of laboratory animals' health and the standardization of microbiological monitoring methods in Korea. Microbiological quality control for laboratory animals, composed of biosecurity and health surveillance, is essential to guard against research complications and public health dangers that have been associated with adventitious infections. In this study, one hundred and twenty-two mice and ninety rats from laboratory animal breeding companies and one animal facility of the national universities in Korea were monitored in 2000-2003. Histopathologically, thickening of the alveolar walls and lymphocytic infiltration around the bronchioles were observed in mice and rats from microbiologically contaminated facilities. Cryptosporidial oocysts were observed in the gastric pits of only conventionally-housed mice and rats. Helicobacter spp. infection was also detected in 1 of 24 feces DNA samples in mice and 9 of 40 feces DNA samples in rats by PCR in 2003, but they were not Helicobacter hepaticus. This paper describes bacteriological, parasitological, and virological examinations of the animals.
A 50-year research journey. From laboratory to clinic.
Ross, John
2009-01-01
Prior important research is not always cited, exemplified by Oswald Avery's pioneering discovery that DNA is the genetic transforming factor; it was not cited by Watson and Crick 10 years later. My first laboratory research (National Institutes of Health 1950s) resulted in the clinical development of transseptal left heart catheterization. Laboratory studies on cardiac muscle mechanics in normal and failing hearts led to the concept of afterload mismatch with limited preload reserve. At the University of California, San Diego in La Jolla (1968) laboratory experiments on coronary artery reperfusion after sustained coronary occlusion showed salvage of myocardial tissue, a potential treatment for acute myocardial infarction proven in clinical trials of thrombolysis 14 years later. Among 60 trainees who worked with me in La Jolla, one-third were Japanese and some of their important laboratory experiments are briefly recounted, beginning with Sasayama, Tomoike and Shirato in the 1970 s. Recently, we developed a method for cardiac gene transfer, and subsequently we showed that gene therapy for the defect in cardiomyopathic hamsters halted the progression of advanced disease. Cardiovascular research and medicine are producing continuing advances in technologies for gene transfer and embryonic stem cell transplantation, targeting of small molecules, and tissue and organ engineering.
Modular Laboratories—Cost-Effective and Sustainable Infrastructure for Resource-Limited Settings
Bridges, Daniel J.; Colborn, James; Chan, Adeline S. T.; Winters, Anna M.; Dengala, Dereje; Fornadel, Christen M.; Kosloff, Barry
2014-01-01
High-quality laboratory space to support basic science, clinical research projects, or health services is often severely lacking in the developing world. Moreover, the construction of suitable facilities using traditional methods is time-consuming, expensive, and challenging to implement. Three real world examples showing how shipping containers can be converted into modern laboratories are highlighted. These include use as an insectary, a molecular laboratory, and a BSL-3 containment laboratory. These modular conversions have a number of advantages over brick and mortar construction and provide a cost-effective and timely solution to offer high-quality, user-friendly laboratory space applicable within the developing world. PMID:25223943
An Examination of Safety and Health Practices in Agricultural Mechanics Education
ERIC Educational Resources Information Center
Threeton, Mark D.; Ewing, John C.
2017-01-01
Providing training of safe operations and behaviors in Agricultural Mechanics classrooms and laboratories is an important aspect of the agricultural education teaching and learning environment. The purpose of this survey research study was to examine current occupational safety and health practices within agricultural mechanics programs. The…
Children and Electronic Games in the United States.
ERIC Educational Resources Information Center
Funk, Jeanne B.; Bermann, Julie N.; Buchman, Debra D.
1997-01-01
Reports video game playing demographics. Reviews the literature on video game health hazards and positive health applications; cutting-edge applications in education and controversies about learning; and effects on personality. Discusses laboratory and survey research on the effects of video games violence. Considers whether some children may be…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... Support Post Earthquake Reconstruction, Cholera and HIV/AIDS Response, FOA GH12-001, and Research and Technical Assistance for Public Health Laboratories in Haiti to Support Post Earthquake Reconstruction... and Technical Assistance for Public Health Interventions in Haiti to Support Post Earthquake...
What Can a Micronucleus Teach? Learning about Environmental Mutagenesis
ERIC Educational Resources Information Center
Linde, Ana R.; Garcia-Vazquez, Eva
2009-01-01
The micronucleus test is widely employed in environmental health research. It can also be an excellent tool for learning important concepts in environmental health. In this article we present an inquiry-based laboratory exercise where students explore several theoretical and practical aspects of environmental mutagenesis employing the micronucleus…
Robinson, P A; Epperson, W B
2013-05-11
Diagnostic sampling of farm animals by private veterinary practitioners can be an important contributing factor towards the discovery of emerging and exotic diseases. This focus group study of farm animal practitioners in Northern Ireland investigated their use and expectations of diagnostic veterinary laboratories, and elicited their opinions on the role of the private practitioner in veterinary surveillance and the protection of rural public health. The veterinarians were enthusiastic users of diagnostic laboratories, and regarded their own role in surveillance as pivotal. They attached great importance to their veterinary public health duties, and called for more collaboration with their medical general practitioner counterparts. The findings of this research can be used to guide future development of veterinary diagnostic services; provide further insights into the mechanics of scanning surveillance; and measure progress towards a 'One Health' approach between veterinarians and physicians in one geographical region of the UK.
2011-02-25
On September 18, 2009, the Chicago Department of Public Health (CDPH) was notified by a local hospital of a suspected case of fatal laboratory-acquired infection with Yersinia pestis, the causative agent of plague. The patient, a researcher in a university laboratory, had been working along with other members of the laboratory group with a pigmentation-negative (pgm-) attenuated Y. pestis strain (KIM D27). The strain had not been known to have caused laboratory-acquired infections or human fatalities. Other researchers in a separate university laboratory facility in the same building had contact with a virulent Y. pestis strain (CO92) that is considered a select biologic agent; however, the pgm- attenuated KIM D27 is excluded from the National Select Agent Registry. The university, CDPH, the Illinois Department of Public Health (IDPH), and CDC conducted an investigation to ascertain the cause of death. This report summarizes the results of that investigation, which determined that the cause of death likely was an unrecognized occupational exposure (route unknown) to Y. pestis, leading to septic shock. Y. pestis was isolated from premortem blood cultures. Polymerase chain reaction (PCR) identified the clinical isolate as a pgm- strain of Y. pestis. Postmortem examination revealed no evidence of pneumonic plague. A postmortem diagnosis of hereditary hemochromatosis was made on the basis of histopathologic, laboratory, and genetic testing. One possible explanation for the unexpected fatal outcome in this patient is that hemochromatosis-induced iron overload might have provided the infecting KIM D27 strain, which is attenuated as a result of defects in its ability to acquire iron, with sufficient iron to overcome its iron-acquisition defects and become virulent. Researchers should adhere to recommended biosafety practices when handling any live bacterial cultures, even attenuated strains, and institutional biosafety committees should implement and maintain effective surveillance systems to detect and monitor unexpected acute illness in laboratory workers.
Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.
1992-10-01
The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview ofmore » the research and development program, program management, program funding, and Fiscal Year 1997 projects.« less
The August 1988 and June 1989 radon intercomparisons at EML (Environmental Measurements Laboratory)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisenne, I.M.; George, A.C.; Keller, H.W.
1990-06-01
The Environmental Measurements Laboratory hosted the fifteenth and sixteenth radon intercomparison exercises in August 1988 and June 1989. Forty-five groups including US Federal facilities, USDOE Office of Health and Environmental Research contractors, national and state laboratories and foreign institutions participated in these exercises. The results show that the majority of the participants' results were within {plus minus} of the EML value at radon concentrations of 220 and 890 Bq m{sup {minus}3}. 10 refs., 4 figs., 9 tabs.
Assessing the Impact of a Virtual Lab in an Allied Health Program.
Kay, Robin; Goulding, Helene; Li, Jia
2018-01-01
Competency-based education in health care requires rigorous standards to ensure professional proficiency. Demonstrating competency in hands-on laboratories calls for effective preparation, knowledge, and experience, all of which can be difficult to achieve using traditional teaching methods. Virtual laboratories are an alternative, cost-effective approach to providing students with sufficient preparatory information. Research on the use of virtual labs in allied health education is limited. The current study investigated the benefits, challenges, and perceived impact of a virtual lab in an allied health program. The sample consisted of 64 students (55 females, 9 males) enrolled in a university medical laboratory science program. A convergent mixed-methods approach (Likert survey, open-ended questions, think-aloud protocol data) revealed that students had positive attitudes towards visual learning, authenticity, learner control, organization, and scaffolding afforded by the virtual lab. Challenges reported included navigational difficulties, an absence of control over content selection, and lack of understanding for certain concepts. Over 90% of students agreed that the virtual lab helped them prepare for hands-on laboratory sessions and that they would use this format of instruction again. Overall, 84% of the students agreed that the virtual lab helped them to achieve greater success in learning.
A Comprehensive Laboratory Animal Facility Pandemic Response Plan
Roble, Gordon S; Lingenhol, Naomi M; Baker, Bryan; Wilkerson, Amy; Tolwani, Ravi J
2010-01-01
The potential of a severe influenza pandemic necessitates the development of an organized, rational plan for continued laboratory animal facility operation without compromise of the welfare of animals. A comprehensive laboratory animal program pandemic response plan was integrated into a university-wide plan. Preparation involved input from all levels of organizational hierarchy including the IACUC. Many contingencies and operational scenarios were considered based on the severity and duration of the influenza pandemic. Trigger points for systematic action steps were based on the World Health Organization's phase alert criteria. One extreme scenario requires hibernation of research operations and maintenance of reduced numbers of laboratory animal colonies for a period of up to 6 mo. This plan includes active recruitment and cross-training of volunteers for essential personnel positions, protective measures for employee and family health, logistical arrangements for delivery and storage of food and bedding, the removal of waste, and the potential for euthanasia. Strategies such as encouraging and subsidizing cryopreservation of unique strains were undertaken to protect valuable research assets and intellectual property. Elements of this plan were put into practice after escalation of the pandemic alerts due to influenza A (H1N1) in April 2009. PMID:20858365
Rao, Carol Y; Goryoka, Grace W; Henao, Olga L; Clarke, Kevin R; Salyer, Stephanie J; Montgomery, Joel M
2017-11-01
The Centers for Disease Control and Prevention has established 10 Global Disease Detection (GDD) Program regional centers around the world that serve as centers of excellence for public health research on emerging and reemerging infectious diseases. The core activities of the GDD Program focus on applied public health research, surveillance, laboratory, public health informatics, and technical capacity building. During 2015-2016, program staff conducted 205 discrete projects on a range of topics, including acute respiratory illnesses, health systems strengthening, infectious diseases at the human-animal interface, and emerging infectious diseases. Projects incorporated multiple core activities, with technical capacity building being most prevalent. Collaborating with host countries to implement such projects promotes public health diplomacy. The GDD Program continues to work with countries to strengthen core capacities so that emerging diseases can be detected and stopped faster and closer to the source, thereby enhancing global health security.
75 FR 72834 - Blood Products Advisory Committee; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
... Pearline Muckelvene, Center for Biologics Evaluation and Research, Food and Drug Administration (HFM- 71... following topics: (1) November 4 and 5, 2010, meeting of the Health and Human Services Advisory Committee on... (3) Research programs in the Laboratories of Hemostasis and Plasma Derivatives, Division of...
Solvents, Ethanol, Car Crashes and Tolerance: How Risky is Inhalation of Organic Solvents?
A research program in the National Health and Environmental Effects Research Laboratory of the U.S. EPA has led to some surprising considerations regarding the potential hazard of exposure to low concentrations of solvent vapors. This program involved conducting experiments to ch...
Conservation agriculture in high tunnels: soil health and profit enhancement
USDA-ARS?s Scientific Manuscript database
In 2013, through the USDA’s Evans-Allen capacity grant, the high tunnel became an on-farm research laboratory for conservation agriculture. Dr. Manuel R. Reyes, Professor and his research team from the North Carolina Agriculture and Technology State University (NCATSU), Greensboro, North Carolina (1...
MEASUREMENT OF DIBROMOACETIC ACID IN RAT BLOOD BY GC/ECD
Measurement of Dibromoacetic Acid in Rat Blood by GC/ECD
M. Leonard Mole, MD 67, Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, USEPA, Research Triangle Park, NC 27711; Phone: 919-541-2680, FAX: 919-541-4017, e-mail: mole.l...
Coping with parvovirus infections in mice: health surveillance and control.
Janus, Lydia M; Bleich, Andre
2012-01-01
Parvoviruses of mice, minute virus of mice (MVM) and mouse parvovirus (MPV), are challenging pathogens to eradicate from laboratory animal facilities. Due to the impediment on rodent-based research, recent studies have focused on the assessment of re-derivation techniques and parvoviral potential to induce persistent infections. Summarizing recent data, this review gives an overview on studies associated with parvoviral impact on research, diagnostic methods, parvoviral persistence and re-derivation techniques, demonstrating the complex nature of parvovirus infection in mice and unfolding the challenge of controlling parvovirus infections in laboratory animal facilities.
Autonomy and Privacy in Clinical Laboratory Science Policy and Practice.
Leibach, Elizabeth Kenimer
2014-01-01
Rapid advancements in diagnostic technologies coupled with growth in testing options and choices mandate the development of evidence-based testing algorithms linked to the care paths of the major chronic diseases and health challenges encountered most frequently. As care paths are evaluated, patient/consumers become partners in healthcare delivery. Clinical laboratory scientists find themselves firmly embedded in both quality improvement and clinical research with an urgent need to translate clinical laboratory information into knowledge required by practitioners and patient/consumers alike. To implement this patient-centered care approach in clinical laboratory science, practitioners must understand their roles in (1) protecting patient/consumer autonomy in the healthcare informed consent process and (2) assuring patient/consumer privacy and confidentiality while blending quality improvement study findings with protected health information. A literature review, describing the current ethical environment, supports a consultative role for clinical laboratory scientists in the clinical decision-making process and suggests guidance for policy and practice regarding the principle of autonomy and its associated operational characteristics: informed consent and privacy.
A course designed for undergraduate biochemistry students to learn about cultural diversity issues.
Benore-Parsons, Marilee
2006-09-01
Biology, biochemistry, and other science students are well trained in science and familiar with how to conduct and evaluate scientific experiments. They are less aware of cultural issues or how these will impact their careers in research, education, or as professional health care workers. A course was developed for advanced undergraduate science majors to learn about diversity issues in a context that would be relevant to them, entitled "Diversity Issues in Health Care: Treatment and Research." Learning objectives included: developing awareness of current topics concerning diversity issues in health care; learning how research is carried out in health care, including pharmaceutical research, clinical trials, and social research; and learning about health care practices. Lectures and projects included readings on laboratory and clinical research, as well as literature on legal, race, gender, language, age, and income issues in health care research and clinical practice. Exams, papers, and a service learning project were used to determine the final course grade. Assessment indicated student understanding of diversity issues was improved, and the material was relevant. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.
Staff Scientist - RNA Bioinformatics | Center for Cancer Research
The newly established RNA Biology Laboratory (RBL) at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting a Staff Scientist with strong expertise in RNA bioinformatics to join the Intramural Research Program’s mission of high impact, high reward science. The RBL is the equivalent of an
2000-01-31
Arn Harris Hoover of Lockheed Martin Company demonstrates an engineering mockup of the Human Research Facility (HRF) that will be installed in Destiny, the U.S. Laboratory Module on the International Space Station (ISS). Using facilities similar to research hardware available in laboratories on Earth, the HRF will enable systematic study of cardiovascular, musculoskeletal, neurosensory, pulmonary, radiation, and regulatory physiology to determine biomedical changes resulting from space flight. Research results obtained using this facility are relevant to the health and the performance of the astronaut as well as future exploration of space. Because this is a mockup, the actual flight hardware may vary as desings are refined. (Credit: NASA/Marshall Space Flight Center)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains the proceedings of the fourth Contractor-Grantee Workshop for the Department of Energy (DOE) Human Genome Program. Of the 204 abstracts in this book, some 200 describe the genome research of DOE-funded grantees and contractors located at the multidisciplinary centers at Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory; other DOE-supported laboratories; and more than 54 universities, research organizations, and companies in the United States and abroad. Included are 16 abstracts from ongoing projects in the Ethical, Legal, and Social Issues (ELSI) component, an area that continues to attract considerable attention from a widemore » variety of interested parties. Three abstracts summarize work in the new Microbial Genome Initiative launched this year by the Office of Health and Environmental Research (OHER) to provide genome sequence and mapping data on industrially important microorganisms and those that live under extreme conditions. Many of the projects will be discussed at plenary sessions held throughout the workshop, and all are represented in the poster sessions.« less
NASA Technical Reports Server (NTRS)
Robinson, Julie A.
2011-01-01
The assembly of the International Space Station was completed in early 2011. Its largest research instrument, the Alpha Magnetic Spectrometer is planned for launch in late April. Unlike any previous laboratory in space, the ISS offers a long term platform where scientists can operate experiments rapidly after developing a new research question, and extend their experiments based on early results. This presentation will explain why having a laboratory in orbit is important for a wide variety of experiments that cannot be done on Earth. Some of the most important results from early experiments are already having impacts in areas such as health care, telemedicine, and disaster response. The coming decade of full utilization offers the promise of new understanding of the nature of physical and biological processes and even of matter itself.
Going GLP: Conducting Toxicology Studies in Compliance with Good Laboratory Practices.
Carroll, Erica Eggers
2016-01-01
Good laboratory practice standards are US federal regulations enacted as part of the Federal Insecticide, Fungicide, and Rodenticide Act (40 CFR Part 160), the Toxic Substance Control Act (40 CFR Part 792), and the Good Laboratory Practice for Nonclinical Laboratory Studies (21 CFR Part 58) to support protection of public health in the areas of pesticides, chemicals, and drug investigations in response to allegations of inaccurate data acquisition. Essentially, good laboratory practices (GLPs) are a system of management controls for nonclinical research studies involving animals to ensure the uniformity, consistency, reliability, reproducibility, quality, and integrity of data collected as part of chemical (including pharmaceuticals) tests, from in vitro through acute to chronic toxicity tests. The GLPs were established in the United States in 1978 as a result of the Industrial Bio-Test Laboratory scandal which led to congressional hearings and actions to prevent fraudulent data reporting and collection. Although the establishment of infrastructure for GLPs compliance is labor-intensive and time-consuming, achievement and maintenance of GLP compliance ensures the accuracy of the data collected from each study, which is critical for defending results, advancing science, and protecting human and animal health. This article describes how and why those in the US Army Medical Department responsible for protecting the public health of US Army and other military personnel made the policy decision to have its toxicology laboratory achieve complete compliance with GLP standards, the first such among US Army laboratories. The challenges faced and how they were overcome are detailed.
Torsvik, Torbjørn; Lillebo, Børge; Hertzum, Morten
2018-04-01
Electronic health records may present laboratory test results in a variety of ways. Little is known about how the usefulness of different visualizations of laboratory test results is influenced by the complex and varied process of clinical decision making. The purpose of this study was to investigate how clinicians access and utilize laboratory test results when caring for patients with chronic illness. We interviewed 10 attending physicians about how they access and assess laboratory tests when following up patients with chronic illness. The interviews were audio-recorded, transcribed verbatim, and analyzed qualitatively. Informants preferred different visualizations of laboratory test results, depending on what aspects of the data they were interested in. As chronic patients may have laboratory test results that are permanently outside standardized reference ranges, informants would often look for significant change, rather than exact values. What constituted significant change depended on contextual information (e.g., the results of other investigations, intercurrent diseases, and medical interventions) spread across multiple locations in the electronic health record. For chronic patients, the temporal relations between data could often be of special interest. Informants struggled with finding and synthesizing fragmented information into meaningful overviews. The presentation of laboratory test results should account for the large variety of associated contextual information needed for clinical comprehension. Future research is needed to improve the integration of the different parts of the electronic health record. Schattauer GmbH Stuttgart.
Renovation and Expansion of the Caspary Research Building. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grassia, V. L.
2004-02-07
Critical to the Hospital's rebuilding efforts have been its public partners at the federal, state, and local government levels who have made a major financial commitment to renovating the Hospital's research infrastructure. To date, the Hospital for Special Surgery (HSS) has been awarded a total of nearly $8.5 million to create and equip new, state-of-the-art laboratories for scientific investigations. The modernization of the Hospital's research facilities was jump-started in 1998 with a $950,000 seed grant from the National Institutes of Health (NIH) to renovate laboratories for immunology research in the Caspary Research Building. Coupled with a matching $5.5 million commitmentmore » from HSS, this infusion of NIH funding laid the groundwork for an overhaul of all of the Hospital's research space.« less
Samet, J; Bignami, G S; Feldman, R; Hawkins, W; Neff, J; Smayda, T
2001-01-01
In connection with the CDC National Conference on Pfiesteria, a multidisciplinary panel evaluated Pfiesteria-related research. The panel set out what was known and what was not known about adverse effects of the organism on estuarine ecology, fish, and human health; assessed the methods used in Pfiesteria research; and offered suggestions to address data gaps. The panel's expertise covered dinoflagellate ecology; fish pathology and toxicology; laboratory measurement of toxins, epidemiology, and neurology. The panel evaluated peer-reviewed and non-peer-reviewed literature available through June 2000 in a systematic conceptual framework that moved from the source of exposure, through exposure research and dose, to human health effects. Substantial uncertainties remain throughout the conceptual framework the panel used to guide its evaluation. Firm evidence demonstrates that Pfiesteria is toxic to fish, but the specific toxin has not been isolated or characterized. Laboratory and field evidence indicate that the organism has a complex life cycle. The consequences of human exposure to Pfiesteria toxin and the magnitude of the human health problem remain obscure. The patchwork of approaches used in clinical evaluation and surrogate measures of exposure to the toxin are major limitations of this work. To protect public health, the panel suggests that priority be given research that will provide better insight into the effects of Pfiesteria on human health. Key gaps include the identity and mechanism of action of the toxin(s), the incomplete description of effects of exposure in invertebrates, fish, and humans, and the nature and extent of exposures that place people at risk. PMID:11687383
Current Literature on Venereal Disease, 1972. Number Three. Abstracts and Bibliography.
ERIC Educational Resources Information Center
Lea, Mildred V., Ed.
Presented are abstracts of documents and research pertaining to the clinical description, laboratory diagnosis, management, and therapy of syphilis and gonorrhea. Abstracted case studies of other minor venereal and related diseases are also included, as are bibliographies on current research and evaluation, public health methods, and behavioral…
Current Literature on Venereal Disease, 1972. Number Two. Abstracts and Bibliography.
ERIC Educational Resources Information Center
Lea, Mildred V., Ed.
Presented are abstracts of documents and research pertaining to the clinical description, laboratory diagnosis, management, and therapy of syphilis and gonorrhea. Abstracted case studies of other minor venereal and related diseases are also included, as are bibliographies on current research and evaluation, public health methods, and behavioral…
Current Literature on Venereal Disease, 1972. Number One. Abstracts and Bibliography.
ERIC Educational Resources Information Center
Lea, Mildred V., Ed.
