Science.gov

Sample records for healthcare informatics computational

  1. Informatics for Precision Medicine and Healthcare.

    PubMed

    Chen, Jiajia; Lin, Yuxin; Shen, Bairong

    2017-01-01

    The past decade has witnessed great advances in biomedical informatics. Biomedical informatics is an emerging field of healthcare that aims to translate the laboratory observation into clinical practice. Smart healthcare has also developed rapidly with ubiquitous sensor and communication technologies. It is able to capture the online patient-centric phenotypic variables, thus providing a rich information base for translational biomedical informatics. Biomedical informatics and smart healthcare represent two interrelated disciplines. On one hand, biomedical informatics translates the bench discoveries into bedside, and, on the other hand, it is reciprocally informed by clinical data generated from smart healthcare. In this chapter, we will introduce the major strategies and challenges in the application of biomedical informatics technology in precision medicine and healthcare. We highlight how the informatics technology will promote the precision medicine and therefore promise the improvement of healthcare.

  2. Mobile healthcare informatics.

    PubMed

    Siau, Keng; Shen, Zixing

    2006-06-01

    Advances in wireless technology give pace to the rapid development of mobile applications. The coming mobile revolution will bring dramatic and fundamental changes to our daily life. It will influence the way we live, the way we do things, and the way we take care of our health. For the healthcare industry, mobile applications provide a new frontier in offering better care and services to patients, and a more flexible and mobile way of communicating with suppliers and patients. Mobile applications will provide important real time data for patients, physicians, insurers, and suppliers. In addition, it will revolutionalize the way information is managed in the healthcare industry and redefine the doctor - patient communication. This paper discusses different aspects of mobile healthcare. Specifically, it presents mobile applications in healthcare, and discusses possible challenges facing the development of mobile applications. Obstacles in developing mobile healthcare applications include mobile device limitations, wireless networking problems, infrastructure constraints, security concerns, and user distrust. Research issues in resolving or alleviating these problems are also discussed in the paper.

  3. Three decades of research on computer applications in health care: medical informatics support at the Agency for Healthcare Research and Quality.

    PubMed

    Fitzmaurice, J Michael; Adams, Karen; Eisenberg, John M

    2002-01-01

    The Agency for Healthcare Research and Quality and its predecessor organizations-collectively referred to here as AHRQ-have a productive history of funding research and development in the field of medical informatics, with grant investments since 1968 totaling $107 million. Many computerized interventions that are commonplace today, such as drug interaction alerts, had their genesis in early AHRQ initiatives. This review provides a historical perspective on AHRQ investment in medical informatics research. It shows that grants provided by AHRQ resulted in achievements that include advancing automation in the clinical laboratory and radiology, assisting in technology development (computer languages, software, and hardware), evaluating the effectiveness of computer-based medical information systems, facilitating the evolution of computer-aided decision making, promoting computer-initiated quality assurance programs, backing the formation and application of comprehensive data banks, enhancing the management of specific conditions such as HIV infection, and supporting health data coding and standards initiatives. Other federal agencies and private organizations have also supported research in medical informatics, some earlier and to a greater degree than AHRQ. The results and relative roles of these related efforts are beyond the scope of this review.

  4. Informatics competencies for healthcare professionals: the Technology Informatics Guiding Education Reform (TIGER) Initiative model.

    PubMed

    Hebda, Toni L; Calderone, Terri L

    2012-01-01

    A growing awareness exists that informatics competencies are essential skills for healthcare professionals today, yet the development of these competencies lags behind the need. The Technology Informatics Guiding Education Reform (TIGER) Initiative represents a comprehensive, interdisciplinary effort that is well suited to the integration of informatics into education, practice, administration, and research environments. This article briefly discusses the background and significance of the TIGER Initiative and why it may be used as a model to instill informatics among the healthcare professionals globally.

  5. Healthcare professional's demand for knowledge in informatics.

    PubMed

    Vimarlund, V; Timpka, T; Hallberg, N

    1999-01-01

    To develop an economic model of health care professional demand for knowledge capital in health informatics. Case study with application of the contingent valuation method to develop a small-scale model. Specialized clinic at a university Hospital in Sweden. The model displays the economic rationale behind an individual choice to spend leisure time for obtaining knowledge in health informatics. This decision reduces the total leisure time, but does not increase salary. Instead, it may increase the personal well-being by higher satisfaction gained from using information systems and by being recognized as a computer expert. Individuals have preferences over all uses of time and for activities they can choose to engage in. Support of health care staff's investment in health informatics knowledge capital may benefit both the individuals and indirectly the health care organization.

  6. Cognitive informatics in biomedicine and healthcare.

    PubMed

    Patel, Vimla L; Kannampallil, Thomas G

    2015-02-01

    Cognitive Informatics (CI) is a burgeoning interdisciplinary domain comprising of the cognitive and information sciences that focuses on human information processing, mechanisms and processes within the context of computing and computer applications. Based on a review of articles published in the Journal of Biomedical Informatics (JBI) between January 2001 and March 2014, we identified 57 articles that focused on topics related to cognitive informatics. We found that while the acceptance of CI into the mainstream informatics research literature is relatively recent, its impact has been significant - from characterizing the limits of clinician problem-solving and reasoning behavior, to describing coordination and communication patterns of distributed clinical teams, to developing sustainable and cognitively-plausible interventions for supporting clinician activities. Additionally, we found that most research contributions fell under the topics of decision-making, usability and distributed team activities with a focus on studying behavioral and cognitive aspects of clinical personnel, as they performed their activities or interacted with health information systems. We summarize our findings within the context of the current areas of CI research, future research directions and current and future challenges for CI researchers.

  7. Informatics and computational neuroanatomy.

    PubMed Central

    Toga, A. W.; Thompson, P. M.; Holmes, C. J.; Payne, B. A.

    1996-01-01

    Rapid and convenient access to digital image archives, as well as archive-based computational tools, are fundamental to many hypothesis-driven investigations of brain anatomy and function in health and disease. The complexity and density of brain image data requires the design of intelligent tools which allow scientific and clinical data, collected at numerous research centers, to be compared, integrated, and disseminated. We describe our results in the development of image data navigational tools, a World Wide Web repository of image analysis software, and strategies to represent populations of brain image data involving atlas descriptions of its variance. Images Fig. 1 Fig. 2 Fig. 3 PMID:8947676

  8. Medical Imaging Informatics: Towards a Personalized Computational Patient.

    PubMed

    Ayache, N

    2016-05-20

    Medical Imaging Informatics has become a fast evolving discipline at the crossing of Informatics, Computational Sciences, and Medicine that is profoundly changing medical practices, for the patients' benefit.

  9. Informatics, machine learning and computational medicinal chemistry.

    PubMed

    Mitchell, John B O

    2011-03-01

    This article reviews the use of informatics and computational chemistry methods in medicinal chemistry, with special consideration of how computational techniques can be adapted and extended to obtain more and higher-quality information. Special consideration is given to the computation of protein-ligand binding affinities, to the prediction of off-target bioactivities, bioactivity spectra and computational toxicology, and also to calculating absorption-, distribution-, metabolism- and excretion-relevant properties, such as solubility.

  10. Informatics and Small Computers in Latin America.

    ERIC Educational Resources Information Center

    Alvarez, Jose; And Others

    1985-01-01

    This paper highlights potential benefits and more pressing social and legal problems facing Latin American nations in the area of informatics and small computers. Discussion covers potential uses (education, office applications, agriculture, national planning); role of central governments; implications for economic development; and transborder…

  11. An Informatics Blueprint for Healthcare Quality Information Systems

    PubMed Central

    Niland, Joyce C.; Rouse, Layla; Stahl, Douglas C.

    2006-01-01

    There is a critical gap in our nation's ability to accurately measure and manage the quality of medical care. A robust healthcare quality information system (HQIS) has the potential to address this deficiency through the capture, codification, and analysis of information about patient treatments and related outcomes. Because non-technical issues often present the greatest challenges, this paper provides an overview of these socio-technical issues in building a successful HQIS, including the human, organizational, and knowledge management (KM) perspectives. Through an extensive literature review and direct experience in building a practical HQIS (the National Comprehensive Cancer Network Outcomes Research Database system), we have formulated an “informatics blueprint” to guide the development of such systems. While the blueprint was developed to facilitate healthcare quality information collection, management, analysis, and reporting, the concepts and advice provided may be extensible to the development of other types of clinical research information systems. PMID:16622161

  12. Treating the Healthcare Workforce Crisis: A Prescription for a Health Informatics Curriculum

    ERIC Educational Resources Information Center

    Campbell, S. Matt; Pardue, J. Harold; Longenecker, Herbert E., Jr.; Barnett, H. Les; Landry, Jeffrey P.

    2012-01-01

    A serious need exists for information systems workers who have an understanding of the healthcare environment. Traditional information systems degree programs do not adequately prepare students to enter the healthcare environment. In this paper, we propose a curriculum for a baccalaureate health informatics degree that combines the technical and…

  13. Evaluating the AMIA-OHSU 10x10 program to train healthcare professionals in medical informatics.

    PubMed

    Feldman, Sue S; Hersh, William

    2008-11-06

    The promise of health information technology (HIT) has led to calls for a larger and better trained workforce in medical informatics. University programs in applied health and biomedical informatics have been evolving in an effort to address the need for healthcare professionals to be trained in informatics. One such evolution is the American Medical Informatics Associations (AMIA) 10x10 program. To assess current delivery and content models, participant satisfaction, and how graduates have benefited from the program in career or education advancement, all students who completed the Oregon Health & Science University (OHSU) offering of the AMIA 10x10 course through the end of 2006 were surveyed. We found that the 10x10 program is approaching AMIAs goals, and that there are potential areas for content and delivery modifications. Further research in defining the optimal competencies of the medical informatics workforce and its optimal education is needed.

  14. Evaluating the AMIA-OHSU 10x10 Program to Train Healthcare Professionals in Medical Informatics

    PubMed Central

    Feldman, Sue S.; Hersh, William

    2008-01-01

    The promise of health information technology (HIT) has led to calls for a larger and better trained work-force in medical informatics. University programs in applied health and biomedical informatics have been evolving in an effort to address the need for health-care professionals to be trained in informatics. One such evolution is the American Medical Informatics Association’s (AMIA) 10x10 program. To assess current delivery and content models, participant satisfaction, and how graduates have benefited from the program in career or education advancement, all students who completed the Oregon Health & Science University (OHSU) offering of the AMIA 10x10 course through the end of 2006 were surveyed. We found that the 10x10 program is approaching AMIA’s goals, and that there are potential areas for content and delivery modifications. Further research in defining the optimal competencies of the medical informatics workforce and its optimal education is needed. PMID:18999199

  15. Excellence in Computational Biology and Informatics — EDRN Public Portal

    Cancer.gov

    9th Early Detection Research Network (EDRN) Scientific Workshop. Excellence in Computational Biology and Informatics: Sponsored by the EDRN Data Sharing Subcommittee Moderator: Daniel Crichton, M.S., NASA Jet Propulsion Laboratory

  16. Medical affective computing: medical informatics meets affective computing.

    PubMed

    Webster, C

    1998-01-01

    "The need to cope with a changing and partly unpredictable world makes it very likely that any intelligent system with multiple motives and limited powers will have emotions." [1] From advisory systems that understand emotional attitudes toward medical outcomes, to wearable computers that compensate for communication disability, to computer simulations of emotions and their disorders, the research agendas of medical informatics and affective computing--how and why to create computers that detect, convey, and even have emotions--increasingly overlap. Some psychiatric and neurological researchers state their theories in terms of actual or hypothetical computer programs. Adaptive intelligent systems will increasingly rely on emotions to compensate for their own conflicting goals and limited resources--emotional reactions about which psychiatrists and neurologists have special insights. DEP2 (Depression Emulation Program 2) is a computer simulation of adaptive depression--learning from explainable patterns of failure in autobiographical memory--that simulates many depressive behaviors. In the terminology of fault-tolerant computing, adaptive depression involves fault detection (triggered by failure), fault location (strategic retreat and failure diagnosis), and fault recovery (return to on-line operation). DEP2 relies on subsystems whose structures and behaviors are based on popular hypotheses about left and right brain hemispheric function during depression and emotion. DEP2 and its predecessors, DEP and DEPlanner, are relevant to psychiatric and neurological informatics, and to the design of adaptive autonomous robots and software agents.

  17. Informatics and Nursing in a Post-Nursing Informatics World: Future Directions for Nurses in an Automated, Artificially Intelligent, Social-Networked Healthcare Environment.

    PubMed

    Booth, Richard G

    2016-01-01

    The increased adoption and use of technology within healthcare and society has influenced the nursing informatics specialty in a multitude of fashions. Namely, the nursing informatics specialty currently faces a range of important decisions related to its knowledge base, established values and future directions - all of which are in need of development and future-proofing. In light of the increased use of automation, artificial intelligence and big data in healthcare, the specialty must also reconceptualize the roles of both nurses and informaticians to ensure that the nursing profession is ready to operate within future digitalized healthcare ecosystems. To explore these goals, the author of this manuscript outlines an examination of technological advancements currently taking place within healthcare, and also proposes implications for the nursing role and the nursing informatics specialty. Finally, recommendations and insights towards how the roles of nurses and informaticians might evolve or be shaped in the growing post-nursing informatics era are presented.

  18. Incorporating healthcare informatics into the strategic planning process in nursing education.

    PubMed

    Sackett, Kay; Jones, Janice; Erdley, W Scott

    2005-01-01

    The purpose of this article is to describe the incorporation of healthcare informatics into the strategic planning process in nursing education. An exemplar from the University at Buffalo, the State University of New York School of Nursing, is interwoven throughout the article. The challenges and successes inherent in a paradigm shift embracing the multifaceted adoption of technology in higher education are illustrated. The paradigm shift that necessitated this change, the need for informatics standards and competencies identified by regulatory agencies and the relationship of the triad mission of the Academy which includes research, teaching and service are then elucidated. Information pertinent to the strategic planning process is described including the use of a strengths, weaknesses, opportunities and threats (SWOT) analysis to facilitate the integration of a healthcare informatics model into a nursing curriculum.

  19. Interpreting concept learning in cognitive informatics and granular computing.

    PubMed

    Yao, Yiyu

    2009-08-01

    Cognitive informatics and granular computing are two emerging fields of study concerning information and knowledge processing. A central notion to this processing is information and knowledge granularity. Concepts, as the basic units of thought underlying human intelligence and communication, may play a fundamental role when integrating the results from the two fields in terms of information and knowledge coding, representation, communication, and processing. While cognitive informatics focuses on information processing in the abstract, in machines, and in the brain, granular computing models such processing at multiple levels of granularity. In this paper, we examine a conceptual framework for concept learning from the viewpoints of cognitive informatics and granular computing. Within the framework, we interpret concept learning based on a layered model of knowledge discovery.

  20. Entrepreneurial Health Informatics for Computer Science and Information Systems Students

    ERIC Educational Resources Information Center

    Lawler, James; Joseph, Anthony; Narula, Stuti

    2014-01-01

    Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…

  1. Emergence of a new consumer health informatics framework: introducing the healthcare organization.

    PubMed

    Reid, Paulette; Borycki, Elizabeth M

    2011-01-01

    Healthcare consumers are increasingly seeking reliable forms of health information on the Internet that can be used to support health related decision-making. Frameworks that have been developed and tested in the field of health informatics have attempted to describe the effects of the Internet upon the health care consumer and physician relationship. More recently, health care organizations are responding by providing information such as hospital wait lists or strategies for self-managing disease, and this information is being provided on organizational web-sites. The authors of this paper propose that current conceptualizations of the relationship between the Internet, physicians and patients are limited from a consumer informatics perspective and may need to be extended to include healthcare organizations.

  2. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    PubMed Central

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T.; Becich, Michael J.

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  3. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    PubMed

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  4. The Role of Computer Science and Computing Skills in a Medical Informatics Curriculum

    PubMed Central

    Price, Susan L.; Logan, Judith R.; Hersh, William R.

    2001-01-01

    Graduates of medical informatics educational programs hold a variety of jobs that require various skills and conceptual understanding. Some degree of technical knowledge is usually expected of these workers. We examine the evolution of the computer science portion of a medical informatics curriculum and report on a survey of recent graduates providing feedback regarding the usefulness of various aspects of that curriculum.

  5. The Future Impact of Healthcare Services Digitalization on Health Workforce: The Increasing Role of Medical Informatics.

    PubMed

    Lapão, Luís Velez

    2016-01-01

    The digital revolution is gradually transforming our society. What about the effects of digitalization and Internet of Things in healthcare? Among researchers two ideas are dominating, opposing each other. These arguments will be explored and analyzed. A mix-method approach combining literature review with the results from a focus group on eHealth impact on employment is used. Several experts from the WHO and from Health Professional Associations contributed for this analysis. Depending on the type of service it will entail reductions or more need of healthcare workers, yet whatever the scenario medical informatics will play an increasing role.

  6. Visualizing the knowledge structure and evolution of big data research in healthcare informatics.

    PubMed

    Gu, Dongxiao; Li, Jingjing; Li, Xingguo; Liang, Changyong

    2017-02-01

    In recent years, the literature associated with healthcare big data has grown rapidly, but few studies have used bibliometrics and a visualization approach to conduct deep mining and reveal a panorama of the healthcare big data field. To explore the foundational knowledge and research hotspots of big data research in the field of healthcare informatics, this study conducted a series of bibliometric analyses on the related literature, including papers' production trends in the field and the trend of each paper's co-author number, the distribution of core institutions and countries, the core literature distribution, the related information of prolific authors and innovation paths in the field, a keyword co-occurrence analysis, and research hotspots and trends for the future. By conducting a literature content analysis and structure analysis, we found the following: (a) In the early stage, researchers from the United States, the People's Republic of China, the United Kingdom, and Germany made the most contributions to the literature associated with healthcare big data research and the innovation path in this field. (b) The innovation path in healthcare big data consists of three stages: the disease early detection, diagnosis, treatment, and prognosis phase, the life and health promotion phase, and the nursing phase. (c) Research hotspots are mainly concentrated in three dimensions: the disease dimension (e.g., epidemiology, breast cancer, obesity, and diabetes), the technical dimension (e.g., data mining and machine learning), and the health service dimension (e.g., customized service and elderly nursing). This study will provide scholars in the healthcare informatics community with panoramic knowledge of healthcare big data research, as well as research hotspots and future research directions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. The challenge of ubiquitous computing in health care: technology, concepts and solutions. Findings from the IMIA Yearbook of Medical Informatics 2005.

    PubMed

    Bott, O J; Ammenwerth, E; Brigl, B; Knaup, P; Lang, E; Pilgram, R; Pfeifer, B; Ruderich, F; Wolff, A C; Haux, R; Kulikowski, C

    2005-01-01

    To review recent research efforts in the field of ubiquitous computing in health care. To identify current research trends and further challenges for medical informatics. Analysis of the contents of the Yearbook on Medical Informatics 2005 of the International Medical Informatics Association (IMIA). The Yearbook of Medical Informatics 2005 includes 34 original papers selected from 22 peer-reviewed scientific journals related to several distinct research areas: health and clinical management, patient records, health information systems, medical signal processing and biomedical imaging, decision support, knowledge representation and management, education and consumer informatics as well as bioinformatics. A special section on ubiquitous health care systems is devoted to recent developments in the application of ubiquitous computing in health care. Besides additional synoptical reviews of each of the sections the Yearbook includes invited reviews concerning E-Health strategies, primary care informatics and wearable healthcare. Several publications demonstrate the potential of ubiquitous computing to enhance effectiveness of health services delivery and organization. But ubiquitous computing is also a societal challenge, caused by the surrounding but unobtrusive character of this technology. Contributions from nearly all of the established sub-disciplines of medical informatics are demanded to turn the visions of this promising new research field into reality.

  8. The Future of Healthcare Informatics: It Is Not What You Think

    PubMed Central

    2012-01-01

    Electronic health records (EHRs) offer many valuable benefits for patient safety, but it becomes apparent that the effective application of healthcare informatics creates problems and unintended consequences. One problem that seems particularly challenging is integration. Painfully missing are low-cost, easy to implement, plug-and-play, nonintrusive integration solutions—healthcare's “killer app.” Why is this? We must stop confusing application integration with information integration. Our goal must be to communicate data (ie, integrate information), not to integrate application functionality via complex and expensive application program interfaces (APIs). Communicating data simply requires a loosely coupled flow of data, as occurs today via email. In contrast, integration is a chief information officer's nightmare. Integrating applications, when we just wanted a bit of information, is akin to killing a gnat with a brick. PMID:24278826

  9. Symposium highlights and synopses of the scientific program: the Sixth Annual Mid-Atlantic Healthcare Informatics Symposium.

    PubMed

    Vito, D; Diltz, M; Porter, M; White, P; Luberti, A

    2014-01-01

    As the bar to actively participate in one's own health is consistently lowered through technology, patients are helping to evolve traditional workflows to make data more accessible at the point of care. This growing trend of patient engagement and personalized medicine was the focus of the 2013 Mid-Atlantic Healthcare Informatics Symposium in Philadelphia, PA on April 26, 2013. The conference, presented annually by the Center for Bio-medical Informatics (CBMi) at The Children's Hospital of Philadelphia, featured plenary sessions, panel discussions, and paper presentations on a range of topics, including patient engagement and personalized medicine; using data and analytics to optimize patient care; nursing informatics; and the future of biomedical informatics.

  10. Developing nurse educators' computer skills towards proficiency in nursing informatics.

    PubMed

    Rajalahti, Elina; Heinonen, Jarmo; Saranto, Kaija

    2014-01-01

    The purpose of this paper is to assess nurse educators' competence development in nursing informatics (NI) and to compare their competence to the NI competence of other healthcare professionals. Electronic health records (EHR) have been in use for many years. However, the adoption of the nursing care plan finally made it possible for nurses in Finland to develop a model for structured documentation with nursing terminology. A total of n = 124 (n = 85 pre-test and n = 39 post-test) participants from Universities of Applied Sciences (UAS), hospitals, hospitals' information management and health centres were surveyed with a e-questionnaire designed to assess the development of their NI competences during the nursing documentation development project. The questionnaire included 145 structured questions and 6 open questions. Data analysis focused on classification and comparison of NI competences through data description and statistical parameters using figures and tables. The basic NI competences of the nurse educators were good at the end of project and the nurse educators had better information literacy and information management competences than other participants. The information retrieval skills varied greatly, but they improved evenly towards the end. The nurse educators mastered better evidence-based nursing and use of nursing process models in their work.

  11. Measuring Computer Science Knowledge Level of Hungarian Students Specialized in Informatics with Romanian Students Attending a Science Course or a Mathematics-Informatics Course

    ERIC Educational Resources Information Center

    Kiss, Gabor

    2012-01-01

    An analysis of Information Technology knowledge of Hungarian and Romanian students was made with the help of a self developed web based Informatics Test. The goal of this research is an analysis of the Computer Science knowledge level of Hungarian and Romanian students attending a Science course or a Mathematics-Informatics course. Analysed was…

  12. Advanced networks and computing in healthcare

    PubMed Central

    Ackerman, Michael

    2011-01-01

    As computing and network capabilities continue to rise, it becomes increasingly important to understand the varied applications for using them to provide healthcare. The objective of this review is to identify key characteristics and attributes of healthcare applications involving the use of advanced computing and communication technologies, drawing upon 45 research and development projects in telemedicine and other aspects of healthcare funded by the National Library of Medicine over the past 12 years. Only projects publishing in the professional literature were included in the review. Four projects did not publish beyond their final reports. In addition, the authors drew on their first-hand experience as project officers, reviewers and monitors of the work. Major themes in the corpus of work were identified, characterizing key attributes of advanced computing and network applications in healthcare. Advanced computing and network applications are relevant to a range of healthcare settings and specialties, but they are most appropriate for solving a narrower range of problems in each. Healthcare projects undertaken primarily to explore potential have also demonstrated effectiveness and depend on the quality of network service as much as bandwidth. Many applications are enabling, making it possible to provide service or conduct research that previously was not possible or to achieve outcomes in addition to those for which projects were undertaken. Most notable are advances in imaging and visualization, collaboration and sense of presence, and mobility in communication and information-resource use. PMID:21486877

  13. School Subject Informatics (Computer Science) in Russia: Educational Relevant Areas

    ERIC Educational Resources Information Center

    Khenner, Evgeniy; Semakin, Igor

    2014-01-01

    This article deals with some aspects of studying Informatics in Russian schools. Those aspects are part of the "third dimension" of the Darmstadt model (they are also projected on the other two dimensions of this model) and include evolution of the subject, regulatory norms conforming to the Federal Educational Standards, the learning…

  14. School Subject Informatics (Computer Science) in Russia: Educational Relevant Areas

    ERIC Educational Resources Information Center

    Khenner, Evgeniy; Semakin, Igor

    2014-01-01

    This article deals with some aspects of studying Informatics in Russian schools. Those aspects are part of the "third dimension" of the Darmstadt model (they are also projected on the other two dimensions of this model) and include evolution of the subject, regulatory norms conforming to the Federal Educational Standards, the learning…

  15. Contemporary cybernetics and its facets of cognitive informatics and computational intelligence.

    PubMed

    Wang, Yingxu; Kinsner, Witold; Zhang, Du

    2009-08-01

    This paper explores the architecture, theoretical foundations, and paradigms of contemporary cybernetics from perspectives of cognitive informatics (CI) and computational intelligence. The modern domain and the hierarchical behavioral model of cybernetics are elaborated at the imperative, autonomic, and cognitive layers. The CI facet of cybernetics is presented, which explains how the brain may be mimicked in cybernetics via CI and neural informatics. The computational intelligence facet is described with a generic intelligence model of cybernetics. The compatibility between natural and cybernetic intelligence is analyzed. A coherent framework of contemporary cybernetics is presented toward the development of transdisciplinary theories and applications in cybernetics, CI, and computational intelligence.

  16. Applications of the pipeline environment for visual informatics and genomics computations.

    PubMed

    Dinov, Ivo D; Torri, Federica; Macciardi, Fabio; Petrosyan, Petros; Liu, Zhizhong; Zamanyan, Alen; Eggert, Paul; Pierce, Jonathan; Genco, Alex; Knowles, James A; Clark, Andrew P; Van Horn, John D; Ames, Joseph; Kesselman, Carl; Toga, Arthur W

    2011-07-26

    Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power

  17. Applications of the pipeline environment for visual informatics and genomics computations

    PubMed Central

    2011-01-01

    Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client

  18. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  19. Informatics Moments

    ERIC Educational Resources Information Center

    Williams, Kate

    2012-01-01

    The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…

  20. Health Informatics in the Classroom: An Empirical Study to Investigate Higher Education's Response to Healthcare Transformation

    ERIC Educational Resources Information Center

    Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka

    2014-01-01

    The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…

  1. Health Informatics in the Classroom: An Empirical Study to Investigate Higher Education's Response to Healthcare Transformation

    ERIC Educational Resources Information Center

    Ashrafi, Noushin; Kuilboer, Jean-Pierre; Joshi, Chaitanya; Ran, Iris; Pande, Priyanka

    2014-01-01

    The explosive advances in information technology combined with the current climate for health care reform have intensified the need for skilled individuals who can develop, understand, and manage medical information systems in organizations. Health Informatics facilitates quality care at a reasonable cost by allowing access to the right data by…

  2. Students' Knowledge, Opinions, and Behaviors Concerning Dental Informatics and Computer Applications.

    ERIC Educational Resources Information Center

    Lang, W. Paul; And Others

    1992-01-01

    A survey of 95 first-year and 91 fourth-year dental students concerning informatics and computer applications in dentistry investigated knowledge of terms and concepts related to hardware, software, electronic communication, and dental applications; opinions concerning use of the technology; and extent of experience in 4 areas of use. (MSE)

  3. Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey

    PubMed Central

    Belle, Ashwin; Kon, Mark A.; Najarian, Kayvan

    2013-01-01

    The volumes of current patient data as well as their complexity make clinical decision making more challenging than ever for physicians and other care givers. This situation calls for the use of biomedical informatics methods to process data and form recommendations and/or predictions to assist such decision makers. The design, implementation, and use of biomedical informatics systems in the form of computer-aided decision support have become essential and widely used over the last two decades. This paper provides a brief review of such systems, their application protocols and methodologies, and the future challenges and directions they suggest. PMID:23431259

  4. Biomedical informatics for computer-aided decision support systems: a survey.

    PubMed

    Belle, Ashwin; Kon, Mark A; Najarian, Kayvan

    2013-01-01

    The volumes of current patient data as well as their complexity make clinical decision making more challenging than ever for physicians and other care givers. This situation calls for the use of biomedical informatics methods to process data and form recommendations and/or predictions to assist such decision makers. The design, implementation, and use of biomedical informatics systems in the form of computer-aided decision support have become essential and widely used over the last two decades. This paper provides a brief review of such systems, their application protocols and methodologies, and the future challenges and directions they suggest.

  5. Museum Informatics.

    ERIC Educational Resources Information Center

    Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.

    2003-01-01

    Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…

  6. Museum Informatics.

    ERIC Educational Resources Information Center

    Marty, Paul F.; Rayward, W. Boyd; Twidale, Michael B.

    2003-01-01

    Discusses museum informatics that studies how information science and technology affect the museum environment. Examines digital technology; information organization and access; digitization, personal computers, and the Internet; data sharing; standards; social impacts of new technologies; collaboration; consortia; multimedia exhibits; virtual…

  7. Learning from colleagues about healthcare IT implementation and optimization: lessons from a medical informatics listserv.

    PubMed

    Adams, Martha B; Kaplan, Bonnie; Sobko, Heather J; Kuziemsky, Craig; Ravvaz, Kourosh; Koppel, Ross

    2015-01-01

    Communication among medical informatics communities can suffer from fragmentation across multiple forums, disciplines, and subdisciplines; variation among journals, vocabularies and ontologies; cost and distance. Online communities help overcome these obstacles, but may become onerous when listservs are flooded with cross-postings. Rich and relevant content may be ignored. The American Medical Informatics Association successfully addressed these problems when it created a virtual meeting place by merging the membership of four working groups into a single listserv known as the "Implementation and Optimization Forum." A communication explosion ensued, with thousands of interchanges, hundreds of topics, commentaries from "notables," neophytes, and students--many from different disciplines, countries, traditions. We discuss the listserv's creation, illustrate its benefits, and examine its lessons for others. We use examples from the lively, creative, deep, and occasionally conflicting discussions of user experiences--interchanges about medication reconciliation, open source strategies, nursing, ethics, system integration, and patient photos in the EMR--all enhancing knowledge, collegiality, and collaboration.

  8. INFOBIOMED: European Network of Excellence on Biomedical Informatics to Support Individualised Healthcare

    PubMed Central

    Maojo, Victor; de la Calle, Guillermo; Martín-Sánchez, Fernando; Díaz, Carlos; Sanz, Ferran

    2005-01-01

    INFOBIOMED is an European Network of Excellence (NoE) funded by the Information Society Directorate-General of the European Commission (EC). A consortium of European organizations from ten different countries is involved within the network. Four pilots, all related to linking clinical and genomic information, are being carried out. From an informatics perspective, various challenges, related to data integration and mining, are included. PMID:16779328

  9. A framework for semantic interoperability in healthcare: a service oriented architecture based on health informatics standards.

    PubMed

    Ryan, Amanda; Eklund, Peter

    2008-01-01

    Healthcare information is composed of many types of varying and heterogeneous data. Semantic interoperability in healthcare is especially important when all these different types of data need to interact. Presented in this paper is a solution to interoperability in healthcare based on a standards-based middleware software architecture used in enterprise solutions. This architecture has been translated into the healthcare domain using a messaging and modeling standard which upholds the ideals of the Semantic Web (HL7 V3) combined with a well-known standard terminology of clinical terms (SNOMED CT).

  10. Continuing educational needs in computers and informatics. McGill survey of family physicians.

    PubMed Central

    McClaran, J.; Snell, L.; Duarte-Franco, E.

    2000-01-01

    OBJECTIVE: To describe family physicians' perceived educational needs in computers and informatics. DESIGN: Mailed survey. SETTING: General or family practices in Canada. PARTICIPANTS: Physicians (489 responded to a mailing sent to 2,500 physicians) who might attend sessions at the McGill Centre for CME. Two duplicate questionnaires were excluded from the analysis. METHOD: Four domains were addressed: practice profile, clinical CME needs, professional CME needs, and preferred learning formats. Data were entered on dBASE IV; analyses were performed on SPSS. MAIN FINDINGS: In the 487 questionnaires retained for analysis, "informatics and computers" was mentioned more than any other clinical diagnostic area, any other professional area, and all but three patient groups and service areas as a topic where improvement in knowledge and skills was needed in the coming year. Most physicians had no access to computer support for practice (62.6%); physicians caring for neonates, toddlers, or hospital inpatients were more likely to report some type of computer support. CONCLUSIONS: Family physicians selected knowledge and skills for computers and informatics as an area for improvement in the coming year more frequently than they selected most traditional clinical CME topics. This educational need is particularly great in small towns and in settings where some computerized hospital data are already available. PMID:10790816

  11. Theory development in nursing and healthcare informatics: a model explaining and predicting information and communication technology acceptance by healthcare consumers.

    PubMed

    An, Ji-Young; Hayman, Laura L; Panniers, Teresa; Carty, Barbara

    2007-01-01

    About 110 million American adults are looking for health information and services on the Internet. Identification of the factors influencing healthcare consumers' technology acceptance is requisite to understanding their acceptance and usage behavior of online health information and related services. The purpose of this article is to describe the development of the Information and Communication Technology Acceptance Model (ICTAM). From the literature reviewed, ICTAM was developed with emphasis on integrating multidisciplinary perspectives from divergent frameworks and empirical findings into a unified model with regard to healthcare consumers' acceptance and usage behavior of information and services on the Internet.

  12. Algorithmic Tools and Computational Frameworks for Cell Informatics

    DTIC Science & Technology

    2006-04-01

    Various Biological Systems ................................................................... 10 C . elegans Gonad Tract Cells Simulations...context, several experiments on the nematode C . elegans were conducted in cooperation with colleagues in the NYU Department of Biology, in order to test...proliferation. No animal research was conducted under this project. To this end, a rigorous computational model of C . elegans germ line stem cell growth

  13. A Study of Transformational Change at Three Schools of Nursing Implementing Healthcare Informatics

    ERIC Educational Resources Information Center

    Cornell, Revonda Leota

    2009-01-01

    The "Health Professions Education: A Bridge to Quality" (IOM, 2003) proposed strategies for higher education leaders and faculty to transform their institutions in ways that address the healthcare problems. This study provides higher education leaders and faculty with empirical data about the processes of change involved to implement the…

  14. A Study of Transformational Change at Three Schools of Nursing Implementing Healthcare Informatics

    ERIC Educational Resources Information Center

    Cornell, Revonda Leota

    2009-01-01

    The "Health Professions Education: A Bridge to Quality" (IOM, 2003) proposed strategies for higher education leaders and faculty to transform their institutions in ways that address the healthcare problems. This study provides higher education leaders and faculty with empirical data about the processes of change involved to implement the…

  15. Enabling drug discovery project decisions with integrated computational chemistry and informatics

    NASA Astrophysics Data System (ADS)

    Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.

    2017-03-01

    Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.

  16. Enabling drug discovery project decisions with integrated computational chemistry and informatics

    NASA Astrophysics Data System (ADS)

    Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.

    2016-10-01

    Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.

  17. Enabling drug discovery project decisions with integrated computational chemistry and informatics.

    PubMed

    Tsui, Vickie; Ortwine, Daniel F; Blaney, Jeffrey M

    2017-03-01

    Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.

  18. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research

    PubMed Central

    King, Andrew J.; Fisher, Arielle M.; Becich, Michael J.; Boone, David N.

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist. PMID:28400991

  19. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    PubMed

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  20. Computers in a human perspective: an alternative way of teaching informatics to health professionals.

    PubMed

    Schneider, W

    1989-11-01

    An alternative way of teaching informatics, especially health informatics, to health professionals of different categories has been developed and practiced. The essentials of human competence and skill in handling and processing information are presented parallel with the essentials of computer-assisted methodologies and technologies of formal language-based informatics. Requirements on how eventually useful computer-based tools will have to be designed in order to be well adapted to genuine human skill and competence in handling tools in various work contexts are established. On the basis of such a balanced knowledge methods for work analysis are introduced. These include how the existing problems at a workplace can be identified and analyzed in relation to the goals to be achieved. Special emphasis is given to new ways of information analysis, i.e. methods which even allow the comprehension and documentation of those parts of the actually practiced 'human' information handling and processing which are normally overlooked, as e.g. non-verbal communication processes and so-called 'tacit knowledge' based information handling and processing activities. Different ways of problem solving are discussed involving in an integrated human perspective--alternative staffing, enhancement of the competence of the staff, optimal planning of premises as well as organizational and technical means. The main result of this alternative way of education has been a considerably improved user competence which in turn has led to very different designs of computer assistance and man-computer interfaces. It is the purpose of this paper to give a brief outline of the teaching material and a short presentation of the above mentioned results.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. The politics of healthcare informatics: knowledge management using an electronic medical record system.

    PubMed

    Bar-Lev, Shirly

    2015-03-01

    The design and implementation of an electronic medical record system pose significant epistemological and practical complexities. Despite optimistic assessments of their potential contribution to the quality of care, their implementation has been problematic, and their actual employment in various clinical settings remains controversial. Little is known about how their use actually mediates knowing. Employing a variety of qualitative research methods, this article attempts an answer by illustrating how omitting, editing and excessive reporting were employed as part of nurses' and physicians' political efforts to shape knowledge production and knowledge sharing in a technologically mediated healthcare setting.

  2. A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions.

    PubMed

    Stamatelos, Spyros K; Kim, Eugene; Pathak, Arvind P; Popel, Aleksander S

    2014-01-01

    Induction of tumor angiogenesis is among the hallmarks of cancer and a driver of metastatic cascade initiation. Recent advances in high-resolution imaging enable highly detailed three-dimensional geometrical representation of the whole-tumor microvascular architecture. This enormous increase in complexity of image-based data necessitates the application of informatics methods for the analysis, mining and reconstruction of these spatial graph data structures. We present a novel methodology that combines ex-vivo high-resolution micro-computed tomography imaging data with a bioimage informatics algorithm to track and reconstruct the whole-tumor vasculature of a human breast cancer model. The reconstructed tumor vascular network is used as an input of a computational model that estimates blood flow in each segment of the tumor microvascular network. This formulation involves a well-established biophysical model and an optimization algorithm that ensures mass balance and detailed monitoring of all the vessels that feed and drain blood from the tumor microvascular network. Perfusion maps for the whole-tumor microvascular network are computed. Morphological and hemodynamic indices from different regions are compared to infer their role in overall tumor perfusion. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The design, marketing, and implementation of online continuing education about computers and nursing informatics.

    PubMed

    Sweeney, Nancy M; Saarmann, Lembi; Seidman, Robert; Flagg, Joan

    2006-01-01

    Asynchronous online tutorials using PowerPoint slides with accompanying audio to teach practicing nurses about computers and nursing informatics were designed for this project, which awarded free continuing education units to completers. Participants had control over the advancement of slides, with the ability to repeat when desired. Graphics were kept to a minimum; thus, the program ran smoothly on computers using dial-up modems. The tutorials were marketed in live meetings and through e-mail messages on nursing listservs. Findings include that the enrollment process must be automated and instantaneous, the program must work from every type of computer and Internet connection, marketing should be live and electronic, and workshops should be offered to familiarize nurses with the online learning system.

  4. Building a Culture of Health Informatics Innovation and Entrepreneurship: A New Frontier.

    PubMed

    Househ, Mowafa; Alshammari, Riyad; Almutairi, Mariam; Jamal, Amr; Alshoaib, Saleh

    2015-01-01

    Entrepreneurship and innovation within the health informatics (HI) scientific community are relatively sluggish when compared to other disciplines such as computer science and engineering. Healthcare in general, and specifically, the health informatics scientific community needs to embrace more innovative and entrepreneurial practices. In this paper, we explore the concepts of innovation and entrepreneurship as they apply to the health informatics scientific community. We also outline several strategies to improve the culture of innovation and entrepreneurship within the health informatics scientific community such as: (I) incorporating innovation and entrepreneurship in health informatics education; (II) creating strong linkages with industry and healthcare organizations; (III) supporting national health innovation and entrepreneurship competitions; (IV) creating a culture of innovation and entrepreneurship within healthcare organizations; (V) developing health informatics policies that support innovation and entrepreneurship based on internationally recognized standards; and (VI) develop an health informatics entrepreneurship ecosystem. With these changes, we conclude that embracing health innovation and entrepreneurship may be more readily accepted over the long-term within the health informatics scientific community.

  5. Climate Informatics

    NASA Technical Reports Server (NTRS)

    Monteleoni, Claire; Schmidt, Gavin A.; Alexander, Francis J.; Niculescu-Mizil, Alexandru; Steinhaeuser, Karsten; Tippett, Michael; Banerjee, Arindam; Blumenthal, M. Benno; Ganguly, Auroop R.; Smerdon, Jason E.; Tedesco, Marco

    2013-01-01

    The impacts of present and potential future climate change will be one of the most important scientific and societal challenges in the 21st century. Given observed changes in temperature, sea ice, and sea level, improving our understanding of the climate system is an international priority. This system is characterized by complex phenomena that are imperfectly observed and even more imperfectly simulated. But with an ever-growing supply of climate data from satellites and environmental sensors, the magnitude of data and climate model output is beginning to overwhelm the relatively simple tools currently used to analyze them. A computational approach will therefore be indispensable for these analysis challenges. This chapter introduces the fledgling research discipline climate informatics: collaborations between climate scientists and machine learning researchers in order to bridge this gap between data and understanding. We hope that the study of climate informatics will accelerate discovery in answering pressing questions in climate science.

  6. Multi-Sensory Informatics Education

    ERIC Educational Resources Information Center

    Katai, Zoltan; Toth, Laszlo; Adorjani, Alpar Karoly

    2014-01-01

    A recent report by the joint Informatics Europe & ACM Europe Working Group on Informatics Education emphasizes that: (1) computational thinking is an important ability that all people should possess; (2) informatics-based concepts, abilities and skills are teachable, and must be included in the primary and particularly in the secondary school…

  7. Computing Health Quality Measures Using Informatics for Integrating Biology and the Bedside

    PubMed Central

    Murphy, Shawn N

    2013-01-01

    Background The Health Quality Measures Format (HQMF) is a Health Level 7 (HL7) standard for expressing computable Clinical Quality Measures (CQMs). Creating tools to process HQMF queries in clinical databases will become increasingly important as the United States moves forward with its Health Information Technology Strategic Plan to Stages 2 and 3 of the Meaningful Use incentive program (MU2 and MU3). Informatics for Integrating Biology and the Bedside (i2b2) is one of the analytical databases used as part of the Office of the National Coordinator (ONC)’s Query Health platform to move toward this goal. Objective Our goal is to integrate i2b2 with the Query Health HQMF architecture, to prepare for other HQMF use-cases (such as MU2 and MU3), and to articulate the functional overlap between i2b2 and HQMF. Therefore, we analyze the structure of HQMF, and then we apply this understanding to HQMF computation on the i2b2 clinical analytical database platform. Specifically, we develop a translator between two query languages, HQMF and i2b2, so that the i2b2 platform can compute HQMF queries. Methods We use the HQMF structure of queries for aggregate reporting, which define clinical data elements and the temporal and logical relationships between them. We use the i2b2 XML format, which allows flexible querying of a complex clinical data repository in an easy-to-understand domain-specific language. Results The translator can represent nearly any i2b2-XML query as HQMF and execute in i2b2 nearly any HQMF query expressible in i2b2-XML. This translator is part of the freely available reference implementation of the QueryHealth initiative. We analyze limitations of the conversion and find it covers many, but not all, of the complex temporal and logical operators required by quality measures. Conclusions HQMF is an expressive language for defining quality measures, and it will be important to understand and implement for CQM computation, in both meaningful use and population

  8. [Informatics in the Croatian health care system].

    PubMed

    Kern, Josipa; Strnad, Marija

    2005-01-01

    Informatization process of the Croatian health care system started relatively early. Computer processing of data of persons not covered by health insurance started in 1968 in Zagreb. Remetinec Health Center served as a model of computer data processing (CDP) in primary health care and Sveti Duh General Hospital in inpatient CDP, whereas hospital administration and health service were first introduced to Zagreb University Hospital Center and Sestre Milosrdnice University Hospital. At Varazdin Medical Center CDP for health care services started in 1970. Several registries of chronic diseases have been established: cancer, psychosis, alcoholism, and hospital registries as well as pilot registries of lung tuberculosis patients and diabetics. Health statistics reports on healthcare services, work accidents and sick-leaves as well as on hospital mortality started to be produced by CDP in 1977. Besides alphanumeric data, the modern information technology (IT) can give digital images and signals. Communication in health care system demands a standardized format of all information, especially for telemedicine. In 2000, Technical Committee for Standardization in Medical Informatics was founded in Croatia, in order to monitor the activities of the International Standardization Organization (ISO) and Comite Européen de Normalisation (CEN), and to implement their international standards in the Croatian standardization procedure. The HL7 Croatia has also been founded to monitor developments in the communication standard HL7. So far, the Republic of Croatia has a number of acts regulating informatization in general and consequently the informatization of the health care system (Act on Personal Data Confidentiality, Act on Digital Signature, Act of Standardization) enacted. The ethical aspect of data security and data protection has been covered by the Code of Ethics for medical informaticians. It has been established by the International Medical Informatics Association (IMIA

  9. Nursing Informatics Competencies Among Nursing Students and Their Relationship to Patient Safety Competencies: Knowledge, Attitude, and Skills.

    PubMed

    Abdrbo, Amany Ahmed

    2015-11-01

    With implementation of information technology in healthcare settings to promote safety and evidence-based nursing care, a growing emphasis on the importance of nursing informatics competencies has emerged. This study assessed the relationship between nursing informatics and patient safety competencies among nursing students and nursing interns. A descriptive, cross-sectional correlational design with a convenience sample of 154 participants (99 nursing students and 55 interns) completed the Self-assessment of Nursing Informatics Competencies and Patient Safety Competencies. The nursing students and interns were similar in age and years of computer experience, and more than half of the participants in both groups had taken a nursing informatics course. There were no significant differences between competencies in nursing informatics and patient safety except for clinical informatics role and applied computer skills in the two groups of participants. Nursing informatics competencies and patient safety competencies were significantly correlated except for clinical informatics role both with patient safety knowledge and attitude. These results provided feedback to adjust and incorporate informatics competencies in the baccalaureate program and to recommend embracing the nursing informatics course as one of the core courses, not as an elective course, in the curriculum.

  10. Origins of Medical Informatics

    PubMed Central

    Collen, Morris F.

    1986-01-01

    Medical informatics is a new knowledge domain of computer and information science, engineering and technology in all fields of health and medicine, including research, education and practice. Medical informatics has evolved over the past 30 years as medicine learned to exploit the extraordinary capabilities of the electronic digital computer to better meet its complex information needs. The first articles on this subject appeared in the 1950s, the number of publications rapidly increased in the 1960s and medical informatics was identified as a new specialty in the 1970s. PMID:3544507

  11. Factors affecting nurses' attitudes toward computers in healthcare.

    PubMed

    Kaya, Nurten

    2011-02-01

    The purpose of the study was to determine factors affecting nurses' attitudes toward computers in healthcare. This cross-sectional study was carried out with nurses employed at one state and one university hospital. The sample of the study included 890 nurses who were selected via a purposive sampling method. Data were collected by using a questionnaire for demographic information and Pretest for Attitudes Toward Computers in Healthcare Assessment Scale v.2. The nurses, in general, had positive attitudes toward computers. Findings of the present study showed a significant difference in attitudes for different categories of age (P < .001), marital status (P < .05), education (P < .001), type of facility (P < .01), job title (P < .001), computer science education (P < .01), computer experience (P < .001), duration of computer use (P < .001), and place of use of computer (P < .001). The results of the present study could be used during planning and implementation of computer training programs for nurses in Turkey and could be utilized in improving the participation of Turkish nurses in initiatives to develop hospital information systems and, above all, in developing computerized patient care planning.

  12. Informatics competencies for nurse practitioners.

    PubMed

    Curran, Christine R

    2003-08-01

    Informatics knowledge and skills are essential if clinicians are to master the large volume of information generated in healthcare today. Thus, it is vital that informatics competencies be defined for nursing and incorporated into both curricula and practice. Staggers, Gassert, and Curran have defined informatics competencies for four general levels of nursing practice. However, informatics competencies by role (eg, those specific for advanced practice nursing) have not been defined and validated. This article presents an initial proposed list of informatics competencies essential for nurse practitioner education and practice. To this list, derived from the work of Staggers et al., 1 has been added informatics competencies related to evidence-based practice. Two nurse informaticists and six nurse practitioners, who are program directors, were involved in the development of the proposed competencies. The next step will be to validate these competencies via research.

  13. A scoping review of cloud computing in healthcare.

    PubMed

    Griebel, Lena; Prokosch, Hans-Ulrich; Köpcke, Felix; Toddenroth, Dennis; Christoph, Jan; Leb, Ines; Engel, Igor; Sedlmayr, Martin

    2015-03-19

    Cloud computing is a recent and fast growing area of development in healthcare. Ubiquitous, on-demand access to virtually endless resources in combination with a pay-per-use model allow for new ways of developing, delivering and using services. Cloud computing is often used in an "OMICS-context", e.g. for computing in genomics, proteomics and molecular medicine, while other field of application still seem to be underrepresented. Thus, the objective of this scoping review was to identify the current state and hot topics in research on cloud computing in healthcare beyond this traditional domain. MEDLINE was searched in July 2013 and in December 2014 for publications containing the terms "cloud computing" and "cloud-based". Each journal and conference article was categorized and summarized independently by two researchers who consolidated their findings. 102 publications have been analyzed and 6 main topics have been found: telemedicine/teleconsultation, medical imaging, public health and patient self-management, hospital management and information systems, therapy, and secondary use of data. Commonly used features are broad network access for sharing and accessing data and rapid elasticity to dynamically adapt to computing demands. Eight articles favor the pay-for-use characteristics of cloud-based services avoiding upfront investments. Nevertheless, while 22 articles present very general potentials of cloud computing in the medical domain and 66 articles describe conceptual or prototypic projects, only 14 articles report from successful implementations. Further, in many articles cloud computing is seen as an analogy to internet-/web-based data sharing and the characteristics of the particular cloud computing approach are unfortunately not really illustrated. Even though cloud computing in healthcare is of growing interest only few successful implementations yet exist and many papers just use the term "cloud" synonymously for "using virtual machines" or "web

  14. Protecting the patient by promoting end-user competence in health informatics systems-moves towards a generic health computer user "driving license".

    PubMed

    Rigby, Michael

    2004-03-18

    The effectiveness and quality of health informatics systems' support to healthcare delivery are largely determined by two factors-the suitability of the system installed, and the competence of the users. However, the profile of users of large-scale clinical health systems is significantly different from the profile of end-users in other enterprises such as the finance sector, insurance, travel or retail sales. Work with a mental health provider in Ireland, who was introducing a customized electronic patient record (EPR) system, identified the strong legal and ethical importance of adequately skills for the health professionals and others, who would be the system users. The experience identified the need for a clear and comprehensive generic user qualification at a basic but robust level. The European computer driving license (ECDL) has gained wide recognition as a basic generic qualification for users of computer systems. However, health systems and data have a series of characteristics that differentiate them from other data systems. The logical conclusion was the recognition of a need for an additional domain-specific qualification-an "ECDL Health Supplement". Development of this is now being progressed.

  15. Mobile healthcare information management utilizing Cloud Computing and Android OS.

    PubMed

    Doukas, Charalampos; Pliakas, Thomas; Maglogiannis, Ilias

    2010-01-01

    Cloud Computing provides functionality for managing information data in a distributed, ubiquitous and pervasive manner supporting several platforms, systems and applications. This work presents the implementation of a mobile system that enables electronic healthcare data storage, update and retrieval using Cloud Computing. The mobile application is developed using Google's Android operating system and provides management of patient health records and medical images (supporting DICOM format and JPEG2000 coding). The developed system has been evaluated using the Amazon's S3 cloud service. This article summarizes the implementation details and presents initial results of the system in practice.

  16. What is biomedical informatics?

    PubMed

    Bernstam, Elmer V; Smith, Jack W; Johnson, Todd R

    2010-02-01

    Biomedical informatics lacks a clear and theoretically-grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine.

  17. Genome Informatics

    PubMed Central

    Winslow, Raimond L.; Boguski, Mark S.

