Wei, Wenjia; Heinze, Stefanie; Gerstner, Doris G; Walser, Sandra M; Twardella, Dorothee; Reiter, Christina; Weilnhammer, Veronika; Perez-Alvarez, Carmelo; Steffens, Thomas; Herr, Caroline E W
2017-01-01
Studies investigating leisure noise effect on extended high frequency hearing are insufficient and they have inconsistent results. The aim of this study was to investigate if extended high-frequency hearing threshold shift is related to audiometric notch, and if total leisure noise exposure is associated with extended high-frequency hearing threshold shift. A questionnaire of the Ohrkan cohort study was used to collect information on demographics and leisure time activities. Conventional and extended high-frequency audiometry was performed. We did logistic regression between extended high-frequency hearing threshold shift and audiometric notch as well as between total leisure noise exposure and extended high-frequency hearing threshold shift. Potential confounders (sex, school type, and firecrackers) were included. Data from 278 participants (aged 18-23 years, 53.2% female) were analyzed. Associations between hearing threshold shift at 10, 11.2, 12.5, and 14 kHz with audiometric notch were observed with a higher prevalence of threshold shift at the four frequencies, compared to the notch. However, we found no associations between total leisure noise exposure and hearing threshold shift at any extended high frequency. This exploratory analysis suggests that while extended high-frequency hearing threshold shifts are not related to total leisure noise exposure, they are strongly associated with audiometric notch. This leads us to further explore the hypothesis that extended high-frequency threshold shift might be indicative of the appearance of audiometric notch at a later time point, which can be investigated in the future follow-ups of the Ohrkan cohort.
Wei, Wenjia; Heinze, Stefanie; Gerstner, Doris G.; Walser, Sandra M.; Twardella, Dorothee; Reiter, Christina; Weilnhammer, Veronika; Perez-Alvarez, Carmelo; Steffens, Thomas; Herr, Caroline E.W.
2017-01-01
Background: Studies investigating leisure noise effect on extended high frequency hearing are insufficient and they have inconsistent results. The aim of this study was to investigate if extended high-frequency hearing threshold shift is related to audiometric notch, and if total leisure noise exposure is associated with extended high-frequency hearing threshold shift. Materials and Methods: A questionnaire of the Ohrkan cohort study was used to collect information on demographics and leisure time activities. Conventional and extended high-frequency audiometry was performed. We did logistic regression between extended high-frequency hearing threshold shift and audiometric notch as well as between total leisure noise exposure and extended high-frequency hearing threshold shift. Potential confounders (sex, school type, and firecrackers) were included. Results: Data from 278 participants (aged 18–23 years, 53.2% female) were analyzed. Associations between hearing threshold shift at 10, 11.2, 12.5, and 14 kHz with audiometric notch were observed with a higher prevalence of threshold shift at the four frequencies, compared to the notch. However, we found no associations between total leisure noise exposure and hearing threshold shift at any extended high frequency. Conclusion: This exploratory analysis suggests that while extended high-frequency hearing threshold shifts are not related to total leisure noise exposure, they are strongly associated with audiometric notch. This leads us to further explore the hypothesis that extended high-frequency threshold shift might be indicative of the appearance of audiometric notch at a later time point, which can be investigated in the future follow-ups of the Ohrkan cohort. PMID:29319010
Mirsalehi, Marjan; Mohebbi, Saleh; Ghajarzadeh, Mahsa; Lenarz, Thomas; Majdani, Omid
2017-08-01
This study was conducted to evaluate the effect of the round window membrane accessibility on the residual hearing after cochlear implantation surgery in adults. Moreover, the effects of the other demographics and intra-operative factors on the residual hearing loss have been evaluated. The hearing preservation cochlear implantation surgery was performed on 64 adults with residual hearing thresholds ≤80 dB at 250 and 500 Hz, who had referred to our tertiary academic center. All the patients underwent a standardized surgical approach with the same straight electrode inserted through the round window membrane. The hearing thresholds at 250, 500, and 1000 Hz were compared in pre-operative and 1 month postoperative pure-tone audiograms. The average hearing threshold shifts at these frequencies was used to evaluate the hearing preservation. The effects of the round window accessibility and other factors (including gender, age, side of the surgery, necessity of anterior-inferior drilling of the round window margin and average insertion speed) on hearing threshold shifts were analyzed. The mean low-frequency hearing threshold shift was found to be 17.5 dB for all the patients. The hearing preservation goal (threshold shifts ≤30 dB) was achieved in 58 patients. Among the evaluated parameters, only accessibility of the round window membrane could change the hearing threshold shifts significantly (p = 0.026), and was a predictor for the hearing loss (B coefficient = 7.5, p = 0.006). Incomplete accessibility of the round window membrane may be a predictor for increased hearing threshold shifts in short-term evaluations after cochlear implantation.
NASA Astrophysics Data System (ADS)
Davies, Hugh
2005-04-01
Hearing conservation programs (HCP) are widely employed in preventing noise-induced hearing loss, but studies of their effectiveness have been rare. The impact of the implementation of hearing conservation programs was assessed in a large group of highly noise-exposed blue-collar workers by investigating time-trends in hearing-threshold shift incidence. Serial annual audiograms for employees of 14 British Columbia lumber mills for the period 1978 to 2003 were obtained from local regulatory-agency archives. Audiograms and concomitant otological medical histories were linked to subjects' work histories and noise exposure data. Multivariable Cox proportional hazard models were used to model the incidence of hearing threshold shift while controlling for age, baseline level of hearing loss, and other potential confounders. A total of 109
The effect of cockpit noise on the temporary threshold shift of Cessna 172SP flight instructors
NASA Astrophysics Data System (ADS)
Bellini, Andrew Robert
The purpose of this thesis was to study the temporary threshold shift of general aviation flight instructors resulting from their working environment. Exposure to noise before a temporary threshold shift completely recovers can cause a permanent threshold shift with no possibility of recovery, resulting in permanent hearing loss. A result showing minimal to no temporary threshold shift would indicate that hearing personal protective equipment is working properly. This study used sound-level measurements, and audiometric testing, together with survey data to determine whether or not flight instructors were at risk for potential hearing impairment due to temporary threshold shift. Independent t-tests and descriptive statistics were used in analyzing the data. It was determined that there was a difference in temporary threshold shift based on the number of hours a flight instructor flies in a Cessna 172SP for only one frequency - 2000Hz in the left ear. All other frequencies tested in both ears showed no difference. Because there was a very low mean temporary threshold shift at 2000Hz in the left ear and no differences shown for all other frequencies in both ears, it was concluded that there was no need to improve or require additional hearing personal protective equipment, or to require decreased exposure times to aircraft noise.
Johnson, Earl E
2017-11-01
To determine safe output sound pressure levels (SPL) for sound amplification devices to preserve hearing sensitivity after usage. A mathematical model consisting of the Modified Power Law (MPL) (Humes & Jesteadt, 1991 ) combined with equations for predicting temporary threshold shift (TTS) and subsequent permanent threshold shift (PTS) (Macrae, 1994b ) was used to determine safe output SPL. The study involves no new human subject measurements of loudness tolerance or threshold shifts. PTS was determined by the MPL model for 234 audiograms and the SPL output recommended by four different validated prescription recommendations for hearing aids. PTS can, on rare occasion, occur as a result of SPL delivered by hearing aids at modern day prescription recommendations. The trading relationship of safe output SPL, decibel hearing level (dB HL) threshold, and PTS was captured with algebraic expressions. Better hearing thresholds lowered the safe output SPL and higher thresholds raised the safe output SPL. Safe output SPL can consider the magnitude of unaided hearing loss. For devices not set to prescriptive levels, limiting the output SPL below the safe levels identified should protect against threshold worsening as a result of long-term usage.
Active Duty - U.S. Army Noise Induced Hearing Injury Surveillance Calendar Years 2009-2013
2014-06-01
rates for sensorineural hearing loss, significant threshold shift, tinnitus , and Noise-Induced Hearing Loss. The intention is to monitor the morbidity...surveillance. These code groups include sensorineural hearing loss (SNHL), significant threshold shift (STS), noise-induced hearing loss (NIHL) and tinnitus ... Tinnitus ) was analyzed using a regression model to determine the trend of incidence rates from 2007 to the current year. Statistical significance of a
Adams, Karin L; Brazile, William J
2017-02-01
Noise exposure and hearing thresholds of indoor hockey officials of the Western States Hockey League were measured to assess the impact of hockey game noise on hearing sensitivity. Twenty-nine hockey officials who officiated the league in an arena in southeastern Wyoming in October, November, and December 2014 participated in the study. Personal noise dosimetry was conducted to determine if officials were exposed to an equivalent sound pressure level greater than 85 dBA. Hearing thresholds were measured before and after hockey games to determine if a 10 dB or greater temporary threshold shift in hearing occurred. Pure-tone audiometry was conducted in both ears at 500, 1000, 2000, 3000, 4000, 6000, and 8000 Hz. All noise exposures were greater than 85 dBA, with a mean personal noise exposure level of 93 dBA (SD = 2.2), providing 17.7% (SD = 6.3) of the officials' daily noise dose according to the OSHA criteria. Hearing threshold shifts of 10 dB or greater were observed in 86.2% (25/29) of officials, with 36% (9/25) of those threshold shifts equaling 15 dB or greater. The largest proportion of hearing threshold shifts occurred at 4000 Hz, comprising 35.7% of right ear shifts and 31.8% of left ear shifts. The threshold shifts between the pre- and post-game audiometry were statistically significant in the left ear at 500 (p=.019), 2000 (p=.0009), 3000 (p<.0001) and 4000 Hz (p=.0002), and in the right ear at 2000 (p=.0001), 3000 (p=.0001) and 4000 Hz (p<.0001), based on Wilcoxon-ranked sum analysis. Although not statistically significant at alpha = 0.05, logistic regression indicated that with each increase of one dB of equivalent sound pressure measured from personal noise dosimetry, the odds of a ≥ 10 dB TTS were increased in the left ear at 500 (OR=1.33, 95% CI 0.73-2.45), 3000 (OR=1.02, 95% CI 0.68-1.51), 4000 (OR=1.26, 95% CI 0.93-1.71) and 8000 Hz (OR=1.22, 95% CI 0.76-1.94) and in the right ear at 6000 (OR=1.03, 95% CI 0.14-7.84) and 8000 Hz (OR=1.29, 95% CI 0.12-13.83). These findings suggest that indoor hockey officials are exposed to hazardous levels of noise, experience temporary hearing loss after officiating games, and a hearing conservation program is warranted. Further temporary threshold shift research has the potential to identify officials of other sporting events that are at an increased risk of noise-induced hearing loss.
Lesinski, S George; Prewitt, Jessica; Bray, Victor; Aravamudhan, Radhika; Bermeo Blanco, Oscar A; Farmer-Fedor, Brenda L; Ward, Jonette A
2014-04-01
The safety of implanting a titanium microactuator into the lateral wall of cat scala tympani was assessed by comparing preoperative and postoperative auditory brainstem response (ABR) thresholds for 1 to 3 months. The safety of directly stimulating cochlear perilymph with an implantable hearing system requires maintaining preoperative hearing levels. This cat study is an essential step in the development of the next generation of fully implantable hearing devices for humans. Following GLP surgical standards, a 1-mm cochleostomy was drilled into the lateral wall of the scala tympani, and a nonfunctioning titanium anchor/microactuator assembly was inserted in 8 cats. The scala media was damaged in the 1 cat. ABR thresholds with click and 4- and 8-kHz stimuli were measured preoperatively and compared with postoperative thresholds at 1, 2, and 3 months. Nonimplanted ear thresholds were also measured to establish statistical significance for threshold shifts (>28.4 dB). Two audiologists independently interpreted thresholds. Postoperatively, 7 cats implanted in the scala tympani demonstrated no significant ABR threshold shift for click stimulus; one shifted ABR thresholds to 4- and 8-kHz stimuli. The eighth cat, with surgical damage to the scala media, maintained stable click threshold but had a significant shift to 4- and 8-kHz stimuli. This cat study provides no evidence of worsening hearing thresholds after fenestration of the scala tympani and insertion of a titanium anchor/microactuator, provided there is no surgical trauma to the scala media and the implanted device is securely anchored in the cochleostomy. These 2 issues have been resolved in the development of a fully implantable hearing system for humans. The long-term hearing stability (combined with histologic studies) reaffirm that the microactuator is well tolerated by the cat cochlea.
Mirmohammadi, Seyyed Jalil; Mehrparvar, Amir Houshang; Mollasadeghi, Abolfazl
2013-01-01
Introduction. Noise as a common physical hazard may lead to noise-induced hearing loss, an irreversible but preventable disorder. Annual audiometric evaluations help detect changes in hearing status before clinically significant hearing loss develops. This study was designed to track hearing threshold changes during 2-year follow-up among tile and ceramic workers. Methods. This follow-up study was conducted on 555 workers (totally 1110 ears). Subjects were divided into four groups according to the level of noise exposure. Hearing threshold in conventional audiometric frequencies was measured and standard threshold shift was calculated for each ear. Results. Hearing threshold was increased during 2 years of follow-up. Increased hearing threshold was most frequently observed at 4000, 6000, and 3000 Hz. Standard threshold shift was observed in 13 (2.34%), 49 (8.83%), 22 (3.96%), and 63 (11.35%) subjects in the first and second years of follow-up in the right and left ears, respectively. Conclusions. This study has documented a high incidence of noise-induced hearing loss in tile and ceramic workers that would put stress on the importance of using hearing protection devices. PMID:24453922
Do Hearing Protectors Protect Hearing?
Groenewold, Matthew R.; Masterson, Elizabeth A.; Themann, Christa L.; Davis, Rickie R.
2015-01-01
Background We examined the association between self-reported hearing protection use at work and incidence of hearing shifts over a 5-year period. Methods Audiometric data from 19,911 workers were analyzed. Two hearing shift measures—OSHA standard threshold shift (OSTS) and high-frequency threshold shift (HFTS)—were used to identify incident shifts in hearing between workers’ 2005 and 2009 audiograms. Adjusted odds ratios were generated using multivariable logistic regression with multi-level modeling. Results The odds ratio for hearing shift for workers who reported never versus always wearing hearing protection was nonsignificant for OSTS (OR 1.23, 95% CI 0.92–1.64) and marginally significant for HFTS (OR 1.26, 95% CI 1.00–1.59). A significant linear trend towards increased risk of HFTS with decreased use of hearing protection was observed (P = 0.02). Conclusion The study raises concern about the effectiveness of hearing protection as a substitute for noise control to prevent noise-induced hearing loss in the workplace. Am. J. Ind. Med. 57:1001–1010, 2014. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. PMID:24700499
Noise exposure and hearing loss among sand and gravel miners.
Landen, Deborah; Wilkins, Steve; Stephenson, Mark; McWilliams, Linda
2004-08-01
The objectives of this study were to describe workplace noise exposures, risk factors for hearing loss, and hearing levels among sand and gravel miners, and to determine whether full shift noise exposures resulted in changes in hearing thresholds from baseline values. Sand and gravel miners (n = 317) were interviewed regarding medical history, leisure-time and occupational noise exposure, other occupational exposures, and use of hearing protection. Audiometric tests were performed both before the work shift (following a 12-hour noise-free interval) and immediately following the work shift. Full shift noise dosimetry was conducted. Miners' noise exposures exceeded the Recommended Exposure Limit (REL) of the National Institute for Occupational Safety and Health (NIOSH) for 69% of workers, and exceeded the Mine Safety and Health Administration's action level for enrollment in a hearing conservation program for 41% of workers. Significantly higher noise exposures occurred among employees of small companies, among workers with a job classification of truck driver, among males, and among black workers. Hearing protection usage was low, with 48% of subjects reporting that they never used hearing protection. Hearing impairment, as defined by NIOSH, was present among 37% of 275 subjects with valid audiograms. Black male workers and white male workers had higher hearing thresholds than males from a comparison North Carolina population unexposed to industrial noise. Small but statistically significant changes in hearing thresholds occurred following full shift noise exposure among subjects who had good hearing sensitivity at baseline. In a logistic regression model, age and history of a past noisy job were significant predictors of hearing impairment. Overall, sand and gravel workers have excessive noise exposures and significant hearing loss, and demonstrate inadequate use of hearing protection. Well-designed hearing conservation programs, with reduction of noise exposure, are clearly needed.
Helleman, Hiske W; Dreschler, Wouter A
2015-02-01
To investigate the effect of a break in music exposure on temporary threshold shifts. A cross-over design where subjects are exposed to dance music for either two hours consecutively, or exposed to two hours of dance music with a one-hour break in between. Outcome measure was the change in hearing threshold, measured in 1-dB steps at different time points after ending the music. Eighteen normal-hearing subjects participated in this study. Changes in pure-tone threshold were observed in both conditions and were similar, regardless of the break. Threshold shifts could be averaged for 1000, 2000, and 4000 Hz. The shift immediately after the ending of the music was 1.7 dB for right ears, and 3.4 dB for left ears. The difference between left and right ears was significant. One hour after the exposure, right ears were recovered to baseline conditions whereas left ears showed a small but clinically irrelevant remaining shift of approximately 1 dB. The advice to use chill-out zones is still valid, because this helps to reduce the duration to the exposure. This study does not provide evidence that a rest period gives an additional reduction of temporary threshold shifts.
Hearing threshold shifts among military pilots of the Israeli Air Force.
Kampel-Furman, Liyona; Joachims, Z; Bar-Cohen, H; Grossman, A; Frenkel-Nir, Y; Shapira, Y; Alon, E; Carmon, E; Gordon, B
2018-02-01
Military aviators are potentially at risk for developing noise-induced hearing loss. Whether ambient aircraft noise exposure causes hearing deficit beyond the changes attributed to natural ageing is debated. The aim of this research was to assess changes in hearing thresholds of Israeli Air Force (IAF) pilots over 20 years of military service and identify potential risk factors for hearing loss. A retrospective cohort analysis was conducted of pure-tone air conduction audiograms of pilots, from their recruitment at 18 years of age until the last documented medical check-up. Mean hearing thresholds were analysed in relation to age, total flight hours and aircraft platform. Comparisons were made to the hearing thresholds of air traffic controllers (ATCs) who were not exposed to the noise generated by aircraft while on duty. One hundred and sixty-three pilots were included, with flying platforms ranging from fighter jets (n=54), combat helicopters (n=27), transport helicopters (n=52) and transport aircraft (n=30). These were compared with the results from 17 ATCs. A marked notch in the frequency range of 4-6 kHz was demonstrated in the mean audiograms of all platforms pilots, progressing with ageing. Hearing threshold shifts in relation to measurements at recruitment were first noted at the age of 30 years, particularly at 4 kHz (mean shift of 2.97 dB, p=0.001). There was no statistical association between flying variables and hearing thresholds adjusted for age by logistic regression analysis. The audiometric profile of IAF pilots has a pattern compatible with noise exposure, as reflected by characteristic noise notch. However, no flight variable was associated with deterioration of hearing thresholds, and no significant difference from non-flying controls (ATCs) was seen. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Active Duty-U.S. Army Noise Induced Hearing Injury Quarterly Surveillance Q3 2007 thru Q4 2009
2014-05-11
years (CY) Q3 2007-Q4 2009 shows incident case rates for sensorineural hearing loss (SNHL), significant threshold shift (STS), tinnitus , and Noise-Induced...Prev Med. 2010;38(1S):S71-S77. Humes LE, Jollenbeck LM, Durch JS. Noise and military service: Implications for hearing loss and tinnitus . Washington...threshold shift 79415 NONSPECIFIC ABNORMAL AUDITORY FUNCTION STUDIES TINN Tinnitus 38830 TINNITUS UNSPECIFIED TINN Tinnitus 38831 SUBJECTIVE TINNITUS
Masterson, Elizabeth A; Sweeney, Marie Haring; Deddens, James A; Themann, Christa L; Wall, David K
2014-04-01
The purpose of this study was to compare the prevalence of workers with National Institute for Occupational Safety and Health significant threshold shifts (NSTS), Occupational Safety and Health Administration standard threshold shifts (OSTS), and with OSTS with age correction (OSTS-A), by industry using North American Industry Classification System codes. From 2001 to 2010, worker audiograms were examined. Prevalence and adjusted prevalence ratios for NSTS were estimated by industry. NSTS, OSTS, and OSTS-A prevalences were compared by industry. Twenty percent of workers had an NSTS, 14% had an OSTS, and 6% had an OSTS-A. For most industries, the OSTS and OSTS-A criteria identified 28% to 36% and 66% to 74% fewer workers than the NSTS criteria, respectively. Use of NSTS criteria allowing for earlier detection of shifts in hearing is recommended for improved prevention of occupational hearing loss.
Masterson, Elizabeth A.; Sweeney, Marie Haring; Deddens, James A.; Themann, Christa L.; Wall, David K.
2015-01-01
Objective The purpose of this study was to compare the prevalence of workers with National Institute for Occupational Safety and Health significant threshold shifts (NSTS), Occupational Safety and Health Administration standard threshold shifts (OSTS), and with OSTS with age correction (OSTS-A), by industry using North American Industry Classification System codes. Methods 2001-2010 worker audiograms were examined. Prevalence and adjusted prevalence ratios for NSTS were estimated by industry. NSTS, OSTS and OSTS-A prevalences were compared by industry. Results 20% of workers had an NSTS, 14% had an OSTS and 6% had an OSTS-A. For most industries, the OSTS and OSTS-A criteria identified 28-36% and 66-74% fewer workers than the NSTS criteria, respectively. Conclusions Use of NSTS criteria allowing for earlier detection of shifts in hearing is recommended for improved prevention of occupational hearing loss. PMID:24662953
Toward a Molecular Understanding of Noise-Induced Hearing Loss
2017-10-01
cell, SAHA, Heat shock, sex differences 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...threshold shift, Temporary threshold shift, Noise induced hearing loss, Ribotag, RNA-seq, Hair cell, Supporting cell, SAHA, Heat shock, Sex ...also sex -specific. TTS-inducing noise exposure: crosses, calibration, validation cytocochleograms, noise exposure, tissue harvesting, polysome IP
Effects of modulation phase on profile analysis in normal-hearing and hearing-impaired listeners
NASA Astrophysics Data System (ADS)
Rogers, Deanna; Lentz, Jennifer
2003-04-01
The ability to discriminate between sounds with different spectral shapes in the presence of amplitude modulation was measured in normal-hearing and hearing-impaired listeners. The standard stimulus was the sum of equal-amplitude modulated tones, and the signal stimulus was generated by increasing the level of half the tones (up components) and decreasing the level of half the tones (down components). The down components had the same modulation phase, and a phase shift was applied to the up components to encourage segregation from the down tones. The same phase shift was used in both standard and signal stimuli. Profile-analysis thresholds were measured as a function of the phase shift between up and down components. The phase shifts were 0, 30, 45, 60, 90, and 180 deg. As expected, thresholds were lowest when all tones had the same modulation phase and increased somewhat with increasing phase disparity. This small increase in thresholds was similar for both groups. These results suggest that hearing-impaired listeners are able to use modulation phase to group sounds in a manner similar to that of normal listeners. [Work supported by NIH (DC 05835).
Underwater temporary threshold shift in pinnipeds: effects of noise level and duration.
Kastak, David; Southall, Brandon L; Schusterman, Ronald J; Kastak, Colleen Reichmuth
2005-11-01
Behavioral psychophysical techniques were used to evaluate the residual effects of underwater noise on the hearing sensitivity of three pinnipeds: a California sea lion (Zalophus californianus), a harbor seal (Phoca vitulina), and a northern elephant seal (Mirounga angustirostris). Temporary threshold shift (TTS), defined as the difference between auditory thresholds obtained before and after noise exposure, was assessed. The subjects were exposed to octave-band noise centered at 2500 Hz at two sound pressure levels: 80 and 95 dB SL (re: auditory threshold at 2500 Hz). Noise exposure durations were 22, 25, and 50 min. Threshold shifts were assessed at 2500 and 3530 Hz. Mean threshold shifts ranged from 2.9-12.2 dB. Full recovery of auditory sensitivity occurred within 24 h of noise exposure. Control sequences, comprising sham noise exposures, did not result in significant mean threshold shifts for any subject. Threshold shift magnitudes increased with increasing noise sound exposure level (SEL) for two of the three subjects. The results underscore the importance of including sound exposure metrics (incorporating sound pressure level and exposure duration) in order to fully assess the effects of noise on marine mammal hearing.
Knight, Richard D
2004-01-01
Limited data are available on the relationship between diplacusis and otoacoustic emissions and sudden hearing threshold changes, and the detail of the mechanism underlying diplacusis is not well understood. Data are presented here from an intensively studied single episode of sudden, non-conductive, mild hearing loss with associated binaural diplacusis, probably due to a viral infection. Treatment with steroids was administered for 1 week. This paper examines the relationships between the hearing loss, diplacusis and otoacoustic emissions during recovery on a day-by-day basis. The hearing thresholds were elevated by up to 20 dB at 4kHz and upwards, and there was an interaural pitch difference up to 12% at 4 and 8 kHz. There was also a frequency-specific change in transient evoked otoacoustic emission (TEOAE) and distortion-product otoacoustic emission (DPOAE) level. DPOAE level was reduced by up to 20 dB. with the greatest change seen when a stimulus with a wide stimulus frequency ratio was used. Frequency shifts in the 2f2-fi DPOAE fine structure corresponded to changes in the diplacusis. Complete recovery to previous levels was observed for TEOAE, DPOAE and hearing threshold. The diplacusis recovered to within normal limits after 4 weeks. The frequency shift seen in the DPOAE fine structure did not quite resolve, suggesting a very slight permanent change. The time-courses of TEOAE. diplacusis and hearing threshold were significantly different: most notably, the hearing threshold was stable over a period when the diplacusis deteriorated. This suggests that the cochlear mechanisms involved in diplacusis, hearing threshold and OAE may not be identical.
Jin, Chao; Li, Huan; Li, Xianjun; Wang, Miaomiao; Liu, Congcong; Guo, Jianxin; Yang, Jian
2018-02-01
Purpose To determine whether a single 51-minute exposure to acoustic noise during 3-T multisequence magnetic resonance (MR) neuroimaging could affect the hearing threshold of healthy adults with earplugs and sponge mats as hearing protection. Materials and Methods With earplugs and motion-refraining sponge mats as hearing protection, 26 healthy young adults underwent 3-T MR neuroimaging imaging that included T1-weighted three-dimensional gradient-echo sequence, T2-weighted fast spin-echo sequence, diffusion-tensor imaging, diffusion-kurtosis imaging, T2*-weighted three-dimensional multiecho gradient-echo sequence, and blood oxygen level-dependent imaging. Automated auditory brainstem response (ABR) was used to measure the hearing thresholds within 24 hours before, within 20 minutes after, and 25 days after the MR examination. One-way repeated-measure analysis of variance with Bonferroni adjustment was used to compare automated ABR results among the three tests and partial η 2 (η p 2 ) was reported as a measure of effect size. Results Automated ABR results showed significantly increased mean threshold shift of 5.0 dB ± 8.1 (standard deviation) (left ear: 4.8 dB ± 9.2 [95% confidence interval: 1.09, 8.53], η p 2 = 0.221, P = .013; right ear: 5.2 dB ± 6.9 [95% confidence interval: 2.36, 8.02], η p 2 = 0.364, P = .001) immediately after the MR examination compared with the baseline study. This shift is below the temporary threshold shift of 40-50 dB that is associated with cochlea nerve changes. Automated ABR obtained at day 25 after MR imaging showed no significant differences from baseline (left ear: -2.3 dB ± 8.6 [95% confidence interval: -5.79, 1.78], η p 2 = 0.069, P = .185; right ear: 0.4 dB ± 7.3 [95% confidence interval: -3.35, 2.58], η p 2 = 0.003, P = .791). Conclusion A 3-T MR neuroimaging examination with the acoustic noise at equivalent sound pressure level of 103.5-111.3 dBA lasting 51 minutes can cause temporary hearing threshold shift in healthy volunteers with hearing protection. © RSNA, 2017.
Towards a Molecular Understanding of Noise-Induced Hearing Loss
2016-10-01
gene expression following different types of noise exposure and their treatments, in the inner ear. To this end, we have (a) Established the hair ...in hair cells, support cells and whole inner ears, 6 and 24 hours after noise exposure; (c) Collected and processed most of the tissue for TTS...SUBJECT TERMS Permanent threshold shift, Temporary threshold shift, Noise induced hearing loss, Ribotag, RNA-seq, hair cell, supporting cell, SAHA
Frederiksen, Thomas W.; Ramlau-Hansen, Cecilia H.; Stokholm, Zara A.; Grynderup, Matias B.; Hansen, Åse M.; Kristiansen, Jesper; Vestergaard, Jesper M.; Bonde, Jens P.; Kolstad, Henrik A.
2017-01-01
Aims: To survey current, Danish industrial noise levels and the use of hearing protection devices (HPD) over a 10-year period and to characterise the association between occupational noise and hearing threshold shift in the same period. Furthermore, the risk of hearing loss among the baseline and the follow-up populations according to first year of occupational noise exposure is evaluated. Materials and Methods: In 2001–2003, we conducted a baseline survey of noise- and hearing-related disorders in 11 industries with suspected high noise levels. In 2009–2010, we were able to follow up on 271 out of the 554 baseline workers (49%). Mean noise levels per industry and self-reported HPD use are described at baseline and follow-up. The association between cumulative occupational noise exposure and hearing threshold shift over the 10-year period was assessed using linear regression, and the risk of hearing loss according to year of first occupational noise exposure was evaluated with logistic regression. Results: Over the 10-year period, mean noise levels declined from 83.9 dB(A) to 82.8 dB(A), and for workers exposed >85 dB(A), the use of HPD increased from 70.1 to 76.1%. We found a weak, statistically insignificant, inverse association between higher ambient cumulative noise exposure and poorer hearing (−0.10 dB hearing threshold shift per dB-year (95% confidence interval (CI): −0.36; 0.16)). The risk of hearing loss seemed to increase with earlier first year of noise exposure, but odds ratios were only statistically significant among baseline participants with first exposure before the 1980s (odds ratio: 1.90, 95% CI: 1.11; 3.22). Conclusions: We observed declining industrial noise levels, increased use of HPD and no significant impact on hearing thresholds from current ambient industrial noise levels, which indicated a successful implementation of Danish hearing conservation programs. PMID:29192620
Frederiksen, Thomas W; Ramlau-Hansen, Cecilia H; Stokholm, Zara A; Grynderup, Matias B; Hansen, Åse M; Kristiansen, Jesper; Vestergaard, Jesper M; Bonde, Jens P; Kolstad, Henrik A
2017-01-01
To survey current, Danish industrial noise levels and the use of hearing protection devices (HPD) over a 10-year period and to characterise the association between occupational noise and hearing threshold shift in the same period. Furthermore, the risk of hearing loss among the baseline and the follow-up populations according to first year of occupational noise exposure is evaluated. In 2001-2003, we conducted a baseline survey of noise- and hearing-related disorders in 11 industries with suspected high noise levels. In 2009-2010, we were able to follow up on 271 out of the 554 baseline workers (49%). Mean noise levels per industry and self-reported HPD use are described at baseline and follow-up. The association between cumulative occupational noise exposure and hearing threshold shift over the 10-year period was assessed using linear regression, and the risk of hearing loss according to year of first occupational noise exposure was evaluated with logistic regression. Over the 10-year period, mean noise levels declined from 83.9 dB(A) to 82.8 dB(A), and for workers exposed >85 dB(A), the use of HPD increased from 70.1 to 76.1%. We found a weak, statistically insignificant, inverse association between higher ambient cumulative noise exposure and poorer hearing (-0.10 dB hearing threshold shift per dB-year (95% confidence interval (CI): -0.36; 0.16)). The risk of hearing loss seemed to increase with earlier first year of noise exposure, but odds ratios were only statistically significant among baseline participants with first exposure before the 1980s (odds ratio: 1.90, 95% CI: 1.11; 3.22). We observed declining industrial noise levels, increased use of HPD and no significant impact on hearing thresholds from current ambient industrial noise levels, which indicated a successful implementation of Danish hearing conservation programs.
Hearing loss in the Royal Norwegian Navy: A longitudinal study
Irgens-Hansen, Kaja; Baste, Valborg; Bråtveit, Magne; Lind, Ola; Koefoed, Vilhelm F.; Moen, Bente E
2016-01-01
The aims of this longitudinal study were to investigate a significant threshold shift (STS) among personnel working on board the Royal Norwegian Navy's (RNoN) vessels between 2012 and 2014 and to identify possible determinants of STS. Hearing thresholds were measured by pure tone audiometry in two consecutive examinations (n = 226). STS was defined as an average change in hearing thresholds ≥ + 10 dB at 2,000 Hz, 3,000 Hz, and 4,000 Hz in either ear. Determinants of STS were assessed through a questionnaire. The incidence of STS was 23.0%. Significant determinants of STS were the number of episodes of temporary threshold shifts (TTS) in the Navy, exposure to continuous loud noise during work on board, and the number of gun shots (in the Navy, hunting, and sports). This study indicated a significant association between noise exposure on board Navy vessels and development of STS. PMID:27157689
Hearing loss in the Royal Norwegian Navy: A longitudinal study.
Irgens-Hansen, Kaja; Baste, Valborg; Bråtveit, Magne; Lind, Ola; Koefoed, Vilhelm F; Moen, Bente E
2016-01-01
The aims of this longitudinal study were to investigate a significant threshold shift (STS) among personnel working on board the Royal Norwegian Navy's (RNoN) vessels between 2012 and 2014 and to identify possible determinants of STS. Hearing thresholds were measured by pure tone audiometry in two consecutive examinations (n = 226). STS was defined as an average change in hearing thresholds ≥ + 10 dB at 2,000 Hz, 3,000 Hz, and 4,000 Hz in either ear. Determinants of STS were assessed through a questionnaire. The incidence of STS was 23.0%. Significant determinants of STS were the number of episodes of temporary threshold shifts (TTS) in the Navy, exposure to continuous loud noise during work on board, and the number of gun shots (in the Navy, hunting, and sports). This study indicated a significant association between noise exposure on board Navy vessels and development of STS.
Finneran, James J; Schlundt, Carolyn E; Dear, Randall; Carder, Donald A; Ridgway, Sam H
2002-06-01
A behavioral response paradigm was used to measure masked underwater hearing thresholds in a bottlenose dolphin (Tursiops truncatus) and a white whale (Delphinapterus leucas) before and after exposure to single underwater impulsive sounds produced from a seismic watergun. Pre- and postexposure thresholds were compared to determine if a temporary shift in masked hearing thresholds (MTTS), defined as a 6-dB or larger increase in postexposure thresholds, occurred. Hearing thresholds were measured at 0.4, 4, and 30 kHz. MTTSs of 7 and 6 dB were observed in the white whale at 0.4 and 30 kHz, respectively, approximately 2 min following exposure to single impulses with peak pressures of 160 kPa, peak-to-peak pressures of 226 dB re 1 microPa, and total energy fluxes of 186 dB re 1 microPa2 x s. Thresholds returned to within 2 dB of the preexposure value approximately 4 min after exposure. No MTTS was observed in the dolphin at the highest exposure conditions: 207 kPa peak pressure, 228 dB re 1 microPa peak-to-peak pressure, and 188 dB re 1 microPa2 x s total energy flux.
Ototraumatic Effects of Hard Rock Music
Reddell, Rayford C.; Lebo, Charles P.
1972-01-01
Temporary and permanent shifts in auditory thresholds were found in 43 hard rock musicians and temporary shifts were also observed in some listeners. The threshold shifts involved all of the conventional puretone test frequencies. Custom-fitted polyvinyl chloride ear protectors were found to be effective in prevention of these noise-induced hearing losses. PMID:5008499
Broadband noise exposure does not affect hearing sensitivity in big brown bats (Eptesicus fuscus).
Simmons, Andrea Megela; Hom, Kelsey N; Warnecke, Michaela; Simmons, James A
2016-04-01
In many vertebrates, exposure to intense sounds under certain stimulus conditions can induce temporary threshold shifts that reduce hearing sensitivity. Susceptibility to these hearing losses may reflect the relatively quiet environments in which most of these species have evolved. Echolocating big brown bats (Eptesicus fuscus) live in extremely intense acoustic environments in which they navigate and forage successfully, both alone and in company with other bats. We hypothesized that bats may have evolved a mechanism to minimize noise-induced hearing losses that otherwise could impair natural echolocation behaviors. The hearing sensitivity of seven big brown bats was measured in active echolocation and passive hearing tasks, before and after exposure to broadband noise spanning their audiometric range (10-100 kHz, 116 dB SPL re. 20 µPa rms, 1 h duration; sound exposure level 152 dB). Detection thresholds measured 20 min, 2 h or 24 h after exposure did not vary significantly from pre-exposure thresholds or from thresholds in control (sham exposure) conditions. These results suggest that big brown bats may be less susceptible to temporary threshold shifts than are other terrestrial mammals after exposure to similarly intense broadband sounds. These experiments provide fertile ground for future research on possible mechanisms employed by echolocating bats to minimize hearing losses while orienting effectively in noisy biological soundscapes. © 2016. Published by The Company of Biologists Ltd.
Chang, Mun Young; Gwon, Tae Mok; Lee, Ho Sun; Lee, Jun Ho; Oh, Seung Ha; Kim, Sung June; Park, Min-Hyun
2017-03-15
The present study aimed to evaluate the effects of systemic lipoic acid on hearing preservation after cochlear implantation. Twelve Dunkin-Hartley guinea pigs were randomly divided into two groups: the control group and the lipoic acid group. Animals in the lipoic acid group received lipoic acid intraperitoneally for 4 weeks. A sterilised silicone electrode-dummy was inserted through the round window to a depth of approximately 5 mm. The hearing level was measured using auditory brainstem responses (ABRs) prior to electrode-dummy insertion, and at 4 days and 1, 2, 3 and 4 weeks after electrode-dummy insertion. The threshold shift was defined as the difference between the pre-operative threshold and each of the post-operative thresholds. The cochleae were examined histologically 4 weeks after electrode-dummy insertion. Threshold shifts changed with frequency but not time. At 2kHz, ABR threshold shifts were statistically significantly lower in the lipoic acid group than the control group. At 8, 16 and 32kHz, there was no significant difference in the ABR threshold shift between the two groups. Histologic review revealed less intracochlear fibrosis along the electrode-dummy insertion site in the lipoic acid group than in the control group. The spiral ganglion cell densities of the basal, middle and apical turns were significantly higher in the lipoic acid group compared with the control group. Therefore, systemic lipoic acid administration appears to effectively preserve hearing at low frequencies in patients undergoing cochlear implantation. These effects may be attributed to the protection of spiral ganglion cells and prevention of intracochlear fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Mass transit ridership and self-reported hearing health in an urban population.