Presented are abstracts of documents and research pertaining to the clinical description, laboratory diagnosis, management, and therapy of syphilis and gonorrhea. Abstracted case studies of other minor venereal and related diseases are also included, as are bibliographies on current research and evaluation, public health methods, and behavioral…
Human-Computer Interactions: Are There Adverse Health Consequences?
ERIC Educational Resources Information Center
Emurian, Henry H.
1989-01-01
Discusses the hypothesis that similarities may exist between laboratory research paradigms evoking elevated blood pressure during task performance by normal subjects and video display terminal (VDT) work done by data clerks and college students. Type A behavior and the development of coronary heart disease are discussed, and further research needs…
Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...
Laboratory Safety Monitoring of Chronic Medications in Ambulatory Care Settings
Hurley, Judith S; Roberts, Melissa; Solberg, Leif I; Gunter, Margaret J; Nelson, Winnie W; Young, Linda; Frost, Floyd J
2005-01-01
OBJECTIVE To evaluate laboratory safety monitoring in patients taking selected chronic prescription drugs. DESIGN Retrospective study using 1999–2001 claims data to calculate rates of missed laboratory tests (potential laboratory monitoring errors). Eleven drugs/drug groups and 64 laboratory tests were evaluated. SETTING Two staff/network model health maintenance organizations. PATIENTS Continuously enrolled health plan members age≥19 years taking ≥1 chronic medications. MEASUREMENTS AND MAIN RESULTS Among patients taking chronic medications (N=29,823 in 1999, N=32,423 in 2000, and N=36,811 in 2001), 47.1% in 1999, 45.0% in 2000, and 44.0% in 2001 did not receive ≥1 test recommended for safety monitoring. Taking into account that patients were sometimes missing more than 1 test for a given drug and that patients were frequently taking multiple drugs, the rate of all potential laboratory monitoring errors was 849/1,000 patients/year in 1999, 810/1,000 patients/year in 2000, and 797/1,000 patients/year in 2001. Rates of potential laboratory monitoring errors varied considerably across individual drugs and laboratory tests. CONCLUSIONS Lapses in laboratory monitoring of patients taking selected chronic medications were common. Further research is needed to determine whether, and to what extent, this failure to monitor patients is associated with adverse clinical outcomes. PMID:15857489
Journal of Undergraduate Research, Volume VI, 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faletra, P.; Schuetz, A.; Cherkerzian, D.
Students who conducted research at DOE National Laboratories during 2005 were invited to include their research abstracts, and for a select few, their completed research papers in this Journal. This Journal is direct evidence of students collaborating with their mentors. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; and Science Policy.
1991-03-01
found to be significantly associated with coordination and a central nervous system index, but cranial nerve function and peripheral nerve status...AD-A237 516 Air Force Health Study A An Epidemiologic In vestigation of Health Effects in Air Force Personnel Following Exposure to Herbicides SAIC...Smeda SCIENCE APPLICATIONS EPIDEMIOLOGY RESEARCH DIVISION INTERNATIONAL CORPORATION ARMSTRONG LABORATORY 8400 Westpark Drive HUMAN SYSTEMS DIVISION
2010-01-01
Laboratory of Parasitic Diseases. National Institute of Allergy and Infectious Dis- eases, National Institutes of Health, Bethesda. MD 20892; ’Navy Medical...23, 2010. This work was supported by the Intramural Research Program of lhe National In- stitutes of Health, National Institute of Allergy and...National lnlltitute of Allergy and Infectious Diseases, National Institutes of Health, Depanment of Health and Human Services, 50 South Drive, Room
Occupational safety and health status of medical laboratories in Kajiado County, Kenya.
Tait, Fridah Ntinyari; Mburu, Charles; Gikunju, Joseph
2018-01-01
Despite the increasing interest in Occupational Safety and Health (OSH), seldom studies are available on OSH in medical laboratories from developing countries in general although a high number of injuries occur without proper documentation. It is estimated that every day 6,300 people die as a result of occupational accidents or work-related diseases resulting in over 2.3 million deaths per year. Medical laboratories handle a wide range of materials, potentially dangerous pathogenic agents and exposes health workers to numerous potential hazards. This study evaluated the status of OSH in medical laboratories in Kajiado County, Kenya. The objectives included establishment of biological, chemical and physical hazards; reviewing medical laboratories control measures; and enumerating factors hindering implementation of good practices in OSH. This was a cross-sectional descriptive study research design. Observation check lists, interview schedules and structured questionnaires were used. The study was carried out in 108 medical laboratories among 204 sampled respondents. Data was analysed using statistical package for social science (SPSS) 20 software. The commonest type of hazards in medical laboratories include; bacteria (80%) for Biological hazards; handling un-labelled and un-marked chemicals (38.2%) for chemical hazards; and laboratory equipment's dangerously placed (49.5%) for Physical hazards. According to Pearson's Product Moment Correlation analysis, not-wearing personal protective equipment's was statistically associated with exposure to hazards. Individual control measures were statistically significant at 0.01 significance level. Only 65.1% of the factors influencing implementation of OSH in medical laboratories were identified. Training has the highest contribution to good OSH practices.
Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-10-01
The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describesmore » the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.« less
National Biocontainment Training Center
2016-10-01
and the high containment capabilities of the Galveston National Laboratory. U.S. Food and Drug Administration Training – Marisa Hickey, D.V.M., MPH...in the Netherlands focused specifically on “healthy food and healthy environment.” The CVI is the national reference laboratory that is focused on...the health of both animals and humans. They provide research for government and commercial entities on animal diseases that threaten the food supply
Root canal treatment and general health: a review of the literature.
Murray, C A; Saunders, W P
2000-01-01
The focal infection theory was prominent in the medical literature during the early 1900s and curtailed the progress of endodontics. This theory proposed that microorganisms, or their toxins, arising from a focus of circumscribed infection within a tissue could disseminate systemically, resulting in the initiation or exacerbation of systemic illness or the damage of a distant tissue site. For example, during the focal infection era rheumatoid arthritis (RA) was identified as having a close relationship with dental health. The theory was eventually discredited because there was only anecdotal evidence to support its claims and few scientifically controlled studies. There has been a renewed interest in the influence that foci of infection within the oral tissues may have on general health. Some current research suggests a possible relationship between dental health and cardiovascular disease and published case reports have cited dental sources as causes for several systemic illnesses. Improved laboratory procedures employing sophisticated molecular biological techniques and enhanced culturing techniques have allowed researchers to confirm that bacteria recovered from the peripheral blood during root canal treatment originated in the root canal. It has been suggested that the bacteraemia, or the associated bacterial endotoxins, subsequent to root canal treatment, may cause potential systemic complications. Further research is required, however, using current sampling and laboratory methods from scientifically controlled population groups to determine if a significant relationship between general health and periradicular infection exists.
DOE planning workshop advanced biomedical technology initiative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-06-01
The Department of Energy has mad major contributions in the biomedical sciences with programs in medical applications and instrumentation development, molecular biology, human genome, and computational sciences. In an effort to help determine DOE`s role in applying these capabilities to the nation`s health care needs, a planning workshop was held on January 11--12, 1994. The workshop was co-sponsored by the Department`s Office of Energy Research and Defense Programs organizations. Participants represented industry, medical research institutions, national laboratories, and several government agencies. They attempted to define the needs of the health care industry. identify DOE laboratory capabilities that address these needs,more » and determine how DOE, in cooperation with other team members, could begin an initiative with the goals of reducing health care costs while improving the quality of health care delivery through the proper application of technology and computational systems. This document is a report of that workshop. Seven major technology development thrust areas were considered. Each involves development of various aspects of imaging, optical, sensor and data processing and storage technologies. The thrust areas as prioritized for DOE are: (1) Minimally Invasive Procedures; (2) Technologies for Individual Self Care; (3) Outcomes Research; (4) Telemedicine; (5) Decision Support Systems; (6) Assistive Technology; (7) Prevention and Education.« less
Naval Medical Research and Development News. Volume 7, Issue 11
2015-11-01
diseases such as shigellosis and typhoid fever . The goal of the laboratory is to research, understand, and develop protective strategies against...public health significance in the region, including malaria and dengue fever , yellow fever , viral encephalitis, leishmaniasis, and enteric...waterborne disease, is characterized by fever , cramps and sometimes severe bloody diarrhea,” said Cmdr. Christopher Duplessis, lead researcher in
Characterization of Residues from the Detonation of Insensitive Munitions
Unfortunately, many energetic compounds are toxic or harmful to the environment and human health. The US Army Cold Regions Research and Engineering...Laboratory and Defence Research and Development Canada Valcartier have developed methods through SERDP and ESTCP programs that enable the reproducible...reproducible method for energetics residues characterization research . SERDP Project ER-2219 is focused on three areas: determining mass DEPOSITION and
The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...
Materials and Chemical Sciences Division annual report, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-07-01
Research programs from Lawrence Berkeley Laboratory in materials science, chemical science, nuclear science, fossil energy, energy storage, health and environmental sciences, program development funds, and work for others is briefly described. (CBS)
Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, L.K.
1993-03-01
The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part II: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions withmore » Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, L.K.; Wildung, R.E.
1993-03-01
The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions withmore » Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Making self-assessment a ``cultural norm`` at the DOE Office of Energy Research (ER) laboratories has been a tremendous challenge. In an effort to provide a forum for the ER laboratories to share their self-assessment program implementation experiences, the Lawrence Berkeley Laboratory hosted a Self-Assessment Workshop: July 1993. The workshop was organized to cover such areas as: DOE`s vision of self-assessment; what makes a workable program; line management experiences; how to identify root causes and trends; integrating quality assurance, conduct of operations, and self-assessment; and going beyond environment, safety, and health. Individuals from the ER laboratories wishing to participate in themore » workshop were invited to speak on topics of their choice. The workshop was organized to cover general topics in morning presentations to all attendees and to cover selected topics at afternoon breakout sessions. This report summarizes the presentations and breakout discussions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrieling, P. Douglas
2016-01-01
The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNLmore » and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.« less
A Semester-Long Project-Oriented Biochemistry Laboratory Based on Helicobacter pylori Urease
Farnham, Kate R.; Dube, Danielle H.
2015-01-01
Here we present the development of a thirteen-week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme – Helicobacter pylori (Hp) urease – the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. PMID:26173574
A semester-long project-oriented biochemistry laboratory based on Helicobacter pylori urease.
Farnham, Kate R; Dube, Danielle H
2015-01-01
Here we present the development of a 13 week project-oriented biochemistry laboratory designed to introduce students to foundational biochemical techniques and then enable students to perform original research projects once they have mastered these techniques. In particular, we describe a semester-long laboratory that focuses on a biomedically relevant enzyme--Helicobacter pylori (Hp) urease--the activity of which is absolutely required for the gastric pathogen Hp to colonize the human stomach. Over the course of the semester, students undertake a biochemical purification of Hp urease, assess the success of their purification, and investigate the activity of their purified enzyme. In the final weeks of the semester, students design and implement their own experiments to study Hp urease. This laboratory provides students with an understanding of the importance of biochemistry in human health while empowering them to engage in an active area of research. © 2015 The International Union of Biochemistry and Molecular Biology.
Bertram Gallant, Tricia; Anderson, Michael G; Killoran, Christine
2013-03-01
Research on academic cheating by high school students and undergraduates suggests that many students will do whatever it takes, including violating ethical classroom standards, to not be left behind or to race to the top. This behavior may be exacerbated among pre-med and pre-health professional school students enrolled in laboratory classes because of the typical disconnect between these students, their instructors and the perceived legitimacy of the laboratory work. There is little research, however, that has investigated the relationship between high aspirations and academic conduct. This study fills this research gap by investigating the beliefs, perceptions and self-reported academic conduct of highly aspirational students and their peers in mandatory physics labs. The findings suggest that physics laboratory classes may face particular challenges with highly aspirational students and cheating, but the paper offers practical solutions for addressing them.
NASA Astrophysics Data System (ADS)
Gallant, Tricia Bertram; Anderson, Michael G.; Killoran, Christine
2013-03-01
Research on academic cheating by high school students and undergraduates suggests that many students will do whatever it takes, including violating ethical classroom standards, to not be left behind or to race to the top. This behavior may be exacerbated among pre-med and pre-health professional school students enrolled in laboratory classes because of the typical disconnect between these students, their instructors and the perceived legitimacy of the laboratory work. There is little research, however, that has investigated the relationship between high aspirations and academic conduct. This study fills this research gap by investigating the beliefs, perceptions and self-reported academic conduct of highly aspirational students and their peers in mandatory physics labs. The findings suggest that physics laboratory classes may face particular challenges with highly aspirational students and cheating, but the paper offers practical solutions for addressing them.
Using standard and institutional mentorship models to implement SLMTA in Kenya
Mwalili, Samuel; Basiye, Frank L.; Zeh, Clement; Emonyi, Wilfred I.; Langat, Raphael; Luman, Elizabeth T.; Mwangi, Jane
2014-01-01
Background Kenya is home to several high-performing internationally-accredited research laboratories, whilst most public sector laboratories have historically lacked functioning quality management systems. In 2010, Kenya enrolled an initial eight regional and four national laboratories into the Strengthening Laboratory Management Toward Accreditation (SLMTA) programme. To address the challenge of a lack of mentors for the regional laboratories, three were paired, or ‘twinned’, with nearby accredited research laboratories to provide institutional mentorship, whilst the other five received standard mentorship. Objectives This study examines results from the eight regional laboratories in the initial SLMTA group, with a focus on mentorship models. Methods Three SLMTA workshops were interspersed with three-month periods of improvement project implementation and mentorship. Progress was evaluated at baseline, mid-term, and exit using the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) audit checklist and scores were converted into a zero- to five-star scale. Results At baseline, the mean score for the eight laboratories was 32%; all laboratories were below the one-star level. At mid-term, all laboratories had measured improvements. However, the three twinned laboratories had increased an average of 32 percentage points and reached one to three stars; whilst the five non-twinned laboratories increased an average of 10 percentage points and remained at zero stars. At exit, twinned laboratories had increased an average 12 additional percentage points (44 total), reaching two to four stars; non-twinned laboratories increased an average of 28 additional percentage points (38 total), reaching one to three stars. Conclusion The partnership used by the twinning model holds promise for future collaborations between ministries of health and state-of-the-art research laboratories in their regions for laboratory quality improvement. Where they exist, such laboratories may be valuable resources to be used judiciously so as to accelerate sustainable quality improvement initiated through SLMTA. PMID:29043191
Merging Electronic Health Record Data and Genomics for Cardiovascular Research
Hall, Jennifer L.; Ryan, John J.; Bray, Bruce E.; Brown, Candice; Lanfear, David; Newby, L. Kristin; Relling, Mary V.; Risch, Neil J.; Roden, Dan M.; Shaw, Stanley Y.; Tcheng, James E.; Tenenbaum, Jessica; Wang, Thomas N.; Weintraub, William S.
2017-01-01
The process of scientific discovery is rapidly evolving. The funding climate has influenced a favorable shift in scientific discovery toward the use of existing resources such as the electronic health record. The electronic health record enables long-term outlooks on human health and disease, in conjunction with multidimensional phenotypes that include laboratory data, images, vital signs, and other clinical information. Initial work has confirmed the utility of the electronic health record for understanding mechanisms and patterns of variability in disease susceptibility, disease evolution, and drug responses. The addition of biobanks and genomic data to the information contained in the electronic health record has been demonstrated. The purpose of this statement is to discuss the current challenges in and the potential for merging electronic health record data and genomics for cardiovascular research. PMID:26976545
Best, Michele; Sakande, Jean
2016-01-01
The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state's public health system and is critical to the development of a robust national laboratory response network to meet global health security threats.
2016-01-01
The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state’s public health system and is critical to the development of a robust national laboratory response network to meet global health security threats. PMID:28879137
A Roadmap for Academic Health Centers to Establish Good Laboratory Practice-Compliant Infrastructure
Adamo, Joan E.; Bauer, Gerhard; Berro, Marlene; Burnett, Bruce K.; Hartman, Karen A.; Masiello, Lisa M.; Moorman-White, Diane; Rubinstein, Eric P.; Schuff, Kathryn G.
2012-01-01
Prior to human clinical trials, nonclinical safety and toxicology studies are required to demonstrate that a new product appears safe for human testing; these nonclinical studies are governed by good laboratory practice (GLP) regulations. As academic health centers (AHCs) embrace the charge to increase the translation of basic science research into clinical discoveries, researchers at these institutions increasingly will be conducting GLP-regulated nonclinical studies. Because the consequences for noncompliance are severe and many AHC researchers are unfamiliar with Food and Drug Administration (FDA) regulations, the authors describe the regulatory requirements for conducting GLP research, including the strict documentation requirements, the necessary personnel training, the importance of study monitoring, and the critical role that compliance oversight plays in the process. They then explain the process that AHCs interested in conducting GLP studies should take prior to the start of their research program, including conducting a needs assessment and a gap analysis and selecting a model for GLP compliance. Finally, the authors identify and analyze several critical barriers to developing and implementing a GLP-compliant infrastructure at an AHC. Despite these challenges, the capacity to perform such research will help AHCs to build and maintain competitive research programs and to facilitate the successful translation of faculty-initiated research from nonclinical studies to first-in-human clinical trials. PMID:22373618
Evaluation of the Military Functional Assessment Program: Inter rater Reliability of Task Scores
2017-09-19
return-to-duty. Performance on the tasks is rated by a non-commissioned officer (NCO), occupational therapist, physical therapist, and mental health ...and additional ratings are provided on a subset of the tasks by an occupational therapist (OT), physical therapist (PT), and mental health (MH...3National Intrepid Center of Excellence United States Army Aeromedical Research Laboratory Aircrew Health and Performance Division September 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binh T. Pham; Nancy J. Lybeck; Vivek Agarwal
The Light Water Reactor Sustainability program at Idaho National Laboratory is actively conducting research to develop and demonstrate online monitoring capabilities for active components in existing nuclear power plants. Idaho National Laboratory and the Electric Power Research Institute are working jointly to implement a pilot project to apply these capabilities to emergency diesel generators and generator step-up transformers. The Electric Power Research Institute Fleet-Wide Prognostic and Health Management Software Suite will be used to implement monitoring in conjunction with utility partners: Braidwood Generating Station (owned by Exelon Corporation) for emergency diesel generators, and Shearon Harris Nuclear Generating Station (owned bymore » Duke Energy Progress) for generator step-up transformers. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for emergency diesel generators. Emergency diesel generators provide backup power to the nuclear power plant, allowing operation of essential equipment such as pumps in the emergency core coolant system during catastrophic events, including loss of offsite power. Technical experts from Braidwood are assisting Idaho National Laboratory and Electric Power Research Institute in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the Fleet-Wide Prognostic and Health Management Software Suite and tested using data from Braidwood. Parallel research on generator step-up transformers was summarized in an interim report during the fourth quarter of fiscal year 2012.« less
Final Progress Report: Developing Ethical Practices for Genetics Testing in the Workplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laura Roberts, MD; Teddy Warner, PhD
Our multidisciplinary research team for this project involved collaboration between the Department of Psychiatry and Behavioral Medicine at the Medical College of Wisconsin (MCW) and the Department of Family and Community Medicine at the University of New Mexico Health Sciences Center (UNM HSC). Our research team in Wisconsin was led by Laura Roberts, M.D., Principal Investigator, and included Scott Helberg, MLS (Project Coordinator), Kate Green Hammond, Ph.D. (Consultant), Krisy Edenharder (Research Coordinator), and Mark Talatzko (Research Assistant). Our New Mexico-based team was led by Teddy Warner, Ph.D., Co-Principal Investigator and UNM Site Principal Investigator, and included Suzanne Roybal (Project Assistant),more » Darlyn Mabon (Project Assistant), Kate Green Hammond, PhD (Senior Research Scientist on the UNM team from 2004 until January, 2007), and Paulette Christopher (Research Assistant). In addition, computer technical and web support for the web-based survey conducted on a secure server at the University of New Mexico was provided by Kevin Wiley and Kim Hagen of the Systems and Programming Team of the Health Sciences Center Library and Information Center. We stated 3 aims in the grant proposal: (1) To collect web survey reports of the ethical perspectives, concerns, preferences and decision-making related to genetic testing using surveys from employees at: (a) Los Alamos National Laboratory (LANL); (b) Sandia National Laboratories (SNL); and (c) the University of New Mexico Health Sciences Center (UNMHSC); (2) To perform an extensive literature search and the extant survey data to develop evidence-based policy recommendations for ethically sound genetic testing associated with research and occupational health activities in the workplace; and, (3) To host a conference at the Medical College of Wisconsin to provide employers, workers, health professionals, researchers, the public, and the media an opportunity to consider ethical issues involved in genetic testing in the context of the workplace.« less
The U.S. EPA National Health and Environmental Effects Research Laboratory's (NHEERL) Wildlife Research Strategy was developed to provide methods, models and data to address concerns related to toxic chemicals and habitat alteration in the context of wildlife risk assessment and ...
Postdoctoral Fellow | Center for Cancer Research
A postdoctoral position is available in Dr. Efsun Arda’s Developmental Genomics Group within the Laboratory of Receptor Biology and Gene Expression Branch at the National Cancer Institute (NCI), National Institutes of Health (NIH). Our research is focused on understanding the regulatory networks that govern pancreas cell identity and function in the context of diabetes and
The Toxicology and Microbiology Division of the US EPA, Health Effects Research Laboratory has initiated a research program to develop a matrix of short-term tests to distinguish carcinogens from non-carcinogens among genotoxic substances and to develop methods for predicting rel...
DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Miller, James E.; Altman, Susan J.
Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documentsmore » Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.« less
Situation analysis of occupational and environmental health laboratory accreditation in Thailand.
Sithisarankul, Pornchai; Santiyanont, Rachana; Wongpinairat, Chongdee; Silva, Panadda; Rojanajirapa, Pinnapa; Wangwongwatana, Supat; Srinetr, Vithet; Sriratanaban, Jiruth; Chuntutanon, Swanya
2002-06-01
The objective of this study was to analyze the current situation of laboratory accreditation (LA) in Thailand, especially on occupational and environmental health. The study integrated both quantitative and qualitative approaches. The response rate of the quantitative questionnaires was 54.5% (226/415). The majority of the responders was environmental laboratories located outside hospital and did not have proficiency testing. The majority used ISO 9000, ISO/IEC 17025 or ISO/ EEC Guide 25, and hospital accreditation (HA) as their quality system. However, only 30 laboratories were currently accredited by one of these systems. Qualitative research revealed that international standard for laboratory accreditation for both testing laboratory and calibration laboratory was ISO/IEC Guide 25, which has been currently revised to be ISO/IEC 17025. The National Accreditation Council (NAC) has authorized 2 organizations as Accreditation Bodies (ABs) for LA: Thai Industrial Standards Institute, Ministry of Industry, and Bureau of Laboratory Quality Standards, Department of Medical Sciences, Ministry of Public Health. Regarding LA in HA, HA considered clinical laboratory as only 1 of 31 items for accreditation. Obtaining HA might satisfy the hospital director and his management team, and hence might actually be one of the obstacles for the hospital to further improve their laboratory quality system and apply for ISO/IEC 17025 which was more technically oriented. On the other hand, HA may be viewed as a good start or even a pre-requisite for laboratories in the hospitals to further improve their quality towards ISO/IEC 17025. Interviewing the director of NAC and some key men in some large laboratories revealed several major problems of Thailand's LA. Both Thai Industrial Standards Institute and Bureau of Laboratory Quality Standards did not yet obtain Mutual Recognition Agreement (MRA) with other international ABs. Several governmental bodies had their own standards and accreditation systems, and did not accept other bodies' standards and systems. This put a burden to private laboratories because they had to apply and get accredited from several governmental bodies, but still had to apply and get accredited from international ABs especially for those dealing with exports. There were only few calibration laboratories, not enough for supporting the calibration required for the equipment in testing laboratories' LA. Purchasing proficiency testing specimens from abroad was very expensive, and often got into troubles with the customs duty procedures. The authors recommend some strategies and activities to improve laboratory accreditation in Thailand. Improvement in occupational and environmental health laboratories would essentially be beneficial to laboratory accreditation of other areas such as clinical laboratory.