    2005-01-01

    This article reviews recent advances in genomics and informatics relevant to cardiovascular research. In particular, we review the status of (1) whole genome sequencing efforts in human, mouse, rat, zebrafish, and dog; (2) the development of data mining and analysis tools; (3) the launching of the National Heart, Lung, and Blood Institute Programs for Genomics Applications and Proteomics Initiative; (4) efforts to characterize the cardiac transcriptome and proteome; and (5) the current status of computational modeling of the cardiac myocyte. In each instance, we provide links to relevant sources of information on the World Wide Web and critical appraisals of the promises and the challenges of an expanding and diverse information landscape. PMID:12750305

  18. [Biomedical informatics].

    PubMed

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  19. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2015-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes nearly 150 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies. Remote Sensing; Earth Science Informatics, Data Systems; Data Services; Metadata

  20. Health Professionals' Views of Informatics Education

    PubMed Central

    Staggers, Nancy; Gassert, Carole A.; Skiba, Diane J.

    2000-01-01

    Health care leaders emphasize the need to include information technology and informatics concepts in formal education programs, yet integration of informatics into health educational programs has progressed slowly. The AMIA 1999 Spring Congress was held to address informatics educational issues across health professions, including the educational needs in the various health professions, goals for health informatics education, and implementation strategies to achieve these goals. This paper presents the results from AMIA work groups focused on informatics education for non-informatics health professionals. In the categories of informatics needs, goals, and strategies, conference attendees suggested elements in these areas: educational responsibilities for faculty and students, organizational responsibilities, core computer skills and informatics knowledge, how to learn informatics skills, and resources required to implement educational strategies. PMID:11062228

  1. Informatic nephrology.

    PubMed

    Musso, Carlos; Aguilera, Jerónimo; Otero, Carlos; Vilas, Manuel; Luna, Daniel; de Quirós, Fernán González Bernaldo

    2013-08-01

    Biomedical informatics in Health (BIH) is the discipline in charge of capturing, handling and using information in health and biomedicine in order to improve the processes involved with assistance and management. Informatic nephrology has appeared as a product of the combination between conventional nephrology with BIH and its development has been considerable in the assistance as well as in the academic field. Regarding the former, there is increasing evidence that informatics technology can make nephrological assistance be better in quality (effective, accessible, safe and satisfying), improve patient's adherence, optimize patient's and practitioner's time, improve physical space and achieve health cost reduction. Among its main elements, we find electronic medical and personal health records, clinical decision support system, tele-nephrology, and recording and monitoring devices. Additionally, regarding the academic field, informatics and Internet contribute to education and research in the nephrological field. In conclusion, informatics nephrology represents a new field which will influence the future of nephrology.

  2. Behavioral Informatics and Computational Modeling in Support of Proactive Health Management and Care.

    PubMed

    Pavel, Misha; Jimison, Holly B; Korhonen, Ilkka; Gordon, Christine M; Saranummi, Niilo

    2015-12-01

    Health-related behaviors are among the most significant determinants of health and quality of life. Improving health behavior is an effective way to enhance health outcomes and mitigate the escalating challenges arising from an increasingly aging population and the proliferation of chronic diseases. Although it has been difficult to obtain lasting improvements in health behaviors on a wide scale, advances at the intersection of technology and behavioral science may provide the tools to address this challenge. In this paper, we describe a vision and an approach to improve health behavior interventions using the tools of behavioral informatics, an emerging transdisciplinary research domain based on system-theoretic principles in combination with behavioral science and information technology. The field of behavioral informatics has the potential to optimize interventions through monitoring, assessing, and modeling behavior in support of providing tailored and timely interventions. We describe the components of a closed-loop system for health interventions. These components range from fine grain sensor characterizations to individual-based models of behavior change. We provide an example of a research health coaching platform that incorporates a closed-loop intervention based on these multiscale models. Using this early prototype, we illustrate how the optimized and personalized methodology and technology can support self-management and remote care. We note that despite the existing examples of research projects and our platform, significant future research is required to convert this vision to full-scale implementations.

  3. Behavioral Informatics and Computational Modeling in Support of Proactive Health Management and Care

    PubMed Central

    Jimison, Holly B.; Korhonen, Ilkka; Gordon, Christine M.; Saranummi, Niilo

    2016-01-01

    Health-related behaviors are among the most significant determinants of health and quality of life. Improving health behavior is an effective way to enhance health outcomes and mitigate the escalating challenges arising from an increasingly aging population and the proliferation of chronic diseases. Although it has been difficult to obtain lasting improvements in health behaviors on a wide scale, advances at the intersection of technology and behavioral science may provide the tools to address this challenge. In this paper, we describe a vision and an approach to improve health behavior interventions using the tools of behavioral informatics, an emerging transdisciplinary research domain based on system-theoretic principles in combination with behavioral science and information technology. The field of behavioral informatics has the potential to optimize interventions through monitoring, assessing, and modeling behavior in support of providing tailored and timely interventions. We describe the components of a closed-loop system for health interventions. These components range from fine grain sensor characterizations to individual-based models of behavior change. We provide an example of a research health coaching platform that incorporates a closed-loop intervention based on these multiscale models. Using this early prototype, we illustrate how the optimized and personalized methodology and technology can support self-management and remote care. We note that despite the existing examples of research projects and our platform, significant future research is required to convert this vision to full-scale implementations. PMID:26441408

  4. Informatics and physics intersubject communications in the 7th and 8th grades of the basics level by means of computer modeling

    NASA Astrophysics Data System (ADS)

    Vasina, A. V.

    2017-01-01

    The author of the article imparts pedagogical experience of realization of intersubject communications of school basic courses of informatics, technology and physics through research activity of students with the use of specialized programs for the development and studying of computer models of physical processes. The considered technique is based on the principles of independent scholar activity of students, intersubject communications such as educational disciplines of technology, physics and informatics; it helps to develop the research activity of students and a professional and practical orientation of education. As an example the lesson of modeling of flotation with the use of the environment "1C Physical simulator" is considered.

  5. Training Residents in Medical Informatics.

    ERIC Educational Resources Information Center

    Jerant, Anthony F.

    1999-01-01

    Describes an eight-step process for developing or refining a family-medicine informatics curriculum: needs assessment, review of expert recommendations, enlisting faculty and local institutional support, espousal of a human-centered approach, integrating informatics into the larger curriculum, easy access to computers, practical training, and…

  6. Health informatics 3.0.

    PubMed

    Kalra, Dipak

    2011-01-01

    Web 3.0 promises us smart computer services that will interact with each other and leverage knowledge about us and our immediate context to deliver prioritised and relevant information to support decisions and actions. Healthcare must take advantage of such new knowledge-integrating services, in particular to support better co-operation between professionals of different disciplines working in different locations, and to enable well-informed co-operation between clinicians and patients. To grasp the potential of Web 3.0 we will need well-harmonised semantic resources that can richly connect virtual teams and link their strategies to real-time and tailored evidence. Facts, decision logic, care pathway steps, alerts, education need to be embedded within components that can interact with multiple EHR systems and services consistently. Using Health Informatics 3.0 a patient's current situation could be compared with the outcomes of very similar patients (from across millions) to deliver personalised care recommendations. The integration of EHRs with biomedical sciences ('omics) research results and predictive models such as the Virtual Physiological Human could help speed up the translation of new knowledge into clinical practice. The mission, and challenge, for Health Informatics 3.0 is to enable healthy citizens, patients and professionals to collaborate within a knowledge-empowered social network in which patient specific information and personalised real-time evidence are seamlessly interwoven.

  7. Emergency healthcare process automation using mobile computing and cloud services.

    PubMed

    Poulymenopoulou, M; Malamateniou, F; Vassilacopoulos, G

    2012-10-01

    Emergency care is basically concerned with the provision of pre-hospital and in-hospital medical and/or paramedical services and it typically involves a wide variety of interdependent and distributed activities that can be interconnected to form emergency care processes within and between Emergency Medical Service (EMS) agencies and hospitals. Hence, in developing an information system for emergency care processes, it is essential to support individual process activities and to satisfy collaboration and coordination needs by providing readily access to patient and operational information regardless of location and time. Filling this information gap by enabling the provision of the right information, to the right people, at the right time fosters new challenges, including the specification of a common information format, the interoperability among heterogeneous institutional information systems or the development of new, ubiquitous trans-institutional systems. This paper is concerned with the development of an integrated computer support to emergency care processes by evolving and cross-linking institutional healthcare systems. To this end, an integrated EMS cloud-based architecture has been developed that allows authorized users to access emergency case information in standardized document form, as proposed by the Integrating the Healthcare Enterprise (IHE) profile, uses the Organization for the Advancement of Structured Information Standards (OASIS) standard Emergency Data Exchange Language (EDXL) Hospital Availability Exchange (HAVE) for exchanging operational data with hospitals and incorporates an intelligent module that supports triaging and selecting the most appropriate ambulances and hospitals for each case.

  8. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  9. Earth Science Informatics - Overview

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  10. APA Summit on Medical Student Education Task Force on Informatics and Technology: learning about computers and applying computer technology to education and practice.

    PubMed

    Hilty, Donald M; Hales, Deborah J; Briscoe, Greg; Benjamin, Sheldon; Boland, Robert J; Luo, John S; Chan, Carlyle H; Kennedy, Robert S; Karlinsky, Harry; Gordon, Daniel B; Yager, Joel; Yellowlees, Peter M

    2006-01-01

    This article provides a brief overview of important issues for educators regarding medical education and technology. The literature describes key concepts, prototypical technology tools, and model programs. A work group of psychiatric educators was convened three times by phone conference to discuss the literature. Findings were presented to and input was received from the 2005 Summit on Medical Student Education by APA and the American Directors of Medical Student Education in Psychiatry. Knowledge of, skills in, and attitudes toward medical informatics are important to life-long learning and modern medical practice. A needs assessment is a starting place, since student, faculty, institution, and societal factors bear consideration. Technology needs to "fit" into a curriculum in order to facilitate learning and teaching. Learning about computers and applying computer technology to education and clinical care are key steps in computer literacy for physicians.

  11. Emerging medical informatics research trends detection based on MeSH terms.

    PubMed

    Lyu, Peng-Hui; Yao, Qiang; Mao, Jin; Zhang, Shi-Jing

    2015-01-01

    The aim of this study is to analyze the research trends of medical informatics over the last 12 years. A new method based on MeSH terms was proposed to identify emerging topics and trends of medical informatics research. Informetric methods and visualization technologies were applied to investigate research trends of medical informatics. The metric of perspective factor (PF) embedding MeSH terms was appropriately employed to assess the perspective quality for journals. The emerging MeSH terms have changed dramatically over the last 12 years, identifying two stages of medical informatics: the "medical imaging stage" and the "medical informatics stage". The focus of medical informatics has shifted from acquisition and storage of healthcare data by integrating computational, informational, cognitive and organizational sciences to semantic analysis for problem solving and clinical decision-making. About 30 core journals were determined by Bradford's Law in the last 3 years in this area. These journals, with high PF values, have relative high perspective quality and lead the trend of medical informatics.

  12. An informatics research agenda to support precision medicine: seven key areas

    PubMed Central

    Avillach, Paul; Benham-Hutchins, Marge; Breitenstein, Matthew K; Crowgey, Erin L; Hoffman, Mark A; Jiang, Xia; Madhavan, Subha; Mattison, John E; Nagarajan, Radhakrishnan; Ray, Bisakha; Shin, Dmitriy; Visweswaran, Shyam; Zhao, Zhongming; Freimuth, Robert R

    2016-01-01

    The recent announcement of the Precision Medicine Initiative by President Obama has brought precision medicine (PM) to the forefront for healthcare providers, researchers, regulators, innovators, and funders alike. As technologies continue to evolve and datasets grow in magnitude, a strong computational infrastructure will be essential to realize PM’s vision of improved healthcare derived from personal data. In addition, informatics research and innovation affords a tremendous opportunity to drive the science underlying PM. The informatics community must lead the development of technologies and methodologies that will increase the discovery and application of biomedical knowledge through close collaboration between researchers, clinicians, and patients. This perspective highlights seven key areas that are in need of further informatics research and innovation to support the realization of PM. PMID:27107452

  13. Healthcare

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Gulish, Artem; Beach, Bennett H.

    2012-01-01

    This report, provides detailed analyses and projections of occupations in healthcare fields, and wages earned. In addition, the important skills and work values associated with workers in those fields of healthcare are discussed. Finally, the authors analyze the implications of research findings for the racial, ethnic, and class diversity of the…

  14. Quantum Approach to Informatics

    NASA Astrophysics Data System (ADS)

    Stenholm, Stig; Suominen, Kalle-Antti

    2005-08-01

    An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

  15. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    PubMed

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations.

  16. Medical informatics: past, present, future.

    PubMed

    Haux, Reinhold

    2010-09-01

    To reflect about medical informatics as a discipline. To suggest significant future research directions with the purpose of stimulating further discussion. Exploring and discussing important developments in medical informatics from the past and in the present by way of examples. Reflecting on the role of IMIA, the International Medical Informatics Association, in influencing the discipline. Medical informatics as a discipline is still young. Today, as a cross-sectional discipline, it forms one of the bases for medicine and health care. As a consequence considerable responsibility rests on medical informatics for improving the health of people, through its contributions to high-quality, efficient health care and to innovative research in biomedicine and related health and computer sciences. Current major research fields can be grouped according to the organization, application, and evaluation of health information systems, to medical knowledge representation, and to the underlying signal and data analyses and interpretations. Yet, given the fluid nature of many of the driving forces behind progress in information processing methods and their technologies, progress in medicine and health care, and the rapidly changing needs, requirements and expectations of human societies, we can expect many changes in future medical informatics research. Future research fields might range from seamless interactivity with automated data capture and storage, via informatics diagnostics and therapeutics, to living labs with data analysis methodology, involving sensor-enhanced ambient environments. The role of IMIA, the International Medical Informatics Association, for building a cooperative, strongly connected, and research-driven medical informatics community worldwide can hardly be underestimated. Health care continuously changes as the underlying science and practice of health are in continuous transformation. Medical informatics as a discipline is strongly affected by these

  17. Bioimage Informatics for Big Data.

    PubMed

    Peng, Hanchuan; Zhou, Jie; Zhou, Zhi; Bria, Alessandro; Li, Yujie; Kleissas, Dean Mark; Drenkow, Nathan G; Long, Brian; Liu, Xiaoxiao; Chen, Hanbo

    2016-01-01

    Bioimage informatics is a field wherein high-throughput image informatics methods are used to solve challenging scientific problems related to biology and medicine. When the image datasets become larger and more complicated, many conventional image analysis approaches are no longer applicable. Here, we discuss two critical challenges of large-scale bioimage informatics applications, namely, data accessibility and adaptive data analysis. We highlight case studies to show that these challenges can be tackled based on distributed image computing as well as machine learning of image examples in a multidimensional environment.

  18. Health Informatics.

    ERIC Educational Resources Information Center

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  19. Health Informatics.

    ERIC Educational Resources Information Center

    Russell, Marie; Brittain, J. Michael

    2002-01-01

    Identifies current trends and issues in health informatics with examples of applications, particularly in English-speaking countries. Topics include health systems, professionals, and patients; consumer health information; electronic medical records; nursing; privacy and confidentiality; finding and using information; the Internet; e-mail;…

  20. Informatics in Radiology (infoRAD): personal computer security: part 2. Software Configuration and file protection.

    PubMed

    Caruso, Ronald D

    2004-01-01

    Proper configuration of software security settings and proper file management are necessary and important elements of safe computer use. Unfortunately, the configuration of software security options is often not user friendly. Safe file management requires the use of several utilities, most of which are already installed on the computer or available as freeware. Among these file operations are setting passwords, defragmentation, deletion, wiping, removal of personal information, and encryption. For example, Digital Imaging and Communications in Medicine medical images need to be anonymized, or "scrubbed," to remove patient identifying information in the header section prior to their use in a public educational or research environment. The choices made with respect to computer security may affect the convenience of the computing process. Ultimately, the degree of inconvenience accepted will depend on the sensitivity of the files and communications to be protected and the tolerance of the user. Copyright RSNA, 2004

  1. Recommendations for responsible monitoring and regulation of clinical software systems. American Medical Informatics Association, Computer-based Patient Record Institute, Medical Library Association, Association of Academic Health Science Libraries, American Health Information Management Association, American Nurses Association.

    PubMed

    Miller, R A; Gardner, R M

    1997-01-01

    In mid-1996, the FDA called for discussions on regulation of clinical software programs as medical devices. In response, a consortium of organizations dedicated to improving health care through information technology has developed recommendations for the responsible regulation and monitoring of clinical software systems by users, vendors, and regulatory agencies. Organizations assisting in development of recommendations, or endorsing the consortium position include the American Medical Informatics Association, the Computer-based Patient Record Institute, the Medical Library Association, the Association of Academic Health Sciences Libraries, the American Health Information Management Association, the American Nurses Association, the Center for Healthcare Information Management, and the American College of Physicians. The consortium proposes four categories of clinical system risks and four classes of measured monitoring and regulatory actions that can be applied strategically based on the level of risk in a given setting. The consortium recommends local oversight of clinical software systems, and adoption by healthcare information system developers of a code of good business practices. Budgetary and other constraints limit the type and number of systems that the FDA can regulate effectively. FDA regulation should exempt most clinical software systems and focus on those systems posing highest clinical risk, with limited opportunities for competent human intervention.

  2. Informatic parcellation of the network involved in the computation of subjective value

    PubMed Central

    Rangel, Antonio

    2014-01-01

    Understanding how the brain computes value is a basic question in neuroscience. Although individual studies have driven this progress, meta-analyses provide an opportunity to test hypotheses that require large collections of data. We carry out a meta-analysis of a large set of functional magnetic resonance imaging studies of value computation to address several key questions. First, what is the full set of brain areas that reliably correlate with stimulus values when they need to be computed? Second, is this set of areas organized into dissociable functional networks? Third, is a distinct network of regions involved in the computation of stimulus values at decision and outcome? Finally, are different brain areas involved in the computation of stimulus values for different reward modalities? Our results demonstrate the centrality of ventromedial prefrontal cortex (VMPFC), ventral striatum and posterior cingulate cortex (PCC) in the computation of value across tasks, reward modalities and stages of the decision-making process. We also find evidence of distinct subnetworks of co-activation within VMPFC, one involving central VMPFC and dorsal PCC and another involving more anterior VMPFC, left angular gyrus and ventral PCC. Finally, we identify a posterior-to-anterior gradient of value representations corresponding to concrete-to-abstract rewards. PMID:23887811

  3. Applying analytic hierarchy process to assess healthcare-oriented cloud computing service systems.

    PubMed

    Liao, Wen-Hwa; Qiu, Wan-Li

    2016-01-01

    Numerous differences exist between the healthcare industry and other industries. Difficulties in the business operation of the healthcare industry have continually increased because of the volatility and importance of health care, changes to and requirements of health insurance policies, and the statuses of healthcare providers, which are typically considered not-for-profit organizations. Moreover, because of the financial risks associated with constant changes in healthcare payment methods and constantly evolving information technology, healthcare organizations must continually adjust their business operation objectives; therefore, cloud computing presents both a challenge and an opportunity. As a response to aging populations and the prevalence of the Internet in fast-paced contemporary societies, cloud computing can be used to facilitate the task of balancing the quality and costs of health care. To evaluate cloud computing service systems for use in health care, providing decision makers with a comprehensive assessment method for prioritizing decision-making factors is highly beneficial. Hence, this study applied the analytic hierarchy process, compared items related to cloud computing and health care, executed a questionnaire survey, and then classified the critical factors influencing healthcare cloud computing service systems on the basis of statistical analyses of the questionnaire results. The results indicate that the primary factor affecting the design or implementation of optimal cloud computing healthcare service systems is cost effectiveness, with the secondary factors being practical considerations such as software design and system architecture.

  4. Fragment informatics and computational fragment-based drug design: an overview and update.

    PubMed

    Sheng, Chunquan; Zhang, Wannian

    2013-05-01

    Fragment-based drug design (FBDD) is a promising approach for the discovery and optimization of lead compounds. Despite its successes, FBDD also faces some internal limitations and challenges. FBDD requires a high quality of target protein and good solubility of fragments. Biophysical techniques for fragment screening necessitate expensive detection equipment and the strategies for evolving fragment hits to leads remain to be improved. Regardless, FBDD is necessary for investigating larger chemical space and can be applied to challenging biological targets. In this scenario, cheminformatics and computational chemistry can be used as alternative approaches that can significantly improve the efficiency and success rate of lead discovery and optimization. Cheminformatics and computational tools assist FBDD in a very flexible manner. Computational FBDD can be used independently or in parallel with experimental FBDD for efficiently generating and optimizing leads. Computational FBDD can also be integrated into each step of experimental FBDD and help to play a synergistic role by maximizing its performance. This review will provide critical analysis of the complementarity between computational and experimental FBDD and highlight recent advances in new algorithms and successful examples of their applications. In particular, fragment-based cheminformatics tools, high-throughput fragment docking, and fragment-based de novo drug design will provide the focus of this review. We will also discuss the advantages and limitations of different methods and the trends in new developments that should inspire future research.

  5. Validating national informatics policy--the importance of operational consensus to influence positive developments.

    PubMed

    Roberts, Jean M; Hayes, Glyn

    2004-01-01

    The National Health Service in England faces reorganisation of services on a very regular basis. In 2002 a 'Long Term Review of Health Trends', commissioned by the Chancellor of the Exchequer indicated the need for a substantially larger investment in informatics to support the delivery of better healthcare overall. Subsequent to the issue of this report, the Spending Review confirmed an investment of pound 2.3 Billion (approximately $3.7 Bn) for the period to 2005 for NHS informatics, subject to performance. This paper describes the actions taken by the national representative society (the British Computer Society Health Informatics Committee) to ensure that the views of those in the field were taken into account in facilitating the best possible outcomes from this investment. In addition, the initiative established has confirmed the ongoing priorities for involvement in health informatics, regardless of professional role, in support of healthcare. The outputs and insights gained from two years of this initiative provide useful points for thought about health informatics and health management in other countries and under different models of care to that of the NHS in England.

  6. A nursing informatics research agenda for 2008-18: contextual influences and key components.

    PubMed

    Bakken, Suzanne; Stone, Patricia W; Larson, Elaine L

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on 3 specific aspects of context--genomic health care, shifting research paradigms, and social (Web 2.0) technologies--that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008-18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context.

  7. A Nursing Informatics Research Agenda for 2008–18: Contextual Influences and Key Components

    PubMed Central

    Bakken, Suzanne; Stone, Patricia W.; Larson, Elaine L.

    2008-01-01

    The context for nursing informatics research has changed significantly since the National Institute of Nursing Research-funded Nursing Informatics Research Agenda was published in 1993 and the Delphi study of nursing informatics research priorities reported a decade ago. The authors focus on three specific aspects of context - genomic health care, shifting research paradigms, and social (Web 2.0) technologies - that must be considered in formulating a nursing informatics research agenda. These influences are illustrated using the significant issue of healthcare associated infections (HAI). A nursing informatics research agenda for 2008–18 must expand users of interest to include interdisciplinary researchers; build upon the knowledge gained in nursing concept representation to address genomic and environmental data; guide the reengineering of nursing practice; harness new technologies to empower patients and their caregivers for collaborative knowledge development; develop user-configurable software approaches that support complex data visualization, analysis, and predictive modeling; facilitate the development of middle-range nursing informatics theories; and encourage innovative evaluation methodologies that attend to human-computer interface factors and organizational context. PMID:18922269

  8. Spreading knowledge in medical informatics: the contribution of the hospital Italiano de Buenos Aires.

    PubMed

    Gonzalez Bernaldo de Quiros, F; Luna, D; Otero, P; Baum, A; Borbolla, D

    2009-01-01

    Medical Informatics (MI) is an emerging discipline with a high need of trained and skillful professionals. To describe the educational experience of the Department of Health Informatics of the Hospital Italiano de Buenos Aires. A descriptive study of the development of the Medical Informatics Residency Program (MIRP) and the e-learning courses related to medical informatics. A four-year MIRP with 15 rotations was started in 2000, and was awarded national educational accreditation. Eight residents have been fully trained and their main academic contributions are shown in this study. The e-learning courses related to medical informatics (Healthcare Management, Epidemiology & Biostatistics, Information Retrieval, Computer Literacy started, 10x10 Spanish version and HL7 introductory course) started in 2006 and were followed by more than 2266 students from all over the world, with an increase trend in foreign students. These educational activities have produced skilled human resources for the development and maintenance of the health informatics projects at our Hospital. In parallel, the number of students trained by e-learning continues to increase, demonstrating the worldwide need of knowledge in this field.

  9. Cognitive hacking and intelligence and security informatics

    NASA Astrophysics Data System (ADS)

    Thompson, Paul

    2004-08-01

    This paper describes research on cognitive and semantic attacks on computer systems and their users. Several countermeasures against such attacks are described, including a description of a prototype News Verifier system. It is argued that because misinformation and deception play a much more significant role in intelligence and security informatics than in other informatics disciplines such as science, medicine, and the law, a new science of intelligence and security informatics must concern itself with semantic attacks and countermeasures.

  10. Playable Serious Games for Studying and Programming Computational STEM and Informatics Applications of Distributed and Parallel Computer Architectures

    ERIC Educational Resources Information Center

    Amenyo, John-Thones

    2012-01-01

    Carefully engineered playable games can serve as vehicles for students and practitioners to learn and explore the programming of advanced computer architectures to execute applications, such as high performance computing (HPC) and complex, inter-networked, distributed systems. The article presents families of playable games that are grounded in…

  11. Playable Serious Games for Studying and Programming Computational STEM and Informatics Applications of Distributed and Parallel Computer Architectures

    ERIC Educational Resources Information Center

    Amenyo, John-Thones

    2012-01-01

    Carefully engineered playable games can serve as vehicles for students and practitioners to learn and explore the programming of advanced computer architectures to execute applications, such as high performance computing (HPC) and complex, inter-networked, distributed systems. The article presents families of playable games that are grounded in…

  12. The impact of individual factors on healthcare staff's computer use in psychiatric hospitals.

    PubMed

    Koivunen, Marita; Välimäki, Maritta; Koskinen, Anita; Staggers, Nancy; Katajisto, Jouko

    2009-04-01

    The study examines whether individual factors of healthcare staff are associated with computer use in psychiatric hospitals. In addition, factors inhibiting staff's optimal use of computers were explored. Computer applications have developed the content of clinical practice and changed patterns of professional working. Healthcare staff need new capacities to work in clinical practice, including the basic computers skills. Computer use amongst healthcare staff has widely been studied in general, but cogent information is still lacking in psychiatric care. Staff's computer use was assessed using a structured questionnaire (The Staggers Nursing Computer Experience Questionnaire). The study population was healthcare staff working in two psychiatric hospitals in Finland (n = 470, response rate = 59%). The data were analysed with descriptive statistics and manova with main effects and two-way interaction effects of six individual factors. Nurses who had more experience of computer use or of the implementation processes of computer systems were more motivated to use computers than those who had less experience of these issues. Males and administrative personnel who were younger had also participated more often than women in implementation processes of computer systems. The most significant factor inhibiting the use of computers was lack of interest in them. In psychiatric hospitals, more direct attention should focus on staff's capacities to use computers and to increase their understanding of the benefits in clinical care, especially for women and ageing staff working in psychiatric hospitals. To avoid exclusion amongst healthcare personnel in information society and to ensure that they have capacities to guide patients on how to use computers or to evaluate the quality of health information on the web, staff's capacities and motivation to use computers in mental health and psychiatric nursing should be ensured.

  13. An Observational and Computational Variable Tagging System for Climate Change Informatics

    NASA Astrophysics Data System (ADS)

    Pouchard, L. C.; Lenhardt, W.; Branstetter, M. L.; Runciman, A.; Wang, D.; Kao, S.; King, A. W.; Climate Change Informatics Team

    2010-12-01

    As climate change science uses diverse data from observations and computational results to model and validate earth systems from global to local scale, understand complex processes, and perform integrated assessments, adaptable and accessible information systems that integrate these observations and model results are required. The data processing tasks associated with the simultaneous use of observation and modeling data are time-consuming because scientists are typically familiar with one or the other, but rarely both. Each data domain has its own portal, its own metadata formats, and its own query-building methods for obtaining datasets. The exact definition of variables and observational parameters may require substantial searches for unfamiliar topics. The dearth of formal descriptions such as ontologies compounds the problem and negatively impacts the advancement of science for each aspect of studying climate change. Our Observational and Computational Variable Tagging System aims to address these challenges through facilitating the quick identification of datasets of interest across archives by associating variables with tags or keywords from a controlled vocabulary. The prototype currently offers the ability to search by tags, variable names, and annotations. Names, plain text descriptions, units, dimensions, and a link to each dataset are returned. The information is aggregated from various locations at the source of origin. Keywords from NASA’s Global Change Master Directory provide built-in suggestions for tags. These features ensure accuracy and disambiguation. For the target application, the system tags variables and stores data from the Community Climate System Model (CCSM), International Boundary Water Commission, US Geological Survey, National Oceanic and Atmospheric Administration, and NASA. Our tagging system allows users to identify variable names and descriptions of observational and computational data from a single Web interface. Our system

  14. Mobile Cloud-Computing-Based Healthcare Service by Noncontact ECG Monitoring

    PubMed Central

    Fong, Ee-May; Chung, Wan-Young

    2013-01-01

    Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service. PMID:24316562

  15. Mobile cloud-computing-based healthcare service by noncontact ECG monitoring.

    PubMed

    Fong, Ee-May; Chung, Wan-Young

    2013-12-02

    Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service.

  16. Bebras--A Sustainable Community Building Model for the Concept Based Learning of Informatics and Computational Thinking

    ERIC Educational Resources Information Center

    Dagiene, Valentina; Stupuriene, Gabriele

    2016-01-01

    As an international informatics contest, or challenge, Bebras has started the second decade of its existence. The contest attracts more and more countries every year, recently there have been over 40 participating countries. From a single contest-focused annual event Bebras developed to a multifunctional challenge and an activities-based…

  17. What is health informatics?

    PubMed

    Sullivan, F

    2001-10-01

    Health informatics is a relatively recent jargon term for a subject that may be of great interest to health services researchers and policy makers. Most countries with highly developed health systems are investing heavily in computer hardware and software in the expectation of higher quality for lower costs. Recent systematic reviews have indeed demonstrated the health benefits of a range of electronic tools, particularly in the areas of prevention and therapeutic monitoring. However, there remains a relative lack of published evaluations of informatics tools and methods. Uncritical adoption of new systems based on the pressures of technological push continue to discredit policy makers who have had to commit significant resources despite inadequate information on what can be realistically expected from a proposed system. There are great opportunities for researchers interested in evaluation to fill the vacuum left by informaticists who are too busy writing their next line of code.

  18. The Teaching of Informatics for Business Students

    ERIC Educational Resources Information Center

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  19. The Teaching of Informatics for Business Students

    ERIC Educational Resources Information Center

    Sora, Sebastian A.

    2008-01-01

    Informatics is a branch of computer science that concerns itself, in actuality, with the use of information systems. The objective of this paper is to focus on the business curriculum for graduate students and their gaining proficiency in informatics so that they can understand the concept of information, the access of information, the use of…

  20. Medical Informatics in Academic Health Science Centers.

    ERIC Educational Resources Information Center

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  1. Medical Informatics in Academic Health Science Centers.

    ERIC Educational Resources Information Center

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  2. Biomedical informatics training at Stanford in the 21st century.

    PubMed

    Altman, Russ B; Klein, Teri E

    2007-02-01

    The Stanford Biomedical Informatics training program began with a focus on clinical informatics, and has now evolved into a general program of biomedical informatics training, including clinical informatics, bioinformatics and imaging informatics. The program offers PhD, MS, distance MS, certificate programs, and is now affiliated with an undergraduate major in biomedical computation. Current dynamics include (1) increased activity in informatics within other training programs in biology and the information sciences (2) increased desire among informatics students to gain laboratory experience, (3) increased demand for computational collaboration among biomedical researchers, and (4) interaction with the newly formed Department of Bioengineering at Stanford University. The core focus on research training-the development and application of novel informatics methods for biomedical research-keeps the program centered in the midst of this period of growth and diversification.

  3. Thermal noise informatics: totally secure communication via a wire, zero-power communication, and thermal noise driven computing

    NASA Astrophysics Data System (ADS)

    Kish, Laszlo B.; Mingesz, Robert; Gingl, Zoltan

    2007-06-01

    Very recently, it has been shown that Gaussian thermal noise and its artificial versions (Johnson-like noises) can be utilized as an information carrier with peculiar properties therefore it may be proper to call this topic Thermal Noise Informatics. Zero Power (Stealth) Communication, Thermal Noise Driven Computing, and Totally Secure Classical Communication are relevant examples. In this paper, while we will briefly describe the first and the second subjects, we shall focus on the third subject, the secure classical communication via wire. This way of secure telecommunication utilizes the properties of Johnson(-like) noise and those of a simple Kirchhoff's loop. The communicator is unconditionally secure at the conceptual (circuit theoretical) level and this property is (so far) unique in communication systems based on classical physics. The communicator is superior to quantum alternatives in all known aspects, except the need of using a wire. In the idealized system, the eavesdropper can extract zero bit of information without getting uncovered. The scheme is naturally protected against the man-in-the-middle attack. The communication can take place also via currently used power lines or phone (wire) lines and it is not only a point-to-point communication like quantum channels but network-ready. We report that a pair of Kirchhoff-Loop-Johnson(-like)-Noise communicators, which is able to work over variable ranges, was designed and built. Tests have been carried out on a model-line with ranges beyond the ranges of any known direct quantum communication channel and they indicate unrivalled signal fidelity and security performance. This simple device has single-wire secure key generation/sharing rates of 0.1, 1, 10, and 100 bit/second for copper wires with diameters/ranges of 21 mm / 2000 km, 7 mm / 200 km, 2.3 mm / 20 km, and 0.7 mm / 2 km, respectively and it performs with 0.02% raw-bit error rate (99.98 % fidelity). The raw-bit security of this practical system

  4. Guest editorial. Integrated healthcare information systems.

    PubMed

    Li, Ling; Ge, Ri-Li; Zhou, Shang-Ming; Valerdi, Ricardo

    2012-07-01

    The use of integrated information systems for healthcare has been started more than a decade ago. In recent years, rapid advances in information integration methods have spurred tremendous growth in the use of integrated information systems in healthcare delivery. Various techniques have been used for probing such integrated systems. These techniques include service-oriented architecture (SOA), EAI, workflow management, grid computing, and others. Many applications require a combination of these techniques, which gives rise to the emergence of enterprise systems in healthcare. Development of the techniques originated from different disciplines has the potential to significantly improve the performance of enterprise systems in healthcare. This editorial paper briefly introduces the enterprise systems in the perspective of healthcare informatics.

  5. Professional competence and computer literacy in e-age, focus on healthcare.

    PubMed

    Stepánková, O; Engová, D

    2006-01-01

    The healthcare sector is facing an enormous acceleration due to the emergence of new knowledge, drugs, devices and diseases. Professional competence, continuing education, service excellence and patient benefits can be facilitated by the developments in information and computer technology--computer literacy is becoming imperative for all who are involved in healthcare delivery. The paper attempts to identify solutions that can aid the process of ICT uptake for full benefit of patients and healthcare professionals. With the support of published literature, the article considers the importance of ICT skills in general and in healthcare and presents some advantages of generic vendor-independent methods of ICT certification. Discussed are the preliminary results of the United Kingdom's National Health Service information technology reform which addresses the need for intensified use of ICT and applies the ECDL concept. It is useful to complement the introduction of computer literacy as a qualification concept by a standardized accreditation of ICT skills. Solid level of computer literacy creates a reliable and efficient background for everyday activities of healthcare professionals, enables the application of further domain-specific training modules and prepares suitable environments for the introduction and acceptance of new technologies such as electronic health records and electronic transfer of prescriptions by positively transforming the attitudes of users towards them.

  6. Using integrated bio-physiotherapy informatics in home health-care settings: A qualitative analysis of a point-of-care decision support system.

    PubMed

    Canally, Culum; Doherty, Sean; Doran, Diane M; Goubran, Rafik A

    2015-06-01

    The growing need to gain efficiencies within a home care setting has prompted home care practitioners to focus on health informatics to address the needs of an aging clientele. The remote and heterogeneous nature of the home care environment necessitates the use of non-intrusive client monitoring and a portable, point-of-care graphical user interface. Using a grounded theory approach, this article examines the simulated use of a graphical user interface by practitioners in a home care setting to explore the salient features of monitoring the activity of home care clients. The results demonstrate the need for simple, interactive displays that can provide large amounts of geographical and temporal data relating to patient activity. Additional emerging themes from interviews indicate that home care professionals would use a graphical user interface of this type for patient education and goal setting as well as to assist in the decision-making process of home care practitioners.

  7. What informatics is and isn't.

    PubMed

    Friedman, Charles P

    2013-01-01

    The term informatics is currently enveloped in chaos. One way to clarify the meaning of informatics is to identify the competencies associated with training in the field, but this approach can conceal the whole that the competencies atomistically describe. This work takes a different approach by offering three higher-level visions of what characterizes the field, viewing informatics as: (1) cross-training between basic informational sciences and an application domain, (2) the relentless pursuit of making people better at what they do, and (3) a field encompassing four related types of activities. Applying these perspectives to describe what informatics is, one can also conclude that informatics is not: tinkering with computers, analysis of large datasets per se, employment in circumscribed health IT workforce roles, the practice of health information management, or anything done using a computer.

  8. Informatics applied to cytology

    PubMed Central

    Hornish, Maryanne; Goulart, Robert A.

    2008-01-01

    Automation and emerging information technologies are being adopted by cytology laboratories to augment Pap test screening and improve diagnostic accuracy. As a result, informatics, the application of computers and information systems to information management, has become essential for the successful operation of the cytopathology laboratory. This review describes how laboratory information management systems can be used to achieve an automated and seamless workflow process. The utilization of software, electronic databases and spreadsheets to perform necessary quality control measures are discussed, as well as a Lean production system and Six Sigma approach, to reduce errors in the cytopathology laboratory. PMID:19495402

  9. Informatics applied to cytology.

    PubMed

    Pantanowitz, Liron; Hornish, Maryanne; Goulart, Robert A

    2008-12-29

    Automation and emerging information technologies are being adopted by cytology laboratories to augment Pap test screening and improve diagnostic accuracy. As a result, informatics, the application of computers and information systems to information management, has become essential for the successful operation of the cytopathology laboratory. This review describes how laboratory information management systems can be used to achieve an automated and seamless workflow process. The utilization of software, electronic databases and spreadsheets to perform necessary quality control measures are discussed, as well as a Lean production system and Six Sigma approach, to reduce errors in the cytopathology laboratory.

  10. Nursing informatics, outcomes, and quality improvement.

    PubMed

    Charters, Kathleen G

    2003-08-01

    Nursing informatics actively supports nursing by providing standard language systems, databases, decision support, readily accessible research results, and technology assessments. Through normalized datasets spanning an entire enterprise or other large demographic, nursing informatics tools support improvement of healthcare by answering questions about patient outcomes and quality improvement on an enterprise scale, and by providing documentation for business process definition, business process engineering, and strategic planning. Nursing informatics tools provide a way for advanced practice nurses to examine their practice and the effect of their actions on patient outcomes. Analysis of patient outcomes may lead to initiatives for quality improvement. Supported by nursing informatics tools, successful advance practice nurses leverage their quality improvement initiatives against the enterprise strategic plan to gain leadership support and resources.

  11. The origins of informatics.

    PubMed Central

    Collen, M F

    1994-01-01

    This article summarizes the origins of informatics, which is based on the science, engineering, and technology of computer hardware, software, and communications. In just four decades, from the 1950s to the 1990s, computer technology has progressed from slow, first-generation vacuum tubes, through the invention of the transistor and its incorporation into microprocessor chips, and ultimately, to fast, fourth-generation very-large-scale-integrated silicon chips. Programming has undergone a parallel transformation, from cumbersome, first-generation, machine languages to efficient, fourth-generation application-oriented languages. Communication has evolved from simple copper wires to complex fiberoptic cables in computer-linked networks. The digital computer has profound implications for the development and practice of clinical medicine. PMID:7719803

  12. The origins of informatics.

    PubMed

    Collen, M F

    1994-01-01

    This article summarizes the origins of informatics, which is based on the science, engineering, and technology of computer hardware, software, and communications. In just four decades, from the 1950s to the 1990s, computer technology has progressed from slow, first-generation vacuum tubes, through the invention of the transistor and its incorporation into microprocessor chips, and ultimately, to fast, fourth-generation very-large-scale-integrated silicon chips. Programming has undergone a parallel transformation, from cumbersome, first-generation, machine languages to efficient, fourth-generation application-oriented languages. Communication has evolved from simple copper wires to complex fiberoptic cables in computer-linked networks. The digital computer has profound implications for the development and practice of clinical medicine.

  13. TeleMed: Wide-area, secure, collaborative object computing with Java and CORBA for healthcare

    SciTech Connect

    Forslund, D.W.; George, J.E.; Gavrilov, E.M.

    1998-12-31

    Distributed computing is becoming commonplace in a variety of industries with healthcare being a particularly important one for society. The authors describe the development and deployment of TeleMed in a few healthcare domains. TeleMed is a 100% Java distributed application build on CORBA and OMG standards enabling the collaboration on the treatment of chronically ill patients in a secure manner over the Internet. These standards enable other systems to work interoperably with TeleMed and provide transparent access to high performance distributed computing to the healthcare domain. The goal of wide scale integration of electronic medical records is a grand-challenge scale problem of global proportions with far-reaching social benefits.

  14. Computer usage among nurses in rural health-care facilities in South Africa: obstacles and challenges.

    PubMed

    Asah, Flora

    2013-04-01

    This study discusses factors inhibiting computer usage for work-related tasks among computer-literate professional nurses within rural healthcare facilities in South Africa. In the past two decades computer literacy courses have not been part of the nursing curricula. Computer courses are offered by the State Information Technology Agency. Despite this, there seems to be limited use of computers by professional nurses in the rural context. Focus group interviews held with 40 professional nurses from three government hospitals in northern KwaZulu-Natal. Contributing factors were found to be lack of information technology infrastructure, restricted access to computers and deficits in regard to the technical and nursing management support. The physical location of computers within the health-care facilities and lack of relevant software emerged as specific obstacles to usage. Provision of continuous and active support from nursing management could positively influence computer usage among professional nurses. A closer integration of information technology and computer literacy skills into existing nursing curricula would foster a positive attitude towards computer usage through early exposure. Responses indicated that change of mindset may be needed on the part of nursing management so that they begin to actively promote ready access to computers as a means of creating greater professionalism and collegiality. © 2011 Blackwell Publishing Ltd.

  15. Sequential incoherence in a multi-party synchronous computer mediated communication for an introductory Health Informatics course.

    PubMed

    Herskovic, Jorge R; Goodwin, J Caleb; Bozzo Silva, Pamela A; Willcockson, Irmgard; Franklin, Amy

    2010-11-13

    Online courses will play a key role in the high-volume Informatics education required to train the personnel that will be necessary to fulfill the health IT needs of the country. Online courses can cause feelings of isolation in students. A common way to address these feelings is to hold synchronous online "chats" for students. Conventional chats, however, can be confusing and impose a high extrinsic cognitive load on their participants that hinders the learning process. In this paper we present a qualitative analysis that shows the causes of this high cognitive load and our solution through the use of a moderated chat system.

  16. Sequential incoherence in a multi-party synchronous computer mediated communication for an introductory Health Informatics course

    PubMed Central

    Herskovic, Jorge R.; Goodwin, J. Caleb; Bozzo Silva, Pamela A.; Willcockson, Irmgard; Franklin, Amy

    2010-01-01

    Online courses will play a key role in the high-volume Informatics education required to train the personnel that will be necessary to fulfill the health IT needs of the country. Online courses can cause feelings of isolation in students. A common way to address these feelings is to hold synchronous online “chats” for students. Conventional chats, however, can be confusing and impose a high extrinsic cognitive load on their participants that hinders the learning process. In this paper we present a qualitative analysis that shows the causes of this high cognitive load and our solution through the use of a moderated chat system. PMID:21346988

  17. Risks and Crises for Healthcare Providers: The Impact of Cloud Computing

    PubMed Central

    Glasberg, Ronald; Hartmann, Michael; Tamm, Gerrit

    2014-01-01

    We analyze risks and crises for healthcare providers and discuss the impact of cloud computing in such scenarios. The analysis is conducted in a holistic way, taking into account organizational and human aspects, clinical, IT-related, and utilities-related risks as well as incorporating the view of the overall risk management. PMID:24707207

  18. Medical informatics between technology, philosophy and science.

    PubMed

    Masic, Izet

    2004-01-01

    Medical (health) informatics occupies the central place in all the segments of modern medicine in the past thirty years--in practical work, education and scientific research. In all that, computers have taken over the most important role and are used intensively for the development of the health information systems. Following activities develop within the area of health informatics: health-documentation, health-statistics, health-informatics and biomedical scientific and professional information. The medical informatics as the separate medical discipline very quickly gets developed, both in Bosnia and Herzegovina. In our country, the medical informatics is a separate subject for the last ten years, regarding to the Medical curriculum at the biomedical faculties in Bosnia and Herzegovina is in accordance with the project of the education related to Bologna declaration and the project EURO MEDICINA.

  19. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    PubMed

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2015-06-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Evaluation of Secure Computation in a Distributed Healthcare Setting.

    PubMed

    Kimura, Eizen; Hamada, Koki; Kikuchi, Ryo; Chida, Koji; Okamoto, Kazuya; Manabe, Shirou; Kuroda, Tomohiko; Matsumura, Yasushi; Takeda, Toshihiro; Mihara, Naoki

    2016-01-01

    Issues related to ensuring patient privacy and data ownership in clinical repositories prevent the growth of translational research. Previous studies have used an aggregator agent to obscure clinical repositories from the data user, and to ensure the privacy of output using statistical disclosure control. However, there remain several issues that must be considered. One such issue is that a data breach may occur when multiple nodes conspire. Another is that the agent may eavesdrop on or leak a user's queries and their results. We have implemented a secure computing method so that the data used by each party can be kept confidential even if all of the other parties conspire to crack the data. We deployed our implementation at three geographically distributed nodes connected to a high-speed layer two network. The performance of our method, with respect to processing times, suggests suitability for practical use.

  1. The Role of Informatics in Health Care Reform

    PubMed Central

    Liu, Yueyi I.

    2012-01-01

    Improving healthcare quality while simultaneously reducing cost has become a high priority of healthcare reform. Informatics is crucial in tackling this challenge. The American Recovery and Reinvestment Act of 2009 mandates adaptation and “meaningful use (MU)” of health information technology. In this review, we will highlight several areas in which informatics can make significant contributions, with a focus on radiology. We also discuss informatics related to the increasing imperatives of state and local regulations (such as radiation dose tracking) and quality initiatives. PMID:22771052

  2. Nurse Leadership and Informatics Competencies: Shaping Transformation of Professional Practice.

    PubMed

    Kennedy, Margaret Ann; Moen, Anne

    2017-01-01

    Nurse leaders must demonstrate capacities and develop specific informatics competencies in order to provide meaningful leadership and support ongoing transformation of the healthcare system. Concurrently, staff informatics competencies must be planned and fostered to support critical principles of transformation and patient safety in practice, advance evidence-informed practice, and enable nursing to flourish in complex digital environments across the healthcare continuum. In addition to nurse leader competencies, two key aspects of leadership and informatics competencies will be addressed in this chapter - namely, the transformation of health care and preparation of the nursing workforce.

  3. Nursing Informatics Beyond 2020; An Interactive Workshop Exploring Our Futures.

    PubMed

    Murray, Peter J

    2016-01-01

    This interactive workshop will reflect on and update participants' views on possible future scenarios for the development of health and nursing informatics. The NI2006 Post Congress Conference discussed the future nature and scope of nursing informatics, nursing and healthcare, as viewed from likely developments between 2006 and 2020 [1]. Brief synposes from the NI2006 conference will be presented, with summaries of speakers' views on changes and progress since. Workshop participants will discuss major themes and changes, with a view to updating views on possible futures for nursing, healthcare and informatics.

  4. Nursing Informatics Certification Worldwide: History, Pathway, Roles, and Motivation.

    PubMed

    Séroussi, B; Soualmia, L F; Holmes, J H

    2016-11-10

    Official recognition and certification for informatics professionals are essential aspects of workforce development. To describe the history, pathways, and nuances of certification in nursing informatics across the globe; compare and contrast those with board certification in clinical informatics for physicians. (1) A review of the representative literature on informatics certification and related competencies for nurses and physicians, and relevant websites for nursing informatics associations and societies worldwide; (2) similarities and differences between certification processes for nurses and physicians, and (3) perspectives on roles for nursing informatics professionals in healthcare Results: The literature search for 'nursing informatics certification' yielded few results in PubMed; Google Scholar yielded a large number of citations that extended to magazines and other non-peer reviewed sources. Worldwide, there are several nursing informatics associations, societies, and workgroups dedicated to nursing informatics associated with medical/health informatics societies. A formal certification program for nursing informatics appears to be available only in the United States. This certification was established in 1992, in concert with the formation and definition of nursing informatics as a specialty practice of nursing by the American Nurses Association. Although informatics is inherently interprofessional, certification pathways for nurses and physicians have developed separately, following long-standing professional structures, training, and pathways aligned with clinical licensure and direct patient care. There is substantial similarity with regard to the skills and competencies required for nurses and physicians to obtain informatics certification in their respective fields. Nurses may apply for and complete a certification examination if they have experience in the field, regardless of formal training. Increasing numbers of informatics nurses are pursuing

  5. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  6. IPHIE: an International Partnership in Health Informatics Education.

    PubMed

    Jaspers, M W; Gardner, R M; Gatewood, L C; Haux, R; Leven, F J; Limburg, M; Ravesloot, J H; Schmidt, D; Wetter, T

    2000-01-01

    Medical informatics contributes significantly to high quality and efficient health care and medical research. The need for well educated professionals in the field of medical informatics therefore is now worldwide recognized. Students of medicine, computer science/informatics are educated in the field of medical informatics and dedicated curricula on medical informatics have emerged. To advance and further develop the beneficial role of medical informatics in the medical field, an international orientation of health and medical informatics students seems an indispensable part of their training. An international orientation and education of medical informatics students may help to accelerate the dissemination of acquired knowledge and skills in the field and the promotion of medical informatics research results on a more global level. Some years ago, the departments of medical informatics of the university of Heidelberg/university of applied sciences Heilbronn and the university of Amsterdam decided to co-operate in the field of medical informatics. Now, this co-operation has grown out to an International Partnership of Health Informatics Education (IPHIE) of 5 universities, i.e. the university of Heidelberg, the university of Heilbronn, the university of Minnesota, the university of Utah and the university of Amsterdam. This paper presents the rationale behind this international partnership, the state of the art of the co-operation and our future plans for expanding this international co-operation.

  7. Role of Soft Computing Approaches in HealthCare Domain: A Mini Review.

    PubMed

    Gambhir, Shalini; Malik, Sanjay Kumar; Kumar, Yugal

    2016-12-01

    In the present era, soft computing approaches play a vital role in solving the different kinds of problems and provide promising solutions. Due to popularity of soft computing approaches, these approaches have also been applied in healthcare data for effectively diagnosing the diseases and obtaining better results in comparison to traditional approaches. Soft computing approaches have the ability to adapt itself according to problem domain. Another aspect is a good balance between exploration and exploitation processes. These aspects make soft computing approaches more powerful, reliable and efficient. The above mentioned characteristics make the soft computing approaches more suitable and competent for health care data. The first objective of this review paper is to identify the various soft computing approaches which are used for diagnosing and predicting the diseases. Second objective is to identify various diseases for which these approaches are applied. Third objective is to categories the soft computing approaches for clinical support system. In literature, it is found that large number of soft computing approaches have been applied for effectively diagnosing and predicting the diseases from healthcare data. Some of these are particle swarm optimization, genetic algorithm, artificial neural network, support vector machine etc. A detailed discussion on these approaches are presented in literature section. This work summarizes various soft computing approaches used in healthcare domain in last one decade. These approaches are categorized in five different categories based on the methodology, these are classification model based system, expert system, fuzzy and neuro fuzzy system, rule based system and case based system. Lot of techniques are discussed in above mentioned categories and all discussed techniques are summarized in the form of tables also. This work also focuses on accuracy rate of soft computing technique and tabular information is provided for

  8. Consumer Health Informatics: Health Information Technology for Consumers.

    ERIC Educational Resources Information Center

    Jimison, Holly Brugge; Sher, Paul Phillip

    1995-01-01

    Explains consumer health informatics and describes the technology advances, the computer programs that are currently available, and the basic research that addresses both the effectiveness of computer health informatics and its impact on the future direction of health care. Highlights include commercial computer products for consumers and…

  9. Hand-held computers in healthcare: what software programs are available?

    PubMed

    Gillingham, Wayne; Holt, Alec; Gillies, John

    2002-09-27

    The technology sector of healthcare is entering a new evolutionary phase. The medical community has an obligation to the public to provide the safest, most effective healthcare possible. This is more achievable with the use of computer technology at the point of care, and small, portable devices could fulfil this role. A PriceWaterhouse Coopers 2001 survey on information technology in physician practices found that 60% of respondents say that physicians in their organisation use personal digital assistants (PDAs), compared with 26% in the 2000 technology survey. This trend is expected to continue to the point where these devices will have their position on a physician s desk next to the stethoscope. Once this electronic evolution occurs, doctors will be able to practice medicine with greater ease and safety. In our opinion, the new generation of PDA mobile devices will be the tools to enable a transformation of healthcare to a paperless, wireless world. This article focuses on uses of PDAs in healthcare, whether by the registrar, consultant, nurse, student, teacher, patient, medical or surgical director. Current PDA healthcare software is categorised and discussed in the following five groups: 1) reference/text book; 2) calculator; 3) patient management/logbook; 4) personal clinical/study notebook; 5) utility software.