Gershon, Robyn R M; Sherman, Martin F; Magda, Lori A; Riley, Halley E; McAlexander, Tara P; Neitzel, Richard
2013-04-01
Information on prevalence and risk factors associated with self-reported hearing health among mass transit riders is extremely limited, even though evidence suggests mass transit may be a source of excessive exposure to noise. Data on mass transit ridership were collected from 756 study participants using a self-administered questionnaire. Hearing health was measured using two symptom items (tinnitus and temporary audiometric threshold shift), two subjective measures (self-rated hearing and hearing ability), and two medical-related questions (hearing testing and physician-diagnosed hearing loss). In logistic regression analyses that controlled for possible confounders, including demographic variables, occupational noise exposure, nonoccupational noise exposure (including MP3 player use) and use of hearing protection, frequent and lengthy mass transit (all forms) ridership (1,100 min or more per week vs. 350 min or less per week) was the strongest predictor of temporary threshold shift symptoms. Noise abatement strategies, such as engineering controls, and the promotion of hearing protection use should be encouraged to reduce the risk of adverse impacts on the hearing health of mass transit users.
2008-10-28
S. H. Ridgway (2003), "Temporary Threshold Shift (TTS) Measurements in Bottlenose Dolphins (Tursiops truncatus), Belugas ( Delphinapterus leucas ...34Temporary Shift in Masked Hearing Thresholds (MTTS) of Bottlenose Dolphins, Tursiops truncatus, and White Whales, Delphinapterus leucas , after Exposure
Code of Federal Regulations, 2014 CFR
2014-07-01
... American Speech-Language-Hearing Association (ASHA) or licensed by a state board of examiners. Baseline... network and a slow response, expressed in the unit dBA. Standard threshold shift. A change in hearing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... American Speech-Language-Hearing Association (ASHA) or licensed by a state board of examiners. Baseline... network and a slow response, expressed in the unit dBA. Standard threshold shift. A change in hearing...
Aural Acoustic Stapedius-Muscle Reflex Threshold Procedures to Test Human Infants and Adults.
Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F
2017-02-01
Power-based procedures are described to measure acoustic stapedius-muscle reflex threshold and supra-threshold responses in human adult and infant ears at frequencies from 0.2 to 8 kHz. The stimulus set included five clicks in which four pulsed activators were placed between each pair of clicks, with each stimulus set separated from the next by 0.79 s to allow for reflex decay. Each click response was used to detect the presence of reflex effects across frequency that were elicited by a pulsed broadband-noise or tonal activator in the ipsilateral or contralateral test ear. Acoustic reflex shifts were quantified in terms of the difference in absorbed sound power between the initial baseline click and the later four clicks in each set. Acoustic reflex shifts were measured over a 40-dB range of pulsed activators, and the acoustic reflex threshold was objectively calculated using a maximum 10 likelihood procedure. To illustrate the principles underlying these new reflex tests, reflex shifts in absorbed sound power and absorbance are presented for data acquired in an adult ear with normal hearing and in two infant ears in the initial and follow-up newborn hearing screening exams, one with normal hearing and the other with a conductive hearing loss. The use of absorbed sound power was helpful in classifying an acoustic reflex shift as present or absent. The resulting reflex tests are in use in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function in infant and adult ears.
10 Ways to Protect Your Hearing
ERIC Educational Resources Information Center
Walter, Jennifer Stewart
2011-01-01
There are physical symptoms related to noise overexposure--difficulty with communication, ringing in the ears, temporary hearing loss (a.k.a. temporary threshold shift), noise-induced hearing loss--as well as psychological symptoms, such as irritability and psychological fatigue. Since both the physical and psychological symptoms of noise…
Quinine reduces the dynamic range of the human auditory system.
Berninger, E; Karlsson, K K; Alván, G
1998-01-01
The aim of the study was to evaluate and quantify quinine-induced changes in the human auditory dynamic range, as a model for cochlear hearing loss. Six otologically normal volunteers (21-40 years old) received quinine hydrochloride (15 mg/kg body weight) in two identical oral doses and one intravenous infusion. Refined hearing tests were performed monaurally at threshold, at moderate hearing levels and at high hearing levels. Quinine induced a maximal pure-tone threshold shift of 23 dB (1000-2000 Hz). The increase in the psychoacoustical click threshold agreed with an increase in the detection threshold of click-evoked otoacoustic emissions. The change in the stimulus-response relationship of the emissions reflected recruitment. The self-attained most comfortable speech level and the acoustic stapedius reflex thresholds were not affected by quinine administration. Quinine is a useful model substance for reversibly inducing complete loudness recruitment in humans as it acts specifically on some parts of the hearing function. Its mechanism of action on the molecular level is likely to reveal further information on the physiology of hearing.
Singh, Lakhwinder Pal; Bhardwaj, Arvind; Kumar, Deepak Kishore
2012-01-01
Occupational noise exposure and noise-induced hearing loss (NIHL) have been recognized as a problem among workers in Indian industries. The major industries in India are based on manufacturing. There are appreciable numbers of casting and forging units spread across the country. The objective of this study is to determine the prevalence of permanent hearing threshold shift among the workers engaged in Indian iron and steel small and medium enterprises (SMEs) and compared with control group subjects. As a part of hearing protection intervention, audiometric tests were conducted at low (250-1000 Hz), medium (1500-3000 Hz), and high (4000-8000 Hz) frequencies. The occurrence of hearing loss was determined based on hearing threshold levels with a low fence of 25 dB. Comparisons were made for hearing threshold at different frequencies between the exposed and control groups using Student's t test. ANOVA was used for the comparison of hearing threshold dB at different frequencies among occupation and year of experience. A P value <0.05 was considered as statistically significant. All data were presented as mean value (SD). Over 90% of workers engaged in various processes of casting and forging industry showed hearing loss in the noise-sensitive medium and higher frequencies. Occupation was significantly associated with NIHL, and hearing loss was particularly high among the workers of forging section. The analyses revealed a higher prevalence of significant hearing loss among the forging workers compared to the workers associated with other activities. The study shows alarming signals of NIHL, especially in forging workers. The occupational exposure to noise could be minimized by efficient control measures through engineering controls, administrative controls, and the use of personal protective devices. Applications of engineering and/or administrative controls are frequently not feasible in the developing countries for technical and financial reasons. A complete hearing conservation programme, including training, audiometry, job rotation, and the use of hearing protection devices, is the most feasible method for the protection of industrial workers from prevailing noise in workplace environments in the developing countries.
Smartphone-Based Hearing Screening in Noisy Environments
Na, Youngmin; Joo, Hyo Sung; Yang, Hyejin; Kang, Soojin; Hong, Sung Hwa; Woo, Jihwan
2014-01-01
It is important and recommended to detect hearing loss as soon as possible. If it is found early, proper treatment may help improve hearing and reduce the negative consequences of hearing loss. In this study, we developed smartphone-based hearing screening methods that can ubiquitously test hearing. However, environmental noise generally results in the loss of ear sensitivity, which causes a hearing threshold shift (HTS). To overcome this limitation in the hearing screening location, we developed a correction algorithm to reduce the HTS effect. A built-in microphone and headphone were calibrated to provide the standard units of measure. The HTSs in the presence of either white or babble noise were systematically investigated to determine the mean HTS as a function of noise level. When the hearing screening application runs, the smartphone automatically measures the environmental noise and provides the HTS value to correct the hearing threshold. A comparison to pure tone audiometry shows that this hearing screening method in the presence of noise could closely estimate the hearing threshold. We expect that the proposed ubiquitous hearing test method could be used as a simple hearing screening tool and could alert the user if they suffer from hearing loss. PMID:24926692
Effects of N-acetylcysteine on noise-induced temporary threshold shift and temporary emission shift
NASA Astrophysics Data System (ADS)
Robinette, Martin
2004-05-01
Animal research has shown that antioxidants can provide significant protection to the cochlea from traumatic noise exposure with some benefit when given after the exposure. Similar results in humans would have a significant impact on both prevention and treatment of noise-induced hearing loss. The current study evaluates the effectiveness of N-acetylcysteine (NAC) on temporary threshold shift (TTS) by using both behavioral and physiological measures. Sixteen healthy, normal-hearing subjects were given NAC or a placebo prior to exposure to a 10-min, 102-dB narrow-band noise, centered at 2 kHz. This exposure was designed to induce a 10-15-dB TTS. Following the noise exposure, pure-tone thresholds (Bekesy) and transient-evoked otoacoustic emissions (TEOAE) were measured for 60 min to monitor the effects of NAC on TTS recovery. Postexposure measures were compared to baseline data. [Work supported by American BioHealth Group.
Residual Inhibition Functions Overlap Tinnitus Spectra and the Region of Auditory Threshold Shift
Moffat, Graeme; Baumann, Michael; Ward, Lawrence M.
2008-01-01
Animals exposed to noise trauma show augmented synchronous neural activity in tonotopically reorganized primary auditory cortex consequent on hearing loss. Diminished intracortical inhibition in the reorganized region appears to enable synchronous network activity that develops when deafferented neurons begin to respond to input via their lateral connections. In humans with tinnitus accompanied by hearing loss, this process may generate a phantom sound that is perceived in accordance with the location of the affected neurons in the cortical place map. The neural synchrony hypothesis predicts that tinnitus spectra, and heretofore unmeasured “residual inhibition functions” that relate residual tinnitus suppression to the center frequency of masking sounds, should cover the region of hearing loss in the audiogram. We confirmed these predictions in two independent cohorts totaling 90 tinnitus subjects, using computer-based tools designed to assess the psychoacoustic properties of tinnitus. Tinnitus spectra and residual inhibition functions for depth and duration increased with the amount of threshold shift over the region of hearing impairment. Residual inhibition depth was shallower when the masking sounds that were used to induce residual inhibition showed decreased correspondence with the frequency spectrum and bandwidth of the tinnitus. These findings suggest that tinnitus and its suppression in residual inhibition depend on processes that span the region of hearing impairment and not on mechanisms that enhance cortical representations for sound frequencies at the audiometric edge. Hearing thresholds measured in age-matched control subjects without tinnitus implicated hearing loss as a factor in tinnitus, although elevated thresholds alone were not sufficient to cause tinnitus. PMID:18712566
Facing the music: pre- and postconcert assessment of hearing in teenagers.
Derebery, M Jennifer; Vermiglio, Andrew; Berliner, Karen I; Potthoff, Marilee; Holguin, Kirsten
2012-09-01
Determine the effect of exposure to a single rock/pop concert on pure-tone hearing thresholds and outer hair cell function in teenagers. Repeated measures pre- and postconcert assessment of hearing. Mobile hearing conservation test vehicle and large indoor concert venue. Twenty-nine normal-hearing teenagers and young adults ages 13 to 20 years. Attendance at a public rock/pop concert. Pre- and postconcert pure-tone thresholds in both ears from 500 Hz to 8 kHz, pure-tone average (PTA) for 2, 3, and 4 kHz, distortion product otoacoustic emissions (DPOAEs), proportion of subjects experiencing a PTA change of 10 dB or greater. Concert sound levels at the subjects' position averaged 98.5 dBA. Only 3 subjects used the hearing protection provided. Thresholds for 2 to 6 kHz increased significantly from pre- to postconcert (p ≤ 0.001). The increase in PTA (2, 3, and 4 kHz) between test intervals averaged 6.3 and 6.5 dB for the right and left ears, respectively, and 33.3% of subjects had a threshold shift of 10 dB or greater in the PTA in at least 1 ear (p ≤ 0.001). The number of subjects experiencing a reduction in DPOAE amplitude (17/25) and the change in mean amplitude were statistically significant (p ≤ 0.001 and p ≤ 0.004, respectively). Exposure to a single live-music rock/pop concert can produce a threshold shift and decrease in otoacoustic emissions amplitude indicating impact on outer hair cell function. Results clearly indicate a need for research on this public health issue regarding "safe" listening levels, especially in younger people with more years for accrual of damage.
Prolonged noise exposure-induced auditory threshold shifts in rats
Chen, Guang-Di; Decker, Brandon; Muthaiah, Vijaya Prakash Krishnan; Sheppard, Adam; Salvi, Richard
2014-01-01
Noise-induced hearing loss (NIHL) initially increases with exposure duration, but eventually reaches an asymptotic threshold shift (ATS) once the exposure duration exceeds 18-24 h. Equations for predicting the ATS have been developed for several species, but not for rats, even though this species is extensively used in noise exposure research. To fill this void, we exposed rats to narrowband noise (NBN, 16-20 kHz) for 5 weeks starting at 80 dB SPL in the first week and then increasing the level by 6 dB per week to a final level of 104 dB SPL. Auditory brainstem responses (ABR) were recorded before, during, and following the exposure to determine the amount of hearing loss. The noise induced threshold shift to continuous long-term exposure, defined as compound threshold shift (CTS), within and above 16-20 kHz increased with noise level at the rate of 1.82 dB threshold shift per dB of noise level (NL) above a critical level (C) of 77.2 dB SPL i.e. CTS = 1.82(NL-77.2). The normalized amplitude of the largest ABR peak measured at 100 dB SPL decreased at the rate of 3.1% per dB of NL above the critical level of 76.9 dB SPL, i.e., %ABR Reduction = 3.1%(NL-76.9). ABR thresholds measured >30 days post-exposure only partially recovered resulting in a permanent threshold shift of 30-40 dB along with severe hair cell loss in the basal, high-frequency region of the cochlea. In the rat, CTS increases with noise level with a slope similar to humans and chinchillas. The critical level (C) in the rat is similar to that of humans, but higher than that of chinchillas. PMID:25219503
Chang, Mun Young; Rah, Yoon Chan; Choi, Jun Jae; Woo, Shin Wook; Hwang, Yu-Jung; Eastwood, Hayden; O'Leary, Stephen J; Lee, Jun Ho
2017-08-01
When administered perioperatively, systemic dexamethasone will reduce the hearing loss associated with cochlear implantation (CI) performed via the round window approach. The benefits of electroacoustic stimulation have led to interest in pharmacological interventions to preserve hearing after CI. Thirty guinea pigs were randomly divided into three experimental groups: a control group; a 3-day infusion group; and a 7-day infusion group. Dexamethasone was delivered via a mini-osmotic pump for either 3 or 7 days after CI via the round window. Pure tone-evoked auditory brainstem response (ABR) thresholds were monitored for a period of 12 weeks after CI. The cochleae were then collected for histology. At 4 and 12 weeks after CI, ABR threshold shifts were significantly reduced in both 7-day and 3-day infusion groups compared with the control group. Furthermore, the 7-day infusion group has significantly reduced ABR threshold shifts compared with the 3-day infusion group. The total tissue response, including fibrosis and ossification, was significantly reduced in the 7-day infusion group compared with the control group. On multiple regression the extent of fibrosis predicted hearing loss across most frequencies, while hair cell counts predicted ABR thresholds at 32 kHz. Hearing protection after systemic administration of steroids is more effective when continued for at least a week after CI. Similarly, this treatment approach was more effective in reducing the fibrosis that encapsulates the CI electrode. Reduced fibrosis seemed to be the most likely explanation for the hearing protection.
Modification of otoacoustic emissions following ear-level exposure to MP3 player music.
Bhagat, Shaum P; Davis, Anne M
2008-12-01
The purpose of this study was to examine if a pre-determined exposure level and duration of MP3 player music would result in significant changes in cochlear function when measured with audiometric and physiological methods. Distortion-product otoacoustic emissions (DPOAEs), synchronized spontaneous otoacoustic emissions (SSOAEs), and hearing thresholds were measured in 20 normal-hearing adults before and after a 30-minute MP3 player music exposure. DPOAEs were acquired with 65/45 dB SPL primary tones (f(2)=0.842-7.996 kHz) with a frequency resolution of 8 points/octave. A probe microphone system recorded ear-canal music levels and was used to equalize levels at approximately 85 dBC across individuals during the music presentation. Comparison of pre- and post-exposure measurements revealed no significant differences in hearing thresholds, but DPOAE levels in half-octave bands centered from 1.4-6.0 kHz were significantly reduced following the music exposure. Post-exposure shifts in SSOAE frequency and level were highly variable in individuals identified with SSOAEs. The results for the exposure conditions explored in this study indicate that changes in otoacoustic emissions may precede the development of music-induced hearing threshold shifts.
Occupational injury and illness recording and reporting requirements. Final rule.
2002-07-01
The Occupational Safety and Health Administration (OSHA) is revising the hearing loss recording provisions of the Occupational Injury and Illness Recording and Reporting Requirements rule published January 19, 2001 (66 FR 5916-6135), scheduled to take effect on January 1, 2003 (66 FR 52031-52034). This final rule revises the criteria for recording hearing loss cases in several ways, including requiring the recording of Standard Threshold Shifts (10 dB shifts in hearing acuity) that have resulted in a total 25 dB level of hearing above audiometric zero, averaged over the frequencies at 2000, 3000, and 4000 Hz, beginning in year 2003.
Active Duty-U.S. Army Noise Induced Hearing Injury Quarterly Surveillance Q3 2011 thru Q4 2013
2014-06-30
incident case rates for sensorineural hearing loss significant threshold shift, tinnitus , and Noise-Induced Hearing Loss. RECOMMENDATIONS: Commanders...2013 A-1 APPENDIX A REFERENCES Humes LE, Jollenbeck LM, Durch JS: Noise and military service: Implications for hearing loss and tinnitus . Washington...FUNCTION STUDIES TINN Tinnitus 38830 TINNITUS UNSPECIFIED TINN Tinnitus 38831 SUBJECTIVE TINNITUS TINN Tinnitus 38832 OBJECTIVE TINNITUS CPT Codes
Large-scale Phenotyping of Noise-Induced Hearing Loss in 100 Strains of Mice
Myint, Anthony; White, Cory H.; Ohmen, Jeffrey D.; Li, Xin; Wang, Juemei; Lavinsky, Joel; Salehi, Pezhman; Crow, Amanda L.; Ohyama, Takahiro; Friedman, Rick A.
2015-01-01
A cornerstone technique in the study of hearing is the Auditory Brainstem Response (ABR), an electrophysiologic technique that can be used as a quantitative measure of hearing function. Previous studies have published databases of baseline ABR thresholds for mouse strains, providing a valuable resource for the study of baseline hearing function and genetic mapping of hearing traits in mice. In this study, we further expand upon the existing literature by characterizing the baseline ABR characteristics of 100 inbred mouse strains, 47 of which are newly characterized for hearing function. We identify several distinct patterns of baseline hearing deficits and provide potential avenues for further investigation. Additionally, we characterize the sensitivity of the same 100 strains to noise exposure using permanent thresholds shifts, identifying several distinct patterns of noise-sensitivity. The resulting data provides a new resource for studying hearing loss and noise-sensitivity in mice. PMID:26706709
Safety of the HyperSound® Audio System in Subjects with Normal Hearing.
Mehta, Ritvik P; Mattson, Sara L; Kappus, Brian A; Seitzman, Robin L
2015-06-11
The objective of the study was to assess the safety of the HyperSound® Audio System (HSS), a novel audio system using ultrasound technology, in normal hearing subjects under normal use conditions; we considered pre-exposure and post-exposure test design. We investigated primary and secondary outcome measures: i) temporary threshold shift (TTS), defined as >10 dB shift in pure tone air conduction thresholds and/or a decrement in distortion product otoacoustic emissions (DPOAEs) >10 dB at two or more frequencies; ii) presence of new-onset otologic symptoms after exposure. Twenty adult subjects with normal hearing underwent a pre-exposure assessment (pure tone air conduction audiometry, tympanometry, DPOAEs and otologic symptoms questionnaire) followed by exposure to a 2-h movie with sound delivered through the HSS emitter followed by a post-exposure assessment. No TTS or new-onset otological symptoms were identified. HSS demonstrates excellent safety in normal hearing subjects under normal use conditions.
Safety of the HyperSound® Audio System in Subjects with Normal Hearing
Mattson, Sara L.; Kappus, Brian A.; Seitzman, Robin L.
2015-01-01
The objective of the study was to assess the safety of the HyperSound® Audio System (HSS), a novel audio system using ultrasound technology, in normal hearing subjects under normal use conditions; we considered pre-exposure and post-exposure test design. We investigated primary and secondary outcome measures: i) temporary threshold shift (TTS), defined as >10 dB shift in pure tone air conduction thresholds and/or a decrement in distortion product otoacoustic emissions (DPOAEs) >10 dB at two or more frequencies; ii) presence of new-onset otologic symptoms after exposure. Twenty adult subjects with normal hearing underwent a pre-exposure assessment (pure tone air conduction audiometry, tympanometry, DPOAEs and otologic symptoms questionnaire) followed by exposure to a 2-h movie with sound delivered through the HSS emitter followed by a post-exposure assessment. No TTS or new-onset otological symptoms were identified. HSS demonstrates excellent safety in normal hearing subjects under normal use conditions. PMID:26779330
A longitudinal study on postoperative hearing thresholds with the Vibrant Soundbridge device.
Vincent, C; Fraysse, B; Lavieille, J-P; Truy, E; Sterkers, O; Vaneecloo, F-M
2004-10-01
The Vibrant Soundbridge is a semi-implantable middle ear hearing device used in the rehabilitation of adults with sensorineural hearing loss. In order to evaluate the long-term effects of the implanted part of the device, audiological data from 39 patients implanted over several implant sites across France were collected and analyzed retrospectively. The mean follow-up time was 16 months; 25 patients had a follow-up period of over 1 year. Surgery was uneventful in all cases. The present study of the 39 implanted patients with a mid- to long-term follow-up found a statistically significant modification of hearing thresholds (pre- versus postoperative) for frequencies of 0.5 and 4 kHz. However, the shift of threshold was rather limited (2.79 and 3.34 dB, respectively), and this variation was not statistically different from the evolution of the opposite non-operated ear.
Yamaguchi, Taro; Yoneyama, Masanori; Onaka, Yusuke; Imaizumi, Atsushi; Ogita, Kiyokazu
2017-08-01
We sought to determine the preventive effects of curcumin and its highly bioavailable preparation on noise-induced hearing loss in a novel murine model of permanent hearing loss developed by repeated exposure to noise. Upon exposure to noise (8-kHz octave band noise, 90 dB sound pressure level, 1 h), hearing ability was impaired in a temporary and reversible manner. During repeated noise exposure (1-h exposure per day, 5 days), there was a progressive increase in the auditory threshold shift at 12 and 20 kHz. The threshold shift persisted for at least 6 days after noise exposure. Oral administration of curcumin for 3 days before and each day during noise exposure significantly alleviated the hearing loss induced by repeated noise exposure. Curcumin abolished intranuclear translocation of nuclear factor-κB-p65 and generation of 4-hydroxynonenal-adducted proteins found in the cochlea after noise exposure. Theracurmin ® , a highly absorbable and bioavailable preparation of curcumin, had strong preventive effects on hearing loss induced by repeated noise exposure. Together, these data suggest that curcumin exerts a preventive effect on noise-induced hearing loss and is therefore a good therapeutic candidate for preventing sensorineural hearing loss. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Temporary threshold shift after impulse-noise during video game play: laboratory data.
Spankovich, C; Griffiths, S K; Lobariñas, E; Morgenstein, K E; de la Calle, S; Ledon, V; Guercio, D; Le Prell, C G
2014-03-01
Prevention of temporary threshold shift (TTS) after laboratory-based exposure to pure-tones, broadband noise, and narrowband noise signals has been achieved, but prevention of TTS under these experimental conditions may not accurately reflect protection against hearing loss following impulse noise. This study used a controlled laboratory-based TTS paradigm that incorporated impulsive stimuli into the exposure protocol; development of this model could provide a novel platform for assessing proposed therapeutics. Participants played a video game that delivered gunfire-like sound through headphones as part of a target practice game. Effects were measured using audiometric threshold evaluations and distortion product otoacoustic emissions (DPOAEs). The sound level and number of impulses presented were sequentially increased throughout the study. Participants were normal-hearing students at the University of Florida who provided written informed consent prior to participation. TTS was not reliably induced by any of the exposure conditions assessed here. However, there was significant individual variability, and a subset of subjects showed TTS under some exposure conditions. A subset of participants demonstrated reliable threshold shifts under some conditions. Additional experiments are needed to better understand and optimize stimulus parameters that influence TTS after simulated impulse noise.
Temporary threshold shift after impulse-noise during video game play: Laboratory data
Spankovich, C.; Griffiths, S. K.; Lobariñas, E.; Morgenstein, K.E.; de la Calle, S.; Ledon, V.; Guercio, D.; Le Prell, C.G.
2015-01-01
Objective Prevention of temporary threshold shift (TTS) after laboratory-based exposure to pure-tones, broadband noise, and narrow band noise signals has been achieved, but prevention of TTS under these experimental conditions may not accurately reflect protection against hearing loss following impulse noise. This study used a controlled laboratory-based TTS paradigm that incorporated impulsive stimuli into the exposure protocol; development of this model could provide a novel platform for assessing proposed therapeutics. Design Participants played a video game that delivered gunfire-like sound through headphones as part of a target practice game. Effects were measured using audiometric threshold evaluations and distortion product otoacoustic emissions (DPOAEs). The sound level and number of impulses presented were sequentially increased throughout the study. Study sample Participants were normal-hearing students at the University of Florida who provided written informed consent prior to participation. Results TTS was not reliably induced by any of the exposure conditions assessed here. However, there was significant individual variability, and a subset of subjects showed TTS under some exposure conditions. Conclusions A subset of participants demonstrated reliable threshold shifts under some conditions. Additional experiments are needed to better understand and optimize stimulus parameters that influence TTS after simulated impulse noise. PMID:24564694
Research project shows importance of pre-employment hearing testing.
Karlovich, R S
1992-02-01
Forty employees received pure-tone baseline hearing tests at the time they began employment as LSM operators for the U.S. Postal Services; the workplace eight-hour average sound level (TWA) was 85 dBA. Nineteen operators from the original group had their hearing retested three years later. None of the retested subjects showed large or systematic changes in hearing sensitivity over the three-year period. For the audiometric frequencies most susceptible to noise exposure (3000, 4000, 6000 Hz), only 5 percent of the operators showed a bilateral change in threshold greater than 5 dB at any frequency, and none of them showed more than a 10 dB threshold change in both ears. None of the operators displayed a Standard Threshold Shift as described by OSHA. The data further suggested that many workers began their LSM work assignment with a pre-existing hearing loss and, based upon audiometric and history information, the impairment probably resulted from prior occupational and/or nonoccupational noise exposure. The importance of hearing-conservation programs for employees is emphasized.
Lobarinas, Edward; Spankovich, Christopher; Le Prell, Colleen G
2017-06-01
In animals, noise exposures that produce robust temporary threshold shifts (TTS) can produce immediate damage to afferent synapses and long-term degeneration of low spontaneous rate auditory nerve fibers. This synaptopathic damage has been shown to correlate with reduced auditory brainstem response (ABR) wave-I amplitudes at suprathreshold levels. The perceptual consequences of this "synaptopathy" remain unknown but have been suggested to include compromised hearing performance in competing background noise. Here, we used a modified startle inhibition paradigm to evaluate whether noise exposures that produce robust TTS and ABR wave-I reduction but not permanent threshold shift (PTS) reduced hearing-in-noise performance. Animals exposed to 109 dB SPL octave band noise showed TTS >30 dB 24-h post noise and modest but persistent ABR wave-I reduction 2 weeks post noise despite full recovery of ABR thresholds. Hearing-in-noise performance was negatively affected by the noise exposure. However, the effect was observed only at the poorest signal to noise ratio and was frequency specific. Although TTS >30 dB 24-h post noise was a predictor of functional deficits, there was no relationship between the degree of ABR wave-I reduction and degree of functional impairment. Copyright © 2016 Elsevier B.V. All rights reserved.
Heeringa, A N; van Dijk, P
2014-06-01
Excessive noise exposure is known to produce an auditory threshold shift, which can be permanent or transient in nature. Recent studies showed that noise-induced temporary threshold shifts are associated with loss of synaptic connections to the inner hair cells and with cochlear nerve degeneration, which is reflected in a decreased amplitude of wave I of the auditory brainstem response (ABR). This suggests that, despite normal auditory thresholds, central auditory processing may be abnormal. We recorded changes in central auditory processing following a sound-induced temporary threshold shift. Anesthetized guinea pigs were exposed for 1 h to a pure tone of 11 kHz (124 dB sound pressure level). Hearing thresholds, amplitudes of ABR waves I and IV, and spontaneous and tone-evoked firing rates in the inferior colliculus (IC) were assessed immediately, one week, two weeks, and four weeks post exposure. Hearing thresholds were elevated immediately following overexposure, but recovered within one week. The amplitude of the ABR wave I was decreased in all sound-exposed animals for all test periods. In contrast, the ABR wave IV amplitude was only decreased immediately after overexposure and recovered within a week. The proportion of IC units that show inhibitory responses to pure tones decreased substantially up to two weeks after overexposure, especially when stimulated with high frequencies. The proportion of excitatory responses to low frequencies was increased. Spontaneous activity was unaffected by the overexposure. Despite rapid normalization of auditory thresholds, our results suggest an increased central gain following sound exposure and an abnormal balance between excitatory and inhibitory responses in the midbrain up to two weeks after overexposure. These findings may be associated with hyperacusis after a sound-induced temporary threshold shift. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Kuronen, Pentti; Sorri, Martti J; Pääkkönen, Rauno; Muhli, Arto
2003-01-01
Noise of such a high level that it can result in hearing deterioration is an inherent characteristic of military flying. Susceptibility to hearing impairment was studied using 51 Finnish Air Force military personnel as subjects. The test persons flew missions on a British Aerospace Hawk 51 advanced jet trainer, Boeing F-18 Hornet, Mikoyan & Gurevich MiG-21bis and Saab 35 Draken interceptors, and a Valmet Redigo turboprop liaison aircraft. The duration of noise exposure was one flight mission, which varied from 30 to 60 min. Noise doses and levels were measured using a miniature microphone at the inlet of the ear canal, while a second microphone was located at the level of the subject's shoulder. Hearing thresholds were measured before each flight using conventional (0.125-8 kHz) and extended high-frequency (EHF) (8.20 kHz) audiometry. The measurements were repeated as soon as possible after the flight. The study showed that the pre-flight threshold levels of the subjects were good. Both conventional and EHF audiometry revealed statistically significant temporary threshold shifts (TTS) at several frequencies and with all aircraft types involved. The changes were, however, minor. The risk of noise-induced hearing impairment at the studied exposure levels is, in all probability, rather small. The role of extended high-frequency audiometry would be in research, and it might be performed for flying personnel upon entering service and every fifth year thereafter.
Active Duty- U.S. Army Noise-Induced Hearing Injury Quarterly Surveillance: Q1 2010 Thru Q2 2012
2014-06-10
threshold shift, tinnitus , and Noise-Induced Hearing Loss. RECOMMENDATIONS: Commanders and Preventive Medicine assets at multiple levels should use...Humes LE, Jollenbeck LM, Durch JS: Noise and military service: Implications for hearing loss and tinnitus . Washington, DC: National Academy Press...NONSPECIFIC ABNORMAL AUDITORY FUNCTION STUDIES TINN Tinnitus 38830 TINNITUS UNSPECIFIED TINN Tinnitus 38831 SUBJECTIVE TINNITUS TINN Tinnitus 38832 OBJECTIVE
Temporary Hearing Loss and Rock Music.
ERIC Educational Resources Information Center
Danenberg, Mary A.; And Others
1987-01-01
Pre- and post-exposure testing of normal-hearing secondary school students (N=20) and adult chaperones (N=7) exposed to live rock music indicated that almost all subjects experienced at least a five-decibel threshold shift, with most also reporting tinnitus. Of six subjects retested three days later, four demonstrated partial recovery. (Author/CB)
Noise induced hearing loss risk assessment in truck drivers.
Karimi, Ali; Nasiri, Saleh; Kazerooni, Farshid Khodaparast; Oliaei, Mohammad
2010-01-01
Hearing sense is one of the key elements which may have impact on the driver's task quality. This cross-sectional study investigates the hearing status of 500 truck drivers by pure tone audiometry (AC) in one of the cities in Fars province, Iran. Hearing threshold levels of the subjects were measured in frequencies of 500Hz-8000Hz. Screening and determination of permanent threshold shift (PTS) was the first aim of this study. Hence tests were done at least 16 hours after any exposure to noticeable sound. The effect of age as a confounding factor was considered using ISO equation and subtracted from whole hearing threshold. The threshold of 25 dB HL and above was considered abnormal but the calculation of hearing was also carried out using 0 dB HL as reference. Subjects were categorized into two groups on the basis of working experience and the hearing threshold of 25 dB was considered a boundary of normal hearing sense. The results of Pearson Chi-Square test showed that working experience as an independent variable has significant contributing effect on hearing thresholds of truck drivers in frequencies of 500, 1000, 2000 and 4000 Hz (p greater than 0.05). Also, it was shown that currently nine and 12.6 % of truck drivers suffer from impaired hearing sense in left and right respectively (hearing threshold level greater than 25 dB) in mid frequencies (500, 1000, 2000 Hz) and 45% in high frequencies of both ears (4000 and 8000 Hz). The results indicated that hearing damage of professional drivers was expected to occur sooner at 4000 and 8000 Hz than lower frequencies. Finally it was deduced that the occupational conditions of truck drivers may have bilateral, symmetrical harmful effect on hearing threshold sense in all frequencies mainly in frequency of 4000 Hz, so health surveillance programs such as education and periodic medical examinations are emphasized for pre-diagnosing and prevention of any possible impairment and an urgent need to take up some interventions such as better maintenance of roads, automobile industry efforts to reduce the noise level emission of vehicles and reducing number of working hours per day of drivers are highlighted to improve the harmful working conditions of truck drivers.
Henry, Kenneth S.; Kale, Sushrut; Scheidt, Ryan E.; Heinz, Michael G.
2011-01-01
Non-invasive auditory brainstem responses (ABRs) are commonly used to assess cochlear pathology in both clinical and research environments. In the current study, we evaluated the relationship between ABR characteristics and more direct measures of cochlear function. We recorded ABRs and auditory nerve (AN) single-unit responses in seven chinchillas with noise induced hearing loss. ABRs were recorded for 1–8 kHz tone burst stimuli both before and several weeks after four hours of exposure to a 115 dB SPL, 50 Hz band of noise with a center frequency of 2 kHz. Shifts in ABR characteristics (threshold, wave I amplitude, and wave I latency) following hearing loss were compared to AN-fiber tuning curve properties (threshold and frequency selectivity) in the same animals. As expected, noise exposure generally resulted in an increase in ABR threshold and decrease in wave I amplitude at equal SPL. Wave I amplitude at equal sensation level (SL), however, was similar before and after noise exposure. In addition, noise exposure resulted in decreases in ABR wave I latency at equal SL and, to a lesser extent, at equal SPL. The shifts in ABR characteristics were significantly related to AN-fiber tuning curve properties in the same animal at the same frequency. Larger shifts in ABR thresholds and ABR wave I amplitude at equal SPL were associated with greater AN threshold elevation. Larger reductions in ABR wave I latency at equal SL, on the other hand, were associated with greater loss of AN frequency selectivity. This result is consistent with linear systems theory, which predicts shorter time delays for broader peripheral frequency tuning. Taken together with other studies, our results affirm that ABR thresholds and wave I amplitude provide useful estimates of cochlear sensitivity. Furthermore, comparisons of ABR wave I latency to normative data at the same SL may prove useful for detecting and characterizing loss of cochlear frequency selectivity. PMID:21699970
Chistov, S D; Soldatov, S K; Zinkin, V N; Poliakov, N M
2013-01-01
The objective of the present study was to evaluate the hearing function in the airport technical personnel and estimate the effectiveness of multicomponent anti-noise hearing protectors used by the specialists engaged in the aircraft maintenance. The tonal threshold audiometry was carried out before and after a shiftwork. The extra-aural effect of noise was assessed from the characteristics of cardiac rhythm variability. The study included two groups of subjects: in one of them (n=8) they used ordinary flight headsets (control) in the other the protection was ensured with the help of multi-insert hearing protectors (n=16). The initial hearing thresholds were found to be increased up to 70 and 60 dB at the frequencies of 4 and 8 kHz respectively. The regression analysis revealed the relationship between these parameters and the duration of aerodrome work experience. Temporary threshold shifts were observed only in the control group. An increase in the tone of the sympathetic nervous system was observed in the control subjects but was absent in the study group. It is concluded that the multi-component hearing protectors employed in the present study are highly efficacious anti-noise devices. The mechanisms of noise-induced hearing loss are discussed.
Hearing loss and tinnitus in rock musicians: A Norwegian survey.
Størmer, Carl Christian Lein; Laukli, Einar; Høydal, Erik Harry; Stenklev, Niels Christian
2015-01-01
Our focus in this study was to assess hearing thresholds and the prevalence and characteristics of tinnitus in a large group of rock musicians based in Norway. A further objective was to assess related factors such as exposure, instrument category, and the preventive effect of hearing protection. The study was a cross-sectional survey of rock musicians selected at random from a defined cohort of musicians. A random control group was included for comparison. We recruited 111 active musicians from the Oslo region, and a control group of 40 nonmusicians from the student population at the University of TromsØ. The subjects were investigated using clinical examination, pure tone audiometry, tympanometry, and a questionnaire. We observed a hearing loss in 37.8% of the rock musicians. Significantly poorer hearing thresholds were seen at most pure-tone frequencies in musicians than controls, with the most pronounced threshold shift at 6 kHz. The use of hearing protection, in particular custom-fitted earplugs, has a preventive effect but a minority of rock musicians apply them consistently. The degree of musical performance exposure was inversely related to the degree of hearing loss in our sample. Bass and guitar players had higher hearing thresholds than vocalists. We observed a 20% prevalence of chronic tinnitus but none of the affected musicians had severe tinnitus symptomatology. There was no statistical association between permanent tinnitus and hearing loss in our sample. We observed an increased prevalence of hearing loss and tinnitus in our sample of Norwegian rock musicians but the causal relationship between musical exposure and hearing loss or tinnitus is ambiguous. We recommend the use of hearing protection in rock musicians.