ERIC Educational Resources Information Center
Finn, Kevin; FitzPatrick, Kathleen; Yan, Zi
2017-01-01
Students often struggle in introductory health sciences courses; some students have difficulty in upper level classes. To address this, we converted three lecture/lab courses, traditional first-year Anatomy and Physiology (A&P I), upper level Biomechanics, and upper level Microbiology to an integrated studio model. We used the Student…
Synthetic biology and occupational risk.
Howard, John; Murashov, Vladimir; Schulte, Paul
2017-03-01
Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.
CLASSIFICATION FRAMEWORK FOR COASTAL SYSTEMS
U.S. Environmental Protection Agency. Classification Framework for Coastal Systems. EPA/600/R-04/061. U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI, Gulf Ecology Division, Gulf Bree...
The Frederick National Laboratory is the only U.S. national lab wholly focused on research, technology, and collaboration in the biomedical sciences- working to discover, to innovate, and to improve human health. We accelerate progress against can
Rivera, Luis M.
2014-01-01
The presence of diverse ethnic-racial groups in the United States today is a source of national pride. However, this cultural sentiment is overshadowed by the reality that those ethnic-racial groups that are stigmatized carry a disproportionate burden of negative physical health outcomes. These systematic differences are referred to as health disparities. Although this phenomenon is fairly well documented, relatively little is understood about the social contexts and the psychological processes they activate that contribute to poor health. More importantly, to demonstrate the processes underlying health disparities does not single-handedly address the issue of social injustice in the health of disadvantaged people. Scientists must assume the burden of facilitating the translation of their laboratory and community-based research to public policy recommendations. This volume of the Journal of Social Issues brings together social, developmental, cognitive, and clinical psychological research on the physical health of ethnic-racial stigmatized individuals in the United States. Each contribution explicitly discusses the implications of research for public health policy. PMID:25530632
Energy Harvesting for Structural Health Monitoring Sensor Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, G.; Farrar, C. R.; Todd, M. D.
2007-02-26
This report has been developed based on information exchanges at a 2.5-day workshop on energy harvesting for embedded structural health monitoring (SHM) sensing systems that was held June 28-30, 2005, at Los Alamos National Laboratory. The workshop was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused collaboration between Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs School of Engineering. A Statistical Pattern Recognition paradigm for SHM is first presented and the concept of energy harvesting for embedded sensing systems is addressed with respect to the data acquisition portionmore » of this paradigm. Next, various existing and emerging sensing modalities used for SHM and their respective power requirements are summarized, followed by a discussion of SHM sensor network paradigms, power requirements for these networks and power optimization strategies. Various approaches to energy harvesting and energy storage are discussed and limitations associated with the current technology are addressed. This discussion also addresses current energy harvesting applications and system integration issues. The report concludes by defining some future research directions and possible technology demonstrations that are aimed at transitioning the concept of energy harvesting for embedded SHM sensing systems from laboratory research to field-deployed engineering prototypes.« less
Regulatory changes raise troubling questions for genomic testing.
Evans, Barbara J; Dorschner, Michael O; Burke, Wylie; Jarvik, Gail P
2014-11-01
By 6 October 2014, many laboratories in the United States must begin honoring new individual data access rights created by recent changes to federal privacy and laboratory regulations. These access rights are more expansive than has been widely understood and pose complex challenges for genomic testing laboratories. This article analyzes regulatory texts and guidances to explore which laboratories are affected. It offers the first published analysis of which parts of the vast trove of data generated during next-generation sequencing will be accessible to patients and research subjects. Persons tested at affected laboratories seemingly will have access, upon request, to uninterpreted gene variant information contained in their stored variant call format, binary alignment/map, and FASTQ files. A defect in the regulations will subject some non-CLIA-regulated research laboratories to these new access requirements unless the Department of Health and Human Services takes swift action to avert this apparently unintended consequence. More broadly, all affected laboratories face a long list of daunting operational, business, compliance, and bioethical issues as they adapt to this change and to the Food and Drug Administration's recently announced plan to publish draft guidance outlining a new oversight framework for lab-developed tests.
Lessons Learned from 25 Years of Health Communication Research to Eliminate Health Disparities
Matthew Kreuter is the Kahn Family Professor and Associate Dean for Public Health at the Brown School of Washington University in St. Louis. He is founder of the Health Communication Research Laboratory (HCRL), a leading center nationally that is now in its 22nd year of continuous funding. Dr. Kreuter’s research seeks to identify and apply communication-based strategies to eliminate health disparities. In particular, his work focused on finding ways to increase the reach and effectiveness of health information to low-income and minority populations, and using information and technology to connect them to needed health services. Kreuter served for six years on the Institute of Medicine’s Board on Population Health and Public Health Practice, and in 2014 was named by Thompson Reuters as one of the most influential scientists in the world, ranking in the top 1 percent in his field based on the number of highly cited papers. He received his PhD and MPH in Health Behavior and Health Education from the School of Public Health at the University of North Carolina – Chapel Hill.
ERIC Educational Resources Information Center
Sheridan, Susan M.; DiLillo, David; Hansen, David J.; DeKraai, Mark; Koenig-Kellas, Jody; Swearer, Susan M.; Lorey A. Wheeler
2016-01-01
According to the National Institutes of Health, "Translational research includes …the process of applying discoveries generated during research in the laboratory, and in preclinical studies, to the development of trials and studies in humans… [and] research aimed at enhancing the adoption of best practices in the community. Following this…
[Medical microbiology laboratories in Dutch hospitals: essential for safe patient care].
Bonten, M J M
2008-12-06
The Netherlands Health Care Inspectorate investigated the quality of medical microbiology laboratories in Dutch hospitals. By and large the laboratories fulfilled the requirements for appropriate care, although some processes were unsatisfactory and some were insufficiently formalised. In the Netherlands, laboratories for medical microbiology are integrated within hospitals and medical microbiologists are responsible for the diagnostic processes as well as for co-treatment of patients, infection prevention and research. This integrated model contrasts to the more industrialised model in many other countries, where such laboratories are physically distinct from hospitals with a strong focus on diagnostics. The Inspectorate also concludes that the current position of medical microbiology in Dutch hospitals is necessary for patient safety and that outsourcing of these facilities is considered unacceptable.
[Public policies of research].
Ruiz Cantero, M T; Alvarez-Dardet, C
1995-01-01
With its present configuration, the Spanish public device of research in health sciences has limited possibilities to achieve properly the aims of the Ley General de Sanidad, due to its reduced financial importance as well as its thematic and lack of mechanisms of interterritorial compensation. These limitations are effective according to its small capacity to provide information for the development of a health system, oriented to the overcoming of territorial and social imbalance as well as the promotion of health and prevention of diseases. The capacity of public policies of research in Spain to affect the work of researchers is very small due to the importance of the widespread practice of not using funds which are not specifically dedicated to research of the institutions employing the researchers, among other reasons. Most of the public resources of research are concentrated in Madrid and Barcelona. This situation can seriously jeopardize in a near future the development and quality of the attention given in Regional Health Services transferred to Autonomic Communities without big cities. The funds are mostly used to finance researches of basic sciences, medical specialties and clinic laboratories. Investigation in Public Health is only 0.8% of the research budgets, and the funds dedicated to research in Health Primary Care are also very small. The present predominant thematic and methodological orientation of health research in our country, with medicalized research aims, subindividual observation units, experimental designs, and analysis which are basically quantitative, can endanger the possibilities of Spain to achieve the health aims established by the OMS.
Two decades of ART: improving on success through further research
HOLMGREN, Christopher J.; FIGUEREDO, Márcia Cançado
2009-01-01
ABSTRACT Since the introduction of the Atraumatic Restorative Treatment (ART) approach over twenty years ago, more than 190 research publications have appeared. The last research agenda defining research priorities for ART was published in 1999. The objective of the present work was to review existing research in the context of future research priorities for ART. Material and Methods: An internet survey was conducted amongst those who had published on ART or were known to be working on the ART approach, to solicit their views as to areas of future ART research. Three broad categories were defined, namely: 1. Basic and laboratory research; 2. Clinical research, and, 3. Community, Public Health, Health Services Research. Results: A 31% response rate was achieved. The study identified a number of new areas of research as well as areas where additional research is required. These are expressed as recommendations for future ART research. Conclusions: The ART approach is based on a robust, reliable and ever-growing evidence base concerning its clinical applications which indicates that it is a reliable and quality treatment approach. In common with all other oral health care procedures, targeted applied research is required to improve the oral health care offered. PMID:21499666
2013-09-27
Electronic reporting of laboratory results to public health agencies can improve public health surveillance for reportable diseases and conditions by making reporting more timely and complete. Since 2010, CDC has provided funding to 57 state, local, and territorial health departments through the Epidemiology and Laboratory Capacity for Infectious Diseases cooperative agreement to assist with improving electronic laboratory reporting (ELR) from clinical and public health laboratories to public health agencies. As part of this agreement, CDC and state and large local health departments are collaborating to monitor ELR implementation in the United States by developing data from each jurisdiction regarding total reporting laboratories, laboratories sending ELR by disease category and message format, and the number of ELR laboratory reports compared with the total number of laboratory reports. At the end of July 2013, 54 of the 57 jurisdictions were receiving at least some laboratory reports through ELR, and approximately 62% of 20 million laboratory reports were being received electronically, compared with 54% in 2012. Continued progress will require collaboration between clinical laboratories, laboratory information management system (LIMS) vendors, and public health agencies.
Integration of the CLS doctorate into the healthcare organization.
Montoya, Isaac; Kimball, Olive
2009-01-01
A review of how the doctorally prepared CLS fits into the healthcare organization. Literature review. Numerous national studies have called for a reshaping of the health care delivery system and the need to improve patient outcomes. Because of unprecedented advances in laboratory related technology as well as the need for economic retrenchment strategies in health care, with its significant influence on patient care, the laboratory has become the subject of intensive study. It has been concluded that the traditional organizational structure of the laboratory information process and the required personnel skills both need rethinking. In order to foster change in the laboratory, an advanced degreed CLS laboratory professional is needed, one already equipped with a broad scientific base developed via a baccalaureate/masters level of education. With the addition of advanced technical expertise, basic medical skills, data interpretation skills and patient interaction abilities, and medical research experience, this laboratory professional can enhance the effective and efficient use of laboratory information and ultimately improve patient care. The clinical doctorates in CLS are educationally and experientially prepared to recommend support and enhance appropriate testing. They translate and transform complex laboratory data into an understandable product necessary for clinicians to be able to assess the validity of current and new assays to ensure better patient care. In addition, they assist in reducing questionable test usage, thereby reducing costs for both the patient and the laboratory.
Beute, Femke; de Kort, Yvonne; IJsselsteijn, Wijnand
2016-01-01
More and more people use self-tracking technologies to track their psychological states, physiology, and behaviors to gain a better understanding of themselves or to achieve a certain goal. Ecological Momentary Assessment (EMA) also offers an excellent opportunity for restorative environments research, which examines how our physical environment (especially nature) can positively influence health and wellbeing. It enables investigating restorative health effects in everyday life, providing not only high ecological validity but also opportunities to study in more detail the dynamic processes playing out over time on recovery, thereby bridging the gap between laboratory (i.e., short-term effects) and epidemiological (long-term effects) research. We have identified four main areas in which self-tracking could help advance restoration research: (1) capturing a rich set of environment types and restorative characteristics; (2) distinguishing intra-individual from inter-individual effects; (3) bridging the gap between laboratory and epidemiological research; and (4) advancing theoretical insights by measuring a more broad range of effects in everyday life. This paper briefly introduces restorative environments research, then reviews the state of the art of self-tracking technologies and methodologies, discusses how these can be implemented to advance restoration research, and presents some examples of pioneering work in this area. PMID:27089352
Developing integrated methods to address complex resource and environmental issues
Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.
2016-02-08
IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some applications of project products and research findings are included in this circular. The work helped support the USGS mission to “provide reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.” Activities within the project include the following:Spanned scales from microscopic to planetary;Demonstrated broad applications across disciplines;Included life-cycle studies of mineral resources;Incorporated specialized areas of expertise in applied geochemistry including mineralogy, hydrogeology, analytical chemistry, aqueous geochemistry, biogeochemistry, microbiology, aquatic toxicology, and public health; andIncorporated specialized areas of expertise in geophysics including magnetics, gravity, radiometrics, electromagnetics, seismic, ground-penetrating radar, borehole radar, and imaging spectroscopy.This circular consists of eight sections that contain summaries of various activities under the project. The eight sections are listed below:Laboratory Facilities and Capabilities, which includes brief descriptions of the various types of laboratories and capabilities used for the project;Method and Software Development, which includes summaries of remote-sensing, geophysical, and mineralogical methods developed or enhanced by the project;Instrument Development, which includes descriptions of geophysical instruments developed under the project;Minerals, Energy, and Climate, which includes summaries of research that applies to mineral or energy resources, environmental processes and monitoring, and carbon sequestration by earth materials;Element Cycling, Toxicity, and Health, which includes summaries of several process-oriented geochemical and biogeochemical studies and health-related research activities;Hydrogeology and Water Quality, which includes descriptions of innovative geophysical, remote-sensing, and geochemical research pertaining to hydrogeology and water-quality applications;Hazards and Disaster Assessment, which includes summaries of research and method development that were applied to natural hazards, human-caused hazards, and disaster assessments; andDatabases and Framework Studies, which includes descriptions of fundamental applications of geophysical studies and of the importance of archived data.
Lawrence Livermore National Laboratory Environmental Report 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Henry E.; Armstrong, Dave; Blake, Rick G.
Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the community by soliciting citizens’ input on matters of significant public interest and through various communications. The Laboratory also provides public access to information on its ES&H activities. LLNL consists of two sites—an urban site in Livermore, California, referred to as the “Livermore Site,” which occupies 1.3 square miles; and a rural Experimental Test Site, referred to as “Site 300,” near Tracy, California, which occupies 10.9 square miles. In 2012 the Laboratory had a staff of approximately 7000.« less
Lawrence Livermore National Laboratory Environmental Report 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, H. E.; Bertoldo, N. A.; Blake, R. G.
Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security,more » LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the community by soliciting citizens’ input on matters of significant public interest and through various communications. The Laboratory also provides public access to information on its ES&H activities. LLNL consists of two sites—an urban site in Livermore, California, referred to as the “Livermore Site,” which occupies 1.3 square miles; and a rural Experimental Test Site, referred to as “Site 300,” near Tracy, California, which occupies 10.9 square miles. In 2013 the Laboratory had a staff of approximately 6,300.« less
NUTRIENT RESPONSE IN GREAT LAKES WETLANDS
The U.S. EPA National Health and Environmental Effects Laboratory's Aquatic Stressor Framework and associated Nutrient Implementation Plan define scientific and regulatory needs, and lay-out research goals too for a cross divisional program to investigate stressor-response relati...
METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS
METHYL METHANESULFONATE-INDUCED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS. Geremy W. Knapp, Alan Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Protection Agency, Re...
USDA-ARS?s Scientific Manuscript database
Over the past 50 years, significant progress has been made in improving our understanding of the extent and potential consequences of groundwater contamination, with research advancing on several fronts including groundwater sampling methods, laboratory detection methods, subsurface transport (and m...
OXYGEN REGIMES IN ESTUARIES: IMAGING ANOXIA THROUGH NORMOXIA
The U.S. EPA, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, is developing empirical stressor-response models linking nitrogen loading to near-bottom dissolved oxygen (DO) concentrations in semi-enclosed coastal systems. Sediment profil...
Ondoa, Pascale; Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim
2016-01-01
Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen.
The April 1992 and November 1992 radon intercomparisons at EML
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisenne, I.M.; George, A.C.; Perry, P.M.
1993-07-01
The Environmental Measurements Laboratory hosted two intercomparison exercises in Calendar Year 1992. Thirty-two groups, including US federal facilities, US Department of Energy`s Office of Health and Environmental Research contractors, national and state laboratories, and universities and foreign institutions, participated in these exercises. The majority of the participants` results were within {plus_minus}10% of the EML value at radon concentrations of 2075 and 1650 Bq m{sup {minus}3}.
EFFECTS OF ULTRAVIOLET RADIATION (UVR) ON THE RESPIRATORY ALLERGIC RESPONSES OF BALB/C MICE TO A FUNGAL ALLERGEN. M D W Ward, D M Sailstad, D L Andrews, E H Boykin, and MJ K Selgrade. National Health and Environmental Effects Research Laboratory, Office of Research and Developmen...
NIH Courts Younger Researchers, Even as It Debates How Far to Go
ERIC Educational Resources Information Center
Basken, Paul
2012-01-01
On the surface, a gathering held for young research faculty last week at Cold Spring Harbor Laboratory was a clear expression of determination by the National Institutes of Health (NIH) to help them compete for grants. The agency fears that continued Congressional budget cuts, combined with the growing number of scientists who work later into…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... expands a coordinated network of S&T Laboratories and other FFRDC to help deliver critical homeland... typically in place at institutions conducting biological research involving potentially high- risk agents to... biological threats and select agents and toxins. During such research, there is always a possibility that DHS...
Building partnerships to evaluate wood utilization options for improving forest health
Kenneth E. Skog; David Green; R. James Barbour; John E. Baumgras; Alexander Clark; Andrew Mason; David A. Meriwether; Gary C. Myers; Gary C. Myers
1995-01-01
Silvicultural practices used on national forests are changing as a result of the shift to ecosystem management. As a result, the species mix, size, quality, and quantity of woody material that may be removed are changing. In a combined, multidisciplinary effort, Forest Service research units at the Forest Products Laboratory, Pacific Northwest and Southern Research...
The U.S. Environmental Protection Agency’s ‘Four Lab Study’, involved participation of scientists and engineers from four national Laboratories and Centers of the Office of Research and Development along with collaborators from water industry and academia. The study evaluated tox...
Solid Waste Management: Abstracts and Excerpts From the Literature. Volumes 1 and 2.
ERIC Educational Resources Information Center
Golueke, C. G.
The collection presented in this report represents a summary of literature gathered over a period of more than 15 years by the Sanitary Engineering Research Laboratory of the University of California and abstracted as the first step in a program of definitive research in the planning, systems, economic, health, and technological aspects of…
MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES
MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES. C. F. Blackman1, D. E. House2*, S. G. Benane3*, A. Ubeda4, M.A. TrilIo4. 1 National Health and Environmental Effects Research Laboratory, EPA,
Research Triangle Park, North Caro...
ERIC Educational Resources Information Center
Hendrickson, Tamara L.
2015-01-01
Recently, a requirement for directed responsible conduct in research (RCR) education has become a priority in the United States and elsewhere. In the US, both the National Institutes of Health and the National Science Foundation require RCR education for all students who are financially supported by federal awards. The guidelines produced by these…
Datema, Tjeerd; Keita-Sow, Mah-Sere; Ndihokubwayo, Jean-Bosco; Isadore, Jocelyn; Oskam, Linda; Nkengasong, John; Lewis, Kim
2016-01-01
Background Functional national laboratory networks and systems are indispensable to the achievement of global health security targets according to the International Health Regulations. The lack of indicators to measure the functionality of national laboratory network has limited the efficiency of past and current interventions to enhance laboratory capacity in resource-limited-settings. Scorecard for laboratory networks We have developed a matrix for the assessment of national laboratory network functionality and progress thereof, with support from the African Society of Laboratory Medicine and the Association of Public Health Laboratories. The laboratory network (LABNET) scorecard was designed to: (1) Measure the status of nine overarching core capabilities of laboratory network required to achieve global health security targets, as recommended by the main normative standards; (2) Complement the World Health Organization joint external evaluation tool for the assessment of health system preparedness to International Health Regulations (2005) by providing detailed information on laboratory systems; and (3) Serve as a clear roadmap to guide the stepwise implementation of laboratory capability to prevent, detect and act upon infectious threats. Conclusions The application of the LABNET scorecard under the coordination of the African Society of Laboratory Medicine and the Association of Public Health Laboratories could contribute to the design, monitoring and evaluation of upcoming Global Health Security Agenda-supported laboratory capacity building programmes in sub Saharan-Africa and other resource-limited settings, and inform the development of national laboratory policies and strategic plans. Endorsement by the World Health Organization Regional Office for Africa is foreseen. PMID:28879141
Finland establishing the internet of genomics and health data.
Palotie, Aarno; Ripatti, Samuli
Genomic data, i.e. measurement of variation in the complete genome has revolutionized genetic research and changed our understanding of the pathogenetic mechanisms of diseases. Genomic data in combination with Finnish special strengths - population history, the nation's comprehensive health records and a strong research tradition in genetic epidemiology - has made Finland a testing laboratory for diseases of public health importance. At the same time, genomic research has changed into statistical evaluation of large masses of data - big data. New research knowledge is now descending to the prevention and treatment of diseases, and this will affect future medical practices. In this reform, Finland has a chance to be a key player. The change is, however, global, and the world will not wait that Finland is ready, but instead we have to take care of it ourselves. When successful, new kind of research will help better allocate health care resources, provide more individualized care and stimulate businesses based on new technology.
Effects of Mindfulness on Psychological Health: A Review of Empirical Studies
Keng, Shian-Ling; Smoski, Moria J.; Robins, Clive J.
2013-01-01
Within the past few decades, there has been a surge of interest in the investigation of mindfulness as a psychological construct and as a form of clinical intervention. This article reviews the empirical literature on the effects of mindfulness on psychological health. We begin with a discussion of the construct of mindfulness, differences between Buddhist and Western psychological conceptualizations of mindfulness, and how mindfulness has been integrated into Western medicine and psychology, before reviewing three areas of empirical research: cross-sectional, correlational research on the associations between mindfulness and various indicators of psychological health; intervention research on the effects of mindfulness-oriented interventions on psychological health; and laboratory-based, experimental research on the immediate effects of mindfulness inductions on emotional and behavioral functioning. We conclude that mindfulness brings about various positive psychological effects, including increased subjective well-being, reduced psychological symptoms and emotional reactivity, and improved behavioral regulation. The review ends with a discussion on mechanisms of change of mindfulness interventions and suggested directions for future research. PMID:21802619
1992-02-01
Snider, B.S., O.A.B.T. Date Study Supervisor I (.’ ’Quali tycsra-e Unit Date Health and Enviror snt Group . ... NTIS C7ŕ,1 DTIC IAtj U r, iv1: cu. 1v...the Federal Animal Welfare Act. Battelle’s statement of I] assurance regarding the Department of Health and Human Services policy on 4g I ] 1 humane...care of laboratory animals was accepted by the Office of Protection from Research Risks, National Institutes of Health , on August 27, 1973. Animals at
Assessment of Sensor Technologies for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; Ramuhalli, Pradeep; Vlim, R.