  10. [Medical informatics--today and tomorrow].

    PubMed

    Dezelić, Gjuro

    2007-09-01

    The status of medical informatics, a comparatively new biomedical discipline beginning to develop in the second half of the 20th century, is described at the transition into the 21st century. The appearance of new information and communication technologies, among which Internet nas special importance, was a major impulse to the development of medical informatics in its different fields. Health information systems are integrating, while at the same time, by distribution of their parts, they become available to the individual healthcare user. These processes put the problems of interoperability and standardization into the focus of contemporary medical informatics. The electronic health record is recognized as a key instrument of modern healthcare systems, and its development and implementation are being planned at many places. Whereas the research and application of medical decision support systems are stagnating, new disciplines have emerged such as telemedicine, cybermedicine and bioinformatics. The perspectives of the future development of medical informatics are described. In the appendix, a chronology of the development of medical informatics from its beginning to the present time is given.

  11. Advanced Extravehicular Mobility Unit Informatics Software Design

    NASA Technical Reports Server (NTRS)

    Wright, Theodore

    2014-01-01

    This is a description of the software design for the 2013 edition of the Advanced Extravehicular Mobility Unit (AEMU) Informatics computer assembly. The Informatics system is an optional part of the space suit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and caution and warning information. In the future it will display maps with GPS position data, and video and still images captured by the astronaut.

  12. Deep Learning for Health Informatics.

    PubMed

    Ravi, Daniele; Wong, Charence; Deligianni, Fani; Berthelot, Melissa; Andreu-Perez, Javier; Lo, Benny; Yang, Guang-Zhong

    2017-01-01

    With a massive influx of multimodality data, the role of data analytics in health informatics has grown rapidly in the last decade. This has also prompted increasing interests in the generation of analytical, data driven models based on machine learning in health informatics. Deep learning, a technique with its foundation in artificial neural networks, is emerging in recent years as a powerful tool for machine learning, promising to reshape the future of artificial intelligence. Rapid improvements in computational power, fast data storage, and parallelization have also contributed to the rapid uptake of the technology in addition to its predictive power and ability to generate automatically optimized high-level features and semantic interpretation from the input data. This article presents a comprehensive up-to-date review of research employing deep learning in health informatics, providing a critical analysis of the relative merit, and potential pitfalls of the technique as well as its future outlook. The paper mainly focuses on key applications of deep learning in the fields of translational bioinformatics, medical imaging, pervasive sensing, medical informatics, and public health.

  13. Healthcare IS industry top 100. HBOC tops out 100.

    PubMed

    Elliott, J

    1997-06-01

    The Healthcare Informatics Top 100 ranks the leading information system software providers to the healthcare industry by revenues. Due to the limited focus of the healthcare IS industry, many Top 100 companies serve other markets in addition to IS or healthcare. Thus, to most accurately compare companies, we asked cross-industry companies and companies with non-IS specific offerings to separate out those revenues specific to healthcare information systems. For some companies this proved an impossible task. In such cases, we relied on estimated revenues provided by professional sources throughout the industry. (Such companies are marked by an asterisk on the Top 100 list). According to industry analyst Sheldon I. Dorenfest of Sheldon I. Dorenfest & Associates, Chicago, the healthcare information systems marketplace can be divided into three parts: sales of computer and networking equipment account for 62 percent of revenue, software and software associated management services account for 33 percent, and consultation and other management services account for 5 percent. The Healthcare Informatics Top 100 features companies offering software and software associated management services as primary source of revenue (this includes resales of hardware and networking equipment). Companies not eligible for the Top 100 include investment companies, and companies for which consulting, non-software management services, or hardware or medical equipment is the primary source of revenue.

  14. Current Status of Nursing Informatics Education in Korea

    PubMed Central

    Jeon, Eunjoo; Kim, Jeongeun; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-01-01

    Objectives This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. Methods A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. Results A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Conclusions Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses. PMID:27200224

  15. Current Status of Nursing Informatics Education in Korea.

    PubMed

    Jeon, Eunjoo; Kim, Jeongeun; Park, Hyeoun-Ae; Lee, Ji-Hyun; Kim, Jungha; Jin, Meiling; Ahn, Shinae; Jun, Jooyeon; Song, Healim; On, Jeongah; Jung, Hyesil; Hong, Yeong Joo; Yim, Suran

    2016-04-01

    This study presents the current status of nursing informatics education, the content covered in nursing informatics courses, the faculty efficacy, and the barriers to and additional supports for teaching nursing informatics in Korea. A set of questionnaires consisting of an 18-item questionnaire for nursing informatics education, a 6-item questionnaire for faculty efficacy, and 2 open-ended questions for barriers and additional supports were sent to 204 nursing schools via email and the postal service. Nursing schools offering nursing informatics were further asked to send their syllabuses. The subjects taught were analyzed using nursing informatics competency categories and other responses were tailed using descriptive statistics. A total of 72 schools (35.3%) responded to the survey, of which 38 reported that they offered nursing informatics courses in their undergraduate nursing programs. Nursing informatics courses at 11 schools were taught by a professor with a degree majoring in nursing informatics. Computer technology was the most frequently taught subject (27 schools), followed by information systems used for practice (25 schools). The faculty efficacy was 3.76 ± 0.86 (out of 5). The most frequently reported barrier to teaching nursing informatics (n = 9) was lack of awareness of the importance of nursing informatics. Training and educational opportunities was the most requested additional support. Nursing informatics education has increased during the last decade in Korea. However, the proportions of faculty with degrees in nursing informatics and number of schools offering nursing informatics courses have not increased much. Thus, a greater focus is needed on training faculty and developing the courses.

  16. A coherent approach to health informatics education: results of the Dutch curriculum project.

    PubMed

    Hoekstra, S; Aarts, J

    2000-01-01

    From the beginning a coherent approach to health informatics education has been aimed for in our project to develop learning materials. The features are the thematic approach of the contents, the interrelationship of the modules and the didactical approach embedded in the learning materials. Following results have been achieved. Learning materials have been developed for the following themes: healthcare policy and management, delivery of professional care (specific for nursing and allied health), more generic themes such as electronic patient record, clinical decision making, classification and coding of healthcare data and knowledge based systems. Software made available by private companies has been selected for use in the learning modules. In specific cases the available software products did not match the criteria to support the learning materials. In these cases model applications have been developed that can be considered as forerunners for systems in practical use. Already some companies have expressed interest to adapt our home grown products for use in clinical practice. The modules are based on a model curriculum that has been developed by Aarts et al in 1995. New developments in healthcare have prompted modification of the contents of a few modules. For example, a module has been redefined to cover the important issue of logistics in healthcare. The module on patient education has been adapted to take into account the resources available on the Internet. Also, new insights in the effectiveness of computer-based patient education have been taken into account. The module on informatics for disabled persons has been focussed on computer-based aids and is being linked to the EU-project "Impact" aimed at increasing knowledge about assistive technology. However, the model curriculum has proved to be reasonable robust as a base for our project to develop learning materials for health informatics.

  17. Workarounds to computer access in healthcare organizations: you want my password or a dead patient?

    PubMed

    Koppel, Ross; Smith, Sean; Blythe, Jim; Kothari, Vijay

    2015-01-01

    Workarounds to computer access in healthcare are sufficiently common that they often go unnoticed. Clinicians focus on patient care, not cybersecurity. We argue and demonstrate that understanding workarounds to healthcare workers' computer access requires not only analyses of computer rules, but also interviews and observations with clinicians. In addition, we illustrate the value of shadowing clinicians and conducing focus groups to understand their motivations and tradeoffs for circumvention. Ethnographic investigation of the medical workplace emerges as a critical method of research because in the inevitable conflict between even well-intended people versus the machines, it's the people who are the more creative, flexible, and motivated. We conducted interviews and observations with hundreds of medical workers and with 19 cybersecurity experts, CIOs, CMIOs, CTO, and IT workers to obtain their perceptions of computer security. We also shadowed clinicians as they worked. We present dozens of ways workers ingeniously circumvent security rules. The clinicians we studied were not "black hat" hackers, but just professionals seeking to accomplish their work despite the security technologies and regulations.

  18. Reflections on biomedical informatics: from cybernetics to genomic medicine and nanomedicine.

    PubMed

    Maojo, Victor; Kulikowski, Casimir A

    2006-01-01

    Expanding on our previous analysis of Biomedical Informatics (BMI), the present perspective ranges from cybernetics to nanomedicine, based on its scientific, historical, philosophical, theoretical, experimental, and technological aspects as they affect systems developments, simulation and modelling, education, and the impact on healthcare. We then suggest that BMI is still searching for strong basic scientific principles around which it can crystallize. As -omic biological knowledge increasingly impacts the future of medicine, ubiquitous computing and informatics become even more essential, not only for the technological infrastructure, but as a part of the scientific enterprise itself. The Virtual Physiological Human and investigations into nanomedicine will surely produce yet more unpredictable opportunities, leading to significant changes in biomedical research and practice. As a discipline involved in making such advances possible, BMI is likely to need to re-define itself and extend its research horizons to meet the new challenges.

  19. Another HISA--the new standard: health informatics--service architecture.

    PubMed

    Klein, Gunnar O; Sottile, Pier Angelo; Endsleff, Frederik

    2007-01-01

    In addition to the meaning as Health Informatics Society of Australia, HISA is the acronym used for the new European Standard: Health Informatics - Service Architecture. This EN 12967 standard has been developed by CEN - the federation of 29 national standards bodies in Europe. This standard defines the essential elements of a Service Oriented Architecture and a methodology for localization particularly useful for large healthcare organizations. It is based on the Open Distributed Processing (ODP) framework from ISO 10746 and contains the following parts: Part 1: Enterprise viewpoint. Part 2: Information viewpoint. Part 3: Computational viewpoint. This standard is now also the starting point for the consideration for an International standard in ISO/TC 215. The basic principles with a set of health specific middleware services as a common platform for various applications for regional health information systems, or large integrated hospital information systems, are well established following a previous prestandard. Examples of large scale deployments in Sweden, Denmark and Italy are described.

  20. Implementation and evaluation of an efficient secure computation system using 'R' for healthcare statistics.

    PubMed

    Chida, Koji; Morohashi, Gembu; Fuji, Hitoshi; Magata, Fumihiko; Fujimura, Akiko; Hamada, Koki; Ikarashi, Dai; Yamamoto, Ryuichi

    2014-10-01

    While the secondary use of medical data has gained attention, its adoption has been constrained due to protection of patient privacy. Making medical data secure by de-identification can be problematic, especially when the data concerns rare diseases. We require rigorous security management measures. Using secure computation, an approach from cryptography, our system can compute various statistics over encrypted medical records without decrypting them. An issue of secure computation is that the amount of processing time required is immense. We implemented a system that securely computes healthcare statistics from the statistical computing software 'R' by effectively combining secret-sharing-based secure computation with original computation. Testing confirmed that our system could correctly complete computation of average and unbiased variance of approximately 50,000 records of dummy insurance claim data in a little over a second. Computation including conditional expressions and/or comparison of values, for example, t test and median, could also be correctly completed in several tens of seconds to a few minutes. If medical records are simply encrypted, the risk of leaks exists because decryption is usually required during statistical analysis. Our system possesses high-level security because medical records remain in encrypted state even during statistical analysis. Also, our system can securely compute some basic statistics with conditional expressions using 'R' that works interactively while secure computation protocols generally require a significant amount of processing time. We propose a secure statistical analysis system using 'R' for medical data that effectively integrates secret-sharing-based secure computation and original computation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Implementation and evaluation of an efficient secure computation system using ‘R’ for healthcare statistics

    PubMed Central

    Chida, Koji; Morohashi, Gembu; Fuji, Hitoshi; Magata, Fumihiko; Fujimura, Akiko; Hamada, Koki; Ikarashi, Dai; Yamamoto, Ryuichi

    2014-01-01

    Background and objective While the secondary use of medical data has gained attention, its adoption has been constrained due to protection of patient privacy. Making medical data secure by de-identification can be problematic, especially when the data concerns rare diseases. We require rigorous security management measures. Materials and methods Using secure computation, an approach from cryptography, our system can compute various statistics over encrypted medical records without decrypting them. An issue of secure computation is that the amount of processing time required is immense. We implemented a system that securely computes healthcare statistics from the statistical computing software ‘R’ by effectively combining secret-sharing-based secure computation with original computation. Results Testing confirmed that our system could correctly complete computation of average and unbiased variance of approximately 50 000 records of dummy insurance claim data in a little over a second. Computation including conditional expressions and/or comparison of values, for example, t test and median, could also be correctly completed in several tens of seconds to a few minutes. Discussion If medical records are simply encrypted, the risk of leaks exists because decryption is usually required during statistical analysis. Our system possesses high-level security because medical records remain in encrypted state even during statistical analysis. Also, our system can securely compute some basic statistics with conditional expressions using ‘R’ that works interactively while secure computation protocols generally require a significant amount of processing time. Conclusions We propose a secure statistical analysis system using ‘R’ for medical data that effectively integrates secret-sharing-based secure computation and original computation. PMID:24763677

  2. Smartphone as a personal, pervasive health informatics services platform: literature review.

    PubMed

    Wac, K

    2012-01-01

    The article provides an overview of current trends in personal sensor, signal and imaging informatics, that are based on emerging mobile computing and communications technologies enclosed in a smartphone and enabling the provision of personal, pervasive health informatics services. The article reviews examples of these trends from the PubMed and Google scholar literature search engines, which, by no means claim to be complete, as the field is evolving and some recent advances may not be documented yet. There exist critical technological advances in the surveyed smartphone technologies, employed in provision and improvement of diagnosis, acute and chronic treatment and rehabilitation health services, as well as in education and training of healthcare practitioners. However, the most emerging trend relates to a routine application of these technologies in a prevention/wellness sector, helping its users in self-care to stay healthy. Smartphone-based personal health informatics services exist, but still have a long way to go to become an everyday, personalized healthcare-provisioning tool in the medical field and in a clinical practice. Key main challenge for their widespread adoption involve lack of user acceptance striving from variable credibility and reliability of applications and solutions as they a) lack evidence- based approach; b) have low levels of medical professional involvement in their design and content; c) are provided in an unreliable way, influencing negatively its usability; and, in some cases, d) being industry-driven, hence exposing bias in information provided, for example towards particular types of treatment or intervention procedures.

  3. Earth Science Informatics Comes of Age

    NASA Technical Reports Server (NTRS)

    Jodha, Siri; Khalsa, S.; Ramachandran, Rahul

    2014-01-01

    The volume and complexity of Earth science data have steadily increased, placing ever-greater demands on researchers, software developers and data managers tasked with handling such data. Additional demands arise from requirements being levied by funding agencies and governments to better manage, preserve and provide open access to data. Fortunately, over the past 10-15 years significant advances in information technology, such as increased processing power, advanced programming languages, more sophisticated and practical standards, and near-ubiquitous internet access have made the jobs of those acquiring, processing, distributing and archiving data easier. These advances have also led to an increasing number of individuals entering the field of informatics as it applies to Geoscience and Remote Sensing. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of data, information, and knowledge. Informatics also encompasses the use of computers and computational methods to support decisionmaking and other applications for societal benefits.

  4. Medical Informatics Education & Research in Greece

    PubMed Central

    Chouvarda, I.

    2015-01-01

    Summary Objectives This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. Methods With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Results Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Conclusions Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated. PMID:26123910

  5. Medical Informatics Education & Research in Greece.

    PubMed

    Chouvarda, I; Maglaveras, N

    2015-08-13

    This paper aims to present an overview of the medical informatics landscape in Greece, to describe the Greek ehealth background and to highlight the main education and research axes in medical informatics, along with activities, achievements and pitfalls. With respect to research and education, formal and informal sources were investigated and information was collected and presented in a qualitative manner, including also quantitative indicators when possible. Greece has adopted and applied medical informatics education in various ways, including undergraduate courses in health sciences schools as well as multidisciplinary postgraduate courses. There is a continuous research effort, and large participation in EU-wide initiatives, in all the spectrum of medical informatics research, with notable scientific contributions, although technology maturation is not without barriers. Wide-scale deployment of eHealth is anticipated in the healthcare system in the near future. While ePrescription deployment has been an important step, ICT for integrated care and telehealth have a lot of room for further deployment. Greece is a valuable contributor in the European medical informatics arena, and has the potential to offer more as long as the barriers of research and innovation fragmentation are addressed and alleviated.

  6. The golden era of biomedical informatics has begun.

    PubMed

    Moore, Jason H; Holmes, John H

    2016-01-01

    Biomedical informatics has become a central focus for many academic medical centers and universities as biomedical research because increasingly reliant on the processing, analysis, and interpretation of large volumes of data, information, and knowledge. We posit here that this is the beginning of the golden era of biomedical informatics with opportunity for this maturing discipline to have a substantial impact on the biggest questions and challenges facing efforts to improve human health and the healthcare system.

  7. Health professionals' views of informatics education: findings from the AMIA 1999 spring conference.

    PubMed

    Staggers, N; Gassert, C A; Skiba, D J

    2000-01-01

    Health care leaders emphasize the need to include information technology and informatics concepts in formal education programs, yet integration of informatics into health educational programs has progressed slowly. The AMIA 1999 Spring Congress was held to address informatics educational issues across health professions, including the educational needs in the various health professions, goals for health informatics education, and implementation strategies to achieve these goals. This paper presents the results from AMIA work groups focused on informatics education for non-informatics health professionals. In the categories of informatics needs, goals, and strategies, conference attendees suggested elements in these areas: educational responsibilities for faculty and students, organizational responsibilities, core computer skills and informatics knowledge, how to learn informatics skills, and resources required to implement educational strategies.

  8. A methodological quality synthesis of systematic reviews on computer-mediated continuing education for healthcare providers.

    PubMed

    Militello, Lisa K; Gance-Cleveland, Bonnie; Aldrich, Heather; Kamal, Rabah

    2014-06-01

    Healthcare providers use continuing education (CE) to meet professional development requirements and to ensure optimal patient care. There has been a dramatic increase in computer-mediated CE (CMCE) programs. To synthesize the literature regarding the current state of the science on the efficacy of CMCE for healthcare professionals, particularly as it relates to provider learning and patient outcomes. Specifically, this review assesses the methodological quality of existing systematic reviews and meta-analyses. A literature search was conducted using Cochrane Library, PubMed, and CINAHL. Review articles evaluating the efficacy of CMCE for healthcare providers were included. Publications were searched between 2002 and 2013 and limited to those printed in English. An objective measurement tool, AMSTAR, was used to assess the methodological quality of each review. AMSTAR is an 11-item instrument, in which individual criteria were evaluated and a composite score of all 11 components was determined for each review. Outcomes of each review were also categorized based on Kirkpatrick's levels for summative evaluation: (i) Learner satisfaction, (ii) Learning outcomes, (iii) Performance improvement, (iv) Patient/health outcomes. Starting with 231 articles, 11 met the inclusion criteria for this evaluation. AMSTAR quality scores of the reviews ranged from 7 to 11, with 11 indicating the strongest quality. Although weak research design of many studies and heterogeneous topics covered make summative evaluations difficult, there were some common themes covered in the articles reviewed. Healthcare providers were largely satisfied with using CMCE programs. Overall, the studies comparing CMCE to traditional CE methods found the impact on learning outcomes to be comparable, with neither method necessarily superior. Additionally, all reviews lacked evaluation of practice outcomes. While results of this review show promise for CMCE, further evaluation and more rigorously conducted

  9. Health Informatics: An Overview.

    ERIC Educational Resources Information Center

    MacDougall, Jennifer; And Others

    1996-01-01

    Reviews literature related to health informatics and health information management. Provides examples covering types of information, library and information services outcomes, training of informatics professionals, areas of application, the impact of evidence based medicine, professional issues, integrated information systems, and the needs of the…

  10. [The Role Development of Informatics Nurse Specialists in Taiwan].

    PubMed

    Feng, Rung-Chuang; Lee, Ying-Li; Lee, Tso-Ying

    2015-06-01

    The development of information technology has changed the world and allowed the innovation of nursing-care services. In recent years, the development of nursing informatics in Taiwan has been catching up with international trends and has been regarded positively by the international medical informatics community. The integration of information technology into medical care system has created the new nursing role of "informatics nurse." Although the certification system and job descriptions for these nurses have become increasingly comprehensive in many nations, Taiwan remains in the early development stage in these regards. Taiwan informatics nurses continue to face unclear and inadequately stated role responsibilities and job titles, undefined training requirements, and a lack of a clear qualification / certification system. This paper introduces the role functions and professional growth of informatics nurses and introduces the framework for a certification system in order to give to various medical and paramedical staffs a better understanding of informatics nursing and to recognize the important role played by informatics nurses in the process of healthcare informatics development.

  11. Enzyme Informatics

    PubMed Central

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  12. High Throughput Computing Impact on Meta Genomics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Gore, Brooklin [Morgridge Institute for Research

    2016-07-12

    This presentation includes a brief background on High Throughput Computing, correlating gene transcription factors, optical mapping, genotype to phenotype mapping via QTL analysis, and current work on next gen sequencing.

  13. High Throughput Computing Impact on Meta Genomics (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Gore, Brooklin

    2011-10-12

    This presentation includes a brief background on High Throughput Computing, correlating gene transcription factors, optical mapping, genotype to phenotype mapping via QTL analysis, and current work on next gen sequencing.

  14. The Biodiversity Informatics Potential Index

    PubMed Central

    2011-01-01

    Background Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Methods Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Results Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most non-participant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. Conclusions The BIP Index could potentially help in (a) identifying countries most likely to

  15. The Biodiversity Informatics Potential Index.

    PubMed

    Ariño, Arturo H; Chavan, Vishwas; King, Nick

    2011-01-01

    Biodiversity informatics is a relatively new discipline extending computer science in the context of biodiversity data, and its development to date has not been uniform throughout the world. Digitizing effort and capacity building are costly, and ways should be found to prioritize them rationally. The proposed 'Biodiversity Informatics Potential (BIP) Index' seeks to fulfill such a prioritization role. We propose that the potential for biodiversity informatics be assessed through three concepts: (a) the intrinsic biodiversity potential (the biological richness or ecological diversity) of a country; (b) the capacity of the country to generate biodiversity data records; and (c) the availability of technical infrastructure in a country for managing and publishing such records. Broadly, the techniques used to construct the BIP Index were rank correlation, multiple regression analysis, principal components analysis and optimization by linear programming. We built the BIP Index by finding a parsimonious set of country-level human, economic and environmental variables that best predicted the availability of primary biodiversity data accessible through the Global Biodiversity Information Facility (GBIF) network, and constructing an optimized model with these variables. The model was then applied to all countries for which sufficient data existed, to obtain a score for each country. Countries were ranked according to that score. Many of the current GBIF participants ranked highly in the BIP Index, although some of them seemed not to have realized their biodiversity informatics potential. The BIP Index attributed low ranking to most nonparticipant countries; however, a few of them scored highly, suggesting that these would be high-return new participants if encouraged to contribute towards the GBIF mission of free and open access to biodiversity data. The BIP Index could potentially help in (a) identifying countries most likely to contribute to filling gaps in digitized

  16. Formal logic rewrite system bachelor in teaching mathematical informatics

    NASA Astrophysics Data System (ADS)

    Habiballa, Hashim; Jendryscik, Radek

    2017-07-01

    The article presents capabilities of the formal rewrite logic system - Bachelor - for teaching theoretical computer science (mathematical informatics). The system Bachelor enables constructivist approach to teaching and therefore it may enhance the learning process in hard informatics essential disciplines. It brings not only detailed description of formal rewrite process but also it can demonstrate algorithmical principles for logic formulae manipulations.

  17. Emerging Vaccine Informatics

    PubMed Central

    He, Yongqun; Rappuoli, Rino; De Groot, Anne S.; Chen, Robert T.

    2010-01-01

    Vaccine informatics is an emerging research area that focuses on development and applications of bioinformatics methods that can be used to facilitate every aspect of the preclinical, clinical, and postlicensure vaccine enterprises. Many immunoinformatics algorithms and resources have been developed to predict T- and B-cell immune epitopes for epitope vaccine development and protective immunity analysis. Vaccine protein candidates are predictable in silico from genome sequences using reverse vaccinology. Systematic transcriptomics and proteomics gene expression analyses facilitate rational vaccine design and identification of gene responses that are correlates of protection in vivo. Mathematical simulations have been used to model host-pathogen interactions and improve vaccine production and vaccination protocols. Computational methods have also been used for development of immunization registries or immunization information systems, assessment of vaccine safety and efficacy, and immunization modeling. Computational literature mining and databases effectively process, mine, and store large amounts of vaccine literature and data. Vaccine Ontology (VO) has been initiated to integrate various vaccine data and support automated reasoning. PMID:21772787

  18. The Influence of Computers and Informatics on Mathematics and Its Teaching. Science and Technology Education Series, 44.

    ERIC Educational Resources Information Center

    Cornu, Bernard, Ed.; Ralston, Anthony, Ed.

    In 1985 the International Commission on Mathematical Instruction (ICMI) published the first edition of a book of studies on the topic of the influence of computers on mathematics and the teaching of mathematics. This document is an updated version of that book and includes five articles from the 1985 ICMI conference at Strasbourg, France; reports…

  19. On Informatics Diagnostics and Informatics Therapeutics - Good Medical Informatics Research Is Needed Here.

    PubMed

    Haux, Reinhold

    2017-01-01

    In the era of digitization some new procedures play an increasing role for diagnosis as well as for therapy: informatics diagnostics and informatics therapeutics. Challenges for such procedures are described. It is discussed, when research on such diagnostics and therapeutics can be regarded as good research. Examples are mentioned for informatics diagnostics and informatics therapeutics, which are based on health-enabling technologies.

  20. An information technology emphasis in biomedical informatics education.

    PubMed

    Kane, Michael D; Brewer, Jeffrey L

    2007-02-01

    Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.

  1. Health informatics and the delivery of care to older people.

    PubMed

    Koch, Sabine; Hägglund, Maria

    2009-07-20

    In the light of an aging society, effective delivery of healthcare will be more dependent on different technological solutions supporting the decentralization of healthcare, higher patient involvement and increased societal demands. The aim of this article is therefore, to describe the role of health informatics in the care of elderly people and to give an overview of the state of the art in this field. Based on a review of the existing scientific literature, 29 review articles from the last 15 years and 119 original articles from the last 5 years were selected and further analysed. Results show that review articles cover the fields of information technology in the home environment, integrated health information systems, public health systems, consumer health informatics and non-technology oriented topics such as nutrition, physical behaviour, medication and the aging process in general. Articles presenting original data can be divided into 5 major clusters: information systems and decision support, consumer health informatics, emerging technologies, home telehealth, and informatics methods. Results show that health informatics in elderly care is an expanding field of interest but we still do lack knowledge about the elderly person's needs of technology and how it should best be designed. Surprisingly, few studies cover gender differences related to technology use. Further cross-disciplinary research is needed that relates informatics and technology to different stages of the aging process and that evaluates the effects of technical solutions.

  2. Next generation informatics for big data in precision medicine era.

    PubMed

    Zhang, Yuji; Zhu, Qian; Liu, Hongfang

    2015-01-01

    The rise of data-intensive biology, advances in informatics technology, and changes in the way health care is delivered has created an compelling opportunity to allow us investigate biomedical questions in the context of "big data" and develop knowledge systems to support precision medicine. To promote such data mining and informatics technology development in precision medicine, we hosted two international informatics workshops in 2014: 1) the first workshop on Data Mining in Biomedical informatics and Healthcare, in conjunction with the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2014), and 2) the first workshop on Translational biomedical and clinical informatics, in conjunction with the 8th International Conference on Systems Biology and the 4th Translational Bioinformatics Conference (ISB/TBC 2014). This thematic issue of BioData Mining presents a series of selected papers from these two international workshops, aiming to address the data mining needs in the informatics field due to the deluge of "big data" generated by next generation biotechnologies such as next generation sequencing, metabolomics, and proteomics, as well as the structured and unstructured biomedical and healthcare data from electronic health records. We are grateful for the BioData Mining's willingness to produce this forward-looking thematic issue.

  3. High throughput screening informatics.

    PubMed

    Ling, Xuefeng Bruce

    2008-03-01

    High throughput screening (HTS), an industrial effort to leverage developments in the areas of modern robotics, data analysis and control software, liquid handling devices, and sensitive detectors, has played a pivotal role in the drug discovery process, allowing researchers to efficiently screen millions of compounds to identify tractable small molecule modulators of a given biological process or disease state and advance them into high quality leads. As HTS throughput has significantly increased the volume, complexity, and information content of datasets, lead discovery research demands a clear corporate strategy for scientific computing and subsequent establishment of robust enterprise-wide (usually global) informatics platforms, which enable complicated HTS work flows, facilitate HTS data mining, and drive effective decision-making. The purpose of this review is, from the data analysis and handling perspective, to examine key elements in HTS operations and some essential data-related activities supporting or interfacing the screening process, and outline properties that various enabling software should have. Additionally, some general advice for corporate managers with system procurement responsibilities is offered.

  4. Informatics in Turkey

    NASA Technical Reports Server (NTRS)

    Cakir, Serhat

    1994-01-01

    In the last twenty years the rapid change in the informatics sector has had economic and social impact on private and government activities. The Supreme Council for Science and Technology of Turkey assigned highest priority to the informatics in its meeting in February 1993. With this advice TUBITAK (The Scientific and Technical Research Council of Turkey) intends to give a strong impulse to development of a research policy in this field.

  5. Clinical microbiology informatics.

    PubMed

    Rhoads, Daniel D; Sintchenko, Vitali; Rauch, Carol A; Pantanowitz, Liron

    2014-10-01

    The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  6. Clinical Microbiology Informatics

    PubMed Central

    Sintchenko, Vitali; Rauch, Carol A.; Pantanowitz, Liron

    2014-01-01

    SUMMARY The clinical microbiology laboratory has responsibilities ranging from characterizing the causative agent in a patient's infection to helping detect global disease outbreaks. All of these processes are increasingly becoming partnered more intimately with informatics. Effective application of informatics tools can increase the accuracy, timeliness, and completeness of microbiology testing while decreasing the laboratory workload, which can lead to optimized laboratory workflow and decreased costs. Informatics is poised to be increasingly relevant in clinical microbiology, with the advent of total laboratory automation, complex instrument interfaces, electronic health records, clinical decision support tools, and the clinical implementation of microbial genome sequencing. This review discusses the diverse informatics aspects that are relevant to the clinical microbiology laboratory, including the following: the microbiology laboratory information system, decision support tools, expert systems, instrument interfaces, total laboratory automation, telemicrobiology, automated image analysis, nucleic acid sequence databases, electronic reporting of infectious agents to public health agencies, and disease outbreak surveillance. The breadth and utility of informatics tools used in clinical microbiology have made them indispensable to contemporary clinical and laboratory practice. Continued advances in technology and development of these informatics tools will further improve patient and public health care in the future. PMID:25278581

  7. Big Data and Biomedical Informatics: A Challenging Opportunity

    PubMed Central

    2014-01-01

    Summary Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations. PMID:24853034

  8. Big data and biomedical informatics: a challenging opportunity.

    PubMed

    Bellazzi, R

    2014-05-22

    Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations.

  9. Clinical informatics in critical care.

    PubMed

    Martich, G Daniel; Waldmann, Carl S; Imhoff, Michael

    2004-01-01

    Health care information systems have the potential to enable better care of patients in much the same manner as the widespread use of the automobile and telephone did in the early 20th century. The car and phone were rapidly accepted and embraced throughout the world when these breakthroughs occurred. However, the automation of health care with use of computerized information systems has not been as widely accepted and implemented as computer technology use in all other sectors of the global economy. In this article, the authors examine the need, risks, and rewards of clinical informatics in health care as well as its specific relationship to critical care medicine.

  10. The next generation Internet and health care: a civics lesson for the informatics community.

    PubMed Central

    Shortliffe, E. H.

    1998-01-01

    The Internet provides one of the most compelling examples of the way in which government research investments can, in time, lead to innovations of broad social and economic impact. This paper reviews the history of the Internet's evolution, emphasizing in particular its relationship to medical informatics and to the nation's health-care system. Current national research programs are summarized and the need for more involvement by the informatics community and by federal health-care agencies is emphasized. PMID:9929176

  11. Medical informatics and telemedicine: A vision

    NASA Technical Reports Server (NTRS)

    Clemmer, Terry P.

    1991-01-01

    The goal of medical informatics is to improve care. This requires the commitment and harmonious collaboration between the computer scientists and clinicians and an integrated database. The vision described is how medical information systems are going to impact the way medical care is delivered in the future.

  12. A business case for health informatics standards.

    PubMed Central

    Amatayakul, M.; Heller, E. E.; Johnson, G.

    1994-01-01

    The acceleration of health informatics standards development has both value to health care delivery as well as economic value to the nation's economy. This paper describes the business case for standards development to enable development and implementation of computer-based patient record systems. PMID:7949976

  13. Informatics approaches to understanding TGFβ pathway regulation

    PubMed Central

    Kahlem, Pascal; Newfeld, Stuart J.

    2009-01-01

    Summary In recent years, informatics studies have predicted several new ways in which the transforming growth factor β (TGFβ) signaling pathway can be post-translationally regulated. Subsequently, many of these predictions were experimentally validated. These approaches include phylogenetic predictions for the phosphorylation, sumoylation and ubiquitylation of pathway components, as well as kinetic models of endocytosis, phosphorylation and nucleo-cytoplasmic shuttling. We review these studies and provide a brief `how to' guide for phylogenetics. Our hope is to stimulate experimental tests of informatics-based predictions for TGFβ signaling, as well as for other signaling pathways, and to expand the number of developmental pathways that are being analyzed computationally. PMID:19855015

  14. Sketching the future: trends influencing nursing informatics.

    PubMed

    Cassey, M Z; Savalle-Dunn, J

    1994-02-01

    Technologies emerging in the fields of telecommunications, video and digital imaging, and microprocessing are shaping the future of nursing practice. To measure up to the future needs of nursing, nurses of today must have the vision and desire to become computer aware and technologically literate. Hypothetical future situations pose challenges related to current nursing informatics and artificial intelligence issues. Discussion includes technology issues related to the lifetime clinical health record. Areas that the Center for Nursing Research considers priorities for informatics suggest directions for nursing technology efforts. This article calls on all nurses to become active in designing and molding future clinical practice systems.

  15. A core curriculum for clinical fellowship training in pathology informatics.

    PubMed

    McClintock, David S; Levy, Bruce P; Lane, William J; Lee, Roy E; Baron, Jason M; Klepeis, Veronica E; Onozato, Maristela L; Kim, Jiyeon; Dighe, Anand S; Beckwith, Bruce A; Kuo, Frank; Black-Schaffer, Stephen; Gilbertson, John R

    2012-01-01

    In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required) and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1) Information Fundamentals, (2) Information Systems, (3) Workflow and Process, and (4) Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012). The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world, including departments, companies, and health systems considering hiring a

  16. Informatics at the National Institues of Health

    PubMed Central

    Hendee, William R.

    1999-01-01

    Biomedical informatics, imaging, and engineering are major forces driving the knowledge revolutions that are shaping the agendas for biomedical research and clinical medicine in the 21st century. These disciplines produce the tools and techniques to advance biomedical research, and continually feed new technologies and procedures into clinical medicine. To sustain this force, an increased investment is needed in the physics, biomedical science, engineering, mathematics, information science, and computer science undergirding biomedical informatics, engineering, and imaging. This investment should be made primarily through the National Institutes of Health (NIH). However, the NIH is not structured to support such disciplines as biomedical informatics, engineering, and imaging that cross boundaries between disease- and organ-oriented institutes. The solution to this dilemma is the creation of a new institute or center at the NIH devoted to biomedical imaging, engineering, and informatics. Bills are being introduced into the 106th Congress to authorize such an entity. The pathway is long and arduous, from the introduction of bills in the House and Senate to the realization of new opportunities for biomedical informatics, engineering, and imaging at the NIH. There are many opportunities for medical informaticians to contribute to this realization. PMID:10428000

  17. Military Research Needs in Biomedical Informatics

    PubMed Central

    Reifman, Jaques; Gilbert, Gary R.; Fagan, Lawrence; Satava, Richard

    2002-01-01

    The 2001 U.S. Army Medical Research and Materiel Command (USAMRMC) Biomedical Informatics Roadmap Meeting was devoted to developing a strategic plan in four focus areas: Hospital and Clinical Informatics, E-Health, Combat Health Informatics, and Bioinformatics and Biomedical Computation. The driving force of this Roadmap Meeting was the recent accelerated pace of change in biomedical informatics in which emerging technologies have the potential to affect significantly the Army research portfolio and investment strategy in these focus areas. The meeting was structured so that the first two days were devoted to presentations from experts in the field, including representatives from the three services, other government agencies, academia, and the private sector, and the morning of the last day was devoted to capturing specific biomedical informatics research needs in the four focus areas. This white paper summarizes the key findings and recommendations and should be a powerful tool for the crafting of future requests for proposals to help align USAMRMC new strategic research investments with new developments and emerging technologies. PMID:12223503

  18. Software engineering education in medical informatics.

    PubMed

    Leven, F J

    1989-11-01

    Requirements and approaches of Software Engineering education in the field of Medical Informatics are described with respect to the impact of (1) experiences characterizing the "software misery", (2) status and tendencies in software methodology, and (3) educational status and needs in computer science education influenced by the controversy "theoretical versus practical education". Special attention is directed toward the growing importance of analysis, design methods, and techniques in the professional spectrum of Medical Informatics, the relevance of general principles of systems engineering in health care, the potential of non-procedural programming paradigms, and the intersection of Artificial Intelligence and education. Realizations of and experiences with programs in the field of Software Engineering are reported with respect to special requirements in Medical Informatics.

  19. Nursing undergraduates' technical competence in informatics.

    PubMed

    Cruz, Nathalia Santos da; Soares, Danielle Karen Socorro; Bernardes, Andrea; Gabriel, Carmen Silvia; Pereira, Marta Cristiane Alves; Evora, Yolanda Dora Martinez

    2011-12-01

    Nurses in the information age need to build their knowledge and abilities in order to be competent in this area. The objective of this study was to verify the knowledge of nursing freshmen (1st semester) and seniors (8th semester) registered in 2008 and 2007, respectively, regarding their ability to use informatics resources. This is a non-experimental, descriptive, exploratory survey. Data collection was performed using a questionnaire based on a set of competences in informatics. The results revealed a low rate of informatics knowledge among the freshmen. However, regarding the applications that students had the most difficulty to operate, between the two periods, seniors had the worst performance, which shows it is necessary to include computer classes in the preparation of these new professional, in order to prepare them for the work market.

  20. The X-caliber architecture for informatics supercomputers.

    SciTech Connect

    Murphy, Richard C.

    2010-04-01

    This talk discusses the unique demands that informatics applications, particularly graph-theoretic applications, place on computer systems. These applications tend to pose significant data movement challenges for conventional systems. Worse, underlying technology trends are moving computers to cost-driven optimization points that exacerbate the problem. The X-caliber architecture is an economically viable counter-example to conventional architectures based on the integration of innovative technologies that support the data movement requirements of large-scale informatics applications. This talk will discuss the technology drivers and architectural features of the platform, and present analysis showing the benefits for informatics applications, as well as our traditional science and engineering HPC applications.

  1. Graduate students' experiences in web site development: a project assignment for nursing informatics class.

    PubMed

    Kim, Jeongeun

    2003-01-01

    As healthcare delivery systems' requirements change, nurses will not only have to process and communicate more information, but the nature and types of this information as well as the communication methods will also dramatically change. Nurses must comprehend that information technology is the key to these changes. Korean nurses and nursing students need to enhance their computer technology knowledge and skills as the Korean health delivery system rapidly embraces technological innovations. Yonsei University College of Nursing in Seoul, Korea has the longest history in nursing education and the first graduate nursing programs in Korea. It offered its first nursing informatics (NI) class in 1998, making it one of the first informatics programs in Korean nursing education. The purposes of this project were to develop nursing informatics coursework that enabled students to build skills in developing Web sites, and to measure the effect of the coursework in terms of the students' satisfaction and their confidence level. The author believes that this experience could be a helpful model for an international audience, although this is not an innovative project for some more advanced countries.

  2. Promoting patient safety through informatics-based nursing education.

    PubMed

    Bakken, Suzanne; Cook, Sarah Sheets; Curtis, Lesly; Desjardins, Karen; Hyun, Sookyung; Jenkins, Melinda; John, Ritamarie; Klein, W Ted; Paguntalan, Jossie; Roberts, W Dan; Soupios, Michael

    2004-08-01

    The Institute of Medicine (IOM) Committee on Quality of Health Care in America identified the critical role of information technology in designing safe and effective health care. In addition to technical aspects such as regional or national health information infrastructures, to achieve this goal, healthcare professionals must receive the requisite training during basic and advanced educational programs. In this article, we describe a two-pronged strategy to promote patient safety through an informatics-based approach to nursing education at the Columbia University School of Nursing: (1) use of a personal digital assistant (PDA) to document clinical encounters and to retrieve patient safety-related information at the point of care, and (2) enhancement of informatics competencies of students and faculty. These approaches may be useful to others wishing to promote patient safety through using informatics methods and technologies in healthcare curricula.

  3. [Medical informatics education at the Medical School in Tuzla].

    PubMed

    Sabanović, Zekerijah; Mujcinagić, Alija

    2004-01-01

    Medical informatics is a specific and interdisciplinary science which involves many participants of the health system like: patients, physicians, nurses, managers, administrators, computer experts, students, with the different level of education and understanding, different approaches and expectations. Education of medical informatics requests organization solutions of high quality and necessary equipment for its realization. Educational programs are also limited by student's basic knowledge of informatics from secondary schools. For assessment of this knowledge we have conducted special designed questionnaire at the first year of undergraduate study which results confirm our thesis that great number of students entered the faculty with the lack of basic knowledge from informatics area. In this paper was presented level of organization and education of medical informatics at the Medical faculty and University Clinical Center of Tuzla, with its characteristics through which this system has been passed since 1990.

  4. Clinical fellowship training in pathology informatics: A program description

    PubMed Central

    Gilbertson, John R.; McClintock, David S.; Lee, Roy E.; Onozato, Maristela; Kuo, Frank C.; Beckwith, Bruce A.; Yagi, Yukako; Dighe, Anand S.; Gudewicz, Tom M.; Le, Long P.; Wilbur, David C.; Kim, Ji Yeon; Brodsky, Victor B.; Black-Schaffer, Stephen

    2012-01-01

    Background: In 2007, our healthcare system established a clinical fellowship program in pathology informatics. In 2011, the program benchmarked its structure and operations against a 2009 white paper “Program requirements for fellowship education in the subspecialty of clinical informatics”, endorsed by the Board of the American Medical Informatics Association (AMIA) that described a proposal for a general clinical informatics fellowship program. Methods: A group of program faculty members and fellows compared each of the proposed requirements in the white paper with the fellowship program's written charter and operations. The majority of white paper proposals aligned closely with the rules and activities in our program and comparison was straightforward. In some proposals, however, differences in terminology, approach, and philosophy made comparison less direct, and in those cases, the thinking of the group was recorded. After the initial evaluation, the remainder of the faculty reviewed the results and any disagreements were resolved. Results: The most important finding of the study was how closely the white paper proposals for a general clinical informatics fellowship program aligned with the reality of our existing pathology informatics fellowship. The program charter and operations of the program were judged to be concordant with the great majority of specific white paper proposals. However, there were some areas of discrepancy and the reasons for the discrepancies are discussed in the manuscript. Conclusions: After the comparison, we conclude that the existing pathology informatics fellowship could easily meet all substantive proposals put forth in the 2009 clinical informatics program requirements white paper. There was also agreement on a number of philosophical issues, such as the advantages of multiple fellows, the need for core knowledge and skill sets, and the need to maintain clinical skills during informatics training. However, there were other

  5. Metropolis redux: the unique importance of library skills in informatics

    PubMed Central

    King, Samuel Bishop; MacDonald, Kate

    2004-01-01

    Objectives: The objective is to highlight the important role that librarians have in teaching within a successful medical informatics program. Librarians regularly utilize skills that, although not technology dependent, are essential to conducting computer-based research. The Metropolis analogy is used to introduce the part librarians play as informatics partners. Science fiction is a modern mythology that, beyond a technical exterior, has lasting value in its ability to reflect the human condition. The teaching of medical informatics, an intersection of technology and knowledge, is also most relevant when it transcends the operation of databases and systems. Librarians can teach students to understand, research, and utilize information beyond specific technologies. Methods: A survey of twenty-six informatics programs was conducted during 2002, with specific emphasis on the role of the library service. Results: The survey demonstrated that librarians currently do have a central role in informatics instruction, and that library-focused skills form a significant part of the curriculum in many of those programs. In addition, librarians have creative opportunities to enhance their involvement in informatics training. As a sample program in the study, the development of the informatics course at the Massachusetts College of Pharmacy and Health Sciences is included. Conclusions: Medical informatics training is a wonderful opportunity for librarians to collaborate with professionals from the sciences and other information disciplines. Librarians' unique combination of human research and technology skills provides a valuable contribution to any program. PMID:15098050

  6. Massive open online course for health informatics education.

    PubMed

    Paton, Chris

    2014-04-01

    This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). The Health Informatics Forum is a social networking site for educating health informatics students and professionals [corrected]. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost.

  7. Massive Open Online Course for Health Informatics Education

    PubMed Central

    2014-01-01

    Objectives This paper outlines a new method of teaching health informatics to large numbers of students from around the world through a Massive Open Online Course (MOOC). Methods The Health Informatics Forum is one of examples of MOOCs through a social networking site for educating health informatics students and professionals. It is running a MOOC for students from around the world that uses creative commons licenced content funded by the US government and developed by five US universities. The content is delivered through narrated lectures with slides that can be viewed online with discussion threads on the forum for class interactions. Students can maintain a professional profile, upload photos and files, write their own blog posts and post discussion threads on the forum. Results The Health Informatics Forum MOOC has been accessed by 11,316 unique users from 127 countries from August 2, 2012 to January 24, 2014. Most users accessed the MOOC via a desktop computer, followed by tablets and mobile devices and 55% of users were female. Over 400,000 unique users have now accessed the wider Health Informatics Forum since it was established in 2008. Conclusions Advances in health informatics and educational technology have both created a demand for online learning material in health informatics and a solution for providing it. By using a MOOC delivered through a social networking platform it is hoped that high quality health informatics education will be able to be delivered to a large global audience of future health informaticians without cost. PMID:24872906

  8. A Paradigm for Medical Informatics

    PubMed Central

    Glaser, John P.

    1982-01-01

    This paper presents a model of the discipline of Medical Informatics. The components of the model are defined and described, and the use of the model in Medical Informatics research, and curriculum development, is discussed.

  9. The Integration of Nursing Informatics in Delaware Nursing Education Programs

    ERIC Educational Resources Information Center

    Wheeler, Bernadette

    2016-01-01

    Over the past decade, there has been a conversion to electronic health records (EHRs) in an effort to improve patient care, access, and efficiency. The goal, which has been supported by federal initiatives, is to meaningfully use informatics to improve the safety and quality of patient care as a major force in improving healthcare. How nurses…

  10. The Integration of Nursing Informatics in Delaware Nursing Education Programs

    ERIC Educational Resources Information Center

    Wheeler, Bernadette

    2016-01-01

    Over the past decade, there has been a conversion to electronic health records (EHRs) in an effort to improve patient care, access, and efficiency. The goal, which has been supported by federal initiatives, is to meaningfully use informatics to improve the safety and quality of patient care as a major force in improving healthcare. How nurses…

  11. Assessment of Universal Healthcare Coverage in a District of North India: A Rapid Cross-Sectional Survey Using Tablet Computers.

    PubMed

    Singh, Tarundeep; Roy, Pritam; Jamir, Limalemla; Gupta, Saurav; Kaur, Navpreet; Jain, D K; Kumar, Rajesh

    2016-01-01

    A rapid survey was carried out in Shaheed Bhagat Singh Nagar District of Punjab state in India to ascertain health seeking behavior and out-of-pocket health expenditures. Using multistage cluster sampling design, 1,008 households (28 clusters x 36 households in each cluster) were selected proportionately from urban and rural areas. Households were selected through a house-to-house survey during April and May 2014 whose members had (a) experienced illness in the past 30 days, (b) had illness lasting longer than 30 days, (c) were hospitalized in the past 365 days, or (d) had women who were currently pregnant or experienced childbirth in the past two years. In these selected households, trained investigators, using a tablet computer-based structured questionnaire, enquired about the socio-demographics, nature of illness, source of healthcare, and healthcare and household expenditure. The data was transmitted daily to a central server using wireless communication network. Mean healthcare expenditures were computed for various health conditions. Catastrophic healthcare expenditure was defined as more than 10% of the total annual household expenditure on healthcare. Chi square test for trend was used to compare catastrophic expenditures on hospitalization between households classified into expenditure quartiles. The mean monthly household expenditure was 15,029 Indian Rupees (USD 188.2). Nearly 14.2% of the household expenditure was on healthcare. Fever, respiratory tract diseases, gastrointestinal diseases were the common acute illnesses, while heart disease, diabetes mellitus, and respiratory diseases were the more common chronic diseases. Hospitalizations were mainly due to cardiovascular diseases, gastrointestinal problems, and accidents. Only 17%, 18%, 20% and 31% of the healthcare for acute illnesses, chronic illnesses, hospitalizations and childbirth was sought in the government health facilities. Average expenditure in government health facilities was 16.6% less

  12. Assessment of Universal Healthcare Coverage in a District of North India: A Rapid Cross-Sectional Survey Using Tablet Computers

    PubMed Central

    Singh, Tarundeep; Roy, Pritam; Jamir, Limalemla; Gupta, Saurav; Kaur, Navpreet; Jain, D. K.; Kumar, Rajesh

    2016-01-01

    Objective A rapid survey was carried out in Shaheed Bhagat Singh Nagar District of Punjab state in India to ascertain health seeking behavior and out-of-pocket health expenditures. Methods Using multistage cluster sampling design, 1,008 households (28 clusters x 36 households in each cluster) were selected proportionately from urban and rural areas. Households were selected through a house-to-house survey during April and May 2014 whose members had (a) experienced illness in the past 30 days, (b) had illness lasting longer than 30 days, (c) were hospitalized in the past 365 days, or (d) had women who were currently pregnant or experienced childbirth in the past two years. In these selected households, trained investigators, using a tablet computer-based structured questionnaire, enquired about the socio-demographics, nature of illness, source of healthcare, and healthcare and household expenditure. The data was transmitted daily to a central server using wireless communication network. Mean healthcare expenditures were computed for various health conditions. Catastrophic healthcare expenditure was defined as more than 10% of the total annual household expenditure on healthcare. Chi square test for trend was used to compare catastrophic expenditures on hospitalization between households classified into expenditure quartiles. Results The mean monthly household expenditure was 15,029 Indian Rupees (USD 188.2). Nearly 14.2% of the household expenditure was on healthcare. Fever, respiratory tract diseases, gastrointestinal diseases were the common acute illnesses, while heart disease, diabetes mellitus, and respiratory diseases were the more common chronic diseases. Hospitalizations were mainly due to cardiovascular diseases, gastrointestinal problems, and accidents. Only 17%, 18%, 20% and 31% of the healthcare for acute illnesses, chronic illnesses, hospitalizations and childbirth was sought in the government health facilities. Average expenditure in government health

  13. Satisfaction with web-based training in an integrated healthcare delivery network: do age, education, computer skills and attitudes matter?