Hearing loss and tinnitus in rock musicians: A Norwegian survey
Størmer, Carl Christian Lein; Laukli, Einar; Høydal, Erik Harry; Stenklev, Niels Christian
2015-01-01
Our focus in this study was to assess hearing thresholds and the prevalence and characteristics of tinnitus in a large group of rock musicians based in Norway. A further objective was to assess related factors such as exposure, instrument category, and the preventive effect of hearing protection. The study was a cross-sectional survey of rock musicians selected at random from a defined cohort of musicians. A random control group was included for comparison. We recruited 111 active musicians from the Oslo region, and a control group of 40 nonmusicians from the student population at the University of Tromsø. The subjects were investigated using clinical examination, pure tone audiometry, tympanometry, and a questionnaire. We observed a hearing loss in 37.8% of the rock musicians. Significantly poorer hearing thresholds were seen at most pure-tone frequencies in musicians than controls, with the most pronounced threshold shift at 6 kHz. The use of hearing protection, in particular custom-fitted earplugs, has a preventive effect but a minority of rock musicians apply them consistently. The degree of musical performance exposure was inversely related to the degree of hearing loss in our sample. Bass and guitar players had higher hearing thresholds than vocalists. We observed a 20% prevalence of chronic tinnitus but none of the affected musicians had severe tinnitus symptomatology. There was no statistical association between permanent tinnitus and hearing loss in our sample. We observed an increased prevalence of hearing loss and tinnitus in our sample of Norwegian rock musicians but the causal relationship between musical exposure and hearing loss or tinnitus is ambiguous. We recommend the use of hearing protection in rock musicians. PMID:26572701
Vasconcelos, Karla Anacleto de; Frota, Silvana Maria Monte Coelho; Ruffino-Netto, Antonio; Kritski, Afrânio Lineu
2018-04-01
To investigate early detection of amikacin-induced ototoxicity in a population treated for multidrug-resistant tuberculosis (MDR-TB), by means of three different tests: pure-tone audiometry (PTA); high-frequency audiometry (HFA); and distortion-product otoacoustic emission (DPOAE) testing. This was a longitudinal prospective cohort study involving patients aged 18-69 years with a diagnosis of MDR-TB who had to receive amikacin for six months as part of their antituberculosis drug regimen for the first time. Hearing was assessed before treatment initiation and at two and six months after treatment initiation. Sequential statistics were used to analyze the results. We included 61 patients, but the final population consisted of 10 patients (7 men and 3 women) because of sequential analysis. Comparison of the test results obtained at two and six months after treatment initiation with those obtained at baseline revealed that HFA at two months and PTA at six months detected hearing threshold shifts consistent with ototoxicity. However, DPOAE testing did not detect such shifts. The statistical method used in this study makes it possible to conclude that, over the six-month period, amikacin-associated hearing threshold shifts were detected by HFA and PTA, and that DPOAE testing was not efficient in detecting such shifts.
Temporary and Permanent Noise-induced Threshold Shifts: A Review of Basic and Clinical Observations.
Ryan, Allen F; Kujawa, Sharon G; Hammill, Tanisha; Le Prell, Colleen; Kil, Jonathan
2016-09-01
To review basic and clinical findings relevant to defining temporary (TTS) and permanent (PTS) threshold shifts and their sequelae. Relevant scientific literature and government definitions were broadly reviewed. The definitions and characteristics of TTS and PTS were assessed and recent advances that expand our knowledge of the extent, nature, and consequences of noise-induced hearing loss were reviewed. Exposure to intense sound can produce TTS, acute changes in hearing sensitivity that recover over time, or PTS, a loss that does not recover to preexposure levels. In general, a threshold shift ≥10 dB at 2, 3, and 4 kHz is required for reporting purposes in human studies. The high-frequency regions of the cochlea are most sensitive to noise damage. Resonance of the ear canal also results in a frequency region of high-noise sensitivity at 4 to 6 kHz. A primary noise target is the cochlear hair cell. Although the mechanisms that underlie such hair cell damage remain unclear, there is evidence to support a role for reactive oxygen species, stress pathway signaling, and apoptosis. Another target is the synapse between the hair cell and the primary afferent neurons. Large numbers of these synapses and their neurons can be lost after noise, even though hearing thresholds may return to normal. This affects auditory processing and detection of signals in noise. The consequences of TTS and PTS include significant deficits in communication that can impact performance of military duties or obtaining/retaining civilian employment. Tinnitus and exacerbation of posttraumatic stress disorder are also potential sequelae.
Towards a Better Understanding of Temporary Threshold Shift of Hearing.
1980-03-01
recovery from TTS is influenced by drugs, medications, time of day, hypnosis , good thoughts or extra-sensory perception." I am only concerned in this...that is how our instrumentation works", to which may be added: "Because that is how we hear the loudness of noise." But are these sufficient reasons
Follow-up of hearing thresholds among forge hammering workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamal, A.A.; Mikael, R.A.; Faris, R.
Hearing threshold was reexamined in a group of forge hammering workers investigated 8 years ago with consideration of the age effect and of auditory symptoms. Workers were exposed to impact noise that ranged from 112 to 139 dB(A)--at an irregular rate of 20 to 50 drop/minute--and a continuous background noise that ranged from 90 to 94 dB(A). Similar to what was observed 8 years ago, the present permanent threshold shift (PTS) showed a maximum notch at the frequency of 6 kHz and considerable elevations at the frequencies of 0.25-1 kHz. The age-corrected PTS and the postexposure hearing threshold were significantlymore » higher than the corresponding previous values at the frequencies 0.25, 0.5, 1, and 8 kHz only. The rise was more evident at the low than at the high frequencies. Temporary threshold shift (TTS) values were significantly less than those 8 years ago. Contrary to the previous TTS, the present TTS were higher at low than at high frequencies. Although progression of PTS at the frequencies 0.25 and 0.5 kHz was continuous throughout the observed durations of exposure, progression at higher frequencies occurred essentially in the first 10 to 15 years of exposure. Thereafter, it followed a much slower rate. Tinnitus was significantly associated with difficulty in hearing the human voice and with elevation of PTS at all the tested frequencies, while acoustic after-image was significantly associated with increment of PTS at the frequencies 0.25-2 kHz. No relation between PTS and smoking was found. PTS at low frequencies may provide an indication of progression of hearing damage when the sensitivity at 6 and 4 kHz diminishes after prolonged years of exposure. Tinnitus and acoustic after-image are related to the auditory effect of forge hammering noise.« less
Occupational Noise Exposure and Risk for Noise-Induced Hearing Loss Due to Temporal Bone Drilling.
Vaisbuch, Yona; Alyono, Jennifer C; Kandathil, Cherian; Wu, Stanley H; Fitzgerald, Matthew B; Jackler, Robert K
2018-07-01
Noise-induced hearing loss is one of the most common occupational hazards in the United States. Several studies have described noise-induced hearing loss in patients following mastoidectomy. Although otolaryngologists care for patients with noise-induced hearing loss, few studies in the English literature have examined surgeons' occupational risk. Noise dosimeters and sound level meters with octave band analyzers were used to assess noise exposure during drilling of temporal bones intraoperatively and in a lab setting. Frequency specific sound intensities were recorded. Sound produced using burrs of varying size and type were compared. Differences while drilling varying anatomic structures were assessed using drills from two manufacturers. Pure tone audiometry was performed on 7 to 10 otolaryngology residents before and after a temporal bone practicum to assess for threshold shifts. Noise exposure during otologic drilling can exceed over 100 dB for short periods of time, and is especially loud using large diameter burrs > 4 mm, with cutting as compared with diamond burrs, and while drilling denser bone such as the cortex. Intensity peaks were found at 2.5, 5, and 6.3 kHz. Drilling on the tegmen and sigmoid sinus revealed peaks at 10 and 12.5 kHz. No temporary threshold shifts were found at 3 to 6 kHz, but were found at 8 to 16 kHz, though this did not reach statistical significance. This article examines noise exposure and threshold shifts during temporal bone drilling. We were unable to find previous descriptions in the literature of measurements done while multiple people drilling simultaneously, during tranlabyrinthine surgery and a specific frequency characterization of the change in peach that appears while drilling on the tegmen. Hearing protection should be considered, which would still allow the surgeon to appreciate pitch changes associated with drilling on sensitive structures and communication with surgical team members. As professionals who specialize in promoting the restoration and preservation of hearing for others, otologic surgeons should not neglect hearing protection for themselves.
Reiss, Lina A.J.; Stark, Gemaine; Nguyen-Huynh, Anh T.; Spear, Kayce A.; Zhang, Hongzheng; Tanaka, Chiemi; Li, Hongzhe
2016-01-01
Hybrid or electro-acoustic stimulation (EAS) cochlear implants (CIs) are designed to provide high-frequency electric hearing together with residual low-frequency acoustic hearing. However, 30-50% of EAS CI recipients lose residual hearing after implantation. The objective of this study was to determine the mechanisms of EAS-induced hearing loss in an animal model with high-frequency hearing loss. Guinea pigs were exposed to 24 hours of noise (12-24 kHz at 116 dB) to induce a high-frequency hearing loss. After recovery, two groups of animals were implanted (n=6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no stimulation during this time frame. A third group (n=6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem responses were recorded biweekly to monitor changes in hearing. The organ of Corti was immunolabeled with phalloidin, anti-CtBP2, and anti-GluR2 to quantify hair cells, ribbons and post-synaptic receptors. The lateral wall was immunolabeled with phalloidin and lectin to quantify stria vascularis capillary diameters. Bimodal or trimodal diameter distributions were observed; the number and location of peaks were objectively determined using the Aikake Information Criterion and Expectation Maximization algorithm. Noise exposure led to immediate hearing loss at 16-32 kHz for all groups. Cochlear implantation led to additional hearing loss at 4-8 kHz; this hearing loss was negatively and positively correlated with minimum and maximum peaks of the bimodal or trimodal distributions of stria vascularis capillary diameters, respectively. After chronic stimulation, no significant group changes in thresholds were seen; however, elevated thresholds at 1 kHz in implanted, stimulated animals were significantly correlated with decreased presynaptic ribbon and postsynaptic receptor counts. Inner and outer hair cell counts did not differ between groups and were not correlated with threshold shifts at any frequency. As in the previous study in a normal-hearing model, stria vascularis capillary changes were associated with immediate hearing loss after implantation, while little to no hair cell loss was observed even in cochlear regions with threshold shifts as large as 40-50 dB. These findings again support a role of lateral wall blood flow changes, rather than hair cell loss, in hearing loss after surgical trauma, and implicate the endocochlear potential as a factor in implantation-induced hearing loss. Further, the analysis of the hair cell ribbons and post-synaptic receptors suggest that delayed hearing loss may be linked to synapse or peripheral nerve loss due to stimulation excitotoxicity or inflammation. Further research is needed to separate these potential mechanisms of delayed hearing loss. PMID:26087114
De Paolis, Annalisa; Bikson, Marom; Nelson, Jeremy T; de Ru, J Alexander; Packer, Mark; Cardoso, Luis
2017-06-01
Hearing is an extremely complex phenomenon, involving a large number of interrelated variables that are difficult to measure in vivo. In order to investigate such process under simplified and well-controlled conditions, models of sound transmission have been developed through many decades of research. The value of modeling the hearing system is not only to explain the normal function of the hearing system and account for experimental and clinical observations, but to simulate a variety of pathological conditions that lead to hearing damage and hearing loss, as well as for development of auditory implants, effective ear protections and auditory hazard countermeasures. In this paper, we provide a review of the strategies used to model the auditory function of the external, middle, inner ear, and the micromechanics of the organ of Corti, along with some of the key results obtained from such modeling efforts. Recent analytical and numerical approaches have incorporated the nonlinear behavior of some parameters and structures into their models. Few models of the integrated hearing system exist; in particular, we describe the evolution of the Auditory Hazard Assessment Algorithm for Human (AHAAH) model, used for prediction of hearing damage due to high intensity sound pressure. Unlike the AHAAH model, 3D finite element models of the entire hearing system are not able yet to predict auditory risk and threshold shifts. It is expected that both AHAAH and FE models will evolve towards a more accurate assessment of threshold shifts and hearing loss under a variety of stimuli conditions and pathologies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Popov, Vladimir V; Sysueva, Evgeniya V; Nechaev, Dmitry I; Rozhnov, Viatcheslav V; Supin, Alexander Ya
2017-03-15
The negative impact of man-made noise on the hearing of odontocetes has attracted considerable recent attention. In the majority of studies, permanent or temporary reductions in sensitivity, known as permanent or temporary threshold shift (PTS or TTS, respectively), have been investigated. In the present study, the effects of a fatiguing sound on the hearing of a beluga whale, Delphinapterus leucas , within a wide range of levels of test signals was investigated. The fatiguing noise was half-octave band-limited noise centered at 32 kHz. Post-exposure effects of this noise on the evoked responses to test stimuli (rhythmic pip trains with a 45-kHz center frequency) at various levels (from threshold to 60 dB above threshold) were measured. For baseline (pre-exposure) responses, the magnitude-versus-level function featured a segment of steep magnitude dependence on level (up to 30 dB above threshold) that was followed by a plateau segment that featured little dependence on level (30 to 55 dB above threshold). Post-exposure, the function shifted upward along the level scale. The shift was 23 dB at the threshold and up to 33 dB at the supra-threshold level. Owing to the plateau in the magnitude-versus-level function, post-exposure suppression of responses depended on the stimulus level such that higher levels corresponded to less suppression. The experimental data may be modeled based on the compressive non-linearity of the cochlea. According to the model, post-exposure responses of the cochlea to high-level stimuli are minimally suppressed compared with the pre-exposure responses, despite a substantially increased threshold. © 2017. Published by The Company of Biologists Ltd.
Neuronal erythropoietin overexpression is protective against kanamycin-induced hearing loss in mice.
Bächinger, David; Horvath, Lukas; Eckhard, Andreas; Goosmann, Madeline M; Honegger, Tim; Gassmann, Max; Vogel, Johannes; Naldi, Arianne Monge
2018-07-01
Aminoglycosides have detrimental effects on the hair cells of the inner ear, yet these agents indisputably are one of the cornerstones in antibiotic therapy. Hence, there is a demand for strategies to prevent aminoglycoside-induced ototoxicity, which are not available today. In vitro data suggests that the pleiotropic growth factor erythropoietin (EPO) is neuroprotective against aminoglycoside-induced hair cell loss. Here, we use a mouse model with EPO-overexpression in neuronal tissue to evaluate whether EPO could also in vivo protect from aminoglycoside-induced hearing loss. Auditory brainstem response (ABR) thresholds were measured in 12-weeks-old mice before and after treatment with kanamycin for 15 days, which resulted in both C57BL/6 and EPO-transgenic animals in a high-frequency hearing loss. However, ABR threshold shifts in EPO-transgenic mice were significantly lower than in C57BL/6 mice (mean difference in ABR threshold shift 13.6 dB at 32 kHz, 95% CI 3.8-23.4 dB, p = 0.003). Correspondingly, quantification of hair cells and spiral ganglion neurons by immunofluorescence revealed that EPO-transgenic mice had a significantly lower hair cell and spiral ganglion neuron loss than C57BL/6 mice. In conclusion, neuronal overexpression of EPO is protective against aminoglycoside-induce hearing loss, which is in accordance with its known neuroprotective effects in other organs, such as the eye or the brain. Copyright © 2018 Elsevier B.V. All rights reserved.
Kopke, Richard; Slade, Martin D; Jackson, Ronald; Hammill, Tanisha; Fausti, Stephen; Lonsbury-Martin, Brenda; Sanderson, Alicia; Dreisbach, Laura; Rabinowitz, Peter; Torre, Peter; Balough, Ben
2015-05-01
Despite a robust hearing conservation program, military personnel continue to be at high risk for noise induced hearing loss (NIHL). For more than a decade, a number of laboratories have investigated the use of antioxidants as a safe and effective adjunct to hearing conservation programs. Of the antioxidants that have been investigated, N-acetylcysteine (NAC) has consistently reduced permanent NIHL in the laboratory, but its clinical efficacy is still controversial. This study provides a prospective, randomized, double-blinded, placebo-controlled clinical trial investigating the safety profile and the efficacy of NAC to prevent hearing loss in a military population after weapons training. Of the 566 total study subjects, 277 received NAC while 289 were given placebo. The null hypothesis for the rate of STS was not rejected based on the measured results. While no significant differences were found for the primary outcome, rate of threshold shifts, the right ear threshold shift rate difference did approach significance (p = 0.0562). No significant difference was found in the second primary outcome, percentage of subjects experiencing an adverse event between placebo and NAC groups (26.7% and 27.4%, respectively, p = 0.4465). Results for the secondary outcome, STS rate in the trigger hand ear, did show a significant difference (34.98% for placebo-treated, 27.14% for NAC-treated, p-value = 0.0288). Additionally, post-hoc analysis showed significant differences in threshold shift rates when handedness was taken into account. While the secondary outcomes and post-hoc analysis suggest that NAC treatment is superior to the placebo, the present study design failed to confirm this. The lack of significant differences in overall hearing loss between the treatment and placebo groups may be due to a number of factors, including suboptimal dosing, premature post-exposure audiograms, or differences in risk between ears or subjects. Based on secondary outcomes and post hoc analyses however, further studies seem warranted and are needed to clarify dose response and the factors that may have played a role in the observed results. Copyright © 2015 Elsevier B.V. All rights reserved.
Howell, R. W.
1978-01-01
ABSTRACT Audiometric records of 449 male manual steelworkers were reviewed to see whether the hearing of men with high initial threshold levels deteriorated more rapidly than that of those men with more normal thresholds when exposed to similar noise levels. Subjects were between 15 and 54 years old at the time of initial examination, and had a repeat audiogram 6-8 years later. They were classified into three occupational noise exposure groups: below 90 dB(A), 90-99 dB(A), and 100 dB(A) or over, without knowledge of their audiometric threshold levels, age, or aural history. Measurements at 0·5, 1, 2, 3, 4 and 6 kHz for the right ear were considered, first as the mean for all six frequencies, then for 0·5, 1 and 2 kHz only, and finally for 6 kHz only. After standardisation for age, it was found that those in the high initial threshold groups deteriorated no faster than the remainder of the series. At the 90-99 dB(A) noise exposure level, χ2 tests showed that the differences between the groups, in terms of mean measured hearing loss, were not significant at the 0·05 probability level. The age-standardised mean threshold shifts for the 0·5-6 kHz range of frequencies over the seven-year review period were 7·5, 8·7 and 7·1 dB at a noise exposure level of 100 dB(A) or more, for workers with an initial threshold level of <12 dB, 12-26 dB and > 26 dB respectively; for those exposed to noise of 90-99 dB(A) the corresponding mean shifts were 7·8, 6·8 and 7·3 dB respectively; while for those exposed to noise of less than 90 dB(A) the mean shifts were 6·2, 5·0 and 5·2 dB respectively. PMID:629886
Differential pathologies resulting from sound exposure: Tinnitus vs hearing loss
NASA Astrophysics Data System (ADS)
Longenecker, Ryan James
The first step in identifying the mechanism(s) responsible for tinnitus development would be to discover a neural correlate that is differentially expressed in tinnitus-positive compared to tinnitus negative animals. Previous research has identified several neural correlates of tinnitus in animals that have tested positive for tinnitus. However it is unknown whether all or some of these correlates are linked to tinnitus or if they are a byproduct of hearing loss, a common outcome of tinnitus induction. Abnormally high spontaneous activity has frequently been linked to tinnitus. However, while some studies demonstrate that hyperactivity positively correlates with behavioral evidence of tinnitus, others show that when all animals develop hyperactivity to sound exposure, not all exposed animals show evidence of tinnitus. My working hypothesis is that certain aspects of hyperactivity are linked to tinnitus while other aspects are linked to hearing loss. The first specific aim utilized the gap induced prepulse inhibition of the acoustic startle reflex (GIPAS) to monitor the development of tinnitus in CBA/CaJ mice during one year following sound exposure. Immediately after sound exposure, GIPAS testing revealed widespread gap detection deficits across all frequencies, which was likely due to temporary threshold shifts. However, three months after sound exposure these deficits were limited to a narrow frequency band and were consistently detected up to one year after exposure. This suggests the development of chronic tinnitus is a long lasting and highly dynamic process. The second specific aim assessed hearing loss in sound exposed mice using several techniques. Acoustic brainstem responses recorded initially after sound exposure reveal large magnitude deficits in all exposed mice. However, at the three month period, thresholds return to control levels in all mice suggesting that ABRs are not a reliable tool for assessing permanent hearing loss. Input/output functions of the acoustic startle reflex show that after sound exposure the magnitude of startle responses decrease in most mice, to varying degrees. Lastly, PPI audiometry was able to detect specific behavioral threshold deficits for each mouse after sound exposure. These deficits persist past initial threshold shifts and are able to detect frequency specific permanent threshold shifts. The third specific aim examined hyperactivity and increased bursting activity in the inferior colliculus after sound exposure in relation to tinnitus and hearing loss. Spontaneous firing rates were increased in all mice after sound exposure regardless of behavioral evidence of tinnitus. However, abnormal increased bursting activity was not found in the animals identified with tinnitus but was exhibited in a mouse with broad-band severe threshold deficits. CBA/CaJ mice are a good model for both tinnitus development and noise-induced hearing loss studies. Hyperactivity which was evident in all exposed animals does not seem to be well correlated with behavioral evidence of tinnitus but more likely to be a general result of acoustic over exposure. Data from one animal strongly suggest that wide-spread severe threshold deficits are linked to an elevation of bursting activity predominantly ipsilateral to the side of sound exposure. This result is intriguing and should be followed up in further studies. Data obtained in this study provide new insights into underlying neural pathologies following sound exposure and have possible clinical applications for development of effective treatments and diagnostic tools for tinnitus and hearing loss.
NASA Astrophysics Data System (ADS)
Hiramatsu, K.; Matsui, T.; Ito, A.; Miyakita, T.; Osada, Y.; Yamamoto, T.
2004-10-01
Aircraft noise measurements were recorded at the residential areas in the vicinity of Kadena Air Base, Okinawa in 1968 and 1972 at the time of the Vietnam war. The estimated equivalent continuous A-weighted sound pressure level LAeq for 24 h was 85 dB.The time history of sound level during 24 h was estimated from the measurement conducted in 1968, and the sound level was converted into the spectrum level at the centre frequency of the critical band of temporary threshold shift (TTS) using the results of spectrum analysis of aircraft noise operated at the airfield. With the information of spectrum level and its time history, TTS was calculated as a function of time and level change. The permanent threshold shift was also calculated by means of Robinson's method and ISO's method. The results indicate the noise exposure around Kadena Air Base was hazardous to hearing and is likely to have caused hearing loss to people living in its vicinity.
Reiss, Lina A J; Stark, Gemaine; Nguyen-Huynh, Anh T; Spear, Kayce A; Zhang, Hongzheng; Tanaka, Chiemi; Li, Hongzhe
2015-09-01
Hybrid or electro-acoustic stimulation (EAS) cochlear implants (CIs) are designed to provide high-frequency electric hearing together with residual low-frequency acoustic hearing. However, 30-50% of EAS CI recipients lose residual hearing after implantation. The objective of this study was to determine the mechanisms of EAS-induced hearing loss in an animal model with high-frequency hearing loss. Guinea pigs were exposed to 24 h of noise (12-24 kHz at 116 dB) to induce a high-frequency hearing loss. After recovery, two groups of animals were implanted (n = 6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no stimulation during this time frame. A third group (n = 6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem responses were recorded biweekly to monitor changes in hearing. The organ of Corti was immunolabeled with phalloidin, anti-CtBP2, and anti-GluR2 to quantify hair cells, ribbons and post-synaptic receptors. The lateral wall was immunolabeled with phalloidin and lectin to quantify stria vascularis capillary diameters. Bimodal or trimodal diameter distributions were observed; the number and location of peaks were objectively determined using the Aikake Information Criterion and Expectation Maximization algorithm. Noise exposure led to immediate hearing loss at 16-32 kHz for all groups. Cochlear implantation led to additional hearing loss at 4-8 kHz; this hearing loss was negatively and positively correlated with minimum and maximum peaks of the bimodal or trimodal distributions of stria vascularis capillary diameters, respectively. After chronic stimulation, no significant group changes in thresholds were seen; however, elevated thresholds at 1 kHz in implanted, stimulated animals were significantly correlated with decreased presynaptic ribbon and postsynaptic receptor counts. Inner and outer hair cell counts did not differ between groups and were not correlated with threshold shifts at any frequency. As in the previous study in a normal-hearing model, stria vascularis capillary changes were associated with immediate hearing loss after implantation, while little to no hair cell loss was observed even in cochlear regions with threshold shifts as large as 40-50 dB. These findings again support a role of lateral wall blood flow changes, rather than hair cell loss, in hearing loss after surgical trauma, and implicate the endocochlear potential as a factor in implantation-induced hearing loss. Further, the analysis of the hair cell ribbons and post-synaptic receptors suggest that delayed hearing loss may be linked to synapse or peripheral nerve loss due to stimulation excitotoxicity or inflammation. Further research is needed to separate these potential mechanisms of delayed hearing loss. Copyright © 2015 Elsevier B.V. All rights reserved.
Systemic immunity influences hearing preservation in cochlear implantation.
Souter, Melanie; Eastwood, Hayden; Marovic, Paul; Kel, Gordana; Wongprasartsuk, Sarin; Ryan, Allen F; O'Leary, Stephen John
2012-06-01
To determine whether a systemic immune response influences hearing thresholds and tissue response after cochlear implantation of hearing guinea pigs. Guinea pigs were inoculated with sterile antigen (Keyhole limpet hemocyanin) 3 weeks before cochlear implantation. Pure-tone auditory brainstem response thresholds were performed before implantation and 1 and 4 weeks later. Dexamethasone phosphate 20% was adsorbed onto a hyaluronic acid carboxymethylcellulose sponge and was applied to the round window for 30 minutes before electrode insertion. Normal saline was used for controls. Cochlear histology was performed at 4 weeks after implantation to assess the tissue response to implantation. To control for the effect of keyhole limpet hemocyanin priming, a group of unprimed animals underwent cochlear implantation with a saline-soaked pledget applied to the round window. Keyhole limpet hemocyanin priming had no significant detrimental effect on thresholds without implantation. Thresholds were elevated after implantation across all frequencies tested (2-32 kHz) in primed animals but only at higher frequencies (4-32 kHz) in unprimed controls. In primed animals, dexamethasone treatment significantly reduced threshold shifts at 2 and 8 kHz. Keyhole limpet hemocyanin led to the more frequent observation of lymphocytes in the tissue response to the implant. Systemic immune activation at the time of cochlear implantation broadened the range of frequencies experiencing elevated thresholds after implantation. Local dexamethasone provides partial protection against this hearing loss, but the degree and extent of protection are less compared to previous studies with unprimed animals.
Lavender, Ashley L; Bartol, Soraya M; Bartol, Ian K
2014-07-15
Sea turtles reside in different acoustic environments with each life history stage and may have different hearing capacity throughout ontogeny. For this study, two independent yet complementary techniques for hearing assessment, i.e. behavioral and electrophysiological audiometry, were employed to (1) measure hearing in post-hatchling and juvenile loggerhead sea turtles Caretta caretta (19-62 cm straight carapace length) to determine whether these migratory turtles exhibit an ontogenetic shift in underwater auditory detection and (2) evaluate whether hearing frequency range and threshold sensitivity are consistent in behavioral and electrophysiological tests. Behavioral trials first required training turtles to respond to known frequencies, a multi-stage, time-intensive process, and then recording their behavior when they were presented with sound stimuli from an underwater speaker using a two-response forced-choice paradigm. Electrophysiological experiments involved submerging restrained, fully conscious turtles just below the air-water interface and recording auditory evoked potentials (AEPs) when sound stimuli were presented using an underwater speaker. No significant differences in behavior-derived auditory thresholds or AEP-derived auditory thresholds were detected between post-hatchling and juvenile sea turtles. While hearing frequency range (50-1000/1100 Hz) and highest sensitivity (100-400 Hz) were consistent in audiograms pooled by size class for both behavior and AEP experiments, both post-hatchlings and juveniles had significantly higher AEP-derived than behavior-derived auditory thresholds, indicating that behavioral assessment is a more sensitive testing approach. The results from this study suggest that post-hatchling and juvenile loggerhead sea turtles are low-frequency specialists, exhibiting little differences in threshold sensitivity and frequency bandwidth despite residence in acoustically distinct environments throughout ontogeny. © 2014. Published by The Company of Biologists Ltd.
Finneran, James J; Dear, Randall; Carder, Donald A; Ridgway, Sam H
2003-09-01
A behavioral response paradigm was used to measure underwater hearing thresholds in two California sea lions (Zalophus californianus) before and after exposure to underwater impulses from an arc-gap transducer. Preexposure and postexposure hearing thresholds were compared to determine if the subjects experienced temporary shifts in their masked hearing thresholds (MTTS). Hearing thresholds were measured at 1 and 10 kHz. Exposures consisted of single underwater impulses produced by an arc-gap transducer referred to as a "pulsed power device" (PPD). The electrical charge of the PPD was varied from 1.32 to 2.77 kJ; the distance between the subject and the PPD was varied over the range 3.4 to 25 m. No MTTS was observed in either subject at the highest received levels: peak pressures of approximately 6.8 and 14 kPa, rms pressures of approximately 178 and 183 dB re: 1 microPa, and total energy fluxes of 161 and 163 dB re: 1 microPa2s for the two subjects. Behavioral reactions to the tests were observed in both subjects. These reactions primarily consisted of temporary avoidance of the site where exposure to the PPD impulse had previously occurred.
Arpornchayanon, Warangkana; Canis, Martin; Ihler, Friedrich; Settevendemie, Claudia; Strieth, Sebastian
2013-08-01
Exposure to loud noise can impair cochlear microcirculation and cause noise-induced hearing loss (NIHL). TNF-α signaling has been shown to be activated in NIHL and to control spiral modiolar artery vasoconstriction that regulates cochlear microcirculation. It was the aim of this experimental study to analyse the effects of the TNF-α inhibitor etanercept on cochlear microcirculation and hearing threshold shift in NIHL in vivo. After assessment of normacusis using ABR, loud noise (106 dB SPL, 30 minutes) was applied on both ears in guinea pigs. Etanercept was administered systemically after loud noise exposure while control animals received a saline solution. In vivo fluorescence microscopy of strial capillaries was performed after surgical exposure of the cochlea for microcirculatory analysis. ABR measurements were derived from the contralateral ear. Guinea pigs (n = 6, per group). Compared to controls, cochlear blood flow in strial capillary segments was significantly increased in etanercept-treated animals. Additionally, hearing threshold was preserved in animals receiving the TNF-α inhibitor in contrast to a significant threshold raising in controls. TNF-α inhibition using etanercept improves cochlear microcirculation and protects hearing levels after loud noise exposure and appears as a promising treatment strategy for human NIHL.
Zhao, Jing; Sun, Jianjun; Liu, Yang
2012-10-01
Disturbances of microcirculation and hemorheological changes in the inner ear are the results of noise-induced hearing loss (NIHL). Both the disturbances of microcirculation and hemorheological changes are the etiologies of NIHL development, but they are also the results. Although previous reports that inhalation of high concentration of CO(2) may increase cochlear blood flow (CoBF), the effects of carbogen on the cochlear microcirculation and NIHL remain unclear. Changes induced by noise, carbogen and pure oxygen within the cochlear lateral wall microvasculature and in hearing thresholds were observed in guinea pigs using intravital microscopy and the auditory brainstem response. At the same time, arterial oxygen saturation and morphologic changes of cochlear hair cells were observed. Carbogen inhalation increased vessel diameters and blood flow velocities. Hearing thresholds elevation in the carbogen group was smaller than those in the control and oxygen group (p <0.05). Carbogen inhalation produced a trend toward less threshold shift after noise exposure, which reached statistical significance after day 3 (p <0.01). Respiratory acidosis was not found in our study. The segmented basal membranes of Corti in three groups indicated that no losses or discorders of hair cells were found. Carbogen inhalation can preserve hearing in animal models after acute acoustic trauma. Copyright © 2012 IMSS. All rights reserved.
Simmons, Andrea Megela; Hom, Kelsey N; Simmons, James A
2017-03-01
Thresholds to short-duration narrowband frequency-modulated (FM) sweeps were measured in six big brown bats (Eptesicus fuscus) in a two-alternative forced choice passive listening task before and after exposure to band-limited noise (lower and upper frequencies between 10 and 50 kHz, 1 h, 116-119 dB sound pressure level root mean square; sound exposure level 152 dB). At recovery time points of 2 and 5 min post-exposure, thresholds varied from -4 to +4 dB from pre-exposure threshold estimates. Thresholds after sham (control) exposures varied from -6 to +2 dB from pre-exposure estimates. The small differences in thresholds after noise and sham exposures support the hypothesis that big brown bats do not experience significant temporary threshold shifts under these experimental conditions. These results confirm earlier findings showing stability of thresholds to broadband FM sweeps at longer recovery times after exposure to broadband noise. Big brown bats may have evolved a lessened susceptibility to noise-induced hearing losses, related to the special demands of echolocation.
Digital music exposure reliably induces temporary threshold shift in normal-hearing human subjects.
Le Prell, Colleen G; Dell, Shawna; Hensley, Brittany; Hall, James W; Campbell, Kathleen C M; Antonelli, Patrick J; Green, Glenn E; Miller, James M; Guire, Kenneth
2012-01-01
One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is the availability of an established clinical paradigm with real-world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal-hearing human subjects. Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93 to 95 (n = 10), 98 to 100 (n = 11), or 100 to 102 (n = 12) dBA in-ear exposure level for a period of 4 hr. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured before and after music exposure. Postmusic tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and 1 week later. Changes in thresholds after the lowest-level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a "notch" configuration, with the largest changes observed at 4 kHz (mean = 6.3 ± 3.9 dB; range = 0-14 dB). Recovery was largely complete within the first 4 hr postexposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1 week postexposure. These data provide insight into the variability of TTS induced by music-player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function after digital music-player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be taken to fully inform potential subjects in future TTS studies, including protective agent evaluations, that some noise exposures have resulted in neural degeneration in animal models, even when both audiometric thresholds and DPOAE levels returned to pre-exposure values.
Kale, Sushrut; Micheyl, Christophe; Heinz, Michael G.
2013-01-01
Listeners with sensorineural hearing loss (SNHL) often show poorer thresholds for fundamental-frequency (F0) discrimination, and poorer discrimination between harmonic and frequency-shifted (inharmonic) complex tones, than normal-hearing (NH) listeners—especially when these tones contain resolved or partially resolved components. It has been suggested that these perceptual deficits reflect reduced access to temporal-fine-structure (TFS) information, and could be due to degraded phase-locking in the auditory nerve (AN) with SNHL. In the present study, TFS and temporal-envelope (ENV) cues in single AN-fiber responses to bandpass-filtered harmonic and inharmonic complex tones were measured in chinchillas with either normal hearing or noise-induced SNHL. The stimuli were comparable to those used in recent psychophysical studies of F0 and harmonic/inharmonic discrimination. As in those studies, the rank of the center component was manipulated to produce different resolvability conditions, different phase relationships (cosine and random phase) were tested, and background noise was present. Neural TFS and ENV cues were quantified using cross-correlation coefficients computed using shuffled cross-correlograms between neural responses to REF (harmonic) and TEST (F0- or frequency-shifted) stimuli. In animals with SNHL, AN-fiber tuning curves showed elevated thresholds, broadened tuning, best-frequency shifts, and downward shifts in the dominant TFS response component; however, no significant degradation in the ability of AN fibers to encode TFS or ENV cues was found. Consistent with optimal-observer analyses, the results indicate that TFS and ENV cues depended only on the relevant frequency shift in Hz and thus were not degraded because phase-locking remained intact. These results suggest that perceptual “TFS-processing” deficits do not simply reflect degraded phase-locking at the level of the AN. To the extent that performance in F0 and harmonic/inharmonic discrimination tasks depend on TFS cues, it is likely through a more complicated (sub-optimal) decoding mechanism, which may involve “spatiotemporal” (place-time) neural representations. PMID:23716215
Chronic lead exposure induces cochlear oxidative stress and potentiates noise-induced hearing loss.
Jamesdaniel, Samson; Rosati, Rita; Westrick, Judy; Ruden, Douglas M
2018-08-01
Acquired hearing loss is caused by complex interactions of multiple environmental risk factors, such as elevated levels of lead and noise, which are prevalent in urban communities. This study delineates the mechanism underlying lead-induced auditory dysfunction and its potential interaction with noise exposure. Young-adult C57BL/6 mice were exposed to: 1) control conditions; 2) 2 mM lead acetate in drinking water for 28 days; 3) 90 dB broadband noise 2 h/day for two weeks; and 4) both lead and noise. Blood lead levels were measured by inductively coupled plasma mass spectrometry analysis (ICP-MS) lead-induced cochlear oxidative stress signaling was assessed using targeted gene arrays, and the hearing thresholds were assessed by recording auditory brainstem responses. Chronic lead exposure downregulated cochlear Sod1, Gpx1, and Gstk1, which encode critical antioxidant enzymes, and upregulated ApoE, Hspa1a, Ercc2, Prnp, Ccl5, and Sqstm1, which are indicative of cellular apoptosis. Isolated exposure to lead or noise induced 8-12 dB and 11-25 dB shifts in hearing thresholds, respectively. Combined exposure induced 18-30 dB shifts, which was significantly higher than that observed with isolated exposures. This study suggests that chronic exposure to lead induces cochlear oxidative stress and potentiates noise-induced hearing impairment, possibly through parallel pathways. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Tanaka, Chiemi; Nguyen-Huynh, Anh; Loera, Katherine; Stark, Gemaine; Reiss, Lina
2014-01-01
The Hybrid cochlear implant (CI), also known as Electro- Acoustic Stimulation (EAS), is a new type of CI that preserves residual acoustic hearing and enables combined cochlear implant and hearing aid use in the same ear. However, 30-55% of patients experience acoustic hearing loss within days to months after activation, suggesting that both surgical trauma and electrical stimulation may cause hearing loss. The goals of this study were to: 1) determine the contributions of both implantation surgery and EAS to hearing loss in a normal-hearing guinea pig model; 2) determine which cochlear structural changes are associated with hearing loss after surgery and EAS. Two groups of animals were implanted (n=6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no direct acoustic or electric stimulation during this time frame. A third group (n=6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem response thresholds were followed over time at 1, 2, 6, and 16 kHz. At the end of the study, the following cochlear measures were quantified: hair cells, spiral ganglion neuron density, fibrous tissue density, and stria vascularis blood vessel density; the presence or absence of ossification around the electrode entry was also noted. After surgery, implanted animals experienced a range of 0-55 dB of threshold shifts in the vicinity of the electrode at 6 and 16 kHz. The degree of hearing loss was significantly correlated with reduced stria vascularis vessel density and with the presence of ossification, but not with hair cell counts, spiral ganglion neuron density, or fibrosis area. After 10 weeks of stimulation, 67% of implanted, stimulated animals had more than 10 dB of additional threshold shift at 1 kHz, compared to 17% of implanted, non-stimulated animals and 0% of non-implanted animals. This 1-kHz hearing loss was not associated with changes in any of the cochlear measures quantified in this study. The variation in hearing loss after surgery and electrical stimulation in this animal model is consistent with the variation in human patients. Further, these findings illustrate an advantage of a normal-hearing animal model for quantification of hearing loss and damage to cochlear structures without the confounding effects of chemical- or noise-induced hearing loss. Finally, this study is the first to suggest a role of the stria vascularis and damage to the lateral wall in implantation-induced hearing loss. Further work is needed to determine the mechanisms of implantation- and electrical-stimulation-induced hearing loss. PMID:25128626
Cellular mechanisms of noise-induced hearing loss.