2016-10-01
Sensors and measurement technologies provide information on processes, support operations and provide indications of component health. They are therefore crucial to plant operations and to commercialization of advanced reactors (AdvRx). This report, developed by a three-laboratory team consisting of Argonne National Laboratory (ANL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL), provides an assessment of sensor technologies and a determination of measurement needs for AdvRx. It provides the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program and contributesmore » to the design and implementation of AdvRx concepts.« less
Issues and special features of animal health research
2011-01-01
In the rapidly changing context of research on animal health, INRA launched a collective discussion on the challenges facing the field, its distinguishing features, and synergies with biomedical research. As has been declared forcibly by the heads of WHO, FAO and OIE, the challenges facing animal health, beyond diseases transmissible to humans, are critically important and involve food security, agriculture economics, and the ensemble of economic activities associated with agriculture. There are in addition issues related to public health (zoonoses, xenobiotics, antimicrobial resistance), the environment, and animal welfare. Animal health research is distinguished by particular methodologies and scientific questions that stem from the specific biological features of domestic species and from animal husbandry practices. It generally does not explore the same scientific questions as research on human biology, even when the same pathogens are being studied, and the discipline is rooted in a very specific agricultural and economic context. Generic and methodological synergies nevertheless exist with biomedical research, particularly with regard to tools and biological models. Certain domestic species furthermore present more functional similarities with humans than laboratory rodents. The singularity of animal health research in relation to biomedical research should be taken into account in the organization, evaluation, and funding of the field through a policy that clearly recognizes the specific issues at stake. At the same time, the One Health approach should facilitate closer collaboration between biomedical and animal health research at the level of research teams and programmes. PMID:21864344
Issues and special features of animal health research.
Ducrot, Christian; Bed'hom, Bertrand; Béringue, Vincent; Coulon, Jean-Baptiste; Fourichon, Christine; Guérin, Jean-Luc; Krebs, Stéphane; Rainard, Pascal; Schwartz-Cornil, Isabelle; Torny, Didier; Vayssier-Taussat, Muriel; Zientara, Stephan; Zundel, Etienne; Pineau, Thierry
2011-08-24
In the rapidly changing context of research on animal health, INRA launched a collective discussion on the challenges facing the field, its distinguishing features, and synergies with biomedical research. As has been declared forcibly by the heads of WHO, FAO and OIE, the challenges facing animal health, beyond diseases transmissible to humans, are critically important and involve food security, agriculture economics, and the ensemble of economic activities associated with agriculture. There are in addition issues related to public health (zoonoses, xenobiotics, antimicrobial resistance), the environment, and animal welfare.Animal health research is distinguished by particular methodologies and scientific questions that stem from the specific biological features of domestic species and from animal husbandry practices. It generally does not explore the same scientific questions as research on human biology, even when the same pathogens are being studied, and the discipline is rooted in a very specific agricultural and economic context.Generic and methodological synergies nevertheless exist with biomedical research, particularly with regard to tools and biological models. Certain domestic species furthermore present more functional similarities with humans than laboratory rodents.The singularity of animal health research in relation to biomedical research should be taken into account in the organization, evaluation, and funding of the field through a policy that clearly recognizes the specific issues at stake. At the same time, the One Health approach should facilitate closer collaboration between biomedical and animal health research at the level of research teams and programmes.
The State Public Health Laboratory System.
Inhorn, Stanley L; Astles, J Rex; Gradus, Stephen; Malmberg, Veronica; Snippes, Paula M; Wilcke, Burton W; White, Vanessa A
2010-01-01
This article describes the development since 2000 of the State Public Health Laboratory System in the United States. These state systems collectively are related to several other recent public health laboratory (PHL) initiatives. The first is the Core Functions and Capabilities of State Public Health Laboratories, a white paper that defined the basic responsibilities of the state PHL. Another is the Centers for Disease Control and Prevention National Laboratory System (NLS) initiative, the goal of which is to promote public-private collaboration to assure quality laboratory services and public health surveillance. To enhance the realization of the NLS, the Association of Public Health Laboratories (APHL) launched in 2004 a State Public Health Laboratory System Improvement Program. In the same year, APHL developed a Comprehensive Laboratory Services Survey, a tool to measure improvement through the decade to assure that essential PHL services are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peurrung, L.M.
1999-06-30
Pacific Northwest National Laboratory was awarded ten Environmental Management Science Program (EMSP) research grants in fiscal year 1996, six in fiscal year 1997, and eight in fiscal year 1998. This section summarizes how each grant addresses significant U.S. Department of Energy (DOE) cleanup issues, including those at the Hanford Site. The technical progress made to date in each of these research projects is addressed in more detail in the individual progress reports contained in this document. This research is focused primarily in five areas: Tank Waste Remediation, Decontamination and Decommissioning, Spent Nuclear Fuel and Nuclear Materials, Soil and Groundwater Cleanmore » Up, and Health Effects.« less
2013-03-08
In 2011, the University of Michigan's Center of Excellence in Public Health Workforce Studies and the Association of Public Health Laboratories (APHL) assessed the workforce and program capacity in U.S. public health, environmental, and agricultural laboratories. During April-August 2011, APHL sent a web-based questionnaire to 105 public health, environmental, and agricultural laboratory directors comprising all 50 state public health laboratories, 41 local public health laboratories, eight environmental laboratories, and six agricultural laboratories. This report summarizes the results of the assessment, which inquired about laboratory capacity, including total number of laboratorians by occupational classification and self-assessed ability to carry out functions in 19 different laboratory program areas. The majority of laboratorians (74%) possessed a bachelor's degree, associate's degree, or a high school education or equivalency; 59% of all laboratorians were classified as laboratory scientists. The greatest percentage of laboratories reported no, minimal, or partial program capacity in toxicology (45%), agricultural microbiology (54%), agricultural chemistry (50%), and education and training for their employees (51%). Nearly 50% of laboratories anticipated that more than 15% of their workforce would retire, resign, or be released within 5 years, lower than the anticipated retirement eligibility rate of 27% projected for state public health workers. However, APHL and partners in local, state, and federal public health should collaborate to address gaps in laboratory capacity and rebuild the workforce pipeline to ensure an adequate future supply of public health laboratorians.
Small Business Grants at the National Cancer Institute and National Institutes of Health
NASA Astrophysics Data System (ADS)
Baker, Houston
2002-10-01
Ten Federal Agencies set aside 2.5% of their external research budget for US small businesses—mainly for technology research and development, including radiation sensor system developments. Five agencies also set aside another 0.15% for the Small Business Technology Transfer Program, which is intended to facilitate technology transfers from research laboratories to public use through small businesses. The second largest of these agencies is the Department of Health and Human Services, and almost all of its extramural research funds flow through the 28 Institutes and Centers of the National Institutes of Health. For information, instructions, and application forms, visit the NIH website's Omnibus Solicitation for SBIR and STTR applications. The National Cancer Institute is the largest NIH research unit and SBIR/STTR participant. NCI also issues SBIR and STTR Program Announcements of its own that feature details modified to better support its initiatives and objectives in cancer prevention, detection, diagnosis, treatment, and monitoring.
Management of laboratory data and information exchange in the electronic health record.
Wilkerson, Myra L; Henricks, Walter H; Castellani, William J; Whitsitt, Mark S; Sinard, John H
2015-03-01
In the era of the electronic health record, the success of laboratories and pathologists will depend on effective presentation and management of laboratory information, including test orders and results, and effective exchange of data between the laboratory information system and the electronic health record. In this third paper of a series that explores empowerment of pathology in the era of the electronic health record, we review key elements of managing laboratory information within the electronic health record and examine functional issues pertinent to pathologists and laboratories in the exchange of laboratory information between electronic health records and both anatomic and clinical pathology laboratory information systems. Issues with electronic order-entry and results-reporting interfaces are described, and considerations for setting up these interfaces are detailed in tables. The role of the laboratory medical director as mandated by the Clinical Laboratory Improvement Amendments of 1988 and the impacts of discordance between laboratory results and their display in the electronic health record are also discussed.
Computational Toxicology as Implemented by the US EPA ...
Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environmental Protection Agency EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in air, water, and hazardous-waste sites. The Office of Research and Development (ORD) Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the U.S. EPA Science to Achieve Results (STAR) program. Together these elements form the key components in the implementation of both the initial strategy, A Framework for a Computational Toxicology Research Program (U.S. EPA, 2003), and the newly released The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the T
U.S. Army Medical Research Institute of Infectious Diseases
... Health Organization. As a reference laboratory for the Department of Defense, we set the standard for identification of biological agents. Our customers in the Army and the Department of Defense know us as a "tech base" organization that ...
RNA PROFILES OF EJACULATED HUMAN SPERMATOZOA
RNA Profiles of Ejaculated Human Spermatozoa
Kary E. Thompson, Wenjun Bao, Sally D. Perreault, Hongzu Ren, John C. Rockett, Judith E. Schmid, Lillian F. Strader, David J. Dix
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory...
NETL’s Rare Earth Elements Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The National Energy Technology Laboratory has established a Rare Earth Elements (REE) program. REEs are a series of 17 chemical elements found in the Earth’s crust. They are an essential component to technology, health care, transportation and national defense.
DNA ARRAYS: TECHNOLOGY, OPTIONS AND TOXOCOLOGICAL APPLICATIONS
DNA arrays: technology, options and toxicological applications.
Rockett JC, Dix DJ.
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, NC 27711, USA. rockett.john@epa.gov
The hu...
EPA MED-DULUTH'S ECOTOX AND ECO-SSL WEB APPLICATIONS
The ECOTOX (ECOTOXicology Database) system developed by the USEPA, National Health and Environmental Effects Research Laboratory (NHEERL), Mid-Continent Ecology Division in Duluth, MN (MED-Duluth), provides a web browser search interface for locating aquatic and terrestrial toxic...
Radiation and Health Technology Laboratory Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bihl, Donald E.; Lynch, Timothy P.; Murphy, Mark K.
2005-07-09
The Radiological Standards and Calibrations Laboratory, a part of Pacific Northwest National Laboratory (PNNL)(a) performs calibrations and upholds reference standards necessary to maintain traceability to national standards. The facility supports U.S. Department of Energy (DOE) programs at the Hanford Site, programs sponsored by DOE Headquarters and other federal agencies, radiological protection programs at other DOE and commercial nuclear sites and research and characterization programs sponsored through the commercial sector. The laboratory is located in the 318 Building of the Hanford Site's 300 Area. The facility contains five major exposure rooms and several laboratories used for exposure work preparation, low-activity instrumentmore » calibrations, instrument performance evaluations, instrument maintenance, instrument design and fabrication work, thermoluminescent and radiochromic Dosimetry, and calibration of measurement and test equipment (M&TE). The major exposure facilities are a low-scatter room used for neutron and photon exposures, a source well room used for high-volume instrument calibration work, an x-ray facility used for energy response studies, a high-exposure facility used for high-rate photon calibration work, a beta standards laboratory used for beta energy response studies and beta reference calibrations and M&TE laboratories. Calibrations are routinely performed for personnel dosimeters, health physics instrumentation, photon and neutron transfer standards alpha, beta, and gamma field sources used throughout the Hanford Site, and a wide variety of M&TE. This report describes the standards and calibrations laboratory.« less
Balanced biomedical program plan. Volume X. Fusion analysis for and environmental research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
In this draft planning document for health and environmental research needs relevant to the development of fusion technology, an attempt is made to integrate input from the participating laboratories on the basis of the King-Muir study categories. The general description covers only those concepts and features that are considered important to an understanding of possible and probable effects of thermonuclear reactors on health and the environment. Appendixes are included which reflect an understanding of three areas of special interest: materials requirements, effects from magnetic fields, and tritium effects.
Horton, Susan; Sullivan, Richard; Flanigan, John; Fleming, Kenneth A; Kuti, Modupe A; Looi, Lai Meng; Pai, Sanjay A; Lawler, Mark
2018-05-12
Modern, affordable pathology and laboratory medicine (PALM) systems are essential to achieve the 2030 Sustainable Development Goals for health in low-income and middle-income countries (LMICs). In this last in a Series of three papers about PALM in LMICs, we discuss the policy environment and emphasise three crucial high-level actions that are needed to deliver universal health coverage. First, nations need national strategic laboratory plans; second, these plans require adequate financing for implementation; and last, pathologists themselves need to take on leadership roles to advocate for the centrality of PALM to achieve the Sustainable Development Goals for health. The national strategic laboratory plan should deliver a tiered, networked laboratory system as a central element. Appropriate financing should be provided, at a level of at least 4% of health expenditure. Financing of new technologies such as molecular diagnostics is challenging for LMICs, even though many of these tests are cost-effective. Point-of-care testing can substantially reduce test-reporting time, but this benefit must be balanced with higher costs. Our research analysis highlights a considerable deficiency in advocacy for PALM; pathologists have been invisible in national and international health discourse and leadership. Embedding PALM in LMICs can only be achieved if pathologists advocate for these services, and undertake leadership roles, both nationally and internationally. We articulate eight key recommendations to address the current barriers identified in this Series and issue a call to action for all stakeholders to come together in a global alliance to ensure the effective provision of PALM services in resource-limited settings. Copyright © 2018 Elsevier Ltd. All rights reserved.
Management of nanomaterials safety in research environment.
Groso, Amela; Petri-Fink, Alke; Magrez, Arnaud; Riediker, Michael; Meyer, Thierry
2010-12-10
Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3--highest hazard to Nano1--lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting innovation and discoveries by ensuring them a safe environment even in the case of very novel products. The proposed measures are not considered as constraints but as a support to their research. This methodology is being implemented at the Ecole Polytechnique de Lausanne in over 100 research labs dealing with nanomaterials. It is our opinion that it would be useful to other research and academia institutions as well.
Management of nanomaterials safety in research environment
2010-01-01
Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting innovation and discoveries by ensuring them a safe environment even in the case of very novel products. The proposed measures are not considered as constraints but as a support to their research. This methodology is being implemented at the Ecole Polytechnique de Lausanne in over 100 research labs dealing with nanomaterials. It is our opinion that it would be useful to other research and academia institutions as well. PMID:21143952
Negative impact of laws regarding biosecurity and bioterrorism on real diseases.
Wurtz, N; Grobusch, M P; Raoult, D
2014-06-01
Research on highly pathogenic microorganisms in biosafety level 3 and 4 laboratories is very important for human public health, as it provides opportunities for the development of vaccines and novel therapeutics as well as diagnostic methods to prevent epidemics. However, in recent years, after the anthrax and World Trade Center attacks in 2001 in the USA, the threat of bioterrorism has grown for both the public and the authorities. As a result, technical and physical containment measures and biosafety and biosecurity practices have been implemented in laboratories handling these dangerous pathogens. Working with selected biological agents and toxins is now highly regulated, owing to their potential to pose a threat to public health and safety, despite the fact that the anthrax attack was found to be the result of a lack of security at a US Army laboratory. Thus, these added regulations have been associated with a large amount of fruitless investment. Herein, we describe the limitations of research in these facilities, and the multiple consequences of the increased regulations. These limitations have seriously negatively impacted on the number of collaborations, the size of research projects, and, more generally, scientific research on microbial pathogens. Clearly, the actual number of known victims and fatalities caused by the intentional use of microorganisms has been negligible as compared with those caused by naturally acquired human infections. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagle, G.E.; Watson, C.R.
Beagle dogs have been utilized extensively in biomedical research. The US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER) has sponsored life-span dose-effect radiation studies in beagles at various laboratories. Because results from studies in the various laboratories were to be compared, all the investigators strove to use similar nomenclature and criteria to describe biological effects. For this reason, pathologists from these laboratories met on five occasions between 1976 and 1977 to discuss nomenclature and histologic criteria for diagnoses. At these meeting, criteria were discussed for histopathologic description of lesions in bone, liver, lung, hematopoietic and lymphoidmore » tissues, mammary gland, pituitary, testis, and thyroid. To provide further assurance of cooperation among the DOE laboratories involved, DOE organized several Task Groups in 1985, composed of staff members from the laboratories. The Task Group on Biological Effects was asked to standardize nomenclature and diagnostic criteria for pathology; this beagle pathology atlas is the result of that request. The atlas describes target organs of particular interest: lungs for radionuclides delivered by inhalation; bones for bone-seeking radionuclides; and hematopoietic and other soft tissues for external irradiation.« less
Avoiding biohazards in medical, veterinary and research laboratories.
Grizzle, W E; Fredenburgh, J
2001-07-01
Personnel in medical, veterinary or research laboratories may be exposed to a wide variety of pathogens that range from deadly to debilitating. For some of these pathogens, no treatment is available, and in other cases the treatment does not fully control the disease. It is important that personnel in laboratories that process human or microbiological specimens follow universal precautions when handling tissues, cells, or microbiological specimens owing to the increasing numbers of individuals infected with hepatitis C and HIV in the US and the possibility that an individual may be asymptomatic when a specimen is obtained. Similar precautions must be followed in laboratories that use animal tissues owing to the possibility of exposure to agents that are pathogenic in humans. Personnel with conditions associated with immunosuppression should evaluate carefully whether or not specific laboratory environments put them at increased risk of disease. We offer here some general approaches to identifying biohazards and to minimizing the potential risk of exposure. The issues discussed can be used to develop a general safety program as required by regulatory or accrediting agencies, including the Occupational Safety and Health Administration.
Gray, Kathleen Mary; Clarke, Ken; Alzougool, Basil; Hines, Carolyn; Tidhar, Gil; Frukhtman, Feodor
2014-03-10
The use of Internet protocol television (IPTV) as a channel for consumer health information is a relatively under-explored area of medical Internet research. IPTV may afford new opportunities for health care service providers to provide health information and for consumers, patients, and caretakers to access health information. The technologies of Web 2.0 add a new and even less explored dimension to IPTV's potential. Our research explored an application of Web 2.0 integrated with IPTV for personalized home-based health information in diabetes education, particularly for people with diabetes who are not strong computer and Internet users, and thus may miss out on Web-based resources. We wanted to establish whether this system could enable diabetes educators to deliver personalized health information directly to people with diabetes in their homes; and whether this system could encourage people with diabetes who make little use of Web-based health information to build their health literacy via the interface of a home television screen and remote control. This project was undertaken as design-based research in two stages. Stage 1 comprised a feasibility study into the technical work required to integrate an existing Web 2.0 platform with an existing IPTV system, populated with content and implemented for user trials in a laboratory setting. Stage 2 comprised an evaluation of the system by consumers and providers of diabetes information. The project succeeded in developing a Web 2.0 IPTV system for people with diabetes and low literacies and their diabetes educators. The performance of the system in the laboratory setting gave them the confidence to engage seriously in thinking about the actual and potential features and benefits of a more widely-implemented system. In their feedback they pointed out a range of critical usability and usefulness issues related to Web 2.0 affordances and learning fundamentals. They also described their experiences with the system in terms that bode well for its educational potential, and they suggested many constructive improvements to the system. The integration of Web 2.0 and IPTV merits further technical development, business modeling, and health services and health outcomes research, as a solution to extend the reach and scale of home-based health care.
2014-04-01
Another coding issue was noticed in the gender/ sex field. Sixty-two SSNs were identified to have been coded as male and female in different files. Several...Air Force Research Laboratory 711th Human Performance Wing School of Aerospace Medicine Public Health & Preventive Medicine Dept Epidemiology...military report higher psychological strain than the general population [1] and significant work stress [2]. These stressors may manifest in health and
Standard Mutation Nomenclature in Molecular Diagnostics
Ogino, Shuji; Gulley, Margaret L.; den Dunnen, Johan T.; Wilson, Robert B.
2007-01-01
To translate basic research findings into clinical practice, it is essential that information about mutations and variations in the human genome are communicated easily and unequivocally. Unfortunately, there has been much confusion regarding the description of genetic sequence variants. This is largely because research articles that first report novel sequence variants do not often use standard nomenclature, and the final genomic sequence is compiled over many separate entries. In this article, we discuss issues crucial to clear communication, using examples of genes that are commonly assayed in clinical laboratories. Although molecular diagnostics is a dynamic field, this should not inhibit the need for and movement toward consensus nomenclature for accurate reporting among laboratories. Our aim is to alert laboratory scientists and other health care professionals to the important issues and provide a foundation for further discussions that will ultimately lead to solutions. PMID:17251329
Jia, Xiaojuan; Huang, Liqin; Liu, Wenjun
2013-12-01
Understanding inter-species transmission of influenza viruses is an important research topic. Scientists try to identify and evaluate the functional factors determining the host range of influenza viruses by generating the recombinant viruses through reverse genetics in laboratories, which reveals the viruses' molecular mechanisms of infection and transmission in different species. Therefore, the reverse genetic method is a very important tool for further understanding the biology of influenza viruses and will provide the insight for the prevention and treatment of infections and transmission. However, these recombinant influenza viruses generated in laboratories will become the potential threat to the public health and the environment. In this paper, we discussed the biological safety issues of recombinant influenza viruses and suggested we should set up protocols for risk management on research activities related to recombinant highly pathogenic influenza viruses.
NASA Technical Reports Server (NTRS)
Miller, Kate (Editor)
1995-01-01
On July 5, 1945, Dr. Vannevar Bush delivered a report to President Truman known as 'Science: The Endless Frontier'. In the report, Dr. Bush stated that 'scientific progress is one essential key to our security as a nation, to our better health, to more jobs, to a higher standard of living, and to our cultural progress'. Bush addressed job creation, the independence of basic research, the ties between research and application, and the nations's need for new talent. In 1995, there are strong similarities between the issues addressed in the Congress, Administration, and the public and those following World War 2. Federal funds and research funding are under severe pressure, including that from fiscal constraints in the federal budget due to the large and growing deficit and the escalating cost of health care. Defense conversion is addressed in the Congress and in industry, where many jobs are at stake. Conversion of the national laboratories, particularly nuclear weapons laboratories, has been a subject of a governmental commission and is the subject of draft legislation. Health care costs and the appropriate role of the federal government in funding basic and applied research has become a major topic of debate. Discussion on education in science has grown from the issue of how to produce more Ph.D.'s to how to improve the understanding of technology and science among the general public.