    PubMed Central

    Atreja, Ashish; Mehta, Neil B; Jain, Anil K; Harris, CM; Ishwaran, Hemant; Avital, Michel; Fishleder, Andrew J

    2008-01-01

    Background Healthcare institutions spend enormous time and effort to train their workforce. Web-based training can potentially streamline this process. However the deployment of web-based training in a large-scale setting with a diverse healthcare workforce has not been evaluated. The aim of this study was to evaluate the satisfaction of healthcare professionals with web-based training and to determine the predictors of such satisfaction including age, education status and computer proficiency. Methods Observational, cross-sectional survey of healthcare professionals from six hospital systems in an integrated delivery network. We measured overall satisfaction to web-based training and response to survey items measuring Website Usability, Course Usefulness, Instructional Design Effectiveness, Computer Proficiency and Self-learning Attitude. Results A total of 17,891 healthcare professionals completed the web-based training on HIPAA Privacy Rule; and of these, 13,537 completed the survey (response rate 75.6%). Overall course satisfaction was good (median, 4; scale, 1 to 5) with more than 75% of the respondents satisfied with the training (rating 4 or 5) and 65% preferring web-based training over traditional instructor-led training (rating 4 or 5). Multivariable ordinal regression revealed 3 key predictors of satisfaction with web-based training: Instructional Design Effectiveness, Website Usability and Course Usefulness. Demographic predictors such as gender, age and education did not have an effect on satisfaction. Conclusion The study shows that web-based training when tailored to learners' background, is perceived as a satisfactory mode of learning by an interdisciplinary group of healthcare professionals, irrespective of age, education level or prior computer experience. Future studies should aim to measure the long-term outcomes of web-based training. PMID:18922178

  14. An exploration of nursing informatics competency and satisfaction related to network education.

    PubMed

    Lin, Juin-Shu; Lin, Kuan-Chia; Jiang, Wey-Wen; Lee, Ting-Ting

    2007-03-01

    The rapid development of computer technology has driven the growth of the Internet, which has made access to daily services more timely and convenient. Network education strategies for long-distance nursing education are increasingly being implemented to overcome distance barriers and allow nurses to obtain more knowledge. The purpose of this study was to investigate the relationship between the informatics competency of nurses and their satisfaction regarding network education as well as to explore related factors. A total of 218 nurses answered an online questionnaire after completing 4 hours of network education at their appropriate clinical level. Descriptive and inferential statistics were applied to analyze data. Study results found that nurses who took computer training less than 3 hours per week, were unable to connect to a network, or held an associate degree as their highest level of education achieved a lower nursing informatics competency than those who were older, were certified at an N4 clinical level, had previous online training experience or attended 4 or more course hours each week. Those who participated in the network education course more than 4 hours per week and owned their own computers were more satisfied with network education. Nurses who had higher nursing informatics competency were also more satisfied with network education. Network education not only enhances learners' computer competency but also improves learning satisfaction. By promoting network education and improving nurses' hardware/software skills and knowledge, nurses can use networks to access learning resources. Healthcare institutions should also enhance their computer infrastructures, and increase the interest of nurses to learn and apply network skills in clinical practice.

  15. Informatics and the Clinical Laboratory

    PubMed Central

    Jones, Richard G; Johnson, Owen A; Batstone, Gifford

    2014-01-01

    The nature of pathology services is changing under the combined pressures of increasing workloads, cost constraints and technological advancement. In the face of this, laboratory systems need to meet new demands for data exchange with clinical electronic record systems for test requesting and results reporting. As these needs develop, new challenges are emerging especially with respect to the format and content of the datasets which are being exchanged. If the potential for the inclusion of intelligent systems in both these areas is to be realised, the continued dialogue between clinicians and laboratory information specialists is of paramount importance. Requirements of information technology (IT) in pathology, now extend well beyond the provision of purely analytical data. With the aim of achieving seamless integration of laboratory data into the total clinical pathway, ‘Informatics’ – the art and science of turning data into useful information – is becoming increasingly important in laboratory medicine. Informatics is a powerful tool in pathology – whether in implementing processes for pathology modernisation, introducing new diagnostic modalities (e.g. proteomics, genomics), providing timely and evidence-based disease management, or enabling best use of limited and often costly resources. Providing appropriate information to empowered and interested patients – which requires critical assessment of the ever-increasing volume of information available – can also benefit greatly from appropriate use of informatics in enhancing self-management of long term conditions. The increasing demands placed on pathology information systems in the context of wider developmental change in healthcare delivery are explored in this review. General trends in medical informatics are reflected in current priorities for laboratory medicine, including the need for unified electronic records, computerised order entry, data security and recovery, and audit. We conclude that

  16. Case-based medical informatics.

    PubMed

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-11-08

    The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and powerful case matching

  17. Case-based medical informatics

    PubMed Central

    Pantazi, Stefan V; Arocha, José F; Moehr, Jochen R

    2004-01-01

    Background The "applied" nature distinguishes applied sciences from theoretical sciences. To emphasize this distinction, we begin with a general, meta-level overview of the scientific endeavor. We introduce the knowledge spectrum and four interconnected modalities of knowledge. In addition to the traditional differentiation between implicit and explicit knowledge we outline the concepts of general and individual knowledge. We connect general knowledge with the "frame problem," a fundamental issue of artificial intelligence, and individual knowledge with another important paradigm of artificial intelligence, case-based reasoning, a method of individual knowledge processing that aims at solving new problems based on the solutions to similar past problems. We outline the fundamental differences between Medical Informatics and theoretical sciences and propose that Medical Informatics research should advance individual knowledge processing (case-based reasoning) and that natural language processing research is an important step towards this goal that may have ethical implications for patient-centered health medicine. Discussion We focus on fundamental aspects of decision-making, which connect human expertise with individual knowledge processing. We continue with a knowledge spectrum perspective on biomedical knowledge and conclude that case-based reasoning is the paradigm that can advance towards personalized healthcare and that can enable the education of patients and providers. We center the discussion on formal methods of knowledge representation around the frame problem. We propose a context-dependent view on the notion of "meaning" and advocate the need for case-based reasoning research and natural language processing. In the context of memory based knowledge processing, pattern recognition, comparison and analogy-making, we conclude that while humans seem to naturally support the case-based reasoning paradigm (memory of past experiences of problem-solving and

  18. Computer-Supported Feedback Message Tailoring for Healthcare Providers in Malawi: Proof-of-Concept.

    PubMed

    Landis-Lewis, Zach; Douglas, Gerald P; Hochheiser, Harry; Kam, Matthew; Gadabu, Oliver; Bwanali, Mwatha; Jacobson, Rebecca S

    2015-01-01

    Although performance feedback has the potential to help clinicians improve the quality and safety of care, healthcare organizations generally lack knowledge about how this guidance is best provided. In low-resource settings, tools for theory-informed feedback tailoring may enhance limited clinical supervision resources. Our objectives were to establish proof-of-concept for computer-supported feedback message tailoring in Malawi, Africa. We conducted this research in five stages: clinical performance measurement, modeling the influence of feedback on antiretroviral therapy (ART) performance, creating a rule-based message tailoring process, generating tailored messages for recipients, and finally analysis of performance and message tailoring data. We retrospectively generated tailored messages for 7,448 monthly performance reports from 11 ART clinics. We found that tailored feedback could be routinely generated for four guideline-based performance indicators, with 35% of reports having messages prioritized to optimize the effect of feedback. This research establishes proof-of-concept for a novel approach to improving the use of clinical performance feedback in low-resource settings and suggests possible directions for prospective evaluations comparing alternative designs of feedback messages.

  19. Innovation in transformative nursing leadership: nursing informatics competencies and roles.

    PubMed

    Remus, Sally; Kennedy, Margaret Ann

    2012-12-01

    In a recent brief to the Canadian Nurses Association's National Expert Commission on the Health of Our Nation, the Academy of Canadian Executive Nurses (ACEN) discussed leadership needs in the Canadian healthcare system, and promoted the pivotal role of nursing executives in transforming Canada's healthcare system into an integrated patient-centric system. Included among several recommendations was the need to develop innovative leadership competencies that enable nurse leaders to lead and advance transformative health system change. This paper focuses on an emerging "avant-garde executive leadership competency" recommended for today's health leaders to guide health system transformation. Specifically, this competency is articulated as "state of the art communication and technology savvy," and it implies linkages between nursing informatics competencies and transformational leadership roles for nurse executive. The authors of this paper propose that distinct nursing informatics competencies are required to augment traditional executive skills to support transformational outcomes of safe, integrated, high-quality care delivery through knowledge-driven care. International trends involving nursing informatics competencies and the evolution of new corporate informatics roles, such as chief nursing informatics officers (CNIOs), are demonstrating value and advanced transformational leadership as nursing executive roles that are informed by clinical data.

  20. Pervasive access to images and data--the use of computing grids and mobile/wireless devices across healthcare enterprises.

    PubMed

    Pohjonen, Hanna; Ross, Peeter; Blickman, Johan G; Kamman, Richard

    2007-01-01

    Emerging technologies are transforming the workflows in healthcare enterprises. Computing grids and handheld mobile/wireless devices are providing clinicians with enterprise-wide access to all patient data and analysis tools on a pervasive basis. In this paper, emerging technologies are presented that provide computing grids and streaming-based access to image and data management functions, and system architectures that enable pervasive computing on a cost-effective basis. Finally, the implications of such technologies are investigated regarding the positive impacts on clinical workflows.

  1. A structural equation modeling approach for the adoption of cloud computing to enhance the Malaysian healthcare sector.

    PubMed

    Ratnam, Kalai Anand; Dominic, P D D; Ramayah, T

    2014-08-01

    The investments and costs of infrastructure, communication, medical-related equipments, and software within the global healthcare ecosystem portray a rather significant increase. The emergence of this proliferation is then expected to grow. As a result, information and cross-system communication became challenging due to the detached independent systems and subsystems which are not connected. The overall model fit expending over a sample size of 320 were tested with structural equation modelling (SEM) using AMOS 20.0 as the modelling tool. SPSS 20.0 is used to analyse the descriptive statistics and dimension reliability. Results of the study show that system utilisation and system impact dimension influences the overall level of services of the healthcare providers. In addition to that, the findings also suggest that systems integration and security plays a pivotal role for IT resources in healthcare organisations. Through this study, a basis for investigation on the need to improvise the Malaysian healthcare ecosystem and the introduction of a cloud computing platform to host the national healthcare information exchange has been successfully established.

  2. Generational Learning Style Preferences Based on Computer-Based Healthcare Training

    ERIC Educational Resources Information Center

    Knight, Michaelle H.

    2016-01-01

    Purpose. The purpose of this mixed-method study was to determine the degree of perceived differences for auditory, visual and kinesthetic learning styles of Traditionalist, Baby Boomers, Generation X and Millennial generational healthcare workers participating in technology-assisted healthcare training. Methodology. This mixed-method research…

  3. Generational Learning Style Preferences Based on Computer-Based Healthcare Training

    ERIC Educational Resources Information Center

    Knight, Michaelle H.

    2016-01-01

    Purpose. The purpose of this mixed-method study was to determine the degree of perceived differences for auditory, visual and kinesthetic learning styles of Traditionalist, Baby Boomers, Generation X and Millennial generational healthcare workers participating in technology-assisted healthcare training. Methodology. This mixed-method research…

  4. Biomedical informatics: precious scientific resource and public policy dilemma.

    PubMed Central

    Lindberg, Donald A. B.

    2003-01-01

    Biomedical informatics includes the application of computers, information networks and systems, and a growing body of scientific understanding to a range of problems. As skill in this field increases and as progress in virtually all modern biomedical science becomes more data intensive, informatics becomes a precious resource. Applications areas include access to knowledge, discovery in genomics, medical records, mathematical modeling, and bioengineering. At the same time, progress in informatics is deeply dependent on resolution of four major public policy issues: digital intellectual property rights, genetic testing protection, medical data privacy, and the role of biomedical data in the context of information warfare and homeland security. PMID:12813915

  5. Biomedical informatics: precious scientific resource and public policy dilemma.

    PubMed

    Lindberg, Donald A B

    2003-01-01

    Biomedical informatics includes the application of computers, information networks and systems, and a growing body of scientific understanding to a range of problems. As skill in this field increases and as progress in virtually all modern biomedical science becomes more data intensive, informatics becomes a precious resource. Applications areas include access to knowledge, discovery in genomics, medical records, mathematical modeling, and bioengineering. At the same time, progress in informatics is deeply dependent on resolution of four major public policy issues: digital intellectual property rights, genetic testing protection, medical data privacy, and the role of biomedical data in the context of information warfare and homeland security.

  6. Biomedical informatics and translational medicine

    PubMed Central

    2010-01-01

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams. PMID:20187952

  7. Biomedical informatics and translational medicine.

    PubMed

    Sarkar, Indra Neil

    2010-02-26

    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams.

  8. Informatics and public health at CDC.

    PubMed

    McNabb, Scott J N; Koo, D; Seligman, J

    2006-12-22

    Since CDC acquired its first mainframe computer in 1964, the use of information technology in public health practice has grown steadily and, during the past 2 decades, dramatically. Public health informatics (PHI) arrived on the scene during the 1990s after medical informatics (intersecting information technology, medicine, and health care) and bioinformatics (intersecting mathematics, statistics, computer science, and molecular biology). Similarly, PHI merged the disciplines of information science and computer science to public health practice, research, and learning. Using strategies and standards, practitioners employ PHI tools and training to maximize health impacts at local, state, and national levels. They develop and deploy information technology solutions that provide accurate, timely, and secure information to guide public health action.

  9. RAS - Target Identification - Informatics

    Cancer.gov

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  10. Rethinking radiology informatics.

    PubMed

    Kohli, Marc; Dreyer, Keith J; Geis, J Raymond

    2015-04-01

    Informatics innovations of the past 30 years have improved radiology quality and efficiency immensely. Radiologists are groundbreaking leaders in clinical information technology (IT), and often radiologists and imaging informaticists created, specified, and implemented these technologies, while also carrying the ongoing burdens of training, maintenance, support, and operation of these IT solutions. Being pioneers of clinical IT had advantages of local radiology control and radiology-centric products and services. As health care businesses become more clinically IT savvy, however, they are standardizing IT products and procedures across the enterprise, resulting in the loss of radiologists' local control and flexibility. Although this inevitable consequence may provide new opportunities in the long run, several questions arise. What will happen to the informatics expertise within the radiology domain? Will radiology's current and future concerns be heard and their needs addressed? What should radiologists do to understand, obtain, and use informatics products to maximize efficiency and provide the most value and quality for patients and the greater health care community? This article will propose some insights and considerations as we rethink radiology informatics.

  11. Informatics: A Brief Survey.

    ERIC Educational Resources Information Center

    He, Shaoyi

    2003-01-01

    Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…

  12. Informatics: A Brief Survey.

    ERIC Educational Resources Information Center

    He, Shaoyi

    2003-01-01

    Provides a brief survey of informatics, defined as the application of information technology to various fields, with respect to its historical background, disciplinary identity, fundamental aspects, applications, and challenges. Highlights include biological, clinical, dental, environmental, geomatics, health, legal, management, medical, museum,…

  13. Pathology Informatics Essentials for Residents

    PubMed Central

    Karcher, Donald S.; Harrison, James H.; Sinard, John H.; Riben, Michael W.; Boyer, Philip J.; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:28725772

  14. HRP's Healthcare Spin-Offs Through Computational Modeling and Simulation Practice Methodologies

    NASA Technical Reports Server (NTRS)

    Mulugeta, Lealem; Walton, Marlei; Nelson, Emily; Peng, Grace; Morrison, Tina; Erdemir, Ahmet; Myers, Jerry

    2014-01-01

    substantial interest by the broader medical community though institutions like the National Institutes of Health (NIH) and the Food and Drug Administration (FDA) to develop similar standards and guidelines applicable to the larger medical operations and research community. DISCUSSION: Similar to NASA, many leading government agencies, health institutions and medical product developers around the world are recognizing the potential of computational M&S to support clinical research and decision making. In this light, substantial investments are being made in computational medicine and notable discoveries are being realized [8]. However, there is a lack of broadly applicable practice guidance for the development and implementation of M&S in clinical care and research in a manner that instills confidence among medical practitioners and biological researchers [9,10]. In this presentation, we will give an overview on how HRP is working with the NIH's Interagency Modeling and Analysis Group (IMAG), the FDA and the American Society of Mechanical Engineers (ASME) to leverage NASA's biomedical VV&C processes to establish a new regulatory standard for Verification and Validation in Computational Modeling of Medical Devices, and Guidelines for Credible Practice of Computational Modeling and Simulation in Healthcare.

  15. Consumer Informatics in Chronic Illness

    PubMed Central

    Tetzlaff, Linda

    1997-01-01

    Abstract Objective: To explore the informatic requirements in the home care of chronically ill patients. Design: A number of strategies were deployed to help evoke a picture of home care informatics needs: A detailed questionnaire evaluating informational needs and assessing programmable technologies was distributed to a clinic population of parents of children with cancer. Open ended questionnaires were distributed to medical staff and parents soliciting a list of questions asked of medical staff. Parent procedure training was observed to evaluate the training dialog, and parents were observed interacting with a prototype information and education computer offering. Results: Parents' concerns ranged from the details of managing day to day, to conceptual information about disease and treatment, to management of psychosocial problems. They sought information to solve problems and to provide emotional support, which may create conflicts of interest when the material is threatening. Whether they preferred to be informed by a doctor, nurse, or another parent depended on the nature of the information. Live interaction was preferred to video, which was preferred to text for all topics. Respondents used existing technologies in a straightforward way but were enthusiastic about the proposed use of computer technology to support home care. Multimedia solutions appear to complement user needs and preferences. Conclusion: Consumers appear positively disposed toward on-line solutions. On-line systems can offer breadth, depth and timeliness currently unattainable. Patients should be involved in the formation and development process in much the same way that users are involved in usercentered computer interface design. A generic framework for patient content is presented that could be applied across multiple disorders. PMID:9223035

  16. Materials informatics: a journey towards material design and synthesis.

    PubMed

    Takahashi, Keisuke; Tanaka, Yuzuru

    2016-06-28

    Materials informatics has been gaining popularity with the rapid development of computational materials science. However, collaborations between information science and materials science have not yet reached the success. There are several issues which need to be overcome in order to establish the field of materials informatics. Construction of material big data, implementation of machine learning, and platform design for materials discovery are discussed with potential solutions.

  17. Informatics and Standards for Nanomedicine Technology

    PubMed Central

    Thomas, Dennis G.; Klaessig, Fred; Harper, Stacey L.; Fritts, Martin; Hoover, Mark D.; Gaheen, Sharon; Stokes, Todd H.; Reznik-Zellen, Rebecca; Freund, Elaine T.; Klemm, Juli D.; Paik, David S.; Baker, Nathan A.

    2011-01-01

    There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration, data sharing, unambiguous representation and interpretation of data, semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this review, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, due to gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, etc. Progress towards resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this review will be essential to the rapidly growing field of nanomedicine informatics. PMID:21721140

  18. Healthcare Policy Statement on the Utility of Coronary Computed Tomography for Evaluation of Cardiovascular Conditions and Preventive Healthcare: From the Health Policy Working Group of the Society of Cardiovascular Computed Tomography.

    PubMed

    Slim, Ahmad M; Jerome, Scott; Blankstein, Ron; Weigold, Wm Guy; Patel, Amit R; Kalra, Dinesh K; Miller, Ryan; Branch, Kelley; Rabbat, Mark G; Hecht, Harvey; Nicol, Edward D; Villines, Todd C; Shaw, Leslee J

    The rising cost of healthcare is prompting numerous policy and advocacy discussions regarding strategies for constraining growth and creating a more efficient and effective healthcare system. Cardiovascular imaging is central to the care of patients at risk of, and living with, heart disease. Estimates are that utilization of cardiovascular imaging exceeds 20 million studies per year. The Society of Cardiovascular CT (SCCT), alongside Rush University Medical Center, and in collaboration with government agencies, regional payers, and industry healthcare experts met in November 2016 in Chicago, IL to evaluate obstacles and hurdles facing the cardiovascular imaging community and how they can contribute to efficacy while maintaining or even improving outcomes and quality. The summit incorporated inputs from payers, providers, and patients' perspectives, providing a platform for all voices to be heard, allowing for a constructive dialogue with potential solutions moving forward. This article outlines the proceedings from the summit, with a detailed review of past hurdles, current status, and potential solutions as we move forward in an ever-changing healthcare landscape. Copyright © 2017 Society of Cardiovascular Computed Tomography. All rights reserved.

  19. The history of pathology informatics: A global perspective

    PubMed Central

    Park, Seung; Parwani, Anil V.; Aller, Raymond D.; Banach, Lech; Becich, Michael J.; Borkenfeld, Stephan; Carter, Alexis B.; Friedman, Bruce A.; Rojo, Marcial Garcia; Georgiou, Andrew; Kayser, Gian; Kayser, Klaus; Legg, Michael; Naugler, Christopher; Sawai, Takashi; Weiner, Hal; Winsten, Dennis; Pantanowitz, Liron

    2013-01-01

    Pathology informatics has evolved to varying levels around the world. The history of pathology informatics in different countries is a tale with many dimensions. At first glance, it is the familiar story of individuals solving problems that arise in their clinical practice to enhance efficiency, better manage (e.g., digitize) laboratory information, as well as exploit emerging information technologies. Under the surface, however, lie powerful resource, regulatory, and societal forces that helped shape our discipline into what it is today. In this monograph, for the first time in the history of our discipline, we collectively perform a global review of the field of pathology informatics. In doing so, we illustrate how general far-reaching trends such as the advent of computers, the Internet and digital imaging have affected pathology informatics in the world at large. Major drivers in the field included the need for pathologists to comply with national standards for health information technology and telepathology applications to meet the scarcity of pathology services and trained people in certain countries. Following trials by a multitude of investigators, not all of them successful, it is apparent that innovation alone did not assure the success of many informatics tools and solutions. Common, ongoing barriers to the widespread adoption of informatics devices include poor information technology infrastructure in undeveloped areas, the cost of technology, and regulatory issues. This review offers a deeper understanding of how pathology informatics historically developed and provides insights into what the promising future might hold. PMID:23869286

  20. Open source bioimage informatics for cell biology.

    PubMed

    Swedlow, Jason R; Eliceiri, Kevin W

    2009-11-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery.

  1. Preparing our future physicians: integrating medical informatics into the undergraduate medical education curriculum.

    PubMed

    Kaufman, D M; Jennett, P A

    1997-01-01

    This paper describes how two medical schools have integrated "medical informatics" into their undergraduate medical education programs with the aim of preparing their students for future practice. It describes the components or elements of the informatics programs, how learning opportunities have been integrated into the curricula, how the informatics programs have evolved, and future directions. The medical schools approached the task of introducing informatics in a parallel way. Following needs identification, similar topic areas, goals, and specific informatics learning objectives were developed. These were used as a basis for implementation and evaluation. In general, the topic areas selected are: computer literacy, communications, information retrieval and management, computer-aided learning, patient management, office practice management, and hospital information systems. Learning opportunities in informatics were integrated for the above goals, in accordance with how the curriculum was organized in each school. These opportunities, and the support activities provided will be described.

  2. International training in health informatics: a Brazilian experience.

    PubMed

    Marin, Heimar F; Massad, Eduaro; Marques, Eduardo P; Ohno-Machado, Lucila

    2004-01-01

    Technology is transforming not only the practice of health-care but also professional training and educational models. Developing countries, such as Brazil, are increasingly suffering from a severe shortage of health informatics specialists. Training of professionals in this field is expensive, and there is a limited supply of high-quality teaching resources available. We envision that training in health informatics can be better achieved if cultural and technological barriers are anticipated and the training program is prepared accordingly. We describe our four-year experience of a Brazil/USA training program and discuss lessons learned during its implementation. Eleven onsite courses, one seminar, and two conferences were developed under this unique initiative, which made possible the collaboration among different countries and distinguished leaders in the field of medical informatics.

  3. Nursing Informatics Competency Assessment for the Nurse Leader: The Delphi Study.

    PubMed

    Collins, Sarah; Yen, Po-Yin; Phillips, Andrew; Kennedy, Mary K

    2017-04-01

    The aim of this study was to identify nursing informatics competencies perceived as relevant and required by nurse leaders. To participate as a full partner in healthcare leadership among rapidly advancing health information technologies (HITs), nurse leaders must attain knowledge of informatics competencies related to their clinical leadership roles and responsibilities. Despite this increased need to engage in HIT-related decision making, a gap remains in validated informatics competencies specific to the needs of nurse leaders. An environmental scan and 3-round survey using Delphi methods used with nurse leaders for competency identification were used. Between 26 and 41 participants responded to each Delphi round. Most nurse leaders acquired HIT knowledge through on-the-job training. We identified 74 competencies from an initial list of 108 competencies. This work can advance nursing practice to move beyond "on-the-job informatics training" to a more competency-based model of nursing informatics education and practice.

  4. A survey of public health and consumer health informatics programmes and courses in Canadian universities and colleges.

    PubMed

    Arocha, Jose F; Hoffman-Goetz, Laurie

    2012-12-01

    As information technology becomes more widely used by people for health-care decisions, training in consumer and public health informatics will be important for health practitioners working directly with the public. Using information from 74 universities and colleges across Canada, we searched websites and online calendars for programmes (undergraduate, graduate) regarding availability and scope of education in programmes, courses and topics geared to public health and/or consumer health informatics. Of the 74 institutions searched, 31 provided some content relevant to health informatics (HI) and 8 institutions offered full HI-related programmes. Of these 8 HI programmes, only 1 course was identified with content relevant to public health informatics and 1 with content about consumer health informatics. Some institutions (n  =  22) - which do not offer HI-degree programmes - provide health informatics-related courses, including one on consumer health informatics. We found few programmes, courses or topic areas within courses in Canadian universities and colleges that focus on consumer or public health informatics education. Given the increasing emphasis on personal responsibility for health and health-care decision-making, skills training for health professionals who help consumers navigate the Internet should be considered in health informatics education.

  5. The State of Information and Communication Technology and Health Informatics in Ghana

    PubMed Central

    Achampong, Emmanuel Kusi

    2012-01-01

    Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions. PMID:23569633

  6. The state of information and communication technology and health informatics in ghana.

    PubMed

    Achampong, Emmanuel Kusi

    2012-01-01

    Information and Communication Technology (ICT) has become a major tool in delivery of health services and has had an innovative impact on quality of life. ICT is affecting the way healthcare is delivered to clients. In this paper, we discuss the state of ICT and health informatics in Ghana. We also discuss the state of various relevant infrastructures for the successful implementation of ehealth projects. We analyse the past and present state of health informatics in Ghana, in comparison to other African countries. We also review the challenges facing successful implementation of health informatics projects in Ghana and suggest possible solutions.

  7. Advances in Navy pharmacy information technology: accessing Micromedex via the Composite Healthcare Computer System and local area networks.

    PubMed

    Koerner, S D; Becker, F

    1999-07-01

    The pharmacy profession has long used technology to more effectively bring health care to the patient. Navy pharmacy has embraced technology advances in its daily operations, from computers to dispensing robots. Evolving from the traditional role of compounding and dispensing specialists, pharmacists are establishing themselves as vital team members in direct patient care: on the ward, in ambulatory clinics, in specialty clinics, and in other specialty patient care programs (e.g., smoking cessation). An important part of the evolution is the timely access to the most up-to-date information available. Micromedex, Inc. (Denver, Colorado), has developed a number of computer CD-ROM-based full-text pharmacy, toxicology, emergency medicine, and patient education products. Micromedex is a recognized leader with regard to total pharmaceutical information availability. This article discusses the implementation of Micromedex products within the established Composite Healthcare Computer System and the subsequent use by and effect on the international Navy pharmacy community.

  8. The Renewed Promise of Medical Informatics.

    PubMed

    van Bemmel, J H; McCray, A T

    2016-05-20

    The promise of the field of Medical Informatics has been great and its impact has been significant. In 1999, the Yearbook editors of the International Medical Informatics Association (IMIA) - also the authors of the present paper - sought to assess this impact by selecting a number of seminal papers in the field, and asking experts to comment on these articles. In particular, it was requested whether and how the expectations, represented by these papers, had been fulfilled since their publication several decades earlier. Each expert was also invited to comment on what might be expected in the future. In the present paper, these areas are briefly reviewed again. Where did these early papers have an impact and where were they not as successful as originally expected? It should be noted that the extraordinary developments in computer technology observed in the last two decades could not have been foreseen by these early researchers. In closing, some of the possibilities and limitations of research in medical informatics are outlined in the context of a framework that considers six levels of computer applications in medicine and health care. For each level, some predictions are made for the future, concluded with thoughts on fruitful areas for ongoing research in the field.

  9. Self-assessment of nursing informatics competencies for doctor of nursing practice students.

    PubMed

    Choi, Jeungok; Zucker, Donna M

    2013-01-01

    This study examined the informatics competencies of doctor of nursing practice (DNP) students and whether these competencies differed between DNP students in the post-baccalaureate (BS) and post-master's (MS) tracks. Self-reported informatics competencies were collected from 132 DNP students (68 post-BS and 64 post-MS students) in their first year in the program (2007 to 2010). Students were assessed in 18 areas of 3 competency categories: computer skills, informatics knowledge, and informatics skills. Post-BS students were competent in 4 areas (computer skills in communication, systems, documentation, and informatics knowledge about impact of information management), whereas post-MS students were competent in only 1 area (computer skills in communication). Students in both tracks reported computer skills in decision support as their least competent area. Overall, post-BS students reported slightly higher than or similar competency scores as post-MS students, but scores were statistically significant in only 3 of 18 areas. The assessment indicated that knowledge and skills on informatics competencies need to be improved, especially in computer skills for data access and use of decision support systems. Strategies are suggested to integrate competencies into existing informatics course and DNP curricula. Further studies are recommended using an objective measure of informatics competencies.

  10. Instantiating informatics in nursing practice for integrated patient centred holistic models of care: a discussion paper.

    PubMed

    Hussey, Pamela A; Kennedy, Margaret Ann

    2016-05-01

    A discussion on how informatics knowledge and competencies can enable nursing to instantiate transition to integrated models of care. Costs of traditional models of care are no longer sustainable consequent to the spiralling incidence and costs of chronic illness. The international community looks towards technology-enabled solutions to support a shift towards integrated patient-centred models of care. Discussion paper. A search of the literature was performed dating from 2000-2015 and a purposeful data sample based on relevance to building the discussion was included. The holistic perspective of nursing knowledge can support and advance integrated healthcare models. Informatics skills are key for the profession to play a leadership role in design, implementation and operation of next generation health care. However, evidence suggests that nursing engagement with informatics strategic development for healthcare provision is currently variable. A statistically significant need exists to progress health care towards integrated models of care. Strategic and tactical plans that are robustly pragmatic with nursing insights and expertise are an essential component to achieve effective healthcare provision. To avoid exclusion in the discourse dominated by management and technology experts, nursing leaders must develop and actively promote the advancement of nursing informatics skills. For knowledge in nursing practice to flourish in contemporary health care, nurse leaders will need to incorporate informatics for optimal translation and interpretation. Defined nursing leadership roles informed by informatics are essential to generate concrete solutions sustaining nursing practice in integrated care models. © 2016 John Wiley & Sons Ltd.

  11. The 2005 Australian Informatics Competition

    ERIC Educational Resources Information Center

    Clark, David

    2006-01-01

    This article describes the Australian Informatics Competition (AIC), a non-programming competition aimed at identifying students with potential in programming and algorithmic design. It is the first step in identifying students to represent Australia at the International Olympiad in Informatics. The main aim of the AIC is to increase awareness of…

  12. Informatics and Autopsy Pathology.

    PubMed

    Levy, Bruce

    2015-06-01

    Many health care providers believe that the autopsy is no longer relevant in high-technology medicine era. This has fueled a decline in the hospital autopsy rate. Although it seems that advanced diagnostic tests answer all clinical questions, studies repeatedly demonstrate that an autopsy uncovers as many undiagnosed conditions today as in the past. The forensic autopsy rate has also declined, although not as precipitously. Pathologists are still performing a nineteenth century autopsy procedure that remains essentially unchanged. Informatics offers several potential answers that will evolve the low-tech autopsy into the high-tech autopsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Creating advanced health informatics certification.

    PubMed

    Gadd, Cynthia S; Williamson, Jeffrey J; Steen, Elaine B; Fridsma, Douglas B

    2016-07-01

    In 2005, AMIA leaders and members concluded that certification of advanced health informatics professionals would offer value to individual practitioners, organizations that hire them, and society at large. AMIA's work to create advanced informatics certification began by leading a successful effort to create the clinical informatics subspecialty for American Board of Medical Specialties board-certified physicians. Since 2012, AMIA has been working to establish advanced health informatics certification (AHIC) for all health informatics practitioners regardless of their primary discipline. In November 2015, AMIA completed the first of 3 key tasks required to establish AHIC, with the AMIA Board of Directors' endorsement of proposed eligibility requirements. This AMIA Board white paper describes efforts to establish AHIC, reports on the current status of AHIC components, and provides a context for the proposed AHIC eligibility requirements.

  14. Nursing informatics competencies: bibliometric analysis.

    PubMed

    Kokol, Peter; Blažun, Helena; Vošner, Janez; Saranto, Kaija

    2014-01-01

    Information and communication technology is developing rapidly and it is incorporated in many health care processes, but in spite of that fact we can still notice that nursing informatics competencies had received limited attention in basic nursing education curricula in Europe and especially in Eastern European countries. The purpose of the present paper is to present the results of a bibliometric analysis of the nursing informatics competencies scientific literature production. We applied the bibliometrics analysis to the corpus of 332 papers found in SCOPUS, related to nursing informatics competencies. The results showed that there is a positive trend in the number of published papers per year, indicating the increased research interest in nursing informatics competencies. Despite the fact that the first paper was published in Denmark, the most prolific country regarding the research in nursing informatics competencies is United States as are their institutions and authors.

  15. Professional development of health informatics in Northern Ireland.

    PubMed

    McCullagh, Paul; McAllister, Gerry; Hanna, Paul; Finlay, Dewar; Comac, Paul

    2011-01-01

    This paper addresses the assessment and verification of health informatics professional competencies. Postgraduate provision in Health Informatics was targeted at informatics professionals working full-time in the National Health Service, in Northern Ireland, United Kingdom. Many informatics health service positions do not require a formal informatics background, and as we strive for professionalism, a recognized qualification provides important underpinning. The course, delivered from a computing perspective, builds upon work-based achievement and provides insight into emerging technologies associated with the 'connected health' paradigm. The curriculum was designed with collaboration from the Northern Ireland Health and Social Care ICT Training Group. Material was delivered by blended learning using a virtual learning environment and face-to-face sessions. Professional accreditation was of high importance. The aim was to provide concurrent qualifications: a postgraduate certificate, awarded by the University of Ulster and a professional certificate validated and accredited by a professional body comprising experienced health informatics professionals. Providing both qualifications puts significant demands upon part-time students, and a balance must be achieved for successful completion.

  16. Pharmacovigilance and Biomedical Informatics: A Model for Future Development.

    PubMed

    Beninger, Paul; Ibara, Michael A

    2016-12-01

    The discipline of pharmacovigilance is rooted in the aftermath of the thalidomide tragedy of 1961. It has evolved as a result of collaborative efforts by many individuals and organizations, including physicians, patients, Health Authorities, universities, industry, the World Health Organization, the Council for International Organizations of Medical Sciences, and the International Conference on Harmonisation. Biomedical informatics is rooted in technologically based methodologies and has evolved at the speed of computer technology. The purpose of this review is to bring a novel lens to pharmacovigilance, looking at the evolution and development of the field of pharmacovigilance from the perspective of biomedical informatics, with the explicit goal of providing a foundation for discussion of the future direction of pharmacovigilance as a discipline. For this review, we searched [publication trend for the log10 value of the numbers of publications identified in PubMed] using the key words [informatics (INF), pharmacovigilance (PV), phar-macovigilance þ informatics (PV þ INF)], for [study types] articles published between [1994-2015]. We manually searched the reference lists of identified articles for additional information. Biomedical informatics has made significant contributions to the infrastructural development of pharmacovigilance. However, there has not otherwise been a systematic assessment of the role of biomedical informatics in enhancing the field of pharmacovigilance, and there has been little cross-discipline scholarship. Rapidly developing innovations in biomedical informatics pose a challenge to pharmacovigilance in finding ways to include new sources of safety information, including social media, massively linked databases, and mobile and wearable wellness applications and sensors. With biomedical informatics as a lens, it is evident that certain aspects of pharmacovigilance are evolving more slowly. However, the high levels of mutual interest in

  17. A core curriculum for clinical fellowship training in pathology informatics

    PubMed Central

    McClintock, David S.; Levy, Bruce P.; Lane, William J.; Lee, Roy E.; Baron, Jason M.; Klepeis, Veronica E.; Onozato, Maristela L.; Kim, JiYeon; Dighe, Anand S.; Beckwith, Bruce A.; Kuo, Frank; Black-Schaffer, Stephen; Gilbertson, John R.

    2012-01-01

    Background: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. Materials and Methods: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required) and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. Results: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1) Information Fundamentals, (2) Information Systems, (3) Workflow and Process, and (4) Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012). Discussion: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world, including

  18. [Standards in Medical Informatics: Fundamentals and Applications].

    PubMed

    Suárez-Obando, Fernando; Camacho Sánchez, Jhon

    2013-09-01

    The use of computers in medical practice has enabled novel forms of communication to be developed in health care. The optimization of communication processes is achieved through the use of standards to harmonize the exchange of information and provide a common language for all those involved. This article describes the concept of a standard applied to medical informatics and its importance in the development of various applications, such as computational representation of medical knowledge, disease classification and coding systems, medical literature searches and integration of biological and clinical sciences.

  19. Which Way with Informatics in High Schools in the Netherlands? The Dutch Dilemma

    ERIC Educational Resources Information Center

    van Diepen, Nico; Perrenet, Jacob; Zwaneveld, Bert

    2011-01-01

    Informatics is currently being taught in high schools all over the world. In the Dutch curriculum, computer literacy is taught in the lower grades as a compulsory subject, Informatics is taught as an elective in the higher grades of some schools. As a follow-up to the outline of Grgurina and Tolboom (2008), the discussion about the future of…

  20. Evaluation of computer usage in healthcare among private practitioners of NCT Delhi.

    PubMed

    Ganeshkumar, P; Arun Kumar, Sharma; Rajoura, O P

    2011-01-01

    1. To evaluate the usage and the knowledge of computers and Information and Communication Technology in health care delivery by private practitioners. 2. To understand the determinants of computer usage by them. A cross sectional study was conducted among the private practitioners practising in three districts of NCT of Delhi between November 2007 and December 2008 by stratified random sampling method, where knowledge and usage of computers in health care and determinants of usage of computer was evaluated in them by a pre-coded semi open ended questionnaire. About 77% of the practitioners reported to have a computer and had the accessibility to internet. Computer availability and internet accessibility was highest among super speciality practitioners. Practitioners who attended a computer course were 13.8 times [OR: 13.8 (7.3 - 25.8)] more likely to have installed an EHR in the clinic. Technical related issues were the major perceived barrier in installing a computer in the clinic. Practice speciality, previous attendance of a computer course, age of started using a computer influenced the knowledge about computers. Speciality of the practice, presence of a computer professional and gender were the determinants of usage of computer.

  1. Empowering village doctors and enhancing rural healthcare using cloud computing in a rural area of mainland China.

    PubMed

    Lin, Che-Wei; Abdul, Shabbir Syed; Clinciu, Daniel L; Scholl, Jeremiah; Jin, Xiangdong; Lu, Haifei; Chen, Steve S; Iqbal, Usman; Heineck, Maxwell J; Li, Yu-Chuan

    2014-02-01

    China's healthcare system often struggles to meet the needs of its 900 million people living in rural areas due to major challenges in preventive medicine and management of chronic diseases. Here we address some of these challenges by equipping village doctors (ViDs) with Health Information Technology and developing an electronic health record (EHR) system which collects individual patient information electronically to aid with implementation of chronic disease management programs. An EHR system based on a cloud-computing architecture was developed and deployed in Xilingol county of Inner Mongolia using various computing resources (hardware and software) to deliver services over the health network using Internet when available. The system supports the work at all levels of the healthcare system, including the work of ViDs in rural areas. An analysis done on 291,087 EHRs created from November 2008 to June 2011 evaluated the impact the EHR system has on preventive medicine and chronic disease management programs in rural China. From 2008 to 2011 health records were created for 291,087 (26.25%) from 1,108,951 total Xilingol residents with 10,240 cases of hypertension and 1152 cases of diabetes diagnosed and registered. Furthermore, 2945 hypertensive and 305 diabetic patients enrolled in follow-up. Implementing the EHR system revealed a high rate of cholecystectomies leading to investigations and findings of drinking water contaminated with metals. Measures were taken to inform the population and clean drinking water was supplied. The cloud-based EHR approach improved the care provision for ViDs in rural China and increased the efficiency of the healthcare system to monitor the health status of the population and to manage preventive care efforts. It also helped discover contaminated water in one of the project areas revealing further benefits if the system is expanded and improved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. A Primer on Aspects of Cognition for Medical Informatics

    PubMed Central

    Patel, Vimla L.; Arocha, José F.; Kaufman, David R.

    2001-01-01

    As a multidisciplinary field, medical informatics draws on a range of disciplines, such as computer science, information science, and the social and cognitive sciences. The cognitive sciences can provide important insights into the nature of the processes involved in human– computer interaction and help improve the design of medical information systems by providing insight into the roles that knowledge, memory, and strategies play in a variety of cognitive activities. In this paper, the authors survey literature on aspects of medical cognition and provide a set of claims that they consider to be important in medical informatics. PMID:11418539

  3. Clinical Research Informatics Contributions from 2015.

    PubMed

    Daniel, C; Choquet, R

    2016-11-10

    To summarize key contributions to current research in the field of Clinical Research Informatics (CRI) and to select best papers published in 2015. A bibliographic search using a combination of MeSH and free terms search over PubMed on Clinical Research Informatics (CRI) was performed followed by a double-blind review in order to select a list of candidate best papers to be then peer-reviewed by external reviewers. A consensus meeting between the two section editors and the editorial team was finally organized to conclude on the selection of best papers. Among the 579 returned papers published in the past year in the various areas of Clinical Research Informatics (CRI) - i) methods supporting clinical research, ii) data sharing and interoperability, iii) re-use of healthcare data for research, iv) patient recruitment and engagement, v) data privacy, security and regulatory issues and vi) policy and perspectives - the full review process selected four best papers. The first selected paper evaluates the capability of the Clinical Data Interchange Standards Consortium (CDISC) Operational Data Model (ODM) to support the representation of case report forms (in both the design stage and with patient level data) during a complete clinical study lifecycle. The second selected paper describes a prototype for secondary use of electronic health records data captured in non-standardized text. The third selected paper presents a privacy preserving electronic health record linkage tool and the last selected paper describes how big data use in US relies on access to health information governed by varying and often misunderstood legal requirements and ethical considerations. A major trend in the 2015 publications is the analysis of observational, "nonexperimental" information and the potential biases and confounding factors hidden in the data that will have to be carefully taken into account to validate new predictive models. In addiction, researchers have to understand

  4. Biochemical informatics methods for diagnosis and disease management.

    PubMed

    Hudson, Samuel E

    2007-01-01

    New technological advances are beginning to have a direct impact on many aspects of healthcare, including screening, diagnosis, treatment, and disease management. A multidisciplinary approach permits the development of sophisticated patient-centered models that rely on bioinformatics, molecular biology, analytical and biochemistry, and healthcare informatics. In the work described here, a decision support model based on neural networks is used to combine results from laboratory tests with clinical parameters to produce a prognostic model for metastatic carcinoma. In addition, techniques for drug design and development are presented that can lead to medications that target specific cancer cells.

  5. Trends in publication of nursing informatics research.

    PubMed

    Kim, Hyeoneui; Ohno-Machado, Lucila; Oh, Janet; Jiang, Xiaoqian

    2014-01-01

    We analyzed 741 journal articles on nursing informatics published in 7 biomedical/nursing informatics journals and 6 nursing journals from 2005 to 2013 to begin to understand publication trends in nursing informatics research and identify gaps. We assigned a research theme to each article using AMIA 2014 theme categories and normalized the citation counts using time from publication. Overall, nursing informatics research covered a broad spectrum of research topics in biomedical informatics and publication topics seem to be well aligned with the high priority research agenda identified by the nursing informatics community. The research themes with highest volume of publication were Clinical Workflow and Human Factors, Consumer Informatics and Personal Health Records, and Clinical Informatics, for which an increasing trend in publication was noted. Articles on Informatics Education and Workforce Development; Data Mining, NLP, Information Extraction; and Clinical Informatics showed steady and high volume of citations.

  6. Trends in Publication of Nursing Informatics Research

    PubMed Central

    Kim, Hyeoneui; Ohno-Machado, Lucila; Oh, Janet; Jiang, Xiaoqian

    2014-01-01

    We analyzed 741 journal articles on nursing informatics published in 7 biomedical/nursing informatics journals and 6 nursing journals from 2005 to 2013 to begin to understand publication trends in nursing informatics research and identify gaps. We assigned a research theme to each article using AMIA 2014 theme categories and normalized the citation counts using time from publication. Overall, nursing informatics research covered a broad spectrum of research topics in biomedical informatics and publication topics seem to be well aligned with the high priority research agenda identified by the nursing informatics community. The research themes with highest volume of publication were Clinical Workflow and Human Factors, Consumer Informatics and Personal Health Records, and Clinical Informatics, for which an increasing trend in publication was noted. Articles on Informatics Education and Workforce Development; Data Mining, NLP, Information Extraction; and Clinical Informatics showed steady and high volume of citations. PMID:25954387

  7. Design and development of a computer program for the evaluation of the healthcare executive - biomed 2010.

    PubMed

    Zotti, Daniel; Bava, Michele; Delendi, Mauro

    2010-01-01

    According to the Italian law which regulates executive healthcare contracts, the professional evaluation is mandatory. The goal of the periodic evaluation is to enhance and motivate the professional involved. In addition this process should 1. increase the sense of duty towards the patients, 2. become aware of ones own professional growth and aspirations and 3. enhance the awareness of the healthcare executive regarding the companys strategies. To satisfy these requirements a data sheet has been modeled for every evaluated subject, divided in two sections. In the first part, the chief executive officer (CEO) scores: 1. behavioral characteristics, 2. multidisciplinary collaboration and involvement, 3. organizational skills, 4. professional quality and training, 5. relationships with the citizens. The scores for these fields are decided by the CEO. In the second part the CEO evaluates: 1. quantitative job dimension, 2.technology innovation, 3. scientific and educational activities. The value scores of these fields are decided by the CEO together with the professional under evaluation. A previously established correction coefficient can be used for all the scores. This evaluation system model has been constructed according to the enhancement quality approaches (Deming cycle) and a web-based software has been developed on a Linux platform using LAMP technology and php programming techniques. The program replicates all the evaluation process creating different profiles of authentications and authorizations which can then give to the evaluator the possibility to make lists of the professionals to evaluate, to upload documents regarding their activities and goals, to receive individual documents in automatically generated folders, to change the correction coefficients, to obtain year by year the individual scores. The advantages of using this web-based software include easy data consultation and update, the implementation of IT security issues, the easy portability and

  8. Next-Generation Sequencing Informatics: Challenges and Strategies for Implementation in a Clinical Environment.

    PubMed

    Roy, Somak; LaFramboise, William A; Nikiforov, Yuri E; Nikiforova, Marina N; Routbort, Mark J; Pfeifer, John; Nagarajan, Rakesh; Carter, Alexis B; Pantanowitz, Liron

    2016-09-01

    -Next-generation sequencing (NGS) is revolutionizing the discipline of laboratory medicine, with a deep and direct impact on patient care. Although it empowers clinical laboratories with unprecedented genomic sequencing capability, NGS has brought along obvious and obtrusive informatics challenges. Bioinformatics and clinical informatics are separate disciplines with typically a small degree of overlap, but they have been brought together by the enthusiastic adoption of NGS in clinical laboratories. The result has been a collaborative environment for the development of novel informatics solutions. Sustaining NGS-based testing in a regulated clinical environment requires institutional support to build and maintain a practical, robust, scalable, secure, and cost-effective informatics infrastructure. -To discuss the novel NGS informatics challenges facing pathology laboratories today and offer solutions and future developments to address these obstacles. -The published literature pertaining to NGS informatics was reviewed. The coauthors, experts in the fields of molecular pathology, precision medicine, and pathology informatics, also contributed their experiences. -The boundary between bioinformatics and clinical informatics has significantly blurred with the introduction of NGS into clinical molecular laboratories. Next-generation sequencing technology and the data derived from these tests, if managed well in the clinical laboratory, will redefine the practice of medicine. In order to sustain this progress, adoption of smart computing technology will be essential. Computational pathologists will be expected to play a major role in rendering diagnostic and theranostic services by leveraging "Big Data" and modern computing tools.

  9. Computational Toxicology

    EPA Science Inventory

    Computational toxicology’ is a broad term that encompasses all manner of computer-facilitated informatics, data-mining, and modeling endeavors in relation to toxicology, including exposure modeling, physiologically based pharmacokinetic (PBPK) modeling, dose-response modeling, ...

  10. Computational Toxicology

    EPA Science Inventory

    Computational toxicology’ is a broad term that encompasses all manner of computer-facilitated informatics, data-mining, and modeling endeavors in relation to toxicology, including exposure modeling, physiologically based pharmacokinetic (PBPK) modeling, dose-response modeling, ...

  11. Dental Informatics in India: Time to Embrace the Change

    PubMed Central

    Mulla, Salma H.; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-01-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area. PMID:27135022

  12. Dental Informatics in India: Time to Embrace the Change.

    PubMed

    Chhabra, Kumar Gaurav; Mulla, Salma H; Deolia, Shravani Govind; Chhabra, Chaya; Singh, Jagjeet; Marwaha, Baldeep Singh

    2016-03-01

    Dental informatics is comparatively a juvenile and new field that has noteworthy potential for supporting clinical care, research, education and management. This field utilizes computer science, information sciences and the application of same to espouse dentistry. However, in the under-developed and developing countries almost most of the dentists are unacquainted about dental informatics, its goals, what it is capable of achieving and by what means they can get involved into it. Despite of emerging advances, certain conflicts also go along with it such as, professional under representation, security issues of the stored information due to universal access to computers high speed internet connections. Endnote software was used as resource material to collect literature which was carefully arranged in a synchronized way. Hence, the purpose of this review was to give an overall scenario of dental informatics, its applications, challenges and recommendations for further enhancement in this area.

  13. Stretchable, Twisted Conductive Microtubules for Wearable Computing, Robotics, Electronics, and Healthcare.

    PubMed

    Do, Thanh Nho; Visell, Yon

    2017-05-11

    Stretchable and flexible multifunctional electronic components, including sensors and actuators, have received increasing attention in robotics, electronics, wearable, and healthcare applications. Despite advances, it has remained challenging to design analogs of many electronic components to be highly stretchable, to be efficient to fabricate, and to provide control over electronic performance. Here, we describe highly elastic sensors and interconnects formed from thin, twisted conductive microtubules. These devices consist of twisted assemblies of thin, highly stretchable (>400%) elastomer tubules filled with liquid conductor (eutectic gallium indium, EGaIn), and fabricated using a simple roller coating process. As we demonstrate, these devices can operate as multimodal sensors for strain, rotation, contact force, or contact location. We also show that, through twisting, it is possible to control their mechanical performance and electronic sensitivity. In extensive experiments, we have evaluated the capabilities of these devices, and have prototyped an array of applications in several domains of stretchable and wearable electronics. These devices provide a novel, low cost solution for high performance stretchable electronics with broad applications in industry, healthcare, and consumer electronics, to emerging product categories of high potential economic and societal significance.

  14. Medical Informatics Idle YouTube Potential.

    PubMed

    Hucíková, Anežka; Babic, Ankica

    2017-01-01

    YouTube as an online video-sharing service in the context of Web 2.0 goes beyond the bounds of pure fun, for which the platform was primarily established. Nowadays, commonly to other social media, it serves also educational, informational and last but not least, marketing purposes. The importance of video sharing is supported by several predictions about video reaching over 90% of global internet traffic by 2020. Using qualitative content analysis over selected YouTube videos, paper examines the current situation of the platform's marketing potential usage by medical informatics organizations, researches and other healthcare professionals. Results of the analysis demonstrate several ways in which YouTube is already used to inform, educate or promote above-mentioned medical institutions. However, their engagement in self-promo or spreading awareness of their research projects via YouTube is considered to be low.

  15. Informatics — EDRN Public Portal

    Cancer.gov

    The EDRN provides a comprehensive informatics activity which includes a number of tools and an integrated knowledge environment for capturing, managing, integrating, and sharing results from across EDRN's cancer biomarker research network.