Kurabi, Arwa; Keithley, Elizabeth M; Housley, Gary D; Ryan, Allen F; Wong, Ann C-Y
2017-06-01
Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation. Published by Elsevier B.V.
Four odontocete species change hearing levels when warned of impending loud sound.
Nachtigall, Paul E; Supin, Alexander Ya; Pacini, Aude F; Kastelein, Ronald A
2018-03-01
Hearing sensitivity change was investigated when a warning sound preceded a loud sound in the false killer whale (Pseudorca crassidens), the bottlenose dolphin (Tursiops truncatus), the beluga whale (Delphinaperus leucas) and the harbor porpoise (Phocoena phocoena). Hearing sensitivity was measured using pip-train test stimuli and auditory evoked potential recording. When the test/warning stimuli preceded a loud sound, hearing thresholds before the loud sound increased relative to the baseline by 13 to 17 dB. Experiments with multiple frequencies of exposure and shift provided evidence of different amounts of hearing change depending on frequency, indicating that the hearing sensation level changes were not likely due to a simple stapedial reflex. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Auditory Speech Perception Tests in Relation to the Coding Strategy in Cochlear Implant.
Bazon, Aline Cristine; Mantello, Erika Barioni; Gonçales, Alina Sanches; Isaac, Myriam de Lima; Hyppolito, Miguel Angelo; Reis, Ana Cláudia Mirândola Barbosa
2016-07-01
The objective of the evaluation of auditory perception of cochlear implant users is to determine how the acoustic signal is processed, leading to the recognition and understanding of sound. To investigate the differences in the process of auditory speech perception in individuals with postlingual hearing loss wearing a cochlear implant, using two different speech coding strategies, and to analyze speech perception and handicap perception in relation to the strategy used. This study is prospective cross-sectional cohort study of a descriptive character. We selected ten cochlear implant users that were characterized by hearing threshold by the application of speech perception tests and of the Hearing Handicap Inventory for Adults. There was no significant difference when comparing the variables subject age, age at acquisition of hearing loss, etiology, time of hearing deprivation, time of cochlear implant use and mean hearing threshold with the cochlear implant with the shift in speech coding strategy. There was no relationship between lack of handicap perception and improvement in speech perception in both speech coding strategies used. There was no significant difference between the strategies evaluated and no relation was observed between them and the variables studied.
Sweeney, Alex D.; Hunter, Jacob B.; Carlson, Matthew L.; Rivas, Alejandro; Bennett, Marc L.; Gifford, Rene H.; Noble, Jack H.; Haynes, David S.; Labadie, Robert F.; Wanna, George B.
2016-01-01
Objectives To analyze factors that influence hearing preservation over time in cochlear implant recipients with conventional-length electrode arrays located entirely within the scala tympani. Study Design Case series with planned chart review. Setting Single tertiary academic referral center. Subjects and Methods A retrospective review was performed to analyze a subgroup of cochlear implant recipients with residual acoustic hearing. Patients were included in the study only if their electrode arrays remained fully in the scala tympani after insertion and serviceable acoustic hearing (≤80 dB at 250 Hz) was preserved. Electrode array location was verified through a validated radiographic assessment tool. Patients with <6 months of audiologic follow-up were excluded. The main outcome measure was change in acoustic hearing thresholds from implant activation to the last available follow-up. Results A total of 16 cases met inclusion criteria (median age, 70.6 years; range, 29.4–82.2; 50% female). The average follow-up was 18.0 months (median, 16.1; range, 6.2–36.4). Patients with a lateral wall electrode array were more likely to have stable acoustic thresholds over time (P < .05). Positive correlations were seen between continued hearing loss following activation and larger initial postoperative acoustic threshold shifts, though statistical significance was not achieved. Age, sex, and noise exposure had no significant influence on continued hearing preservation over time. Conclusions To control for hearing loss associated with inter-scalar excursion during cochlear implantation, the present study evaluated patients only with conventional electrode arrays located entirely within the scala tympani. In this group, the style of electrode array may influence residual hearing preservation over time. PMID:26908553
Sweeney, Alex D; Hunter, Jacob B; Carlson, Matthew L; Rivas, Alejandro; Bennett, Marc L; Gifford, Rene H; Noble, Jack H; Haynes, David S; Labadie, Robert F; Wanna, George B
2016-05-01
To analyze factors that influence hearing preservation over time in cochlear implant recipients with conventional-length electrode arrays located entirely within the scala tympani. Case series with planned chart review. Single tertiary academic referral center. A retrospective review was performed to analyze a subgroup of cochlear implant recipients with residual acoustic hearing. Patients were included in the study only if their electrode arrays remained fully in the scala tympani after insertion and serviceable acoustic hearing (≤80 dB at 250 Hz) was preserved. Electrode array location was verified through a validated radiographic assessment tool. Patients with <6 months of audiologic follow-up were excluded. The main outcome measure was change in acoustic hearing thresholds from implant activation to the last available follow-up. A total of 16 cases met inclusion criteria (median age, 70.6 years; range, 29.4-82.2; 50% female). The average follow-up was 18.0 months (median, 16.1; range, 6.2-36.4). Patients with a lateral wall electrode array were more likely to have stable acoustic thresholds over time (P < .05). Positive correlations were seen between continued hearing loss following activation and larger initial postoperative acoustic threshold shifts, though statistical significance was not achieved. Age, sex, and noise exposure had no significant influence on continued hearing preservation over time. To control for hearing loss associated with interscalar excursion during cochlear implantation, the present study evaluated patients only with conventional electrode arrays located entirely within the scala tympani. In this group, the style of electrode array may influence residual hearing preservation over time. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Underwater Detonations at the Silver Strand Training Complex: Effects on Marine Mammals
2009-04-30
and S. H. Ridgway (2000), "Auditory and Behavioral Responses of Bottlenose Dolphins (Tursiops truncatus) and a Beluga Whale ( Delphinapterus leucas ...Shift in Masked Hearing Thresholds of Bottlenose Dolphins, Tursiops truncatus, and White Whales, Delphinapterus leucas , after Exposure to Intense Tones
Short-term auditory effects of listening to an MP3 player.
Keppler, Hannah; Dhooge, Ingeborg; Maes, Leen; D'haenens, Wendy; Bockstael, Annelies; Philips, Birgit; Swinnen, Freya; Vinck, Bart
2010-06-01
To determine the output levels of a commercially available MPEG layer-3 (MP3) player and to evaluate changes in hearing after 1 hour of listening to the MP3 player. First, A-weighted sound pressure levels (measured in decibels [dBA]) for 1 hour of pop-rock music on an MP3 player were measured on a head and torso simulator. Second, after participants listened to 1 hour of pop-rock music using an MP3 player, changes in hearing were evaluated with pure-tone audiometry, transient-evoked otoacoustic emissions, and distortion product otoacoustic emissions. Twenty-one participants were exposed to pop-rock music in 6 different sessions using 2 types of headphones at multiple preset gain settings of the MP3 player. Output levels of an MP3 player and temporary threshold and emission shifts after 1 hour of listening. The output levels at the full gain setting were 97.36 dBA and 102.56 dBA for the supra-aural headphones and stock earbuds, respectively. In the noise exposure group, significant changes in hearing thresholds and transient-evoked otoacoustic emission amplitudes were found between preexposure and postexposure measurements. However, this pattern was not seen for distortion product otoacoustic emission amplitudes. Significant differences in the incidence of significant threshold or emission shifts were observed between almost every session of the noise exposure group compared with the control group. Temporary changes in hearing sensitivity measured by audiometry and otoacoustic emissions indicate the potential harmful effects of listening to an MP3 player. Further research is needed to evaluate the long-term risk of cumulative noise exposure on the auditory system of adolescents and adults.
Ionizing Radiation and the Ear
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borsanyi, Steven J.
The effects of ionizing radiation on the ears of 100 patients were studied in the course of treatment of malignant head and neck tumors by teleradiation using Co 60. Early changes consisted of radiation otitis media and a transient vasculitis of the vessels of the inner ear, resulting in hearing loss, tinnitus, and temporary recruitment. While no permanent changes were detected microscopically shortly after the completion of radiation in the cochlea or labyrinth, late changes sometimes occurred in the temporal bone as a result of an obliterating endarteritis. The late changes were separate entities caused primarily by obliterating endarteritis andmore » alterations in the collagen. Radiation affected the hearing of individuals selectively. When hearing threshold shift did occur, the shift was not great. The 4000 cps frequency showed a greater deficit in hearing capacity during the tests, while the area least affected appeared to be in the region of 2000 cps. The shift in speech reception was not significant and it was correlated with the over-all change in response to pure tones. Discrimination did not appear to be affected. Proper shielding of the ear with lead during radiation, when possible, eliminated most complications. (H.R.D.)« less
Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).
Valero, M D; Burton, J A; Hauser, S N; Hackett, T A; Ramachandran, R; Liberman, M C
2017-09-01
Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold ANFs. However, the fiber loss likely impairs temporal processing and hearing-in-noise, a classic complaint of those with sensorineural hearing loss. Non-human primates appear to be less vulnerable to noise-induced hair-cell loss than rodents, but their susceptibility to synaptopathy has not been studied. Because establishing a non-human primate model may be important in the development of diagnostics and therapeutics, we examined cochlear innervation and the damaging effects of acoustic overexposure in young adult rhesus macaques. Anesthetized animals were exposed bilaterally to narrow-band noise centered at 2 kHz at various sound-pressure levels for 4 h. Cochlear function was assayed for up to 8 weeks following exposure via auditory brainstem responses (ABRs) and otoacoustic emissions (OAEs). A moderate loss of synaptic connections (mean of 12-27% in the basal half of the cochlea) followed temporary threshold shifts (TTS), despite minimal hair-cell loss. A dramatic loss of synapses (mean of 50-75% in the basal half of the cochlea) was seen on IHCs surviving noise exposures that produced permanent threshold shifts (PTS) and widespread hair-cell loss. Higher noise levels were required to produce PTS in macaques compared to rodents, suggesting that primates are less vulnerable to hair-cell loss. However, the phenomenon of noise-induced cochlear synaptopathy in primates is similar to that seen in rodents. Copyright © 2017 Elsevier B.V. All rights reserved.
Ear surgery techniques results on hearing threshold improvement
Mokhtarinejad, Farhad; Pour, Saeed Soheili; Nilforoush, Mohammad Hussein; Sepehrnejad, Mahsa; Mirelahi, Susan
2013-01-01
Background: Bone conduction (BC) threshold depression is not always by means of sensory neural hearing loss and sometimes it is an artifact caused by middle ear pathologies and ossicular chain problems. In this research, the influences of ear surgeries on bone conduction were evaluated. Materials and Methods: This study was conducted as a clinical trial study. The ear surgery performed on 83 patients classified in four categories: Stapedectomy, tympanomastoid surgery and ossicular reconstruction partially or totally; Partial Ossicular Replacement Prosthesis (PORP) and Total Ossicular Replacement Prosthesis (TORP). Bone conduction thresholds assessed in frequencies of 250, 500, 1000, 2000 and 4000 Hz pre and post the surgery. Results: In stapedectomy group, the average of BC threshold in all frequencies improved approximately 6 dB in frequency of 2000 Hz. In tympanomastoid group, BC threshold in the frequency of 500, 1000 and 2000 Hz changed 4 dB (P-value < 0.05). Moreover, In the PORP group, 5 dB enhancement was seen in 1000 and 2000 Hz. In TORP group, the results confirmed that BC threshold improved in all frequencies especially at 4000 Hz about 6.5 dB. Conclusion: In according to results of this study, BC threshold shift was seen after several ear surgeries such as stapedectomy, tympanoplasty, PORP and TORP. The average of BC improvement was approximately 5 dB. It must be considered that BC depression might happen because of ossicular chain problems. Therefore; by resolving middle ear pathologies, the better BC threshold was obtained, the less hearing problems would be faced. PMID:24381615
Influence of well-known risk factors for hearing loss in a longitudinal twin study.
Johnson, Ann-Christin; Bogo, Renata; Farah, Ahmed; Karlsson, Kjell K; Muhr, Per; Sjöström, Mattias; Svensson, Eva B; Skjönsberg, Åsa; Svartengren, Magnus
2017-01-01
The aim was to investigate the influence of environmental exposures on hearing loss in a twin cohort. Male twins born 1914-1958, representing an unscreened population, were tested for hearing loss at two occasions, 18 years apart. Clinical audiometry and a questionnaire were performed at both time points in this longitudinal study. Noise and solvent exposure were assessed using occupational work codes and a job exposure matrix. Hearing impairment was investigated using two different pure tone averages: PTA4 (0.5, 1, 2, and 4 kHz) and HPTA4 (3, 4, 6, and 8 kHz). Age affected all outcome measures. Noise exposure between time point one and two affected the threshold shifts of PTA4 and HPTA4 more in participants with a pre-existing hearing loss at time point one. Lifetime occupational noise exposure was a risk factor especially for the low-frequency hearing threshold PTA4. Firearm use was a statistically significant risk factor for all outcome measures. Pre-existing hearing loss can increase the risk of hearing impairment due to occupational noise exposure. An increased risk for NIHL was also seen in the group with exposures below 85 dB(A), a result that indicates awareness of NIHL should be raised even for those working in environments where sound levels are below 85 dB(A).
Motallebi Kashani, Masoud; Mortazavi, Seyyed Bagher; Khavanin, Ali; Allameh, Abdolamir; Mirzaee, Ramezan; Akbari, Mehdi
2011-01-01
Noise induced hearin gloss (NIHL) is one of the most important occupational disease world wide. NIHL has been found potentiate by simultaneous carbon monoxide (CO) exposure. Free radicals have been implicated in cochlear damage resulted from the exposure to noise and due to the CO hypoxia. This study examined whether α-tocopherol administration , as a free radical scavenger, causes the attenuation of auditory brainstem response (ABR) threshold shifts resulting from noise exposure and noise plus CO exposure. Forty-two rabbits were divided in to seven groups including control, noise + saline, noise + CO + saline, noise + α-tocopherol, noise + CO + α-tocopherol , CO + α-tocopherol and α-tocopherol alone. ABR was assessed before exposure, 1 hand 14 days post exposure. The administration of 50 mg/Kg of α-tocopherol prior, following and post exposure to noise or noise plus CO recovered permanent ABR threshold shift at 1 and KHz almost to the baseline and provided significant attenuation in permanent ABR threshold shift at 4 and 8 KHz in subject swhich were exposed to noise but it did not block the potentiating of threshold elevation by CO exposure (extra threshold loss by combined exposure) at 4 and 8 KHz. α Tocopherol provides protective effect against the hearing loss resulting from noise exposure and simultaneous exposure to noise plus CO.
Attenuation of noise-induced hearing loss using methylene blue
Park, J-S; Jou, I; Park, S M
2014-01-01
The overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been known to contribute to the pathogenesis of noise-induced hearing loss. In this study, we discovered that in BALB/c mice pretreatment with methylene blue (MB) for 4 consecutive days significantly protected against cochlear injury by intense broad-band noise for 3 h. It decreased both compound threshold shift and permanent threshold shift and, further, reduced outer hair cell death in the cochlea. MB also reduced ROS and RNS formation after noise exposure. Furthermore, it protected against rotenone- and antimycin A-induced cell death and also reversed ATP generation in the in vitro UB-OC1 cell system. Likewise, MB effectively attenuated the noise-induced impairment of complex IV activity in the cochlea. In addition, it increased the neurotrophin-3 (NT-3) level, which could affect the synaptic connections between hair cells and spiral ganglion neurons in the noise-exposed cochlea, and also promoted the conservation of both efferent and afferent nerve terminals on the outer and inner hair cells. These findings suggest that the amelioration of impaired mitochondrial electron transport and the potentiation of NT-3 expression by treatment with MB have a significant therapeutic value in preventing ROS-mediated sensorineural hearing loss. PMID:24763057
Le Prell, C. G.; Dell, S.; Hensley, B.; Hall, J. W.; Campbell, K. C. M.; Antonelli, P. J.; Green, G. E.; Miller, J. M.; Guire, K.
2012-01-01
Objectives One of the challenges for evaluating new otoprotective agents for potential benefit in human populations is availability of an established clinical paradigm with real world relevance. These studies were explicitly designed to develop a real-world digital music exposure that reliably induces temporary threshold shift (TTS) in normal hearing human subjects. Design Thirty-three subjects participated in studies that measured effects of digital music player use on hearing. Subjects selected either rock or pop music, which was then presented at 93–95 (n=10), 98–100 (n=11), or 100–102 (n=12) dBA in-ear exposure level for a period of four hours. Audiograms and distortion product otoacoustic emissions (DPOAEs) were measured prior to and after music exposure. Post-music tests were initiated 15 min, 1 hr 15 min, 2 hr 15 min, and 3 hr 15 min after the exposure ended. Additional tests were conducted the following day and one week later. Results Changes in thresholds after the lowest level exposure were difficult to distinguish from test-retest variability; however, TTS was reliably detected after higher levels of sound exposure. Changes in audiometric thresholds had a “notch” configuration, with the largest changes observed at 4 kHz (mean=6.3±3.9dB; range=0–13 dB). Recovery was largely complete within the first 4 hours post-exposure, and all subjects showed complete recovery of both thresholds and DPOAE measures when tested 1-week post-exposure. Conclusions These data provide insight into the variability of TTS induced by music player use in a healthy, normal-hearing, young adult population, with music playlist, level, and duration carefully controlled. These data confirm the likelihood of temporary changes in auditory function following digital music player use. Such data are essential for the development of a human clinical trial protocol that provides a highly powered design for evaluating novel therapeutics in human clinical trials. Care must be taken to fully inform potential subjects in future TTS studies, including protective agent evaluations, that some noise exposures have resulted in neural degeneration in animal models, even when both audiometric thresholds and DPOAE levels returned to pre-exposure values. PMID:22885407
Leupeptin reduces impulse noise induced hearing loss
2011-01-01
Background Exposure to continuous and impulse noise can induce a hearing loss. Leupeptin is an inhibitor of the calpains, a family of calcium-activated proteases which promote cell death. The objective of this study is to assess whether Leupeptin could reduce the hearing loss resulting from rifle impulse noise. Methods A polyethelene tube was implanted into middle ear cavities of eight fat sand rats (16 ears). Following determination of auditory nerve brainstem evoked response (ABR) threshold in each ear, the animals were exposed to the noise of 10 M16 rifle shots. Immediately after the exposure, saline was then applied to one (control) ear and non-toxic concentrations of leupeptin determined in the first phase of the study were applied to the other ear, for four consecutive days. Results Eight days after the exposure, the threshold shift (ABR) in the control ears was significantly greater (44 dB) than in the leupeptin ears (27 dB). Conclusion Leupeptin applied to the middle ear cavity can reduce the hearing loss resulting from exposure to impulse noise. PMID:22206578
Baiduc, Rachael R.; Lee, Jungmee; Dhar, Sumitrajit
2014-01-01
Hearing thresholds have been shown to exhibit periodic minima and maxima, a pattern known as threshold microstructure. Microstructure has previously been linked to spontaneous otoacoustic emissions (SOAEs) and normal cochlear function. However, SOAEs at high frequencies (>4 kHz) have been associated with hearing loss or cochlear pathology in some reports. Microstructure would not be expected near these high-frequency SOAEs. Psychophysical tuning curves (PTCs), the expression of frequency selectivity, may also be altered by SOAEs. Prior comparisons of tuning between ears with and without SOAEs demonstrated sharper tuning in ears with emissions. Here, threshold microstructure and PTCs were compared at SOAE frequencies ranging between 1.2 and 13.9 kHz using subjects without SOAEs as controls. Results indicate: (1) Threshold microstructure is observable in the vicinity of SOAEs of all frequencies; (2) PTCs are influenced by SOAEs, resulting in shifted tuning curve tips, multiple tips, or inversion. High frequency SOAEs show a greater effect on PTC morphology. The influence of most SOAEs at high frequencies on threshold microstructure and PTCs is consistent with those at lower frequencies, suggesting that high-frequency SOAEs reflect the same cochlear processes that lead to SOAEs at lower frequencies. PMID:24437770
Kastelein, Ronald A; Helder-Hoek, Lean; Van de Voorde, Shirley
2017-10-01
Safety criteria for naval sonar sounds are needed to protect harbor porpoise hearing. Two porpoises were exposed to sequences of AN/SQS-53C sonar playback sounds (3.5-4.1 kHz, without significant harmonics), at a mean received sound pressure level of 142 dB re 1 μPa, with a duty cycle of 96% (almost continuous). Behavioral hearing thresholds at 4 and 5.7 kHz were determined before and after exposure to the fatiguing sound, in order to quantify temporary threshold shifts (TTSs) and hearing recovery. Control sessions were also conducted. Significant mean initial TTS 1-4 of 5.2 dB at 4 kHz and 3.1 dB at 5.7 kHz occurred after 30 min exposures (mean received cumulative sound exposure level, SEL cum : 175 dB re 1 μPa 2 s). Hearing thresholds returned to pre-exposure levels within 12 min. Significant mean initial TTS 1-4 of 5.5 dB at 4 kHz occurred after 60 min exposures (SEL cum : 178 dB re 1 μPa 2 s). Hearing recovered within 60 min. The SEL cum for AN/SQS-53C sonar sounds required to induce 6 dB of TTS 4 min after exposure (the definition of TTS onset) is expected to be between 175 and 180 dB re 1 μPa 2 s.
Tracking occupational hearing loss across global industries: A comparative analysis of metrics
Rabinowitz, Peter M.; Galusha, Deron; McTague, Michael F.; Slade, Martin D.; Wesdock, James C.; Dixon-Ernst, Christine
2013-01-01
Occupational hearing loss is one of the most prevalent occupational conditions; yet, there is no acknowledged international metric to allow comparisons of risk between different industries and regions. In order to make recommendations for an international standard of occupational hearing loss, members of an international industry group (the International Aluminium Association) submitted details of different hearing loss metrics currently in use by members. We compared the performance of these metrics using an audiometric data set for over 6000 individuals working in 10 locations of one member company. We calculated rates for each metric at each location from 2002 to 2006. For comparison, we calculated the difference of observed–expected (for age) binaural high frequency hearing loss (in dB/year) for each location over the same time period. We performed linear regression to determine the correlation between each metric and the observed–expected rate of hearing loss. The different metrics produced discrepant results, with annual rates ranging from 0.0% for a less-sensitive metric to more than 10% for a highly sensitive metric. At least two metrics, a 10 dB age-corrected threshold shift from baseline and a 15 dB nonage-corrected shift metric, correlated well with the difference of observed–expected high-frequency hearing loss. This study suggests that it is feasible to develop an international standard for tracking occupational hearing loss in industrial working populations. PMID:22387709
Le Prell, C. G.; Johnson, A.-C.; Lindblad, A.-C.; Skjönsberg, Å.; Ulfendahl, M.; Guire, K.; Green, G. E.; Campbell, K. C. M.; Miller, J. M.
2013-01-01
Noise-induced hearing loss (NIHL) is a significant clinical, social, and economic issue. The development of novel therapeutic agents to reduce NIHL will potentially benefit multiple very large noise-exposed populations. Oxidative stress has been identified as a significant contributor to noise-induced sensory cell death and noise-induced hearing loss, and several antioxidant strategies have now been suggested for potential translation to human subjects. One such strategy is a combination of beta-carotene, vitamins C and E, and magnesium, which has shown promise for protection against NIHL in rodent models, and is being evaluated in a series of international human clinical trials using temporary (military gunfire, audio player use) and permanent (stamping factory, military airbase) threshold shift models (NCT00808470). The noise exposures used in the recently completed Swedish military gunfire study described in this report did not, on average, result in measurable changes in auditory function using conventional pure-tone thresholds and distortion product otoacoustic emission (DPOAE) amplitudes as metrics. However, analysis of the plasma samples confirmed significant elevations in the bloodstream 2 hours after oral consumption of active clinical supplies, indicating the dose is realistic. The plasma outcomes are encouraging, but clinical acceptance of any novel therapeutic critically depends on demonstration that the agent reduces noise-induced threshold shift in randomized, placebo-controlled, prospective human clinical trials. Although this noise insult did not induce hearing loss, the trial design and study protocol can be applied to other populations exposed to different noise insults. PMID:22122960
Finneran, J J; Schlundt, C E; Carder, D A; Clark, J A; Young, J A; Gaspin, J B; Ridgway, S H
2000-07-01
A behavioral response paradigm was used to measure masked underwater hearing thresholds in two bottlenose dolphins and one beluga whale before and after exposure to impulsive underwater sounds with waveforms resembling distant signatures of underwater explosions. An array of piezoelectric transducers was used to generate impulsive sounds with waveforms approximating those predicted from 5 or 500 kg HBX-1 charges at ranges from 1.5 to 55.6 km. At the conclusion of the study, no temporary shifts in masked-hearing thresholds (MTTSs), defined as a 6-dB or larger increase in threshold over pre-exposure levels, had been observed at the highest impulse level generated (500 kg at 1.7 km, peak pressure 70 kPa); however, disruptions of the animals' trained behaviors began to occur at exposures corresponding to 5 kg at 9.3 km and 5 kg at 1.5 km for the dolphins and 500 kg at 1.9 km for the beluga whale. These data are the first direct information regarding the effects of distant underwater explosion signatures on the hearing abilities of odontocetes.
Potentiation of Chemical Ototoxicity by Noise
Steyger, Peter S.
2010-01-01
High-intensity and/or prolonged exposure to noise causes temporary or permanent threshold shifts in auditory perception. Occupational exposure to solvents or administration of clinically important drugs, such as aminoglycoside antibiotics and cisplatin, also can induce permanent hearing loss. The mechanisms by which these ototoxic insults cause auditory dysfunction are still being unraveled, yet they share common sequelae, particularly generation of reactive oxygen species, that ultimately lead to hearing loss and deafness. Individuals are frequently exposed to ototoxic chemical contaminants (e.g., fuel) and noise simultaneously in a variety of work and recreational environments. Does simultaneous exposure to chemical ototoxins and noise potentiate auditory dysfunction? Exposure to solvent vapor in noisy environments potentiates the permanent threshold shifts induced by noise alone. Moderate noise levels potentiate both aminoglycoside- and cisplatin-induced ototoxicity in both rate of onset and in severity of auditory dysfunction. Thus, simultaneous exposure to chemical ototoxins and moderate levels of noise can potentiate auditory dysfunction. Preventing the ototoxic synergy of noise and chemical ototoxins requires removing exposure to ototoxins and/or attenuating noise exposure levels when chemical ototoxins are present. PMID:20523755
Integrating cognitive and peripheral factors in predicting hearing-aid processing effectiveness
Kates, James M.; Arehart, Kathryn H.; Souza, Pamela E.
2013-01-01
Individual factors beyond the audiogram, such as age and cognitive abilities, can influence speech intelligibility and speech quality judgments. This paper develops a neural network framework for combining multiple subject factors into a single model that predicts speech intelligibility and quality for a nonlinear hearing-aid processing strategy. The nonlinear processing approach used in the paper is frequency compression, which is intended to improve the audibility of high-frequency speech sounds by shifting them to lower frequency regions where listeners with high-frequency loss have better hearing thresholds. An ensemble averaging approach is used for the neural network to avoid the problems associated with overfitting. Models are developed for two subject groups, one having nearly normal hearing and the other mild-to-moderate sloping losses. PMID:25669257
Short term hearing loss in general aviation operations, phase 1, part 1
NASA Technical Reports Server (NTRS)
Parker, J. F., Jr.
1972-01-01
The effects of light aircraft noise on six subjects during flight operations were investigated. The noise environment in the Piper Apache light aircraft was found to be capable of producing hearing threshold shifts. The following are the principal findings and conclusions: (1) Through most of the frequency range for which measurements were taken (500 to 6000 Hz), there was a regular progression showing increased loss of auditory acuity as a function of increased exposure time. (2) Extensive variability was found in the results among subjects, and in the measured loss at discrete frequencies for each subject. (3) The principal loss of hearing occurred at the low frequencies, around 500 Hz.
Frank, T
2001-04-01
The first purpose of this study was to determine high-frequency (8 to 16 kHz) thresholds for standardizing reference equivalent threshold sound pressure levels (RETSPLs) for a Sennheiser HDA 200 earphone. The second and perhaps more important purpose of this study was to determine whether repeated high-frequency thresholds using a Sennheiser HDA 200 earphone had a lower intrasubject threshold variability than the ASHA 1994 significant threshold shift criteria for ototoxicity. High-frequency thresholds (8 to 16 kHz) were obtained for 100 (50 male, 50 female) normally hearing (0.25 to 8 kHz) young adults (mean age of 21.2 yr) in four separate test sessions using a Sennheiser HDA 200 earphone. The mean and median high-frequency thresholds were similar for each test session and increased as frequency increased. At each frequency, the high-frequency thresholds were not significantly (p > 0.05) different for gender, test ear, or test session. The median thresholds at each frequency were similar to the 1998 interim ISO RETSPLs; however, large standard deviations and wide threshold distributions indicated very high intersubject threshold variability, especially at 14 and 16 kHz. Threshold repeatability was determined by finding the threshold differences between each possible test session comparison (N = 6). About 98% of all of the threshold differences were within a clinically acceptable range of +/-10 dB from 8 to 14 kHz. The threshold differences between each subject's second, third, and fourth minus their first test session were also found to determine whether intrasubject threshold variability was less than the ASHA 1994 criteria for determining a significant threshold shift due to ototoxicity. The results indicated a false-positive rate of 0% for a threshold shift > or = 20 dB at any frequency and a false-positive rate of 2% for a threshold shift >10 dB at two consecutive frequencies. This study verified that the output of high-frequency audiometers at 0 dB HL using Sennheiser HDA 200 earphones should equal the 1998 interim ISO RETSPLs from 8 to 16 kHz. Further, because the differences between repeated thresholds were well within +/-10 dB and had an extremely low false-positive rate in reference to the ASHA 1994 criteria for a significant threshold shift due to ototoxicity, a Sennheiser HDA 200 earphone can be used for serial monitoring to determine whether significant high-frequency threshold shifts have occurred for patients receiving potentially ototoxic drug therapy.
Impact of OSHA final rule--recording hearing loss: an analysis of an industrial audiometric dataset.
Rabinowitz, Peter M; Slade, Martin; Dixon-Ernst, Christine; Sircar, Kanta; Cullen, Mark
2003-12-01
The 2003 Occupational Safety and Health Administration (OSHA) Occupational Injury and Illness Recording and Reporting Final Rule changed the definition of recordable work-related hearing loss. We performed a study of the Alcoa Inc. audiometric database to evaluate the impact of this new rule. The 2003 rule increased the rate of potentially recordable hearing loss events from 0.2% to 1.6% per year. A total of 68.6% of potentially recordable cases had American Academy of Audiology/American Medical Association (AAO/AMA) hearing impairment at the time of recordability. On average, recordable loss occurred after onset of impairment, whereas the non-age-corrected 10-dB standard threshold shift (STS) usually preceded impairment. The OSHA Final Rule will significantly increase recordable cases of occupational hearing loss. The new case definition is usually accompanied by AAO/AMA hearing impairment. Other, more sensitive metrics should therefore be used for early detection and prevention of hearing loss.
Impact of OSHA Final Rule—Recording Hearing Loss: An Analysis of an Industrial Audiometric Dataset
Rabinowitz, Peter M.; Slade, Martin; Dixon-Ernst, Christine; Sircar, Kanta; Cullen, Mark
2013-01-01
The 2003 Occupational Safety and Health Administration (OSHA) Occupational Injury and Illness Recording and Reporting Final Rule changed the definition of recordable work-related hearing loss. We performed a study of the Alcoa Inc. audiometric database to evaluate the impact of this new rule. The 2003 rule increased the rate of potentially recordable hearing loss events from 0.2% to 1.6% per year. A total of 68.6% of potentially recordable cases had American Academy of Audiology/American Medical Association (AAO/AMA) hearing impairment at the time of recordability. On average, recordable loss occurred after onset of impairment, whereas the non-age-corrected 10-dB standard threshold shift (STS) usually preceded impairment. The OSHA Final Rule will significantly increase recordable cases of occupational hearing loss. The new case definition is usually accompanied by AAO/AMA hearing impairment. Other, more sensitive metrics should therefore be used for early detection and prevention of hearing loss. PMID:14665813
Safety and clinical performance of acoustic reflex tests.
Hunter, L L; Ries, D T; Schlauch, R S; Levine, S C; Ward, W D
1999-12-01
Safety and effectiveness of acoustic reflex tests are important issues because these tests are widely applied to screen for retrocochlear pathology. Previous studies have reported moderately high sensitivity and specificity for detection of acoustic neuroma. However, there have been reports of possible iatrogenic hearing loss resulting from acoustic reflex threshold (ART) and decay (ARD) tests. This study assessed safety and clinical performance of ART tests for detection of acoustic neuroma. We report a case in which ARD testing resulted in a significant bilateral permanent threshold shift. This case was the impetus for us to investigate the clinical utility of ART and ARD tests. We analyzed sensitivity and specificity of ART, as well as asymmetry in pure-tone thresholds (PTT) for detection of acoustic neuroma in 56 tumor and 108 non-tumor ears. Sensitivity and specificity were higher for PTT asymmetry than for ART. Ipsilateral ART at 1000 Hz had poor sensitivity and specificity for detection of acoustic neuroma, and involves some potential risk to residual hearing for presentation levels higher than 115 dB SPL. Approximately half of the acoustic neuroma group had ipsilateral ARTs that would require administration of ARD tests at levels exceeding 115 dB SPL. Therefore, we conclude that PTT asymmetry is a more effective test for detection of acoustic neuroma, and involves no risk to residual hearing. Future studies of contralateral reflex threshold and ARD in combination with PTT asymmetry are recommended.
Grondin, Yohann; Bortoni, Magda E.; Sepulveda, Rosalinda; Ghelfi, Elisa; Bartos, Adam; Cotanche, Douglas; Clifford, Royce E.; Rogers, Rick A.
2015-01-01
Noise-induced hearing loss (NIHL) is the most significant occupational health issue worldwide. We conducted a genome-wide association study to identify single-nucleotide polymorphisms (SNPs) associated with hearing threshold shift in young males undergoing their first encounter with occupational impulse noise. We report a significant association of SNP rs7598759 (p < 5 x 10-7; p = 0.01 after permutation and correction; Odds Ratio = 12.75) in the gene coding for nucleolin, a multifunctional phosphoprotein involved in the control of senescence and protection against apoptosis. Interestingly, nucleolin has been shown to mediate the anti-apoptotic effect of HSP70, a protein found to prevent ototoxicity and whose polymorphisms have been associated with susceptibility to NIHL. Increase in nucleolin expression has also been associated with the prevention of apoptosis in cells undergoing oxidative stress, a well-known metabolic sequela of noise exposure. To assess the potential role of nucleolin in hearing loss, we tested down-regulation of nucleolin in cochlear sensory cells HEI-OC1 under oxidative stress conditions and report increased sensitivity to cisplatin, a chemotherapeutic drug with ototoxic side effects. Additional SNPs were found with suggestive association (p < 5 x 10-4), of which 7 SNPs were located in genes previously reported to be related to NIHL and 43 of them were observed in 36 other genes previously not reported to be associated with NIHL. Taken together, our GWAS data and in vitro studies reported herein suggest that nucleolin is a potential candidate associated with NIHL in this population. PMID:26121033
Svrakic, Maja; Roland, J Thomas; McMenomey, Sean O; Svirsky, Mario A
2016-12-01
To describe our initial operative experience and hearing preservation results with the Advanced Bionics (AB) Mid Scala Electrode (MSE). Retrospective review. Tertiary referral center. Sixty-three MSE implants in pediatric and adult patients were compared with age- and sex-matched 1j electrode implants from the same manufacturer. All patients were severe to profoundly deaf. Cochlear implantation with either the AB 1j electrode or the AB MSE. The MSE and 1j electrodes were compared in their angular depth of insertion and pre to postoperative change in hearing thresholds. Hearing preservation was analyzed as a function of angular depth of insertion. Secondary outcome measures included operative time, incidence of abnormal intraoperative impedance and telemetry values, and incidence of postsurgical complications. Depth of insertion was similar for both electrodes, but was more consistent for the MSE array and more variable for the 1j array. Patients with MSE electrodes had better hearing preservation. Thresholds shifts at four audiometric frequencies ranging from 250 to 2000 Hz were 10, 7, 2, and 6 dB smaller for the MSE electrode than for the 1j (p < 0.05). Hearing preservation at low frequencies was worse with deeper insertion, regardless of array. Secondary outcome measures were similar for both electrodes. The MSE electrode resulted in more consistent insertion depth and somewhat better hearing preservation than the 1j electrode. Differences in other surgical outcome measures were small or unlikely to have a meaningful effect.
Risks to hearing from a rock concert.
Yassi, A.; Pollock, N.; Tran, N.; Cheang, M.
1993-01-01
We measured noise exposure and temporary threshold shift (TTS) from a rock concert for 22 volunteers, using dosimetry, questionnaires, and audiometry. Most (81%) participants showed TTS of 10 dB or more 5 to 25 minutes after exposure; of these, 76% showed continued TTS at 40 to 60 minutes. Family physicians should counsel patients about the risks of recreational noise. PMID:8499785
[Correlation analysis of hearing level and soft palate movement after palatoplasty].
Lou, Qun; Ma, Xiaoran; Ma, Lian; Luo, Yi; Zhu, Hongping; Zhou, Zhibo
2015-10-01
To explore the relationship between hearing level and soft palate movement after palatoplasty and to verify the importance of recovery of soft palate movement function for improving the middle ear function as well as reducing the hearing loss. A total of 64 non-syndromic cleft palate patients were selected and the lateral cephalometric radiographs were taken. The patients hearing level was evaluated by the pure tone hearing threshold examination. This study also analyzed the correlation between hearing threshold of the patients after palatoplasty and the soft palate elevation angle and velopharyngeal rate respectively. Kendall correlation analysis revealed that the correlation coefficient between hearing threshold and the soft palate elevation angle after palatoplasty was -0.339 (r = -0.339, P < 0.01).The correlation showed a negative correlation. The hearing threshold decreased as the soft palate elevation angle increased. After palatoplasty, the correlation coefficient between the hearing threshold and the rate of velopharyngeal closure was -0.277 (r = -0.277, P < 0.01). The correlation showed a negative correlation. While, The hearing threshold decreased with the increase of velopharyngeal closure rate. The hearing threshold was correlated with soft palate elevation angle and velpharyngeal closure rate. The movement of soft palate and velopharyngeal closure function after palatoplasty both have impact on patient hearing level. In terms of the influence level, the movement of soft palate has a higher level of impact on patient hearing level than velopharygeal closure function.