Vogt, R F
1991-01-01
The immune system is likely to be involved in some of the health effects caused by certain indoor air exposures, and immune biomarkers can help determine which exposures and health effects have important immune components. However, the lack of standardized laboratory tests for most human immune markers and the many confounding variables that can influence them makes interpretation of results for exposure and disease end points uncertain. This paper presents an overview of the immune system and the considerations involved in using tests for immune markers in clinical epidemiology studies, particularly those concerned with indoor air exposures. Careful study design, well-characterized laboratory methods, and rigorous documentation of exposure status are required to determine the predictive value of such tests. Clinical tests currently available for some immune markers could help identify and characterize both irritative and hypersensitivity reactions to indoor air pollutants. Newer tests developed in research settings might provide more incisive indicators of immune status that could help identify exposure, susceptibility, or preclinical disease states, but their methodologies must be refined and tested in multicenter studies before they can be used reliably in public health applications. PMID:1821385
Ciabatti, I; Marchesi, U; Froiio, A; Paternò, A; Ruggeri, M; Amaddeo, D
2005-08-01
The National Reference Centre for Genetically Modified Organisms (GMO) detection was established in 2002 within the Istituto Zooprofilattico Sperimentale Lazio e Toscana, with the aim of providing scientific and technical support to the National Health System and to the Ministry of Health within the scope of the regulation of GMO use in food and feed.The recently adopted EU legislation on GMOs (Regulation CE no. 1829/2003 and no. 1830/2003) introduced more rigorous procedures for the authorisation, labelling and analytical control of food and feed consisting, containing or derived from GMOs. The National Reference Centre, besides its institutional tasks as one of the laboratories of the Italian National Health System, collects and analyses data and results of the national official control of GMOs; carries out scientific research aimed at developing, improving, validating and harmonising detection and quantification methods, in cooperation with other scientific institutions, the Community Reference Laboratory and within the European Network of GMOs laboratories (ENGL); collaborates with the Ministry of Health in the definition of control programmes and promotes educational and training initiatives. Objectives defined for 2004-2006, activities in progress and goals already achieved are presented.
Development opportunities for hospital clinical laboratory joint ventures.
Van Riper, J A
1995-01-01
Regional health-care providers are being given the opportunity to collaborate in specialty health-care services. Collaboration to achieve superior economies of scale is very effective in the clinical laboratory industry. National laboratory chains are consolidating and enhancing their control of the industry to ensure their historic profitability. National companies have closed many laboratory facilities and have laid off substantial numbers of laboratory personnel. Health-care providers can regain control of their locally generated laboratory health-care dollars by joining forces with clinical laboratory joint ventures. Laboratorians can assist the healthcare providers in bringing laboratory services and employment back to the local community. New capital for operational development and laboratory information systems will help bring the laboratory to the point of care. The independent regional laboratory is focused on supporting the medical needs of the community. The profit generated from a laboratory joint venture is shared among local health-care providers, supporting their economic viability. The laboratories' ability to contribute to the development of profit-making ventures will provide capital for new laboratory development. All of the above will ensure the clinical laboratories' role in providing quality health care to our communities and employment opportunities for laboratory personnel.
European health research and globalisation: is the public-private balance right?
McCarthy, Mark
2011-03-22
The creation and exchange of knowledge between cultures has benefited world development for many years. The European Union now puts research and innovation at the front of its economic strategy. In the health field, biomedical research, which benefits the pharmaceutical and biotechnology industries, has been well supported, but much less emphasis has been given to public health and health systems research. A similar picture is emerging in European support for globalisation and health Two case-studies illustrate the links of European support in global health research with industry and biomedicine. The European Commission's directorates for (respectively) Health, Development and Research held an international conference in Brussels in June 2010. Two of six thematic sessions related to research: one was solely concerned with drug development and the protection of intellectual property. Two European Union-supported health research projects in India show a similar trend. The Euro-India Research Centre was created to support India's participation in EU research programmes, but almost all of the health research projects have been in biotechnology. New INDIGO, a network led by the French national research agency CNRS, has chosen 'Biotechnology and Health' and funded projects only within three laboratory sciences. Research for commerce supports only one side of economic development. Innovative technologies can be social as well as physical, and be as likely to benefit society and the economy. Global health research agendas to meet the Millenium goals need to prioritise prevention and service delivery. Public interest can be voiced through civil society organisations, able to support social research and public-health interventions. Money for health research comes from public budgets, or indirectly through healthcare costs. European 'Science in Society' programme contrasts research for 'economy', using technical solutions, commercialisation and a passive consumer voice for civil society, compared with research valuing 'collectivity', organisational and social innovations, open use, and public accountability. European policy currently prioritises health research in support of industry. European institutions and national governments must also support research and innovation in health and social systems, and promote civil society participation, to meet the challenges of globalisation.
European health research and globalisation: is the public-private balance right?
2011-01-01
Background The creation and exchange of knowledge between cultures has benefited world development for many years. The European Union now puts research and innovation at the front of its economic strategy. In the health field, biomedical research, which benefits the pharmaceutical and biotechnology industries, has been well supported, but much less emphasis has been given to public health and health systems research. A similar picture is emerging in European support for globalisation and health Case studies Two case-studies illustrate the links of European support in global health research with industry and biomedicine. The European Commission's directorates for (respectively) Health, Development and Research held an international conference in Brussels in June 2010. Two of six thematic sessions related to research: one was solely concerned with drug development and the protection of intellectual property. Two European Union-supported health research projects in India show a similar trend. The Euro-India Research Centre was created to support India's participation in EU research programmes, but almost all of the health research projects have been in biotechnology. New INDIGO, a network led by the French national research agency CNRS, has chosen 'Biotechnology and Health' and funded projects only within three laboratory sciences. Discussion Research for commerce supports only one side of economic development. Innovative technologies can be social as well as physical, and be as likely to benefit society and the economy. Global health research agendas to meet the Millenium goals need to prioritise prevention and service delivery. Public interest can be voiced through civil society organisations, able to support social research and public-health interventions. Money for health research comes from public budgets, or indirectly through healthcare costs. European 'Science in Society' programme contrasts research for 'economy', using technical solutions, commercialisation and a passive consumer voice for civil society, compared with research valuing 'collectivity', organisational and social innovations, open use, and public accountability. Conclusions European policy currently prioritises health research in support of industry. European institutions and national governments must also support research and innovation in health and social systems, and promote civil society participation, to meet the challenges of globalisation. PMID:21426549
Richmond, Jonathan Y; Nesby-O'Dell, Shanna L
2002-12-06
In recent years, concern has increased regarding use of biologic materials as agents of terrorism, but these same agents are often necessary tools in clinical and research microbiology laboratories. Traditional biosafety guidelines for laboratories have emphasized use of optimal work practices, appropriate containment equipment, well-designed facilities, and administrative controls to minimize risk of worker injury and to ensure safeguards against laboratory contamination. The guidelines discussed in this report were first published in 1999 (U.S. Department of Health and Human Services/CDC and National Institutes of Health. Biosafety in microbiological and biomedical laboratories [BMBL]. Richmond JY, McKinney RW, eds. 4th ed. Washington, DC: US Department of Health and Human Services, 1999 [Appendix F]). In that report, physical security concerns were addressed, and efforts were focused on preventing unauthorized entry to laboratory areas and preventing unauthorized removal of dangerous biologic agents from the laboratory. Appendix F of BMBL is now being revised to include additional information regarding personnel risk assessments, and inventory controls. The guidelines contained in this report are intended for laboratories working with select agents under biosafety-level 2, 3, or 4 conditions as described in Sections II and III of BMBL. These recommendations include conducting facility risk assessments and developing comprehensive security plans to minimize the probability of misuse of select agents. Risk assessments should include systematic, site-specific reviews of 1) physical security; 2) security of data and electronic technology systems; 3) employee security; 4) access controls to laboratory and animal areas; 5) procedures for agent inventory and accountability; 6) shipping/transfer and receiving of select agents; 7) unintentional incident and injury policies; 8) emergency response plans; and 9) policies that address breaches in security. The security plan should be an integral part of daily operations. All employees should be well-trained and equipped, and the plan should be reviewed annually, at least.
Toxic Materials in the Academic Laboratory from an Industrial Viewpoint.
ERIC Educational Resources Information Center
Fischback, Bryant C.
1979-01-01
A Dow Chemical Company senior group leader discusses the following topics: how research is carried out at Dow from a safety and health standpoint, desirable qualities in professional chemists, and a common sense approach to government regulations. (BB)
Code of Federal Regulations, 2010 CFR
2010-10-01
... NATIONAL INSTITUTE OF CHILD HEALTH AND HUMAN DEVELOPMENT CONTRACEPTION AND INFERTILITY RESEARCH LOAN...; and (4) Reproductive Medicine Unit identified as a clinical site for the National Cooperative Reproductive Medicine Network, or other sites as designated by the Director. NICHD intramural laboratory means...
QUINAULT INDIAN NATIONAL DEVELOPMENT OF TRIBAL SEAFOOD CONSUMPTION SURVEY SOFTWARE
The Quinault Indian Nation needed to determine appropriate seafood consumption rates for development of their water quality standards. EPA Region 10 and EPA's National Health and Environmental Effects Research Laboratory had been collaborating on computer assisted personal inter...
Air sampling experiments were done in 1985, 1987, and 1993 at the human-exposure chamber facility of the U.S. EPA Health Effects Research Laboratory in Chapel Hill, NC. easurements of VOC's by GC-FID and aldehyde measurements by the DNPH silica gel cartridge method were made, com...
Developing putative AOPs from high content data Shannon M. Bell1,2, Stephen W. Edwards2 1 Oak Ridge Institute for Science and Education 2 Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development,...
Katherine P O' Neill; Michael C. Amacher; Charles H. Perry
2005-01-01
Documents the types of data collected as part of the Forest Inventory and Analysis soil indicator, the field and laboratory methods used, and the rationale behind these data collection procedures. Guides analysts and researchers on incorporating soil indicator data into reports and research studies.
ERIC Educational Resources Information Center
Bush, Dick; Renfrew, Malcolm M., Ed.
1979-01-01
This is a report on a study done in 1976 of safety arrangements and procedures in teaching, research, and medical establishments in the United States. The results show that the Occupational Safety & Health Act (OSHA) has not yet had much impact as far as safety in teaching and research is concerned. (BB)
Corrective Action Plan in response to the March 1992 Tiger Team Assessment of the Ames Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-11-20
On March 5, 1992, a Department of Energy (DOE) Tiger Team completed an assessment of the Ames Laboratory, located in Ames, Iowa. The purpose of the assessment was to provide the Secretary of Energy with a report on the status and performance of Environment, Safety and Health (ES H) programs at Ames Laboratory. Detailed findings of the assessment are presented in the report, DOE/EH-0237, Tiger Team Assessment of the Ames Laboratory. This document, the Ames Laboratory Corrective Action Plan (ALCAP), presents corrective actions to overcome deficiencies cited in the Tiger Team Assessment. The Tiger Team identified 53 Environmental findings, frommore » which the Team derived four key findings. In the Safety and Health (S H) area, 126 concerns were identified, eight of which were designated Category 11 (there were no Category I concerns). Seven key concerns were derived from the 126 concerns. The Management Subteam developed 19 findings which have been summarized in four key findings. The eight S H Category 11 concerns identified in the Tiger Team Assessment were given prompt management attention. Actions to address these deficiencies have been described in individual corrective action plans, which were submitted to DOE Headquarters on March 20, 1992. The ALCAP includes actions described in this early response, as well as a long term strategy and framework for correcting all remaining deficiencies. Accordingly, the ALCAP presents the organizational structure, management systems, and specific responses that are being developed to implement corrective actions and to resolve root causes identified in the Tiger Team Assessment. The Chicago Field Office (CH), IowaState University (ISU), the Institute for Physical Research and Technology (IPRT), and Ames Laboratory prepared the ALCAP with input from the DOE Headquarters, Office of Energy Research (ER).« less
Corrective Action Plan in response to the March 1992 Tiger Team Assessment of the Ames Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-11-20
On March 5, 1992, a Department of Energy (DOE) Tiger Team completed an assessment of the Ames Laboratory, located in Ames, Iowa. The purpose of the assessment was to provide the Secretary of Energy with a report on the status and performance of Environment, Safety and Health (ES&H) programs at Ames Laboratory. Detailed findings of the assessment are presented in the report, DOE/EH-0237, Tiger Team Assessment of the Ames Laboratory. This document, the Ames Laboratory Corrective Action Plan (ALCAP), presents corrective actions to overcome deficiencies cited in the Tiger Team Assessment. The Tiger Team identified 53 Environmental findings, from whichmore » the Team derived four key findings. In the Safety and Health (S&H) area, 126 concerns were identified, eight of which were designated Category 11 (there were no Category I concerns). Seven key concerns were derived from the 126 concerns. The Management Subteam developed 19 findings which have been summarized in four key findings. The eight S&H Category 11 concerns identified in the Tiger Team Assessment were given prompt management attention. Actions to address these deficiencies have been described in individual corrective action plans, which were submitted to DOE Headquarters on March 20, 1992. The ALCAP includes actions described in this early response, as well as a long term strategy and framework for correcting all remaining deficiencies. Accordingly, the ALCAP presents the organizational structure, management systems, and specific responses that are being developed to implement corrective actions and to resolve root causes identified in the Tiger Team Assessment. The Chicago Field Office (CH), IowaState University (ISU), the Institute for Physical Research and Technology (IPRT), and Ames Laboratory prepared the ALCAP with input from the DOE Headquarters, Office of Energy Research (ER).« less
Environmental Measurements Laboratory, annual report 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krey, P.W.; Heit, M.
1996-07-01
This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1995 and serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the Manager and staff of the Chicago Operations Office, and our colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven research program areas: (1) Environmental Radiation and Radioactivity; (2) Radiation Transport and Dosimetry; (3) Environmental Radon, Thoron,more » and Related Aerosols; (4) Atmospheric and Surface Pollutant Studies Related to Global Climate Change; (5) Atmospheric Chemistry; and (6) Metrology, Consultation, and Emergency Response Environmental Management The mission of EML is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues, and related national security issues.« less
Mmbuji, Peter; Mukanga, David; Mghamba, Janeth; Ahly, Mohamed; Mosha, Fausta; Azima, Simba; Senga, Sembuche; Moshiro, Candida; Semali, Innocent; Rolle, Italia; Wiktor, Stefan; McQueen, Suzzane; McElroy, Peter; Nsubuga, Peter
2011-01-01
The Tanzania Field Epidemiology and Laboratory Training Program (TFELTP) was established in 2008 as a partnership among the Ministry of Health and Social Welfare (MOHSW), Muhimbili University of Health and Allied Sciences, National Institute for Medical Research, and local and international partners. TFELTP was established to strengthen the capacity of MOHSW to conduct public health surveillance and response, manage national disease control and prevention programs, and to enhance public health laboratory support for surveillance, diagnosis, treatment and disease monitoring. TFELTP is a 2-year full-time training program with approximately 25% time spent in class, and 75% in the field. TFELTP offers two tracks leading to an MSc degree in either Applied Epidemiology or, Epidemiology and Laboratory Management. Since 2008, the program has enrolled a total of 33 trainees (23 males, 10 females). Of these, 11 were enrolled in 2008 and 100% graduated in 2010. All 11 graduates of cohort 1 are currently employed in public health positions within the country. Demand for the program as measured by the number of applicants has grown from 28 in 2008 to 56 in 2011. While training the public health leaders of the country, TFELTP has also provided essential service to the country in responding to high-profile disease outbreaks, and evaluating and improving its public health surveillance systems and diseases control programs. TFELTP was involved in the country assessment of the revised International Health Regulations (IHR) core capabilities, development of the Tanzania IHR plan, and incorporation of IHR into the revised Tanzania Integrated Disease Surveillance and Response (IDSR) guidelines. TFELTP is training a competent core group of public health leaders for Tanzania, as well as providing much needed service to the MOHSW in the areas of routine surveillance, outbreak detection and response, and disease program management. However, the immediate challenges that the program must address include development of a full range of in-country teaching capacity for the program, as well as a career path for graduates. PMID:22359697
Environmental Measurements Laboratory 1994 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chieco, N.A.; Krey, P.W.; Beck, H.L.
1995-08-01
This report summarizes the activities of the Environmental Measurements Laboratory (EML) for the calendar year 1994 and it serves as an annual report to the Director of the Office of Energy Research (ER), the Associate Director and staff of the Office of Health and Environmental Research (OHER), the manager and staff of the Chicago Field Office, and the authors colleagues. Emphasized are the progress and accomplishments of the year, rather than future plans or expectations. The technical summaries are grouped according to the following seven general program areas: environmental radiation and radioactivity; radiation transport and dosimetry; environmental radon, thoron, andmore » related aerosols; atmospheric and surface pollutant studies related to global climate change; atmospheric chemistry; metrology, consultation, and emergency response; environmental management. EML`s mission is to address important scientific questions concerning human health and environmental impacts. Through its multidisciplinary staff, EML conducts experimental and theoretical research on radioactive and other energy-related pollutants, and provides DOE and other federal agencies with the in-house capability to respond effectively and efficiently with regard to quality assurance activities, environmental issues and related national security issues.« less
Yılmaz, Hasan; Taş-Cengiz, Zeynep; Ceylan, Abdulkadir; Ekici, Abdurrahman
2012-01-01
This study was performed to present the distribution of intestinal parasites in parients admitted to the Parasitology Laboratory of the Health Research and Training Hospital of Yüzüncü Yıl University in 2009. A total of 6267 patients (3037 female, 3230 male; 3798 of 13 years and under, 2469 of 14 years and over) were included. The stool samples were examined by native-Lugol, flotation and sedimentation methods in the Parasitology Laboratory of the hospital. Trichrome and modified acid-fast staining methods were also applied to suspicious stools. One or more than one parasite species were found in 28.5% of 6267 examined stool samples. Parasitosis was determined in 28% of female and 29% of male. Distribution of the parasites determined in the patients was as follows: 15.4% Blastocystis hominis, 6.6% Giardia intestinalis, 4.9% Entamoeba coli, 3.2% plenty B. hominis, 1.7% Chilomastix mesnili, 1.3% Hymenolepis nana, 0.7% Iodamoeba butschlii, 0.5% Ascaris lumbricoides, 0.1% Entamoeba histolytica/Entamoeba dispar, 0.1% Endolimax nana, 0.1% Enteromonas hominis, 0.1% Trichomonas hominis, 0.1% Cyclospora cayetanensis, 0.1% Enterobius vermicularis, 0.03% Entamoeba hartmanni, 0.03% Dicrocoelium dendriticum,0.03% Taenia saginata and 0.02% Trichuris trichiura. This research shows that the intestinal parasitosis problem still continues in the province.
Cookstove Laboratory Research - Fiscal Year 2016 Report ...
This report provides an overview of the work conducted by the EPA cookstove laboratory research team in Fiscal Year 2016. The report describes research and activities including (1) ISO standards development, (2) capacity building for international testing and knowledge centers, (3) laboratory assessments of cookstove systems, (4) journal publications, and (5) cookstove events. The U.S. Environmental Protection Agency’s (EPA’s) cookstove laboratory research program was first developed to assist the EPA-led Partnership for Clean Indoor Air and is now part of the U.S. Government’s commitment to the Global Alliance for Clean Cookstoves (the Alliance). Goals of the program are to: (1) support the development of testing protocols and standards for cookstoves through ISO (International Organization for Standardization) TC (Technical Committee) 285: Clean Cookstoves and Clean Cooking Solutions, (2) support the development of international Regional Testing and Knowledge Centers (many sponsored by the Alliance) for scientifically evaluating and certifying cookstoves to international standards, and (3) provide an independent source of data to Alliance partners. This work supports EPA’s mission to protect human health and the environment. Household air pollution, mainly from solid-fuel cookstoves in the developing world, is estimated to cause approximately 4 million premature deaths per year, and emissions of black carbon and other pollutants from cookstoves aff
Hall, Jennifer L; Ryan, John J; Bray, Bruce E; Brown, Candice; Lanfear, David; Newby, L Kristin; Relling, Mary V; Risch, Neil J; Roden, Dan M; Shaw, Stanley Y; Tcheng, James E; Tenenbaum, Jessica; Wang, Thomas N; Weintraub, William S
2016-04-01
The process of scientific discovery is rapidly evolving. The funding climate has influenced a favorable shift in scientific discovery toward the use of existing resources such as the electronic health record. The electronic health record enables long-term outlooks on human health and disease, in conjunction with multidimensional phenotypes that include laboratory data, images, vital signs, and other clinical information. Initial work has confirmed the utility of the electronic health record for understanding mechanisms and patterns of variability in disease susceptibility, disease evolution, and drug responses. The addition of biobanks and genomic data to the information contained in the electronic health record has been demonstrated. The purpose of this statement is to discuss the current challenges in and the potential for merging electronic health record data and genomics for cardiovascular research. © 2016 American Heart Association, Inc.
DeVoe, Jennifer E; Likumahuwa-Ackman, Sonja; Shannon, Jackilen; Steiner Hayward, Elizabeth
2017-04-01
Academic medical centers (AMCs) in the United States built world-class infrastructure to successfully combat disease in the 20th century, which is inadequate for the complexity of sustaining and improving population health. AMCs must now build first-rate 21st-century infrastructure to connect combating disease and promoting health. This infrastructure must acknowledge the bio-psycho-social-environmental factors impacting health and will need to reach far beyond the AMC walls to foster community "laboratories" that support the "science of health," complementary to those supporting the "science of medicine"; cultivate community "classrooms" to stimulate learning and discovery in the places where people live, work, and play; and strengthen bridges between academic centers and these community laboratories and classrooms to facilitate bidirectional teaching, learning, innovation, and discovery.Private and public entities made deep financial investments that contributed to the AMC disease-centered approach to clinical care, education, and research in the 20th century. Many of these same funders now recognize the need to transform U.S. health care into a system that is accountable for population health and the need for a medical workforce equipped with the skills to measure and improve health. Innovative ideas about communities as centers of learning, the importance of social factors as major determinants of health, and the need for multidisciplinary perspectives to solve complex problems are not new; many are 20th-century ideas still waiting to be fully implemented. The window of opportunity is now. The authors articulate how AMCs must take bigger and bolder steps to become leaders in population health.
Retail grocery store marketing strategies and obesity: an integrative review.
Glanz, Karen; Bader, Michael D M; Iyer, Shally
2012-05-01
In-store food marketing can influence food-purchasing behaviors and warrants increased attention given the dramatic rise in obesity. Descriptive and experimental studies of key marketing components have been conducted by consumer scientists, marketing researchers, and public health experts. This review synthesizes research and publications from industry and academic sources and provides direction for developing and evaluating promising interventions. Literature sources for the review were English-language articles published from 1995 to 2010, identified from multidisciplinary search indexes, backward searches of cited articles, review articles, industry reports, and online sources. Only articles that focused on physical grocery stores and food products were included. Data collection occurred in 2010 and 2011. Articles were classified in the categories of product, price, placement, and promotion and divided into controlled laboratory experiments, observation, and field experiments; 125 primary peer-reviewed articles met the inclusion criteria. Narrative synthesis methods were used. Key findings were synthesized by category of focus and study design. Evidence synthesis was completed in 2011. Findings suggest several strategies for in-store marketing to promote healthful eating by increasing availability, affordability, prominence, and promotion of healthful foods and/or restricting or de-marketing unhealthy foods. Key results of research in controlled laboratory studies should be adapted and tested in real-world in-store settings. Industry methods for assessing consumer behavior, such as electronic sales data and individually linked sales information from loyalty card holders, can help public health researchers increase the scientific rigor of field studies. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Making big data useful for health care: a summary of the inaugural mit critical data conference.