  16. Electronic Personal Health Record Use Among Nurses in the Nursing Informatics Community.

    PubMed

    Gartrell, Kyungsook; Trinkoff, Alison M; Storr, Carla L; Wilson, Marisa L

    2015-07-01

    An electronic personal health record is a patient-centric tool that enables patients to securely access, manage, and share their health information with healthcare providers. It is presumed the nursing informatics community would be early adopters of electronic personal health record, yet no studies have been identified that examine the personal adoption of electronic personal health record's for their own healthcare. For this study, we sampled nurse members of the American Medical Informatics Association and the Healthcare Information and Management Systems Society with 183 responding. Multiple logistic regression analysis was used to identify those factors associated with electronic personal health record use. Overall, 72% were electronic personal health record users. Users tended to be older (aged >50 years), be more highly educated (72% master's or doctoral degrees), and hold positions as clinical informatics specialists or chief nursing informatics officers. Those whose healthcare providers used electronic health records were significantly more likely to use electronic personal health records (odds ratio, 5.99; 95% confidence interval, 1.40-25.61). Electronic personal health record users were significantly less concerned about privacy of health information online than nonusers (odds ratio, 0.32; 95% confidence interval, 0.14-0.70) adjusted for ethnicity, race, and practice region. Informatics nurses, with their patient-centered view of technology, are in prime position to influence development of electronic personal health records. Our findings can inform policy efforts to encourage informatics and other professional nursing groups to become leaders and users of electronic personal health record; such use could help them endorse and engage patients to use electronic personal health records. Having champions with expertise in and enthusiasm for the new technology can promote the adoptionof electronic personal health records among healthcare providers as well as

  17. Patterns and trends of computed tomography usage in outpatients of the Brazilian public healthcare system, 2001-2011.

    PubMed

    Dovales, Ana C M; da Rosa, Luiz A R; Kesminiene, Ausrele; Pearce, Mark S; Veiga, Lene H S

    2016-09-01

    While the patterns and trends of computed tomography (CT) are well documented in developed countries, relatively little is known about CT usage in developing countries, including Brazil. We evaluated CT usage among outpatients from the public healthcare system in Brazil (SUS), which is the unique healthcare provider to about 75% of the Brazilian population. We collected the annual number of CT procedures and type of CT examinations performed in SUS for the period 2001-2011. Age at examination was evaluated for 2008-2011. CT usage in Brazil has more than tripled during the study period, but the most striking annual increase (17.5%) was observed over the years 2008-2011. Head was the most frequently examined region for all age groups, but a decreasing trend of proportional contribution of head CT, with a simultaneous increase of abdomen/pelvis and chest CT over time was observed. CT examination for pediatric and young adult patients was about 13% of all CTs (9% if we considered age-standardized CT rates). CT usage has grown rapidly in Brazil and may still be increasing. Increased CT usage may certainly be associated with improved patient care. However, given the high frequency of pediatric and young adult CT procedures and the suggested associated cancer risk, efforts need to be undertaken to reduce unwarranted CT scans in Brazil.

  18. Partnership to promote interprofessional education and practice for population and public health informatics: A case study.

    PubMed

    Rajamani, Sripriya; Westra, Bonnie L; Monsen, Karen A; LaVenture, Martin; Gatewood, Laël Cranmer

    2015-01-01

    Team-based healthcare delivery models, which emphasize care coordination, patient engagement, and utilization of health information technology, are emerging. To achieve these models, expertise in interprofessional education, collaborative practice across professions, and informatics is essential. This case study from informatics programs in the Academic Health Center (AHC) at the University of Minnesota and the Office of Health Information Technology (OHIT) at the Minnesota Department of Health presents an academic-practice partnership, which focuses on both interprofessionalism and informatics. Outcomes include the Minnesota Framework for Interprofessional Biomedical Health Informatics, comprising collaborative curriculum development, teaching and research, practicums to promote competencies, service to advance biomedical health informatics, and collaborative environments to facilitate a learning health system. Details on these Framework categories are presented. Partnership success is due to interprofessional connections created with emphasis on informatics and to committed leadership across partners. A limitation of this collaboration is the need for formal agreements outlining resources and roles, which are vital for sustainability. This partnership addresses a recommendation on the future of interprofessionalism: that both education and practice sectors be attuned to each other's expectations and evolving trends. Success strategies and lessons learned from collaborations, such as that of the AHC-OHIT that promote both interprofessionalism and informatics, need to be shared.

  19. Critical advances in bridging personal health informatics and clinical informatics.

    PubMed

    Koch, S; Vimarlund, V

    2012-01-01

    To provide a survey over significant developments in the area of linking personal health informatics and clinical informatics, to give insights into critical advances and to discuss open problems and opportunities in this area. A scoping review over the literature published in scientific journals and relevant conference proceedings in the intersection between personal health informatics and clinical informatics over the years 2010 and 2011 was performed. The publications analyzed are related to two main topics, namely "Sharing information and collaborating through personal health records, portals and social networks" and "Integration of personal health systems with clinical information systems". For the first topic, results are presented according to five different themes: "Patient expectations and attitudes", "Real use experiences", "Changes for care providers", "Barriers to adoption" and "Proposed technical infrastructures". For the second topic, two different themes were found, namely "Technical architectures and interoperability" and "Security, safety and privacy issues". Results show a number of gaps between the information needs of patients and the information care provider organizations provide to them as well as the lack of a trusted technical, ethical and regulatory framework regarding information sharing. Despite recent developments in the areas of personal health informatics and clinical informatics both fields have diverging needs. To support both clinical work processes and empower patients to effectively handle self-care, a number of issues remain unsolved. Open issues include privacy and confidentiality, including trusted sharing of health information and building collaborative environments between patients, their families and care providers. There are further challenges to meet around health and technology literacy as well as to overcome structural and organizational barriers. Frameworks for evaluating personal health informatics applications and

  20. Informatics Teaching from the Students' Point of View

    ERIC Educational Resources Information Center

    Zahorec, Jan; Haskova, Alena

    2013-01-01

    Branches of science and technical/engineering study have for a long time been the less favoured disciplines and students have not been interested in studying them. Informatics/computer education, based on its character, belongs to these disciplines, but on the contrary it belongs rather to the group of popular school subjects. The paper presents…

  1. Informatics--Preparation for the Realities of the Future.

    ERIC Educational Resources Information Center

    Kotze, Paula

    The paper describes the informatics curriculum (the study of computer hardware and software as a tool in problem solving) in a special school for gifted children in South Africa. The program's aims (including development of a structured approach to general problem solving and stimulation of pupil interest in technology) are listed and discussed. A…

  2. Informatics and Telematics in Health. Present and Potential Uses.

    ERIC Educational Resources Information Center

    World Health Organization, Geneva (Switzerland).

    This report focuses on technical issues associated with informatics--a term covering all aspects of the development and operations of information systems, the supporting computer methodology and technology, and the supporting telecommunications links. The first of six chapters discusses the purpose of the report together with basic assumptions…

  3. Informatics Teaching from the Students' Point of View

    ERIC Educational Resources Information Center

    Zahorec, Jan; Haskova, Alena

    2013-01-01

    Branches of science and technical/engineering study have for a long time been the less favoured disciplines and students have not been interested in studying them. Informatics/computer education, based on its character, belongs to these disciplines, but on the contrary it belongs rather to the group of popular school subjects. The paper presents…

  4. BING: biomedical informatics pipeline for Next Generation Sequencing.

    PubMed

    Kriseman, Jeffrey; Busick, Christopher; Szelinger, Szabolcs; Dinu, Valentin

    2010-06-01

    High throughput parallel genomic sequencing (Next Generation Sequencing, NGS) shifts the bottleneck in sequencing processes from experimental data production to computationally intensive informatics-based data analysis. This manuscript introduces a biomedical informatics pipeline (BING) for the analysis of NGS data that offers several novel computational approaches to 1. image alignment, 2. signal correlation, compensation, separation, and pixel-based cluster registration, 3. signal measurement and base calling, 4. quality control and accuracy measurement. These approaches address many of the informatics challenges, including image processing, computational performance, and accuracy. These new algorithms are benchmarked against the Illumina Genome Analysis Pipeline. BING is the one of the first software tools to perform pixel-based analysis of NGS data. When compared to the Illumina informatics tool, BING's pixel-based approach produces a significant increase in the number of sequence reads, while reducing the computational time per experiment and error rate (<2%). This approach has the potential of increasing the density and throughput of NGS technologies.

  5. Informatics--Preparation for the Realities of the Future.

    ERIC Educational Resources Information Center

    Kotze, Paula

    The paper describes the informatics curriculum (the study of computer hardware and software as a tool in problem solving) in a special school for gifted children in South Africa. The program's aims (including development of a structured approach to general problem solving and stimulation of pupil interest in technology) are listed and discussed. A…

  6. About the Beginnings of Medical Informatics in Europe

    PubMed Central

    Roger France, Francis

    2014-01-01

    The term “Informatics” was created in 1962 from two words, information and automatic, and covers all techniques, information concepts and applications of computers. Among them, medicine is the field where we will describe some factors of development in Europe since the late sixties. It took some time for obtaining the acceptance of this new terminology worldwide, but today medical informatics is a well defined discipline which had a tremendous development last decades. This paper tries to recall the context and events from the beginning of medical informatics in Europe. PMID:24648614

  7. Clinical Research Informatics and Electronic Health Record Data

    PubMed Central

    Horvath, M. M.; Rusincovitch, S. A.

    2014-01-01

    Summary Objectives The goal of this survey is to discuss the impact of the growing availability of electronic health record (EHR) data on the evolving field of Clinical Research Informatics (CRI), which is the union of biomedical research and informatics. Results Major challenges for the use of EHR-derived data for research include the lack of standard methods for ensuring that data quality, completeness, and provenance are sufficient to assess the appropriateness of its use for research. Areas that need continued emphasis include methods for integrating data from heterogeneous sources, guidelines (including explicit phenotype definitions) for using these data in both pragmatic clinical trials and observational investigations, strong data governance to better understand and control quality of enterprise data, and promotion of national standards for representing and using clinical data. Conclusions The use of EHR data has become a priority in CRI. Awareness of underlying clinical data collection processes will be essential in order to leverage these data for clinical research and patient care, and will require multi-disciplinary teams representing clinical research, informatics, and healthcare operations. Considerations for the use of EHR data provide a starting point for practical applications and a CRI research agenda, which will be facilitated by CRI’s key role in the infrastructure of a learning healthcare system. PMID:25123746

  8. Educating the Health Informatics Professional: The Impact of an Academic Program.

    PubMed

    Whetton, Sue; Hazlitt, Cherie

    2015-01-01

    The successful implementation and utilisation of electronic health information systems is dependent on a highly knowledgeable and skilled workforce. In Australia there is a range of education and training opportunities that seeks to meet these workforce needs. This range of programs reflects both the multi-disciplinary characteristic of health informatics and its wide application within the healthcare environment. We need to discuss the role of each program or type of program in developing a skilled and knowledgeable workforce, and in expanding the knowledge base of the discipline. This paper contributes to such a discussion by describing a pilot study that focused specifically on the role/impact of the University of Tasmania academic health informatics program. The study comprised an anonymous on-line survey followed by a small number of interviews. The online survey included closed questions which gathered quantitative data about Quantitative data were analysed using appropriate numerical methods such as response counts and/or percentages. Open-ended questions were analysed using thematic analysis. Qualitative data indicated that course graduates reside in every state and territory, with the majority being employed by the various state health services. The majority of respondents had moved into health informatics professions or into senior positions in health informatics. Eighty percent attributed this directly to their participation in the course. Respondents indicated a strong socio-technical orientation in their approach to health informatics. The program appears to be having an impact on the health informatics workforce, particularly in promoting a strong socio-technical focus. Evaluation of health informatics programs would enable the development of a comprehensive and complementary network of offerings that would meet the diverse needs for health informatics professionals in the healthcare and academic environment.

  9. NOSTOS: a paper-based ubiquitous computing healthcare environment to support data capture and collaboration.

    PubMed

    Bång, Magnus; Larsson, Anders; Eriksson, Henrik

    2003-01-01

    In this paper, we present a new approach to clinical workplace computerization that departs from the window-based user interface paradigm. NOSTOS is an experimental computer-augmented work environment designed to support data capture and teamwork in an emergency room. NOSTOS combines multiple technologies, such as digital pens, walk-up displays, headsets, a smart desk, and sensors to enhance an existing paper-based practice with computer power. The physical interfaces allow clinicians to retain mobile paper-based collaborative routines and still benefit from computer technology. The requirements for the system were elicited from situated workplace studies. We discuss the advantages and disadvantages of augmenting a paper-based clinical work environment.

  10. Person-generated Data in Self-quantification. A Health Informatics Research Program.

    PubMed

    Gray, Kathleen; Martin-Sanchez, Fernando J; Lopez-Campos, Guillermo H; Almalki, Manal; Merolli, Mark

    2017-01-09

    The availability of internet-connected mobile, wearable and ambient consumer technologies, direct-to-consumer e-services and peer-to-peer social media sites far outstrips evidence about the efficiency, effectiveness and efficacy of using them in healthcare applications. The aim of this paper is to describe one approach to build a program of health informatics research, so as to generate rich and robust evidence about health data and information processing in self-quantification and associated healthcare and health outcomes. The paper summarises relevant health informatics research approaches in the literature and presents an example of developing a program of research in the Health and Biomedical Informatics Centre (HaBIC) at the University of Melbourne. The paper describes this program in terms of research infrastructure, conceptual models, research design, research reporting and knowledge sharing. The paper identifies key outcomes from integrative and multiple-angle approaches to investigating the management of information and data generated by use of this Centre's collection of wearable, mobiles and other devices in health self-monitoring experiments. These research results offer lessons for consumers, developers, clinical practitioners and biomedical and health informatics researchers. Health informatics is increasingly called upon to make sense of emerging self-quantification and other digital health phenomena that are well beyond the conventions of healthcare in which the field of informatics originated and consolidated. To make a substantial contribution to optimise the aims, processes and outcomes of health self-quantification needs further work at scale in multi-centre collaborations for this Centre and for health informatics researchers generally.

  11. The Question Concerning Narration of Self in Health Informatics.

    PubMed

    Botin, Lars

    2015-01-01

    Narration is central, even crucial, when it comes to embracing the whole individual, continuity of care, and responsible (ethical) handling of the technological construction of the self that takes place in health informatics. This paper will deal with the role of narratives in the construction of health informatics platforms and how different voices should have space for speech on these platforms. Theoretically the paper takes an outset in the actant model for narratives by the French-Lithuanian theorist of linguistics and literature A.-J. Greimas and post-phenomenological readings of human-technology interactions. The main assumption is that certain interactions and voices are absent from the construction of health informatics platforms, because regarded as outside the text of computational and medical practice and expertise. This has implications for what concerns meaning and understanding regarding both the actual users (physicians and medical staff) and excluded users (patients and citizens).

  12. Demographic Differences and Attitudes toward Computers among Healthcare Professionals Earning Continuing Education Credits On-Line

    ERIC Educational Resources Information Center

    Mitra, Ananda; Joshi, Suchi; Kemper, Kathi J.; Woods, Charles; Gobble, Jessica

    2006-01-01

    The use of technology, such as the Web, has become an increasingly popular means for disseminating professional development and continuing education. Often, these methods assume a set of attitudes and skills related to the computer as a pedagogic and communication tool. We argue that it is, however, important to measure the actual attitudes of…

  13. Systems Medicine: The Future of Medical Genomics, Healthcare, and Wellness.

    PubMed

    Saqi, Mansoor; Pellet, Johann; Roznovat, Irina; Mazein, Alexander; Ballereau, Stéphane; De Meulder, Bertrand; Auffray, Charles

    2016-01-01

    Recent advances in genomics have led to the rapid and relatively inexpensive collection of patient molecular data including multiple types of omics data. The integration of these data with clinical measurements has the potential to impact on our understanding of the molecular basis of disease and on disease management. Systems medicine is an approach to understanding disease through an integration of large patient datasets. It offers the possibility for personalized strategies for healthcare through the development of a new taxonomy of disease. Advanced computing will be an important component in effectively implementing systems medicine. In this chapter we describe three computational challenges associated with systems medicine: disease subtype discovery using integrated datasets, obtaining a mechanistic understanding of disease, and the development of an informatics platform for the mining, analysis, and visualization of data emerging from translational medicine studies.

  14. Computerization of Mental Health Integration complexity scores at Intermountain Healthcare.

    PubMed

    Oniki, Thomas A; Rodrigues, Drayton; Rahman, Noman; Patur, Saritha; Briot, Pascal; Taylor, David P; Wilcox, Adam B; Reiss-Brennan, Brenda; Cannon, Wayne H

    2014-01-01

    Intermountain Healthcare's Mental Health Integration (MHI) Care Process Model (CPM) contains formal scoring criteria for assessing a patient's mental health complexity as "mild," "medium," or "high" based on patient data. The complexity score attempts to assist Primary Care Physicians in assessing the mental health needs of their patients and what resources will need to be brought to bear. We describe an effort to computerize the scoring. Informatics and MHI personnel collaboratively and iteratively refined the criteria to make them adequately explicit and reflective of MHI objectives. When tested on retrospective data of 540 patients, the clinician agreed with the computer's conclusion in 52.8% of the cases (285/540). We considered the analysis sufficiently successful to begin piloting the computerized score in prospective clinical care. So far in the pilot, clinicians have agreed with the computer in 70.6% of the cases (24/34).

  15. Meaningful use and meaningful curricula: a survey of health informatics programmes in the USA.

    PubMed

    Koong, Kai S; Ngafeeson, Madison N; Liu, Lai C

    2012-01-01

    The introduction of the US government's Meaningful Use criteria carries with it many implications including the training curriculum of healthcare personnel. This study examines 108 health informatics degree programmes across the USA. First, the courses offered are identified and classified into generic classes. Next, these generic groupings are mapped to two important frameworks: the Learning to Manage Health Information (LMHI) academic framework; and the Meaningful Use criteria policy framework. Results suggest that while current curricula seemed acceptable in addressing Meaningful Use Stage 1 objective, there was insufficient evidence that these curricula could support Meaningful Use Stage 2 and Stage 3. These findings are useful to both curriculum developers and the healthcare industry. Curriculum developers in health informatics must match curriculum to the emerging healthcare policy goals and the healthcare industry must now recruit highly trained and qualified personnel to help achieve these new goals of data-capture, data-sharing and intelligence.

  16. Understanding public health informatics competencies for mid-tier public health practitioners: a web-based survey.

    PubMed

    Hsu, Chiehwen Ed; Dunn, Kim; Juo, Hsin-Hsuan; Danko, Rick; Johnson, Drew; Mas, Francisco Soto; Sheu, Jiunn-Jye

    2012-03-01

    literature indicating that there exists an expressed need for clarification of the public health practitioner's job-specific informatics competency. Findings of expressed needs for basic computer literacy training and community-based practice were consistent with those of the literature. Additional training and resources should be allocated to address the competency of leadership, management, community-based practice and policy advocacy skills for mid-tier public health practitioners to perform their jobs more effectively. Only when healthcare organizations properly identify PHI competency needs will public health practitioners likely improve their overall informatics skills while improving diversification for contribution across multiple settings.

  17. 77 FR 38294 - Patient Safety Organizations: Delisting for Cause for Medical Informatics

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety Organizations: Delisting for...: Notice of Delisting. SUMMARY: AHRQ has delisted Medical Informatics as a Patient Safety Organization (PSO... (Patient Safety Act) authorizes the listing of PSOs, which are entities or component organizations...

  18. QC Validator 2.0: a computer program for automatic selection of statistical QC procedures for applications in healthcare laboratories.

    PubMed

    Westgard, J O; Stein, B; Westgard, S A; Kennedy, R

    1997-07-01

    A computer program has been developed to help healthcare laboratories select statistical control rules and numbers of control measurements that will assure the quality required by clinical decision interval criteria or analytical total error criteria. The program (QC Validator 2.0 (QC Validator and OPSpecs are registered trademarks of Westgard Quality Corporation, which has applied for a patent for this automatic QC selection process. Windows is a registered trademark of Microsoft Corporation)) runs on IBM compatible personal computers operating under Windows. The user enters information about the method imprecision, inaccuracy, and expected frequency of errors, defines the quality required in terms of a medically important change (clinical decision interval) or an analytical allowable total error, then initiates automatic selection by indicating the number of control materials that are to be analyzed (1, 2, or 3). The program returns with a chart of operating specifications (OPSpecs chart) that displays the selected control rules and numbers of control measurements. The automatic QC selection process is based on user editable criteria for the types of control rules that can be implemented by the laboratory, total numbers of control measurements that are practical, maximum levels of false rejections that can be tolerated and minimum levels of error detection that are acceptable for detection of medically important systematic or random errors.

  19. Medical Informatics and the Science of Cognition

    PubMed Central

    Patel, Vimla L.; Kaufman, David R.

    1998-01-01

    Recent developments in medical informatics research have afforded possibilities for great advances in health care delivery. These exciting opportunities also present formidable challenges to the implementation and integration of technologies in the workplace. As in most domains, there is a gulf between technologic artifacts and end users. Since medical practice is a human endeavor, there is a need for bridging disciplines to enable clinicians to benefit from rapid technologic advances. This in turn necessitates a broadening of disciplinary boundaries to consider cognitive and social factors pertaining to the design and use of technology. The authors argue for a place of prominence for cognitive science. Cognitive science provides a framework for the analysis and modeling of complex human performance and has considerable applicability to a range of issues in informatics. Its methods have been employed to illuminate different facets of design and implementation. This approach has also yielded insights into the mechanisms and processes involved in collaborative design. Cognitive scientific methods and theories are illustrated in the context of two examples that examine human-computer interaction in medical contexts and computer-mediated collaborative processes. The framework outlined in this paper can be used to refine the process of iterative design, end-user training, and productive practice. PMID:9824797

  20. Driving the Profession of Health Informatics: The Australasian College of Health Informatics.

    PubMed

    Pearce, Christopher; Veil, Klaus; Williams, Peter; Cording, Andrew; Liaw, Siaw-Teng; Grain, Heather

    2015-01-01

    Across the world, bodies representing health informatics or promoting health informatics are either societies of common interest or universities with health informatics courses/departments. Professional colleges in Health Informatics (similar to the idea of professional colleges in other health fields) are few and far between. The Australasian College of Health Informatics has been in existence since 2001, and has an increasing membership of nearly 100 fellows and members, acting as a national focal point for the promotion of Health Informatics in Australasia. Describing the activities of the college, this article demonstrates a need for increasing professionalization of Health informatics beyond the current structures.

  1. Health Informatics Scientists' Perception About Big Data Technology.

    PubMed

    Minou, John; Routsis, Fotios; Gallos, Parisis; Mantas, John

    2017-01-01

    The aim of this paper is to present the perceptions of the Health Informatics Scientists about the Big Data Technology in Healthcare. An empirical study was conducted among 46 scientists to assess their knowledge about the Big Data Technology and their perceptions about using this technology in healthcare. Based on the study findings, 86.7% of the scientists had knowledge of Big data Technology. Furthermore, 59.1% of the scientists believed that Big Data Technology refers to structured data. Additionally, 100% of the population believed that Big Data Technology can be implemented in Healthcare. Finally, the majority does not know any cases of use of Big Data Technology in Greece while 57,8% of the them mentioned that they knew use cases of the Big Data Technology abroad.

  2. Case study: factors in defining the nurse informatics specialist role.

    PubMed

    Hassett, Margaret

    2006-01-01

    Healthcare organizations, consultant groups, vendor companies, and academic institutions feel the challenge to enhance user experiences with information systems. To meet this challenge, organizations and companies are looking to better understand and utilize a variety of informatics roles to further marketing, business, or healthcare goals. Nursing is one practice area that can support the successful integration of information systems development, implementation, support, and user experience. However, the definition and development of such a role or position has met with mixed success. This article explores some of the issues and influences related to the role's development. The issues, impacts, and influences have been identified based on healthcare business assessment, job description analysis, employment and project evaluations, and professional standards set by the American Nurses Association.

  3. Contextual Computing: A Bluetooth based approach for tracking healthcare providers in the emergency room.

    PubMed

    Frisby, Joshua; Smith, Vernon; Traub, Stephen; Patel, Vimla L

    2017-01-01

    Hospital Emergency Departments (EDs) frequently experience crowding. One of the factors that contributes to this crowding is the "door to doctor time", which is the time from a patient's registration to when the patient is first seen by a physician. This is also one of the Meaningful Use (MU) performance measures that emergency departments report to the Center for Medicare and Medicaid Services (CMS). Current documentation methods for this measure are inaccurate due to the imprecision in manual data collection. We describe a method for automatically (in real time) and more accurately documenting the door to physician time. Using sensor-based technology, the distance between the physician and the computer is calculated by using the single board computers installed in patient rooms that log each time a Bluetooth signal is seen from a device that the physicians carry. This distance is compared automatically with the accepted room radius to determine if the physicians are present in the room at the time logged to provide greater precision. The logged times, accurate to the second, were compared with physicians' handwritten times, showing automatic recordings to be more precise. This real time automatic method will free the physician from extra cognitive load of manually recording data. This method for evaluation of performance is generic and can be used in any other setting outside the ED, and for purposes other than measuring physician time. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Why bioimage informatics matters.

    PubMed

    Myers, Gene

    2012-06-28

    Driven by the importance of spatial and physical factors in cellular processes and the size and complexity of modern image data, computational analysis of biological imagery has become a vital emerging sub-discipline of bioinformatics and computer vision.

  5. Bioimage informatics for experimental biology

    PubMed Central

    Swedlow, Jason R.; Goldberg, Ilya G.; Eliceiri, Kevin W.

    2012-01-01

    Over the last twenty years there have been great advances in light microscopy with the result that multi-dimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition are reportedly frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remains largely unsolved. Like the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges and discuss our own vision for future development of bioimage informatics solution. PMID:19416072

  6. Bioimage informatics for experimental biology.

    PubMed

    Swedlow, Jason R; Goldberg, Ilya G; Eliceiri, Kevin W

    2009-01-01

    Over the past twenty years there have been great advances in light microscopy with the result that multidimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition is reported frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remain largely unsolved. As in the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges, and discuss our own vision for future development of bioimage informatics solutions.

  7. Healthcare information technology and economics

    PubMed Central

    Bates, David W; Berner, Eta S; Bernstam, Elmer V; Covvey, H Dominic; Frisse, Mark E; Graf, Thomas; Greenes, Robert A; Hoffer, Edward P; Kuperman, Gil; Lehmann, Harold P; Liang, Louise; Middleton, Blackford; Omenn, Gilbert S; Ozbolt, Judy

    2013-01-01

    At the 2011 American College of Medical Informatics (ACMI) Winter Symposium we studied the overlap between health IT and economics and what leading healthcare delivery organizations are achieving today using IT that might offer paths for the nation to follow for using health IT in healthcare reform. We recognized that health IT by itself can improve health value, but its main contribution to health value may be that it can make possible new care delivery models to achieve much larger value. Health IT is a critically important enabler to fundamental healthcare system changes that may be a way out of our current, severe problem of rising costs and national deficit. We review the current state of healthcare costs, federal health IT stimulus programs, and experiences of several leading organizations, and offer a model for how health IT fits into our health economic future. PMID:22781191

  8. Healthcare information technology and economics.

    PubMed

    Payne, Thomas H; Bates, David W; Berner, Eta S; Bernstam, Elmer V; Covvey, H Dominic; Frisse, Mark E; Graf, Thomas; Greenes, Robert A; Hoffer, Edward P; Kuperman, Gil; Lehmann, Harold P; Liang, Louise; Middleton, Blackford; Omenn, Gilbert S; Ozbolt, Judy

    2013-01-01

    At the 2011 American College of Medical Informatics (ACMI) Winter Symposium we studied the overlap between health IT and economics and what leading healthcare delivery organizations are achieving today using IT that might offer paths for the nation to follow for using health IT in healthcare reform. We recognized that health IT by itself can improve health value, but its main contribution to health value may be that it can make possible new care delivery models to achieve much larger value. Health IT is a critically important enabler to fundamental healthcare system changes that may be a way out of our current, severe problem of rising costs and national deficit. We review the current state of healthcare costs, federal health IT stimulus programs, and experiences of several leading organizations, and offer a model for how health IT fits into our health economic future.

  9. Using informatics to capture older adults’ wellness

    PubMed Central

    Demiris, George; Thompson, Hilaire J.; Reeder, Blaine; Wilamowska, Katarzyna; Zaslavsky, Oleg

    2014-01-01

    Purpose The aim of this paper is to demonstrate how informatics applications can support the assessment and visualization of older adults’ wellness. A theoretical framework is presented that informs the design of a technology enhanced screening platform for wellness. We highlight an ongoing pilot demonstration in an assisted living facility where a community room has been converted into a living laboratory for the use of diverse technologies (including a telehealth component to capture vital signs and customized questionnaires, a gait analysis component and cognitive assessment software) to assess the multiple aspects of wellness of older adults. Methods A demonstration project was introduced in an independent retirement community to validate our theoretical framework of informatics and wellness assessment for older adults. Subjects are being recruited to attend a community room and engage in the use of diverse technologies to assess cognitive performance, physiological and gait variables as well as psychometrics pertaining to social and spiritual components of wellness for a period of eight weeks. Data are integrated from various sources into one study database and different visualization approaches are pursued to efficiently display potential correlations between different parameters and capture overall trends of wellness. Results Preliminary findings indicate that older adults are willing to participate in technology-enhanced interventions and embrace different information technology applications given appropriate and customized training and hardware and software features that address potential functional limitations and inexperience with computers. Conclusion Informatics can advance health care for older adults and support a holistic assessment of older adults’ wellness. The described framework can support decision making, link formal and informal caregiving networks and identify early trends and patterns that if addressed could reduce adverse health events

  10. Informatics in radiology (infoRAD): free DICOM image viewing and processing software for the Macintosh computer: what's available and what it can do for you.

    PubMed

    Escott, Edward J; Rubinstein, David

    2004-01-01

    It is often necessary for radiologists to use digital images in presentations and conferences. Most imaging modalities produce images in the Digital Imaging and Communications in Medicine (DICOM) format. The image files tend to be large and thus cannot be directly imported into most presentation software, such as Microsoft PowerPoint; the large files also consume storage space. There are many free programs that allow viewing and processing of these files on a personal computer, including conversion to more common file formats such as the Joint Photographic Experts Group (JPEG) format. Free DICOM image viewing and processing software for computers running on the Microsoft Windows operating system has already been evaluated. However, many people use the Macintosh (Apple Computer) platform, and a number of programs are available for these users. The World Wide Web was searched for free DICOM image viewing or processing software that was designed for the Macintosh platform or is written in Java and is therefore platform independent. The features of these programs and their usability were evaluated. There are many free programs for the Macintosh platform that enable viewing and processing of DICOM images.

  11. The role of public health informatics in enhancing public health surveillance.

    PubMed

    Savel, Thomas G; Foldy, Seth

    2012-07-27

    Public health surveillance has benefitted from, and has often pioneered, informatics analyses and solutions. However, the field of informatics also serves other facets of public health including emergency response, environmental health, nursing, and administration. Public health informatics has been defined as the systematic application of information and computer science and technology to public health practice, research, and learning. It is an interdisciplinary profession that applies mathematics, engineering, information science, and related social sciences (e.g., decision analysis) to important public health problems and processes. Public health informatics is a subdomain of the larger field known as biomedical or health informatics. Health informatics is not synonymous with the term health information technology (IT). Although the concept of health IT encompasses the use of technology in the field of health care, one can think of health informatics as defining the science, the how and why, behind health IT. For example, health IT professionals should be able to resolve infrastructure problems with a network connection, whereas trained public health informaticians should be able to support public health decisions by facilitating the availability of timely, relevant, and high-quality information. In other words, they should always be able to provide advice on methods for achieving a public health goal faster, better, or at a lower cost by leveraging computer science, information science, or technology.

  12. Fuzzy Computing Model of Activity Recognition on WSN Movement Data for Ubiquitous Healthcare Measurement.

    PubMed

    Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun

    2016-12-03

    Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC.

  13. Fuzzy Computing Model of Activity Recognition on WSN Movement Data for Ubiquitous Healthcare Measurement

    PubMed Central

    Chiang, Shu-Yin; Kan, Yao-Chiang; Chen, Yun-Shan; Tu, Ying-Ching; Lin, Hsueh-Chun

    2016-01-01

    Ubiquitous health care (UHC) is beneficial for patients to ensure they complete therapeutic exercises by self-management at home. We designed a fuzzy computing model that enables recognizing assigned movements in UHC with privacy. The movements are measured by the self-developed body motion sensor, which combines both accelerometer and gyroscope chips to make an inertial sensing node compliant with a wireless sensor network (WSN). The fuzzy logic process was studied to calculate the sensor signals that would entail necessary features of static postures and dynamic motions. Combinations of the features were studied and the proper feature sets were chosen with compatible fuzzy rules. Then, a fuzzy inference system (FIS) can be generated to recognize the assigned movements based on the rules. We thus implemented both fuzzy and adaptive neuro-fuzzy inference systems in the model to distinguish static and dynamic movements. The proposed model can effectively reach the recognition scope of the assigned activity. Furthermore, two exercises of upper-limb flexion in physical therapy were applied for the model in which the recognition rate can stand for the passing rate of the assigned motions. Finally, a web-based interface was developed to help remotely measure movement in physical therapy for UHC. PMID:27918482

  14. Development of national competency-based learning objectives "Medical Informatics" for undergraduate medical education.

    PubMed

    Röhrig, R; Stausberg, J; Dugas, M

    2013-01-01

    The aim of this project is to develop a catalogue of competency-based learning objectives "Medical Informatics" for undergraduate medical education (abbreviated NKLM-MI in German). The development followed a multi-level annotation and consensus process. For each learning objective a reason why a physician needs this competence was required. In addition, each objective was categorized according to the competence context (A = covered by medical informatics, B = core subject of medical informatics, C = optional subject of medical informatics), the competence level (1 = referenced knowledge, 2 = applied knowledge, 3 = routine knowledge) and a CanMEDS competence role (medical expert, communicator, collaborator, manager, health advocate, professional, scholar). Overall 42 objectives in seven areas (medical documentation and information processing, medical classifications and terminologies, information systems in healthcare, health telematics and telemedicine, data protection and security, access to medical knowledge and medical signal-/image processing) were identified, defined and consented. With the NKLM-MI the competences in the field of medical informatics vital to a first year resident physician are identified, defined and operationalized. These competencies are consistent with the recommendations of the International Medical Informatics Association (IMIA). The NKLM-MI will be submitted to the National Competence-Based Learning Objectives for Undergraduate Medical Education. The next step is implementation of these objectives by the faculties.

  15. Evidence-based Patient Choice and Consumer health informatics in the Internet age

    PubMed Central

    2001-01-01

    In this paper we explore current access to and barriers to health information for consumers. We discuss how computers and other developments in information technology are ushering in the era of consumer health informatics , and the potential that lies ahead. It is clear that we witness a period in which the public will have unprecedented ability to access information and to participate actively in evidence-based health care. We propose that consumer health informatics be regarded as a whole new academic discipline, one that should be devoted to the exploration of the new possibilities that informatics is creating for consumers in relation to health and health care issues. PMID:11720961

  16. Contemporary issues in transfusion medicine informatics

    PubMed Central

    Sharma, Gaurav; Parwani, Anil V.; Raval, Jay S.; Triulzi, Darrell J.; Benjamin, Richard J.; Pantanowitz, Liron

    2011-01-01

    The Transfusion Medicine Service (TMS) covers diverse clinical and laboratory-based services that must be delivered with accuracy, efficiency and reliability. TMS oversight is shared by multiple regulatory agencies that cover product manufacturing and validation standards geared toward patient safety. These demands present significant informatics challenges. Over the past few decades, TMS information systems have improved to better handle blood product manufacturing, inventory, delivery, tracking and documentation. Audit trails and access to electronic databases have greatly facilitated product traceability and biovigilance efforts. Modern blood bank computing has enabled novel applications such as the electronic crossmatch, kiosk-based blood product delivery systems, and self-administered computerized blood donor interview and eligibility determination. With increasing use of barcoding technology, there has been a marked improvement in patient and specimen identification. Moreover, the emergence of national and international labeling standards such as ISBT 128 have facilitated the availability, movement and tracking of blood products across national and international boundaries. TMS has only recently begun to leverage the electronic medical record to address quality issues in transfusion practice and promote standardized documentation within institutions. With improved technology, future growth is expected in blood bank automation and product labeling with applications such as radio frequency identification devices. This article reviews several of these key informatics issues relevant to the contemporary practice of TMS. PMID:21383927

  17. Contemporary issues in transfusion medicine informatics.

    PubMed

    Sharma, Gaurav; Parwani, Anil V; Raval, Jay S; Triulzi, Darrell J; Benjamin, Richard J; Pantanowitz, Liron

    2011-01-07

    The Transfusion Medicine Service (TMS) covers diverse clinical and laboratory-based services that must be delivered with accuracy, efficiency and reliability. TMS oversight is shared by multiple regulatory agencies that cover product manufacturing and validation standards geared toward patient safety. These demands present significant informatics challenges. Over the past few decades, TMS information systems have improved to better handle blood product manufacturing, inventory, delivery, tracking and documentation. Audit trails and access to electronic databases have greatly facilitated product traceability and biovigilance efforts. Modern blood bank computing has enabled novel applications such as the electronic crossmatch, kiosk-based blood product delivery systems, and self-administered computerized blood donor interview and eligibility determination. With increasing use of barcoding technology, there has been a marked improvement in patient and specimen identification. Moreover, the emergence of national and international labeling standards such as ISBT 128 have facilitated the availability, movement and tracking of blood products across national and international boundaries. TMS has only recently begun to leverage the electronic medical record to address quality issues in transfusion practice and promote standardized documentation within institutions. With improved technology, future growth is expected in blood bank automation and product labeling with applications such as radio frequency identification devices. This article reviews several of these key informatics issues relevant to the contemporary practice of TMS.

  18. Context sensitive health informatics: concepts, methods and tools.

    PubMed

    Kuziemsky, Craig; Nøhr, Christian; Aarts, Jos; Jaspers, Monique; Beuscart-Zephir, Marie-Catherine

    2013-01-01

    Context is a key consideration when designing and evaluating health information technology (HIT) and cannot be overstated. Unintended consequences are common post HIT implementation and even well designed technology may not achieve desired outcomes because of contextual issues. While context should be considered in the design and evaluation of health information systems (HISs) there is a shortcoming of empirical research on contextual aspects of HIT. This conference integrates the sociotechnical and Human-Centered-Design (HCD) approaches and showcases current research on context sensitive health informatics. The papers and presentations outlines theories and models for studying contextual issues and insights on how we can better design HIT to accommodate different healthcare contexts.

  19. Medical Informatics in Croatia – a Historical Survey

    PubMed Central

    Dezelic, Gjuro; Kern, Josipa; Petrovecki, Mladen; Ilakovac, Vesna; Hercigonja-Szekeres, Mira

    2014-01-01

    A historical survey of medical informatics (MI) in Croatia is presented from the beginnings in the late sixties of the 20th century to the present time. Described are MI projects, applications in clinical medicine and public health, start and development of MI research and education, beginnings of international cooperation, establishment of the Croatian Society for MI and its membership to EFMI and IMIA. The current status of computerization of the Croatian healthcare system is sketched as well as the present graduate and postgraduate study MI curricula. The information contained in the paper shows that MI in Croatia developed and still develops along with its advancement elsewhere. PMID:24648620

  20. Policy Implications of Education Informatics

    ERIC Educational Resources Information Center

    Carr, Jo Ann; O'Brien, Nancy P.

    2010-01-01

    Background/Context: This concluding article identifies the policy implications of education informatics and explores impacts of current copyright laws, legislative structures, publishing practices, and education organizations. Synthesizing the discussions in the preceding articles, this article highlights the importance of designing information…

  1. Policy Implications of Education Informatics

    ERIC Educational Resources Information Center

    Carr, Jo Ann; O'Brien, Nancy P.

    2010-01-01

    Background/Context: This concluding article identifies the policy implications of education informatics and explores impacts of current copyright laws, legislative structures, publishing practices, and education organizations. Synthesizing the discussions in the preceding articles, this article highlights the importance of designing information…

  2. Informatics in radiology: Hesse rendering for computer-aided visualization and analysis of anomalies at chest CT and breast MR imaging.

    PubMed

    Wiemker, Rafael; Dharaiya, Ekta D; Bülow, Thomas

    2012-01-01

    A volume-rendering (VR) technique known as Hesse rendering applies image-enhancement filters to three-dimensional imaging volumes and depicts the filter responses in a color-coded fashion. Unlike direct VR, which makes use of intensities, Hesse rendering operates on the basis of shape properties, such that nodular structures in the resulting renderings have different colors than do tubular structures and thus are easily visualized. The renderings are mouse-click sensitive and can be used to navigate to locations of possible anomalies in the original images. Hesse rendering is meant to complement rather than replace conventional section-by-section viewing or VR. Although it is a pure visualization technique that involves no internal segmentation or explicit object detection, Hesse rendering, like computer-aided detection, may be effective for quickly calling attention to points of interest in large stacks of images and for helping radiologists to avoid oversights.

  3. Behavioral Signal Processing: Deriving Human Behavioral Informatics From Speech and Language: Computational techniques are presented to analyze and model expressed and perceived human behavior-variedly characterized as typical, atypical, distressed, and disordered-from speech and language cues and their applications in health, commerce, education, and beyond.

    PubMed

    Narayanan, Shrikanth; Georgiou, Panayiotis G

    2013-02-07

    The expression and experience of human behavior are complex and multimodal and characterized by individual and contextual heterogeneity and variability. Speech and spoken language communication cues offer an important means for measuring and modeling human behavior. Observational research and practice across a variety of domains from commerce to healthcare rely on speech- and language-based informatics for crucial assessment and diagnostic information and for planning and tracking response to an intervention. In this paper, we describe some of the opportunities as well as emerging methodologies and applications of human behavioral signal processing (BSP) technology and algorithms for quantitatively understanding and modeling typical, atypical, and distressed human behavior with a specific focus on speech- and language-based communicative, affective, and social behavior. We describe the three important BSP components of acquiring behavioral data in an ecologically valid manner across laboratory to real-world settings, extracting and analyzing behavioral cues from measured data, and developing models offering predictive and decision-making support. We highlight both the foundational speech and language processing building blocks as well as the novel processing and modeling opportunities. Using examples drawn from specific real-world applications ranging from literacy assessment and autism diagnostics to psychotherapy for addiction and marital well being, we illustrate behavioral informatics applications of these signal processing techniques that contribute to quantifying higher level, often subjectively described, human behavior in a domain-sensitive fashion.

  4. Big Data: Are Biomedical and Health Informatics Training Programs Ready?

    PubMed Central

    Hersh, W.; Ganesh, A. U. Jai

    2014-01-01

    Summary Objectives The growing volume and diversity of health and biomedical data indicate that the era of Big Data has arrived for healthcare. This has many implications for informatics, not only in terms of implementing and evaluating information systems, but also for the work and training of informatics researchers and professionals. This article addresses the question: What do biomedical and health informaticians working in analytics and Big Data need to know? Methods We hypothesize a set of skills that we hope will be discussed among academic and other informaticians. Results The set of skills includes: Programming - especially with data-oriented tools, such as SQL and statistical programming languages; Statistics - working knowledge to apply tools and techniques; Domain knowledge - depending on one’s area of work, bioscience or health care; and Communication - being able to understand needs of people and organizations, and articulate results back to them. Conclusions Biomedical and health informatics educational programs must introduce concepts of analytics, Big Data, and the underlying skills to use and apply them into their curricula. The development of new coursework should focus on those who will become experts, with training aiming to provide skills in “deep analytical talent” as well as those who need knowledge to support such individuals. PMID:25123740

  5. Advanced Spacesuit Informatics Software Design for Power, Avionics and Software Version 2.0

    NASA Technical Reports Server (NTRS)

    Wright, Theodore W.

    2016-01-01

    A description of the software design for the 2016 edition of the Informatics computer assembly of the NASAs Advanced Extravehicular Mobility Unit (AEMU), also called the Advanced Spacesuit. The Informatics system is an optional part of the spacesuit assembly. It adds a graphical interface for displaying suit status, timelines, procedures, and warning information. It also provides an interface to the suit mounted camera for recording still images, video, and audio field notes.

  6. A stimulus to define informatics and health information technology

    PubMed Central

    2009-01-01

    Background Despite the growing interest by leaders, policy makers, and others, the terminology of health information technology as well as biomedical and health informatics is poorly understood and not even agreed upon by academics and professionals in the field. Discussion The paper, presented as a Debate to encourage further discussion and disagreement, provides definitions of the major terminology used in biomedical and health informatics and health information technology. For informatics, it focuses on the words that modify the term as well as individuals who practice the discipline. Other categories of related terms are covered as well, from the associated disciplines of computer science, information technolog and health information management to the major application categories of applications used. The discussion closes with a classification of individuals who work in the largest segment of the field, namely clinical informatics. Summary The goal of presenting in Debate format is to provide a starting point for discussion to reach a documented consensus on the definition and use of these terms. PMID:19445665

  7. Clinical health informatics education for a 21st Century World.

    PubMed

    Liaw, Siaw Teng; Gray, Kathleen

    2010-01-01

    This chapter gives an educational overview of: * health informatics competencies in medical, nursing and allied clinical health professions * health informatics learning cultures and just-in-time health informatics training in clinical work settings * major considerations in selecting or developing health informatics education and training programs for local implementation * using elearning effectively to meet the objectives of health informatics education.

  8. People and ideas in medical informatics - a half century review.

    PubMed

    van Bemmel, J H

    2011-01-01

    OBJECTIVE. Reviewing the onset and the rapid changes to make realistic predictions on the future of medical informatics. METHODS. Pointing to the contributions of the early pioneers, who had their roots in other disciplines and by illustrating that from the onset an interdisciplinary approach was characteristic for our field. RESULTS. Some of the reasons for the changes in medical informatics are that nobody was able to predict the advent of the personal computer in the 1970s, the world-wide web in 1991, and the public start of the Internet in 1992, but foremost that nobody expected that it was not primarily the hardware or the software, but human factors that would be crucial for successful applications of computers in health care. In the past sometimes unrealistic expectations were held, such as on the impact of medical decision-support systems, or on the overly optimistic contributions of electronic health records. Although the technology is widely available, some applications appear to be far more complex than expected. Health care processes can seldom be fully standardized. Humans enter at least in two very different roles in the loop of information processing: as subjects conducting care - the clinicians - and as subjects that are the objects of care - the patients. CONCLUSIONS. Medical informatics lacks a specific methodology; methods are borrowed from adjacent disciplines such as physics, mathematics and, of course, computer science. Human factors play a major role in applying computers in health care. Everyone pursuing a career in biomedical informatics needs to be very aware of this. It is to be expected that the quality of health care will increasingly be assessed by computer systems to fulfill the requirements of medical evidence.

  9. 2016 Year-in-Review of Clinical and Consumer Informatics: Analysis and Visualization of Keywords and Topics.

    PubMed

    Park, Hyeoun-Ae; Lee, Joo Yun; On, Jeongah; Lee, Ji Hyun; Jung, Hyesil; Park, Seul Ki

    2017-04-01

    The objective of this study was to review and visualize the medical informatics field over the previous 12 months according to the frequencies of keywords and topics in papers published in the top four journals in the field and in Healthcare Informatics Research (HIR), an official journal of the Korean Society of Medical Informatics. A six-person team conducted an extensive review of the literature on clinical and consumer informatics. The literature was searched using keywords employed in the American Medical Informatics Association year-in-review process and organized into 14 topics used in that process. Data were analyzed using word clouds, social network analysis, and association rules. The literature search yielded 370 references and 1,123 unique keywords. 'Electronic Health Record' (EHR) (78.6%) was the most frequently appearing keyword in the articles published in the five studied journals, followed by 'telemedicine' (2.1%). EHR (37.6%) was also the most frequently studied topic area, followed by clinical informatics (12.0%). However, 'telemedicine' (17.0%) was the most frequently appearing keyword in articles published in HIR, followed by 'telecommunications' (4.5%). Telemedicine (47.1%) was the most frequently studied topic area, followed by EHR (14.7%). The study findings reflect the Korean government's efforts to introduce telemedicine into the Korean healthcare system and reactions to this from the stakeholders associated with telemedicine.

  10. Two h-Index Benchmarks for Evaluating the Publication Performance of Medical Informatics Researchers

    PubMed Central

    Arbuckle, Luk; Jonker, Elizabeth; Anderson, Kevin

    2012-01-01

    Background The h-index is a commonly used metric for evaluating the publication performance of researchers. However, in a multidisciplinary field such as medical informatics, interpreting the h-index is a challenge because researchers tend to have diverse home disciplines, ranging from clinical areas to computer science, basic science, and the social sciences, each with different publication performance profiles. Objective To construct a reference standard for interpreting the h-index of medical informatics researchers based on the performance of their peers. Methods Using a sample of authors with articles published over the 5-year period 2006–2011 in the 2 top journals in medical informatics (as determined by impact factor), we computed their h-index using the Scopus database. Percentiles were computed to create a 6-level benchmark, similar in scheme to one used by the US National Science Foundation, and a 10-level benchmark. Results The 2 benchmarks can be used to place medical informatics researchers in an ordered category based on the performance of their peers. A validation exercise mapped the benchmark levels to the ranks of medical informatics academic faculty in the United States. The 10-level benchmark tracked academic rank better (with no ties) and is therefore more suitable for practical use. Conclusions Our 10-level benchmark provides an objective basis to evaluate and compare the publication performance of medical informatics researchers with that of their peers using the h-index. PMID:23079075

  11. A primer on precision medicine informatics.

    PubMed

    Sboner, Andrea; Elemento, Olivier

    2016-01-01

    In this review, we describe key components of a computational infrastructure for a precision medicine program that is based on clinical-grade genomic sequencing. Specific aspects covered in this review include software components and hardware infrastructure, reporting, integration into Electronic Health Records for routine clinical use and regulatory aspects. We emphasize informatics components related to reproducibility and reliability in genomic testing, regulatory compliance, traceability and documentation of processes, integration into clinical workflows, privacy requirements, prioritization and interpretation of results to report based on clinical needs, rapidly evolving knowledge base of genomic alterations and clinical treatments and return of results in a timely and predictable fashion. We also seek to differentiate between the use of precision medicine in germline and cancer. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Informatics competencies for nurses at four levels of practice.

    PubMed

    Staggers, N; Gassert, C A; Curran, C

    2001-10-01

    Valid and comprehensive nursing informatics (NI) competencies currently are lacking. Meanwhile, nursing leaders are emphasizing the need to include NI in nursing curricula, as well as within the roles of practicing nurses in all settings. This article presents the initial work of a team of NI experts toward development of a valid and reliable set of NI competencies. Previous work primarily has focused on computer-related skills, rather than examining a broad definition of informatics competencies. For this current work, NI competencies encompass all skills, not only computer-related skills, as well as knowledge and attitudes needed by nurses. The first two authors created a database of NI competencies from the existing literature. A larger panel of NI experts then affirmed, modified, added, or deleted competencies from this database. Competencies were placed into four distinct skill levels. Definitions of each skill level and an initial master list of competencies are provided.

  13. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    PubMed Central

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M.; King, Andrew J.; Draper, Amie J.; Handen, Adam L.; Fisher, Arielle M.; Becich, Michael J.; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine. PMID:26955500

  14. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    PubMed

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  15. Quantitative and Qualitative Evaluation of The Structural Designing of Medical Informatics Dynamic Encyclopedia

    PubMed Central

    Safdari, Reza; Shahmoradi, Leila; Hosseini-beheshti, Molouk-sadat; Nejad, Ahmadreza Farzaneh; Hosseiniravandi, Mohammad

    2015-01-01

    Introduction: Encyclopedias and their compilation have become so prevalent as a valid cultural medium in the world. The daily development of computer industry and the expansion of various sciences have made indispensable the compilation of electronic, specialized encyclopedias, especially the web-based ones. Materials and Methods: This is an applied-developmental study conducted in 2014. First, the main terms in the field of medical informatics were gathered using MeSH Online 2014 and the supplementary terms of each were determined, and then the tree diagram of the terms was drawn based on their relationship in MeSH. Based on the studies done by the researchers, the tree diagram of the encyclopedia was drawn with respect to the existing areas in this field, and the terms gathered were put in related domains. Findings: In MeSH, 75 preferred terms together with 249 supplementary ones were indexed. One of the informatics’ sub-branches is biomedical informatics and health which itself consists of three sub-divisions of bioinformatics, clinical informatics, and health informatics. Medical informatics which is a subdivision of clinical informatics has developed from the three fields of medical sciences, management and social sciences, and computational sciences and mathematics. Results and Discussion: Medical Informatics is created of confluence and fusion and applications of the three major scientific branches include health and biological sciences, social sciences and management sciences, computing and mathematical sciences, and according to that the structure of MeSH is weak for future development of Encyclopedia of Medical Informatics. PMID:26635440

  16. A New Informatics Geography.

    PubMed

    Coiera, E

    2016-11-10

    Anyone with knowledge of information systems has experienced frustration when it comes to system implementation or use. Unanticipated challenges arise frequently and unanticipated consequences may follow. Working from first principles, to understand why information technology (IT) is often challenging, identify which IT endeavors are more likely to succeed, and predict the best role that technology can play in different tasks and settings. The fundamental purpose of IT is to enhance our ability to undertake tasks, supplying new information that changes what we decide and ultimately what occurs in the world. The value of this information (VOI) can be calculated at different stages of the decision-making process and will vary depending on how technology is used. We can imagine a task space that describes the relative benefits of task completion by humans or computers and that contains specific areas where humans or computers are superior. There is a third area where neither is strong and a final joint workspace where humans and computers working in partnership produce the best results. By understanding that information has value and that VOI can be quantified, we can make decisions about how best to support the work we do. Evaluation of the expected utility of task completion by humans or computers should allow us to decide whether solutions should depend on technology, humans, or a partnership between the two.