Panahi, Rasool; Jafari, Zahra; Sheibanizade, Abdoreza; Salehi, Masoud; Esteghamati, Abdoreza; Hasani, Sara
2013-01-01
Introduction: Neonatal hyperbilirubinemia is one of the most important factors affecting the auditory system and can cause sensorineural hearing loss. This study investigated the relationship between behavioral hearing thresholds in children with a history of jaundice and the maximum level of bilirubin concentration in the blood. Materials and Methods: This study was performed on 18 children with a mean age of 5.6 years and with a history of neonatal hyperbilirubinemia. Behavioral hearing thresholds, transient evoked emissions and brainstem evoked responses were evaluated in all children. Results: Six children (33.3%) had normal hearing thresholds and the remaining (66.7%) had some degree of hearing loss. There was no significant relationship (r=-0.28, P=0.09) between the mean total bilirubin levels and behavioral hearing thresholds in all samples. A transient evoked emission was seen only in children with normal hearing thresholds however in eight cases brainstem evoked responses had not detected. Conclusion: Increased blood levels of bilirubin at the neonatal period were potentially one of the causes of hearing loss. There was a lack of a direct relationship between neonatal bilirubin levels and the average hearing thresholds which emphasizes on the necessity of monitoring the various amounts of bilirubin levels. PMID:24303432
Biophysical Mechanisms Underlying Hearing Loss Associated with a Shortened Tectorial Membrane
NASA Astrophysics Data System (ADS)
Oghalai, John S.; Xia, Anping; Liu, Christopher C.; Gao, Simon S.; Applegate, Brian E.; Puria, Sunil; Rousso, Itay; Steele, Charles
2011-11-01
The tectorial membrane (TM) connects to the stereociliary bundles of outer hair cells (OHCs). Herein, we summarize key experimental data and modeling analyses that describe how biophysical alterations to these connections underlie hearing loss. The heterozygous C1509G mutation in alpha tectorin produces partial congenital hearing loss that progresses in humans. We engineered this mutation in mice, and histology revealed that the TM was shortened. DIC imaging of freshly-dissected cochlea as well as imaging with optical coherence tomography indicated that the TM is malformed and only stimulates the first row of OHCs. Noise exposure produced acute threshold shifts that fully recovered in Tecta+/+ mice although there was some OHC loss within all three rows at the cochlear base. In contrast, threshold shifts only partially recovered in TectaC1509G/+ mice. This was associated with OHC loss more apically and nearly entirely within the first row. Young's modulus of the TM, measured using atomic force microscopy, was substantially reduced at the middle and basal regions. Both the wild-type and heterozygous conditions were simulated in a computational model. This demonstrated that the normalized stress distribution levels between the TM and the tall cilia were significantly elevated in the middle region of the heterozygous cochlea. Another feature of the TectaC1509G/+ mutation is higher prestin expression within all three rows of OHCs. This increased electricallyevoked movements of the reticular lamina and otoacoustic emissions. Furthermore, electrical stimulation was associated with an increased risk of OHC death as measured by vital dye staining. Together, these findings indicate that uncoupling of the TM from some OHCs not only leads to partial hearing loss, but also puts the OHCs that remain coupled at higher risk. Both the mechanics of the malformed TM and increased electromotility contribute to this higher risk profile.
Relationship Between Hair Cell Loss and Hearing Loss in Fishes.
Smith, Michael E
2016-01-01
Exposure to intense sound or ototoxic chemicals can damage the auditory hair cells of vertebrates, resulting in hearing loss. Although the relationship between such hair cell damage and auditory function is fairly established for terrestrial vertebrates, there are limited data available to understand this relationship in fishes. Although investigators have measured either the morphological damage of the inner ear or the functional deficits in the hearing of fishes, very few have directly measured both in an attempt to find a relationship between the two. Those studies that have examined both auditory hair cell damage in the inner ear and the resulting hearing loss in fishes are reviewed here. In general, there is a significant linear relationship between the number of hair cells lost and the severity of hearing threshold shifts, although this varies between species and different hair cell-damaging stimuli. After trauma to the fish ear, auditory hair cells are able to regenerate to control level densities. With this regeneration also comes a restoration of hearing. Thus there is also a significant relationship between hair cell recovery and hearing recovery in fishes.
Mechanisms of Hearing Loss after Blast Injury to the Ear
Cho, Sung-Il; Gao, Simon S.; Xia, Anping; Wang, Rosalie; Salles, Felipe T.; Raphael, Patrick D.; Abaya, Homer; Wachtel, Jacqueline; Baek, Jongmin; Jacobs, David; Rasband, Matthew N.; Oghalai, John S.
2013-01-01
Given the frequent use of improvised explosive devices (IEDs) around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the body’s most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs) within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs) and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction. PMID:23840874
Svrakic, Maja; Roland, J. Thomas; McMenomey, Sean O.; Svirsky, Mario A.
2016-01-01
OBJECTIVE To describe our initial operative experience and hearing preservation results with the Advanced Bionics (AB) Mid Scala Electrode (MSE) STUDY DESIGN Retrospective review. SETTING Tertiary referral center. PATIENTS Sixty-three MSE implants in pediatric and adult patients were compared to age- and gender-matched 1j electrode implants from the same manufacturer. All patients were severe to profoundly deaf. INTERVENTION Cochlear implantation with either the AB 1j electrode or the AB MSE. MAIN OUTCOME MEASURES The MSE and 1j electrode were compared in their angular depth of insertion (aDOI) and pre- to post-operative change in hearing thresholds. Hearing preservation was analyzed as a function of aDOI. Secondary outcome measures included operative time, incidence of abnormal intraoperative impedance and telemetry values, and incidence of postsurgical complications. RESULTS Depth of insertion was similar for both electrodes, but was more consistent for the MSE array and more variable for the 1j array. Patients with MSE electrodes had better hearing preservation. Thresholds shifts at four audiometric frequencies ranging from 250 to 2,000 Hz were 10 dB, 7 dB, 2 dB and 6 dB smaller for the MSE electrode than for the 1j (p<0.05). Hearing preservation at low frequencies was worse with deeper insertion, regardless of array. Secondary outcome measures were similar for both electrodes. CONCLUSIONS The MSE electrode resulted in more consistent insertion depth and somewhat better hearing preservation than the 1j electrode. Differences in other surgical outcome measures were small or unlikely to have a meaningful effect. PMID:27755356
Bray, Adam; Szymański, Marcin; Mills, Robert
2004-02-01
Noise exposure, hearing loss and associated otological symptoms have been studied in a group of 23 disc jockeys using a questionnaire and pure tone audiometry. The level of noise exposure in the venues where they work has also been studied using Ametek Mk-3 audio dosimeters. Three members of the study group showed clear evidence of noise-induced hearing loss on audiometry, 70 per cent reported temporary threshold shift after sessions and 74 per cent reported tinnitus. Sound levels of up to 108 dB(A) were recorded in the nightclubs. The average level for a typical session was 96 dB(A) which is above the level at which the provision of ear protection is mandatory for employers in industry. It can be concluded that DJs are at substantial risk of developing noise-induced hearing loss and noise exposure in nightclubs frequently exceeds safe levels.
Ihler, Friedrich; Pelz, Sabrina; Coors, Melanie; Matthias, Christoph; Canis, Martin
2014-11-01
Cochlear implantation trauma causes both macroscopic and inflammatory trauma. The aim of the present study was to evaluate the effectiveness of the TNF-alpha inhibitor etanercept applied after cochlear implantation trauma on the preservation of acoustic hearing. Guinea pigs were randomly assigned to three groups receiving cochlear implantation trauma by cochleostomy. In one group, the site was sealed by bone cement with no further treatment. A second group was additionally implanted with an osmotic minipump delivering artificial perilymph into the scala tympani for seven days. In the third group, etanercept 1 mg/ml was added to artificial perilymph. Hearing was assessed by auditory brainstem responses at 2, 4, 6, and 8 kHz prior to and after surgery and on days 3, 5, 7, 14, 28. Fifteen healthy guinea pigs. The trauma led to threshold shifts from 50.3 dB ± 16.3 dB to 68.0 dB ± 19.3 dB. Hearing thresholds were significantly lower in etanercept-treated animals compared to controls on day 28 at 8 kHz and from day 3 onwards at 4 and 2 kHz (p < 0.01; two-way RM ANOVA / Bonferroni t-test). The application of etanercept led to preservation of acoustic hearing after cochlear implantation trauma.
Chen, Wei; Wang, Jianmin; Chen, Jing; Chen, Jichuan; Chen, Zhiqiang
2013-01-01
The auditory system is the most susceptible to damages from blast waves. Blast injuries always lead to varying degrees of hearing impairment. Although a disorder of the cochlear blood flow (CoBF) has been considered to be related to many pathological processes of the auditory system and to contribute to various types of hearing loss, changes in the CoBF induced by blast waves and the relationship between such changes and hearing impairment are undefined. To observe the changes in the cochlear microcirculation after exposure to an explosion blast, investigate the relationship between changes in the CoBF and hearing impairment and subsequently explore the mechanism responsible for the changes in the CoBF, we detected the perfusion of the cochlear microcirculation and hearing threshold shift after exposure to an explosion blast. Then, an N-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor) solution and artificial perilymph were applied to the round window (RW) of the cochlea before the blast exposure, followed by an evaluation of the CoBF and hearing function. The results indicated that the changes in the CoBF were correlated to the strength of the blast wave. The cochlear blood flow significantly increased when the peak value of the blast overpressure was greater than approximately 45 kPa, and there was no significant change in the cochlear blood flow when the peak value of the blast overpressure was less than approximately 35 kPa. Following local administration of the NO synthase inhibitor L-NAME, the increase in the CoBF induced by the blast was inhibited, and this reduction was significantly associated with the hearing threshold.
Effects of sustained release dexamethasone hydrogels in hearing preservation cochlear implantation.
Honeder, Clemens; Zhu, Chengjing; Schöpper, Hanna; Gausterer, Julia Clara; Walter, Manuel; Landegger, Lukas David; Saidov, Nodir; Riss, Dominik; Plasenzotti, Roberto; Gabor, Franz; Arnoldner, Christoph
2016-11-01
It has been shown that glucocorticoids reduce the hearing threshold shifts associated with cochlear implantation. Previous studies evaluated the administration of glucocorticoids immediately before surgery or the repeated pre- or perioperative systemic application of glucocorticoids. The aim of this study was to evaluate the effects of a sustained release dexamethasone hydrogel in hearing preservation cochlear implantation. To address this issue, a guinea pig model of cochlear implantation was used. 30 normal hearing pigmented guinea pigs were randomized into a group receiving a single dose of a dexamethasone/poloxamer407 hydrogel one day prior to surgery, a second group receiving the hydrogel seven days prior to surgery and a control group. A silicone cochlear implant electrode designed for the use in guinea pigs was inserted to a depth of 5 mm through a cochleostomy. Compound action potentials of the auditory nerve (frequency range 0.5-32 kHz) were measured preoperatively, directly postoperatively and on postoperative days 3, 7, 14, 21 and 28. Following the last audiometry, temporal bones were harvested and histologically evaluated. Dexamethasone hydrogel application one day prior to surgery resulted in significantly reduced hearing threshold shifts at low, middle and high frequencies measured at postoperative day 28 (p < 0.05). Application of the hydrogel seven days prior to surgery did not show such an effect. Dexamethasone application one day prior to surgery resulted in increased outer hair cell counts in the cochlear apex and in reduced spiral ganglion cell counts in the basal and middle turn of the cochlea, a finding that was associated with a higher rate of electrode translocation in this group. In this study, we were able to demonstrate functional benefits of a single preoperative intratympanic application of a sustained release dexamethasone hydrogel in a guinea pig model of cochlear implantation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Aarhus, Lisa; Tambs, Kristian; Engdahl, Bo
2015-12-01
This study examined the association between time of onset of hearing loss (childhood vs. adulthood) and self-reported hearing handicap in adults. This is a population-based cohort study of 2,024 adults (mean = 48 years) with hearing loss (binaural pure-tone average 0.5-4 kHz ≥ 20 dB HL) who completed a hearing handicap questionnaire. In childhood, the same persons (N = 2,024) underwent audiometry in a school investigation (at ages 7, 10, and 13 years), in which 129 were diagnosed with sensorineural hearing loss (binaural pure-tone average 0.5-4 kHz ≥ 20 dB HL), whereas 1,895 had normal hearing thresholds. Hearing handicap was measured in adulthood as the sum-score of various speech perception and social impairment items (15 items). The sum-score increased with adult hearing threshold level (p < .001). After adjustment for adult hearing threshold level, hearing aid use, adult age, sex, and socioeconomic status, there was no significant difference in hearing handicap sum-score between the group with childhood-onset hearing loss (n = 129) and the group with adult-onset hearing loss (n = 1,895; p = .882). Self-reported hearing handicap in adults increased with hearing threshold level. After adjustment for adult hearing threshold level, this cohort study revealed no significant association between time of onset of hearing loss (childhood vs. adulthood) and self-reported hearing handicap.
Tambs, Kristian; Engdahl, Bo
2015-01-01
Purpose This study examined the association between time of onset of hearing loss (childhood vs. adulthood) and self-reported hearing handicap in adults. Methods This is a population-based cohort study of 2,024 adults (mean = 48 years) with hearing loss (binaural pure-tone average 0.5–4 kHz ≥ 20 dB HL) who completed a hearing handicap questionnaire. In childhood, the same persons (N = 2,024) underwent audiometry in a school investigation (at ages 7, 10, and 13 years), in which 129 were diagnosed with sensorineural hearing loss (binaural pure-tone average 0.5–4 kHz ≥ 20 dB HL), whereas 1,895 had normal hearing thresholds. Results Hearing handicap was measured in adulthood as the sum-score of various speech perception and social impairment items (15 items). The sum-score increased with adult hearing threshold level (p < .001). After adjustment for adult hearing threshold level, hearing aid use, adult age, sex, and socioeconomic status, there was no significant difference in hearing handicap sum-score between the group with childhood-onset hearing loss (n = 129) and the group with adult-onset hearing loss (n = 1,895; p = .882). Conclusion Self-reported hearing handicap in adults increased with hearing threshold level. After adjustment for adult hearing threshold level, this cohort study revealed no significant association between time of onset of hearing loss (childhood vs. adulthood) and self-reported hearing handicap. PMID:26649831
Inquiring Ears Want to Know: A Fact Sheet about Your Hearing Test
... track changes in hearing over time • Your hearing threshold levels (the quietest sounds you can hear) are ... Do I have normal hearing? Compare your hearing threshold levels to this scale: -10 – 25 dB 26 – ...
Kerketta, Sunamani; Gartia, Rajendra; Bagh, Somanath
2012-01-01
Objectives: The aims of the study were to describe the noise levels at an open cast chromite mine in Odisha, India, and the hearing threshold of its workers and to associate their hearing loss with their age, work station and length of employment at the mine. Methods: We performed a cross-sectional study of the hearing threshold of chromite mine workers. Audiometric data from 500 subjects was collected at the mines’ hospital in the Sukinda Valley of Jajpur, Odisha, India. The latest audiometry data available for the period 2002 to 2008 was used in the analysis. Audiometric screening was performed using an audiometer (TRIVENI TAM-25 6025A) in a quiet environment by qualified technicians, audiologists or physicians. Tests were conducted on the subjects after they had completely rested for 16 hours or more after their day shift. Results: A maximum of 262 subjects (52.4%) were employed in the work zone area and a minimum of 2 subjects (0.4%) had less than 5 years working experience. The age of the subjects ranged from 29 to 59 years and their working experience ranged from 4 to 37 years. The subjects’ average mean hearing thresholds at 4, 6 and 8 kHz were 21.53 dBA, 23.40 dBA and 21.90 dBA, respectively. The maximum Leq and L90 levels exceeded the prescribed limits for commercial, residential and silence zones. The maximum Leq levels exceeded 95 dBA for large and medium heavy earth moving machineries (HEMMs), both outside and at the operator’s position. Hearing loss due to the subjects’ work experience was found to be greater than that attributable to age and workstation. Conclusion: In our study population, the maximum noise levels for large and medium HEMMs and inside the cabins of HEMMs were found to be more than 95 dBA. This indicates that operators in this particular chromite mine at Odisha, India were exposed to noise levels exceeding 95 dBA for more than 10% of the monitoring time. The subjects’ hearing loss was also found to increase for every 10-year age interval and that for every 5 years of work experience at high fence. The subjects’ age and experience are significantly associated with hearing loss at all levels for frequencies of 4.0, 6.0, and 8.0 kHz, with older and more experienced workers having a higher incidence of hearing loss. PMID:23613650
Kerketta, Sunamani; Gartia, Rajendra; Bagh, Somanath
2012-10-01
The aims of the study were to describe the noise levels at an open cast chromite mine in Odisha, India, and the hearing threshold of its workers and to associate their hearing loss with their age, work station and length of employment at the mine. We performed a cross-sectional study of the hearing threshold of chromite mine workers. Audiometric data from 500 subjects was collected at the mines' hospital in the Sukinda Valley of Jajpur, Odisha, India. The latest audiometry data available for the period 2002 to 2008 was used in the analysis. Audiometric screening was performed using an audiometer (TRIVENI TAM-25 6025A) in a quiet environment by qualified technicians, audiologists or physicians. Tests were conducted on the subjects after they had completely rested for 16 hours or more after their day shift. A maximum of 262 subjects (52.4%) were employed in the work zone area and a minimum of 2 subjects (0.4%) had less than 5 years working experience. The age of the subjects ranged from 29 to 59 years and their working experience ranged from 4 to 37 years. The subjects' average mean hearing thresholds at 4, 6 and 8 kHz were 21.53 dBA, 23.40 dBA and 21.90 dBA, respectively. The maximum Leq and L90 levels exceeded the prescribed limits for commercial, residential and silence zones. The maximum Leq levels exceeded 95 dBA for large and medium heavy earth moving machineries (HEMMs), both outside and at the operator's position. Hearing loss due to the subjects' work experience was found to be greater than that attributable to age and workstation. In our study population, the maximum noise levels for large and medium HEMMs and inside the cabins of HEMMs were found to be more than 95 dBA. This indicates that operators in this particular chromite mine at Odisha, India were exposed to noise levels exceeding 95 dBA for more than 10% of the monitoring time. The subjects' hearing loss was also found to increase for every 10-year age interval and that for every 5 years of work experience at high fence. The subjects' age and experience are significantly associated with hearing loss at all levels for frequencies of 4.0, 6.0, and 8.0 kHz, with older and more experienced workers having a higher incidence of hearing loss.
A study of the high-frequency hearing thresholds of dentistry professionals
Lopes, Andréa Cintra; de Melo, Ana Dolores Passarelli; Santos, Cibele Carmelo
2012-01-01
Summary Introduction: In the dentistry practice, dentists are exposed to harmful effects caused by several factors, such as the noise produced by their work instruments. In 1959, the American Dental Association recommended periodical hearing assessments and the use of ear protectors. Aquiring more information regarding dentists', dental nurses', and prosthodontists' hearing abilities is necessary to propose prevention measures and early treatment strategies. Objective: To investigate the auditory thresholds of dentists, dental nurses, and prosthodontists. Method: In this clinical and experimental study, 44 dentists (Group I; GI), 36 dental nurses (Group II; GII), and 28 prosthodontists (Group III; GIII) were included, , with a total of 108 professionals. The procedures that were performed included a specific interview, ear canal inspection, conventional and high-frequency threshold audiometry, a speech reception threshold test, and an acoustic impedance test. Results: In the 3 groups that were tested, the comparison between the mean hearing thresholds provided evidence of worsened hearing ability relative to the increase in frequency. For the tritonal mean at 500 to 2,000 Hz and 3,000 to 6,000 Hz, GIII presented the worst thresholds. For the mean of the high frequencies (9,000 and 16,000 Hz), GII presented the worst thresholds. Conclusion: The conventional hearing threshold evaluation did not demonstrate alterations in the 3 groups that were tested; however, the complementary tests such as high-frequency audiometry provided greater efficacy in the early detection of hearing problems, since this population's hearing loss impaired hearing ability at frequencies that are not tested by the conventional tests. Therefore, we emphasize the need of utilizing high-frequency threshold audiometry in the hearing assessment routine in combination with other audiological tests. PMID:25991940
The influence of music and stress on musicians' hearing
NASA Astrophysics Data System (ADS)
Kähäri, Kim; Zachau, Gunilla; Eklöf, Mats; Möller, Claes
2004-10-01
Hearing and hearing disorders among classical and rock/jazz musicians was investigated. Pure tone audiometry was done in 140 classical and 139 rock/jazz musicians. The rock/jazz musicians answered a questionnaire concerning hearing disorders and psychosocial exposure. All results were compared to age appropriate reference materials. Hearing thresholds showed a notch configuration in both classical and rock/jazz musicians indicating the inclusion of high sound levels but an overall well-preserved hearing thresholds. Female musicians had significantly better hearing thresholds in the high-frequency area than males. Rock/jazz musicians showed slight worse hearing thresholds as compared to classical musicians. When assessing hearing disorders, a large number of rock/jazz musicians suffered from different hearing disorders (74%). Hearing loss, tinnitus and hyperacusis were the most common disorders and were significantly more frequent in comparison with different reference populations. Among classical musicians, no extended negative progress of the pure tone hearing threshold values was found in spite of the continued 16 years of musical noise exposure. In rock/jazz musicians, there was no relationships between psychosocial factors at work and hearing disorders. The rock/jazz musicians reported low stress and high degree of energy. On the average, the rock/jazz musicians reported higher control, lower stress and higher energy than a reference material of white-collar workers.
Gyo, K; Yanagihara, N
1986-01-01
Ossicular mobility was assessed by direct coupling of a piezoelectric ceramic vibrator to the ossicles during middle ear surgery. The sites excited were body of the incus, head of the stapes, and footplate of the stapes through a hydroxyapatite ceramic strut. The threshold of the vibratory hearing was determined by the patient's response as a minimum audition, and the vibration threshold was obtained by subtracting the preoperative bone conduction threshold from the vibratory hearing threshold. The results were analyzed by the state of hearing after the operation, which revealed that a patient with a good vibration threshold during the operation had a tendency to get good postoperative hearing. This may mean that postoperative hearing can be predicted to some extent during the operation by the measurement of ossicular mobility.
Biassoni, Ester C; Serra, Mario R; Hinalaf, María; Abraham, Mónica; Pavlik, Marta; Villalobo, Jorge Pérez; Curet, Carlos; Joekes, Silvia; Yacci, María R; Righetti, Andrea
2014-01-01
Young people expose themselves to potentially damaging loud sounds while leisure activities and noise induced hearing loss is diagnosed in increasing number of adolescents. Hearing and music exposure in a group of adolescents of a technical high school was assessed at the ages of: 14-15 (test) and 17-18 (retest). The aims of the current study were: (1) To compare the auditory function between test and retest; (2) to compare the musical exposure levels during recreational activities in test and retest; (3) to compare the auditory function with the musical exposure along time in a subgroup of adolescents. The participants in the test were 172 male; in the retest, this number was reduced to 59. At the test and retest the conventional and extended high frequency audiometry, transient evoked otoacoustic emissions (TEOAEs) and recreational habits questionnaire were performed. In the test, hearing threshold levels (HTLs) were classified as: Normal (Group 1), slightly shifted (Group 2), and significantly shifted (Group 3); the Musical General Exposure (MGE), categorized in: Low, moderate, high, and very high exposure. The results revealed a significant difference (P < 0.0001) between test and retest in the HTL and global amplitude of TEOAEs in Group 1, showing an increase of the HTL and a decrease TEOAEs amplitude. A subgroup of adolescents, with normal hearing and low exposure to music in the test, showed an increase of the HTL according with the categories of MGE in the retest. To implement educational programs for assessing hearing function, ear vulnerability and to promote hearing health, would be advisable.
Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise.
Nechaev, Dmitry I; Milekhina, Olga N; Supin, Alexander Ya
2015-01-01
The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels.
Hearing Sensitivity to Shifts of Rippled-Spectrum Sound Signals in Masking Noise
Nechaev, Dmitry I.; Milekhina, Olga N.; Supin, Alexander Ya.
2015-01-01
The goal of the study was to enlarge knowledge of discrimination of complex sound signals by the auditory system in masking noise. For that, influence of masking noise on detection of shift of rippled spectrum was studied in normal listeners. The signal was a shift of ripple phase within a 0.5-oct wide rippled spectrum centered at 2 kHz. The ripples were frequency-proportional (throughout the band, ripple spacing was a constant proportion of the ripple center frequency). Simultaneous masker was a 0.5-oct noise below-, on-, or above the signal band. Both the low-frequency (center frequency 1 kHz) and on-frequency (the same center frequency as for the signal) maskers increased the thresholds for detecting ripple phase shift. However, the threshold dependence on the masker level was different for these two maskers. For the on-frequency masker, the masking effect primarily depended on the masker/signal ratio: the threshold steeply increased at a ratio of 5 dB, and no shift was detectable at a ratio of 10 dB. For the low-frequency masker, the masking effect primarily depended on the masker level: the threshold increased at a masker level of 80 dB SPL, and no shift was detectable at a masker level of 90 dB (for a signal level of 50 dB) or 100 dB (for a signal level of 80 dB). The high-frequency masker had little effect. The data were successfully simulated using an excitation-pattern model. In this model, the effect of the on-frequency masker appeared to be primarily due to a decrease of ripple depth. The effect of the low-frequency masker appeared due to widening of the auditory filters at high sound levels. PMID:26462066
Pfiffner, Flurin; Kompis, Martin; Stieger, Christof
2009-10-01
To investigate correlations between preoperative hearing thresholds and postoperative aided thresholds and speech understanding of users of Bone-anchored Hearing Aids (BAHA). Such correlations may be useful to estimate the postoperative outcome with BAHA from preoperative data. Retrospective case review. Tertiary referral center. : Ninety-two adult unilaterally implanted BAHA users in 3 groups: (A) 24 subjects with a unilateral conductive hearing loss, (B) 38 subjects with a bilateral conductive hearing loss, and (C) 30 subjects with single-sided deafness. Preoperative air-conduction and bone-conduction thresholds and 3-month postoperative aided and unaided sound-field thresholds as well as speech understanding using German 2-digit numbers and monosyllabic words were measured and analyzed. Correlation between preoperative air-conduction and bone-conduction thresholds of the better and of the poorer ear and postoperative aided thresholds as well as correlations between gain in sound-field threshold and gain in speech understanding. Aided postoperative sound-field thresholds correlate best with BC threshold of the better ear (correlation coefficients, r2 = 0.237 to 0.419, p = 0.0006 to 0.0064, depending on the group of subjects). Improvements in sound-field threshold correspond to improvements in speech understanding. When estimating expected postoperative aided sound-field thresholds of BAHA users from preoperative hearing thresholds, the BC threshold of the better ear should be used. For the patient groups considered, speech understanding in quiet can be estimated from the improvement in sound-field thresholds.
Relationship Between Audio-Vestibular Functional Tests and Inner Ear MRI in Meniere's Disease.
Quatre, Raphaële; Attyé, Arnaud; Karkas, Alexandre; Job, Agnès; Dumas, Georges; Schmerber, Sébastien
2018-04-25
Meniere's disease is an inner ear disorder generally attributed to an endolymphatic hydrops. Different electrophysiological tests and imaging techniques have been developed to improve endolymphatic hydrops diagnosis. The goal of our study was to compare the sensitivity and the specificity of delayed inner ear magnetic resonance imaging (MRI) after intravenous injection of gadolinium with extratympanic clicks electrocochleography (EcochG), phase shift of distortion product otoacoustic emissions (shift-DPOAEs), and cervical vestibular-evoked myogenic potentials (cVEMP) for the diagnosis of Meniere's disease. Forty-one patients, with a total of 50 affected ears, were included prospectively from April 2015 to April 2016 in our institution. Patients included had definite or possible Meniere's disease based on the latest American Academy of Otolaryngology-Head and Neck Surgery guidelines revised in 2015. All patients went through delayed inner ear MRI after intravenous injection of gadolinium (three dimension-fluid attenuated inversion recovery sequences), pure-tone audiometry, extratympanic clicks EcochG, shift-DPOAEs, and cVEMP on the same day. Endolymphatic hydrops was graded on MRI using the saccule to utricle ratio inversion defined as when the saccule appeared equal or larger than the utricle. Abnormal EcochG and shift-DPOAEs in patients with definite Meniere's disease (DMD) were found in 68 and 64.5%, respectively. The two methods were significantly associated in DMD group. In DMD group, 25.7% had a positive MRI. The correlation between MRI versus EcochG and MRI versus shift-DPOAEs was not significant. MRI hydrops detection was correlated with hearing loss. Finally, 22.9% of DMD group had positive cVEMP. EcochG and shift-DPOAEs were both well correlated with clinical criteria of Meniere's disease. Inner ear MRI showed hydrops when hearing loss was higher than 35 dB. The shift-DPOAEs presented the advantage of a rapid and easy measurement if DPOAEs could be recorded (i.e., hearing threshold <60dB). In contrast, EcochG can be performed regardless of hearing loss. In combination with shift-DPOAEs, it enhances the chances to confirm the diagnosis with a better confidence.
Gifford, René H.; Grantham, D. Wesley; Sheffield, Sterling W.; Davis, Timothy J.; Dwyer, Robert; Dorman, Michael F.
2014-01-01
The purpose of this study was to investigate horizontal plane localization and interaural time difference (ITD) thresholds for 14 adult cochlear implant recipients with hearing preservation in the implanted ear. Localization to broadband noise was assessed in an anechoic chamber with a 33-loudspeaker array extending from −90 to +90°. Three listening conditions were tested including bilateral hearing aids, bimodal (implant + contralateral hearing aid) and best aided (implant + bilateral hearing aids). ITD thresholds were assessed, under headphones, for low-frequency stimuli including a 250-Hz tone and bandpass noise (100–900 Hz). Localization, in overall rms error, was significantly poorer in the bimodal condition (mean: 60.2°) as compared to both bilateral hearing aids (mean: 46.1°) and the best-aided condition (mean: 43.4°). ITD thresholds were assessed for the same 14 adult implant recipients as well as 5 normal-hearing adults. ITD thresholds were highly variable across the implant recipients ranging from the range of normal to ITDs not present in real-world listening environments (range: 43 to over 1600 μs). ITD thresholds were significantly correlated with localization, the degree of interaural asymmetry in low-frequency hearing, and the degree of hearing preservation related benefit in the speech reception threshold (SRT). These data suggest that implant recipients with hearing preservation in the implanted ear have access to binaural cues and that the sensitivity to ITDs is significantly correlated with localization and degree of preserved hearing in the implanted ear. PMID:24607490
Gifford, René H; Grantham, D Wesley; Sheffield, Sterling W; Davis, Timothy J; Dwyer, Robert; Dorman, Michael F
2014-06-01
The purpose of this study was to investigate horizontal plane localization and interaural time difference (ITD) thresholds for 14 adult cochlear implant recipients with hearing preservation in the implanted ear. Localization to broadband noise was assessed in an anechoic chamber with a 33-loudspeaker array extending from -90 to +90°. Three listening conditions were tested including bilateral hearing aids, bimodal (implant + contralateral hearing aid) and best aided (implant + bilateral hearing aids). ITD thresholds were assessed, under headphones, for low-frequency stimuli including a 250-Hz tone and bandpass noise (100-900 Hz). Localization, in overall rms error, was significantly poorer in the bimodal condition (mean: 60.2°) as compared to both bilateral hearing aids (mean: 46.1°) and the best-aided condition (mean: 43.4°). ITD thresholds were assessed for the same 14 adult implant recipients as well as 5 normal-hearing adults. ITD thresholds were highly variable across the implant recipients ranging from the range of normal to ITDs not present in real-world listening environments (range: 43 to over 1600 μs). ITD thresholds were significantly correlated with localization, the degree of interaural asymmetry in low-frequency hearing, and the degree of hearing preservation related benefit in the speech reception threshold (SRT). These data suggest that implant recipients with hearing preservation in the implanted ear have access to binaural cues and that the sensitivity to ITDs is significantly correlated with localization and degree of preserved hearing in the implanted ear. Copyright © 2014. Published by Elsevier B.V.
Cochlear Implant Electrode Array From Partial to Full Insertion in Non-Human Primate Model.
Manrique-Huarte, Raquel; Calavia, Diego; Gallego, Maria Antonia; Manrique, Manuel
2018-04-01
To determine the feasibility of progressive insertion (two sequential surgeries: partial to full insertion) of an electrode array and to compare functional outcomes. 8 normal-hearing animals (Macaca fascicularis (MF)) were included. A 14 contact electrode array, which is suitably sized for the MF cochlea was partially inserted (PI) in 16 ears. After 3 months of follow-up revision surgery the electrode was advanced to a full insertion (FI) in 8 ears. Radiological examination and auditory testing was performed monthly for 6 months. In order to compare the values a two way repeated measures ANOVA was used. A p-value below 0.05 was considered as statistically significant. IBM SPSS Statistics V20 was used. Surgical procedure was completed in all cases with no complications. Mean auditory threshold shift (ABR click tones) after 6 months follow-up is 19 dB and 27 dB for PI and FI group. For frequencies 4, 6, 8, 12, and 16 kHz in the FI group, tone burst auditory thresholds increased after the revision surgery showing no recovery thereafter. Mean threshold shift at 6 months of follow- up is 19.8 dB ranging from 2 to 36dB for PI group and 33.14dB ranging from 8 to 48dB for FI group. Statistical analysis yields no significant differences between groups. It is feasible to perform a partial insertion of an electrode array and progress on a second surgical time to a full insertion (up to 270º). Hearing preservation is feasible for both procedures. Note that a minimal threshold deterioration is depicted among full insertion group, especially among high frequencies, with no statistical differences.
Implications of Minimizing Trauma During Conventional Cochlear Implantation
Carlson, Matthew L.; Driscoll, Colin L. W.; Gifford, René H.; Service, Geoffrey J.; Tombers, Nicole M.; Hughes-Borst, Becky J.; Neff, Brian A.; Beatty, Charles W.
2014-01-01
Objective To describe the relationship between implantation-associated trauma and postoperative speech perception scores among adult and pediatric patients undergoing cochlear implantation using conventional length electrodes and minimally traumatic surgical techniques. Study Design Retrospective chart review (2002–2010). Setting Tertiary academic referral center. Patients All subjects with significant preoperative low-frequency hearing (≤70 dB HL at 250 Hz) who underwent cochlear implantation with a newer generation implant electrode (Nucleus Contour Advance, Advanced Bionics HR90K [1J and Helix], and Med El Sonata standard H array) were reviewed. Intervention(s) Preimplant and postimplant audiometric thresholds and speech recognition scores were recorded using the electronic medical record. Main Outcome Measure(s) Postimplantation pure tone threshold shifts were used as a surrogate measure for extent of intracochlear injury and correlated with postoperative speech perception scores. Results Between 2002 and 2010, 703 cochlear implant (CI) operations were performed. Data from 126 implants were included in the analysis. The mean preoperative low-frequency pure-tone average was 55.4 dB HL. Hearing preservation was observed in 55% of patients. Patients with hearing preservation were found to have significantly higher postoperative speech perception performance in the cochlear implantation-only condition than those who lost all residual hearing. Conclusion Conservation of acoustic hearing after conventional length cochlear implantation is unpredictable but remains a realistic goal. The combination of improved technology and refined surgical technique may allow for conservation of some residual hearing in more than 50% of patients. Germane to the conventional length CI recipient with substantial hearing loss, minimizing trauma allows for improved speech perception in the electric condition. These findings support the use of minimally traumatic techniques in all CI recipients, even those destined for electric-only stimulation. PMID:21659922
Discrimination of rippled-spectrum patterns in noise: A manifestation of compressive nonlinearity
Milekhina, Olga N.; Nechaev, Dmitry I.; Klishin, Vladimir O.
2017-01-01
In normal-hearing listeners, rippled-spectrum discrimination was psychophysically investigated in both silence and with a simultaneous masker background using the following two paradigms: measuring the ripple density resolution with the phase-reversal test and measuring the ripple-shift threshold with the ripple-shift test. The 0.5-oct wide signal was centered on 2 kHz, the signal levels were 50 and 80 dB SPL, and the masker levels varied from 30 to 100 dB SPL. The baseline ripple density resolutions were 8.7 oct-1 and 8.6 oct-1 for the 50-dB and 80-dB signals, respectively. The baseline ripple shift thresholds were 0.015 oct and 0.018 oct for the 50-dB and 80-dB signals, respectively. The maskers were 0.5-oct noises centered on 2 kHz (on-frequency) or 0.75 to 1.25 oct below the signal (off-frequency maskers). The effects of the maskers were as follows: (i) both on- and low-frequency maskers reduced the ripple density resolution and increased the ripple shift thresholds, (ii) the masker levels at threshold (the ripple density resolution decrease down to 3 oct–1 or ripple shift threshold increased up to 0.1 oct) increased with increasing frequency spacing between the signal and masker, (iii) the masker levels at threshold were higher for the 80-dB signal than for the 50-dB signal, and (iv) the difference between the masker levels at threshold for the 50-dB and 80-dB signals decreased with increasing frequency spacing between the masker and signal. Within the 30-dB (from 50 to 80 dB SPL) signal level, the growth of the masker level at threshold was 27.8 dB for the on-frequency masker and 9 dB for the low-frequency masker. It is assumed that the difference between the on- and low-frequency masking of the rippled-spectrum discrimination reflects the cochlear compressive non-linearity. With this assumption, the compression was 0.3 dB/dB. PMID:28346538
Controlling Mitochondrial Dynamics to Mitigate Noise-Induced Hearing Loss
2016-10-01
exposure significantly reduced noise-induced auditory threshold shifts in our mouse model of NIHL. Additionally, protection against outer hair cell...and at 6 hours post-noise exposure. ‐ Perform analysis of outer auditory hair cells and synaptic ribbons from the different treatment groups...have made progress towards the completion of the outer hair cell counts (OHC) for this Subtask, particularly for study groups (1) mdivi-1/vehicle, and
Threshold changes of ABR results in toddlers and children.