Badawi, Omar; Brennan, Thomas; Celi, Leo Anthony; Feng, Mengling; Ghassemi, Marzyeh; Ippolito, Andrea; Johnson, Alistair; Mark, Roger G; Mayaud, Louis; Moody, George; Moses, Christopher; Naumann, Tristan; Pimentel, Marco; Pollard, Tom J; Santos, Mauro; Stone, David J; Zimolzak, Andrew
2014-08-22
With growing concerns that big data will only augment the problem of unreliable research, the Laboratory of Computational Physiology at the Massachusetts Institute of Technology organized the Critical Data Conference in January 2014. Thought leaders from academia, government, and industry across disciplines-including clinical medicine, computer science, public health, informatics, biomedical research, health technology, statistics, and epidemiology-gathered and discussed the pitfalls and challenges of big data in health care. The key message from the conference is that the value of large amounts of data hinges on the ability of researchers to share data, methodologies, and findings in an open setting. If empirical value is to be from the analysis of retrospective data, groups must continuously work together on similar problems to create more effective peer review. This will lead to improvement in methodology and quality, with each iteration of analysis resulting in more reliability.
Making Big Data Useful for Health Care: A Summary of the Inaugural MIT Critical Data Conference
2014-01-01
With growing concerns that big data will only augment the problem of unreliable research, the Laboratory of Computational Physiology at the Massachusetts Institute of Technology organized the Critical Data Conference in January 2014. Thought leaders from academia, government, and industry across disciplines—including clinical medicine, computer science, public health, informatics, biomedical research, health technology, statistics, and epidemiology—gathered and discussed the pitfalls and challenges of big data in health care. The key message from the conference is that the value of large amounts of data hinges on the ability of researchers to share data, methodologies, and findings in an open setting. If empirical value is to be from the analysis of retrospective data, groups must continuously work together on similar problems to create more effective peer review. This will lead to improvement in methodology and quality, with each iteration of analysis resulting in more reliability. PMID:25600172
External quality assurance performance of clinical research laboratories in sub-saharan Africa.
Amukele, Timothy K; Michael, Kurt; Hanes, Mary; Miller, Robert E; Jackson, J Brooks
2012-11-01
Patient Safety Monitoring in International Laboratories (JHU-SMILE) is a resource at Johns Hopkins University that supports and monitors laboratories in National Institutes of Health-funded international clinical trials. To determine the impact of the JHU-SMILE quality assurance scheme in sub-Saharan African laboratories, we reviewed 40 to 60 months of external quality assurance (EQA) results of the College of American Pathologists (CAP) in these laboratories. We reviewed the performance of 8 analytes: albumin, alanine aminotransferase, creatinine, sodium, WBC, hemoglobin, hematocrit, and the human immunodeficiency virus antibody rapid test. Over the 40- to 60-month observation period, the sub-Saharan laboratories had a 1.63% failure rate, which was 40% lower than the 2011 CAP-wide rate of 2.8%. Seventy-six percent of the observed EQA failures occurred in 4 of the 21 laboratories. These results demonstrate that a system of remote monitoring, feedback, and audits can support quality in low-resource settings, even in places without strong regulatory support for laboratory quality.
The Role of a National Biocontainment Laboratory in Emergencies.
Le Duc, James W; Ksiazek, Thomas G
2015-01-01
Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.
Critical components required to improve deployable laboratory biological hazards identification
NASA Astrophysics Data System (ADS)
Niemeyer, Debra M.
2004-08-01
An ever-expanding global military mission necessitates quick and accurate identification of biological hazards, whether naturally occurring or man-made. Coupled with an ever-present threat of biological attack, an expanded U.S. presence in worn-torn locations like Southwest Asia presents unique public health challenges. We must heed modern day "lessons learned" from Operation Desert Shield and the Soviet Afghanistan Campaign and guard against rapid incapacitation of troop strength from endemic disease and biological attack. To minimize readiness impacts, field hygiene is enforced, and research on better medical countermeasures such as antibiotics and vaccines continues. However, there are no preventions or remedies for all military-relevant infectious diseases or biological agents. A deployable, streamlined, self-contained diagnostic and public health surveillance laboratory capability with a reach-back communication is critical to meeting global readiness challenges. Current deployable laboratory packages comprise primarily diagnostic or environmental sample testing capabilities. Discussion will focus on critical components needed to improve existing laboratory assets, and to facilitate deployment of small, specialized packages far forward. The ideal laboratory model described will become an essential tool for the Combatant or Incident Commander to maintain force projection in the expeditionary environment.
Implementation science: the laboratory as a command centre.
Boeras, Debrah I; Nkengasong, John N; Peeling, Rosanna W
2017-03-01
Recent advances in point-of-care technologies to ensure universal access to affordable quality-assured diagnostics have the potential to transform patient management, surveillance programmes, and control of infectious diseases. Decentralization of testing can put tremendous stresses on fragile health systems if the laboratory is not involved in the planning, introduction, and scale-up strategies. The impact of investments in novel technologies can only be realized if these tests are evaluated, adopted, and scaled up within the healthcare system with appropriate planning and understanding of the local contexts in which these technologies will be used. In this digital age, the laboratory needs to take on the role of the Command Centre for technology introduction and implementation. Implementation science is needed to understand the political, cultural, economic, and behavioural context for technology introduction. The new paradigm should include: building a comprehensive system of laboratories and point-of-care testing sites to provide quality-assured diagnostic services with good laboratory-clinic interface to build trust in test results and linkage to care; building and coordinating a comprehensive national surveillance and communication system for disease control and global health emergencies; conducting research to monitor the impact of new tools and interventions on improving patient care.
Prognostic and health management of active assets in nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Vivek; Lybeck, Nancy; Pham, Binh T.
This study presents the development of diagnostic and prognostic capabilities for active assets in nuclear power plants (NPPs). The research was performed under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program. Idaho National Laboratory researched, developed, implemented, and demonstrated diagnostic and prognostic models for generator step-up transformers (GSUs). The Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software developed by the Electric Power Research Institute was used to perform diagnosis and prognosis. As part of the research activity, Idaho National Laboratory implemented 22 GSU diagnostic models in the Asset Fault Signature Database and twomore » wellestablished GSU prognostic models for the paper winding insulation in the Remaining Useful Life Database of the FW-PHM Suite. The implemented models along with a simulated fault data stream were used to evaluate the diagnostic and prognostic capabilities of the FW-PHM Suite. Knowledge of the operating condition of plant asset gained from diagnosis and prognosis is critical for the safe, productive, and economical long-term operation of the current fleet of NPPs. This research addresses some of the gaps in the current state of technology development and enables effective application of diagnostics and prognostics to nuclear plant assets.« less
Prognostic and health management of active assets in nuclear power plants
Agarwal, Vivek; Lybeck, Nancy; Pham, Binh T.; ...
2015-06-04
This study presents the development of diagnostic and prognostic capabilities for active assets in nuclear power plants (NPPs). The research was performed under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability Program. Idaho National Laboratory researched, developed, implemented, and demonstrated diagnostic and prognostic models for generator step-up transformers (GSUs). The Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software developed by the Electric Power Research Institute was used to perform diagnosis and prognosis. As part of the research activity, Idaho National Laboratory implemented 22 GSU diagnostic models in the Asset Fault Signature Database and twomore » wellestablished GSU prognostic models for the paper winding insulation in the Remaining Useful Life Database of the FW-PHM Suite. The implemented models along with a simulated fault data stream were used to evaluate the diagnostic and prognostic capabilities of the FW-PHM Suite. Knowledge of the operating condition of plant asset gained from diagnosis and prognosis is critical for the safe, productive, and economical long-term operation of the current fleet of NPPs. This research addresses some of the gaps in the current state of technology development and enables effective application of diagnostics and prognostics to nuclear plant assets.« less
The Essential Role for Laboratory Studies in Atmospheric Chemistry.
Burkholder, James B; Abbatt, Jonathan P D; Barnes, Ian; Roberts, James M; Melamed, Megan L; Ammann, Markus; Bertram, Allan K; Cappa, Christopher D; Carlton, Annmarie G; Carpenter, Lucy J; Crowley, John N; Dubowski, Yael; George, Christian; Heard, Dwayne E; Herrmann, Hartmut; Keutsch, Frank N; Kroll, Jesse H; McNeill, V Faye; Ng, Nga Lee; Nizkorodov, Sergey A; Orlando, John J; Percival, Carl J; Picquet-Varrault, Bénédicte; Rudich, Yinon; Seakins, Paul W; Surratt, Jason D; Tanimoto, Hiroshi; Thornton, Joel A; Tong, Zhu; Tyndall, Geoffrey S; Wahner, Andreas; Weschler, Charles J; Wilson, Kevin R; Ziemann, Paul J
2017-03-07
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.
42 CFR 414.510 - Laboratory date of service for clinical laboratory and pathology specimens.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 3 2011-10-01 2011-10-01 false Laboratory date of service for clinical laboratory and pathology specimens. 414.510 Section 414.510 Public Health CENTERS FOR MEDICARE & MEDICAID... AND OTHER HEALTH SERVICES Payment for New Clinical Diagnostic Laboratory Tests § 414.510 Laboratory...
The Health Valley: Global Entrepreneurial Dynamics.
Dubuis, Benoit
2014-12-01
In the space of a decade, the Lake Geneva region has become the Health Valley, a world-class laboratory for discovering and developing healthcare of the future. Through visionary individuals and thanks to exceptional infrastructure this region has become one of the most dynamic in the field of innovation, including leading scientific research and exceptional actors for the commercialization of academic innovation to industrial applications that will improve the lives of patients and their families. Here follows the chronicle of a spectacular expansion into the Health Valley.
Wilson, Danyell S.; Fang, Bin; Dalton, William S.; Meade, Cathy; Koomen, John M.
2012-01-01
The National Cancer Institute’s Center to Reduce Cancer Health Disparities has created pilot training opportunities under the “Continuing Umbrella of Research Experiences” (CURE) program that focus on emerging technologies (ET). In this pilot project, an eighteen month cancer biology research internship was reinforced with: instruction in an emerging technology (proteomics), a transition from the undergraduate laboratory to a research setting, education in cancer health disparities, and community outreach activities. A major goal was to provide underrepresented undergraduates with hands-on research experiences that are rarely encountered at the undergraduate level, including mentoring, research presentations, and participation in local and national meetings. These opportunities provided education and career development for the undergraduates, and they have given each student the opportunity to transition from learning to sharing their knowledge and from being mentored to mentoring others. Here, we present the concepts, curriculum, infrastructure, and challenges for this training program along with evaluations by both the students and their mentors. PMID:22528637
Wilson, Danyell S; Fang, Bin; Dalton, William S; Meade, Cathy D; Koomen, John M
2012-06-01
The National Cancer Institute's Center to Reduce Cancer Health Disparities has created pilot training opportunities under the "Continuing Umbrella of Research Experiences" program that focus on emerging technologies. In this pilot project, an 18-month cancer biology research internship was reinforced with: instruction in an emerging technology (proteomics), a transition from the undergraduate laboratory to a research setting, education in cancer health disparities, and community outreach activities. A major goal was to provide underrepresented undergraduates with hands-on research experiences that are rarely encountered at the undergraduate level, including mentoring, research presentations, and participation in local and national meetings. These opportunities provided education and career development for the undergraduates, and they have given each student the opportunity to transition from learning to sharing their knowledge and from being mentored to mentoring others. Here, we present the concepts, curriculum, infrastructure, and challenges for this training program along with evaluations by both the students and their mentors.
From bench to bedside and to health policies (and back): ethics in translational research.
Petrini, Carlo
2014-01-01
The medical aim of translational research is to smooth the transition of discoveries made through basic research from the laboratory bench to their diagnostic or therapeutic applications for patients. These applications may be extended to current clinical practice and to health policies. The converse is also important: health policies should provide a point of departure when identifying research priorities. Translational research poses the same ethical problems as trials with human subjects - albeit in different ways. One of the more significant problems is the risk for participants in trials: it is thus necessary to ensure that the risks to which these subjects are exposed are not out of proportion to the expected benefits. Translational research does not require new ethical principles, but existing biomedical principles need to be adjusted to the specific context. The well-being of participants should always be the primary objective; these persons should never be considered as means for the advancement of knowledge or for the improvement of applications.
Chapot, Brigitte; Secretan, Béatrice; Robert, Annie; Hainaut, Pierre
2009-07-01
Working in a molecular biology laboratory environment implies regular exposure to a wide range of hazardous substances. Several recent studies have shown that laboratory workers may have an elevated risk of certain cancers. Data on the nature and frequency of exposures in such settings are scanty. The frequency of use of 163 agents by staff working in molecular biology laboratories was evaluated over a period of 4 years by self-administered questionnaire. Of the agents listed, ethanol was used by the largest proportion of staff (70%), followed by ethidium bromide (55%). Individual patterns of use showed three patterns, namely (i) frequent use of a narrow range of products, (ii) occasional use of a wide range of products, and (iii) frequent and occasional use of an intermediate range of products. Among known or suspected carcinogens (International Agency for Research on Cancer Group 1 and 2A, respectively), those most frequently used included formaldehyde (17%), oncogenic viruses (4%), and acrylamide (32%). The type of exposure encountered in research laboratories is extremely diverse. Few carcinogenic agents are used frequently but many laboratory workers may be exposed occasionally to known human carcinogens. In addition, many of the chemicals handled by staff represent a health hazard. The results enabled the staff physician to develop an individual approach to medical surveillance and to draw a personal history of occupational exposures for laboratory staff.
MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES USING CONFOCAL LASER SCANNING MICROSCOPY
MAMMALIAN APOPTOSIS IN WHOLE NEONATAL OVARIES USING CONFOCAL LASER SCANNING MICROSCOPY
Robert M. Zucker Susan C. Jeffery and Sally D. Perreault
Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Prot...
MAMMARY GLAND DEVELOPMENT: EARLY LIFE EFFECTS FROM THE ENVIRONMENT
Mammary Gland Development: Early Life Effects from the Environment
S.E. Fenton. Reproductive Toxicology Division, National Health and Environmental Effects Laboratory, ORD, U.S. EPA, Research Triangle Park, NC 27711.
As signs of precocious puberty in girls reach ...
AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS
Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...
STATUS OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S ENCODRINE DISRUPTOR SCREENING PROGRAM
Status of the U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program. Susan Laws. Endocrinology Branch, Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, ORD, U.S. EPA, RTP, NC.
In response to emergi...
AN APPROACH TO PREDICT RISKS TO WILDLIFE POPULATIONS FROM MERCURY AND OTHER STRESSORS
The U.S. Environmental Protection Agency's National Health and Environmental Effects Research Laboratory (NHEERL) is developing tools for predicting risks of multiple stressors to wildlife populations, which support the development of risk-based protective criteria. NHEERL's res...
Take What You Have And Do More
The needs of a good animal care and use program evolve over time, but fitting program-wide innovations into an existing institutional framework can be challenging. Management at the National Health and Environmental Effects Research Laboratory (NHEERL) of the US EPA was convince...
ECOTOX (ECOTOXICOLOGY DATABASE): AN ASSESSMENT TOOL FOR THE 21ST CENTURY
The ECOTOX (ECOTOXicology Database) system developed by the U.S. EPA, National Health and Environmental Effecrs Research Laboratory (NHEERL), Mid-Continent Ecology Division in Duluth, MN, (MED-Duluth), provides a web browser search interface for locating aquatic and terrestrial t...
THE WESTERN ECOLOGY DIVISION STUDENT INTERN PROGRAM VIDEO
The Western Ecology Division of the National Health & Environmental Effects Research Laboratory has produced a 15 minute video documenting the internship program at the Division. The video highlights various CWEST student interns reporting on their experiences at an end-of-the-s...
COMPARISON OF MONODISPERSE AND POLYDISPERSE AEROSOL DEPOSITION IN A PACKED BED
COMPARISON OF MONODISPERSE AND POLYDISPERSE AEROSOL DEPOSITION IN A PACKED BED. Jacky A. Rosati, Dept. of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599; Chong S. Kim, USEPA National Health and Environmental Effects Research Laboratory...
Aging Research Using Mouse Models
Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.
2015-01-01
Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080
42 CFR 493.1355 - Condition: Laboratories performing PPM procedures; laboratory director.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing PPM procedures; laboratory director. 493.1355 Section 493.1355 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS...
42 CFR 493.1355 - Condition: Laboratories performing PPM procedures; laboratory director.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing PPM procedures; laboratory director. 493.1355 Section 493.1355 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY REQUIREMENTS...
Safety management and risk assessment in chemical laboratories.
Marendaz, Jean-Luc; Friedrich, Kirstin; Meyer, Thierry
2011-01-01
The present paper highlights a new safety management program, MICE (Management, Information, Control and Emergency), which has been specifically adapted for the academic environment. The process starts with an exhaustive hazard inventory supported by a platform assembling specific hazards encountered in laboratories and their subsequent classification. A proof of concept is given by a series of implementations in the domain of chemistry targeting workplace health protection. The methodology is expressed through three examples to illustrate how the MICE program can be used to address safety concerns regarding chemicals, strong magnetic fields and nanoparticles in research laboratories. A comprehensive chemical management program is also depicted.
2010-12-14
Parasitology in the Amazon city of Iquitos, Peru , where NAMRU-6 has 90 permanent field and laboratory staff. Over 10 years of research have focused on...laboratory in Iquitos, Peru , a city of approximately 380,000 people (INEI 2008) in the Amazon Basin (Figures 3 and 4). The mission of NAMRU-6 is... Amazon Malaria Initiative and a military-to-military training program in Peru , Ecuador, and Colombia (Figure 5). NAMRU-6 Entomology has been
Weigler, Benjamin J; Cooper, Donna R; Hankenson, F Claire
2012-01-01
A national survey was conducted to assess immunization practices and tuberculosis screening methods for animal care and research workers in biomedical settings throughout the United States. Veterinarians (n = 953) were surveyed via a web-based mechanism; completed surveys (n = 308) were analyzed. Results showed that occupational health and safety programs were well-developed, enrolling veterinary, husbandry, and research staff at rates exceeding 90% and involving multiple modalities of health assessments and risk communication for vaccine-preventable diseases. Most (72.7%) institutions did not store serum samples from animal research personnel. More than half of the institutions housed nonhuman primates and maintained tuberculosis screening programs, although screening methods varied. Immunization protocols included various recommended or required vaccines that differed depending on job duties, type of institution, and nature of scientific programs. A single case of an identified vaccine–preventable illness in a laboratory worker was noted. Tetanus toxoid was the predominant vaccine administered (91.7%) to animal care and research workers, followed by hepatitis B (54.8%), influenza (39.9%), and rabies (38.3%). For some immunization protocols, an inconsistent rationale for administration was evident. Indications that animal care and research workers are unprotected from work-related etiologic agents did not emerge from this survey; rather, existing guidelines from the Advisory Committee on Immunization Practices and available biologics seem sufficient to address most needs of the laboratory animal research community. Institutions should commit to performance-based standards in parallel with context-specific risk assessment methods to maintain occupational health and safety programs and practices appropriate to their needs. PMID:23312084
42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY...
42 CFR 493.1441 - Condition: Laboratories performing high complexity testing; laboratory director.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Condition: Laboratories performing high complexity testing; laboratory director. 493.1441 Section 493.1441 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) STANDARDS AND CERTIFICATION LABORATORY...
Basic haemoglobinopathy diagnostics in Dutch laboratories; providing an informative test result.
Kaufmann, J O; Smit, J W; Huisman, W; Idema, R N; Bakker, E; Giordano, P C
2013-08-01
After a first survey in 2001, the Dutch Association of Hematological Laboratory Research (VHL) advised its members to adopt a basic protocol for haemoglobinopathy carrier detection and to provide genetic information with all positive results to allow health-care professionals to inform carriers about potential genetic risks. This article reports on the compliance with these recommendations and their consequences. Clinical chemists of all 106 Dutch laboratories were invited to answer a survey on patient population, diagnostic techniques used, (self-reported) knowledge, use and effect of the additional information. The average increase in diagnostic output was over 60% and the recommended basic protocol was applied by 65% of the laboratories. Over 84% of the laboratories reported to be aware of the additional recommendations and 77% to be using them. Most laboratories with limited diagnostic requests were still sending their cases to other laboratories and included the genetic information received from these laboratories in their diagnostic reports. The effect of information on subsequent 'family analysis' was estimated to be between 26 and 50%. The present study shows an increase in diagnostic potential for haemoglobinopathy over the last decade, especially in the larger cities. Low 'family testing' rates were mostly found in areas with lower carrier prevalence or associated with local reluctance to pass the information to carriers. In spite of a dramatic improvement, too many carriers are still not informed because of lack of awareness among health-care providers and more education is needed. © 2012 John Wiley & Sons Ltd.
Naroeni, Aroem; Bachtiar, Endang Winiati; Ibrahim, Fera; Bela, Budiman; Kusminanti, Yuni; Pujiriani, Ike; Lestari, Fatma
Rapid development and advancement of bioresearch at a university's laboratories can have both positive and negative implications for public health and the environment. Many research activities in which biological materials have been created, modified, stored, and manipulated require safety procedures to keep the negative effects on humans and the environment as low as possible. The Occupational Health, Safety and Environmental (OHS&E) Department of the University of Indonesia (UI) is trying to increase the awareness and responsibility of its university members and laboratory staffs who work with biohazard materials by creating a biorisk checklist. The checklist was developed based on WHO guidelines and the National University of Singapore (NUS) Laboratory Manual, which contains 311 questions about the management, administration, and handling of various hazards, recombinant experiments, and animal and plant experiments. A gap analysis was run against the checklist in 14 laboratories at the University of Indonesia Salemba campus, which daily works with highly infectious pathogens and high-risk agents. Overall result showed that none of these laboratories had met all of the checklist items, and there were only 2 laboratories that had implemented more than half of the items. This checklist was proven to be a simple tool for assessing laboratories that handle and store biohazard materials, and it could be used as a monitoring tool for biorisk programs as well. It also could be further developed as a laboratory software application to increase its effectiveness and its accuracy.
Preventing childhood obesity: a solution-oriented research paradigm.
Robinson, Thomas N; Sirard, John R
2005-02-01
Past research has identified social and environmental causes and correlates of behaviors thought to be associated with obesity and weight gain among children and adolescents. Much less research has documented the efficacy of interventions designed to manipulate those presumed causes and correlates. These latter efforts have been inhibited by the predominant biomedical and social science problem-oriented research paradigm, emphasizing reductionist approaches to understanding etiologic mechanisms of diseases and risk factors. The implications of this problem-oriented approach are responsible for leaving many of the most important applied research questions unanswered, and for slowing efforts to prevent obesity and improve individual and population health. An alternative, and complementary, solution-oriented research paradigm is proposed, emphasizing experimental research to identify the causes of improved health. This subtle conceptual shift has significant implications for phrasing research questions, generating hypotheses, designing research studies, and making research results more relevant to policy and practice. The solution-oriented research paradigm encourages research with more immediate relevance to human health and a shortened cycle of discovery from the laboratory to the patient and population. Finally, a "litmus test" for evaluating research studies is proposed, to maximize the efficiency of the research enterprise and contributions to the promotion of health and the prevention and treatment of disease. A research study should only be performed if (1) you know what you will conclude from each possible result (whether positive, negative, or null); and (2) the result may change how you would intervene to address a clinical, policy, or public health problem.