  17. Translational informatics: an industry perspective.

    PubMed

    Cantor, Michael N

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health.

  18. Translational informatics: an industry perspective

    PubMed Central

    2012-01-01

    Translational informatics (TI) is extremely important for the pharmaceutical industry, especially as the bar for regulatory approval of new medications is set higher and higher. This paper will explore three specific areas in the drug development lifecycle, from tools developed by precompetitive consortia to standardized clinical data collection to the effective delivery of medications using clinical decision support, in which TI has a major role to play. Advancing TI will require investment in new tools and algorithms, as well as ensuring that translational issues are addressed early in the design process of informatics projects, and also given higher weight in funding or publication decisions. Ultimately, the source of translational tools and differences between academia and industry are secondary, as long as they move towards the shared goal of improving health. PMID:22237867

  19. Informatics Metrics and Measures for a Smart Public Health Systems Approach: Information Science Perspective

    PubMed Central

    Shea, Christopher Michael

    2017-01-01

    Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and capabilities to inform our modeling, measuring, and managing of health system “smartness.” Here, we introduce the concepts of organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public health informatics professional's toolkit. PMID:28167999

  20. Information and Communication Technology: Design, Delivery, and Outcomes from a Nursing Informatics Boot Camp

    PubMed

    Kleib, Manal; Simpson, Nicole; Rhodes, Beverly

    2016-05-31

    Information and communication technology (ICT) is integral in today’s healthcare as a critical piece of support to both track and improve patient and organizational outcomes. Facilitating nurses’ informatics competency development through continuing education is paramount to enhance their readiness to practice safely and accurately in technologically enabled work environments. In this article, we briefly describe progress in nursing informatics (NI) and share a project exemplar that describes our experience in the design, implementation, and evaluation of a NI educational event, a one-day boot camp format that was used to provide foundational knowledge in NI targeted primarily at frontline nurses in Alberta, Canada. We also discuss the project outcomes, including lessons learned and future implications. Overall, the boot camp was successful to raise nurses’ awareness about the importance of informatics in nursing practice.

  1. Informatics Metrics and Measures for a Smart Public Health Systems Approach: Information Science Perspective.

    PubMed

    Carney, Timothy Jay; Shea, Christopher Michael

    2017-01-01

    Public health informatics is an evolving domain in which practices constantly change to meet the demands of a highly complex public health and healthcare delivery system. Given the emergence of various concepts, such as learning health systems, smart health systems, and adaptive complex health systems, health informatics professionals would benefit from a common set of measures and capabilities to inform our modeling, measuring, and managing of health system "smartness." Here, we introduce the concepts of organizational complexity, problem/issue complexity, and situational awareness as three codependent drivers of smart public health systems characteristics. We also propose seven smart public health systems measures and capabilities that are important in a public health informatics professional's toolkit.

  2. Mission and Sustainability of Informatics for Integrating Biology and the Bedside (i2b2)

    PubMed Central

    Murphy, Shawn; Wilcox, Adam

    2014-01-01

    Introduction: A visible example of a successfully disseminated research project in the healthcare space is Informatics for Integrating Biology and the Bedside, or i2b2. The project serves to provide the software that can allow a researcher to do direct, self-serve queries against the electronic healthcare data form a hospital. The goals of these queries are to find cohorts of patients that fit specific profiles, while providing for patient privacy and discretion. Sustaining this resource and keeping its direction has always been a challenge, but ever more so as the ten year National Centers for Biomedical Computing (NCBCs) sunset their funding. Findings: Building on the i2b2 structures has helped the dissemination plans for grants leveraging it because it is a disseminated national resource. While this has not directly increased the support of i2b2 internally, it has increased the ability of institutions to leverage the resource and generally leads to increased institutional support. Discussion: The successful development, use, and dissemination i2b2 has been significant in clinical research and informatics. Its evolution has been from a local research data infrastructure to one disseminated more broadly than any other product of the National Centers for Biomedical Computing, and an infrastructure spawning larger investments than were originally used to create it. Throughout this, there were two main lessons about the benefits of dissemination: that people have great creativity in utilizing a resource in different ways and that broader system use can make the system more robust. One option for long-term sustainability of the central authority would be to translate the function to an industry partner. Another option currently being pursued is to create a foundation that would be a central authority for the project. Conclusion: Over the past 10 years, i2b2 has risen to be an important staple in the toolkit of health care researchers. There are now over 110 hospitals

  3. [Study of gene data mining based on informatics theory].

    PubMed

    Ang, Qing; Wang, Weidong; Wang, Guojing; Peng, Fulai

    2012-07-01

    By combining with informatics theory, ta system model consisting of feature selection which is based on redundancy and correlation is presented to develop disease classification research with five gene data set (NCI, Lymphoma, Lung, Leukemia, Colon). The result indicates that this modeling method can not only reduce data management computation amount, but also help confirming amount of features, further more improve classification accuracy, and the application of this model has a bright foreground in fields of disease analysis and individual treatment project establishment.

  4. Applying Informatics Knowledge to Create 3D Worlds

    NASA Astrophysics Data System (ADS)

    Weigend, Michael

    Designing three-dimensional models using a tool like Google SketchUp is an attractive and inspiring activity fostering spatial thinking and visual creativity. The basic functions of SketchUp are easy to learn (low threshold). But more demanding design projects require computational thinking. This paper discusses some informatics concepts 3D-desigers need to know to be able to use SketchUp efficiently.

  5. Icy: an open bioimage informatics platform for extended reproducible research.

    PubMed

    de Chaumont, Fabrice; Dallongeville, Stéphane; Chenouard, Nicolas; Hervé, Nicolas; Pop, Sorin; Provoost, Thomas; Meas-Yedid, Vannary; Pankajakshan, Praveen; Lecomte, Timothée; Le Montagner, Yoann; Lagache, Thibault; Dufour, Alexandre; Olivo-Marin, Jean-Christophe

    2012-06-28

    Current research in biology uses evermore complex computational and imaging tools. Here we describe Icy, a collaborative bioimage informatics platform that combines a community website for contributing and sharing tools and material, and software with a high-end visual programming framework for seamless development of sophisticated imaging workflows. Icy extends the reproducible research principles, by encouraging and facilitating the reusability, modularity, standardization and management of algorithms and protocols. Icy is free, open-source and available at http://icy.bioimageanalysis.org/.

  6. The Scope and Direction of Health Informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2001-01-01

    Health Informatics (HI) is a dynamic discipline based upon the medical sciences, information sciences, and cognitive sciences. Its domain is can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art" , and indicate the likely growth areas for health informatics. The sources of information utilized in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  7. The scope and direction of health informatics

    NASA Technical Reports Server (NTRS)

    McGinnis, Patrick J.

    2002-01-01

    Health Informatics (HI) is a dynamic discipline based on the medical sciences, information sciences, and cognitive sciences. Its domain can broadly be defined as medical information management. The purpose of this paper is to provide an overview of this domain, discuss the current "state of the art," and indicate the likely growth areas for health informatics. The sources of information used in this paper are selected publications from the literature of Health Informatics, HI 5300: Introduction to Health Informatics, which is a course from the Department of Health Informatics at the University of Texas Houston Health Sciences Center, and the author's personal experience in practicing telemedicine and implementing an electronic medical record at the NASA-Johnson Space Center. The conclusion is that the direction of Health Informatics is in the direction of data management, transfer, and representation via electronic medical records and the Internet.

  8. Rethinking the role and impact of health information technology: informatics as an interventional discipline.

    PubMed

    Payne, Philip R O; Lussier, Yves; Foraker, Randi E; Embi, Peter J

    2016-03-29

    Recent advances in the adoption and use of health information technology (HIT) have had a dramatic impact on the practice of medicine. In many environments, this has led to the ability to achieve new efficiencies and levels of safety. In others, the impact has been less positive, and is associated with both: 1) workflow and user experience dissatisfaction; and 2) perceptions of missed opportunities relative to the use of computational tools to enable data-driven and precise clinical decision making. Simultaneously, the "pipeline" through which new diagnostic tools and therapeutic agents are being developed and brought to the point-of-care or population health is challenged in terms of both cost and timeliness. Given the confluence of these trends, it can be argued that now is the time to consider new ways in which HIT can be used to deliver health and wellness interventions comparable to traditional approaches (e.g., drugs, devices, diagnostics, and behavioral modifications). Doing so could serve to fulfill the promise of what has been recently promoted as "precision medicine" in a rapid and cost-effective manner. However, it will also require the health and life sciences community to embrace new modes of using HIT, wherein the use of technology becomes a primary intervention as opposed to enabler of more conventional approaches, a model that we refer to in this commentary as "interventional informatics". Such a paradigm requires attention to critical issues, including: 1) the nature of the relationships between HIT vendors and healthcare innovators; 2) the formation and function of multidisciplinary teams consisting of technologists, informaticians, and clinical or scientific subject matter experts; and 3) the optimal design and execution of clinical studies that focus on HIT as the intervention of interest. Ultimately, the goal of an "interventional informatics" approach can and should be to substantially improve human health and wellness through the use of data

  9. Perspectives from nurse managers on informatics competencies.

    PubMed

    Yang, Li; Cui, Dan; Zhu, Xuemei; Zhao, Qiuli; Xiao, Ningning; Shen, Xiaoying

    2014-01-01

    Nurse managers are in an excellent position for providing leadership and support within the institutions they serve and are often responsible for accessing information that is vital to the improvement of health facility processes and patients' outcomes. Therefore, competency in informatics is essential. The purposes of this study are to examine current informatics competency levels of nurse managers and to identify the variables that influence these competencies. A questionnaire designed to assess demographic information and nursing informatics competency was completed by 68 nurse managers. Multiple linear regression analysis was conducted to analyze the factors influencing informatics competency. Descriptive analysis of the data revealed that informatics competency of these nurse managers was in the moderate range (77.65 ± 8.14). Multiple linear regression analysis indicated that level of education, nursing administration experience, and informatics education/training were significant factors affecting competency levels. The factors identified in this study can serve as a reference for nurse managers who were wishing to improve their informatics competency, hospital administrators seeking to provide appropriate training, and nursing educators who were making decisions about nursing informatics curricula. These findings suggest that efforts to enhance the informatics competency of nurse managers have marked potential benefits.

  10. Perspectives from Nurse Managers on Informatics Competencies

    PubMed Central

    Cui, Dan; Zhu, Xuemei; Zhao, Qiuli; Xiao, Ningning; Shen, Xiaoying

    2014-01-01

    Background and Purpose. Nurse managers are in an excellent position for providing leadership and support within the institutions they serve and are often responsible for accessing information that is vital to the improvement of health facility processes and patients' outcomes. Therefore, competency in informatics is essential. The purposes of this study are to examine current informatics competency levels of nurse managers and to identify the variables that influence these competencies. Methods. A questionnaire designed to assess demographic information and nursing informatics competency was completed by 68 nurse managers. Multiple linear regression analysis was conducted to analyze the factors influencing informatics competency. Results. Descriptive analysis of the data revealed that informatics competency of these nurse managers was in the moderate range (77.65 ± 8.14). Multiple linear regression analysis indicated that level of education, nursing administration experience, and informatics education/training were significant factors affecting competency levels. Conclusion. The factors identified in this study can serve as a reference for nurse managers who were wishing to improve their informatics competency, hospital administrators seeking to provide appropriate training, and nursing educators who were making decisions about nursing informatics curricula. These findings suggest that efforts to enhance the informatics competency of nurse managers have marked potential benefits. PMID:24790565

  11. The emerging role of educational informatics.

    PubMed

    Weiner, Elizabeth E; Trangenstein, Patricia A

    2009-01-01

    Initial growth in the field of nursing informatics has centered primarily on the clinical setting. Much has been written about the systems developed and evaluated and possible new roles that one can play in the clinical environment. The educational arena has not fared as well. Early attention has been focused on the integration of educational technology or on competency-based skills in informatics according to program levels of students. This paper will focus on the emerging role of educational informatics. Examples will provide nurses with a better understanding of the roles played by the educational informaticist in crafting the science of nursing informatics to produce better nursing education outcomes.

  12. Mouse Genome Informatics (MGI): Resources for Mining Mouse Genetic, Genomic, and Biological Data in Support of Primary and Translational Research.

    PubMed

    Eppig, Janan T; Smith, Cynthia L; Blake, Judith A; Ringwald, Martin; Kadin, James A; Richardson, Joel E; Bult, Carol J

    2017-01-01

    The Mouse Genome Informatics (MGI), resource ( www.informatics.jax.org ) has existed for over 25 years, and over this time its data content, informatics infrastructure, and user interfaces and tools have undergone dramatic changes (Eppig et al., Mamm Genome 26:272-284, 2015). Change has been driven by scientific methodological advances, rapid improvements in computational software, growth in computer hardware capacity, and the ongoing collaborative nature of the mouse genomics community in building resources and sharing data. Here we present an overview of the current data content of MGI, describe its general organization, and provide examples using simple and complex searches, and tools for mining and retrieving sets of data.

  13. Comparative BioInformatics and Computational Toxicology

    EPA Science Inventory

    Reflecting the numerous changes in the field since the publication of the previous edition, this third edition of Developmental Toxicology focuses on the mechanisms of developmental toxicity and incorporates current technologies for testing in the risk assessment process.

  14. Comparative BioInformatics and Computational Toxicology

    EPA Science Inventory

    Reflecting the numerous changes in the field since the publication of the previous edition, this third edition of Developmental Toxicology focuses on the mechanisms of developmental toxicity and incorporates current technologies for testing in the risk assessment process.

  15. Three Decades of Research on Computer Applications in Health Care

    PubMed Central

    Michael Fitzmaurice, J.; Adams, Karen; Eisenberg, John M.

    2002-01-01

    The Agency for Healthcare Research and Quality and its predecessor organizations—collectively referred to here as AHRQ—have a productive history of funding research and development in the field of medical informatics, with grant investments since 1968 totaling $107 million. Many computerized interventions that are commonplace today, such as drug interaction alerts, had their genesis in early AHRQ initiatives. This review provides a historical perspective on AHRQ investment in medical informatics research. It shows that grants provided by AHRQ resulted in achievements that include advancing automation in the clinical laboratory and radiology, assisting in technology development (computer languages, software, and hardware), evaluating the effectiveness of computer-based medical information systems, facilitating the evolution of computer-aided decision making, promoting computer-initiated quality assurance programs, backing the formation and application of comprehensive data banks, enhancing the management of specific conditions such as HIV infection, and supporting health data coding and standards initiatives. Other federal agencies and private organizations have also supported research in medical informatics, some earlier and to a greater degree than AHRQ. The results and relative roles of these related efforts are beyond the scope of this review. PMID:11861630

  16. The ongoing evolution of the core curriculum of a clinical fellowship in pathology informatics

    PubMed Central

    Quinn, Andrew M.; Klepeis, Veronica E.; Mandelker, Diana L.; Platt, Mia Y.; Rao, Luigi K. F.; Riedlinger, Gregory; Baron, Jason M.; Brodsky, Victor; Kim, Ji Yeon; Lane, William; Lee, Roy E.; Levy, Bruce P.; McClintock, David S.; Beckwith, Bruce A.; Kuo, Frank C.; Gilbertson, John R.

    2014-01-01

    The Partners HealthCare system's Clinical Fellowship in Pathology Informatics (Boston, MA, USA) faces ongoing challenges to the delivery of its core curriculum in the forms of: (1) New classes of fellows annually with new and varying educational needs and increasingly fractured, enterprise-wide commitments; (2) taxing electronic health record (EHR) and laboratory information system (LIS) implementations; and (3) increasing interest in the subspecialty at the academic medical centers (AMCs) in what is a large health care network. In response to these challenges, the fellowship has modified its existing didactic sessions and piloted both a network-wide pathology informatics lecture series and regular “learning laboratories”. Didactic sessions, which had previously included more formal discussions of the four divisions of the core curriculum: Information fundamentals, information systems, workflow and process, and governance and management, now focus on group discussions concerning the fellows’ ongoing projects, updates on the enterprise-wide EHR and LIS implementations, and directed questions about weekly readings. Lectures are given by the informatics faculty, guest informatics faculty, current and former fellows, and information systems members in the network, and are open to all professional members of the pathology departments at the AMCs. Learning laboratories consist of small-group exercises geared toward a variety of learning styles, and are driven by both the fellows and a member of the informatics faculty. The learning laboratories have created a forum for discussing real-time and real-world pathology informatics matters, and for incorporating awareness of and timely discussions about the latest pathology informatics literature. These changes have diversified the delivery of the fellowship's core curriculum, increased exposure of faculty, fellows and trainees to one another, and more equitably distributed teaching responsibilities among the entirety of

  17. Integrating Health Information Technology Safety into Nursing Informatics Competencies.

    PubMed

    Borycki, Elizabeth M; Cummings, Elizabeth; Kushniruk, Andre W; Saranto, Kaija

    2017-01-01

    Nursing informatics competencies are constantly changing in response to advances in the health information technology (HIT) industry and research emerging from the fields of nursing and health informatics. In this paper we build off the work of Staggers and colleagues in defining nursing informatics competencies at five levels: the beginning nurse, the experienced nurse, the nursing informatics specialist, the nursing informatics innovator and the nursing informatics researcher in the area of HIT safety. The work represents a significant contribution to the literature in the area of nursing informatics competency development as it extends nursing informatics competencies to include those focused on the area of technology-induced errors and HIT safety.

  18. Public Health Platforms: An Emerging Informatics Approach to Health Professional Learning and Development

    PubMed Central

    Gray, Kathleen

    2016-01-01

    Health informatics has a major role to play in optimising the management and use of data, information and knowledge in health systems. As health systems undergo digital transformation, it is important to consider informatics approaches not only to curriculum content but also to the design of learning environments and learning activities for health professional learning and development. An example of such an informatics approach is the use of large-scale, integrated public health platforms on the Internet as part of health professional learning and development. This article describes selected examples of such platforms, with a focus on how they may influence the direction of health professional learning and development. Significance for public health The landscape of healthcare systems, public health systems, health research systems and professional education systems is fragmented, with many gaps and silos. More sophistication in the management of health data, information, and knowledge, based on public health informatics expertise, is needed to tackle key issues of prevention, promotion and policy-making. Platform technologies represent an emerging large-scale, highly integrated informatics approach to public health, combining the technologies of Internet, the web, the cloud, social technologies, remote sensing and/or mobile apps into an online infrastructure that can allow more synergies in work within and across these systems. Health professional curricula need updating so that the health workforce has a deep and critical understanding of the way that platform technologies are becoming the foundation of the health sector. PMID:27190977

  19. Public Health Platforms: An Emerging Informatics Approach to Health Professional Learning and Development.

    PubMed

    Gray, Kathleen

    2016-04-26

    Health informatics has a major role to play in optimising the management and use of data, information and knowledge in health systems. As health systems undergo digital transformation, it is important to consider informatics approaches not only to curriculum content but also to the design of learning environments and learning activities for health professional learning and development. An example of such an informatics approach is the use of large-scale, integrated public health platforms on the Internet as part of health professional learning and development. This article describes selected examples of such platforms, with a focus on how they may influence the direction of health professional learning and development. Significance for public healthThe landscape of healthcare systems, public health systems, health research systems and professional education systems is fragmented, with many gaps and silos. More sophistication in the management of health data, information, and knowledge, based on public health informatics expertise, is needed to tackle key issues of prevention, promotion and policy-making. Platform technologies represent an emerging large-scale, highly integrated informatics approach to public health, combining the technologies of Internet, the web, the cloud, social technologies, remote sensing and/or mobile apps into an online infrastructure that can allow more synergies in work within and across these systems. Health professional curricula need updating so that the health workforce has a deep and critical understanding of the way that platform technologies are becoming the foundation of the health sector.

  20. Eco-informatics and natural resource management

    USGS Publications Warehouse

    Cushing, J.B.; Wilson, T.; Borning, A.; Delcambre, L.; Bowker, G.; Frame, M.; Schnase, J.; Sonntag, W.; Fulop, J.; Hert, C.; Hovy, E.; Jones, J.; Landis, E.; Schweik, C.; Brandt, L.; Gregg, V.; Spengler, S.

    2006-01-01

    This project highlight reports on the 2004 workshop [1], as well as follow-up activities in 2005 and 2006, regarding how informatics tools can help manage natural resources and decide policy. The workshop was sponsored jointly by sponsored by the NSF, NBII, NASA, and EPA, and attended by practitioners from government and non-government agencies, and university researchers from the computer, social, and ecological sciences. The workshop presented the significant information technology (IT) problems that resource managers face when integrating ecological or environmental information to make decisions. These IT problems fall into five categories: data presentation, data gaps, tools, indicators, and policy making and implementation. To alleviate such problems, we recommend informatics research in four IT areas, as defined in this abstract and our final report: modeling and simulation, data quality, information integration and ontologies, and social and human aspects. Additionally, we recommend that funding agencies provide infrastructure and some changes in funding habits to assure cycles of innovation in the domain were addressed. Follow-on activities to the workshop subsequent to dg.o 2005 included: an invited talk presenting workshop results at DILS 2005, publication of the workshop final report by the NBII [1], and a poster at the NBII All Hands Meeting (Oct. 2005). We also expect a special issue of the JIIS to appear in 2006 that addresses some of these questions. As we go to press, no solicitation by funding agencies has as yet been published, but various NASA and NBII, and NSF cyber-infrastructure and DG research efforts now underway address the above issues.

  1. The Chief Clinical Informatics Officer (CCIO)

    PubMed Central

    Sengstack, Patricia; Thyvalikakath, Thankam Paul; Poikonen, John; Middleton, Blackford; Payne, Thomas; Lehmann, Christoph U

    2016-01-01

    Summary Introduction The emerging operational role of the “Chief Clinical Informatics Officer” (CCIO) remains heterogeneous with individuals deriving from a variety of clinical settings and backgrounds. The CCIO is defined in title, responsibility, and scope of practice by local organizations. The term encompasses the more commonly used Chief Medical Informatics Officer (CMIO) and Chief Nursing Informatics Officer (CNIO) as well as the rarely used Chief Pharmacy Informatics Officer (CPIO) and Chief Dental Informatics Officer (CDIO). Background The American Medical Informatics Association (AMIA) identified a need to better delineate the knowledge, education, skillsets, and operational scope of the CCIO in an attempt to address the challenges surrounding the professional development and the hiring processes of CCIOs. Discussion An AMIA task force developed knowledge, education, and operational skillset recommendations for CCIOs focusing on the common core aspect and describing individual differences based on Clinical Informatics focus. The task force concluded that while the role of the CCIO currently is diverse, a growing body of Clinical Informatics and increasing certification efforts are resulting in increased homogeneity. The task force advised that 1.) To achieve a predictable and desirable skillset, the CCIO must complete clearly defined and specified Clinical Informatics education and training. 2.) Future education and training must reflect the changing body of knowledge and must be guided by changing day-to-day informatics challenges. Conclusion A better defined and specified education and skillset for all CCIO positions will motivate the CCIO workforce and empower them to perform the job of a 21st century CCIO. Formally educated and trained CCIOs will provide a competitive advantage to their respective enterprise by fully utilizing the power of Informatics science. PMID:27081413

  2. Examining the Impact of Non-Technical Security Management Factors on Information Security Management in Health Informatics

    ERIC Educational Resources Information Center

    Imam, Abbas H.

    2013-01-01

    Complexity of information security has become a major issue for organizations due to incessant threats to information assets. Healthcare organizations are particularly concerned with security owing to the inherent vulnerability of sensitive information assets in health informatics. While the non-technical security management elements have been at…

  3. Examining the Impact of Non-Technical Security Management Factors on Information Security Management in Health Informatics

    ERIC Educational Resources Information Center

    Imam, Abbas H.

    2013-01-01

    Complexity of information security has become a major issue for organizations due to incessant threats to information assets. Healthcare organizations are particularly concerned with security owing to the inherent vulnerability of sensitive information assets in health informatics. While the non-technical security management elements have been at…

  4. Measuring nursing informatics competencies of practicing nurses in Korea: Nursing Informatics Competencies Questionnaire.

    PubMed

    Chung, Seon Yoon; Staggers, Nancy

    2014-12-01

    Informatics competencies are a necessity for contemporary nurses. However, few researchers have investigated informatics competencies for practicing nurses. A full set of Informatics competencies, an instrument to measure these competencies, and potential influencing factors have yet to be identified for practicing nurses. The Nursing Informatics Competencies Questionnaire was designed, tested for psychometrics, and used to measure beginning and experienced levels of practice. A pilot study using 54 nurses ensured item comprehension and clarity. Internal consistency and face and content validity were established. A cross-sectional survey was then conducted on 230 nurses in Seoul, Korea, to determine construct validity, describe a complete set of informatics competencies, and explore possible influencing factors on existing informatics competencies. Principal components analysis, descriptive statistics, and multiple regression were used for data analysis. Principal components analysis gives support for the Nursing Informatics Competencies Questionnaire construct validity. Survey results indicate that involvement in a managerial position and self-directed informatics-related education may be more influential for improving informatics competencies, whereas general clinical experience and workplace settings are not. This study provides a foundation for understanding how informatics competencies might be integrated throughout nurses' work lives and how to develop appropriate strategies to support nurses in their informatics practice in clinical settings.

  5. Bioimage informatics for understanding spatiotemporal dynamics of cellular processes.

    PubMed

    Yang, Ge

    2013-01-01

    The inner environment of the cell is highly dynamic and heterogeneous yet exquisitely organized. Successful completion of cellular processes within this environment depends on the right molecules or molecular complexes to function at the right place at the right time. Understanding spatiotemporal behaviors of cellular processes is therefore essential to understanding their molecular mechanisms at the systems level. These behaviors are usually visualized and recorded using imaging techniques. However, to infer from them systems-level molecular mechanisms, computational analysis and understanding of recorded image data is crucial, not only for acquiring quantitative behavior measurements but also for comprehending complex interactions among the molecules or molecular complexes involved. The technology of computational analysis and understanding of biological images is often referred to simply as bioimage informatics. This article introduces fundamentals of bioimage informatics for understanding spatiotemporal dynamics of cellular processes and reviews recent advances on this topic. Basic bioimage informatics concepts and techniques for characterizing spatiotemporal cell dynamics are introduced first. Studies on specific cellular processes such as cell migration and signal transduction are then used as examples to analyze and summarize recent advances, with the focus on transforming quantitative measurements of spatiotemporal cellular behaviors into knowledge of underlying molecular mechanisms. Despite the advances made, substantial technological challenges remain, especially in representation of spatiotemporal cellular behaviors and inference of systems-level molecular mechanisms. These challenges are briefly discussed. Overall, understanding spatiotemporal cell dynamics will provide critical insights into how specific cellular processes as well as the entire inner cellular environment are dynamically organized and regulated.

  6. Nutrition Informatics Applications in Clinical Practice: a Systematic Review.

    PubMed

    North, Jennifer C; Jordan, Kristine C; Metos, Julie; Hurdle, John F

    2015-01-01

    Nutrition care and metabolic control contribute to clinical patient outcomes. Biomedical informatics applications represent a way to potentially improve quality and efficiency of nutrition management. We performed a systematic literature review to identify clinical decision support and computerized provider order entry systems used to manage nutrition care. Online research databases were searched using a specific set of keywords. Additionally, bibliographies were referenced for supplemental citations. Four independent reviewers selected sixteen studies out of 364 for review. These papers described adult and neonatal nutrition support applications, blood glucose management applications, and other nutrition applications. Overall, results indicated that computerized interventions could contribute to improved patient outcomes and provider performance. Specifically, computer systems in the clinical setting improved nutrient delivery, rates of malnutrition, weight loss, blood glucose values, clinician efficiency, and error rates. In conclusion, further investigation of informatics applications on nutritional and performance outcomes utilizing rigorous study designs is recommended.

  7. Nutrition Informatics Applications in Clinical Practice: a Systematic Review

    PubMed Central

    North, Jennifer C.; Jordan, Kristine C.; Metos, Julie; Hurdle, John F.

    2015-01-01

    Nutrition care and metabolic control contribute to clinical patient outcomes. Biomedical informatics applications represent a way to potentially improve quality and efficiency of nutrition management. We performed a systematic literature review to identify clinical decision support and computerized provider order entry systems used to manage nutrition care. Online research databases were searched using a specific set of keywords. Additionally, bibliographies were referenced for supplemental citations. Four independent reviewers selected sixteen studies out of 364 for review. These papers described adult and neonatal nutrition support applications, blood glucose management applications, and other nutrition applications. Overall, results indicated that computerized interventions could contribute to improved patient outcomes and provider performance. Specifically, computer systems in the clinical setting improved nutrient delivery, rates of malnutrition, weight loss, blood glucose values, clinician efficiency, and error rates. In conclusion, further investigation of informatics applications on nutritional and performance outcomes utilizing rigorous study designs is recommended. PMID:26958233

  8. Bioimage informatics: a new area of engineering biology.

    PubMed

    Peng, Hanchuan

    2008-09-01

    In recent years, the deluge of complicated molecular and cellular microscopic images creates compelling challenges for the image computing community. There has been an increasing focus on developing novel image processing, data mining, database and visualization techniques to extract, compare, search and manage the biological knowledge in these data-intensive problems. This emerging new area of bioinformatics can be called 'bioimage informatics'. This article reviews the advances of this field from several aspects, including applications, key techniques, available tools and resources. Application examples such as high-throughput/high-content phenotyping and atlas building for model organisms demonstrate the importance of bioimage informatics. The essential techniques to the success of these applications, such as bioimage feature identification, segmentation and tracking, registration, annotation, mining, image data management and visualization, are further summarized, along with a brief overview of the available bioimage databases, analysis tools and other resources.

  9. ASHP statement on the pharmacy technician's role in pharmacy informatics.

    PubMed

    2014-02-01

    The American Society of Health- System Pharmacists (ASHP) believes that specially trained pharmacy technicians can assume important supportive roles in pharmacy informatics. These roles include automation and technology systems management, management of projects, training and education, policy and governance, customer service, charge integrity, and reporting. Such roles require pharmacy technicians to gain expertise in information technology (IT) systems, including knowledge of interfaces, computer management techniques, problem resolution, and database maintenance. This knowledge could be acquired through specialized training or experience in a health science or allied scientific field (e.g., health informatics). With appropriate safeguards and supervision, pharmacy technician informaticists (PTIs) will manage IT processes in health-system pharmacy services, ensuring a safe and efficient medication-use process.

  10. Medical Imaging Informatics.

    PubMed

    Hsu, William; El-Saden, Suzie; Taira, Ricky K

    2016-01-01

    Imaging is one of the most important sources of clinically observable evidence that provides broad coverage, can provide insight on low-level scale properties, is noninvasive, has few side effects, and can be performed frequently. Thus, imaging data provides a viable observable that can facilitate the instantiation of a theoretical understanding of a disease for a particular patient context by connecting imaging findings to other biologic parameters in the model (e.g., genetic, molecular, symptoms, and patient survival). These connections can help inform their possible states and/or provide further coherent evidence. The field of radiomics is particularly dedicated to this task and seeks to extract quantifiable measures wherever possible. Example properties of investigation include genotype characterization, histopathology parameters, metabolite concentrations, vascular proliferation, necrosis, cellularity, and oxygenation. Important issues within the field include: signal calibration, spatial calibration, preprocessing methods (e.g., noise suppression, motion correction, and field bias correction), segmentation of target anatomic/pathologic entities, extraction of computed features, and inferencing methods connecting imaging features to biological states.

  11. Teaching Some Informatics Concepts Using Formal System

    ERIC Educational Resources Information Center

    Yang, Sojung; Park, Seongbin

    2014-01-01

    There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012). In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference…

  12. Medical Informatics: Market for IS/IT.

    ERIC Educational Resources Information Center

    Morris, Theodore Allan

    2002-01-01

    Uses co-occurrence analysis of INSPEC classification codes and thesaurus terms assigned to medical informatics (biomedical information) journal articles and proceedings papers to reveal a more complete perspective of how information science and information technology (IS/IT) authors view medical informatics. Discusses results of cluster analysis…

  13. The Impact of Medical Informatics on Librarianship.

    ERIC Educational Resources Information Center

    Dalrymple, Prudence W.

    The thesis of this paper is that the growth of the field of medical informatics, while seemingly a potential threat to medical librarianship, is in fact an opportunity for librarianship to both extend its reach and also to further define its unique characteristics in contrast to those of medical informatics. Furthermore, because medical…

  14. Medical Informatics: Market for IS/IT.

    ERIC Educational Resources Information Center

    Morris, Theodore Allan

    2002-01-01

    Uses co-occurrence analysis of INSPEC classification codes and thesaurus terms assigned to medical informatics (biomedical information) journal articles and proceedings papers to reveal a more complete perspective of how information science and information technology (IS/IT) authors view medical informatics. Discusses results of cluster analysis…

  15. Informatics Education in Italian Secondary Schools

    ERIC Educational Resources Information Center

    Bellettini, Carlo; Lonati, Violetta; Malchiodi, Dario; Monga, Mattia; Morpurgo, Anna; Torelli, Mauro; Zecca, Luisa

    2014-01-01

    This article describes the state of informatics education in the Italian secondary schools, highlighting how the learning objectives set up by the Ministry of Education are difficult to meet, due to the fact that the subject is often taught by teachers not holding an informatics degree, the lack of suitable teaching material and the expectations…

  16. Informatics Education in Italian Secondary Schools

    ERIC Educational Resources Information Center

    Bellettini, Carlo; Lonati, Violetta; Malchiodi, Dario; Monga, Mattia; Morpurgo, Anna; Torelli, Mauro; Zecca, Luisa

    2014-01-01

    This article describes the state of informatics education in the Italian secondary schools, highlighting how the learning objectives set up by the Ministry of Education are difficult to meet, due to the fact that the subject is often taught by teachers not holding an informatics degree, the lack of suitable teaching material and the expectations…

  17. [Current perspectives in nursing informatics].

    PubMed

    Marin, Heimar de Fátima; Cunha, Isabel Cristina Kowal Olm

    2006-01-01

    Nursing Informatics is the area of knowledge that studies the application of technological resources in teaching, in practice, in care, and in the management of care. Resources such as voice recognition, knowledge base, genoma project and even Internet have offered to Nursing a gama of possibilities for a better professional performance and better nursing care to the patient/client. This text reports and exemplifies how these resources are impacting and presenting new oportunities for teaching, research and specially for nursing care, still warns for the importance of humanized care in a high-tech scenario.

  18. Five Periods in Development of Medical Informatics

    PubMed Central

    Masic, Izet

    2014-01-01

    Medical informatics, as scientific discipline, has to do with all aspects of understanding and promoting the effective organization, analysis, management, and use of information in health care. While the field of Medical informatics shares the general scope of these interests with some other health care specialities and disciplines, Medical (Health) informatics has developed its own areas of emphasis and approaches that have set it apart from other disciplines and specialities. For the last fifties of 20th century and some more years of 21st century, Medical informatics had the five time periods of characteristic development. In this paper author shortly described main scientific innovations and inventors who created development of Medical informatics. PMID:24648619

  19. Bioinformatics and Medical Informatics: Collaborations on the Road to Genomic Medicine?

    PubMed Central

    Maojo, Victor; Kulikowski, Casimir A.

    2003-01-01

    In this report, the authors compare and contrast medical informatics (MI) and bioinformatics (BI) and provide a viewpoint on their complementarities and potential for collaboration in various subfields. The authors compare MI and BI along several dimensions, including: (1) historical development of the disciplines, (2) their scientific foundations, (3) data quality and analysis, (4) integration of knowledge and databases, (5) informatics tools to support practice, (6) informatics methods to support research (signal processing, imaging and vision, and computational modeling, (7) professional and patient continuing education, and (8) education and training. It is pointed out that, while the two disciplines differ in their histories, scientific foundations, and methodologic approaches to research in various areas, they nevertheless share methods and tools, which provides a basis for exchange of experience in their different applications. MI expertise in developing health care applications and the strength of BI in biological “discovery science” complement each other well. The new field of biomedical informatics (BMI) holds great promise for developing informatics methods that will be crucial in the development of genomic medicine. The future of BMI will be influenced strongly by whether significant advances in clinical practice and biomedical research come about from separate efforts in MI and BI, or from emerging, hybrid informatics subdisciplines at their interface. PMID:12925552

  20. Assessing the current state of dental informatics in saudi arabia: the new frontier.

    PubMed

    Al-Nasser, Lubna; Al-Ehaideb, Ali; Househ, Mowafa

    2014-01-01

    Dental informatics is an emerging field that has the potential to transform the dental profession. This study aims to summarize the current applications of dental informatics in Saudi Arabia and to identify the challenges facing expansion of dental informatics in the Saudi context. Search for published articles and specialized forum entries was conducted, as well as interviews with dental professionals familiar with the topic. Results indicated that digital radiography/analysis and administrative management of dental practice are the commonest applications used. Applications in Saudi dental education included: web-based learning systems, computer-based assessments and virtual technology for clinical skills' teaching. Patients' education software, electronic dental/oral health records and the potential of dental research output from electronic databases are yet to be achieved in Saudi Arabia. Challenges facing Saudi dental informatics include: lack of IT infrastructure/support, social acceptability and financial cost. Several initiatives are taken towards the research in dental informatics. Still, more investments are needed to fully achieve the potential of various application of informatics in dental education, practice and research.

  1. SYMBIOmatics: synergies in Medical Informatics and Bioinformatics--exploring current scientific literature for emerging topics.

    PubMed

    Rebholz-Schuhman, Dietrich; Cameron, Graham; Clark, Dominic; van Mulligen, Erik; Coatrieux, Jean-Louis; Del Hoyo Barbolla, Eva; Martin-Sanchez, Fernando; Milanesi, Luciano; Porro, Ivan; Beltrame, Francesco; Tollis, Ioannis; Van der Lei, Johan

    2007-03-08

    The SYMBIOmatics Specific Support Action (SSA) is "an information gathering and dissemination activity" that seeks "to identify synergies between the bioinformatics and the medical informatics" domain to improve collaborative progress between both domains (ref. to http://www.symbiomatics.org). As part of the project experts in both research fields will be identified and approached through a survey. To provide input to the survey, the scientific literature was analysed to extract topics relevant to both medical informatics and bioinformatics. This paper presents results of a systematic analysis of the scientific literature from medical informatics research and bioinformatics research. In the analysis pairs of words (bigrams) from the leading bioinformatics and medical informatics journals have been used as indication of existing and emerging technologies and topics over the period 2000-2005 ("recent") and 1990-1990 ("past"). We identified emerging topics that were equally important to bioinformatics and medical informatics in recent years such as microarray experiments, ontologies, open source, text mining and support vector machines. Emerging topics that evolved only in bioinformatics were system biology, protein interaction networks and statistical methods for microarray analyses, whereas emerging topics in medical informatics were grid technology and tissue microarrays. We conclude that although both fields have their own specific domains of interest, they share common technological developments that tend to be initiated by new developments in biotechnology and computer science.

  2. SYMBIOmatics: Synergies in Medical Informatics and Bioinformatics – exploring current scientific literature for emerging topics

    PubMed Central

    Rebholz-Schuhman, Dietrich; Cameron, Graham; Clark, Dominic; van Mulligen, Erik; Coatrieux, Jean-Louis; Del Hoyo Barbolla, Eva; Martin-Sanchez, Fernando; Milanesi, Luciano; Porro, Ivan; Beltrame, Francesco; Tollis, Ioannis; Van der Lei, Johan

    2007-01-01

    Background The SYMBIOmatics Specific Support Action (SSA) is "an information gathering and dissemination activity" that seeks "to identify synergies between the bioinformatics and the medical informatics" domain to improve collaborative progress between both domains (ref. to ). As part of the project experts in both research fields will be identified and approached through a survey. To provide input to the survey, the scientific literature was analysed to extract topics relevant to both medical informatics and bioinformatics. Results This paper presents results of a systematic analysis of the scientific literature from medical informatics research and bioinformatics research. In the analysis pairs of words (bigrams) from the leading bioinformatics and medical informatics journals have been used as indication of existing and emerging technologies and topics over the period 2000–2005 ("recent") and 1990–1990 ("past"). We identified emerging topics that were equally important to bioinformatics and medical informatics in recent years such as microarray experiments, ontologies, open source, text mining and support vector machines. Emerging topics that evolved only in bioinformatics were system biology, protein interaction networks and statistical methods for microarray analyses, whereas emerging topics in medical informatics were grid technology and tissue microarrays. Conclusion We conclude that although both fields have their own specific domains of interest, they share common technological developments that tend to be initiated by new developments in biotechnology and computer science. PMID:17430562

  3. A repository of codes of ethics and technical standards in health informatics.

    PubMed

    Samuel, Hamman W; Zaïane, Osmar R

    2014-01-01

    We present a searchable repository of codes of ethics and standards in health informatics. It is built using state-of-the-art search algorithms and technologies. The repository will be potentially beneficial for public health practitioners, researchers, and software developers in finding and comparing ethics topics of interest. Public health clinics, clinicians, and researchers can use the repository platform as a one-stop reference for various ethics codes and standards. In addition, the repository interface is built for easy navigation, fast search, and side-by-side comparative reading of documents. Our selection criteria for codes and standards are two-fold; firstly, to maintain intellectual property rights, we index only codes and standards freely available on the internet. Secondly, major international, regional, and national health informatics bodies across the globe are surveyed with the aim of understanding the landscape in this domain. We also look at prevalent technical standards in health informatics from major bodies such as the International Standards Organization (ISO) and the U. S. Food and Drug Administration (FDA). Our repository contains codes of ethics from the International Medical Informatics Association (IMIA), the iHealth Coalition (iHC), the American Health Information Management Association (AHIMA), the Australasian College of Health Informatics (ACHI), the British Computer Society (BCS), and the UK Council for Health Informatics Professions (UKCHIP), with room for adding more in the future. Our major contribution is enhancing the findability of codes and standards related to health informatics ethics by compilation and unified access through the health informatics ethics repository.

  4. A Repository of Codes of Ethics and Technical Standards in Health Informatics

    PubMed Central

    Zaïane, Osmar R.

    2014-01-01

    We present a searchable repository of codes of ethics and standards in health informatics. It is built using state-of-the-art search algorithms and technologies. The repository will be potentially beneficial for public health practitioners, researchers, and software developers in finding and comparing ethics topics of interest. Public health clinics, clinicians, and researchers can use the repository platform as a one-stop reference for various ethics codes and standards. In addition, the repository interface is built for easy navigation, fast search, and side-by-side comparative reading of documents. Our selection criteria for codes and standards are two-fold; firstly, to maintain intellectual property rights, we index only codes and standards freely available on the internet. Secondly, major international, regional, and national health informatics bodies across the globe are surveyed with the aim of understanding the landscape in this domain. We also look at prevalent technical standards in health informatics from major bodies such as the International Standards Organization (ISO) and the U. S. Food and Drug Administration (FDA). Our repository contains codes of ethics from the International Medical Informatics Association (IMIA), the iHealth Coalition (iHC), the American Health Information Management Association (AHIMA), the Australasian College of Health Informatics (ACHI), the British Computer Society (BCS), and the UK Council for Health Informatics Professions (UKCHIP), with room for adding more in the future. Our major contribution is enhancing the findability of codes and standards related to health informatics ethics by compilation and unified access through the health informatics ethics repository. PMID:25422725

  5. Lean healthcare.

    PubMed

    Weinstock, Donna

    2008-01-01

    As healthcare organizations look for new and improved ways to reduce costs and still offer quality healthcare, many are turning to the Toyota Production System of doing business. Rather than focusing on cutting personnel and assets, "lean healthcare" looks to improve patient satisfaction through improved actions and processes.

  6. Information technology challenges of biodiversity and ecosystems informatics

    USGS Publications Warehouse

    Schnase, J.L.; Cushing, J.; Frame, M.; Frondorf, A.; Landis, E.; Maier, D.; Silberschatz, A.

    2003-01-01

    Computer scientists, biologists, and natural resource managers recently met to examine the prospects for advancing computer science and information technology research by focusing on the complex and often-unique challenges found in the biodiversity and ecosystem domain. The workshop and its final report reveal that the biodiversity and ecosystem sciences are fundamentally information sciences and often address problems having distinctive attributes of scale and socio-technical complexity. The paper provides an overview of the emerging field of biodiversity and ecosystem informatics and demonstrates how the demands of biodiversity and ecosystem research can advance our understanding and use of information technologies.

  7. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande

  8. The role of ethics in information technology decisions: a case-based approach to biomedical informatics education.

    PubMed

    Anderson, James G

    2004-03-18

    The purpose of this paper is to propose a case-based approach to instruction regarding ethical issues raised by the use of information technology (IT) in healthcare. These issues are rarely addressed in graduate degree and continuing professional education programs in health informatics. There are important reasons why ethical issues need to be addressed in informatics training. Ethical issues raised by the introduction of information technology affect practice and are ubiquitous. These issues are frequently among the most challenging to young practitioners who are ill prepared to deal with them in practice. First, the paper provides an overview of methods of moral reasoning that can be used to identify and analyze ethical problems in health informatics. Second, we provide a framework for defining cases that involve ethical issues and outline major issues raised by the use of information technology. Specific cases are used as examples of new dilemmas that are posed by the introduction of information technology in healthcare. These cases are used to illustrate how ethics can be integrated with the other elements of informatics training. The cases discussed here reflect day-to-day situations that arise in health settings that require decisions. Third, an approach that can be used to teach ethics in health informatics programs is outlined and illustrated.

  9. Health Informatics: Developing a Masters Programme in Rwanda based on the IMIA Educational Recommendations and the IMIA Knowledge Base.

    PubMed

    Wright, Graham; Verbeke, Frank; Nyssen, Marc; Betts, Helen

    2015-01-01

    Since 2011, the Regional e-Health Center of Excellence in Rwanda (REHCE) has run an MSc in Health Informatics programme (MSc HI). A programme review was commissioned in February 2014 after 2 cohorts of students completed the post-graduate certificate and diploma courses and most students had started preparatory activity for their master dissertation. The review developed a method for mapping course content on health informatics competences and knowledge units. Also the review identified and measured knowledge gaps and content redundancy. Using this method, we analyzed regulatory and programme documents combined with stakeholder interviews, and demonstrated that the existing MSc HI curriculum did not completely address the needs of the Rwandan health sector. Teaching strategies did not always match students' expectations. Based on a detailed Rwandan health informatics needs assessment, International Medical Informatics Association (IMIA)'s Recommendations on Education in Biomedical and Health Informatics and the IMIA Health Informatics Knowledge Base, a new curriculum was developed and provided a better competences match for the specifics of healthcare in the Central African region. The new approved curriculum will be implemented in the 2014/2015 academic year and options for regional extension of the programme to Eastern DRC (Bukavu) and Burundi (Bujumbura) are being investigated.

  10. Australian Nursing Informatics Competency Project.

    PubMed

    Foster, Joanne; Bryce, Julianne

    2009-01-01

    A study of Australian nurses on their use of information technology in the workplace was undertaken by the Australian Nursing Federation (ANF) in 2007. This study of over 4000 nurses highlighted that nurses recognise benefits to adopting more information technology in the workplace although there are significant barriers to their use. It also identified gross deficits in the capacity of the nursing workforce to engage in the digital processing of information. Following the release of the study last year, the ANF commenced work on a number of key recommendations from the report in order to overcome identified barriers and provide opportunities for nurses to better utilise information technology and information management systems. One of these recommendations was to seek research funding to develop national information technology and information management competency standards for nurses. This project has now received Federal Government funding to undertake this development. This project is being developed in collaboration with the ANF and the Queensland University of Technology. This paper will discuss the methodology, development and publication of the Australian Nursing Informatics Competency Standards Project which is currently underway and due for completion in May 2009. The Australian Nursing Informatics Competencies will be presented at the conference.

  11. METEOR: An Enterprise Health Informatics Environment to Support Evidence-Based Medicine.

    PubMed

    Puppala, Mamta; He, Tiancheng; Chen, Shenyi; Ogunti, Richard; Yu, Xiaohui; Li, Fuhai; Jackson, Robert; Wong, Stephen T C

    2015-12-01

    The aim of this paper is to propose the design and implementation of next-generation enterprise analytics platform developed at the Houston Methodist Hospital (HMH) system to meet the market and regulatory needs of the healthcare industry. For this goal, we developed an integrated clinical informatics environment, i.e., Methodist environment for translational enhancement and outcomes research (METEOR). The framework of METEOR consists of two components: the enterprise data warehouse (EDW) and a software intelligence and analytics (SIA) layer for enabling a wide range of clinical decision support systems that can be used directly by outcomes researchers and clinical investigators to facilitate data access for the purposes of hypothesis testing, cohort identification, data mining, risk prediction, and clinical research training. Data and usability analysis were performed on METEOR components as a preliminary evaluation, which successfully demonstrated that METEOR addresses significant niches in the clinical informatics area, and provides a powerful means for data integration and efficient access in supporting clinical and translational research. METEOR EDW and informatics applications improved outcomes, enabled coordinated care, and support health analytics and clinical research at HMH. The twin pressures of cost containment in the healthcare market and new federal regulations and policies have led to the prioritization of the meaningful use of electronic health records in the United States. EDW and SIA layers on top of EDW are becoming an essential strategic tool to healthcare institutions and integrated delivery networks in order to support evidence-based medicine at the enterprise level.

  12. Introduction to the special issue on advances in clinical and health-care knowledge management.

    PubMed

    Bali, Rajeev K; Feng, David Dagan; Burstein, Frada; Dwivedi, Ashish N

    2005-06-01

    Clinical and health-care knowledge management (KM) as a discipline has attracted increasing worldwide attention in recent years. The approach encompasses a plethora of interrelated themes including aspects of clinical informatics, clinical governance, artificial intelligence, privacy and security, data mining, genomic mining, information management, and organizational behavior. This paper introduces key manuscripts which detail health-care and clinical KM cases and applications.

  13. The Structure of Medical Informatics Journal Literature

    PubMed Central

    Morris, Theodore A.; McCain, Katherine W.

    1998-01-01

    Abstract Objective: Medical informatics is an emergent interdisciplinary field described as drawing upon and contributing to both the health sciences and information sciences. The authors elucidate the disciplinary nature and internal structure of the field. Design: To better understand the field's disciplinary nature, the authors examine the intercitation relationships of its journal literature. To determine its internal structure, they examined its journal cocitation patterns. Measurements: The authors used data from the Science Citation Index (SCI) and Social Science Citation Index (SSCI) to perform intercitation studies among productive journal titles, and software routines from SPSS to perform multivariate data analyses on cocitation data for proposed core journals. Results: Intercitation network analysis suggests that a core literature exists, one mark of a separate discipline. Multivariate analyses of cocitation data suggest that major focus areas within the field include biomedical engineering, biomedical computing, decision support, and education. The interpretable dimensions of multidimensional scaling maps differed for the SCI and SSCI data sets. Strong links to information science literature were not found. Conclusion: The authors saw indications of a core literature and of several major research fronts. The field appears to be viewed differently by authors writing in journals indexed by SCI from those writing in journals indexed by SSCI, with more emphasis placed on computers and engineering versus decision making by the former and more emphasis on theory versus application (clinical practice) by the latter. PMID:9760393

  14. Three technological enhancements in nursing education: informatics instruction, personal response systems, and human patient simulation.

    PubMed

    Jensen, Rebecca; Meyer, Linda; Sternberger, Carol

    2009-03-01

    With the healthcare system in a state of flux, nursing education faces many challenges. Nursing faculty must design a dynamic curriculum that deals with the explosion of information, the complexity of the healthcare system, and optimal patient outcomes while addressing the diverse expectations of learners. Inclusion of information management and interactive technology facilitates learner engagement promoting critical thinking and improving clinical judgment. This paper details the faculty's vision for an ubiquitous information technology curricula, highlighting an undergraduate informatics course, use of a personal response system, and integration of human patient simulations.