Louza, Julia; Polterauer, Daniel; Wittlinger, Natalie; Muzaini, Hanan Al; Scheckinger, Siiri; Hempel, Martin; Schuster, Maria
2016-06-01
Auditory brainstem response (ABR) is a clinically established method to identify the hearing threshold in young children and is regularly performed after hearing screening has failed. Some studies have shown that, after the first diagnosis of hearing impairment in ABR, further development takes place in a spectrum between progression of hearing loss and, surprisingly, hearing improvement. The aim of this study is to evaluate changes over time of auditory thresholds measured by ABR among young children. For this retrospective study, 459 auditory brainstem measurements were performed and analyzed between 2010 and 2014. Hearing loss was detected and assessed according to national guidelines. 104 right ears and 101 left ears of 116 children aged between 0 and 3 years with multiple ABR measurements were included. The auditory threshold was identified using click and/or NB-chirp-stimuli in natural sleep or in general anesthesia. The frequency of differences of at least more than 10dB between the measurements was identified. In 37 (35%) measurements of right ears and 38 (38%) of left ears there was an improvement of the auditory threshold of more than 10dB; in 27 of those measurements more than 20dB improvement was found. Deterioration was seen in 12% of the right ears and 10% of the left ears. Only half of the children had stable hearing thresholds in repeated measurements. The time between the measurements was on average 5 months (0 to 31 months). Hearing threshold changes are often seen in repeated ABR measurements. Therefore multiple measurements are necessary when ABR yields abnormal. Hearing threshold changes should be taken into account for hearing aid provision. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liberman, M C; Tartaglini, E; Fleming, J C; Neufeld, E J
2006-09-01
Mutations in the gene coding for the high-affinity thiamine transporter Slc19a2 underlie the clinical syndrome known as thiamine-responsive megaloblastic anemia (TRMA) characterized by anemia, diabetes, and sensorineural hearing loss. To create a mouse model of this disease, a mutant line was created with targeted disruption of the gene. Cochlear function is normal in these mutants when maintained on a high-thiamine diet. When challenged with a low-thiamine diet, Slc19a2-null mice showed 40-60 dB threshold elevations by auditory brainstem response (ABR), but only 10-20 dB elevation by otoacoustic emission (OAE) measures. Wild-type mice retain normal hearing on either diet. Cochlear histological analysis showed a pattern uncommon for sensorineural hearing loss: selective loss of inner hair cells after 1-2 weeks on low thiamine and significantly greater inner than outer hair cell loss after longer low-thiamine challenges. Such a pattern is consistent with the observed discrepancy between ABR and OAE threshold shifts. The possible role of thiamine transport in other reported cases of selective inner hair cell loss is considered.
Finneran, James J; Houser, Dorian S
2006-05-01
Traditional behavioral techniques for hearing assessment in marine mammals are limited by the time and access required to train subjects. Electrophysiological methods, where passive electrodes are used to measure auditory evoked potentials (AEPs), are attractive alternatives to behavioral techniques; however, there have been few attempts to compare AEP and behavioral results for the same subject. In this study, behavioral and AEP hearing thresholds were compared in four bottlenose dolphins. AEP thresholds were measured in-air using a piezoelectric sound projector embedded in a suction cup to deliver amplitude modulated tones to the dolphin through the lower jaw. Evoked potentials were recorded noninvasively using surface electrodes. Adaptive procedures allowed AEP hearing thresholds to be estimated from 10 to 150 kHz in a single ear in about 45 min. Behavioral thresholds were measured in a quiet pool and in San Diego Bay. AEP and behavioral threshold estimates agreed closely as to the upper cutoff frequency beyond which thresholds increased sharply. AEP thresholds were strongly correlated with pool behavioral thresholds across the range of hearing; differences between AEP and pool behavioral thresholds increased with threshold magnitude and ranged from 0 to + 18 dB.
Variation in the Hearing Threshold in Women during the Menstrual Cycle
Souza, Dayse da Silva; Luckwu, Brunna; Andrade, Wagner Teobaldo Lopes de; Pessoa, Luciane Spinelli de Figueiredo; Nascimento, João Agnaldo do; Rosa, Marine Raquel Diniz da
2017-01-01
Introduction The hormonal changes that occur during the menstrual cycle and their relationship with hearing problems have been studied. However, they have not been well explained. Objective The objective of our study is to investigate the variation in hearing thresholds in women during the menstrual cycle. Method We conducted a cohort and longitudinal study. It was composed of 30 volunteers, aged 18–39 years old, of which 20 were women during the phases of the menstrual cycle and 10 were men (control group) who underwent audiometry and impedance exams, to correlate the possible audiological changes in each phase of the menstrual cycle. Results There were significant changes in hearing thresholds observed during the menstrual cycle phases in the group of women who used hormonal contraceptives and the group who did not use such contraceptives. Improved hearing thresholds were observed in the late follicular phase in the group who did not use hormonal contraceptives and the hearing thresholds at high frequencies were better. Throughout the menstrual cycle phases, the mean variation was 3.6 db HL between weeks in the group who used hormonal contraceptives and 4.09 db HL in the group who did not use them. Conclusions The present study found that there may be a relationship between hearing changes and hormonal fluctuations during the menstrual cycle based on changes in the hearing thresholds of women. In addition, this study suggests that estrogen has an otoprotective effect on hearing, since the best hearing thresholds were found when estrogen was at its maximum peak. PMID:29018493
Variation in the Hearing Threshold in Women during the Menstrual Cycle.
Souza, Dayse da Silva; Luckwu, Brunna; Andrade, Wagner Teobaldo Lopes de; Pessoa, Luciane Spinelli de Figueiredo; Nascimento, João Agnaldo do; Rosa, Marine Raquel Diniz da
2017-10-01
Introduction The hormonal changes that occur during the menstrual cycle and their relationship with hearing problems have been studied. However, they have not been well explained. Objective The objective of our study is to investigate the variation in hearing thresholds in women during the menstrual cycle. Method We conducted a cohort and longitudinal study. It was composed of 30 volunteers, aged 18-39 years old, of which 20 were women during the phases of the menstrual cycle and 10 were men (control group) who underwent audiometry and impedance exams, to correlate the possible audiological changes in each phase of the menstrual cycle. Results There were significant changes in hearing thresholds observed during the menstrual cycle phases in the group of women who used hormonal contraceptives and the group who did not use such contraceptives. Improved hearing thresholds were observed in the late follicular phase in the group who did not use hormonal contraceptives and the hearing thresholds at high frequencies were better. Throughout the menstrual cycle phases, the mean variation was 3.6 db HL between weeks in the group who used hormonal contraceptives and 4.09 db HL in the group who did not use them. Conclusions The present study found that there may be a relationship between hearing changes and hormonal fluctuations during the menstrual cycle based on changes in the hearing thresholds of women. In addition, this study suggests that estrogen has an otoprotective effect on hearing, since the best hearing thresholds were found when estrogen was at its maximum peak.
Chordekar, Shai; Perez, Ronen; Adelman, Cahtia; Sohmer, Haim; Kishon-Rabin, Liat
2018-04-03
Hearing can be elicited in response to bone as well as soft-tissue stimulation. However, the underlying mechanism of soft-tissue stimulation is under debate. It has been hypothesized that if skull vibrations were the underlying mechanism of hearing in response to soft-tissue stimulation, then skull vibrations would be associated with hearing thresholds. However, if skull vibrations were not associated with hearing thresholds, an alternative mechanism is involved. In the present study, both skull vibrations and hearing thresholds were assessed in the same participants in response to bone (mastoid) and soft-tissue (neck) stimulation. The experimental group included five hearing-impaired adults in whom a bone-anchored hearing aid was implanted due to conductive or mixed hearing loss. Because the implant is exposed above the skin and has become an integral part of the temporal bone, vibration of the implant represented skull vibrations. To ensure that middle-ear pathologies of the experimental group did not affect overall results, hearing thresholds were also obtained in 10 participants with normal hearing in response to stimulation at the same sites. We found that the magnitude of the bone vibrations initiated by the stimulation at the two sites (neck and mastoid) detected by the laser Doppler vibrometer on the bone-anchored implant were linearly related to stimulus intensity. It was therefore possible to extrapolate the vibration magnitudes at low-intensity stimulation, where poor signal-to-noise ratio limited actual recordings. It was found that the vibration magnitude differences (between soft-tissue and bone stimulation) were not different than the hearing threshold differences at the tested frequencies. Results of the present study suggest that bone vibration magnitude differences can adequately explain hearing threshold differences and are likely to be responsible for the hearing sensation. Thus, the present results support the idea that bone and soft-tissue conduction could share the same underlying mechanism, namely the induction of bone vibrations. Studies with the present methodology should be continued in future work in order to obtain further insight into the underlying mechanism of activation of the hearing system. Copyright © 2018 Elsevier B.V. All rights reserved.
Central masking with bilateral cochlear implants
Lin, Payton; Lu, Thomas; Zeng, Fan-Gang
2013-01-01
Across bilateral cochlear implants, contralateral threshold shift has been investigated as a function of electrode difference between the masking and probe electrodes. For contralateral electric masking, maximum threshold elevations occurred when the position of the masker and probe electrode was approximately place-matched across ears. The amount of masking diminished with increasing masker-probe electrode separation. Place-dependent masking occurred in both sequentially implanted ears, and was not affected by the masker intensity or the time delay from the masker onset. When compared to previous contralateral masking results in normal hearing, the similarities between place-dependent central masking patterns suggest comparable mechanisms of overlapping excitation in the central auditory nervous system. PMID:23363113
Why is auditory frequency weighting so important in regulation of underwater noise?
Tougaard, Jakob; Dähne, Michael
2017-10-01
A key question related to regulating noise from pile driving, air guns, and sonars is how to take into account the hearing abilities of different animals by means of auditory frequency weighting. Recordings of pile driving sounds, both in the presence and absence of a bubble curtain, were evaluated against recent thresholds for temporary threshold shift (TTS) for harbor porpoises by means of four different weighting functions. The assessed effectivity, expressed as time until TTS, depended strongly on choice of weighting function: 2 orders of magnitude larger for an audiogram-weighted TTS criterion relative to an unweighted criterion, highlighting the importance of selecting the right frequency weighting.
Assessment of Marine Mammal Impact Zones for Use of Military Sonar in the Baltic Sea.
Andersson, Mathias H; Johansson, Torbjörn
2016-01-01
Military sonars are known to have caused cetaceans to strand. Navies in shallow seas use different frequencies and sonar pulses, commonly frequencies between 25 and 100 kHz, compared with most studied NATO sonar systems that have been evaluated for their environmental impact. These frequencies match the frequencies of best hearing in the harbor porpoises and seals resident in the Baltic Sea. This study uses published temporary and permanent threshold shifts, measured behavioral response thresholds, technical specifications of a sonar system, and environmental parameters affecting sound propagation common for the Baltic Sea to estimate the impact zones for harbor porpoises and seals.
Automated Smartphone Threshold Audiometry: Validity and Time Efficiency.
van Tonder, Jessica; Swanepoel, De Wet; Mahomed-Asmail, Faheema; Myburgh, Hermanus; Eikelboom, Robert H
2017-03-01
Smartphone-based threshold audiometry with automated testing has the potential to provide affordable access to audiometry in underserved contexts. To validate the threshold version (hearTest) of the validated hearScreen™ smartphone-based application using inexpensive smartphones (Android operating system) and calibrated supra-aural headphones. A repeated measures within-participant study design was employed to compare air-conduction thresholds (0.5-8 kHz) obtained through automated smartphone audiometry to thresholds obtained through conventional audiometry. A total of 95 participants were included in the study. Of these, 30 were adults, who had known bilateral hearing losses of varying degrees (mean age = 59 yr, standard deviation [SD] = 21.8; 56.7% female), and 65 were adolescents (mean age = 16.5 yr, SD = 1.2; 70.8% female), of which 61 had normal hearing and the remaining 4 had mild hearing losses. Threshold comparisons were made between the two test procedures. The Wilcoxon signed-ranked test was used for comparison of threshold correspondence between manual and smartphone thresholds and the paired samples t test was used to compare test time. Within the adult sample, 94.4% of thresholds obtained through smartphone and conventional audiometry corresponded within 10 dB or less. There was no significant difference between smartphone (6.75-min average, SD = 1.5) and conventional audiometry test duration (6.65-min average, SD = 2.5). Within the adolescent sample, 84.7% of thresholds obtained at 0.5, 2, and 4 kHz with hearTest and conventional audiometry corresponded within ≤5 dB. At 1 kHz, 79.3% of the thresholds differed by ≤10 dB. There was a significant difference (p < 0.01) between smartphone (7.09 min, SD = 1.2) and conventional audiometry test duration (3.23 min, SD = 0.6). The hearTest application with calibrated supra-aural headphones provides a cost-effective option to determine valid air-conduction hearing thresholds. American Academy of Audiology
Jaruchinda, Pariyanan; Thongdeetae, Taninsak; Panichkul, Suthee; Hanchumpol, Pongtep
2005-11-01
Hearing impairment from noise exposure has been reported in fix-wing pilots, especially in civilized countries. However, there are few studies on rotary wing aviators and aircraft mechanics, especially in developing countries whose hearing conservative program is not well established. The present study, therefore, was done to evaluate the prevalence of noise induced hearing loss and the contributing factors that may effect both groups of noise-exposed population. Report questionnaires were reviewed and physical examination combined with audiometric records of 34 pilots and 42 mechanics in the Royal Thai Army Aviation Center, Lobburi, were examined. Hearing loss was studied using four categories of significant threshold shift (STS). Amplitude of noise radiated by aircraft was also measured at different distances. No significant difference was found in prevalence of hearing loss in aviators (32.4%) and aircraft mechanics (47.6%), but in the aircraft mechanics group there were more damage of frequency involvement including speech frequency and high frequency and more decibels loss than aviators. The type of hearing protection and smoking index were strongly correlated with hearing loss. Age, flight time and alcohol habit had no significant effect and ninety percent of the subjects had no self awareness of hearing loss. Aircraft mechanics had more severity on hearing loss than aviators. Types of noise protector and cigarette smoking had significant association with hearing loss.
Kastelein, Ronald A; Hoek, Lean; Gransier, Robin; Rambags, Martijn; Claeys, Naomi
2014-07-01
Safety criteria for underwater low-frequency active sonar sounds produced during naval exercises are needed to protect harbor porpoise hearing. As a first step toward defining criteria, a porpoise was exposed to sequences consisting of series of 1-s, 1-2 kHz sonar down-sweeps without harmonics (as fatiguing noise) at various combinations of average received sound pressure levels (SPLs; 144-179 dB re 1 μPa), exposure durations (1.9-240 min), and duty cycles (5%-100%). Hearing thresholds were determined for a narrow-band frequency-swept sine wave centered at 1.5 kHz before exposure to the fatiguing noise, and at 1-4, 4-8, 8-12, 48, 96, 144, and 1400 min after exposure, to quantify temporary threshold shifts (TTSs) and recovery of hearing. Results show that the inter-pulse interval of the fatiguing noise is an important parameter in determining the magnitude of noise-induced TTS. For the reported range of exposure combinations (duration and SPL), the energy of the exposure (i.e., cumulative sound exposure level; SELcum) can be used to predict the induced TTS, if the inter-pulse interval is known. Exposures with equal SELcum but with different inter-pulse intervals do not result in the same induced TTS.
Hearing threshold shifts and recovery after noise exposure in beluga whales, Delphinapterus leucas.
Popov, Vladimir V; Supin, Alexander Ya; Rozhnov, Viatcheslav V; Nechaev, Dmitry I; Sysuyeva, Evgenia V; Klishin, Vladimir O; Pletenko, Mikhail G; Tarakanov, Mikhail B
2013-05-01
Temporary threshold shift (TTS) after loud noise exposure was investigated in a male and a female beluga whale (Delphinapterus leucas). The thresholds were evaluated using the evoked-potential technique, which allowed for threshold tracing with a resolution of ~1 min. The fatiguing noise had a 0.5 octave bandwidth, with center frequencies ranging from 11.2 to 90 kHz, a level of 165 dB re. 1 μPa and exposure durations from 1 to 30 min. The effects of the noise were tested at probe frequencies ranging from -0.5 to +1.5 octaves relative to the noise center frequency. The effect was estimated in terms of both immediate (1.5 min) post-exposure TTS and recovery duration. The highest TTS with the longest recovery duration was produced by noises of lower frequencies (11.2 and 22.5 kHz) and appeared at a test frequency of +0.5 octave. At higher noise frequencies (45 and 90 kHz), the TTS decreased. The TTS effect gradually increased with prolonged exposures ranging from 1 to 30 min. There was a considerable TTS difference between the two subjects.
Durante, Alessandra Spada; Wieselberg, Margarita Bernal; Roque, Nayara; Carvalho, Sheila; Pucci, Beatriz; Gudayol, Nicolly; de Almeida, Kátia
The use of hearing aids by individuals with hearing loss brings a better quality of life. Access to and benefit from these devices may be compromised in patients who present difficulties or limitations in traditional behavioral audiological evaluation, such as newborns and small children, individuals with auditory neuropathy spectrum, autism, and intellectual deficits, and in adults and the elderly with dementia. These populations (or individuals) are unable to undergo a behavioral assessment, and generate a growing demand for objective methods to assess hearing. Cortical auditory evoked potentials have been used for decades to estimate hearing thresholds. Current technological advances have lead to the development of equipment that allows their clinical use, with features that enable greater accuracy, sensitivity, and specificity, and the possibility of automated detection, analysis, and recording of cortical responses. To determine and correlate behavioral auditory thresholds with cortical auditory thresholds obtained from an automated response analysis technique. The study included 52 adults, divided into two groups: 21 adults with moderate to severe hearing loss (study group); and 31 adults with normal hearing (control group). An automated system of detection, analysis, and recording of cortical responses (HEARLab ® ) was used to record the behavioral and cortical thresholds. The subjects remained awake in an acoustically treated environment. Altogether, 150 tone bursts at 500, 1000, 2000, and 4000Hz were presented through insert earphones in descending-ascending intensity. The lowest level at which the subject detected the sound stimulus was defined as the behavioral (hearing) threshold (BT). The lowest level at which a cortical response was observed was defined as the cortical electrophysiological threshold. These two responses were correlated using linear regression. The cortical electrophysiological threshold was, on average, 7.8dB higher than the behavioral for the group with hearing loss and, on average, 14.5dB higher for the group without hearing loss for all studied frequencies. The cortical electrophysiological thresholds obtained with the use of an automated response detection system were highly correlated with behavioral thresholds in the group of individuals with hearing loss. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Koka, Kanthaiah; Saoji, Aniket A; Attias, Joseph; Litvak, Leonid M
2017-01-01
Although, cochlear implants (CI) traditionally have been used to treat individuals with bilateral profound sensorineural hearing loss, a recent trend is to implant individuals with residual low-frequency hearing. Notably, many of these individuals demonstrate an air-bone gap (ABG) in low-frequency, pure-tone thresholds following implantation. An ABG is the difference between audiometric thresholds measured using air conduction (AC) and bone conduction (BC) stimulation. Although, behavioral AC thresholds are straightforward to assess, BC thresholds can be difficult to measure in individuals with severe-to-profound hearing loss because of vibrotactile responses to high-level, low-frequency stimulation and the potential contribution of hearing in the contralateral ear. Because of these technical barriers to measuring behavioral BC thresholds in implanted patients with residual hearing, it would be helpful to have an objective method for determining ABG. This study evaluated an innovative technique for measuring electrocochleographic (ECochG) responses using the cochlear microphonic (CM) response to assess AC and BC thresholds in implanted patients with residual hearing. Results showed high correlations between CM thresholds and behavioral audiograms for AC and BC conditions, thereby demonstrating the feasibility of using ECochG as an objective tool for quantifying ABG in CI recipients.
Childhood Otitis Media: A Cohort Study With 30-Year Follow-Up of Hearing (The HUNT Study).
Aarhus, Lisa; Tambs, Kristian; Kvestad, Ellen; Engdahl, Bo
2015-01-01
To study the extent to which otitis media (OM) in childhood is associated with adult hearing thresholds. Furthermore, to study whether the effects of OM on adult hearing thresholds are moderated by age or noise exposure. Population-based cohort study of 32,786 participants who had their hearing tested by pure-tone audiometry in primary school and again at ages ranging from 20 to 56 years. Three thousand sixty-six children were diagnosed with hearing loss; the remaining sample had normal childhood hearing. Compared with participants with normal childhood hearing, those diagnosed with childhood hearing loss caused by otitis media with effusion (n = 1255), chronic suppurative otitis media (CSOM; n = 108), or hearing loss after recurrent acute otitis media (rAOM; n = 613) had significantly increased adult hearing thresholds in the whole frequency range (2 dB/17-20 dB/7-10 dB, respectively). The effects were adjusted for age, sex, and noise exposure. Children diagnosed with hearing loss after rAOM had somewhat improved hearing thresholds as adults. The effects of CSOM and hearing loss after rAOM on adult hearing thresholds were larger in participants tested in middle adulthood (ages 40 to 56 years) than in those tested in young adulthood (ages 20 to 40 years). Eardrum pathology added a marginally increased risk of adult hearing loss (1-3 dB) in children with otitis media with effusion or hearing loss after rAOM. The study could not reveal significant differences in the effect of self-reported noise exposure on adult hearing thresholds between the groups with OM and the group with normal childhood hearing. This cohort study indicates that CSOM and rAOM in childhood are associated with adult hearing loss, underlining the importance of optimal treatment in these conditions. It appears that ears with a subsequent hearing loss after OM in childhood age at a faster rate than those without; however this should be confirmed by studies with several follow-up tests through adulthood.
Motivation to Address Self-Reported Hearing Problems in Adults with Normal Hearing Thresholds
ERIC Educational Resources Information Center
Alicea, Carly C. M.; Doherty, Karen A.
2017-01-01
Purpose: The purpose of this study was to compare the motivation to change in relation to hearing problems in adults with normal hearing thresholds but who report hearing problems and that of adults with a mild-to-moderate sensorineural hearing loss. Factors related to their motivation were also assessed. Method: The motivation to change in…
Development of auditory sensitivity in budgerigars (Melopsittacus undulatus)
NASA Astrophysics Data System (ADS)
Brittan-Powell, Elizabeth F.; Dooling, Robert J.
2004-06-01
Auditory feedback influences the development of vocalizations in songbirds and parrots; however, little is known about the development of hearing in these birds. The auditory brainstem response was used to track the development of auditory sensitivity in budgerigars from hatch to 6 weeks of age. Responses were first obtained from 1-week-old at high stimulation levels at frequencies at or below 2 kHz, showing that budgerigars do not hear well at hatch. Over the next week, thresholds improved markedly, and responses were obtained for almost all test frequencies throughout the range of hearing by 14 days. By 3 weeks posthatch, birds' best sensitivity shifted from 2 to 2.86 kHz, and the shape of the auditory brainstem response (ABR) audiogram became similar to that of adult budgerigars. About a week before leaving the nest, ABR audiograms of young budgerigars are very similar to those of adult birds. These data complement what is known about vocal development in budgerigars and show that hearing is fully developed by the time that vocal learning begins.
Solid lipid nanoparticles loaded with edaravone for inner ear protection after noise exposure.
Gao, Gang; Liu, Ya; Zhou, Chang-Hua; Jiang, Ping; Sun, Jian-Jun
2015-01-20
Antioxidants and the duration of treatment after noise exposure on hearing recovery are important. We investigated the protective effects of an antioxidant substance, edaravone, and its slow-release dosage form, edaravone solid lipid nanoparticles (SLNs), in steady noise-exposed guinea pigs. SLNs loaded with edaravone were produced by an ultrasound technique. Edaravone solution or edaravone SLNs were administered by intratympanic or intravenous injection after the 1 st day of noise exposure. Guinea pigs were exposed to 110 dB sound pressure level (SPL) noise, centered at 0.25-4.0 kHz, for 4 days at 2 h/d. After noise exposure, the guinea pigs underwent auditory brainstem response (ABR) threshold measurements, reactive oxygen species (ROS) were detected in their cochleas with electron spin resonance (ESR), and outer hair cells (OHCs) were counted with silvernitrate (AgNO 3 ) staining at 1, 4, and 6 days. The ultrasound technique was able to prepare adequate edaravone SLNs with a mean particle size of 93.6 nm and entrapment efficiency of 76.7%. Acoustic stress-induced ROS formation and edaravone exerted a protective effect on the cochlea. Comparisons of hearing thresholds and ROS changes in different animal groups showed that the threshold shift and ROS generation were significantly lower in treated animals than in those without treatment, especially in the edaravone SLN intratympanic injection group. Edaravone SLNs show noticeable slow-release effects and have certain protective effects against noise-induced hearing loss (NIHL).
Solid Lipid Nanoparticles Loaded with Edaravone for Inner Ear Protection After Noise Exposure
Gao, Gang; Liu, Ya; Zhou, Chang-Hua; Jiang, Ping; Sun, Jian-Jun
2015-01-01
Background: Antioxidants and the duration of treatment after noise exposure on hearing recovery are important. We investigated the protective effects of an antioxidant substance, edaravone, and its slow-release dosage form, edaravone solid lipid nanoparticles (SLNs), in steady noise-exposed guinea pigs. Methods: SLNs loaded with edaravone were produced by an ultrasound technique. Edaravone solution or edaravone SLNs were administered by intratympanic or intravenous injection after the 1st day of noise exposure. Guinea pigs were exposed to 110 dB sound pressure level (SPL) noise, centered at 0.25–4.0 kHz, for 4 days at 2 h/d. After noise exposure, the guinea pigs underwent auditory brainstem response (ABR) threshold measurements, reactive oxygen species (ROS) were detected in their cochleas with electron spin resonance (ESR), and outer hair cells (OHCs) were counted with silvernitrate (AgNO3) staining at 1, 4, and 6 days. Results: The ultrasound technique was able to prepare adequate edaravone SLNs with a mean particle size of 93.6 nm and entrapment efficiency of 76.7%. Acoustic stress-induced ROS formation and edaravone exerted a protective effect on the cochlea. Comparisons of hearing thresholds and ROS changes in different animal groups showed that the threshold shift and ROS generation were significantly lower in treated animals than in those without treatment, especially in the edaravone SLN intratympanic injection group. Conclusions: Edaravone SLNs show noticeable slow-release effects and have certain protective effects against noise-induced hearing loss (NIHL). PMID:25591563
Field hearing measurements of the Atlantic sharpnose shark Rhizoprionodon terraenovae.
Casper, B M; Mann, D A
2009-12-01
Field measurements of hearing thresholds were obtained from the Atlantic sharpnose shark Rhizoprionodon terraenovae using the auditory evoked potential method (AEP). The fish had most sensitive hearing at 20 Hz, the lowest frequency tested, with decreasing sensitivity at higher frequencies. Hearing thresholds were lower than AEP thresholds previously measured for the nurse shark Ginglymostoma cirratum and yellow stingray Urobatis jamaicensis at frequencies <200 Hz, and similar at 200 Hz and above. Rhizoprionodon terraenovae represents the closest comparison in terms of pelagic lifestyle to the sharks which have been observed in acoustic field attraction experiments. The sound pressure levels that would be equivalent to the particle acceleration thresholds of R. terraenovae were much higher than the sound levels which attracted closely related sharks suggesting a discrepancy between the hearing threshold experiments and the field attraction experiments.
Hearing thresholds, tinnitus, and headphone listening habits in nine-year-old children.
Båsjö, Sara; Möller, Claes; Widén, Stephen; Jutengren, Göran; Kähäri, Kim
2016-10-01
Investigate hearing function and headphone listening habits in nine-year-old Swedish children. A cross-sectional study was conducted and included otoscopy, tympanometry, pure-tone audiometry, and spontaneous otoacoustic emissions (SOAE). A questionnaire was used to evaluate headphone listening habits, tinnitus, and hyperacusis. A total of 415 children aged nine years. The prevalence of a hearing threshold ≥20 dB HL at one or several frequencies was 53%, and the hearing thresholds at 6 and 8 kHz were higher than those at the low and mid frequencies. SOAEs were observed in 35% of the children, and the prevalence of tinnitus was 5.3%. No significant relationship between SOAE and tinnitus was found. Pure-tone audiometry showed poorer hearing thresholds in children with tinnitus and in children who regularly listened with headphones. The present study of hearing, listening habits, and tinnitus in nine-year old children is, to our knowledge, the largest study so far. The main findings were that hearing thresholds in the right ear were poorer in children who used headphones than in children not using them, which could be interpreted as headphone listening may have negative consequences to children's hearing. Children with tinnitus showed poorer hearing thresholds compared to children without tinnitus.
Infrasonic and low-frequency insert earphone hearing threshold.
Kuehler, Robert; Fedtke, Thomas; Hensel, Johannes
2015-04-01
Low-frequency and infrasonic pure-tone monaural hearing threshold data down to 2.5 Hz are presented. These measurements were made by means of a newly developed insert-earphone source. The source is able to generate pure-tone sound pressure levels up to 130 dB between 2 and 250 Hz with very low harmonic distortions. Behavioral hearing thresholds were determined in the frequency range from 2.5 to 125 Hz for 18 otologically normal test persons. The median hearing thresholds are comparable to values given in the literature. They are intended for stimulus calibration in subsequent brain imaging investigations.
Gu, Lintao; Cui, Xinhua; Wei, Wei; Yang, Jia; Li, Xuezhong
2017-11-15
Neural stem cells (NSCs) have exhibited promising potential in therapies against neuronal hearing loss. Ferulic acid (FA) has been widely reported to enhance neurogenic differentiation of different stem cells. We investigated the role of FA in promoting NSC transplant therapy to prevent gentamicin-induced neuronal hearing loss. NSCs were isolated from mouse cochlear tissues to establish in vitro culture, which were then treated with FA. The survival and differentiation of NSCs were evaluated. Subsequently, neurite outgrowth and excitability of the in vitro neuronal network were assessed. Gentamicin was used to induce neuronal hearing loss in mice, in the presence and absence of FA, followed by assessments of auditory brainstem response (ABR) and distortion product optoacoustic emissions (DPOAE) amplitude. FA promoted survival, neurosphere formation and differentiation of NSCs, as well as neurite outgrowth and excitability of in vitro neuronal network. Furthermore, FA restored ABR threshold shifts and DPOAE in gentamicin-induced neuronal hearing loss mouse model in vivo. Our data, for the first time, support potential therapeutic efficacy of FA in promoting survival and differentiation of NSCs to prevent gentamicin-induced neuronal hearing loss. Copyright © 2017 Elsevier Inc. All rights reserved.
Acoustic Issues in Human Spaceflight
NASA Technical Reports Server (NTRS)
Clark, Jonathan B.
2001-01-01
NASA is concerned about acute effect of sound on crew performance on International Space Station (ISS), and is developing strategies to assess and reduce acute, chronic, and delayed effects of sound. High noise levels can cause headaches, irritation, fatigue, impaired sleep, headache, and tinnitus and have resulted in an inability to hear alarms. Speech intelligibility may be more impaired for crew understanding non-native language in a noisy environment. No hearing loss occurred, but significant effects on crew performance and communication occurred. Permanent Threshold Shifts (PTS) have not been observed in the US shuttle program. Russian specification for noise in spacecraft is 60 dBA (awake) and 50 dBA (asleep) while the U.S. noise specification on ISS is NC 50 (awake) and NC 40 (asleep) with a 85 dBA hazard limit. Background noise levels of ISS modules have measured 56-69 dBA. Treadmill exercise operations measure 77 dBA. Alarms are required to be 20 dBA above ambient. Hearing protection is recommended when noise exceeds 60 dB 24 hour Leq. Countermeasures include hearing protection and design/ engineering controls. Advanced composite materials with excellent low frequency attenuation properties could be applied as a barrier protection around noisy equipment, or used on personal protective equipment worn by the crew. Hearing protection countermeasures include foam ear inserts, passive muff headsets, and active noise reduction headsets. Oto-acoustic emissions (OAE) could be used to monitor effectiveness of hearing protection countermeasures and tailor hearing protection countermeasures to individual crewmembers. Micro-gravity, vibration, toxic fumes, air quality/composition, stress, temperature, physical exertion or some combination of the above factors may have interacted with moderate long-term noise exposure to cause significant hearing loss. Longitudinal studies will need to address what co-morbidity factors, such as radiation, toxicology, microgravity effects (fluid shift), aging, are involved with hearing loss.
Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing.
Scheperle, Rachel A; Tejani, Viral D; Omtvedt, Julia K; Brown, Carolyn J; Abbas, Paul J; Hansen, Marlan R; Gantz, Bruce J; Oleson, Jacob J; Ozanne, Marie V
2017-07-01
This retrospective review explores delayed-onset hearing loss in 85 individuals receiving cochlear implants designed to preserve acoustic hearing at the University of Iowa Hospitals and Clinics between 2001 and 2015. Repeated measures of unaided behavioral audiometric thresholds, electrode impedance, and electrically evoked compound action potential (ECAP) amplitude growth functions were used to characterize longitudinal changes in auditory status. Participants were grouped into two primary categories according to changes in unaided behavioral thresholds: (1) stable hearing or symmetrical hearing loss and (2) delayed loss of hearing in the implanted ear. Thirty-eight percent of this sample presented with delayed-onset hearing loss of various degrees and rates of change. Neither array type nor insertion approach (round window or cochleostomy) had a significant effect on prevalence. Electrode impedance increased abruptly for many individuals exhibiting precipitous hearing loss; the increase was often transient. The impedance increases were significantly larger than the impedance changes observed for individuals with stable or symmetrical hearing loss. Moreover, the impedance changes were associated with changes in behavioral thresholds for individuals with a precipitous drop in behavioral thresholds. These findings suggest a change in the electrode environment coincident with the change in auditory status. Changes in ECAP thresholds, growth function slopes, and suprathreshold amplitudes were not correlated with changes in behavioral thresholds, suggesting that neural responsiveness in the region excited by the implant is relatively stable. Further exploration into etiology of delayed-onset hearing loss post implantation is needed, with particular interest in mechanisms associated with changes in the intracochlear environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Understanding an Audiogram. Tipsheet: Serving Students Who Are Hard of Hearing
ERIC Educational Resources Information Center
Johnson, Marni
2009-01-01
The type, degree, and configuration of hearing loss, if one is present, can be determined by reading an audiogram. The type of hearing loss is determined by comparing auditory thresholds obtained using head-phones or insert earphones (air-conduction thresholds) to those obtained using a bone oscillator (bone-conduction thresholds). By itself, the…
Blioskas, Sarantis; Tsalighopoulos, Miltiadis; Psillas, George; Markou, Konstantinos
2018-01-01
Aim: The aim of the present study was to explore the possible utility of otoacoustic emissions (OAEs) and efferent system strength to determine vulnerability to noise exposure in a clinical setting. Materials and Methods: The study group comprised 344 volunteers who had just begun mandatory basic training as Hellenic Corps Officers Military Academy cadets. Pure-tone audiograms were obtained on both ears. Participants were also subjected to diagnostic transient-evoked otoacoustic emissions (TEOAEs). Finally, they were all tested for efferent function through the suppression of TEOAEs with contralateral noise. Following baseline evaluation, all cadets fired 10 rounds using a 7.62 mm Heckler & Koch G3A3 assault rifle while lying down in prone position. Immediately after exposure to gunfire noise and no later than 10 h, all participants completed an identical protocol for a second time, which was then repeated a third time, 30 days later. Results: The data showed that after the firing drill, 280 participants suffered a temporary threshold shift (TTS) (468 ears), while in the third evaluation conducted 30 days after exposure, 142 of these ears still presented a threshold shift compared to the baseline evaluation [permanent threshold shift (PTS) ears]. A receiver operating characteristics curve analysis showed that OAEs amplitude is predictive of future TTS and PTS. The results were slightly different for the suppression of OAEs showing only a slight trend toward significance. The curves were used to determine cut points to evaluate the likelihood of TTS/PTS for OAEs amplitude in the baseline evaluation. Decision limits yielding 71.6% sensitivity were 12.45 dB SPL with 63.8% specificity for PTS, and 50% sensitivity were 12.35 dB SPL with 68.2% specificity for TTS. Conclusions: Interestingly, the above data yielded tentative evidence to suggest that OAEs amplitude is both sensitive and specific enough to efficiently identify participants who are particularly susceptible to hearing loss caused by impulse noise generated by firearms. Hearing conservation programs may therefore want to consider including such tests in their routine. As far as efferent strength is concerned, we feel that further research is due, before implementing the suppression of OAEs in hearing conservations programs in a similar manner. PMID:29785975
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
...This notice announces the annual adjustment in the amount in controversy (AIC) threshold amounts for Administrative Law Judge (ALJ) hearings and judicial review under the Medicare appeals process. The adjustment to the AIC threshold amounts will be effective for requests for ALJ hearings and judicial review filed on or after January 1, 2013. The calendar year 2013 AIC threshold amounts are $140 for ALJ hearings and $1,400 for judicial review.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-27
...This notice announces the annual adjustment in the amount in controversy (AIC) threshold amounts for Administrative Law Judge (ALJ) hearings and judicial review under the Medicare appeals process. The adjustment to the AIC threshold amounts will be effective for requests for ALJ hearings and judicial review filed on or after January 1, 2014. The calendar year 2014 AIC threshold amounts are $140 for ALJ hearings and $1,430 for judicial review.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
...This notice announces the annual adjustment in the amount in controversy (AIC) threshold amounts for Administrative Law Judge (ALJ) hearings and judicial review under the Medicare appeals process. The adjustment to the AIC threshold amounts will be effective for requests for ALJ hearings and judicial review filed on or after January 1, 2012. The calendar year 2012 AIC threshold amounts are $130 for ALJ hearings and $1,350 for judicial review.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-24
...This notice announces the annual adjustment in the amount in controversy (AIC) threshold amounts for Administrative Law Judge (ALJ) hearings and judicial review under the Medicare appeals process. The adjustment to the AIC threshold amounts will be effective for requests for ALJ hearings and judicial review filed on or after January 1, 2011. The 2011 AIC threshold amounts are $130 for ALJ hearings and $1,300 for judicial review.
Halpin, Chris; Rauch, Steven D
2012-01-01
Market surveys consistently show that only 22% of those with hearing loss own hearing aids. This is often ascribed to cosmetics, but is it possible that patients apply a different auditory criterion than do audiologists and manufacturers? We tabulated hearing aid ownership in a survey of 1000 consecutive patients. We separated hearing loss cases, with one cohort in which word recognition in quiet could improve with gain (vs. 40 dB HL) and another without such improvement but nonetheless with audiometric thresholds within the manufacturer's fitting ranges. Overall, we found that exactly 22% of hearing loss patients in this sample owned hearing aids; the same finding has been reported in many previous, well-accepted surveys. However, while all patients in the two cohorts experienced difficulty in noise, patients in the cohort without word recognition improvement were found to own hearing aids at a rate of 0.3%, while those patients whose word recognition could increase with level were found to own hearing aids at a rate of 50%. Results also coherently fit a logistic model where shift of the word recognition performance curve by level corresponded to the likelihood of ownership. In addition to the common attribution of low hearing aid usage to patient denial, cosmetic issues, price, or social stigma, these results provide one alternative explanation based on measurable improvement in word recognition performance. Copyright © 2011 S. Karger AG, Basel.
Southeast PAVE PAWS Radar System. Environmental Assessment.