2010-01-01
viruses can be transmitted by needlestick, such as dengue virus and other hemorrhagic fever viruses. Other potential disease risks include syphilis...Infectious Dis- eases [ 11]. All hemorrhagic fever viruses except dengue virus are known to infect via artificially produced aerosols in a laboratory en...specific health care-related risks (needlestick, hemorrhagic fever viruses, severe viral respiratory disease, and tuberculosis), with suggestions
Implement Family Member Assessment Component in the Millennium Cohort Study
2010-10-01
Hospital , Camp Pendleton, CA Tyler C. Smith, MS, PhD, DoD Center for Deployment Health Research, NHRC, San Diego CA Col Timothy S. Wells, USAF, BSC, Air...physical health, relationship quality, deployment/ reunion , and service utilization. In addition, data will be linked to medical records collected...Laboratory, Wright-Patterson Air Force Base, OH; and Margaret Ryan from the Naval Hospital Camp Pendleton, Camp Pendleton, CA. Additionally, the
‘At the hospital I learnt the truth’: diagnosing male infertility in rural Malawi
Parrott, Fiona R.
2014-01-01
This paper examines how men's reproductive bodies are problematised in rural northern Malawi as access to biomedically defined diagnoses of the health of men's sperm contribute to the visibility of male infertility. Ethnographic research with infertile and fertile men explored pathways into the sexual health and fertility services offered in district hospitals, men's clinical engagements and masculine imaginaries. The research suggested that men's willingness to be referred for semen analysis is an extension of intensive and persistent help-seeking for childlessness instigated by couples and encouraged by families. Within the laboratory, acceptable social arrangements for semen sample collection are negotiated between male clients and laboratory staff, which emphasise heterosexual and marital virility. Following diagnosis, counselling by clinical officers, without any significant therapeutic interventions, focuses on compassion in marriage. This paper considers: what is the role of semen analysis within public health facilities and why do men participate? How do men experience an infertility diagnosis and what do they and their partners do with this knowledge? In addition, how do these practices shape gendered relationships in families and communities? The analysis builds on Inhorn's (2012) concept of ‘emergent masculinities’ to better understand the connections between male subjectivities, medical technologies and the globalisation of male reproductive health, as they relate to men's lives in rural Malawi. PMID:25175293
Naval Medical Research and Development News. Volume 7, Issue 11, November 2015
2015-11-01
enteric diseases such as shigellosis and typhoid fever . The goal of the laboratory is to research, understand, and develop protective strategies...military or public health significance in the region, including malaria and dengue fever , yellow fever , viral encephalitis, leishmaniasis, and...a food and waterborne disease, is characterized by fever , cramps and sometimes severe bloody diarrhea,” said Cmdr. Christopher Duplessis, lead
Social Desirability Bias in Smoking Cessation: Effects in the Laboratory and Field
2012-03-16
and Child Health Journal, 2(2), 77-83. Bradburn, N., Rips, L., & Shevell, S. (1987). Answering autobiographical questions: the impact of memory ...how accessible smoking outcomes are in an individual’s memory . Research has shown that smokers tend to exhibit greater accessibility for positive...body of research that suggests that acute tobacco abstinence hinders cognitive functioning, such as attention, memory , information processing
Medical Countermeasure Product Development - Alternatives Paper
2014-04-01
Maritime Research Laboratory of the Defence Science and Technology Organisation (DSTO) in 1995 as a Research Scientist. In January 1997 he was promoted... biosecurity role to supply to the Government and the World Health Organisation (WHO). In the future there may be circumstances where there is no... standards to solve national priority CBR or infectious disease threats. The PPP may enable Government to: • access and grow product development
The challenges of implementing pathogen control strategies for fishes used in biomedical research
Lawrence, C.; Ennis, D.G.; Harper, C.; Kent, M.L.; Murray, K.; Sanders, G.E.
2012-01-01
Over the past several decades, a number of fish species, including the zebrafish, medaka, and platyfish/swordtail, have become important models for human health and disease. Despite the increasing prevalence of these and other fish species in research, methods for health maintenance and the management of diseases in laboratory populations of these animals are underdeveloped. There is a growing realization that this trend must change, especially as the use of these species expands beyond developmental biology and more towards experimental applications where the presence of underlying disease may affect the physiology animals used in experiments and potentially compromise research results. Therefore, there is a critical need to develop, improve, and implement strategies for managing health and disease in aquatic research facilities. The purpose of this review is to report the proceedings of a workshop entitled "Animal Health and Disease Management in Research Animals" that was recently held at the 5th Aquatic Animal Models for Human Disease in September 2010 at Corvallis, Oregon to discuss the challenges involved with moving the field forward on this front. ?? 2011 Elsevier Inc. All rights reserved.
Health and Environmental Research: Summary of Accomplishments. Volume 2
DOE R&D Accomplishments Database
1986-08-01
This is an account of some of the accomplishments of the health and environmental research program performed in national laboratories, universities, and research institutes. Both direct and indirect societal benefits emerged from the new knowledge provided by the health and environmental research program. In many cases, the private sector took this knowledge and applied it well beyond the mission of supporting the defense and energy needs of the Nation. Industrial and medical applications, for example, have in several instances provided annual savings to society of $100 million or more. The form of this presentation is, in fact, through "snapshots" - examples of significant, tangible accomplishments in each of the areas at certain times to illustrate the role and impact of the research program. The program's worth is not necessarily confined to such accomplishments; it extends, rather, to its ability to identify and help solve potential health and environmental problems before they become critical. This anticipatory mission has been pursued with an approach that combines applied problem solving with a commitment to fundamental research that is long-term and high-risk. The narrative of this research program concludes with a perspective of its past and a prospectus on its future.
Laboratory testing in primary care: A systematic review of health IT impacts.
Maillet, Éric; Paré, Guy; Currie, Leanne M; Raymond, Louis; Ortiz de Guinea, Ana; Trudel, Marie-Claude; Marsan, Josianne
2018-08-01
Laboratory testing in primary care is a fundamental process that supports patient management and care. Any breakdown in the process may alter clinical information gathering and decision-making activities and can lead to medical errors and potential adverse outcomes for patients. Various information technologies are being used in primary care with the goal to support the process, maximize patient benefits and reduce medical errors. However, the overall impact of health information technologies on laboratory testing processes has not been evaluated. To synthesize the positive and negative impacts resulting from the use of health information technology in each phase of the laboratory 'total testing process' in primary care. We conducted a systematic review. Databases including Medline, PubMed, CINAHL, Web of Science and Google Scholar were searched. Studies eligible for inclusion reported empirical data on: 1) the use of a specific IT system, 2) the impacts of the systems to support the laboratory testing process, and were conducted in 3) primary care settings (including ambulatory care and primary care offices). Our final sample consisted of 22 empirical studies which were mapped to a framework that outlines the phases of the laboratory total testing process, focusing on phases where medical errors may occur. Health information technology systems support several phases of the laboratory testing process, from ordering the test to following-up with patients. This is a growing field of research with most studies focusing on the use of information technology during the final phases of the laboratory total testing process. The findings were largely positive. Positive impacts included easier access to test results by primary care providers, reduced turnaround times, and increased prescribed tests based on best practice guidelines. Negative impacts were reported in several studies: paper-based processes employed in parallel to the electronic process increased the potential for medical errors due to clinicians' cognitive overload; systems deemed not reliable or user-friendly hampered clinicians' performance; and organizational issues arose when results tracking relied on the prescribers' memory. The potential of health information technology lies not only in the exchange of health information, but also in knowledge sharing among clinicians. This review has underscored the important role played by cognitive factors, which are critical in the clinician's decision-making, the selection of the most appropriate tests, correct interpretation of the results and efficient interventions. By providing the right information, at the right time to the right clinician, many IT solutions adequately support the laboratory testing process and help primary care clinicians make better decisions. However, several technological and organizational barriers require more attention to fully support the highly fragmented and error-prone process of laboratory testing. Copyright © 2018 Elsevier B.V. All rights reserved.
Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R
2012-02-01
In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.
Burlamaque-Neto, A.C.; Santos, G.R.; Lisbôa, L.M.; Goldim, J.R.; Machado, C.L.B.; Matte, U.; Giugliani, R.
2012-01-01
In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research. PMID:22249427
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less
THE PITTSBURGH AIR POLLUTION EPISODE OF NOVEMBER 17-21 1975: AIR QUALITY
In November 1975 a serious air stagnation problem developed over Western Pennsylvania, with extremely heavy air pollution in the Pittsburgh area. The U.S. Environmental Protection Agency's Health Effects Research Laboratory (HERL) mobilized a team of air monitoring and epidemiolo...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-30
... Technology Use in Industry Sectors AGENCY: National Institute for Occupational Safety and Health (NIOSH...), Personal Protective Technology (PPT) Program and National Personal Protective Technology Laboratory (NPPTL... explore personal protective technology use in industry sectors. In addition, conformity assessment...
75 FR 24703 - Findings of Misconduct in Science
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Office of the Secretary Findings of Misconduct in Science... of HHS, issued a final notice of debarment based on the misconduct in science findings of the Office... Retrovirology Pathogenesis Laboratory, UW, committed misconduct in science (scientific misconduct) in research...
Initiatives toward effective decision making and laboratory use.
Benson, E S
1980-09-01
Escalating health care costs constitute a public issue of paramount importance today, Among the leading growth factors in this rise is the cost of hospital services, notably laboratory services. With respect to the clinical laboratory, rising costs appear to be almost entirely attributable to expanding utilization and introduction of new services. The clinical laboratory has gone through a technological revolution in two decades that has changed it from a largely manual to a highly automated system of great speed and capacity. This change had produced a change in the style of providing services, a change that includes the provision of quantities of unsolicited data. A parallel change in the style of use of the laboratory has taken place on the part of patient care physicians from a relatively sparing, problem oriented use pattern to a relatively lavish, data oriented one. These reciprocal changes have transformed medicine, in the United States, at least, into a relatively high laboratory use culture. Abandonment of the new technology and return to a simpler, more primitive laboratory world would be a drastic and most inappropriate response to the new situation. Furthermore, arbitrary measures such as rationing, quotas, and tariffs are, if enacted, almost certain to fail. The most effective long term strategies, though more demanding of time and effort, lie through modification of physician behavior through the pathways of education and research. Education and research initiatives now in progress can in time influence laboratory use patterns of physicians at all career levels, improving the logic of test use and providing more strategic, prudent, and cost effective overall laboratory utilization practices. These approaches will require much improved communication between laboratory and bedside and a new intense involvement of laboratory physicians and scientists in the tasks of helping to improve the use of laboratory tests and laboratory data.
Smither, Sophie J; Lever, Mark S
2012-08-01
Porton Down houses two separate sites capable of conducting high containment research on ACDP (Advisory Committee on Dangerous Pathogens) Hazard Group 4 agents: the Defence Science and Technology Laboratory (Dstl) and the Health Protection Agency (HPA), and filovirus research has been performed at Porton Down since the first Marburg virus disease outbreak in 1967. All work is conducted within primary containment either within cabinet lines (for in vitro work) or large rigid half-suit isolators (for in vivo work). There are extensive aerobiological facilities at high containment and the use of these facilities will be reported. Research at Dstl is primarily focused on assessing and quantifying the hazard, and testing the efficacy of medical countermeasures against filoviruses. Fundamental research directed to the study and understanding of the infectious and pathogenic nature of the filoviruses, particularly in aerosols, will be reported.
Smither, Sophie J.; Lever, Mark S.
2012-01-01
Porton Down houses two separate sites capable of conducting high containment research on ACDP (Advisory Committee on Dangerous Pathogens) Hazard Group 4 agents: the Defence Science and Technology Laboratory (Dstl) and the Health Protection Agency (HPA), and filovirus research has been performed at Porton Down since the first Marburg virus disease outbreak in 1967. All work is conducted within primary containment either within cabinet lines (for in vitro work) or large rigid half-suit isolators (for in vivo work). There are extensive aerobiological facilities at high containment and the use of these facilities will be reported. Research at Dstl is primarily focused on assessing and quantifying the hazard, and testing the efficacy of medical countermeasures against filoviruses. Fundamental research directed to the study and understanding of the infectious and pathogenic nature of the filoviruses, particularly in aerosols, will be reported. PMID:23012627
Exposure to hazardous substances and male reproductive health: a research framework.
Moline, J M; Golden, A L; Bar-Chama, N; Smith, E; Rauch, M E; Chapin, R E; Perreault, S D; Schrader, S M; Suk, W A; Landrigan, P J
2000-01-01
The discovery in the mid-1970s that occupational exposures to pesticides could diminish or destroy the fertility of workers sparked concern about the effects of hazardous substances on male reproductive health. More recently, there is evidence that sperm quantity and quality may have declined worldwide, that the incidence of testicular cancer has progressively increased in many countries, and that other disorders of the male reproductive tract such as hypospadias and cryptorchidism may have also increased. There is growing concern that occupational factors and environmental chemical exposures, including in utero and childhood exposures to compounds with estrogenic activity, may be correlated with these observed changes in male reproductive health and fertility. We review the evidence and methodologies that have contributed to our current understanding of environmental effects on male reproductive health and fertility and discuss the methodologic issues which confront investigators in this area. One of the greatest challenges confronting researchers in this area is assessing and comparing results from existing studies. We elaborate recommendations for future research. Researchers in the field of male reproductive health should continue working to prioritize hazardous substances; elucidate the magnitude of male reproductive health effects, particularly in the areas of testicular cancer, hypospadias, and cryptorchidism; develop biomarkers of exposure to reproductive toxins and of reproductive health effects for research and clinical use; foster collaborative interdisciplinary research; and recognize the importance of standardized laboratory methods and sample archiving. PMID:11017884
Critical issues using brain-computer interfaces for augmentative and alternative communication.
Hill, Katya; Kovacs, Thomas; Shin, Sangeun
2015-03-01
Brain-computer interfaces (BCIs) may potentially be of significant practical value to patients in advanced stages of amyotrophic lateral sclerosis and locked-in syndrome for whom conventional augmentative and alternative communication (AAC) systems, which require some measure of consistent voluntary muscle control, are not satisfactory options. However, BCIs have primarily been used for communication in laboratory research settings. This article discusses 4 critical issues that should be addressed as BCIs are translated out of laboratory settings to become fully functional BCI/AAC systems that may be implemented clinically. These issues include (1) identification of primary, secondary, and tertiary system features; (2) integrating BCI/AAC systems in the World Health Organization's International Classification of Functioning, Disability and Health framework; (3) implementing language-based assessment and intervention; and (4) performance measurement. A clinical demonstration project is presented as an example of research beginning to address these critical issues. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing
Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; ...
2014-05-20
The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-opticmore » strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.« less
Armour, Margaret-Ann; Linetsky, Asya; Ashick, Donna
2008-10-01
Water-soluble heavy metal salts injure health when they leach into water supplies. It is important that students who may later be employed in industries generating aqueous solutions of such salts are aware of the methods that can be used to recover the metal salt or transform it to non-health threatening products. The research was in the management of small quantities of hazardous wastes, such as are generated in school, college, and university teaching laboratories; in research laboratories; in industrial quality control and testing laboratories; and in small industries. Methods for the recovery of silver, nickel, and cobalt salts from relatively small volumes of aqueous solutions of their soluble salts were developed and tested. Where it was not practical to recover the metal salt, the practice has been to convert it to a water-insoluble salt, often the sulfide. This requires the use of highly toxic reagents. It was found that a number of heavy metal salts can be precipitated as the silicates, returning them to the form in which they are found in the natural ore. These salts show similar solubility properties to the sulfides in neutral, acidic, and basic aqueous solutions. The work has determined the conditions, quantities, and solution acidity that result in the most effective precipitation of the heavy metal salt. The concentration of the metal ions remaining in solution was measured by AA and ICP spectrometry. Specific methods have been developed for the conversion of salts of mercury and chromium to nonsoluble products.
Schmidt, Katja; Butt, Julia; Mauter, Petra; Vogel, Klaus; Erles-Kemna, Andrea; Pawlita, Michael; Nicklas, Werner
2017-01-01
Laboratory mice play a tremendous role in biomedical research in studies on immunology, infection, cancer and therapy. In the course of standardization of mice used in animal experiments, health monitoring constitutes an important instrument towards microbiological standardization. Infections with murine astroviruses (MuAstV) were only recently discovered and are, therefore, still relatively unknown in laboratory animal science. In rodent health monitoring viral infections within a population are commonly assessed in terms of specific antibodies by serological testing, as active infection and excretion of virus is often temporary and can easily be missed. So far only ongoing infections with astroviruses can be detected by PCR. The objective of this work was the development of a sensitive and specific MuAstV multiplex serological assay with a high-throughput capability to be used in routine testing of laboratory mice. Four different MuAstV proteins were recombinantly expressed and used as antigens. The best reacting antigen, the capsid spike protein VP27, was selected and tested with a panel of 400 sera of mice from units with a known MuAstV status. Assay sensitivity and specificity resulted in 98.5% and 100%, respectively, compared to RT-PCR results. Eventually this assay was used to test 5529 serum samples in total, during routine diagnostics at the German Cancer Research Center (DKFZ) in Heidelberg between 2015 and 2017. High sero-prevalence rates of up to 98% were detected in units with open cages indicating that the virus is highly infectious and circulates within these populations virtually infecting all animals regardless of the mouse strain. In addition, data collected from 312 mice purchased from commercial breeders and from 661 mice from 58 research institutes in 15 countries worldwide allowed the conclusion that MuAstV is widespread in contemporary laboratory mouse populations.
Kratz, Alexander
2016-09-01
Results from reference laboratories are often not easily available in electronic health records. This article describes a multi-pronged, long-term approach that includes bringing send-out tests in-house, upgrading the laboratory information system, interfacing more send-out tests and more reference laboratories, utilizing the "miscellaneous assay" option offered by some reference laboratories, and scanning all remaining paper reports from reference laboratories for display in the electronic health record. This allowed all laboratory results obtained in association with a patient visit, whether performed in-house or at a reference laboratory, to be available in the integrated electronic health record. This was achieved without manual data entry of reference laboratory results, thereby avoiding the risk of transcription errors. A fully integrated electronic health record that contains all laboratory results can be achieved by maximizing the number of interfaced reference laboratory assays and making all non-interfaced results available as scanned documents. © The Author(s) 2015.
Burbacher, Thomas M.; Grant, Kimberly S.; Worlein, Julie; Ha, James; Curnow, Eliza; Juul, Sandra; Sackett, Gene P.
2017-01-01
The Infant Primate Research Laboratory (IPRL) was established in the 1970s at the University of Washington as a visionary project of Dr. Gene (Jim) P. Sackett. Supported by a collaboration between the Washington National Primate Research Center and the Center on Human Health and Disability, the IPRL operates under the principle that learning more about the causes of abnormal development in macaque monkeys will provide important insights into mechanisms underlying childhood neurodevelopmental disorders. Over the past forty years, a broad range of research projects have been conducted at the IPRL. Some have described the normal expression of species-typical behaviors in nursery-reared macaques while others have focused on specific issues in perinatal medicine and research. This article will review the unique history of the IPRL and the scientific contributions produced by research conducted in the laboratory. Past and present investigations at the IPRL have explored the consequences of adverse early rearing, low-birth-weight, prematurity, epilepsy, chemical/drug exposure, viral infection, diarrheal disease, vaccine safety, assisted reproductive technologies and perinatal hypoxia on growth and development. New directions of investigation include the production of a transgenic primate model using our embryonic stem cell-based technology to better understand and treat heritable forms of human mental retardation such as fragile X. PMID:23873400
The hidden face of academic researches on classified highly pathogenic microorganisms.
Devaux, Christian A
2015-01-01
Highly pathogenic microorganisms and toxins are manipulated in academic laboratories for fundamental research purposes, diagnostics, drugs and vaccines development. Obviously, these infectious pathogens represent a potential risk for human and/or animal health and their accidental or intentional release (biosafety and biosecurity, respectively) is a major concern of governments. In the past decade, several incidents have occurred in laboratories and reported by media causing fear and raising a sense of suspicion against biologists. Some scientists have been ordered by US government to leave their laboratory for long periods of time following the occurrence of an incident involving infectious pathogens; in other cases laboratories have been shut down and universities have been forced to pay fines and incur a long-term ban on funding after gross negligence of biosafety/biosecurity procedures. Measures of criminal sanctions have also been taken to minimize the risk that such incidents can reoccur. As United States and many other countries, France has recently strengthened its legal measures for laboratories' protection. During the past two decades, France has adopted a series of specific restriction measures to better protect scientific discoveries with a potential economic/social impact and prevent their misuse by ill-intentioned people without affecting the progress of science through fundamental research. French legal regulations concerning scientific discoveries have progressively strengthened since 2001, until the publication in November 2011 of a decree concerning the "PPST" (for "Protection du Potentiel Scientifique et Technique de la nation", the protection of sensitive scientific data). Following the same logic of protection of sensitive scientific researches, regulations were also adopted in an order published in April 2012 concerning the biology and health field. The aim was to define the legal framework that precise the conditions for authorizing microorganisms and toxins experimentation in France; these regulations apply for any operation of production, manufacturing, transportation, import, export, possession, supply, transfer, acquisition and use of highly pathogenic microorganisms and toxins, referred to as "MOT" (for "MicroOrganismes et Toxines hautement pathogènes") by the French law. Finally, laboratories conducting researches on such infectious pathogens are henceforth classified restricted area or ZRR (for "Zone à Régime Restrictif"), according an order of July 2012. In terms of economic protection, biosafety and biosecurity, these regulations represent an undeniable progress as compared to the previous condition. However, the competitiveness of research laboratories handling MOTs is likely to suffer the side effects of these severe constraints. For example research teams working on MOTs can be drastically affected both by (i) the indirect costs generated by the security measure to be applied; (ii) the working time devoted to samples recording; (iii) the establishment of traceability and reporting to national security agency ANSM, (iv) the latency period required for staff members being officially authorized to conduct experiments on MOTs; (v) the consequent reduced attractiveness for recruiting new trainees whose work would be significantly hampered by theses administrative constraints; and (vi) the limitations in the exchange of material with external laboratories and collaborators. Importantly, there is a risk that French academic researchers gradually abandon research on MOTs in favor of other projects that are less subject to legal restrictions. This would reduce the acquisition of knowledge in the field of MOTs which, in the long term, could be highly detrimental to the country by increasing its vulnerability to natural epidemics due to pathogenic microorganisms that are classified as MOTs and, by reducing its preparedness against possible bioterrorist attacks that would use such microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baalman, R.W.; Hays, I.D.