  15. An Approach for All in Pharmacy Informatics Education.

    PubMed

    Fox, Brent I; Flynn, Allen; Clauson, Kevin A; Seaton, Terry L; Breeden, Elizabeth

    2017-03-25

    Computerization is transforming health care. All clinicians are users of health information technology (HIT). Understanding fundamental principles of informatics, the field focused on information needs and uses, is essential if HIT is going to support improved patient outcomes. Informatics education for clinicians is a national priority. Additionally, some informatics experts are needed to bring about innovations in HIT. A common approach to pharmacy informatics education has been slow to develop. Meanwhile, accreditation standards for informatics in pharmacy education continue to evolve. A gap remains in the implementation of informatics education for all pharmacy students and it is unclear what expert informatics training should cover. In this article, we propose the first of two complementary approaches to informatics education in pharmacy: to incorporate fundamental informatics education into pharmacy curricula for all students. The second approach, to train those students interested in becoming informatics experts to design, develop, implement, and evaluate HIT, will be presented in a subsequent issue of the Journal.

  16. An Approach for All in Pharmacy Informatics Education

    PubMed Central

    Flynn, Allen; Clauson, Kevin A.; Seaton, Terry L.; Breeden, Elizabeth

    2017-01-01

    Computerization is transforming health care. All clinicians are users of health information technology (HIT). Understanding fundamental principles of informatics, the field focused on information needs and uses, is essential if HIT is going to support improved patient outcomes. Informatics education for clinicians is a national priority. Additionally, some informatics experts are needed to bring about innovations in HIT. A common approach to pharmacy informatics education has been slow to develop. Meanwhile, accreditation standards for informatics in pharmacy education continue to evolve. A gap remains in the implementation of informatics education for all pharmacy students and it is unclear what expert informatics training should cover. In this article, we propose the first of two complementary approaches to informatics education in pharmacy: to incorporate fundamental informatics education into pharmacy curricula for all students. The second approach, to train those students interested in becoming informatics experts to design, develop, implement, and evaluate HIT, will be presented in a subsequent issue of the Journal. PMID:28381898

  17. A Framework for the Biomedical Informatics Curriculum

    PubMed Central

    Johnson, Stephen B.

    2003-01-01

    The problem of developing a curriculum for biomedical informatics is highly dependent on how we choose to define and practice the field. Numerous authors have questioned how to position biomedical informatics along the continuum of formal, empirical and engineering disciplines. A concern with current educational programs in biomedical informatics is that students finish without a clear understanding of the relation between theory and practice, or worse, with the impression that the field does not possess any theoretical basis. In this paper, we propose that biomedical informatics curricula explicitly address skills and competencies at three levels: formal, empirical, and applied. We posit that that knowledge of formalization is necessary to build testable empirical models, and that model-driven approaches are necessary for deploying information systems that can be evaluated in a meaningful way. A curricular framework is proposed that identifies a set of methods, techniques and theories that have broad applicability within the domain of biomedicine, and which can span a wide range of application areas: bioinformatics, imaging informatics, clinical informatics and public health informatics. A stronger linkage between theory and practice will result in students who are empowered to create effective and lasting solutions to biomedical problems. PMID:14728189

  18. A framework for the biomedical informatics curriculum.

    PubMed

    Johnson, Stephen B

    2003-01-01

    The problem of developing a curriculum for biomedical informatics is highly dependent on how we choose to define and practice the field. Numerous authors have questioned how to position biomedical informatics along the continuum of formal, empirical and engineering disciplines. A concern with current educational programs in biomedical informatics is that students finish without a clear understanding of the relation between theory and practice, or worse, with the impression that the field does not possess any theoretical basis. In this paper, we propose that biomedical informatics curricula explicitly address skills and competencies at three levels: formal, empirical, and applied. We posit that that knowledge of formalization is necessary to build testable empirical models, and that model-driven approaches are necessary for deploying information systems that can be evaluated in a meaningful way. A curricular framework is proposed that identifies a set of methods, techniques and theories that have broad applicability within the domain of biomedicine, and which can span a wide range of application areas: bioinformatics, imaging informatics, clinical informatics and public health informatics. A stronger linkage between theory and practice will result in students who are empowered to create effective and lasting solutions to biomedical problems.

  19. Computer-assisted resilience training to prepare healthcare workers for pandemic influenza: a randomized trial of the optimal dose of training

    PubMed Central

    2010-01-01

    Background Working in a hospital during an extraordinary infectious disease outbreak can cause significant stress and contribute to healthcare workers choosing to reduce patient contact. Psychological training of healthcare workers prior to an influenza pandemic may reduce stress-related absenteeism, however, established training methods that change behavior and attitudes are too resource-intensive for widespread use. This study tests the feasibility and effectiveness of a less expensive alternative - an interactive, computer-assisted training course designed to build resilience to the stresses of working during a pandemic. Methods A "dose-finding" study compared pre-post changes in three different durations of training. We measured variables that are likely to mediate stress-responses in a pandemic before and after training: confidence in support and training, pandemic-related self-efficacy, coping style and interpersonal problems. Results 158 hospital workers took the course and were randomly assigned to the short (7 sessions, median cumulative duration 111 minutes), medium (12 sessions, 158 minutes) or long (17 sessions, 223 minutes) version. Using an intention-to-treat analysis, the course was associated with significant improvements in confidence in support and training, pandemic self-efficacy and interpersonal problems. Participants who under-utilized coping via problem-solving or seeking support or over-utilized escape-avoidance experienced improved coping. Comparison of doses showed improved interpersonal problems in the medium and long course but not in the short course. There was a trend towards higher drop-out rates with longer duration of training. Conclusions Computer-assisted resilience training in healthcare workers appears to be of significant benefit and merits further study under pandemic conditions. Comparing three "doses" of the course suggested that the medium course was optimal. PMID:20307302

  20. A National Agenda for Public Health Informatics

    PubMed Central

    Yasnoff, William A.; Overhage, J. Marc; Humphreys, Betsy L.; LaVenture, Martin

    2001-01-01

    The AMIA 2001 Spring Congress brought together members of the the public health and informatics communities to develop a national agenda for public health informatics. Discussions of funding and governance; architecture and infrastructure; standards and vocabulary; research, evaluation, and best practices; privacy, confidentiality, and security; and training and workforce resulted in 74 recommendations with two key themes—that all stakeholders need to be engaged in coordinated activities related to public health information architecture, standards, confidentiality, best practices, and research; and that informatics training is needed throughout the public health workforce. Implementation of this consensus agenda will help promote progress in the application of information technology to improve public health. PMID:11687561

  1. Career development initiatives in biomedical health informatics.

    PubMed

    Wagholikar, Amol

    2012-01-01

    The disciplines of biomedical engineering and health informatics complement each other. These two scientific fields sometimes strive independently to deliver better health care services. The rapid evolution in data-intensive methods has made practitioners to think about reviewing the educational needs of the biomedical health informatics workforces. This paper discusses the changing skills requirements in biomedical health informatics discipline. The author reports on the challenges faced by IEEE Engineering in Medicine and Biology (EMBS) in the context of continuous career development of the EMBS members. This paper discusses Queensland chapter's initiative towards an integrated career development to address challenges faced by IEEE EMBS.

  2. Mobile healthcare.

    PubMed

    Morgan, Stephen A; Agee, Nancy Howell

    2012-01-01

    Mobile technology's presence in healthcare has exploded over the past five years. The increased use of mobile devices by all segments of the US population has driven healthcare systems, providers, and payers to accept this new form of communication and to develop strategies to implement and leverage the use of mobile healthcare (mHealth) within their organizations and practices. As healthcare systems move toward a more value-driven model of care, patient centeredness and engagement are the keys to success. Mobile healthcare will provide the medium to allow patients to participate more in their care. Financially, mHealth brings to providers the ability to improve efficiency and deliver savings to both them and the healthcare consumer. However, mHealth is not without challenges. Healthcare IT departments have been reluctant to embrace this shift in technology without fully addressing security and privacy concerns. Providers have been hesitant to adopt mHealth as a form of communication with patients because it breaks with traditional models. Our healthcare system has just started the journey toward the development of mHealth. We offer an overview of the mobile healthcare environment and our approach to solving the challenges it brings to healthcare organizations.

  3. Unobtrusive sensing and wearable devices for health informatics.

    PubMed

    Zheng, Ya-Li; Ding, Xiao-Rong; Poon, Carmen Chung Yan; Lo, Benny Ping Lai; Zhang, Heye; Zhou, Xiao-Lin; Yang, Guang-Zhong; Zhao, Ni; Zhang, Yuan-Ting

    2014-05-01

    The aging population, prevalence of chronic diseases, and outbreaks of infectious diseases are some of the major challenges of our present-day society. To address these unmet healthcare needs, especially for the early prediction and treatment of major diseases, health informatics, which deals with the acquisition, transmission, processing, storage, retrieval, and use of health information, has emerged as an active area of interdisciplinary research. In particular, acquisition of health-related information by unobtrusive sensing and wearable technologies is considered as a cornerstone in health informatics. Sensors can be weaved or integrated into clothing, accessories, and the living environment, such that health information can be acquired seamlessly and pervasively in daily living. Sensors can even be designed as stick-on electronic tattoos or directly printed onto human skin to enable long-term health monitoring. This paper aims to provide an overview of four emerging unobtrusive and wearable technologies, which are essential to the realization of pervasive health information acquisition, including: (1) unobtrusive sensing methods, (2) smart textile technology, (3) flexible-stretchable-printable electronics, and (4) sensor fusion, and then to identify some future directions of research.

  4. A training network for introducing telemedicine, telecare and hospital informatics in the Adriatic-Danube-Black Sea region.

    PubMed

    Anogeianaki, Antonia; Ilonidis, George; Anogianakis, George; Lianguris, John; Katsaros, Kyriakos; Pseftogianni, Dimitra; Klisarova, Anelia; Negrev, Negrin

    2004-01-01

    DIMNET is a training mechanism for a region of central Europe. The aim is to upgrade the information technology skills of local hospital personnel and preserve their employability following the introduction of medical informatics. DIMNET uses Internet-based virtual classrooms to provide a 200-hour training course in medical informatics. Training takes place in the cities of Drama, Kavala, Xanthi and Varna. So far, more than 600 people have benefited from the programme. Initial results are encouraging. DIMNET promotes a new vocational training culture in the Balkans and is supported by local governments that perceive health-care as a fulcrum for economic development.

  5. Method for technology-delivered healthcare measures.

    PubMed

    Kramer-Jackman, Kelli Lee; Popkess-Vawter, Sue

    2011-12-01

    Current healthcare literature lacks development and evaluation methods for research and practice measures administered by technology. Researchers with varying levels of informatics experience are developing technology-delivered measures because of the numerous advantages they offer. Hasty development of technology-delivered measures can present issues that negatively influence administration and psychometric properties. The Method for Technology-delivered Healthcare Measures is designed to systematically guide the development and evaluation of technology-delivered measures. The five-step Method for Technology-delivered Healthcare Measures includes establishment of content, e-Health literacy, technology delivery, expert usability, and participant usability. Background information and Method for Technology-delivered Healthcare Measures steps are detailed.

  6. Informatics Competencies Pre- and Post-Implementation of a Palm-based Student Clinical Log and Informatics for Evidence-based Practice Curriculum

    PubMed Central

    Bakken, Suzanne; Cook, Sarah Sheets; Curtis, Lesly; Soupios, Michael; Curran, Christine

    2003-01-01

    The purpose of this paper is to describe the implementation and evaluation of a two-part approach to achieving informatics competencies: 1) Palm-based student clinical log for documentation of patient encounters; and 2) informatics for evidence-based practice curriculum. Using a repeated-measures, non-equivalent control group design, self-reported informatics competencies were rated using a survey instrument based upon published informatics competencies for beginning nurses. For the class of 2002, scores increased significantly in all competencies from admission to graduation. Using a minimum score of 3 on a scale of 1=not competent and 5=expert to indicate competence, the only area in which it was not achieved was Computer Skills: Education. For 2001 graduates, Computer Skills: Decision Support was also below 3. There were no significant differences in competency scores between 2001 and 2002 graduates. Computer Skills: Decision Support neared significance. Subsequently, the approaches were refined for implementation in the class of 2003. PMID:14728130

  7. Current Trends in Nursing Informatics: Results of an International Survey.

    PubMed

    Peltonen, Laura-Maria; Alhuwail, Dari; Ali, Samira; Badger, Martha K; Eler, Gabrielle Jacklin; Georgsson, Mattias; Islam, Tasneem; Jeon, Eunjoo; Jung, Hyunggu; Kuo, Chiu-Hsiang; Lewis, Adrienne; Pruinelli, Lisiane; Ronquillo, Charlene; Sarmiento, Raymond Francis; Sommer, Janine; Tayaben, Jude L; Topaz, Maxim

    2016-01-01

    Nursing informatics (NI) can help provide effective and safe healthcare. This study aimed to describe current research trends in NI. In the summer 2015, the IMIA-NI Students Working Group created and distributed an online international survey of the current NI trends. A total of 402 responses were submitted from 44 countries. We identified a top five NI research areas: standardized terminologies, mobile health, clinical decision support, patient safety and big data research. NI research funding was considered to be difficult to acquire by the respondents. Overall, current NI research on education, clinical practice, administration and theory is still scarce, with theory being the least common. Further research is needed to explain the impact of these trends and the needs from clinical practice.

  8. G7: a framework for international cooperation in medical informatics.

    PubMed Central

    Lindberg, D. A.; Siegel, E. R.

    1998-01-01

    The world's major economic powers, the G7, have initiated a collaborative International research and demonstration program to exploit the benefits of information and communications technology for society. The Global Healthcare Applications Project (GHAP) is investigating a variety of informatics applications in disease specific domains, telemedicine, and multilingual textual and image database systems. This paper summarizes the nine GHAP sub-projects undertaken to date, with emphasis on those in which the U.S. is a participant. The growing use of smart card technology, especially in Europe, is adding new impetus for similar medical and health experiments in the U.S. A pilot project now underway in several Western states is described. PMID:9929177

  9. Biomedical and health informatics education and research at the Information Technology Institute in Egypt.

    PubMed

    Hussein, R; Khalifa, A

    2011-01-01

    During the last decade, Egypt has experienced a revolution in the field of Information and Communication Technology (ICT) that has had a corresponding impact on the field of healthcare. Since 1993, the Information Technology Institute (ITI) has been leading the development of the Information Technology (IT) professional training and education in Egypt to produce top quality IT professionals who are considered now the backbone of the IT revolution in Egypt. For the past five years, ITI has been adopting the objective of building high caliber health professionals who can effectively serve the ever-growing information society. Academic links have been established with internationally renowned universities, e.g., Oregon Health and Science University (OHSU) in US, University of Leipzig in Germany, in addition those with the Egyptian Fellowship Board in order to enrich ITI Medical Informatics Education and Research. The ITI Biomedical and Health Informatics (BMHI) education and training programs target fresh graduates as well as life-long learners. Therefore, the program's learning objectives are framed within the context of the four specialization tracks: Healthcare Management (HCM), Biomedical Informatics Research (BMIR), Bioinformatics Professional (BIP), and Healthcare Professional (HCP). The ITI BMHI research projects tackle a wide-range of current challenges in this field, such as knowledge management in healthcare, providing tele-consultation services for diagnosis and treatment of infectious diseases for underserved regions in Egypt, and exploring the cultural and educational aspects of Nanoinformatics. Since 2006, ITI has been positively contributing to develop the discipline of BMHI in Egypt in order to support improved healthcare services.

  10. Why We Should No Longer Only Repair, Polish and Iron Current Computer Science Educations.

    ERIC Educational Resources Information Center

    Gruska, Jozef

    1993-01-01

    Describes shortcomings of computer science/engineering education and explains a new focus on informatics. Highlights include simulation, visualization, algorithmization, design of information processing models, parallel computing, a history of informatics, informatics versus physics and mathematics, and implications for education. (51 references)…

  11. Why We Should No Longer Only Repair, Polish and Iron Current Computer Science Educations.

    ERIC Educational Resources Information Center

    Gruska, Jozef

    1993-01-01

    Describes shortcomings of computer science/engineering education and explains a new focus on informatics. Highlights include simulation, visualization, algorithmization, design of information processing models, parallel computing, a history of informatics, informatics versus physics and mathematics, and implications for education. (51 references)…

  12. Biomedical informatics in Switzerland: need for action.

    PubMed

    Lovis, Christian; Blaser, Jürg

    2015-01-01

    Biomedical informatics (BMI) is an umbrella scientific field that covers many domains, as defined several years ago by the International Medical Informatics Association and the American Medical Informatics Association, two leading players in the field. For example, one of the domains of BMI is clinical informatics, which has been formally recognised as a medical subspecialty by the American Board of Medical Specialty since 2011. Most OECD (Organisation for Economic Co-operation and Development) countries offer very strong curricula in the field of BMI, strong research and development funding with clear tracks and, for most of them, inclusion of BMI in the curricula of health professionals, but BMI remains only marginally recognised in Switzerland. Recent major changes, however, such as the future federal law on electronic patient records, the personalised health initiative or the growing empowerment of citizens towards their health data, are adding much weight to the need for BMI capacity-building in Switzerland.

  13. Moving toward a United States strategic plan in primary care informatics: a White Paper of the Primary Care Informatics Working Group, American Medical Informatics Association.

    PubMed

    Little, David R; Zapp, John A; Mullins, Henry C; Zuckerman, Alan E; Teasdale, Sheila; Johnson, Kevin B

    2003-01-01

    The Primary Care Informatics Working Group (PCIWG) of the American Medical Informatics Association (AMIA) has identified the absence of a national strategy for primary care informatics. Under PCIWG leadership, major national and international societies have come together to create the National Alliance for Primary Care Informatics (NAPCI), to promote a connection between the informatics community and the organisations that support primary care. The PCIWG clinical practice subcommittee has recognised the necessity of a global needs assessment, and proposed work in point-of-care technology, clinical vocabularies, and ambulatory electronic medical record development. Educational needs include a consensus statement on informatics competencies, recommendations for curriculum and teaching methods, and methodologies to evaluate their effectiveness. The research subcommittee seeks to define a primary care informatics research agenda, and to support and disseminate informatics research throughout the primary care community. The AMIA board of directors has enthusiastically endorsed the conceptual basis for this White Paper.

  14. The Learning Healthcare System and Cardiovascular Care: A Scientific Statement From the American Heart Association.

    PubMed

    Maddox, Thomas M; Albert, Nancy M; Borden, William B; Curtis, Lesley H; Ferguson, T Bruce; Kao, David P; Marcus, Gregory M; Peterson, Eric D; Redberg, Rita; Rumsfeld, John S; Shah, Nilay D; Tcheng, James E

    2017-03-02

    The learning healthcare system uses health information technology and the health data infrastructure to apply scientific evidence at the point of clinical care while simultaneously collecting insights from that care to promote innovation in optimal healthcare delivery and to fuel new scientific discovery. To achieve these goals, the learning healthcare system requires systematic redesign of the current healthcare system, focusing on 4 major domains: science and informatics, patient-clinician partnerships, incentives, and development of a continuous learning culture. This scientific statement provides an overview of how these learning healthcare system domains can be realized in cardiovascular disease care. Current cardiovascular disease care innovations in informatics, data uses, patient engagement, continuous learning culture, and incentives are profiled. In addition, recommendations for next steps for the development of a learning healthcare system in cardiovascular care are presented.

  15. Evolution of Trends in European Medical Informatics

    PubMed Central

    I. Mihalas, George

    2014-01-01

    This presentation attempts to analyze the trends in Medical Informatics along half a century, in the European socio-political and technological development context. Based on the major characteristics which seem dominant in some periods, a staging is proposed, with a description of each period – the context, major ideas, views and events. A summary of major features of each period is also added. This paper has an original presentation of the evolution of major trends in medical informatics. PMID:24648618

  16. Nursing Informatics Education: Latino America & Caribe.

    PubMed

    Hullin, Carol

    2016-01-01

    The objective of this panel is to share the current status of Nursing Informatics education at the national (Chile) and regional level. All the panelists are involved in different educational programs by face to face, online and small workshops. The scope is to anyone who is interested in the education in nursing informatics in Spanish, since the entire panelists participate in the design & development of educational programs from certificate, diploma, bachelor, master and PhD curriculums.

  17. The informatics nurse specialist role in electronic health record usability evaluation.

    PubMed

    Rojas, Crystal L; Seckman, Charlotte A

    2014-05-01

    Health information technology is revolutionizing the way we interact with health-related data. One example of this can be seen in the rising adoption rates of electronic health records by healthcare providers. Nursing plays a vital role in electronic health record adoption, not only because of their numbers but also their intimate understanding of workflow. The success of an electronic health record also relies on how usable the software is for clinicians, and a thorough usability evaluation is needed before implementing a system within an organization. Not all nurses have the knowledge and skills to perform extensive usability testing; therefore, the informatics nurse specialist plays a critical role in the process. This article will discuss core usability principles, provide a framework for applying these concepts, and explore the role of the informatics nurse specialist in electronic health record evaluation. Health information technology is fundamentally changing the clinical practice environment, and many nurses are seeking leadership positions in the field of informatics. As technology and software become more sophisticated, usability principles must be used under theguidance of the informatics nurse specialist to provide a relevant, robust, and well-designed electronic health record to address the needs of the busy clinician.

  18. Informatics training for clinicians is more important than hardware and software.

    PubMed

    Safran, C

    2009-01-01

    The importance of training physicians and nurses in the art, skill and science of clinical informatics has never been greater. What level of training is necessary and sufficient to equip the 21st century healthcare workforce for the transformative opportunity enabled by widespread deployment of EHRs? Building on the success of its 10x10 program, AMIA with support from the Robert Wood Johnson foundation took its next step to create the necessary documents to have clinical informatics recognized as a sub-specialty by the American Board of Medical Specialties (ABMS). We defined the core content that had to be mastered and describing how physicians interested in the sub-specialty clinical informatics would be trained. The results of this work have been approved by the board of AMIA and have been published in its journal JAMIA. The health challenges of the 21 century require that we rapidly train the clinical workforce in clinical informatics. In addition to buying hardware and software, our health systems need to sponsor this training. Two percent of every Health IT budget should be targeted for clinician education.

  19. On determining factors for good research in biomedical and health informatics. Some lessons learned.

    PubMed

    Haux, R

    2014-05-22

    What are the determining factors for good research in medical informatics or, from a broader perspective, in biomedical and health informatics? From the many lessons learned during my professional career, I tried to identify a fair sampling of such factors. On the occasion of giving the IMIA Award of Excellence lecture during MedInfo 2013, they were presented for discussion. Sixteen determining factors (df) have been identified: early identification and promotion (df1), appropriate education (df2), stimulating persons and environments (df3), sufficient time and backtracking opportunities (df4), breadth of medical informatics competencies (df5), considering the necessary preconditions for good medical informatics research (df6), easy access to high-quality knowledge (df7), sufficient scientific career opportunities (df8), appropriate conditions for sustainable research (df9), ability to communicate and to solve problems (df10), as well as to convey research results (df11) in a highly inter- and multidisciplinary environment, ability to think for all and, when needed, taking the lead (df12), always staying unbiased (df13), always keeping doubt (df14), but also always trying to provide solutions (df15), and, finally, being aware that life is more (df16). Medical Informatics is an inter- and multidisciplinary discipline "avant la lettre". Compared to monodisciplinary research, inter- and multidisciplinary research does not only provide significant opportunities for solving major problems in science and in society. It also faces considerable additional challenges for medical informatics as a scientific field. The determining factors, presented here, are in my opinion crucial for conducting successful research and for developing a research career. Since medical informatics as a field has today become an important driving force for research progress, especially in biomedicine and health care, but also in fields like computer science, it may be helpful to consider such

  20. From bed to bench: bridging from informatics practice to theory: an exploratory analysis.

    PubMed

    Haux, R; Lehmann, C U

    2014-01-01

    In 2009, Applied Clinical Informatics (ACI)--focused on applications in clinical informatics--was launched as a companion journal to Methods of Information in Medicine (MIM). Both journals are official journals of the International Medical Informatics Association. To explore which congruencies and interdependencies exist in publications from theory to practice and from practice to theory and to determine existing gaps. Major topics discussed in ACI and MIM were analyzed. We explored if the intention of publishing companion journals to provide an information bridge from informatics theory to informatics practice and vice versa could be supported by this model. In this manuscript we will report on congruencies and interdependences from practice to theory and on major topics in MIM. Retrospective, prolective observational study on recent publications of ACI and MIM. All publications of the years 2012 and 2013 were indexed and analyzed. Hundred and ninety-six publications were analyzed (ACI 87, MIM 109). In MIM publications, modelling aspects as well as methodological and evaluation approaches for the analysis of data, information, and knowledge in biomedicine and health care were frequently raised - and often discussed from an interdisciplinary point of view. Important themes were ambient-assisted living, anatomic spatial relations, biomedical informatics as scientific discipline, boosting, coding, computerized physician order entry, data analysis, grid and cloud computing, health care systems and services, health-enabling technologies, health information search, health information systems, imaging, knowledge-based decision support, patient records, signal analysis, and web science. Congruencies between journals could be found in themes, but with a different focus on content. Interdependencies from practice to theory, found in these publications, were only limited. Bridging from informatics theory to practice and vice versa remains a major component of successful

  1. On Determining Factors for Good Research in Biomedical and Health Informatics

    PubMed Central

    2014-01-01

    Summary Objective What are the determining factors for good research in medical informatics or, from a broader perspective, in biomedical and health informatics? Method From the many lessons learned during my professional career, I tried to identify a fair sampling of such factors. On the occasion of giving the IMIA Award of Excellence lecture during MedInfo 2013, they were presented for discussion. Results Sixteen determining factors (df) have been identified: early identification and promotion (df1), appropriate education (df2), stimulating persons and environments (df3), sufficient time and backtracking opportunities (df4), breadth of medical informatics competencies (df5), considering the necessary preconditions for good medical informatics research (df6), easy access to high-quality knowledge (df7), sufficient scientific career opportunities (df8), appropriate conditions for sustainable research (df9), ability to communicate and to solve problems (df10), as well as to convey research results (df11) in a highly inter- and multidisciplinary environment, ability to think for all and, when needed, taking the lead (df12), always staying unbiased (df13), always keeping doubt (df14), but also always trying to provide solutions (df15), and, finally, being aware that life is more (df16). Conclusions Medical Informatics is an inter- and multidisciplinary discipline “avant la lettre”. Compared to monodisciplinary research, inter- and multidisciplinary research does not only provide significant opportunities for solving major problems in science and in society. It also faces considerable additional challenges for medical informatics as a scientific field. The determining factors, presented here, are in my opinion crucial for conducting successful research and for developing a research career. Since medical informatics as a field has today become an important driving force for research progress, especially in biomedicine and health care, but also in fields like

  2. *informatics: Identifying and Tracking Informatics Sub-Discipline Terms in the Literature.

    PubMed

    Chen, E S; Sarkar, I N

    2015-01-01

    To identify the breadth of informatics sub-discipline terms used in the literature for enabling subsequent organization and searching by sub-discipline. Titles in five literature sources were analyzed to extract terms for informatics sub-disciplines: 1) United States (U.S.) Library of Congress Online Catalog, 2) English Wikipedia, 3) U.S. National Library of Medicine (NLM) Catalog, 4) PubMed, and 5) PubMed Central. The extracted terms were combined and standardized with those in four vocabulary sources to create an integrated list: 1) Library of Congress Subject Headings (LCSH), 2) Medical Subject Headings (MeSH), 3) U.S. National Cancer Institute Thesaurus (NCIt), and 4) EMBRACE Data and Methods (EDAM). Searches for terms in titles from each literature source were conducted to obtain frequency counts and start years for characterizing established and potentially emerging sub-disciplines. Analysis of 6,949 titles from literature sources and 67 terms from vocabulary sources resulted in an integrated list of 382 terms for informatics sub-disciplines mapped to 292 preferred terms. In the last five decades, "bioinformatics", "medical informatics", "health informatics", "nursing informatics", and "biomedical informatics" were associated with the most literature. In the current decade, potentially emerging sub-disciplines include "disability informatics", "neonatal informatics", and "nanoinformatics" based on literature from the last five years. As the field of informatics continues to expand and advance, keeping up-to-date with historical and current trends will become increasingly challenging. The ability to track the accomplishments and evolution of a particular sub-discipline in the literature could be valuable for supporting informatics research, education, and training.

  3. Clinical Research Informatics: Recent Advances and Future Directions

    PubMed Central

    2015-01-01

    Summary Objectives To summarize significant developments in Clinical Research Informatics (CRI) over the past two years and discuss future directions. Methods Survey of advances, open problems and opportunities in this field based on exploration of current literature. Results Recent advances are structured according to three use cases of clinical research: Protocol feasibility, patient identification/recruitment and clinical trial execution. Discussion CRI is an evolving, dynamic field of research. Global collaboration, open metadata, content standards with semantics and computable eligibility criteria are key success factors for future developments in CRI. PMID:26293865

  4. Challenges and solutions for using informatics in research.

    PubMed

    Ryan, Catherine J; Choi, Heeseung; Fritschi, Cynthia; Hershberger, Patricia E; Vincent, Catherine V; Hacker, Eileen Danaher; Zerwic, Julie J; Norr, Kathleen; Park, Hanjong; Tastan, Sevinc; Keenan, Gail M; Finnegan, Lorna; Zhao, Zhongsheng; Gallo, Agatha M; Wilkie, Diana J

    2013-07-01

    Computer technology provides innovations for research but not without concomitant challenges. Herein, we present our experiences with technology challenges and solutions across 16 nursing research studies. Issues included intervention integrity, software updates and compatibility, web accessibility and implementation, hardware and equipment, computer literacy of participants, and programming. Our researchers found solutions related to best practices for computer-screen design and usability testing, especially as they relate to the target populations' computer literacy levels and use patterns; changes in software; availability and limitations of operating systems and web browsers; resources for on-site technology help for participants; and creative facilitators to access participants and implement study procedures. Researchers may find this information helpful as they consider successful ways to integrate informatics in the design and implementation of future studies with technology that maximizes research productivity.

  5. Challenges and Solutions for Using Informatics in Research

    PubMed Central

    Ryan, Catherine; Choi, Heeseung; Fritschi, Cynthia; Hershberger, Patricia; Vincent, Catherine; Hacker, Eileen Danaher; Zerwic, Julie; Norr, Kathleen; Park, Hanjong; Tastan, Sevinc; Keenan, Gail M.; Finnegan, Lorna; Zhao, Zhongsheng; Gallo, Agatha M; Wilkie, Diana J.

    2013-01-01

    Computer technology provides innovations for research but not without concomitant challenges. Herein, we present our experiences with technology challenges and solutions across 16 nursing research studies. Issues included intervention integrity, software updates and compatibility, Web accessibility and implementation, hardware and equipment, computer literacy of participants, and programming. Our researchers found solutions related to best practices for computer-screen design and usability testing, especially as they relate to the target populations' computer literacy levels and use patterns; changes in software; availability and limitations of operating systems and Web-browsers; resources for on-site technology help for participants; and creative facilitators to access participants and implement study procedures. Researchers may find this information helpful as they consider successful ways to integrate informatics in the design and implementation of future studies with technology that maximizes research productivity. PMID:23475591

  6. Medical informatics education at medical faculty of sarajevo university - 15 years experience.

    PubMed

    Masic, Izet

    2008-01-01

    NONE DECLARED In Bosnia and Herzegovina, Medical informatics has been a separate subject for the last 15 years with regard to Medical curriculum at the biomedical faculties in the country (1,2). Education in the field of Medical informatics is based on the concept which is used in developed countries, according to the recommendations of the working groups EDU - Education of Medical Informatics, of the European Federation for Medical Informatics (EFMI) and International Medical Informatics Association (IMIA). Theoretical and practical teaching and training performance as a whole is performed by use of the computer equipment, and the final knowledge check of the students is also performed using the Data Base Management System MS Access specifically designed to cover full teaching and training material by using question sets in the data base which encircled nearly 1500 question combinations. The distance learning is logical step that can further improve this method of education. In this paper, authors present 15 years of experience of Medical informatics education at biomedical faculties in Bosnia and Herzegovina. Medical Informatics, as an obligatory subject, was introduced to the biomedical faculties in Sarajevo (medical, dental and pharmaceutical as well as the High medical school) in 1992 and 1993. Students have practical computer exercises for a period of 7 weeks. Students had training in Excel, Word etc. During the semester, the students perform specific operation such as creation of data carrier for manipulation with medical information. The information was analyzed by statistical program such as Excel. From 2002 years Medical Informatics is divided in two parts in order to facilitate data processing and other procedure that are necessary to perform at time when student's knowledge of medicine is sufficient for practicing specific tasks that include management the data about patient, anamnesis and similar parameters cause we noticed that students without such

  7. Comparing the Efficiency of Different Approaches to Teach Informatics at Secondary Schools

    ERIC Educational Resources Information Center

    Steer, Christoph; Hubwieser, Peter

    2010-01-01

    Each of the 16 federal states of Germany has its own school system and also its own policy to integrate informatics, computer science or ICT into this system. Till present there aren't any tests of students' knowledge on a nation-wide level. Therefore nation-wide or international contests currently offer the only opportunities to compare the…

  8. Bioimage Informatics in the context of Drosophila research.

    PubMed

    Jug, Florian; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2014-06-15

    Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development.

  9. [Management of hemodialysis patients using simple informatics program].

    PubMed

    Devcić, Bosiljka; Jelić, Ita; Racki, Sanjin

    2014-03-01

    Providing health care and good hospital organization are always based on a well-educated and competent nurse. Nurses can significantly affect the result of overall treatment, which has a professional and financial effect. Nursing Informatics is a specialty that integrates nursing, computer and information science applied to nursing management as well as transfer of data, information and knowledge in nursing practice. This facilitates nurses' integration in supporting decision-making and implementation of health care. Informatics emphasizes overall nursing practice and nurses should have basic computer skills. In this article, we show how the use of simple tables, designed by using Microsoft Office programs (Word and Excel), has been employed for over a decade in facilitating the organization of daily work, monitoring of patients and their prescribed therapy. A trained nurse-manager will be able to evaluate patient care and to organize health care administration using all human and technical resources. The vision of the national health care system is still not achievable due to the lack of infrastructure. Nurses and computer documentation of patients with chronic kidney disease can significantly improve the quality of patient care and treatment.

  10. Teaching medical informatics: teaching on the seams of disciplines, cultures, traditions.

    PubMed

    Möhr, J R

    1989-11-01

    This paper reviews different concepts of medical informatics and identifies two families of approaches to education in it: a "specialist" approach, whereby medical informatics is taught as a specialization track for established disciplines like medicine, computer science, nursing, engineering, etc., and a "generalistic" approach, whereby it is taught as an integrated discipline incorporating essential traits of the aforementioned disciplines. The pros and cons of these approaches are outlined. The need to accommodate specific requirements of education is emphasized and these are identified, together with an outline of particular challenges that we are facing.

  11. Pathology Informatics Essentials for Residents: A Flexible Informatics Curriculum Linked to Accreditation Council for Graduate Medical Education Milestones.

    PubMed

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2017-01-01

    -Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics has been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. -To develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills, and meets Accreditation Council for Graduate Medical Education Informatics Milestones. -The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. -Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). -PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time.

  12. Biomedical informatics: we are what we publish.

    PubMed

    Elkin, P L; Brown, S H; Wright, G

    2013-01-01

    This article is part of a For-Discussion-Section of Methods of Information in Medicine on "Biomedical Informatics: We are what we publish". It is introduced by an editorial and followed by a commentary paper with invited comments. In subsequent issues the discussion may continue through letters to the editor. Informatics experts have attempted to define the field via consensus projects which has led to consensus statements by both AMIA. and by IMIA. We add to the output of this process the results of a study of the Pubmed publications with abstracts from the field of Biomedical Informatics. We took the terms from the AMIA consensus document and the terms from the IMIA definitions of the field of Biomedical Informatics and combined them through human review to create the Health Informatics Ontology. We built a terminology server using the Intelligent Natural Language Processor (iNLP). Then we downloaded the entire set of articles in Medline identified by searching the literature by "Medical Informatics" OR "Bioinformatics". The articles were parsed by the joint AMIA / IMIA terminology and then again using SNOMED CT and for the Bioinformatics they were also parsed using HGNC Ontology. We identified 153,580 articles using "Medical Informatics" and 20,573 articles using "Bioinformatics". This resulted in 168,298 unique articles and an overlap of 5,855 articles. Of these 62,244 articles (37%) had titles and abstracts that contained at least one concept from the Health Informatics Ontology. SNOMED CT indexing showed that the field interacts with most all clinical fields of medicine. Further defining the field by what we publish can add value to the consensus driven processes that have been the mainstay of the efforts to date. Next steps should be to extract terms from the literature that are uncovered and create class hierarchies and relationships for this content. We should also examine the high occurring of MeSH terms as markers to define Biomedical Informatics

  13. Informatics at the National Institutes of Health: a call to action.

    PubMed

    Hendee, W R

    1999-01-01

    Biomedical informatics, imaging, and engineering are major forces driving the knowledge revolutions that are shaping the agendas for biomedical research and clinical medicine in the 21st century. These disciplines produce the tools and techniques to advance biomedical research, and continually feed new technologies and procedures into clinical medicine. To sustain this force, an increased investment is needed in the physics, biomedical science, engineering, mathematics, information science, and computer science undergirding biomedical informatics, engineering, and imaging. This investment should be made primarily through the National Institutes of Health (NIH). However, the NIH is not structured to support such disciplines as biomedical informatics, engineering, and imaging that cross boundaries between disease- and organ-oriented institutes. The solution to this dilemma is the creation of a new institute or center at the NIH devoted to biomedical imaging, engineering, and informatics. Bills are being introduced into the 106th Congress to authorize such an entity. The pathway is long and arduous, from the introduction of bills in the House and Senate to the realization of new opportunities for biomedical informatics, engineering, and imaging at the NIH. There are many opportunities for medical informaticians to contribute to this realization.

  14. Digital Libraries and Recent Medical Informatics Research. Findings from the IMIA Yearbook of Medical Informatics 2001.

    PubMed

    Ammenwerth, E; Knaup, P; Maier, C; Mludek, V; Singer, R; Skonetzki, S; Wolff, A C; Haux, R; Kulikowski, C

    2001-05-01

    The Yearbook of Medical Informatics is published annually by the International Medical Informatics Association (IMIA) and contains a selection of recent excellent papers on medical informatics research (http://www.med.uni-heidelberg.de/mi/yearbook/index.htm). The special topic of the just published Yearbook 2001 is "Digital Libraries and Medicine". Digital libraries have changed dramatically and will continue to change the way we work with medical knowledge. The selected papers present recent research and new results on digital libraries. As usual, the Yearbook 2001 also contains a variety of papers on other subjects relevant to medical informatics, such as Electronic Patient Records, Health Information Systems, Health and Clinical Management, Decision Support Systems, Education, as well as Image and Signal Processing. This paper will briefly introduce the contributions covering digital libraries and will show how medical informatics research contributes to this important topic.

  15. The economic implications of users willingness to increase knowledge capital in health informatics.

    PubMed

    Vimarlund, V; Timpka, T; Hallberg, N

    1998-01-01

    To develop an economic model of health care professionals demand for knowledge capital in health informatics. Case study with application of the Contingent Valuation Method to develop a small-scale model. Specialized clinic at a university Hospital in Sweden. The model displays the economic rationale behind an individual's choice to spend leisure time for obtaining knowledge in health informatics. This decision reduces the total leisure time, but does not increase salary. Instead, it may increase the personal well being by higher satisfaction gained from using information systems and by being recognized as a computer expert. Individuals have preferences over all uses of time and for activities they can choose to engage in Support of health care staff's investment in health informatics knowledge capital may benefit both the individuals and indirectly the health care organization.

  16. People, organizational, and leadership factors impacting informatics support for clinical and translational research

    PubMed Central

    2013-01-01

    Background In recent years, there have been numerous initiatives undertaken to describe critical information needs related to the collection, management, analysis, and dissemination of data in support of biomedical research (J Investig Med 54:327-333, 2006); (J Am Med Inform Assoc 16:316–327, 2009); (Physiol Genomics 39:131-140, 2009); (J Am Med Inform Assoc 18:354–357, 2011). A common theme spanning such reports has been the importance of understanding and optimizing people, organizational, and leadership factors in order to achieve the promise of efficient and timely research (J Am Med Inform Assoc 15:283–289, 2008). With the emergence of clinical and translational science (CTS) as a national priority in the United States, and the corresponding growth in the scale and scope of CTS research programs, the acuity of such information needs continues to increase (JAMA 289:1278–1287, 2003); (N Engl J Med 353:1621–1623, 2005); (Sci Transl Med 3:90, 2011). At the same time, systematic evaluations of optimal people, organizational, and leadership factors that influence the provision of data, information, and knowledge management technologies and methods are notably lacking. Methods In response to the preceding gap in knowledge, we have conducted both: 1) a structured survey of domain experts at Academic Health Centers (AHCs); and 2) a subsequent thematic analysis of public-domain documentation provided by those same organizations. The results of these approaches were then used to identify critical factors that may influence access to informatics expertise and resources relevant to the CTS domain. Results A total of 31 domain experts, spanning the Biomedical Informatics (BMI), Computer Science (CS), Information Science (IS), and Information Technology (IT) disciplines participated in a structured surveyprocess. At a high level, respondents identified notable differences in theaccess to BMI, CS, and IT expertise and services depending on the establishment of a

  17. X-Informatics: Practical Semantic Science

    NASA Astrophysics Data System (ADS)

    Borne, K. D.

    2009-12-01

    The discipline of data science is merging with multiple science disciplines to form new X-informatics research disciplines. They are almost too numerous to name, but they include geoinformatics, bioinformatics, cheminformatics, biodiversity informatics, ecoinformatics, materials informatics, and the emerging discipline of astroinformatics. Within any X-informatics discipline, the information granules are unique to that discipline -- e.g., gene sequences in bio, the sky object in astro, and the spatial object in geo (such as points, lines, and polygons in the vector model, and pixels in the raster model). Nevertheless the goals are similar: transparent data re-use across subdisciplines and within education settings, information and data integration and fusion, personalization of user interactions with the data collection, semantic search and retrieval, and knowledge discovery. The implementation of an X-informatics framework enables these semantic e-science research goals. We describe the concepts, challenges, and new developments associated with the new discipline of astroinformatics, and how geoinformatics provides valuable lessons learned and a model for practical semantic science within a traditional science discipline through the accretion of data science methodologies (such as formal metadata creation, data models, data mining, information retrieval, knowledge engineering, provenance, taxonomies, and ontologies). The emerging concept of data-as-a-service (DaaS) builds upon the concept of smart data (or data DNA) for intelligent data management, automated workflows, and intelligent processing. Smart data, defined through X-informatics, enables several practical semantic science use cases, including self-discovery, data intelligence, automatic recommendations, relevance analysis, dimension reduction, feature selection, constraint-based mining, interdisciplinary data re-use, knowledge-sharing, data use in education, and more. We describe these concepts within the

  18. A Paradigm for Space Science Informatics

    NASA Astrophysics Data System (ADS)

    Borne, K. D.; Eastman, T. E.

    2006-05-01

    Informatics can be defined as the discipline of structuring, storing, accessing, and distributing information describing complex systems. In the fields of Bioinformatics and Geoinformatics, specific tools have been developed through wide community requirements analysis and consensus. In Geoinformatics, the GIS toolset is nearly universal. In Bioinformatics, tools such as BLAST and FASTA are commonly used. One of the key enablers of these science research and analysis systems is a nearly universal acceptance (hence, standardization) of the basic data unit in each field. In Bioinformatics, the gene sequence is the basic data unit. In GIS, the basic unit is gridded data consisting of points, vectors, and polygons. We believe that the time has come for a robust Space Science Informatics field of research, parallel to that of Bioinformatics in the fields of Biology and Medicine, and to that of Geoinformatics in the fields of Geography and Earth Science. In particular, we are investigating the specific case of Astroinformatics as a new paradigm for science research in Astronomy. Any Space Science Informatics discipline must include common methods and standards for spatio-temporal data, metadata, taxonomies, ontologies, data structures, data integration, data cleansing and preparation, data transmission and handling, and more. The need for informatics is driven and motivated by the flood of data coming now and the avalanche of data coming soon within all of our science disciplines. The two traditional approaches to science research (experiment and theory) are making room now for this third stream of research - informatics - which is data-driven and information-centric. We discuss the modalities of space science data that form the basis of informatics: raster (images), spectroscopic, time series, distribution functions, and catalogs. We then discuss specific concepts for Astroinformatics. Finally, we present our emerging view of how a field of Space Science Informatics

  19. Turning electronic health record data into meaningful information using SQL and nursing informatics.

    PubMed

    Moerbe, Miriam; Kelemen, Arpad

    2014-08-01

    The combination of nursing informatics knowledge with SQL code writing in an electronic health record is a powerful partnership to obtain meaningful information and improve healthcare. The purpose of this project is to use SQL and nursing informatics to identify the underpinnings and scope of present-on-patient-admission pressure ulcer documentation incongruence within the inpatient medical-surgical unit of a rural hospital. Project results reveal a 76% incidence rate of incongruent nurse and physician documentation of pressure ulcers as present on admission. However, the scope of such incongruence affects only 3% for the inpatient population. The high incidence rate of nurse-documented present-on-admission pressure ulcers without a physician diagnoses indicates a potential for lost rural hospital reimbursement and risk to patient care.

  20. Tetrahedron of medical academics: reasons for training in management, leadership and informatics.

    PubMed

    Martins, Henrique

    2009-06-01

    Medical school professors and lecturers are often called to be practicing clinicians, researchers in their own field, in addition to executing their education and curricular responsibilities. Some further accumulate healthcare management responsibilities. These areas pose conflicting demands on time and intellectual activity, but despite their apparent differences, knowledge and skills from management, leadership and informatics may prove useful in helping to smooth these conflicts and hence increase personal effectiveness in these areas. This article tries to clarify some concepts and advance why training in management, leadership and health informatics would seem particularly useful for the medical academic. As opposed to the idea of educational dispersion/specialization, the concept of an integrative tetrahedronal education framework is advanced as a way to plan workshops and other faculty development activities which could be implemented transnationally as well as locally.

  1. Health Informatics in Developing Countries: Going beyond Pilot Practices to Sustainable Implementations: A Review of the Current Challenges

    PubMed Central

    Almerares, Alfredo; Mayan, John Charles; González Bernaldo de Quirós, Fernán; Otero, Carlos

    2014-01-01

    Objectives Information technology is an essential tool to improve patient safety and the quality of care, and to reduce healthcare costs. There is a scarcity of large sustainable implementations in developing countries. The objective of this paper is to review the challenges faced by developing countries to achieve sustainable implementations in health informatics and possible ways to address them. Methods In this non-systematic review of the literature, articles were searched using the keywords medical informatics, developing countries, implementation, and challenges in PubMed, LILACS, CINAHL, Scopus, and EMBASE. The authors, after reading the literature, reached a consensus to classify the challenges into six broad categories. Results The authors describe the problems faced by developing countries arising from the lack of adequate infrastructure and the ways these can be bypassed; the fundamental need to develop nationwide e-Health agendas to achieve sustainable implementations; ways to overcome public uncertainty with respect to privacy and security; the difficulties shared with developed countries in achieving interoperability; the need for a trained workforce in health informatics and existing initiatives for its development; and strategies to achieve regional integration. Conclusions Central to the success of any implementation in health informatics is knowledge of the challenges to be faced. This is even more important in developing countries, where uncertainty and instability are common. The authors hope this article will assist policy makers, healthcare managers, and project leaders to successfully plan their implementations and make them sustainable, avoiding unexpected barriers and making better use of their resources. PMID:24627813

  2. Big Data: Are Biomedical and Health Informatics Training Programs Ready? Contribution of the IMIA Working Group for Health and Medical Informatics Education.

    PubMed

    Otero, P; Hersh, W; Jai Ganesh, A U

    2014-08-15

    The growing volume and diversity of health and biomedical data indicate that the era of Big Data has arrived for healthcare. This has many implications for informatics, not only in terms of implementing and evaluating information systems, but also for the work and training of informatics researchers and professionals. This article addresses the question: What do biomedical and health informaticians working in analytics and Big Data need to know? We hypothesize a set of skills that we hope will be discussed among academic and other informaticians. The set of skills includes: Programming - especially with data-oriented tools, such as SQL and statistical programming languages; Statistics - working knowledge to apply tools and techniques; Domain knowledge - depending on one's area of work, bioscience or health care; and Communication - being able to understand needs of people and organizations, and articulate results back to them. Biomedical and health informatics educational programs must introduce concepts of analytics, Big Data, and the underlying skills to use and apply them into their curricula. The development of new coursework should focus on those who will become experts, with training aiming to provide skills in "deep analytical talent" as well as those who need knowledge to support such individuals.

  3. Chapter 17: bioimage informatics for systems pharmacology.

    PubMed

    Li, Fuhai; Yin, Zheng; Jin, Guangxu; Zhao, Hong; Wong, Stephen T C

    2013-04-01

    Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi). Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies.

  4. The experience of informatics nurses in Taiwan.

    PubMed

    Liu, Chia-Hui; Lee, Ting-Ting; Mills, Mary Etta

    2015-01-01

    Despite recent progress in information technology, health care institutions are constantly confronted with the need to adapt to the resulting new processes of information management and use. Facilitating an effective technology implementation requires dedication from informatics nurses (INs) to bridge the gap between clinical care and technology. The purpose of this study was to explore the working experiences of INs, and alternatives to assist the growth and development of the specialty. This qualitative study recruited 8 participants, and data were collected in 2009 by use of interview guides related to work roles, responsibilities, competencies, and challenges. The emerged themes included (a) diversified roles and functions, (b) vague job description, (c) no decision-making authority, (d) indispensable management support, and (e) searching resources for work fulfillment. Findings indicate that for organizations where nursing informatics development is ongoing, the IN role should be clearly defined as a specialist with identified support resources and decision-making authority. Nursing informatics interest groups should further develop training and certification programs to validate the professional image of the role. Concepts of nursing informatics should be included seamlessly throughout the educational curricula and informatics competency-based courses designed to strengthen student's technology use and data management capabilities. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Towards health informatics 3.0. Editorial.

    PubMed

    Kulikowski, Casimir A; Geissbuhler, Antoine

    2011-01-01

    To provide an editorial introduction to the 2011 IMIA Yearbook of Medical Informatics with an overview of its contents and contributors. A brief overview of the main theme, and an outline of the purposes, contents, format, and acknowledgment of contributions for the 2011 IMIA Yearbook. This 2011 issue of the IMIA Yearbook highlights important developments in the development of Web 3.0 capabilities that are increasing in Health Informatics, impacting the activities in research, education and practice in this interdisciplinary field. There has been steady progress towards introducing semantics into informatics systems through more sophisticated representations of knowledge in their underlying information. Health Informatics 3.0 capabilities are identified from the recent literature, illustrated by selected papers published during the past 12 months, and articles reported by IMIA Working Groups. Surveys of the main research sub-fields in biomedical informatics in the Yearbook provide an overview of progress and current challenges across the spectrum of the discipline, focusing on Web 3.0 challenges and opportunities.

  6. IMIA Accreditation of Health Informatics Programs.

    PubMed

    Hasman, A

    2012-01-01

    To develop a procedure for accrediting health informatics programs. Development of a procedure for accreditation. Test of the accreditation procedure via a trial including four or five health informatics programs. A site visit committee consisting of three members evaluates the program based on a self-assessment report written by the program and the experiences and observations of the site visit committee during the site visit. A procedure for accreditation has been developed. The instructions for health informatics programs have been written and a checklist for the site visit committee members is available. In total six subjects are considered, each one consisting of one or more facets. Each facet is judged using its corresponding criterion. Five health informatics programs volunteered. One health informatics program in Finland has already been visited and a report has been produced by the site visit committee. The next site visits are in June and July 2012. The site visit in Finland showed that English summaries of master theses are not enough to get a first impression of the methods used in the thesis. A table of contents is also needed. This information then can be used to select theses written in a language other than English for discussion. The accreditation procedure document with instructions about writing the self-assessment report was very well structured and the instructions were clear according to the Finnish program. The site visit team could work well with the checklist. Self-assessment report model was very well structured and the instructions were clear.