1983-03-01
reported, including fatigue, irritability, sleepiness, partial loss of memory, lower heart- beat rates, hypertension, hypotension, cardiac pain, and...Because such audiograms do not test hearing above 8 klz, binaural hearing thresholds were also determined for seven of the subjects for frequencies...perception and hearing ability above 8 kl:z as determined from the binaural thresholds. The average threshold pulse power density for 15-microsecond
Effective Identification of Functional Hearing Loss Using Behavioral Threshold Measures
ERIC Educational Resources Information Center
Schlauch, Robert S.; Koerner, Tess K.; Marshall, Lynne
2015-01-01
Purpose: Four functional hearing loss protocols were evaluated. Method: For each protocol, 30 participants feigned a hearing loss first on an audiogram and then for a screening test that began a threshold search from extreme levels (-10 or 90 dB HL). Two-tone and 3-tone protocols compared thresholds for ascending and descending tones for 2 (0.5…
Bian, Lin
2012-01-01
In clinical practice, hearing thresholds are measured at only five to six frequencies at octave intervals. Thus, the audiometric configuration cannot closely reflect the actual status of the auditory structures. In addition, differential diagnosis requires quantitative comparison of behavioral thresholds with physiological measures, such as otoacoustic emissions (OAEs) that are usually measured in higher resolution. The purpose of this research was to develop a method to improve the frequency resolution of the audiogram. A repeated-measure design was used in the study to evaluate the reliability of the threshold measurements. A total of 16 participants with clinically normal hearing and mild hearing loss were recruited from a population of university students. No intervention was involved in the study. Custom developed system and software were used for threshold acquisition with quality control (QC). With real-ear calibration and monitoring of test signals, the system provided accurate and individualized measure of hearing thresholds that were determined by an analysis based on signal detection theory (SDT). The reliability of the threshold measure was assessed by correlation and differences between the repeated measures. The audiometric configurations were diverse and unique to each individual ear. The accuracy, within-subject reliability, and between-test repeatability are relatively high. With QC, the high-resolution audiograms can be reliably and accurately measured. Hearing thresholds measured as ear canal sound pressures with higher frequency resolution can provide more customized hearing-aid fitting. The test system may be integrated with other physiological measures, such as OAEs, into a comprehensive evaluative tool. American Academy of Audiology.
Cartilage conduction is characterized by vibrations of the cartilaginous portion of the ear canal.
Nishimura, Tadashi; Hosoi, Hiroshi; Saito, Osamu; Miyamae, Ryosuke; Shimokura, Ryota; Yamanaka, Toshiaki; Kitahara, Tadashi; Levitt, Harry
2015-01-01
Cartilage conduction (CC) is a new form of sound transmission which is induced by a transducer being placed on the aural cartilage. Although the conventional forms of sound transmission to the cochlea are classified into air or bone conduction (AC or BC), previous study demonstrates that CC is not classified into AC or BC (Laryngoscope 124: 1214-1219). Next interesting issue is whether CC is a hybrid of AC and BC. Seven volunteers with normal hearing participated in this experiment. The threshold-shifts by water injection in the ear canal were measured. AC, BC, and CC thresholds at 0.5-4 kHz were measured in the 0%-, 40%-, and 80%-water injection conditions. In addition, CC thresholds were also measured for the 20%-, 60%-, 100%-, and overflowing-water injection conditions. The contributions of the vibrations of the cartilaginous portion were evaluated by the threshold-shifts. For AC and BC, the threshold-shifts by the water injection were 22.6-53.3 dB and within 14.9 dB at the frequency of 0.5-4 kHz, respectively. For CC, when the water was filled within the bony portion, the thresholds were elevated to the same degree as AC. When the water was additionally injected to reach the cartilaginous portion, the thresholds at 0.5 and 1 kHz dramatically decreased by 27.4 and 27.5 dB, respectively. In addition, despite blocking AC by the injected water, the CC thresholds in force level were remarkably lower than those for BC. The vibration of the cartilaginous portion contributes to the sound transmission, particularly in the low frequency range. Although the airborne sound is radiated into the ear canal in both BC and CC, the mechanism underlying its generation is different between them. CC generates airborne sound in the canal more efficiently than BC. The current findings suggest that CC is not a hybrid of AC and BC.
Cartilage Conduction Is Characterized by Vibrations of the Cartilaginous Portion of the Ear Canal
Nishimura, Tadashi; Hosoi, Hiroshi; Saito, Osamu; Miyamae, Ryosuke; Shimokura, Ryota; Yamanaka, Toshiaki; Kitahara, Tadashi; Levitt, Harry
2015-01-01
Cartilage conduction (CC) is a new form of sound transmission which is induced by a transducer being placed on the aural cartilage. Although the conventional forms of sound transmission to the cochlea are classified into air or bone conduction (AC or BC), previous study demonstrates that CC is not classified into AC or BC (Laryngoscope 124: 1214–1219). Next interesting issue is whether CC is a hybrid of AC and BC. Seven volunteers with normal hearing participated in this experiment. The threshold-shifts by water injection in the ear canal were measured. AC, BC, and CC thresholds at 0.5–4 kHz were measured in the 0%-, 40%-, and 80%-water injection conditions. In addition, CC thresholds were also measured for the 20%-, 60%-, 100%-, and overflowing-water injection conditions. The contributions of the vibrations of the cartilaginous portion were evaluated by the threshold-shifts. For AC and BC, the threshold-shifts by the water injection were 22.6–53.3 dB and within 14.9 dB at the frequency of 0.5–4 kHz, respectively. For CC, when the water was filled within the bony portion, the thresholds were elevated to the same degree as AC. When the water was additionally injected to reach the cartilaginous portion, the thresholds at 0.5 and 1 kHz dramatically decreased by 27.4 and 27.5 dB, respectively. In addition, despite blocking AC by the injected water, the CC thresholds in force level were remarkably lower than those for BC. The vibration of the cartilaginous portion contributes to the sound transmission, particularly in the low frequency range. Although the airborne sound is radiated into the ear canal in both BC and CC, the mechanism underlying its generation is different between them. CC generates airborne sound in the canal more efficiently than BC. The current findings suggest that CC is not a hybrid of AC and BC. PMID:25768088
Evidence of hearing loss in a “normally-hearing” college-student population
Le Prell, C. G.; Hensley, B.N.; Campbell, K. C. M.; Hall, J. W.; Guire, K.
2011-01-01
We report pure-tone hearing threshold findings in 56 college students. All subjects reported normal hearing during telephone interviews, yet not all subjects had normal sensitivity as defined by well-accepted criteria. At one or more test frequencies (0.25–8 kHz), 7% of ears had thresholds ≥25 dB HL and 12% had thresholds ≥20 dB HL. The proportion of ears with abnormal findings decreased when three-frequency pure-tone-averages were used. Low-frequency PTA hearing loss was detected in 2.7% of ears and high-frequency PTA hearing loss was detected in 7.1% of ears; however, there was little evidence for “notched” audiograms. There was a statistically reliable relationship in which personal music player use was correlated with decreased hearing status in male subjects. Routine screening and education regarding hearing loss risk factors are critical as college students do not always self-identify early changes in hearing. Large-scale systematic investigations of college students’ hearing status appear to be warranted; the current sample size was not adequate to precisely measure potential contributions of different sound sources to the elevated thresholds measured in some subjects. PMID:21288064
Helleman, Hiske W; Eising, Hilde; Limpens, Jacqueline; Dreschler, Wouter A
2018-03-15
Objectives The objective of this systematic review was to compare otoacoustic emissions (OAE) with audiometry in their effectiveness to monitor effects of long-term noise exposure on hearing. Methods We conducted a systematic search of MEDLINE, Embase and the non-MEDLINE subset of PubMed up to March 2016 to identify longitudinal studies on effects of noise exposure on hearing as determined by both audiometry and OAE. Results This review comprised 13 articles, with 30-350 subjects in the longitudinal analysis. A meta-analysis could not be performed because the studies were very heterogeneous in terms of measurement paradigms, follow-up time, age of included subjects, inclusion of data points, outcome parameters and method of analysis. Overall there seemed to be small changes in both audiometry and OAE over time. Individual shifts were detected by both methods but a congruent pattern could not be observed. Some studies found that initial abnormal or low-level emissions might predict future hearing loss but at the cost of low specificity due to a high number of false positives. Other studies could not find such predictive value. Conclusions The reported heterogeneity in the studies calls for more uniformity in including, reporting and analyzing longitudinal data for audiometry and OAE. For the overall results, both methods showed small changes from baseline towards a deterioration in hearing. OAE could not reliably detect threshold shifts at individual level. With respect to the predictive value of OAE, the evidence was not conclusive and studies were not in agreement. The reported predictors had low specificity.
Núñez-Batalla, Faustino; Noriega-Iglesias, Sabel; Guntín-García, Maite; Carro-Fernández, Pilar; Llorente-Pendás, José Luis
2016-01-01
Conventional audiometry is the gold standard for quantifying and describing hearing loss. Alternative methods become necessary to assess subjects who are too young to respond reliably. Auditory evoked potentials constitute the most widely used method for determining hearing thresholds objectively; however, this stimulus is not frequency specific. The advent of the auditory steady-state response (ASSR) leads to more specific threshold determination. The current study describes and compares ASSR, auditory brainstem response (ABR) and conventional behavioural tone audiometry thresholds in a group of infants with various degrees of hearing loss. A comparison was made between ASSR, ABR and behavioural hearing thresholds in 35 infants detected in the neonatal hearing screening program. Mean difference scores (±SD) between ABR and high frequency ABR thresholds were 11.2 dB (±13) and 10.2 dB (±11). Pearson correlations between the ASSR and audiometry thresholds were 0.80 and 0.91 (500Hz); 0.84 and 0.82 (1000Hz); 0.85 and 0.84 (2000Hz); and 0.83 and 0.82 (4000Hz). The ASSR technique is a valuable extension of the clinical test battery for hearing-impaired children. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
Nélisse, Hugues; Gaudreau, Marc-André; Boutin, Jérôme; Voix, Jérémie; Laville, Frédéric
2012-03-01
The effectiveness of hearing protection devices (HPDs), when used in workplace conditions, has been shown over the years to be usually lower than the labeled values obtained under well-controlled laboratory conditions. Causes for such discrepancies have been listed and discussed by many authors. This study is an attempt to understand the issues in greater details and quantify some of these factors by looking at the performance of hearing protectors as a function of time during full work shift conditions. A non-invasive field microphone in the real ear (F-MIRE)-based method has been developed for measuring the effectiveness of different HPDs as a function of time in the workplace. Details of the test procedures, the equipment used, and the post-processing operations are presented and discussed. The methodology was developed in such a way that a complete time and frequency representation are possible. The system was used on a total of 24 workers in eight different companies. Work shifts of up to 9-h long were recorded. Various types of earmuffs and one type of molded earplugs were tested. Attenuation data reported as a function of time showed, for most workers tested, considerable fluctuations over entire work shift periods. Parts of these fluctuations are attributed to variations in the low-frequency content in the noise (in particular for earmuffs) as well as poor insertion and/or fitting of earplugs. Lower performances than laboratory-based ones were once again observed for most cases tested but also, important left and right ear differences were obtained for many individuals. When reported as a function of frequency, the attenuation results suggested that the few approximations used to relate the measurements to subjective real-ear-attenuation-at-threshold (REAT) data were realistic. The use of individualized attenuation data and performance ratings for HPDs as well as a good knowledge of the ambient noise in the workplace are key ingredients when evaluating the performance of hearing protectors in field conditions.
Vlajkovic, Srdjan M; Ambepitiya, Kaushi; Barclay, Meagan; Boison, Detlev; Housley, Gary D; Thorne, Peter R
2017-03-01
Our previous studies have shown that the stimulation of A 1 adenosine receptors in the inner ear can mitigate the loss of sensory hair cells and hearing loss caused by exposure to traumatic noise. Here, we focus on the role of adenosine receptors (AR) in the development of noise-induced neural injury in the cochlea using A 1 AR and A 2A AR null mice (A 1 AR -/- and A 2A AR -/- ). Wildtype (WT) and AR deficient mice were exposed to octave band noise (8-16 kHz, 100 dB SPL) for 2 h to induce cochlear injury and hearing loss. Auditory thresholds and input/output functions were assessed using auditory brainstem responses (ABR) before and two weeks post-exposure. The loss of outer hair cells (OHC), afferent synapses and spiral ganglion neurons (SGN) were assessed by quantitative histology. A 1 AR -/- mice (6-8 weeks old) displayed a high frequency hearing loss (ABR threshold shift and reduced ABR wave I and II amplitudes). This hearing loss was further aggravated by acute noise exposure and exceeded the hearing loss in the WT and A 2A AR -/- mice. All mice experienced the loss of OHC, synaptic ribbons and SGN after noise exposure, but the loss of SGN was significantly higher in A 1 AR -/- mice than in the A 2A AR -/- and WT genotypes. The A 2A AR -/- demonstrated better preservation of OHC and afferent synapses and the minimal loss of SGN after noise exposure. The findings suggest that the loss of A 1 AR expression results in an increased susceptibility to cochlear neural injury and hearing loss, whilst absence of A 2A AR increases cochlear resistance to acoustic trauma. Copyright © 2016 Elsevier B.V. All rights reserved.
Age-related changes in the auditory brainstem response.
Konrad-Martin, Dawn; Dille, Marilyn F; McMillan, Garnett; Griest, Susan; McDermott, Daniel; Fausti, Stephen A; Austin, Donald F
2012-01-01
This cross-sectional study had two goals: (1) Identify and quantify the effects of aging on the auditory brainstem response (ABR); (2) Describe how click rate and hearing impairment modify effects of aging. RESEARCH DESIGN AND ANALYSIS: ABR measures were obtained from 131 predominately male Veteran participants aged 26 to 71 yr. Metrics analyzed include amplitude and latency for waves I, III, and V, and the I-V interpeak latency interval (IPI) at three repetition rates (11, 51, and 71 clicks/sec) using both polarities. In order to avoid confounding from missing data due to hearing impairment, participants had hearing thresholds <40 dB HL at 2 kHz and 70 dB HL at 4 kHz in at least one ear. Additionally, the median 2, 3, and 4 kHz pure tone threshold average (PTA2,3,4) for the sample, ∼17 dB HL, was used to delineate subgroups of better and worse hearing ears, and only the better hearing sample was modeled statistically. We modeled ABR responses using age, repetition rate, and PTA2,3,4 as covariates. Random effects were used to model correlation between the two ears of a subject and across repetition rates. Inferences regarding effects of aging on ABR measures at each rate were derived from the fitted model. Results were compared to data from subjects with poorer hearing. Aging substantially diminished amplitudes of all of the principal ABR peaks, largely independent of any threshold differences within the group. For waves I and III, age-related amplitude decrements were greatest at a low (11/sec) click rate. At the 11/sec rate, the model-based mean wave III amplitude was significantly smaller in older compared with younger subjects even after adjusting for wave I amplitude. Aging also increased ABR peak latencies, with significant shifts limited to early waves. The I-V IPI did not change with age. For both younger and older subjects, increasing click presentation rate significantly decreased amplitudes of early peaks and prolonged latencies of later peaks, resulting in increased IPIs. Advanced age did not enhance effects of rate. Instead, the rate effect on wave I and III amplitudes was attenuated for the older subjects due to reduced peak amplitudes at lower click rates. Compared with model predictions from the sample of better hearing subjects, mean ABR amplitudes were diminished in the group with poorer hearing, and wave V latencies were prolonged. In a sample of veterans, aging substantially reduced amplitudes of all principal ABR peaks, with significant latency shifts limited to waves I and III. Aging did not influence the I-V IPI even at high click rates, suggesting that the observed absolute latency changes associated with aging can be attributed to changes in auditory nerve input. In contrast, ABR amplitude changes with age are not adequately explained by changes in wave I. Results suggest that aging reduces the numbers and/or synchrony of contributing auditory nerve units. Results also support the concept that aging reduces the numbers, though perhaps not the synchrony, of central ABR generators. American Academy of Audiology.
Nelson, J T; Swan, A A; Swiger, B; Packer, M; Pugh, M J
2017-06-01
Hearing loss is the second most common disability awarded by the U.S. Department of Veterans Affairs (VA) to former members of the U.S. uniformed services. Hearing readiness and conservation practices differ among the four largest uniformed military services (Air Force, Army, Marine Corps, and Navy). Utilizing a data set consisting of all hearing loss claims submitted to the VA from fiscal years 2003-2013, we examined characteristics of veterans submitting claims within one year of separation from military service. Our results indicate that having a hearing loss disability claim granted was significantly more likely for men, individuals over the age of 26 years at the time of the claim, individuals most recently serving in the U.S. Army, and those with at least one hearing loss diagnosis. Importantly, individuals with at least one test record in the Defense Occupational and Environmental Health Readiness System-Hearing Conservation (DOEHRS-HC) system were significantly less likely to have a hearing loss disability claim granted by the VA. Within the DOEHRS-HC cohort, those with at least one threshold shift or clinical hearing loss diagnosis while on active duty were more than two and three times more likely to have a hearing loss disability claim granted, respectively. These findings indicate that an established history of reduced hearing ability while on active duty was associated with a significantly increased likelihood of an approved hearing loss disability claim relative to VA claims without such a history. Further, our results show a persistent decreased rate of hearing loss disability awards overall. These findings support increased inclusion of personnel in DoD hearing readiness and conservation programs to reduce VA hearing loss disability awards. Copyright © 2016 Elsevier B.V. All rights reserved.
Houser, Dorian S; Finneran, James J
2006-09-01
Variable stimulus presentation methods are used in auditory evoked potential (AEP) estimates of cetacean hearing sensitivity, each of which might affect stimulus reception and hearing threshold estimates. This study quantifies differences in underwater hearing thresholds obtained by AEP and behavioral means. For AEP estimates, a transducer embedded in a suction cup (jawphone) was coupled to the dolphin's lower jaw for stimulus presentation. Underwater AEP thresholds were obtained for three dolphins in San Diego Bay and for one dolphin in a quiet pool. Thresholds were estimated from the envelope following response at carrier frequencies ranging from 10 to 150 kHz. One animal, with an atypical audiogram, demonstrated significantly greater hearing loss in the right ear than in the left. Across test conditions, the range and average difference between AEP and behavioral threshold estimates were consistent with published comparisons between underwater behavioral and in-air AEP thresholds. AEP thresholds for one animal obtained in-air and in a quiet pool demonstrated a range of differences of -10 to 9 dB (mean = 3 dB). Results suggest that for the frequencies tested, the presentation of sound stimuli through a jawphone, underwater and in-air, results in acceptable differences to AEP threshold estimates.
Gustafson, Samantha; Pittman, Andrea; Fanning, Robert
2013-06-01
This tutorial demonstrates the effects of tubing length and coupling type (i.e., foam tip or personal earmold) on hearing threshold and real-ear-to-coupler difference (RECD) measures. Hearing thresholds from 0.25 kHz through 8 kHz are reported at various tubing lengths for 28 normal-hearing adults between the ages of 22 and 31 years. RECD values are reported for 14 of the adults. All measures were made with an insert earphone coupled to a standard foam tip and with an insert earphone coupled to each participant's personal earmold. Threshold and RECD measures obtained with a personal earmold were significantly different from those obtained with a foam tip on repeated measures analyses of variance. One-sample t tests showed these differences to vary systematically with increasing tubing length, with the largest average differences (7-8 dB) occurring at 4 kHz. This systematic examination demonstrates the equal and opposite effects of tubing length on threshold and acoustic measures. Specifically, as tubing length increased, sound pressure level in the ear canal decreased, affecting both hearing thresholds and the real-ear portion of the RECDs. This demonstration shows that when the same coupling method is used to obtain the hearing thresholds and RECD, equal and accurate estimates of real-ear sound pressure level are obtained.
Symposium: Noise-Induced Hearing Loss Held in Beaune, France on 28-30 May 1990.
1991-01-01
dehydeogenase (Loll),is a common result of cell damage, and Injury to any Struclture In the cochlea would cause A taumbcr ofbioclienmlcal analyses...threshsold shsft (ITrS) and permanent this transitional stage at which,’the processes threshold shift (PIS) conditions, is a dynamic of repair anid Injury ...properties, hsps can be divided Into several cilia injury in these cases is not known. Mech. families; in eukaryotes there are at least three anisms of
Segal, Nili; Shkolnik, Mark; Kochba, Anat; Segal, Avichai; Kraus, Mordechai
2007-01-01
We evaluated the correlation of asymmetric hearing loss, in a random population of patients with mild to moderate sensorineural hearing loss, to several clinical factors such as age, sex, handedness, and noise exposure. We randomly selected, from 8 hearing institutes in Israel, 429 patients with sensorineural hearing loss of at least 30 dB at one frequency and a speech reception threshold not exceeding 30 dB. Patients with middle ear disease or retrocochlear disorders were excluded. The results of audiometric examinations were compared binaurally and in relation to the selected factors. The left ear's hearing threshold level was significantly higher than that of the right ear at all frequencies except 1.0 kHz (p < .05). One hundred fifty patients (35%) had asymmetric hearing loss (more than 10 dB difference between ears). In most of the patients (85%) the binaural difference in hearing threshold level, at any frequency, was less than 20 dB. Age, handedness, and sex were not found to be correlated to asymmetric hearing loss. Noise exposure was found to be correlated to asymmetric hearing loss.
Mitochondria-Targeted Antioxidant Mitoquinone Reduces Cisplatin-Induced Ototoxicity in Guinea Pigs.
Tate, Alan D; Antonelli, Patrick J; Hannabass, Kyle R; Dirain, Carolyn O
2017-03-01
Objective To determine if mitoquinone (MitoQ) attenuates cisplatin-induced hearing loss in guinea pigs. Study Design Prospective and controlled animal study. Setting Academic, tertiary medical center. Subjects and Methods Guinea pigs were injected subcutaneously with either 5 mg/kg MitoQ (n = 9) or normal saline (control, n = 9) for 7 days and 1 hour before receiving a single dose of 10 mg/kg cisplatin. Auditory brainstem response thresholds were measured before MitoQ or saline administration and 3 to 4 days after cisplatin administration. Results Auditory brainstem response threshold shifts after cisplatin treatment were smaller by 28 to 47 dB in guinea pigs injected with MitoQ compared with those in the control group at all tested frequencies (4, 8, 16, and 24 kHz, P = .0002 to .04). Scanning electron microscopy of cochlear hair cells showed less outer hair cell loss and damage in the MitoQ group. Conclusion MitoQ reduced cisplatin-induced hearing loss in guinea pigs. MitoQ appears worthy of further investigation as a means of preventing cisplatin ototoxicity in humans.
Structured Counseling for Auditory Dynamic Range Expansion.
Gold, Susan L; Formby, Craig
2017-02-01
A structured counseling protocol is described that, when combined with low-level broadband sound therapy from bilateral sound generators, offers audiologists a new tool for facilitating the expansion of the auditory dynamic range (DR) for loudness. The protocol and its content are specifically designed to address and treat problems that impact hearing-impaired persons who, due to their reduced DRs, may be limited in the use and benefit of amplified sound from hearing aids. The reduced DRs may result from elevated audiometric thresholds and/or reduced sound tolerance as documented by lower-than-normal loudness discomfort levels (LDLs). Accordingly, the counseling protocol is appropriate for challenging and difficult-to-fit persons with sensorineural hearing losses who experience loudness recruitment or hyperacusis. Positive treatment outcomes for individuals with the former and latter conditions are highlighted in this issue by incremental shifts (improvements) in LDL and/or categorical loudness judgments, associated reduced complaints of sound intolerance, and functional improvements in daily communication, speech understanding, and quality of life leading to improved hearing aid benefit, satisfaction, and aided sound quality, posttreatment.
Structured Counseling for Auditory Dynamic Range Expansion
Gold, Susan L.; Formby, Craig
2017-01-01
A structured counseling protocol is described that, when combined with low-level broadband sound therapy from bilateral sound generators, offers audiologists a new tool for facilitating the expansion of the auditory dynamic range (DR) for loudness. The protocol and its content are specifically designed to address and treat problems that impact hearing-impaired persons who, due to their reduced DRs, may be limited in the use and benefit of amplified sound from hearing aids. The reduced DRs may result from elevated audiometric thresholds and/or reduced sound tolerance as documented by lower-than-normal loudness discomfort levels (LDLs). Accordingly, the counseling protocol is appropriate for challenging and difficult-to-fit persons with sensorineural hearing losses who experience loudness recruitment or hyperacusis. Positive treatment outcomes for individuals with the former and latter conditions are highlighted in this issue by incremental shifts (improvements) in LDL and/or categorical loudness judgments, associated reduced complaints of sound intolerance, and functional improvements in daily communication, speech understanding, and quality of life leading to improved hearing aid benefit, satisfaction, and aided sound quality, posttreatment. PMID:28286367
Maiditsch, Isabelle Pia; Ladich, Friedrich
2014-01-01
Background In ectothermal animals such as fish, -temperature affects physiological and metabolic processes. This includes sensory organs such as the auditory system. The reported effects of temperature on hearing in eurythermal otophysines are contradictory. We therefore investigated the effect on the auditory system in species representing two different orders. Methodology/Principal Findings Hearing sensitivity was determined using the auditory evoked potentials (AEP) recording technique. Auditory sensitivity and latency in response to clicks were measured in the common carp Cyprinus carpio (order Cypriniformes) and the Wels catfish Silurus glanis (order Siluriformes) after acclimating fish for at least three weeks to two different water temperatures (15°C, 25°C and again 15°C). Hearing sensitivity increased with temperature in both species. Best hearing was detected between 0.3 and 1 kHz at both temperatures. The maximum increase occurred at 0.8 kHz (7.8 dB) in C. carpio and at 0.5 kHz (10.3 dB) in S. glanis. The improvement differed between species and was in particular more pronounced in the catfish at 4 kHz. The latency in response to single clicks was measured from the onset of the sound stimulus to the most constant positive peak of the AEP. The latency decreased at the higher temperature in both species by 0.37 ms on average. Conclusions/Significance The current study shows that higher temperature improves hearing (lower thresholds, shorter latencies) in eurythermal species from different orders of otophysines. Differences in threshold shifts between eurythermal species seem to reflect differences in absolute sensitivity at higher frequencies and they furthermore indicate differences to stenothermal (tropical) species. PMID:25255456
Influence of musical training on sensitivity to temporal fine structure.
Mishra, Srikanta K; Panda, Manasa R; Raj, Swapna
2015-04-01
The objective of this study was to extend the findings that temporal fine structure encoding is altered in musicians by examining sensitivity to temporal fine structure (TFS) in an alternative (non-Western) musician model that is rarely adopted--Indian classical music. The sensitivity to TFS was measured by the ability to discriminate two complex tones that differed in TFS but not in envelope repetition rate. Sixteen South Indian classical (Carnatic) musicians and 28 non-musicians with normal hearing participated in this study. Musicians have significantly lower relative frequency shift at threshold in the TFS task compared to non-musicians. A significant negative correlation was observed between years of musical experience and relative frequency shift at threshold in the TFS task. Test-retest repeatability of thresholds in the TFS tasks was similar for both musicians and non-musicians. The enhanced performance of the Carnatic-trained musicians suggests that the musician advantage for frequency and harmonicity discrimination is not restricted to training in Western classical music, on which much of the previous research on musical training has narrowly focused. The perceptual judgments obtained from non-musicians were as reliable as those of musicians.
Hearing status in patients with rheumatoid arthritis.
Ahmadzadeh, A; Daraei, M; Jalessi, M; Peyvandi, A A; Amini, E; Ranjbar, L A; Daneshi, A
2017-10-01
Rheumatoid arthritis is thought to induce conductive hearing loss and/or sensorineural hearing loss. This study evaluated the function of the middle ear and cochlea, and the related factors. Pure tone audiometry, speech reception thresholds, speech discrimination scores, tympanometry, acoustic reflexes, and distortion product otoacoustic emissions were assessed in rheumatoid arthritis patients and healthy volunteers. Pure tone audiometry results revealed a higher bone conduction threshold in the rheumatoid arthritis group, but there was no significant difference when evaluated according to the sensorineural hearing loss definition. Distortion product otoacoustic emissions related prevalence of conductive or mixed hearing loss, tympanometry values, acoustic reflexes, and speech discrimination scores were not significantly different between the two groups. Sensorineural hearing loss was significantly more prevalent in patients who used azathioprine, cyclosporine and etanercept. Higher bone conduction thresholds in some frequencies were detected in rheumatoid arthritis patients that were not clinically significant. Sensorineural hearing loss is significantly more prevalent in refractory rheumatoid arthritis patients.
Moreno-Aguirre, Alma Janeth; Santiago-Rodríguez, Efraín; Harmony, Thalía; Fernández-Bouzas, Antonio
2012-01-01
Approximately 2-4% of newborns with perinatal risk factors present with hearing loss. Our aim was to analyze the effect of hearing aid use on auditory function evaluated based on otoacoustic emissions (OAEs), auditory brain responses (ABRs) and auditory steady state responses (ASSRs) in infants with perinatal brain injury and profound hearing loss. A prospective, longitudinal study of auditory function in infants with profound hearing loss. Right side hearing before and after hearing aid use was compared with left side hearing (not stimulated and used as control). All infants were subjected to OAE, ABR and ASSR evaluations before and after hearing aid use. The average ABR threshold decreased from 90.0 to 80.0 dB (p = 0.003) after six months of hearing aid use. In the left ear, which was used as a control, the ABR threshold decreased from 94.6 to 87.6 dB, which was not significant (p>0.05). In addition, the ASSR threshold in the 4000-Hz frequency decreased from 89 dB to 72 dB (p = 0.013) after six months of right ear hearing aid use; the other frequencies in the right ear and all frequencies in the left ear did not show significant differences in any of the measured parameters (p>0.05). OAEs were absent in the baseline test and showed no changes after hearing aid use in the right ear (p>0.05). This study provides evidence that early hearing aid use decreases the hearing threshold in ABR and ASSR assessments with no functional modifications in the auditory receptor, as evaluated by OAEs.
Moreno-Aguirre, Alma Janeth; Santiago-Rodríguez, Efraín; Harmony, Thalía; Fernández-Bouzas, Antonio
2012-01-01
Background Approximately 2–4% of newborns with perinatal risk factors present with hearing loss. Our aim was to analyze the effect of hearing aid use on auditory function evaluated based on otoacoustic emissions (OAEs), auditory brain responses (ABRs) and auditory steady state responses (ASSRs) in infants with perinatal brain injury and profound hearing loss. Methodology/Principal Findings A prospective, longitudinal study of auditory function in infants with profound hearing loss. Right side hearing before and after hearing aid use was compared with left side hearing (not stimulated and used as control). All infants were subjected to OAE, ABR and ASSR evaluations before and after hearing aid use. The average ABR threshold decreased from 90.0 to 80.0 dB (p = 0.003) after six months of hearing aid use. In the left ear, which was used as a control, the ABR threshold decreased from 94.6 to 87.6 dB, which was not significant (p>0.05). In addition, the ASSR threshold in the 4000-Hz frequency decreased from 89 dB to 72 dB (p = 0.013) after six months of right ear hearing aid use; the other frequencies in the right ear and all frequencies in the left ear did not show significant differences in any of the measured parameters (p>0.05). OAEs were absent in the baseline test and showed no changes after hearing aid use in the right ear (p>0.05). Conclusions/Significance This study provides evidence that early hearing aid use decreases the hearing threshold in ABR and ASSR assessments with no functional modifications in the auditory receptor, as evaluated by OAEs. PMID:22808289
Maté-Cid, Saúl; Fulford, Robert; Seiffert, Gary; Ginsborg, Jane
2016-01-01
Presentation of music as vibration to the skin has the potential to facilitate interaction between musicians with hearing impairments and other musicians during group performance. Vibrotactile thresholds have been determined to assess the potential for vibrotactile presentation of music to the glabrous skin of the fingertip, forefoot and heel. No significant differences were found between the thresholds for sinusoids representing notes between C1 and C6 when presented to the fingertip of participants with normal hearing and with a severe or profound hearing loss. For participants with normal hearing, thresholds for notes between C1 and C6 showed the characteristic U-shape curve for the fingertip, but not for the forefoot and heel. Compared to the fingertip, the forefoot had lower thresholds between C1 and C3, and the heel had lower thresholds between C1 and G2; this is attributed to spatial summation from the Pacinian receptors over the larger contactor area used for the forefoot and heel. Participants with normal hearing assessed the perception of high-frequency vibration using 1s sinusoids presented to the fingertip and were found to be more aware of transient vibration at the beginning and/or end of notes between G4 and C6 when stimuli were presented 10dB above threshold, rather than at threshold. An average of 94% of these participants reported feeling continuous vibration between G4 and G5 with stimuli presented 10dB above threshold. Based on the experimental findings and consideration of health effects relating to vibration exposure, a suitable range of notes for vibrotactile presentation of music is identified as being from C1 to G5. This is more limited than for human hearing but the fundamental frequencies of the human voice, and the notes played by many instruments, lie within it. However, the dynamic range might require compression to avoid the negative effects of amplitude on pitch perception. PMID:27191400
Blast-Induced Tinnitus and Hearing Loss in Rats: Behavioral and Imaging Assays
Mao, Johnny C.; Pace, Edward; Pierozynski, Paige; Kou, Zhifeng; Shen, Yimin; VandeVord, Pamela; Haacke, E. Mark; Zhang, Xueguo
2012-01-01
Abstract The current study used a rat model to investigate the underlying mechanisms of blast-induced tinnitus, hearing loss, and associated traumatic brain injury (TBI). Seven rats were used to evaluate behavioral evidence of tinnitus and hearing loss, and TBI using magnetic resonance imaging following a single 10-msec blast at 14 psi or 194 dB sound pressure level (SPL). The results demonstrated that the blast exposure induced early onset of tinnitus and central hearing impairment at a broad frequency range. The induced tinnitus and central hearing impairment tended to shift towards high frequencies over time. Hearing threshold measured with auditory brainstem responses also showed an immediate elevation followed by recovery on day 14, coinciding with behaviorally-measured results. Diffusion tensor magnetic resonance imaging results demonstrated significant damage and compensatory plastic changes to certain auditory brain regions, with the majority of changes occurring in the inferior colliculus and medial geniculate body. No significant microstructural changes found in the corpus callosum indicates that the currently adopted blast exposure mainly exerts effects through the auditory pathways rather than through direct impact onto the brain parenchyma. The results showed that this animal model is appropriate for investigation of the mechanisms underlying blast-induced tinnitus, hearing loss, and related TBI. Continued investigation along these lines will help identify pathology with injury/recovery patterns, aiding development of effective treatment strategies. PMID:21933015
Relationship between Consonant Recognition in Noise and Hearing Threshold
ERIC Educational Resources Information Center
Yoon, Yang-soo; Allen, Jont B.; Gooler, David M.
2012-01-01
Purpose: Although poorer understanding of speech in noise by listeners who are hearing-impaired (HI) is known not to be directly related to audiometric hearing threshold, "HT" (f), grouping HI listeners with "HT" (f) is widely practiced. In this article, the relationship between consonant recognition and "HT" (f) is…
Going wireless and booth-less for hearing testing in industry.
Meinke, Deanna K; Norris, Jesse A; Flynn, Brendan P; Clavier, Odile H
2017-01-01
To assess the test-retest variability of hearing thresholds obtained with an innovative, mobile wireless automated hearing-test system (WAHTS) with enhanced sound attenuation to test industrial workers at a worksite as compared to standardised automated hearing thresholds obtained in a mobile trailer sound booth. A within-subject repeated-measures design was used to compare air-conducted threshold tests (500-8000 Hz) measured with the WAHTS in six workplace locations, and a third test using computer-controlled audiometry obtained in a mobile trailer sound booth. Ambient noise levels were measured in all test environments. Twenty workers served as listeners and 20 workers served as operators. On average, the WAHTS resulted in equivalent thresholds as the mobile trailer audiometry at 1000, 2000, 3000 and 8000 Hz and thresholds were within ±5 dB at 500, 4000 and 6000 Hz. Comparable performance may be obtained with the WAHTS in occupational audiometry and valid thresholds may be obtained in diverse test locations without the use of sound-attenuating enclosures.
Round window closure affects cochlear responses to suprathreshold stimuli.
Cai, Qunfeng; Whitcomb, Carolyn; Eggleston, Jessica; Sun, Wei; Salvi, Richard; Hu, Bo Hua
2013-12-01
The round window acts as a vent for releasing inner ear pressure and facilitating basilar membrane vibration. Loss of this venting function affects cochlear function, which leads to hearing impairment. In an effort to identify functional changes that might be used in clinical diagnosis of round window atresia, the current investigation was designed to examine how the cochlea responds to suprathreshold stimuli following round window closure. Prospective, controlled, animal study. A rat model of round window occlusion (RWO) was established. With this model, the thresholds of auditory brainstem responses (ABR) and the input/output (IO) functions of distortion product otoacoustic emissions (DPOAEs) and acoustic startle responses were examined. Round window closure caused a mild shift in the thresholds of the auditory brainstem response (13.5 ± 9.1 dB). It also reduced the amplitudes of the distortion product otoacoustic emissions and the slope of the input/output functions. This peripheral change was accompanied by a significant reduction in the amplitude, but not the threshold, of the acoustic startle reflex, a motor response to suprathreshold sounds. In addition to causing mild increase in the threshold of the auditory brainstem response, round window occlusion reduced the slopes of both distortion product otoacoustic emissions and startle reflex input/output functions. These changes differ from those observed for typical conductive or sensory hearing loss, and could be present in patients with round window atresia. However, future clinical observations in patients are needed to confirm these findings. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
The impact of cochlear fine structure on hearing thresholds and DPOAE levels
NASA Astrophysics Data System (ADS)
Lee, Jungmee; Long, Glenis; Talmadge, Carrick L.
2004-05-01
Although otoacoustic emissions (OAE) are used as clinical and research tools, the correlation between OAE behavioral estimates of hearing status is not large. In normal-hearing individuals, the level of OAEs can vary as much as 30 dB when the frequency is changed less than 5%. These pseudoperiodic variations of OAE level with frequency are known as fine structure. Hearing thresholds measured with high-frequency resolution reveals a similar (up to 15 dB) fine structure. We examine the impact of OAE and threshold fine structures on the prediction of auditory thresholds from OAE levels. Distortion product otoacoustic emissions (DPOAEs) were measured with sweeping primary tones. Psychoacoustic detection thresholds were measured using pure tones, sweep tones, FM tones, and narrow-band noise. Sweep DPOAE and narrow-band threshold estimates provide estimates that are less influenced by cochlear fine structure and should lead to a higher correlation between OAE levels and psychoacoustic thresholds. [Research supported by PSC CUNY, NIDCD, National Institute on Disability and Rehabilitation Research in U.S. Department of Education, and The Ministry of Education in Korea.