1981-02-01
Pacific Northwest Laboratory's (PNL) 1980 annual report to the DOE Assistant Secretary for Environment describes research in environment, health, and safety conducted during fiscal year 1980. Part 5 includes technology assessments for natural gas, enhanced oil recovery, oil shale, uranium mining, magnetic fusion energy, solar energy, uranium enrichment and industrial energy utilization; regional analysis studies of environmental transport and community impacts; environmental and safety engineering for LNG, oil spills, LPG, shale oil waste waters, geothermal liquid waste disposal, compressed air energy storage, and nuclear/fusion fuel cycles; operational and environmental safety studies of decommissioning, environmental monitoring, personnel dosimetry, and analysis ofmore » criticality safety; health physics studies; and epidemiological studies. Also included are an author index, organization of PNL charts and distribution lists of the annual report, along with lists of presentations and publications. (DLS)« less
Interpersonal mechanisms linking close relationships to health.
Pietromonaco, Paula R; Collins, Nancy L
2017-09-01
Close relationships play a vital role in human health, but much remains to be learned about specific mechanisms of action and potential avenues for intervention. This article provides an evaluation of research on close relationships processes relevant to health, drawing on themes from major relationship science theories to present a broad conceptual framework for understanding the interpersonal processes and intrapersonal pathways linking relationships to health and disease outcomes. The analysis reveals that both social connection and social disconnection broadly shape biological responses and behaviors that are consequential for health. Furthermore, emerging work offers insights into the types of social dynamics that are most consequential for health, and the potential pathways through which they operate. Following from this analysis, the authors suggest several research priorities to facilitate the translation of discoveries from relationship science into relationship-based interventions and public health initiatives. These priorities include developing finer grained theoretical models to guide research, the systematic investigation of potential mediating pathways such as dyadic influences on health behavior and physiological coregulation, and taking into account individual differences and contextual factors such as attachment style, gender, socioeconomic status, and culture. In addition, a pressing need exists for laboratory and field research to determine which types of interventions are both practical and effective. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
[Aviation medicine laboratory of the North Fleet air base celebrates the 70th anniversary].
Gavrilov, V V; Mazaĭkin, D N; Buldakov, I M; Pisarev, A A
2013-05-01
The article is dedicated to the history of formation and development of the oldest aviation medicine department and its role in a flight safety of the North Fleet naval aviation. The aviation medicine laboratory was created in the years of the Great Patriotic war for medical backup of flights, medical review board, delivering of combat casualty care, prophylaxis of hypothermia and exhaustion of flight and ground crew. In a post-war period the aviation medicine laboratory made a great contribution to development of medical backup of educational and combat activity of the North Fleet aviation. Participation in cosmonaut applicants selection (incl. Yu.A. Gagarin), optimization of flight services during the transmeridian flights, research of carrier-based aircraft habitability and body state of the contingent during the longstanding ship-based aviation, development of treatment methods for functional status of sea-based aviation crew are the achievements of aviation medicine laboratory. Nowadays medicine laboratory is performing a research and practice, methodic and consultative activity with the aim of improving the system of medical backup, aviation medicine, psychology, flight safety, improvement of air crew health, prolong of flying proficiency.
In the shadowlands of global health: Observations from health workers in Kenya
Prince, Ruth J.; Otieno, Phelgona
2014-01-01
During the past decade, donor funding for health interventions in Kenya and other African countries has risen sharply. Focused on high-profile diseases such as HIV/AIDS, these funds create islands of intervention in a sea of under-resourced public health services. This paper draws on ethnographic research conducted in HIV clinics and in a public hospital to examine how health workers experience and reflect upon the juxtaposition of ‘global’ medicine with ‘local’ medicine. We show that health workers face an uneven playing field. High-prestige jobs are available in HIV research and treatment, funded by donors, while other diseases and health issues receive less attention. Outside HIV clinics, patient's access to medicines and laboratory tests is expensive, and diagnostic equipment is unreliable. Clinicians must tailor their decisions about treatment to the available medical technologies, medicines and resources. How do health workers reflect on working in these environments and how do their experiences influence professional ambitions and commitments? PMID:25203252
In the shadowlands of global health: observations from health workers in Kenya.
Prince, Ruth J; Otieno, Phelgona
2014-01-01
During the past decade, donor funding for health interventions in Kenya and other African countries has risen sharply. Focused on high-profile diseases such as HIV/AIDS, these funds create islands of intervention in a sea of under-resourced public health services. This paper draws on ethnographic research conducted in HIV clinics and in a public hospital to examine how health workers experience and reflect upon the juxtaposition of 'global' medicine with 'local' medicine. We show that health workers face an uneven playing field. High-prestige jobs are available in HIV research and treatment, funded by donors, while other diseases and health issues receive less attention. Outside HIV clinics, patient's access to medicines and laboratory tests is expensive, and diagnostic equipment is unreliable. Clinicians must tailor their decisions about treatment to the available medical technologies, medicines and resources. How do health workers reflect on working in these environments and how do their experiences influence professional ambitions and commitments?
Developing laboratory networks: a practical guide and application.
Kirk, Carol J; Shult, Peter A
2010-01-01
The role of the public health laboratory (PHL) in support of public health response has expanded beyond testing to include a number of other core functions, such as emergency response, training and outreach, communications, laboratory-based surveillance, and laboratory data management. These functions can only be accomplished by a network that includes public health and other agency laboratories and clinical laboratories. It is a primary responsibility of the PHL to develop and maintain such a network. In this article, we present practical recommendations-based on 17 years of network development experience-for the development of statewide laboratory networks. These recommendations, and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of laboratory networks will enhance each state's public health system and is critical to the development of a robust national Laboratory Response Network.
Laboratory Diagnosis of Zika Virus Infection.
Landry, Marie Louise; St George, Kirsten
2017-01-01
-The rapid and accurate diagnosis of Zika virus infection is an international priority. -To review current recommendations, methods, limitations, and priorities for Zika virus testing. -Sources include published literature, public health recommendations, laboratory procedures, and testing experience. -Until recently, the laboratory diagnosis of Zika infection was confined to public health or research laboratories that prepared their own reagents, and test capacity has been limited. Furthermore, Zika cross-reacts serologically with other flaviviruses, such as dengue, West Nile, and yellow fever. Current or past infection, or even vaccination with another flavivirus, will often cause false-positive or uninterpretable Zika serology results. Detection of viral RNA during acute infection using nucleic acid amplification tests provides more specific results, and a number of commercial nucleic acid amplification tests have received emergency use authorization. In addition to serum, testing of whole blood and urine is recommended because of the higher vial loads and longer duration of shedding. However, nucleic acid amplification testing has limited utility because many patients are asymptomatic or present for testing after the brief period of Zika shedding has passed. Thus, the greatest need and most difficult challenge is development of accurate antibody tests for the diagnosis of recent Zika infection. Research is urgently needed to identify Zika virus epitopes that do not cross-react with other flavivirus antigens. New information is emerging at a rapid pace and, with ongoing public-private and international collaborations and government support, it is hoped that rapid progress will be made in developing robust and widely applicable diagnostic tools.
A meta-analysis of active video games on health outcomes among children and adolescents.
Gao, Z; Chen, S; Pasco, D; Pope, Z
2015-09-01
This meta-analysis synthesizes current literature concerning the effects of active video games (AVGs) on children/adolescents' health-related outcomes. A total of 512 published studies on AVGs were located, and 35 articles were included based on the following criteria: (i) data-based research articles published in English between 1985 and 2015; (ii) studied some types of AVGs and related outcomes among children/adolescents and (iii) had at least one comparison within each study. Data were extracted to conduct comparisons for outcome measures in three separate categories: AVGs and sedentary behaviours, AVGs and laboratory-based exercise, and AVGs and field-based physical activity. Effect size for each entry was calculated with the Comprehensive Meta-Analysis software in 2015. Mean effect size (Hedge's g) and standard deviation were calculated for each comparison. Compared with sedentary behaviours, AVGs had a large effect on health outcomes. The effect sizes for physiological outcomes were marginal when comparing AVGs with laboratory-based exercises. The comparison between AVGs and field-based physical activity had null to moderate effect sizes. AVGs could yield equivalent health benefits to children/adolescents as laboratory-based exercise or field-based physical activity. Therefore, AVGs can be a good alternative for sedentary behaviour and addition to traditional physical activity and sports in children/adolescents. © 2015 World Obesity.
The U.S. Army Person-Event Data Environment: A Military-Civilian Big Data Enterprise.
Vie, Loryana L; Scheier, Lawrence M; Lester, Paul B; Ho, Tiffany E; Labarthe, Darwin R; Seligman, Martin E P
2015-06-01
This report describes a groundbreaking military-civilian collaboration that benefits from an Army and Department of Defense (DoD) big data business intelligence platform called the Person-Event Data Environment (PDE). The PDE is a consolidated data repository that contains unclassified but sensitive manpower, training, financial, health, and medical records covering U.S. Army personnel (Active Duty, Reserve, and National Guard), civilian contractors, and military dependents. These unique data assets provide a veridical timeline capturing each soldier's military experience from entry to separation from the armed forces. The PDE was designed to afford unprecedented cost-efficiencies by bringing researchers and military scientists to a single computerized repository rather than porting vast data resources to individual laboratories. With funding from the Robert Wood Johnson Foundation, researchers from the University of Pennsylvania Positive Psychology Center joined forces with the U.S. Army Research Facilitation Laboratory, forming the scientific backbone of the military-civilian collaboration. This unparalleled opportunity was necessitated by a growing need to learn more about relations between psychological and health assets and health outcomes, including healthcare utilization and costs-issues of major importance for both military and civilian population health. The PDE represents more than 100 times the population size and many times the number of linked variables covered by the nation's leading sources of population health data (e.g., the National Health and Nutrition Examination Survey). Following extensive Army vetting procedures, civilian researchers can mine the PDE's trove of information using a suite of statistical packages made available in a Citrix Virtual Desktop. A SharePoint collaboration and governance management environment ensures user compliance with federal and DoD regulations concerning human subjects' protections and also provides a secure portal for multisite collaborations. Taking similarities and differences between military and civilian populations into account, PDE studies can provide much more detailed insight into health-related questions of broad societal concern. Finding ways to make the rich repository of digitized information in the PDE available through military-civilian collaboration can help solve critical medical and behavioral issues affecting the health and well-being of our nations' military and civilian populations.
The Essential Role for Laboratory Studies in Atmospheric Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkholder, James B.; Abbatt, Jonathan P. D.; Barnes, Ian
Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This paper highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Finally,more » laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.« less
Human Research Program: 2012 Fiscal Year Annual Report
NASA Technical Reports Server (NTRS)
Effenhauser, Laura
2012-01-01
Crew health and performance are critical to successful human exploration beyond low Earth orbit. Risks to health and performance include physiologic effects from radiation, hypogravity, and planetary environments, as well as unique challenges in medical treatment, human factors, and support of behavioral health. The scientists and engineers of the Human Research Program (HRP) investigate and reduce the greatest risks to human health and performance, and provide essential countermeasures and technologies for human space exploration. In its seventh year of operation, the HRP continued to refine its management architecture of evidence, risks, gaps, tasks, and deliverables. Experiments continued on the International Space Station (ISS), on the ground in analog environments that have features similar to those of spaceflight, and in laboratory environments. Data from these experiments furthered the understanding of how the space environment affects the human system. These research results contributed to scientific knowledge and technology developments that address the human health and performance risks. As shown in this report, HRP has made significant progress toward developing medical care and countermeasure systems for space exploration missions which will ultimately reduce risks to crew health and performance.
78 FR 32473 - Southwest Research Institute: Modification of Scope of Recognition
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... test standard from the scope of recognition of a Nationally Recognized Testing Laboratory (NRTL... delete a test standard, UL 60950--Information Technology Equipment (see Exhibit OSHA- 2006-0041-003... David Michaels, Ph.D., MPH, Assistant Secretary of Labor for Occupational Safety and Health, 200...
THE VALUE OF HOME-BASED COLLECTION OF BIOSPECIMENS IN REPRODUCTIVE EPIDEMIOLOGY
The Value of Home-Based Collection of Biospecimens in Reproductive Epidemiology
John C. Rockett1, Germaine M. Buck2, Courtney D. Johnson2 and Sally D. Perreault1
1Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Rese...
Advances in nanotechnology are resulting in the production of new nanomaterials at a rapid pace. Driving the dramatic development of new materials and products is the prospect of stronger and lighter materials, better and more efficient energy systems, potential tremendous benefi...
TOOLS FOR PRESENTING SPATIAL AND TEMPORAL PATTERNS OF ENVIRONMENTAL MONITORING DATA
The EPA Health Effects Research Laboratory has developed this data presentation tool for use with a variety of types of data which may contain spatial and temporal patterns of interest. he technology links mainframe computing power to the new generation of "desktop publishing" ha...
CHARACTERIZATION OF THE PERIOD OF SENSITIVITY OF FETAL MALE SEXUAL DEVELOPMENT TO VINCLOZOLIN
Characterization of the period of sensitivity of fetal male sexual development to vinclozolin.
Wolf CJ, LeBlanc GA, Ostby JS, Gray LE Jr.
Endocrinology Branch, MD 72, Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U....
USDA develops a database for flavonoids to assess dietary intakes
USDA-ARS?s Scientific Manuscript database
The beneficial health effects of dietary flavonoids continue to interest the scientific community in associating the flavonoid intakes and certain chronic diseases. Scientists at the Nutrient Data Laboratory (NDL) and the Food Surveys Research Group (FSRG), USDA planned a study of the intakes of fl...
10 CFR Appendix A to Part 851 - Worker Safety and Health Functional Areas
Code of Federal Regulations, 2014 CFR
2014-01-01
... requirements to research and development laboratory type operations consistent with the DOE level of protection... safety policies and procedures to ensure that pressure systems are designed, fabricated, tested... must include the following: (1) Design drawings, sketches, and calculations must be reviewed and...
10 CFR Appendix A to Part 851 - Worker Safety and Health Functional Areas
Code of Federal Regulations, 2012 CFR
2012-01-01
... requirements to research and development laboratory type operations consistent with the DOE level of protection... safety policies and procedures to ensure that pressure systems are designed, fabricated, tested... must include the following: (1) Design drawings, sketches, and calculations must be reviewed and...
10 CFR Appendix A to Part 851 - Worker Safety and Health Functional Areas
Code of Federal Regulations, 2011 CFR
2011-01-01
... requirements to research and development laboratory type operations consistent with the DOE level of protection... safety policies and procedures to ensure that pressure systems are designed, fabricated, tested... must include the following: (1) Design drawings, sketches, and calculations must be reviewed and...
ERIC Educational Resources Information Center
Phelps, Cynthia L.; Willcockson, Irmgard U.; Houtz, Lynne
2004-01-01
A team of teachers, scientists, and high school students at the University of Texas Health Science Center at Houston has developed activities to teach concepts in learning through an inquiry-based laboratory method. The Learning Education and Research Network (LEARN) activities were field tested at the Society for Neuroscience Conference, in the…
Bornstein, Jacob
2017-05-01
The Galilee Medical Center (GMC) is unique in several aspects. Firstly, in the clinical aspect: In recent years, led by the Director of Medical Center, Dr. Masad Barhoum, a considerable momentum of development has taken place to reduce health discrepancies between the center and the periphery. Despite the under- financing of the health system in the Galilee, the GMC opened new clinical departments, introduced advanced medical technology and key staff members were added. This approach is depicted in publications presented in the current issue. Secondly, the aspect of medicine standoff: The GMC is the nearest hospital to the border with neighboring countries. It is also a tertiary center for trauma, due to the establishment of the Department of Neurosurgery, Department of Oral and Maxillofacial Surgery and the Departments of Orthopedic Surgery, general invasive radiology and invasive radiology of the brain. In recent years, the medical center treated hundreds of victims of the civil war in Syria, a third of them - women and children. The injured patients presented unique medical problems that are described in the papers in this issue. Thirdly, the research aspect: The medical center is the main teaching facility of medical students of the Faculty of Medicine in the Galilee of Bar-Ilan University. The Faculty of Medicine, led by the Dean, Prof. Ran Tur-Kaspa, promotes research and teaching in the medical center. Even before the establishment of the Faculty of Medicine, former hospital director, Prof. Shaul Shasha, not only extolled the importance of research, but established a research laboratory years ago. The laboratory continues to pursue translational research by the physicians of the medical center, led by Dr. Shifra Sela and Prof. Batya Kristal, and supported by the current medical center director, Dr. Masad Barhoum. Several studies conducted in this research laboratory are published herewith. With these unique aspects and despite the discrimination in funding for Galilee compared to the center of the country, the GMC has not remained stagnant. On the contrary, it established and promoted departments, technologies and research laboratories. This activity is expressed as aforesaid in the studies published in the current issue of "Harefuah" that you hold in your hands. The authors of the papers belong to the GMC and to the Faculty of Medicine of the University of Bar-Ilan University.
Gangadharan, Denise; Smith, Jacinta; Weyant, Robbin
2013-06-28
The CDC and National Institutes of Health (NIH) Biosafety in Microbiological and Biomedical Laboratories (BMBL) manual describes biosafety recommendations for work involving highly pathogenic avian influenza (HPAI) (US Department of Health and Human Services [HHS], CDC. Biosafety in microbiological and biomedical laboratories, 5th ed. Atlanta, GA: CDC; 2009. HHS publication no. [CDC] 21-1112. Available at http://www.cdc.gov/biosafety/publications/bmbl5). The U.S. Department of Agriculture Guidelines for Avian Influenza Viruses builds on the BMBL manual and provides additional biosafety and biocontainment guidelines for laboratories working with HPAI (US Department of Agriculture, Animal and Plant Health Inspection Service, Agricultural Select Agent Program. Guidelines for avian influenza viruses. Washington, DC: US Department of Agriculture; 2011. Available at http://www.selectagents.gov/Guidelines_for_Avian_Influenza_Viruses.html). The recommendations in this report, which are intended for laboratories in the United States, outline the essential baseline biosafety measures for working with the subset of influenza viruses that contain a hemagglutinin (HA) from the HPAI influenza A/goose/Guangdong/1/96 lineage, including reassortant influenza viruses created in a laboratory setting. All H5N1 influenza virus clades known to infect humans to date have been derived from this lineage (WHO/OIE/FAO H5N1 Evolution Working Group. Continued evolution of highly pathogenic avian influenza A [H5N1]: updated nomenclature. Influenza Other Respir Viruses 2012;6:1-5). In 2009, the NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules were amended to include specific biosafety and biocontainment recommendations for laboratories working with Recombinant Risk Group 3 influenza viruses, including HPAI H5N1 influenza viruses within the Goose/Guangdong/1/96-like H5 lineage. In February 2013, the NIH guidelines were further revised to provide additional biosafety containment enhancements and practices for research with HPAI H5N1 viruses that are transmissible among mammals by respiratory droplets (i.e., mammalian-transmissible HPAI H5N1) (National Institutes of Health, Office of Biotechnology Activities. NIH guidelines for research involving recombinant or synthetic nucleic acid molecules. Appendix G-II-C-5: biosafety level 3 enhanced for research involving risk group 3 influenza viruses. Bethesda, MD: National Institutes of Health; 2013. Available at http://oba.od.nih.gov/rdna/nih_guidelines_oba.html). The recent revisions to the NIH guidelines focus on a smaller subset of viruses but are applicable and consistent with the recommendations in this report. The biosafety recommendations in this report were developed by CDC with advice from the Intragovernmental Select Agents and Toxins Technical Advisory Committee, which is a panel composed of federal government subject-matter experts, and from public input received in response to the request for information that was published in the Federal Register on October 17, 2012 (US Department of Health and Human Services, CDC. Influenza viruses containing the hemagglutinin from the Goose/ Guangdong/1/96 lineage; proposed rule; request for information and comment. 42 CFR, Part 73. Federal Register 2012;77:63783-5). Work with HPAI H5N1 virus should be conducted, at a minimum, at biosafety level 3 (BSL-3), with specific enhancements to protect workers, the public, animal health, and animal products. Original clinical specimens suspected of containing viruses of this lineage can only be handled at BSL-2 if the procedures do not involve the propagation of the virus. An appropriate biosafety level should be determined in accordance with a biosafety risk assessment. Additional information on performing biosafety risk assessments and establishing effective biosafety containment is available in the BMBL manual.
Tenure Track/Tenure Eligible Positions | Center for Cancer Research
The newly established RNA Biology Laboratory at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting Tenure-eligible or Tenure Track Investigators to join the Intramural Research Program’s mission of high impact, high reward science. These positions, which are supported with stable financial resources, are the equivalent of Assistant Professor/Associate Professor/Professor in an academic department. The RNA Biology Laboratory is looking for candidate(s) who will complement our current group of seven dynamic and collaborative principal investigators (https://ccr.cancer.gov/RNA-Biology-Laboratory). We encourage outstanding scientists investigating any area of RNA Biology to apply. Areas of interest include, but are not limited to, the roles of RNA-binding proteins, noncoding RNAs and nucleotide modifications in cell and organismal function; the ways in which alterations in RNA homeostasis resul t in diseases such as cancer, and the development of RNA therapeutics. About NCI's Center for Cancer Research The Center for Cancer Research (CCR) is an intramural research component of the National Cancer Institute (NCI). CCR’s enabling infrastructure facilitates clinical studies at the NIH Clinical Center, the world’s largest dedicated clinical research complex; provides extensive opportunities for collaboration; and allows scientists and clinicians to undertake high-impact laboratory- and clinic-based investigations. Investigators are supported by a wide array of intellectual and technological and research resources, including animal facilities and dedicated, high quality technology cores in areas such as imaging/microscopy, including cryo-electron microscopy; chemistry/purification, mass spectrometry, flow cytometry, SAXS, genomics/DNA sequencing, transgenics and knock out mice, arrays/molecular profiling, and human genetics/bioinformatics. For an overview of CCR, please visit http://ccr.cancer.gov/.
42 CFR 493.1443 - Standard; Laboratory director qualifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Standard; Laboratory director qualifications. 493.1443 Section 493.1443 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND... Testing Laboratories Performing High Complexity Testing § 493.1443 Standard; Laboratory director...
42 CFR 493.1443 - Standard; Laboratory director qualifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Standard; Laboratory director qualifications. 493.1443 Section 493.1443 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND... Testing Laboratories Performing High Complexity Testing § 493.1443 Standard; Laboratory director...
42 CFR 493.1445 - Standard; Laboratory director responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Standard; Laboratory director responsibilities. 493.1445 Section 493.1445 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND... Testing Laboratories Performing High Complexity Testing § 493.1445 Standard; Laboratory director...
42 CFR 493.1407 - Standard; Laboratory director responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Standard; Laboratory director responsibilities. 493.1407 Section 493.1407 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND... Testing Laboratories Performing Moderate Complexity Testing § 493.1407 Standard; Laboratory director...
1985-10-01
3E162777A878 HEALTH HAZARDS OF MILITARY MATERIEL 241 (U) Microbial Degradation and Yeast Bloassay 37 of Trichothecene Mycotoxins 63732A COMBAT MEDICAL MATERIEL...Combustion Products 283 (U) Literature Assessment of the Occupational 97 Health Effects of Selected Trichothecene Mycotoxins of Military Medical... mycotoxins in field water supplies treated with hypochlorite. 24. (U) The reaction products are to be separated by chromatographic procedures, and their