  7. Continued multidisciplinary project-based learning - implementation in health informatics.

    PubMed

    Wessel, C; Spreckelsen, C

    2009-01-01

    Problem- and project-based learning are approved methods to train students, graduates and post-graduates in scientific and other professional skills. The students are trained on realistic scenarios in a broader context. For students specializing in health informatics we introduced continued multidisciplinary project-based learning (CM-PBL) at a department of medical informatics. The training approach addresses both students of medicine and students of computer science. The students are full members of an ongoing research project and develop a project-related application or module, or explore or evaluate a sub-project. Two teachers guide and review the students' work. The training on scientific work follows a workflow with defined milestones. The team acts as peer group. By participating in the research team's work the students are trained on professional skills. A research project on a web-based information system on hospitals built the scenario for the realistic context. The research team consisted of up to 14 active members at a time, who were scientists and students of computer science and medicine. The well communicated educational approach and team policy fostered the participation of the students. Formative assessment and evaluation showed a considerable improvement of the students' skills and a high participant satisfaction. Alternative education approaches such as project-based learning empower students to acquire scientific knowledge and professional skills, especially the ability of life-long learning, multidisciplinary team work and social responsibility.

  8. [Healthcare expenditure].

    PubMed

    Huguier, Michel

    2012-10-01

    Healthcare expenditure is divided between medical infrastructure and individual patient management. Total healthcare costs in France amount to roughly 175 billion euros, financed through public health insurance (77%), private insurance (14%), and individual expenditure (9%). The principal expenditures are for hospitalization (44%), community medical, dental and paramedical care (28%), drugs (20%) and miscellaneous resources (8%). The main factors of rising costs are medical progress and aging. More controllable costs include healthcare provision, the level of reimbursement, public education and information, and physician training. France devotes 9.2% of its gross national product to healthcare, compared to 7-8% in Sweden, Germany and the United Kingdom, representing a diference of about 18 billion euros. In France there is a chronic imbalance between resources and expenditure, creating a cumulative budget deficit of about 100 billlion euros. Major efforts must be made to improve efficiency, and it will be necessary to choose between preserving our healthcare system or our financial system. If the latter is prioritized, healthcare will inevitably deteriorate.

  9. From classification to epilepsy ontology and informatics.

    PubMed

    Zhang, Guo-Qiang; Sahoo, Satya S; Lhatoo, Samden D

    2012-07-01

    The 2010 International League Against Epilepsy (ILAE) classification and terminology commission report proposed a much needed departure from previous classifications to incorporate advances in molecular biology, neuroimaging, and genetics. It proposed an interim classification and defined two key requirements that need to be satisfied. The first is the ability to classify epilepsy in dimensions according to a variety of purposes including clinical research, patient care, and drug discovery. The second is the ability of the classification system to evolve with new discoveries. Multidimensionality and flexibility are crucial to the success of any future classification. In addition, a successful classification system must play a central role in the rapidly growing field of epilepsy informatics. An epilepsy ontology, based on classification, will allow information systems to facilitate data-intensive studies and provide a proven route to meeting the two foregoing key requirements. Epilepsy ontology will be a structured terminology system that accommodates proposed and evolving ILAE classifications, the National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) Common Data Elements, the International Classification of Diseases (ICD) systems and explicitly specifies all known relationships between epilepsy concepts in a proper framework. This will aid evidence-based epilepsy diagnosis, investigation, treatment and research for a diverse community of clinicians and researchers. Benefits range from systematization of electronic patient records to multimodal data repositories for research and training manuals for those involved in epilepsy care. Given the complexity, heterogeneity, and pace of research advances in the epilepsy domain, such an ontology must be collaboratively developed by key stakeholders in the epilepsy community and experts in knowledge engineering and computer science. Wiley Periodicals, Inc. © 2012 International

  10. From Classification to Epilepsy Ontology and Informatics

    PubMed Central

    Zhang, Guo-Qiang; Sahoo, Satya S; Lhatoo, Samden D

    2012-01-01

    Summary The 2010 International League Against Epilepsy (ILAE) classification and terminology commission report proposed a much needed departure from previous classifications to incorporate advances in molecular biology, neuroimaging, and genetics. It proposed an interim classification and defined two key requirements that need to be satisfied. The first is the ability to classify epilepsy in dimensions according to a variety of purposes including clinical research, patient care, and drug discovery. The second is the ability of the classification system to evolve with new discoveries. Multi-dimensionality and flexibility are crucial to the success of any future classification. In addition, a successful classification system must play a central role in the rapidly growing field of epilepsy informatics. An epilepsy ontology, based on classification, will allow information systems to facilitate data-intensive studies and provide a proven route to meeting the two foregoing key requirements. Epilepsy ontology will be a structured terminology system that accommodates proposed and evolving ILAE classifications, the NIH/NINDS Common Data Elements, the ICD systems and explicitly specifies all known relationships between epilepsy concepts in a proper framework. This will aid evidence based epilepsy diagnosis, investigation, treatment and research for a diverse community of clinicians and researchers. Benefits range from systematization of electronic patient records to multi-modal data repositories for research and training manuals for those involved in epilepsy care. Given the complexity, heterogeneity and pace of research advances in the epilepsy domain, such an ontology must be collaboratively developed by key stakeholders in the epilepsy community and experts in knowledge engineering and computer science. PMID:22765502

  11. Mapping the Materials Genome through Combinatorial Informatics

    NASA Astrophysics Data System (ADS)

    Rajan, Krishna

    2012-02-01

    The recently announced White House Materials Genome Initiative provides an exciting challenge to the materials science community. To meet that challenge one needs to address a critical question, namely what is the materials genome? Some guide on how to the answer this question can be gained by recognizing that a ``gene'' is a carrier of information. In the biological sciences, discovering how to manipulate these genes has generated exciting discoveries in fundamental molecular biology as well as significant advances in biotechnology. Scaling that up to molecular, cellular length scales and beyond, has spawned from genomics, fields such as proteomics, metabolomics and essentially systems biology. The ``omics'' approach requires that one needs to discover and track these ``carriers of information'' and then correlate that information to predict behavior. A similar challenge lies in materials science, where there is a diverse array of modalities of materials ``discovery'' ranging from new materials chemistries and molecular arrangements with novel properties, to the development and design of new micro- and mesoscale structures. Hence to meaningfully adapt the spirit of ``genomics'' style research in materials science, we need to first identify and map the ``genes'' across different materials science applications On the experimental side, combinatorial experiments have opened a new approach to generate data in a high throughput manner, but without a clear way to link that to models, the full value of that data is not realized. Hence along with experimental and computational materials science, we need to add a ``third leg'' to our toolkit to make the ``Materials Genome'' a reality, the science of Materials Informatics. In this presentation we provide an overview of how information science coupled to materials science can in fact achieve the goal of mapping the ``Materials Genome''.

  12. NASA Biomedical Informatics Capabilities and Needs

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.

    2009-01-01

    To improve on-orbit clinical capabilities by developing and providing operational support for intelligent, robust, reliable, and secure, enterprise-wide and comprehensive health care and biomedical informatics systems with increasing levels of autonomy, for use on Earth, low Earth orbit & exploration class missions. Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information. The end objective of biomedical informatics is the coalescing of data, knowledge, and the tools necessary to apply that data and knowledge in the decision-making process, at the time and place that a decision needs to be made.

  13. Image informatics in systems biology applications

    NASA Astrophysics Data System (ADS)

    Wong, Stephen T. C.

    2005-02-01

    Digital optical microscopy, coupled with parallel processing and a large arsenal of labeling techniques, offers tremendous values to localize, identify, and characterize cells and molecules. This generates many image informatics challenges in requiring new algorithms and tools to extract, classify, correlate, and model image features and content from massive amounts of cellular and molecular images acquired. Image informatics aims to fill this gap. Coupling automated microscopy and image analysis with biostatistical and data mining techniques to provide a system biologic approach in studying the cells, the basic unit of life, potentially leads to many exciting applications in life and health sciences. In this presentation, we describe certain new system biology applications enabled by image informatics technology.

  14. American Health Information Management Association. Position statement. Issue: healthcare reform--information systems and the need for computer-based patient records.

    PubMed

    1994-01-01

    Timely, reliable information is a critical part of healthcare reform. The Clinton Administration's current proposal would streamline health information through the use of standard forms and data definitions and establish a nationwide electronic highway to link health records and exchange needed information. Information would be captured, retained, and transmitted as a routine byproduct of patient care. These goals can be achieved only through broad implementation of the computer-based patient record (CPR). The CPR will contribute to more effective and cost-efficient care through (1) ready access to longitudinal (lifetime) health information; (2) support for continuous quality improvement; (3) easy access to clinical knowledge bases; and (4) patient participation in health documentation and disease prevention. The technology exists to implement the CPR, but further work is needed to develop the necessary standards and security mechanisms. The American Health Information Management Association is committed to working with applicable state and federal agencies, professional associations, accrediting agencies, voluntary standards organizations, and the Computer-Based Patient Record Institute (CPRI) to achieve the information management objectives of the current health care reform plan. With their expertise in health information systems and strong commitment to patient privacy, health information management professionals can make significant contributions to the development, implementation, and ongoing security of national and state health information networks.

  15. Core content for the subspecialty of clinical informatics.

    PubMed

    Gardner, Reed M; Overhage, J Marc; Steen, Elaine B; Munger, Benson S; Holmes, John H; Williamson, Jeffrey J; Detmer, Don E

    2009-01-01

    The Core Content for Clinical Informatics defines the boundaries of the discipline and informs the Program Requirements for Fellowship Education in Clinical Informatics. The Core Content includes four major categories: fundamentals, clinical decision making and care process improvement, health information systems, and leadership and management of change. The AMIA Board of Directors approved the Core Content for Clinical Informatics in November 2008.

  16. Core Content for the Subspecialty of Clinical Informatics

    PubMed Central

    Gardner, Reed M.; Overhage, J. Marc; Steen, Elaine B.; Munger, Benson S.; Holmes, John H.; Williamson, Jeffrey J.; Detmer, Don E.

    2009-01-01

    The Core Content for Clinical Informatics defines the boundaries of the discipline and informs the Program Requirements for Fellowship Education in Clinical Informatics. The Core Content includes four major categories: fundamentals, clinical decision making and care process improvement, health information systems, and leadership and management of change. The AMIA Board of Directors approved the Core Content for Clinical Informatics in November 2008. PMID:19074296

  17. Health informatics: moving from a discipline to a science.

    PubMed

    Turley, James P

    2009-01-01

    This paper examines the historical definitions of Health (Biomedical) Informatics. It is clear that a majority of the definitions refer to Health Informatics as a discipline. Rather it can be argued that the maturation of Health Informatics is beginning to culminate in a distinct science. This progress need to be reflected in academic programs as well as our conferences and publications.

  18. Improving Bridging from Informatics Practice to Theory.

    PubMed

    Lehmann, C U; Gundlapalli, A V

    2015-01-01

    In 1962, Methods of Information in Medicine ( MIM ) began to publish papers on the methodology and scientific fundamentals of organizing, representing, and analyzing data, information, and knowledge in biomedicine and health care. Considered a companion journal, Applied Clinical Informatics ( ACI ) was launched in 2009 with a mission to establish a platform that allows sharing of knowledge between clinical medicine and health IT specialists as well as to bridge gaps between visionary design and successful and pragmatic deployment of clinical information systems. Both journals are official journals of the International Medical Informatics Association. As a follow-up to prior work, we set out to explore congruencies and interdependencies in publications of ACI and MIM. The objectives were to describe the major topics discussed in articles published in ACI in 2014 and to determine if there was evidence that theory in 2014 MIM publications was informed by practice described in ACI publications in any year. We also set out to describe lessons learned in the context of bridging informatics practice and theory and offer opinions on how ACI editorial policies could evolve to foster and improve such bridging. We conducted a retrospective observational study and reviewed all articles published in ACI during the calendar year 2014 (Volume 5) for their main theme, conclusions, and key words. We then reviewed the citations of all MIM papers from 2014 to determine if there were references to ACI articles from any year. Lessons learned in the context of bridging informatics practice and theory and opinions on ACI editorial policies were developed by consensus among the two authors. A total of 70 articles were published in ACI in 2014. Clinical decision support, clinical documentation, usability, Meaningful Use, health information exchange, patient portals, and clinical research informatics emerged as major themes. Only one MIM article from 2014 cited an ACI article. There

  19. Optimising Health Informatics Outcomes--Getting Good Evidence to Where it Matters.

    PubMed

    Rigby, M

    2015-01-01

    This editorial is part of a For-Discussion-Section of Methods of Information in Medicine about the paper "Evidence-based Health informatics: How do we know what we know?", written by Elske Ammenwerth [1]. Health informatics uses and applications have crept up on health systems over half a century, starting as simple automation of large-scale calculations, but now manifesting in many cases as rule- and algorithm-based creation of composite clinical analyses and 'black box' computation of clinical aspects, as well as enablement of increasingly complex care delivery modes and consumer health access. In this process health informatics has very largely bypassed the rules of precaution, proof of effectiveness, and assessment of safety applicable to all other health sciences and clinical support systems. Evaluation of informatics applications, compilation and recognition of the importance of evidence, and normalisation of Evidence Based Health Informatics, are now long overdue on grounds of efficiency and safety. Ammenwerth has now produced a rigorous analysis of the current position on evidence, and evaluation as its lifeblood, which demands careful study then active promulgation. Decisions based on political aspirations, 'modernisation' hopes, and unsupported commercial claims must cease - poor decisions are wasteful and bad systems can kill. Evidence Based Health Informatics should be promoted, and expected by users, as rigorously as Cochrane promoted Effectiveness and Efficiency, and Sackett promoted Evidence Based Medicine - both of which also were introduced retrospectively to challenge the less robust and partially unsafe traditional 'wisdom' in vogue. Ammenwerth's analysis gives the necessary material to promote that mission.

  20. TRIAD: The Translational Research Informatics and Data Management Grid

    PubMed Central

    Payne, P.; Ervin, D.; Dhaval, R.; Borlawsky, T.; Lai, A.

    2011-01-01

    Objective Multi-disciplinary and multi-site biomedical research programs frequently require infrastructures capable of enabling the collection, management, analysis, and dissemination of heterogeneous, multi-dimensional, and distributed data and knowledge collections spanning organizational boundaries. We report on the design and initial deployment of an extensible biomedical informatics platform that is intended to address such requirements. Methods A common approach to distributed data, information, and knowledge management needs in the healthcare and life science settings is the deployment and use of a service-oriented architecture (SOA). Such SOA technologies provide for strongly-typed, semantically annotated, and stateful data and analytical services that can be combined into data and knowledge integration and analysis “pipelines.” Using this overall design pattern, we have implemented and evaluated an extensible SOA platform for clinical and translational science applications known as the Translational Research Informatics and Data-management grid (TRIAD). TRIAD is a derivative and extension of the caGrid middleware and has an emphasis on supporting agile “working interoperability” between data, information, and knowledge resources. Results Based upon initial verification and validation studies conducted in the context of a collection of driving clinical and translational research problems, we have been able to demonstrate that TRIAD achieves agile “working interoperability” between distributed data and knowledge sources. Conclusion Informed by our initial verification and validation studies, we believe TRIAD provides an example instance of a lightweight and readily adoptable approach to the use of SOA technologies in the clinical and translational research setting. Furthermore, our initial use cases illustrate the importance and efficacy of enabling “working interoperability” in heterogeneous biomedical environments. PMID:23616879

  1. osni.info-Using free/libre/open source software to build a virtual international community for open source nursing informatics.

    PubMed

    Oyri, Karl; Murray, Peter J

    2005-12-01

    Many health informatics organizations seem to be slow to take up the advantages of dynamic, web-based technologies for providing services to, and interaction with, their members; these are often the very technologies they promote for use within healthcare environments. This paper aims to introduce some of the many free/libre/open source (FLOSS) applications that are now available to develop interactive websites and dynamic online communities as part of the structure of health informatics organizations, and to show how the Open Source Nursing Informatics Working Group (OSNI) of the special interest group in nursing informatics of the International Medical Informatics Association (IMIA-NI) is using some of these tools to develop an online community of nurse informaticians through their website, at . Some background introduction to FLOSS applications is used for the benefit of those less familiar with such tools, and examples of some of the FLOSS content management systems (CMS) being used by OSNI are described. The experiences of the OSNI will facilitate a knowledgeable nursing contribution to the wider discussions on the applications of FLOSS within health and healthcare, and provides a model that many other groups could adopt.

  2. Re-engineering healthcare: computer tools support the definition and analysis of work at the Vanderbilt University Hospital and Clinic.

    PubMed

    Sittig, D F; Greeno, S

    1996-12-01

    In November 1993 The Vanderbilt University Hospital and Clinic (VUH/TVC) convened a 10-member Collaborative Organization Design (COD) team comprised of a multi-disciplinary team representing a diagonal slice through the organization. This team, lead by Gelinas * James, Inc. a consulting firm specializing in restructuring, was charged to develop, recommend, and implement a new organizational design that would promote stronger patient focus, increased efficiency, and lower cost. The COD process is structured to inspire and enable employees to rebuild their organization to respond to the challenges and opportunities that exist within their environment, to customer needs, and their own aspirations. This manuscript presents an overview of (1) the computer tools developed and/or employed to support the re-engineering process, and (2) the findings obtained as the work of patient care was defined and analyzed at VUH/TVC.

  3. Patient Informatics: Technology in the Service of Patient Care

    PubMed Central

    Brennan, Patricia Flatley

    1990-01-01

    Care of the patient at home challenges the health care system with both the quantity and diversity of services required. Informatics technologies may provide mechanisms to relieve the burden of traditional services while meeting the unique needs of home-based patients in a timely and effective manner. Capitalizing on an existing, free, public-access computer network we developed the COMPUTERLINK, a set of utilities designed to provide home-care support to persons living with AIDS/ARC (PLWA) in the community. The pilot study presented here we demonstrate the feasibility of using home-based computer networks to provide information, communication and decision assistance to PLWA. The success experienced with this particular group provides sufficient encouragement to extend this intervention to other groups of community-based patients.

  4. Net-based reasoning informatics for civil infrastructure monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Stuart S.; Lamanna, Michael F.

    1997-06-01

    The informatics of instrumented infrastructure will require multi-level computational abstractions that not only collect and declutter the data but also support higher-level automated reasoning capabilities relevant to decision support needs of both owners responsible for the safe operation of the facilities and users of those facilities. This paper describes the appeal and implemented demonstration of Internet-based paradigms for higher-level automated reasoning about condition of instrumented infrastructure using the Java computing language. This enables interactive program execution from a web page. These notions are presented and demonstrated in the context of illustrative application scenarios involving fatigue monitoring, overweight vehicle detection, and bridge deck surface travel condition monitoring. By means of this demonstration, it is suggested that there is an important role for Java-based expert systems in handling key aspects of the data fusion requirements associated with intelligent, internet-mediated post-processing of data obtained from instrumented civil infrastructure.

  5. A Survey of the Job Profiles of Biomedical Informatics Graduates.

    PubMed

    Macedo, Alessandra A; Ruiz, Evandro E S; Baranauskas, José A

    2016-10-17

    In 2003, the University of São Paulo established the first Biomedical Informatics (BMI) undergraduate course in Brazil. Our mission is to provide undergraduate students with formal education on the fundamentals of BMI and its applied methods. This undergraduate course offers theoretical aspects, practical knowledge and scientifically oriented skills in the area of BMI, enab- ling students to contribute to research and methodical development in BMI. Course coordinators, professors and students frequently evaluate the BMI course and the curriculum to ensure that alumni receive quality higher education. This study investigates (i) the main job activities undertake by USP BMI graduates, (ii) subjects that are fundamental important for graduates to pursue a career in BMI, and (iii) the course quality perceived by the alumni. Use of a structured questionnaire to conduct a survey involving all the BMI graduates who received their Bachelor degree before July, 2015 (attempted n = 205). One hundred and forty-five graduates (71 %) answered the questionnaire. Nine out of ten of our former students currently work as informaticians. Seventy-six graduates (52 %) work within the biomedical informatics field. Fifty-five graduates (38 %) work outside the biomedical informatics field, but they work in other IT areas. Ten graduates (7 %) do not work with BMI or any other informatics activities, and four (3 %) are presently unemployed. Among the 145 surveyed BMI graduates, 46 (32 %) and seven (5 %) hold a Master's degree and a PhD degree, respectively. Database Systems, Software Engineering, Introduction to Computer Science, Object-Oriented Programming, and Data Structures are regarded as the most important subjects during the higher education course. The majority of the graduates (105 or 72 %) are satisfied with the BMI education and training they received during the undergraduate course. More than half of the graduates from our BMI course work in their primary

  6. The Informatics Opportunities at the Intersection of Patient Safety and Clinical Informatics

    PubMed Central

    Kilbridge, Peter M.; Classen, David C.

    2008-01-01

    Health care providers have a basic responsibility to protect patients from accidental harm. At the institutional level, creating safe health care organizations necessitates a systematic approach. Effective use of informatics to enhance safety requires the establishment and use of standards for concept definitions and for data exchange, development of acceptable models for knowledge representation, incentives for adoption of electronic health records, support for adverse event detection and reporting, and greater investment in research at the intersection of informatics and patient safety. Leading organizations have demonstrated that health care informatics approaches can improve safety. Nevertheless, significant obstacles today limit optimal application of health informatics to safety within most provider environments. The authors offer a series of recommendations for addressing these challenges. PMID:18436896

  7. A Lexical-Ontological Resource for Consumer Healthcare

    NASA Astrophysics Data System (ADS)

    Cardillo, Elena; Serafini, Luciano; Tamilin, Andrei

    In Consumer Healthcare Informatics it is still difficult for laypeople to find, understand and act on health information, due to the persistent communication gap between specialized medical terminology and that used by healthcare consumers. Furthermore, existing clinically-oriented terminologies cannot provide sufficient support when integrated into consumer-oriented applications, so there is a need to create consumer-friendly terminologies reflecting the different ways healthcare consumers express and think about health topics. Following this direction, this work suggests a way to support the design of an ontology-based system that mitigates this gap, using knowledge engineering and semantic web technologies. The system is based on the development of a consumer-oriented medical terminology that will be integrated with other medical domain ontologies and terminologies into a medical ontology repository. This will support consumer-oriented healthcare systems, such as Personal Health Records, by providing many knowledge services to help users in accessing and managing their healthcare data.

  8. Medical informatics on the Internet: creating the sci.med. informatics newsgroup.

    PubMed Central

    Zakaria, A M; Sittig, D F

    1995-01-01

    A Usenet newsgroup, sci.med.informatics, has been created to serve as an international electronic forum for discussion of issues related to medical informatics. The creation process follows a set of administrative rules set out by the Usenet administration on the Internet and consists of five steps: 1) informal discussion, 2) request for formal discussion, 3) formal discussion, 4) voting, and 5) posting of results. The newsgroup can be accessed using any news reader via the Internet. PMID:7583645

  9. Transforming healthcare in the Internet Era.

    PubMed

    Detmer, D E

    2001-01-01

    Healthcare services will be transformed in the Internet Era by developments in biotechnology, bioinformatics, health informatics, assimilation of modern business processes, and changing policy expectations. Discoveries in biology and communications technology offer the potential for improvements in health status of individuals and populations. Improved access to information about health and disease will typify early progress. Care in hospitals will shift toward palliation and end-of-life care; curing and prevention will increase in outpatient settings and/or within the home or workplace. Barriers include resistance to change and a lack of a global health information infrastructure that includes financing, standards, and coherent policy.

  10. Photovoltaics Informatics: Harnessing Energy Science via Data-Driven Approaches

    SciTech Connect

    Suh, C.; Munch, K.; Biagioni, D.; Glynn, S.; Scharf, J.; Contreras, M. A.; Perkins, J. D.; Nelson, B. P.; Jones, W. B.

    2011-01-01

    We discuss our current research focus on photovoltaic (PV) informatics, which is dedicated to functionality enhancement of solar materials through data management and data mining-aided, integrated computational materials engineering (ICME) for rapid screening and identification of multi-scale processing/structure/property/performance relationships. Our current PV informatics research ranges from transparent conducting oxides (TCO) to solar absorber materials. As a test bed, we report on examples of our current data management system for PV research and advanced data mining to improve the performance of solar cells such as CuIn{sub x}Ga{sub 1-x}Se{sub 2} (CIGS) aiming at low-cost and high-rate processes. For the PV data management, we show recent developments of a strategy for data modeling, collection and aggregation methods, and construction of data interfaces, which enable proper archiving and data handling for data mining. For scientific data mining, the value of high-dimensional visualizations and non-linear dimensionality reduction is demonstrated to quantitatively assess how process conditions or properties are interconnected in the context of the development of Al-doped ZnO (AZO) thin films as the TCO layers for CIGS devices. Such relationships between processing and property of TCOs lead to optimal process design toward enhanced performance of CIGS cells/devices.

  11. Computer mediated conferencing - a hope or hype for healthcare education in higher learning?: A review of the literature.

    PubMed

    Loke Jennifer, C F

    2007-05-01

    In view of the increase use of computer mediated conferencing (CMC) by nurses with other health care professionals in health care education, this literature review provides insights into the experiences and issues surrounding the use of the technology by nursing students and their use with other health care students. It is an important initial step in designing and developing strategies in the use of CMC. This literature review also aims to structure the available research findings of needs and experiences of other health care students and students from disciplines other than health care to provide the best approximation of what nursing students will experience in diverse groups for inter-professional learning. Literature review. The literature review indicates a substantial amount of students' experiences and expectations in CMC. The problems thus far, are more complex than access and use of the technology, and emerged as six different, but related issues associated with technology and reflective and collaborative online learning in a constructivist learning environment. Priority needs should be central in the preparation of student in the constructivist learning environment. Concerted efforts should not be just about increasing students' technological competence, but on addressing the socio-psychological dimensions in CMC.

  12. MO-C-BRCD-03: The Role of Informatics in Medical Physics and Vice Versa.

    PubMed

    Andriole, K

    2012-06-01

    Like Medical Physics, Imaging Informatics encompasses concepts touching every aspect of the imaging chain from image creation, acquisition, management and archival, to image processing, analysis, display and interpretation. The two disciplines are in fact quite complementary, with similar goals to improve the quality of care provided to patients using an evidence-based approach, to assure safety in the clinical and research environments, to facilitate efficiency in the workplace, and to accelerate knowledge discovery. Use-cases describing several areas of informatics activity will be given to illustrate current limitations that would benefit from medical physicist participation, and conversely areas in which informaticists may contribute to the solution. Topics to be discussed include radiation dose monitoring, process management and quality control, display technologies, business analytics techniques, and quantitative imaging. Quantitative imaging is increasingly becoming an essential part of biomedicalresearch as well as being incorporated into clinical diagnostic activities. Referring clinicians are asking for more objective information to be gleaned from the imaging tests that they order so that they may make the best clinical management decisions for their patients. Medical Physicists may be called upon to identify existing issues as well as develop, validate and implement new approaches and technologies to help move the field further toward quantitative imaging methods for the future. Biomedical imaging informatics tools and techniques such as standards, integration, data mining, cloud computing and new systems architectures, ontologies and lexicons, data visualization and navigation tools, and business analytics applications can be used to overcome some of the existing limitations. 1. Describe what is meant by Medical Imaging Informatics and understand why the medical physicist should care. 2. Identify existing limitations in information technologies with

  13. Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers

    PubMed Central

    Hripcsak, George; Duke, Jon D; Shah, Nigam H; Reich, Christian G; Huser, Vojtech; Schuemie, Martijn J; Suchard, Marc A; Park, Rae Woong; Wong, Ian Chi Kei; Rijnbeek, Peter R; van der Lei, Johan; Pratt, Nicole; Norén, G Niklas; Li, Yu-Chuan; Stang, Paul E; Madigan, David; Ryan, Patrick B

    2016-01-01

    The vision of creating accessible, reliable clinical evidence by accessing the clinical experience of hundreds of millions of patients across the globe is a reality. The Observational Health Data Sciences and Informatics (OHDSI) has built on learnings from the Observational Medical Outcomes Partnership to turn methods research and insights into a suite of applications and exploration tools that move the field closer to the ultimate goal of generating evidence about all aspects of healthcare to serve the needs of patients, clinicians and all other decision-makers around the world. PMID:26262116

  14. Medical informatics and bioinformatics: a bibliometric study

    PubMed Central

    Bansard, Jean-Yves; Rebholz-Schuhman, Dietrich; Cameron, Graham; Clark, Dominic; van Mulligen, Erik; Beltrame, Francesco; Del Hoyo Barbolla, Eva; Martin-Sanchez, Fernando; Milanesi, Luciano; Tollis, Ioannis; Van der Lei, Johan; Coatrieux, Jean-Louis

    2007-01-01

    This paper reports on an analysis of the bioinformatics and medical informatics literature with the objective to identify upcoming trends that are shared among both research fields to derive benefits from potential collaborative initiatives for their future. Our results present the main characteristics of the two fields and show that these domains are still relatively separated. PMID:17521073

  15. Geo-Engineering through Internet Informatics (GEMINI)

    SciTech Connect

    Doveton, John H.; Watney, W. Lynn

    2003-03-06

    The program, for development and methodologies, was a 3-year interdisciplinary effort to develop an interactive, integrated Internet Website named GEMINI (Geo-Engineering Modeling through Internet Informatics) that would build real-time geo-engineering reservoir models for the Internet using the latest technology in Web applications.

  16. Optimizing Clinical Research Participant Selection with Informatics.

    PubMed

    Weng, Chunhua

    2015-11-01

    Clinical research participants are often not reflective of real-world patients due to overly restrictive eligibility criteria. Meanwhile, unselected participants introduce confounding factors and reduce research efficiency. Biomedical informatics, especially Big Data increasingly made available from electronic health records, offers promising aids to optimize research participant selection through data-driven transparency.

  17. Peculiarities of Teaching Medical Informatics and Statistics

    ERIC Educational Resources Information Center

    Glushkov, Sergey

    2017-01-01

    The article reviews features of teaching Medical Informatics and Statistics. The course is referred to the disciplines of Mathematical and Natural sciences. The course is provided in all the faculties of I. M. Sechenov First Moscow State Medical University. For students of Preventive Medicine Department the time frame allotted for studying the…

  18. Pharmacy informatics in controlled substances research.

    PubMed

    Lin, Jia-Ling; Vahabzadeh, Massoud; Mezghanni, Mustapha; Na, Paul J; Leff, Michelle; Contoreggi, Carlo

    2008-11-06

    Pharmacies have become essential components in support of clinical research. Their operations become highly complex when preponderance of prescriptions is composed of controlled substances. Application of informatics will result in more efficient operations. We present the Pharmacy Information Management System (PIMS) that includes a set of decision support systems to address the pharmacy challenges and is integrated into our electronic health record system.

  19. Discovering anomalous events from urban informatics data

    NASA Astrophysics Data System (ADS)

    Jayarajah, Kasthuri; Subbaraju, Vigneshwaran; Weerakoon, Dulanga; Misra, Archan; Tam, La Thanh; Athaide, Noel

    2017-05-01

    Singapore's "smart city" agenda is driving the government to provide public access to a broader variety of urban informatics sources, such as images from traffic cameras and information about buses servicing different bus stops. Such informatics data serves as probes of evolving conditions at different spatiotemporal scales. This paper explores how such multi-modal informatics data can be used to establish the normal operating conditions at different city locations, and then apply appropriate outlier-based analysis techniques to identify anomalous events at these selected locations. We will introduce the overall architecture of sociophysical analytics, where such infrastructural data sources can be combined with social media analytics to not only detect such anomalous events, but also localize and explain them. Using the annual Formula-1 race as our candidate event, we demonstrate a key difference between the discriminative capabilities of different sensing modes: while social media streams provide discriminative signals during or prior to the occurrence of such an event, urban informatics data can often reveal patterns that have higher persistence, including before and after the event. In particular, we shall demonstrate how combining data from (i) publicly available Tweets, (ii) crowd levels aboard buses, and (iii) traffic cameras can help identify the Formula-1 driven anomalies, across different spatiotemporal boundaries.

  20. Health Level Seven (HL7): standard for healthcare electronic data transmissions.

    PubMed

    Hettinger, B J; Brazile, R P

    1994-01-01

    The nursing profession needs computer-formatted data that can be exchanged within and between agencies. The exchange of electronic data, both in the United States and in the international community, requires agreement on the format of the data elements to be exchanged. The Health Level Seven (HL7) standard is a proposed voluntary standard for healthcare applications that addresses the way information is exchanged electronically. This brief article will provide background information regarding the development and status of HL7 and its implications for nursing. From the clinical perspective, nurses follow standards of care developed by professional organizations. These standards facilitate clear communication among nurses, consumers, and members of other disciplines. Similarly, the electronic transmission and exchange of clinical information must have a standard to ensure that messages arrive and are decoded correctly. Many standards for electronic data already exist; financial transactions such as banking are familiar examples. The theme of the 1990 Symposium on Computer Applications in Medical Care (SCAMC), was Standards in Medical Informatics. Many pertinent papers and workshops were presented. However, references to electronic data standards are found primarily in conference proceedings and technical manuals. Thus, although activity is widespread, and events are rapidly moving in the healthcare industry, most of the information is not yet widely available. It seems timely, therefore, to provide background material to nurses in order for them to participate in the process.

  1. Training the Next Generation of Informaticians: The Impact of “BISTI” and Bioinformatics—A Report from the American College of Medical Informatics

    PubMed Central

    Friedman, Charles P.; Altman, Russ B.; Kohane, Isaac S.; McCormick, Kathleen A.; Miller, Perry L.; Ozbolt, Judy G.; Shortliffe, Edward H.; Stormo, Gary D.; Szczepaniak, M. Cleat; Tuck, David; Williamson, Jeffrey

    2004-01-01

    In 2002–2003, the American College of Medical Informatics (ACMI) undertook a study of the future of informatics training. This project capitalized on the rapidly expanding interest in the role of computation in basic biological research, well characterized in the National Institutes of Health (NIH) Biomedical Information Science and Technology Initiative (BISTI) report. The defining activity of the project was the three-day 2002 Annual Symposium of the College. A committee, comprised of the authors of this report, subsequently carried out activities, including interviews with a broader informatics and biological sciences constituency, collation and categorization of observations, and generation of recommendations. The committee viewed biomedical informatics as an interdisciplinary field, combining basic informational and computational sciences with application domains, including health care, biological research, and education. Consequently, effective training in informatics, viewed from a national perspective, should encompass four key elements: (1) curricula that integrate experiences in the computational sciences and application domains rather than just concatenating them; (2) diversity among trainees, with individualized, interdisciplinary cross-training allowing each trainee to develop key competencies that he or she does not initially possess; (3) direct immersion in research and development activities; and (4) exposure across the wide range of basic informational and computational sciences. Informatics training programs that implement these features, irrespective of their funding sources, will meet and exceed the challenges raised by the BISTI report, and optimally prepare their trainees for careers in a field that continues to evolve. PMID:14764617

  2. Training the next generation of informaticians: the impact of "BISTI" and bioinformatics--a report from the American College of Medical Informatics.

    PubMed

    Friedman, Charles P; Altman, Russ B; Kohane, Isaac S; McCormick, Kathleen A; Miller, Perry L; Ozbolt, Judy G; Shortliffe, Edward H; Stormo, Gary D; Szczepaniak, M Cleat; Tuck, David; Williamson, Jeffrey

    2004-01-01

    In 2002-2003, the American College of Medical Informatics (ACMI) undertook a study of the future of informatics training. This project capitalized on the rapidly expanding interest in the role of computation in basic biological research, well characterized in the National Institutes of Health (NIH) Biomedical Information Science and Technology Initiative (BISTI) report. The defining activity of the project was the three-day 2002 Annual Symposium of the College. A committee, comprised of the authors of this report, subsequently carried out activities, including interviews with a broader informatics and biological sciences constituency, collation and categorization of observations, and generation of recommendations. The committee viewed biomedical informatics as an interdisciplinary field, combining basic informational and computational sciences with application domains, including health care, biological research, and education. Consequently, effective training in informatics, viewed from a national perspective, should encompass four key elements: (1). curricula that integrate experiences in the computational sciences and application domains rather than just concatenating them; (2). diversity among trainees, with individualized, interdisciplinary cross-training allowing each trainee to develop key competencies that he or she does not initially possess; (3). direct immersion in research and development activities; and (4). exposure across the wide range of basic informational and computational sciences. Informatics training programs that implement these features, irrespective of their funding sources, will meet and exceed the challenges raised by the BISTI report, and optimally prepare their trainees for careers in a field that continues to evolve.

  3. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system.

  4. Healthcare fundamentals.

    PubMed

    Kauk, Justin; Hill, Austin D; Althausen, Peter L

    2014-07-01

    In order for a trauma surgeon to have an intelligent discussion with hospital administrators, healthcare plans, policymakers, or any other physicians, a basic understanding of the fundamentals of healthcare is paramount. It is truly shocking how many surgeons are unable to describe the difference between Medicare and Medicaid or describe how hospitals and physicians get paid. These topics may seem burdensome but they are vital to all business decision making in the healthcare field. The following chapter provides further insight about what we call "the basics" of providing medical care today. Most of the topics presented can be applied to all specialties of medicine. It is broken down into 5 sections. The first section is a brief overview of government programs, their influence on care delivery and reimbursement, and past and future legislation. Section 2 focuses on the compliance, care provision, and privacy statutes that regulate physicians who care for Medicare/Medicaid patient populations. With a better understanding of these obligations, section 3 discusses avenues by which physicians can stay informed of current and pending health policy and provides ways that they can become involved in shaping future legislation. The fourth section changes gears slightly by explaining how the concepts of trade restraint, libel, antitrust legislation, and indemnity relate to physician practice. The fifth, and final, section ties all of components together by describing how physician-hospital alignment can be mutually beneficial in providing patient care under current healthcare policy legislation.

  5. Healthcare Lean.

    PubMed

    Long, John C

    2003-01-01

    Lean Thinking is an integrated approach to designing, doing and improving the work of people that have come together to produce and deliver goods, services and information. Healthcare Lean is based on the Toyota production system and applies concepts and techniques of Lean Thinking to hospitals and physician practices.

  6. Tuberculosis screening programme using the QuantiFERON-TB Gold test and chest computed tomography for healthcare workers accidentally exposed to patients with tuberculosis.

    PubMed

    Hirama, T; Hagiwara, K; Kanazawa, M

    2011-03-01

    Healthcare workers (HCWs) have an increased incidence of tuberculosis (TB). Periodic and as-needed screenings of HCWs exposed to patients with TB are important. We integrated chest computed tomography (CT) and the QuantiFERON-TB Gold (QFT-G) test into our TB screening programme for HCWs. First, contacts were tested using the QFT-G test. Those positive for the QFT-G test were investigated by CT and classified as having active, latent (LTBI), or old TB. Between April 2005 and April 2010, 11 patients who had not been diagnosed with active TB on admission were found to have the disease. A total of 512 close or high risk contacts were identified, and underwent screening. Out of those, 34 (6.64%) were QFT-G positive, whereas 478 (93.36%) were negative. Of the 34 QFT-G-positive HCWs, four had CT findings compatible with active TB and received multidrug treatment; 24 showed no findings of active TB and received isoniazid for six months. All completed their regimens without any adverse effects. The TB screening programme integrating CT and the QFT-G test was safe and feasible. The efficacy of the programme needs to be confirmed by large scale clinical trials. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Refining a self-assessment of informatics competency scale using Mokken scaling analysis.

    PubMed

    Yoon, Sunmoo; Shaffer, Jonathan A; Bakken, Suzanne

    2015-01-01

    Healthcare environments are increasingly implementing health information technology (HIT) and those from various professions must be competent to use HIT in meaningful ways. In addition, HIT has been shown to enable interprofessional approaches to health care. The purpose of this article is to describe the refinement of the Self-Assessment of Nursing Informatics Competencies Scale (SANICS) using analytic techniques based upon item response theory (IRT) and discuss its relevance to interprofessional education and practice. In a sample of 604 nursing students, the 93-item version of SANICS was examined using non-parametric IRT. The iterative modeling procedure included 31 steps comprising: (1) assessing scalability, (2) assessing monotonicity, (3) assessing invariant item ordering, and (4) expert input. SANICS was reduced to an 18-item hierarchical scale with excellent reliability. Fundamental skills for team functioning and shared decision making among team members (e.g. "using monitoring systems appropriately," "describing general systems to support clinical care") had the highest level of difficulty, and "demonstrating basic technology skills" had the lowest difficulty level. Most items reflect informatics competencies relevant to all health professionals. Further, the approaches can be applied to construct a new hierarchical scale or refine an existing scale related to informatics attitudes or competencies for various health professions.

  8. Nursing informatics and nursing ethics: addressing their disconnect through an enhanced TIGER-vision.

    PubMed

    Kaltoft, Mette Kjer

    2013-01-01

    All healthcare visions, including that of The TIGER (Technology-Informatics-Guiding-Educational-Reform) Initiative envisage a crucial role for nursing. However, its 7 descriptive pillars do not address the disconnect between Nursing Informatics and Nursing Ethics and their distinct communities in the clinical-disciplinary landscape. Each sees itself as providing decision support by way of information inputs and ethical insights, respectively. Both have reasons - ideological, professional, institutional - for their task construction, but this simultaneously disables each from engaging fully in the point-of-(care)-decision. Increased pressure for translating 'evidence-based' research findings into 'ethically-sound', 'value-based' and 'patient-centered' practice requires rethinking the model implicit in conventional knowledge translation and informatics practice in all disciplines, including nursing. The aim is to aid 'how nurses and other health care scientists more clearly identify clinical and other relevant data that can be captured to inform future comparative effectiveness research. 'A prescriptive, theory-based discipline of '(Nursing) Decisionics' expands the Grid for Volunteer Development of TIGER's newly launched virtual learning environment (VLE). This provides an enhanced TIGER-vision for educational reform to deliver ethically coherent, person-centered care transparently.

  9. Evidence-based Practice. Findings from the Section on Education and Consumer Health Informatics.

    PubMed

    Staccini, P; Douali, N

    2013-01-01

    To provide an overview of outstanding current research conducted in Education and Consumer Informatics. Synopsis of the articles on education and consumer health informatics published in 2012 and selected for the IMIA Yearbook of Medical Informatics 2013. Architecture of monitoring or telehealth information systems for patients with chronic disease must include wireless devices to aid in the collection of personal data. Data acquisition technologies have an impact on patients' willingness to participate in telehealth programmes. Patients are more likely to prefer mobile applications over web-based applications. Social media is widely used by clinicians. Especially younger clinicians use it for personal purposes and for reference materials retrieval. Questions remain on optimal training requirements and on the effects on clinician behavior and on patient outcomes. A high level of e-Health literacy by patients will promote increased adoption and utilization of personal health records. The selected articles highlight the need for training of clinicians to become aware of existing telehealth systems, in order to correctly inform and guide patients to take part in telehealth systems and adopt personal healthcare records (PHR).

  10. Computational Toxicology at the US EPA

    EPA Science Inventory

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, EPA is developin...

  11. Computational Toxicology at the US EPA

    EPA Science Inventory

    Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, EPA is developin...

  12. Pathology Informatics Essentials for Residents: A flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education milestones.

    PubMed

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time.

  13. Pathology Informatics Essentials for Residents: A flexible informatics curriculum linked to Accreditation Council for Graduate Medical Education milestones

    PubMed Central

    Henricks, Walter H; Karcher, Donald S; Harrison, James H; Sinard, John H; Riben, Michael W; Boyer, Philip J; Plath, Sue; Thompson, Arlene; Pantanowitz, Liron

    2016-01-01

    Context: Recognition of the importance of informatics to the practice of pathology has surged. Training residents in pathology informatics have been a daunting task for most residency programs in the United States because faculty often lacks experience and training resources. Nevertheless, developing resident competence in informatics is essential for the future of pathology as a specialty. Objective: The objective of the study is to develop and deliver a pathology informatics curriculum and instructional framework that guides pathology residency programs in training residents in critical pathology informatics knowledge and skills and meets Accreditation Council for Graduate Medical Education Informatics Milestones. Design: The College of American Pathologists, Association of Pathology Chairs, and Association for Pathology Informatics formed a partnership and expert work group to identify critical pathology informatics training outcomes and to create a highly adaptable curriculum and instructional approach, supported by a multiyear change management strategy. Results: Pathology Informatics Essentials for Residents (PIER) is a rigorous approach for educating all pathology residents in important pathology informatics knowledge and skills. PIER includes an instructional resource guide and toolkit for incorporating informatics training into residency programs that vary in needs, size, settings, and resources. PIER is available at http://www.apcprods.org/PIER (accessed April 6, 2016). Conclusions: PIER is an important contribution to informatics training in pathology residency programs. PIER introduces pathology trainees to broadly useful informatics concepts and tools that are relevant to practice. PIER provides residency program directors with a means to implement a standardized informatics training curriculum, to adapt the approach to local program needs, and to evaluate resident performance and progress over time. PMID:27563486

  14. Big data from small samples: Informatics of next-generation sequencing in cytopathology.

    PubMed

    Roy-Chowdhuri, Sinchita; Roy, Somak; Monaco, Sara E; Routbort, Mark J; Pantanowitz, Liron

    2016-12-05

    The rapid adoption of next-generation sequencing (NGS) in clinical molecular laboratories has redefined the practice of cytopathology. Instead of simply being used as a diagnostic tool, cytopathology has evolved into a practice providing important genomic information that guides clinical management. The recent emphasis on maximizing limited-volume cytology samples for ancillary molecular studies, including NGS, requires cytopathologists not only to be more involved in specimen collection and processing techniques but also to be aware of downstream testing and informatics issues. For the integration of molecular informatics into the clinical workflow, it is important to understand the computational components of the NGS workflow by which raw sequence data are transformed into clinically actionable genomic information and to address the challenges of having a robust and sustainable informatics infrastructure for NGS-based testing in a clinical environment. Adapting to needs ranging from specimen procurement to report delivery is crucial for the optimal utilization of cytology specimens to accommodate requests from clinicians to improve patient care. This review presents a broad overview of the various aspects of informatics in the context of NGS-based testing of cytology specimens. Cancer Cytopathol 2016. © 2016 American Cancer Society.

  15. Crossing Borders: An Online Interdisciplinary Course in Health Informatics for Students From Two Countries.

    PubMed

    Fossum, Mariann; Fruhling, Ann; Moe, Carl Erik; Thompson, Cheryl Bagley

    2017-04-01

    A cross-countries and interprofessional novel approach for delivering an international interdisciplinary graduate health informatics course online is presented. Included in this discussion are the challenges, lessons learned, and pedagogical recommendations from the experiences of teaching the course. Four professors from three different fields and from three universities collaborated in offering an international health informatics course for an interdisciplinary group of 18 US and seven Norwegian students. Highly motivated students and professors, an online technology infrastructure that supported asynchronously communication and course delivery, the ability to adapt the curriculum to meet the pedagogy requirements at all universities, and the support of higher administration for international collaboration were enablers for success. This project demonstrated the feasibility and advantages of an interdisciplinary, interprofessional, and cross-countries approach in teaching health informatics online. Students were able to establish relationships and conduct professional conversations across disciplines and international boundaries using content management software. This graduate course can be used as a part of informatics, computer science, and/or health science programs.

  16. A brief history of nursing informatics in the United States of America.

    PubMed

    Ozbolt, Judy G; Saba, Virginia K

    2008-01-01

    From the beginning of modern nursing, data from standardized patient records were seen as a potentially powerful resource for assessing and improving the quality of care. As nursing informatics began to evolve in the second half of the 20th century, the lack of standards for language and data limited the functionality and usefulness of early applications. In response, nurses developed standardized languages, but until the turn of the century, neither they nor anyone else understood the attributes required to achieve computability and semantic interoperability. Collaboration across disciplines and national boundaries has led to the development of standards that meet these requirements, opening the way for powerful information tools. Many challenges remain, however. Realizing the potential of nurses to transform and improve health care and outcomes through informatics will require fundamental changes in individuals, organizations, and systems. Nurses are developing and applying informatics methods and tools to discover knowledge and improve health from the molecular to the global level and are seeking the collective wisdom of interdisciplinary and interorganizational collaboration to effect the necessary changes. NOTE: Although this article focuses on nursing informatics in the United States, nurses around the world have made substantial contributions to the field. This article alludes to a few of those advances, but a comprehensive description is beyond the scope of the present work.

  17. Biomedical informatics in the desert--a new and unique program at Arizona State University.

    PubMed

    Greenes, R A; Panchanathan, S; Patel, V; Silverman, H; Shortliffe, E H

    2008-01-01

    A new academic Biomedical Informatics (BMI) Program in Phoenix, Arizona, embodies a unique organizational structure to draw on the strengths of a computer science and informatics school and the biomedical and clinical strengths of a college of medicine, in an effort to infuse informatics approaches broadly. The program reflects a partnership of two state universities that situates the Arizona State University (ASU) Department of BMI on a new downtown Phoenix Biomedical Campus with the University of Arizona (UA) College of Medicine in partnership with ASU (COM-PHX). Plans call for development of faculty and expertise in the four major subdomains of BMI, as well as in various cross-cutting capabilities. Coming into existence in a state that is investing significantly in biomedical science and technology, BMI has already developed Masters and PhD degree programs, is working with COM-PHX to integrate informatics intensively into the education of the medical students, and has been authorized to plan for an undergraduate program in BMI. Reflecting the statewide emphasis on the biomedical and health sector, the growing faculty are engaged in a number of research partnerships and collaborative centers. As one of the newest academic BMI programs is taking shape in Arizona, it is embarking on a wide-ranging educational program and a broad research agenda that are now in their earliest stages.

  18. Evaluating Business Value of IT in Healthcare: Three Clinical Practices from Australia and the US.

    PubMed

    Haddad, Peter; Schaffer, Jonathan L; Wickramasinghe, Nilmini

    2015-01-01

    Exponentially increasing costs in healthcare coupled with poor quality and limited access have motivated the healthcare industry to turn to IS/IT solutions to overcome these issues and facilitate superior healthcare delivery. In an environment of rapid development of new clinical informatics solutions claiming to provide better healthcare delivery, there is a paucity of systematic frameworks to robustly measure the actual value of these systems. The promised business value of these solutions has been elusive; hence, this study offers an approach for the evaluation of the business value of health IS/IT solutions based on a conceptual model, which has been validated using three clinical case studies.

  19. Should Degree Programs in Biomedical and Health Informatics be Dedicated or Integrated? : Reflections and Recommendations after more than 40 Years of Medical Informatics Education at TU Braunschweig, including 10 Years of B.Sc. and 15 Years of M.Sc. Integrated Degree Curricula.

    PubMed

    Haux, Reinhold; Marschollek, Michael; Wolf, Klaus-Hendrik; Zeisberg, Ute

    2017-07-01

    Education in biomedical and health informatics (BMHI) has been established in many countries throughout the world. For degree programs in BMHI we can distinguish between those that are completely stand-alone or dedicated to the discipline vs. those that are integrated within another program. After running integrated degree medical informatics programs at TU Braunschweig for 10 years at the B.Sc. and for 15 years at the M.Sc level, we (1) report about this educational approach, (2) analyze recommendations on, implementations of, and experiences with degree educational programs in BMHI worldwide, (3) summarize our lessons learned with the integrated approach at TU Braunschweig, and (4) suggest an answer to the question, whether degree programs in biomedical and health informatics should be dedicated or integrated. According to our experience at TU Braunschweig and based on our analysis of publications, there is a clear dominance of dedicated degree programs in BMHI. The specialization in medical informatics within a computer science program, as offered at TU Braunschweig, may be a good way of implementing an integrated, informatics-based approach to medical informatics, in particular if a dual degree option can be chosen. The option of curricula leading to double degrees, i.e. in this case to two separate degrees in computer science and in medical informatics might, however, be a better solution.

  20. The Use of RESTful Web Services in Medical Informatics and Clinical Research and Its Implementation in Europe.

    PubMed

    Aerts, Jozef

    2017-01-01

    RESTful web services nowadays are state-of-the-art in business transactions over the internet. They are however not very much used in medical informatics and in clinical research, especially not in Europe. To make an inventory of RESTful web services that can be used in medical informatics and clinical research, including those that can help in patient empowerment in the DACH region and in Europe, and to develop some new RESTful web services for use in clinical research and regulatory review. A literature search on available RESTful web services has been performed and new RESTful web services have been developed on an application server using the Java language. Most of the web services found originate from institutes and organizations in the USA, whereas no similar web services could be found that are made available by European organizations. New RESTful web services have been developed for LOINC codes lookup, for UCUM conversions and for use with CDISC Standards. A comparison is made between "top down" and "bottom up" web services, the latter meant to answer concrete questions immediately. The lack of RESTful web services made available by European organizations in healthcare and medical informatics is striking. RESTful web services may in short future play a major role in medical informatics, and when localized for the German language and other European languages, can help to considerably facilitate patient empowerment. This however requires an EU equivalent of the US National Library of Medicine.