Characterization of Hearing Thresholds from 500 to 16,000 Hz in Dentists: A Comparative Study
Gonçalves, Claudia Giglio de Oliveira; Santos, Luciana; Lobato, Diolen; Ribas, Angela; Lacerda, Adriana Bender Moreira; Marques, Jair
2014-01-01
Introduction High-level noise exposure in dentists' workplaces may cause damages to the auditory systems. High-frequency audiometry is an important tool in the investigation in the early diagnosis of hearing loss. Objectives To analyze the auditory thresholds at frequencies from 500 to 16,000 Hz of dentists in the city of Curitiba. Methods This historic cohort study retrospectively tested hearing thresholds from 500 to 16,000 Hz with a group of dentists from Curitiba, in the state of Paraná, Brazil. Eighty subjects participated in the study, separated into a dentist group and a control group, with the same age range and gender across groups but with no history of occupational exposure to high levels of sound pressure in the control group. Subjects were tested with conventional audiometry and high-frequency audiometry and answered a questionnaire about exposure to noise. Results Results showed that 81% of dentists did not receive any information regarding noise at university; 6 (15%) dentists had sensorineural hearing impairment; significant differences were observed between the groups only at frequencies of 500 Hz and 1,000, 6,000 and 8,000 Hz in the right ear. There was no significant difference between the groups after analysis of mean hearing thresholds of high frequencies with the average hearing thresholds in conventional frequencies; subjects who had been working as dentists for longer than 10 years had worse tonal hearing thresholds at high frequencies. Conclusions In this study, we observed that dentists are at risk for the development of sensorineural hearing loss especially after 10 years of service. PMID:25992172
Prestin Regulation and Function in Residual Outer Hair Cells after Noise-Induced Hearing Loss
Xia, Anping; Song, Yohan; Wang, Rosalie; Gao, Simon S.; Clifton, Will; Raphael, Patrick; Chao, Sung-il; Pereira, Fred A.; Groves, Andrew K.; Oghalai, John S.
2013-01-01
The outer hair cell (OHC) motor protein prestin is necessary for electromotility, which drives cochlear amplification and produces exquisitely sharp frequency tuning. TectaC1509G transgenic mice have hearing loss, and surprisingly have increased OHC prestin levels. We hypothesized, therefore, that prestin up-regulation may represent a generalized response to compensate for a state of hearing loss. In the present study, we sought to determine the effects of noise-induced hearing loss on prestin expression. After noise exposure, we performed cytocochleograms and observed OHC loss only in the basal region of the cochlea. Next, we patch clamped OHCs from the apical turn (9–12 kHz region), where no OHCs were lost, in noise-exposed and age-matched control mice. The non-linear capacitance was significantly higher in noise-exposed mice, consistent with higher functional prestin levels. We then measured prestin protein and mRNA levels in whole-cochlea specimens. Both Western blot and qPCR studies demonstrated increased prestin expression after noise exposure. Finally, we examined the effect of the prestin increase in vivo following noise damage. Immediately after noise exposure, ABR and DPOAE thresholds were elevated by 30–40 dB. While most of the temporary threshold shifts recovered within 3 days, there were additional improvements over the next month. However, DPOAE magnitudes, basilar membrane vibration, and CAP tuning curve measurements from the 9–12 kHz cochlear region demonstrated no differences between noise-exposed mice and control mice. Taken together, these data indicate that prestin is up-regulated by 32–58% in residual OHCs after noise exposure and that the prestin is functional. These findings are consistent with the notion that prestin increases in an attempt to partially compensate for reduced force production because of missing OHCs. However, in regions where there is no OHC loss, the cochlea is able to compensate for the excess prestin in order to maintain stable auditory thresholds and frequency discrimination. PMID:24376553
Noise-induced cochlear synaptopathy: Past findings and future studies.
Kobel, Megan; Le Prell, Colleen G; Liu, Jennifer; Hawks, John W; Bao, Jianxin
2017-06-01
For decades, we have presumed the death of hair cells and spiral ganglion neurons are the main cause of hearing loss and difficulties understanding speech in noise, but new findings suggest synapse loss may be the key contributor. Specifically, recent preclinical studies suggest that the synapses between inner hair cells and spiral ganglion neurons with low spontaneous rates and high thresholds are the most vulnerable subcellular structures, with respect to insults during aging and noise exposure. This cochlear synaptopathy can be "hidden" because this synaptic loss can occur without permanent hearing threshold shifts. This new discovery of synaptic loss opens doors to new research directions. Here, we review a number of recent studies and make suggestions in two critical future research directions. First, based on solid evidence of cochlear synaptopathy in animal models, it is time to apply molecular approaches to identify the underlying molecular mechanisms; improved understanding is necessary for developing rational, effective therapies against this cochlear synaptopathy. Second, in human studies, the data supporting cochlear synaptopathy are indirect although rapid progress has been made. To fully identify changes in function that are directly related this hidden synaptic damage, we argue that a battery of tests including both electrophysiological and behavior tests should be combined for diagnosis of "hidden hearing loss" in clinical studies. This new approach may provide a direct link between cochlear synaptopathy and perceptual difficulties. Copyright © 2016 Elsevier B.V. All rights reserved.
Hearing and loud music exposure in 14-15 years old adolescents.
Serra, Mario R; Biassoni, Ester C; Hinalaf, María; Abraham, Mónica; Pavlik, Marta; Villalobo, Jorge Pérez; Curet, Carlos; Joekes, Silvia; Yacci, María R; Righetti, Andrea
2014-01-01
Adolescent exposure to loud music has become a social and health problem whose study demands a holistic approach. The aims of the current study are: (1) To detect early noise-induced hearing loss among adolescents and establish its relationship with their participation in musical recreational activities and (2) to determine sound immission levels in nightclubs and personal music players (PMPs). The participants consisted in 172 14-15 years old adolescents from a technical high school. Conventional and extended high frequency audiometry, transient evoked otoacoustic emissions and questionnaire on recreational habits were administered. Hearing threshold levels (HTLs) were classified as: normal (Group 1), slightly shifted (Group 2), and significantly shifted (Group 3). The musical general exposure (MGE), from participation in recreational musical activities, was categorized in low, moderate, and high exposure. The results revealed an increase of HTL in Group 2 compared with Group 1 (P < 0.01), in Group 3 compared with Group 2 (P < 0.05) only in extended high frequency range, in Group 3 compared with Group 1 (P < 0.01). Besides, a decrease in mean global amplitude, reproducibility and in frequencies amplitude in Group 2 compared with Group 1 (P < 0.05) and in Group 3 compared with Group 1 (P < 0.05). A significant difference (P < 0.05) was found in Group 1's HTL between low and high exposure, showing higher HTL in high exposure. The sound immission measured in nightclubs (107.8-112.2) dBA and PMPs (82.9-104.6) dBA revealed sound levels risky for hearing health according to exposure times. It demonstrates the need to implement preventive and hearing health promoting actions in adolescents.
Hsu, Ruey-Fen; Ho, Chi-Kung; Lu, Sheng-Nan; Chen, Shun-Sheng
2010-10-01
An objective investigation is needed to verify the existence and severity of hearing impairments resulting from work-related, noise-induced hearing loss in arbitration of medicolegal aspects. We investigated the accuracy of multiple-frequency auditory steady-state responses (Mf-ASSRs) between subjects with sensorineural hearing loss (SNHL) with and without occupational noise exposure. Cross-sectional study. Tertiary referral medical centre. Pure-tone audiometry and Mf-ASSRs were recorded in 88 subjects (34 patients had occupational noise-induced hearing loss [NIHL], 36 patients had SNHL without noise exposure, and 18 volunteers were normal controls). Inter- and intragroup comparisons were made. A predicting equation was derived using multiple linear regression analysis. ASSRs and pure-tone thresholds (PTTs) showed a strong correlation for all subjects (r = .77 ≈ .94). The relationship is demonstrated by the equationThe differences between the ASSR and PTT were significantly higher for the NIHL group than for the subjects with non-noise-induced SNHL (p < .001). Mf-ASSR is a promising tool for objectively evaluating hearing thresholds. Predictive value may be lower in subjects with occupational hearing loss. Regardless of carrier frequencies, the severity of hearing loss affects the steady-state response. Moreover, the ASSR may assist in detecting noise-induced injury of the auditory pathway. A multiple linear regression equation to accurately predict thresholds was shown that takes into consideration all effect factors.
Hearing conservation in the primary aluminium industry
Frisch, N.; Dixon-Ernst, C.; Chesson, B. J.; Cullen, M. R.
2016-01-01
Background Noise-induced hearing loss has been an intractable problem for heavy industry. Aims To report our experience in reducing the incidence of age-corrected confirmed 10 dB hearing shifts (averaged over 2, 3 and 4kHz) in employees in the primary aluminium industry in Australia over the period 2006–13. Methods We analysed annual audiometric data to determine the number of permanent hearing shifts that occurred in employees in two bauxite mines, three alumina refineries and two aluminium smelters. Annual hearing shift rates were calculated based on the number of employees tested per year. Hearing conservation initiatives undertaken during the study period are described. An assessment of similar exposure group noise exposures was also undertaken to determine the magnitude of noise exposure reduction during the study period. Results Across all operations, hearing shift rates declined from 5.5% per year in 2006 to 1.3% per year in 2013 (P < 0.001). The decline in shift rates was greater in mines and refineries, where baseline shift rates were higher, than in smelter workers. Modest reductions in noise exposure occurred during the study period. Conclusions We observed a substantial decline in hearing shift rates during the study period. We describe the hearing conservation initiatives that were collectively associated with this decline. We suspect these initiatives could be deployed relatively easily and at modest cost in other industries with noise-exposed employees. PMID:26470945
Aided and Unaided Speech Perception by Older Hearing Impaired Listeners
Woods, David L.; Arbogast, Tanya; Doss, Zoe; Younus, Masood; Herron, Timothy J.; Yund, E. William
2015-01-01
The most common complaint of older hearing impaired (OHI) listeners is difficulty understanding speech in the presence of noise. However, tests of consonant-identification and sentence reception threshold (SeRT) provide different perspectives on the magnitude of impairment. Here we quantified speech perception difficulties in 24 OHI listeners in unaided and aided conditions by analyzing (1) consonant-identification thresholds and consonant confusions for 20 onset and 20 coda consonants in consonant-vowel-consonant (CVC) syllables presented at consonant-specific signal-to-noise (SNR) levels, and (2) SeRTs obtained with the Quick Speech in Noise Test (QSIN) and the Hearing in Noise Test (HINT). Compared to older normal hearing (ONH) listeners, nearly all unaided OHI listeners showed abnormal consonant-identification thresholds, abnormal consonant confusions, and reduced psychometric function slopes. Average elevations in consonant-identification thresholds exceeded 35 dB, correlated strongly with impairments in mid-frequency hearing, and were greater for hard-to-identify consonants. Advanced digital hearing aids (HAs) improved average consonant-identification thresholds by more than 17 dB, with significant HA benefit seen in 83% of OHI listeners. HAs partially normalized consonant-identification thresholds, reduced abnormal consonant confusions, and increased the slope of psychometric functions. Unaided OHI listeners showed much smaller elevations in SeRTs (mean 6.9 dB) than in consonant-identification thresholds and SeRTs in unaided listening conditions correlated strongly (r = 0.91) with identification thresholds of easily identified consonants. HAs produced minimal SeRT benefit (2.0 dB), with only 38% of OHI listeners showing significant improvement. HA benefit on SeRTs was accurately predicted (r = 0.86) by HA benefit on easily identified consonants. Consonant-identification tests can accurately predict sentence processing deficits and HA benefit in OHI listeners. PMID:25730423
Ng, Elaine H N; Classon, Elisabet; Larsby, Birgitta; Arlinger, Stig; Lunner, Thomas; Rudner, Mary; Rönnberg, Jerker
2014-11-23
The present study aimed to investigate the changing relationship between aided speech recognition and cognitive function during the first 6 months of hearing aid use. Twenty-seven first-time hearing aid users with symmetrical mild to moderate sensorineural hearing loss were recruited. Aided speech recognition thresholds in noise were obtained in the hearing aid fitting session as well as at 3 and 6 months postfitting. Cognitive abilities were assessed using a reading span test, which is a measure of working memory capacity, and a cognitive test battery. Results showed a significant correlation between reading span and speech reception threshold during the hearing aid fitting session. This relation was significantly weakened over the first 6 months of hearing aid use. Multiple regression analysis showed that reading span was the main predictor of speech recognition thresholds in noise when hearing aids were first fitted, but that the pure-tone average hearing threshold was the main predictor 6 months later. One way of explaining the results is that working memory capacity plays a more important role in speech recognition in noise initially rather than after 6 months of use. We propose that new hearing aid users engage working memory capacity to recognize unfamiliar processed speech signals because the phonological form of these signals cannot be automatically matched to phonological representations in long-term memory. As familiarization proceeds, the mismatch effect is alleviated, and the engagement of working memory capacity is reduced. © The Author(s) 2014.
Nachtigall, Paul E; Supin, Alexander Ya; Estaban, Jose-Antonio; Pacini, Aude F
2016-02-01
Ice-dwelling beluga whales are increasingly being exposed to anthropogenic loud sounds. Beluga's hearing sensitivity measured during a warning sound just preceding a loud sound was tested using pip-train stimuli and auditory evoked potential recording. When the test/warning stimulus with a frequency of 32 or 45 kHz preceded the loud sound with a frequency of 32 kHz and a sound pressure level of 153 dB re 1 μPa, 2 s, hearing thresholds before the loud sound increased relative to the baseline. The threshold increased up to 15 dB for the test frequency of 45 kHz and up to 13 dB for the test frequency of 32 kHz. These threshold increases were observed during two sessions of 36 trials each. Extinction tests revealed no change during three experimental sessions followed by a jump-like return to baseline thresholds. The low exposure level producing the hearing-dampening effect (156 dB re 1 µPa(2)s in each trial), and the manner of extinction, may be considered as evidence that the observed hearing threshold increases were a demonstration of conditioned dampening of hearing when the whale anticipated the quick appearance of a loud sound in the same way demonstrated in the false killer whale and bottlenose dolphin.
Cascella, Vincenza; Giordano, Pietro; Hatzopoulos, Stavros; Petruccelli, Joseph; Prosser, Silvano; Simoni, Edi; Astolfi, Laura; Fetoni, Annarita Rita; Skarżyński, Henryk; Martini, Alessandro
2012-01-01
Summary Background Data from animal studies show that antioxidants can compensate against noise-induced stress and sensory hair cell death. The aim of this study was to evaluate the otoprotection efficacy of various versions of orally administered Acuval 400® against noise damage in a rat animal model. Material/Methods Fifty-five Sprague Dawley rats were divided into 4 groups: A) noise-exposed animals; B) animals exposed to noise and treated with the Acuval; C) animals exposed to noise and treated with a combination of Coenzyme Q10 and Acuval; D) animals treated only with Acuval and Coenzyme Q10 and with no exposure to noise. All solutions were administered orally 5 times: 24 and 2 hrs prior to noise exposure, and then daily for 3 days. The auditory function was assessed by measuring auditory brainstem responses (ABR) in the range from 2 to 32 kHz at times =1, 7, 14 and 21 days after noise exposure. Results At low frequencies (click and 4 kHz) animals from both A and B groups showed significant threshold shifts in the majority of the tested frequencies and tested times. For the same frequencies, animals from group C presented threshold levels similar to those from group D. At frequencies ≥8 kHz the protective performance of the 2 Acuval groups is more clearly distinguished from the noise group A. At 32 kHz the 2 Acuval groups perform equally well in terms of otoprotection. Animals in Group D did not show any significant differences in the hearing threshold during the experiment. Conclusions The data of this study suggest that a solution containing Coenzyme Q10 and Acuval 400®, administered orally, protects from noise-induced hearing loss. PMID:22207104
Cascella, Vincenza; Giordano, Pietro; Hatzopoulos, Stavros; Petruccelli, Joseph; Prosser, Silvano; Simoni, Edi; Astolfi, Laura; Fetoni, Anna Rita; Skarżyński, Henryk; Martini, Alessandro
2012-01-01
Data from animal studies show that antioxidants can compensate against noise-induced stress and sensory hair cell death. The aim of this study was to evaluate the otoprotection efficacy of various versions of orally administered Acuval 400 against noise damage in a rat animal model. Fifty-five Sprague Dawley rats were divided into 4 groups: A) noise-exposed animals; B) animals exposed to noise and treated with the Acuval; C) animals exposed to noise and treated with a combination of Coenzyme Q10 and Acuval; D) animals treated only with Acuval and Coenzyme Q10 and with no exposure to noise. All solutions were administered orally 5 times: 24 and 2 hrs prior to noise exposure, and then daily for 3 days. The auditory function was assessed by measuring auditory brainstem responses (ABR) in the range from 2 to 32 kHz at times =1, 7, 14 and 21 days after noise exposure. At low frequencies (click and 4 kHz) animals from both A and B groups showed significant threshold shifts in the majority of the tested frequencies and tested times. For the same frequencies, animals from group C presented threshold levels similar to those from group D. At frequencies ≥ 8 kHz the protective performance of the 2 Acuval groups is more clearly distinguished from the noise group A. At 32 kHz the 2 Acuval groups perform equally well in terms of otoprotection. Animals in Group D did not show any significant differences in the hearing threshold during the experiment. The data of this study suggest that a solution containing Coenzyme Q10 and Acuval 400, administered orally, protects from noise-induced hearing loss.
Auditory evoked potential measurements in elasmobranchs
NASA Astrophysics Data System (ADS)
Casper, Brandon; Mann, David
2005-04-01
Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.
Xie, Shaobing; Qiang, Qingfen; Mei, Lingyun; He, Chufeng; Feng, Yong; Sun, Hong; Wu, Xuewen
2018-01-01
The objective of this study is to evaluate possible prognostic factors of idiopathic sudden sensorineural hearing loss (ISSNHL) treated with adjuvant hyperbaric oxygen therapy (HBOT) using univariate and multivariate analyses. From January 2008 to October 2016, records of 178 ISSNHL patients treated with auxiliary hyperbaric oxygen therapy were reviewed to assess hearing recovery and evaluate associated prognostic factors (gender, age, localization, initial hearing threshold, presence of tinnitus, vertigo, ear fullness, hypertension, diabetes, onset of HBOT, number of HBOT, and audiogram), by using univariate and multivariate analyses. The overall recovery rate was 37.1%, including complete recovery (19.7%) and partial recovery (17.4%). According to multivariate analysis, later onset of HBOT and higher initial hearing threshold were associated with a poor prognosis in ISSNHL patients treated with HBOT. HBOT is a safe and beneficial adjuvant therapy for ISSNHL patients. 20 sessions of HBOT is possibly enough to show its therapeutic effect. Earlier HBOT onset and lower initial hearing threshold is associated with favorable hearing recovery.
NASA Astrophysics Data System (ADS)
Natarajan, Ajay; Hansen, John H. L.; Arehart, Kathryn Hoberg; Rossi-Katz, Jessica
2005-12-01
This study describes a new noise suppression scheme for hearing aid applications based on the auditory masking threshold (AMT) in conjunction with a modified generalized minimum mean square error estimator (GMMSE) for individual subjects with hearing loss. The representation of cochlear frequency resolution is achieved in terms of auditory filter equivalent rectangular bandwidths (ERBs). Estimation of AMT and spreading functions for masking are implemented in two ways: with normal auditory thresholds and normal auditory filter bandwidths (GMMSE-AMT[ERB]-NH) and with elevated thresholds and broader auditory filters characteristic of cochlear hearing loss (GMMSE-AMT[ERB]-HI). Evaluation is performed using speech corpora with objective quality measures (segmental SNR, Itakura-Saito), along with formal listener evaluations of speech quality rating and intelligibility. While no measurable changes in intelligibility occurred, evaluations showed quality improvement with both algorithm implementations. However, the customized formulation based on individual hearing losses was similar in performance to the formulation based on the normal auditory system.
Aimoni, C; Ciorba, A; Bovo, R; Trevisi, P; Busi, M; Martini, A
2010-10-01
Electrophysiological evaluation is a fundamental procedure for the diagnostic assessment of hearing loss during infancy; in these cases, information concerning threshold level and auditory perception is particularly useful to establish a correct hearing rehabilitation program (hearing aids and cochlear implants). Purpose of this study is to underline the role of auditory brainstem responses (ABR) and electrocochleography (EcochG) in the definition of hearing loss in a selected group of children, referred to the Audiology Department of the University Hospital of Ferrara, for a tertiary level audiological assessment. A retrospective study of the paediatric patient database at the Audiology Department of the University Hospital of Ferrara has been performed. In a period between January 2000 and December 2007, a total of 272 paediatric cases have been identified (544 ears). An EM 12 Mercury apparatus has been used for the electrophysiological threshold identification (ABR and EcochG). Recordings were carried out under general anaesthesia, in a protected enviroment. In 19 of the 272 paediatric cases selected--38 ears (7%), the results of threshold evaluation through ABR were uncertain. The Ecochg recording resulted crucial for the final diagnosis in terms of definition of the hearing threshold level, and it was then possible to ensure the better hearing rehabilitation strategy. ABR has to be considered the first choice in hearing assessment strategy, either for screening or for diagnosis in newborns as well as in non-collaborating children; ECochG still may be considered a reliable diagnostic tool. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Smartphone threshold audiometry in underserved primary health-care contexts.
Sandström, Josefin; Swanepoel, De Wet; Carel Myburgh, Hermanus; Laurent, Claude
2016-01-01
To validate a calibrated smartphone-based hearing test in a sound booth environment and in primary health-care clinics. A repeated-measure within-subject study design was employed whereby air-conduction hearing thresholds determined by smartphone-based audiometry was compared to conventional audiometry in a sound booth and a primary health-care clinic environment. A total of 94 subjects (mean age 41 years ± 17.6 SD and range 18-88; 64% female) were assessed of whom 64 were tested in the sound booth and 30 within primary health-care clinics without a booth. In the sound booth 63.4% of conventional and smartphone thresholds indicated normal hearing (≤15 dBHL). Conventional thresholds exceeding 15 dB HL corresponded to smartphone thresholds within ≤10 dB in 80.6% of cases with an average threshold difference of -1.6 dB ± 9.9 SD. In primary health-care clinics 13.7% of conventional and smartphone thresholds indicated normal hearing (≤15 dBHL). Conventional thresholds exceeding 15 dBHL corresponded to smartphone thresholds within ≤10 dB in 92.9% of cases with an average threshold difference of -1.0 dB ± 7.1 SD. Accurate air-conduction audiometry can be conducted in a sound booth and without a sound booth in an underserved community health-care clinic using a smartphone.
Le Prell, Colleen G; Spankovich, Christopher; Lobariñas, Edward; Griffiths, Scott K
2013-09-01
Human hearing is sensitive to sounds from as low as 20 Hz to as high as 20,000 Hz in normal ears. However, clinical tests of human hearing rarely include extended high-frequency (EHF) threshold assessments, at frequencies extending beyond 8000 Hz. EHF thresholds have been suggested for use monitoring the earliest effects of noise on the inner ear, although the clinical usefulness of EHF threshold testing is not well established for this purpose. The primary objective of this study was to determine if EHF thresholds in healthy, young adult college students vary as a function of recreational noise exposure. A retrospective analysis of a laboratory database was conducted; all participants with both EHF threshold testing and noise history data were included. The potential for "preclinical" EHF deficits was assessed based on the measured thresholds, with the noise surveys used to estimate recreational noise exposure. EHF thresholds measured during participation in other ongoing studies were available from 87 participants (34 male and 53 female); all participants had hearing within normal clinical limits (≤25 HL) at conventional frequencies (0.25-8 kHz). EHF thresholds closely matched standard reference thresholds [ANSI S3.6 (1996) Annex C]. There were statistically reliable threshold differences in participants who used music players, with 3-6 dB worse thresholds at the highest test frequencies (10-16 kHz) in participants who reported long-term use of music player devices (>5 yr), or higher listening levels during music player use. It should be possible to detect small changes in high-frequency hearing for patients or participants who undergo repeated testing at periodic intervals. However, the increased population-level variability in thresholds at the highest frequencies will make it difficult to identify the presence of small but potentially important deficits in otherwise normal-hearing individuals who do not have previously established baseline data. American Academy of Audiology.
Risk Factors for Hearing Decrement Among U.S. Air Force Aviation-Related Personnel.
Greenwell, Brandon M; Tvaryanas, Anthony P; Maupin, Genny M
2018-02-01
The purpose of this study was to analyze historical hearing sensitivity data to determine factors associated with an occupationally significant change in hearing sensitivity in U.S. Air Force aviation-related personnel. This study was a longitudinal, retrospective cohort analysis of audiogram records for Air Force aviation-related personnel on active duty during calendar year 2013 without a diagnosis of non-noise-related hearing loss. The outcomes of interest were raw change in hearing sensitivity from initial baseline to 2013 audiogram and initial occurrence of a significant threshold shift (STS) and non-H1 audiogram profile. Potential predictor variables included age and elapsed time in cohort for each audiogram, gender, and Air Force Specialty Code. Random forest analyses conducted on a learning sample were used to identify relevant predictor variables. Mixed effects models were fitted to a separate validation sample to make statistical inferences. The final dataset included 167,253 nonbaseline audiograms on 10,567 participants. Only the interaction between time since baseline audiogram and age was significantly associated with raw change in hearing sensitivity by STS metric. None of the potential predictors were associated with the likelihood for an STS. Time since baseline audiogram, age, and their interaction were significantly associated with the likelihood for a non-HI hearing profile. In this study population, age and elapsed time since baseline audiogram were modestly associated with decreased hearing sensitivity and increased likelihood for a non-H1 hearing profile. Aircraft type, as determined from Air Force Specialty Code, was not associated with changes in hearing sensitivity by STS metric.Greenwell BM, Tvaryanas AP, Maupin GM. Risk factors for hearing decrement among U.S. Air Force aviation-related personnel. Aerosp Med Hum Perform. 2018; 89(2):80-86.
Bertsche, Patricia K; Mensah, Edward; Stevens, Thomas
2006-08-01
The purpose of this study was to determine whether the benefits of early identification of work-related noise-induced hearing loss outweigh the costs of complying with a Global Noise Medical Surveillance Procedure of a large corporation. Hearing is fundamental to language, communication, and socialization. Its loss is a common cause of disability, affecting an estimated 20 to 40 million individuals in the United States (Daniell et al., 1998). NIOSH reported that approximately 30 million U.S. workers are exposed to noise on the job and that noise-induced hearing loss is one of the most common occupational diseases. It is irreversible (NIOSH, 2004). The average cost of a noise-induced hearing loss is reported to range from dollars 4,726 to dollars 25,500. Corporate history indicates a range of dollars 44 to dollars 20,157 per case. During this 4-year study in one plant, the average annual cost of complying with the Global Noise Medical Surveillance Procedure was dollars 19,509 to screen an average of 390 employees, or dollars 50 per worker. The study identified 11 non-work-related standard threshold shifts. All cases were referred for appropriate early intervention. Given the results, this hearing health program is considered beneficial to the corporation for both work- and non-work-related reasons.
Huang, Xinghua; Chen, Mo; Ding, Yan; Wang, Qin
2017-03-01
Neuronal hearing loss has become a prevalent health problem. This study focused on the function of arctigenin (ARC) in promoting survival and neuronal differentiation of mouse cochlear neural stem cells (NSCs), and its protection against gentamicin (GMC) induced neuronal hearing loss. Mouse cochlea was used to isolate NSCs, which were subsequently cultured in vitro. The effects of ARC on NSC survival, neurosphere formation, differentiation of NSCs, neurite outgrowth, and neural excitability in neuronal network in vitro were examined. Mechanotransduction ability demonstrated by intact cochlea, auditory brainstem response (ABR), and distortion product optoacoustic emissions (DPOAE) amplitude in mice were measured to evaluate effects of ARC on GMC-induced neuronal hearing loss. ARC increased survival, neurosphere formation, neuron differentiation of NSCs in mouse cochlear in vitro. ARC also promoted the outgrowth of neurites, as well as neural excitability of the NSC-differentiated neuron culture. Additionally, ARC rescued mechanotransduction capacity, restored the threshold shifts of ABR and DPOAE in our GMC ototoxicity murine model. This study supports the potential therapeutic role of ARC in promoting both NSCs proliferation and differentiation in vitro to functional neurons, thus supporting its protective function in the therapeutic treatment of neuropathic hearing loss in vivo. © 2017 Wiley Periodicals, Inc.
Rosen, Sophia; Davidov, Ori
2012-07-20
Multivariate outcomes are often measured longitudinally. For example, in hearing loss studies, hearing thresholds for each subject are measured repeatedly over time at several frequencies. Thus, each patient is associated with a multivariate longitudinal outcome. The multivariate mixed-effects model is a useful tool for the analysis of such data. There are situations in which the parameters of the model are subject to some restrictions or constraints. For example, it is known that hearing thresholds, at every frequency, increase with age. Moreover, this age-related threshold elevation is monotone in frequency, that is, the higher the frequency, the higher, on average, is the rate of threshold elevation. This means that there is a natural ordering among the different frequencies in the rate of hearing loss. In practice, this amounts to imposing a set of constraints on the different frequencies' regression coefficients modeling the mean effect of time and age at entry to the study on hearing thresholds. The aforementioned constraints should be accounted for in the analysis. The result is a multivariate longitudinal model with restricted parameters. We propose estimation and testing procedures for such models. We show that ignoring the constraints may lead to misleading inferences regarding the direction and the magnitude of various effects. Moreover, simulations show that incorporating the constraints substantially improves the mean squared error of the estimates and the power of the tests. We used this methodology to analyze a real hearing loss study. Copyright © 2012 John Wiley & Sons, Ltd.
Hearing conservation in the primary aluminium industry.
Donoghue, A M; Frisch, N; Dixon-Ernst, C; Chesson, B J; Cullen, M R
2016-04-01
Noise-induced hearing loss has been an intractable problem for heavy industry. To report our experience in reducing the incidence of age-corrected confirmed 10 dB hearing shifts (averaged over 2, 3 and 4 kHz) in employees in the primary aluminium industry in Australia over the period 2006-13. We analysed annual audiometric data to determine the number of permanent hearing shifts that occurred in employees in two bauxite mines, three alumina refineries and two aluminium smelters. Annual hearing shift rates were calculated based on the number of employees tested per year. Hearing conservation initiatives undertaken during the study period are described. An assessment of similar exposure group noise exposures was also undertaken to determine the magnitude of noise exposure reduction during the study period. Across all operations, hearing shift rates declined from 5.5% per year in 2006 to 1.3% per year in 2013 (P < 0.001). The decline in shift rates was greater in mines and refineries, where baseline shift rates were higher, than in smelter workers. Modest reductions in noise exposure occurred during the study period. We observed a substantial decline in hearing shift rates during the study period. We describe the hearing conservation initiatives that were collectively associated with this decline. We suspect these initiatives could be deployed relatively easily and at modest cost in other industries with noise-exposed employees. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine.
Samelli, Alessandra G; Santos, Itamar S; Moreira, Renata R; Rabelo, Camila M; Rolim, Laurie P; Bensenõr, Isabela J; Lotufo, Paulo A
2017-01-01
Although several studies have investigated the effects of diabetes on hearing loss, the relationship between these two conditions remains unclear. Some studies have suggested that diabetes may cause sensorineural hearing loss, whereas others have failed to find an association. The biggest challenge in investigating the association between diabetes and hearing loss is the presence of confounding variables and the complexity of the auditory system. Our study investigated the association between diabetes and sensorineural hearing loss. We evaluated the influence of time from diabetes diagnosis on this association after controlling for age, gender, and hypertension diagnosis and excluding those subjects with exposure to noise. This cross-sectional study evaluated 901 adult and elderly Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) participants from São Paulo, Brazil who underwent audiometry testing as part of ELSA-Brasil's baseline assessment. Hearing thresholds and speech test results were significantly worse in the group with diabetes than in the group without diabetes. However, no significant differences were found between participants with and without diabetes after adjusting for age, gender, and the presence of hypertension. Hearing thresholds were not affected by occupational noise exposure in the groups with and without diabetes. In addition, no association between the duration of diabetes and hearing thresholds was observed after adjusting for age, gender, and hypertension. We found no association between the duration of diabetes and worse hearing thresholds after models were adjusted for age, gender, and the presence of hypertension.
The hearing threshold of a harbor porpoise (Phocoena phocoena) for impulsive sounds (L).
Kastelein, Ronald A; Gransier, Robin; Hoek, Lean; de Jong, Christ A F
2012-08-01
The distance at which harbor porpoises can hear underwater detonation sounds is unknown, but depends, among other factors, on the hearing threshold of the species for impulsive sounds. Therefore, the underwater hearing threshold of a young harbor porpoise for an impulsive sound, designed to mimic a detonation pulse, was quantified by using a psychophysical technique. The synthetic exponential pulse with a 5 ms time constant was produced and transmitted by an underwater projector in a pool. The resulting underwater sound, though modified by the response of the projection system and by the pool, exhibited the characteristic features of detonation sounds: A zero to peak sound pressure level of at least 30 dB (re 1 s(-1)) higher than the sound exposure level, and a short duration (34 ms). The animal's 50% detection threshold for this impulsive sound occurred at a received unweighted broadband sound exposure level of 60 dB re 1 μPa(2)s. It is shown that the porpoise's audiogram for short-duration tonal signals [Kastelein et al., J. Acoust. Soc. Am. 128, 3211-3222 (2010)] can be used to estimate its hearing threshold for impulsive sounds.
O'Brien, Anna; Keidser, Gitte; Yeend, Ingrid; Hartley, Lisa; Dillon, Harvey
2010-12-01
Audiometric measurements through a hearing aid ('in-situ') may facilitate provision of hearing services where these are limited. This study investigated the validity and reliability of in-situ air conduction hearing thresholds measured with closed and open domes relative to thresholds measured with insert earphones, and explored sources of variability in the measures. Twenty-four adults with sensorineural hearing impairment attended two sessions in which thresholds and real-ear-to-dial-difference (REDD) values were measured. Without correction, significantly higher low-frequency thresholds in dB HL were measured in-situ than with insert earphones. Differences were due predominantly to differences in ear canal SPL, as measured with the REDD, which were attributed to leaking low-frequency energy. Test-retest data yielded higher variability with the closed dome coupling due to inconsistent seals achieved with this tip. For all three conditions, inter-participant variability in the REDD values was greater than intra-participant variability. Overall, in-situ audiometry is as valid and reliable as conventional audiometry provided appropriate REDD corrections are made and ambient sound in the test environment is controlled.
Dobie, Robert A; Wojcik, Nancy C
2015-01-01
Objectives The US Occupational Safety and Health Administration (OSHA) Noise Standard provides the option for employers to apply age corrections to employee audiograms to consider the contribution of ageing when determining whether a standard threshold shift has occurred. Current OSHA age-correction tables are based on 40-year-old data, with small samples and an upper age limit of 60 years. By comparison, recent data (1999–2006) show that hearing thresholds in the US population have improved. Because hearing thresholds have improved, and because older people are increasingly represented in noisy occupations, the OSHA tables no longer represent the current US workforce. This paper presents 2 options for updating the age-correction tables and extending values to age 75 years using recent population-based hearing survey data from the US National Health and Nutrition Examination Survey (NHANES). Both options provide scientifically derived age-correction values that can be easily adopted by OSHA to expand their regulatory guidance to include older workers. Methods Regression analysis was used to derive new age-correction values using audiometric data from the 1999–2006 US NHANES. Using the NHANES median, better-ear thresholds fit to simple polynomial equations, new age-correction values were generated for both men and women for ages 20–75 years. Results The new age-correction values are presented as 2 options. The preferred option is to replace the current OSHA tables with the values derived from the NHANES median better-ear thresholds for ages 20–75 years. The alternative option is to retain the current OSHA age-correction values up to age 60 years and use the NHANES-based values for ages 61–75 years. Conclusions Recent NHANES data offer a simple solution to the need for updated, population-based, age-correction tables for OSHA. The options presented here provide scientifically valid and relevant age-correction values which can be easily adopted by OSHA to expand their regulatory guidance to include older workers. PMID:26169804
Dobie, Robert A; Wojcik, Nancy C
2015-07-13
The US Occupational Safety and Health Administration (OSHA) Noise Standard provides the option for employers to apply age corrections to employee audiograms to consider the contribution of ageing when determining whether a standard threshold shift has occurred. Current OSHA age-correction tables are based on 40-year-old data, with small samples and an upper age limit of 60 years. By comparison, recent data (1999-2006) show that hearing thresholds in the US population have improved. Because hearing thresholds have improved, and because older people are increasingly represented in noisy occupations, the OSHA tables no longer represent the current US workforce. This paper presents 2 options for updating the age-correction tables and extending values to age 75 years using recent population-based hearing survey data from the US National Health and Nutrition Examination Survey (NHANES). Both options provide scientifically derived age-correction values that can be easily adopted by OSHA to expand their regulatory guidance to include older workers. Regression analysis was used to derive new age-correction values using audiometric data from the 1999-2006 US NHANES. Using the NHANES median, better-ear thresholds fit to simple polynomial equations, new age-correction values were generated for both men and women for ages 20-75 years. The new age-correction values are presented as 2 options. The preferred option is to replace the current OSHA tables with the values derived from the NHANES median better-ear thresholds for ages 20-75 years. The alternative option is to retain the current OSHA age-correction values up to age 60 years and use the NHANES-based values for ages 61-75 years. Recent NHANES data offer a simple solution to the need for updated, population-based, age-correction tables for OSHA. The options presented here provide scientifically valid and relevant age-correction values which can be easily adopted by OSHA to expand their regulatory guidance to include older workers. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Gifford, René H; Dorman, Michael F; Skarzynski, Henryk; Lorens, Artur; Polak, Marek; Driscoll, Colin L W; Roland, Peter; Buchman, Craig A
2013-01-01
The aim of this study was to assess the benefit of having preserved acoustic hearing in the implanted ear for speech recognition in complex listening environments. The present study included a within-subjects, repeated-measures design including 21 English-speaking and 17 Polish-speaking cochlear implant (CI) recipients with preserved acoustic hearing in the implanted ear. The patients were implanted with electrodes that varied in insertion depth from 10 to 31 mm. Mean preoperative low-frequency thresholds (average of 125, 250, and 500 Hz) in the implanted ear were 39.3 and 23.4 dB HL for the English- and Polish-speaking participants, respectively. In one condition, speech perception was assessed in an eight-loudspeaker environment in which the speech signals were presented from one loudspeaker and restaurant noise was presented from all loudspeakers. In another condition, the signals were presented in a simulation of a reverberant environment with a reverberation time of 0.6 sec. The response measures included speech reception thresholds (SRTs) and percent correct sentence understanding for two test conditions: CI plus low-frequency hearing in the contralateral ear (bimodal condition) and CI plus low-frequency hearing in both ears (best-aided condition). A subset of six English-speaking listeners were also assessed on measures of interaural time difference thresholds for a 250-Hz signal. Small, but significant, improvements in performance (1.7-2.1 dB and 6-10 percentage points) were found for the best-aided condition versus the bimodal condition. Postoperative thresholds in the implanted ear were correlated with the degree of electric and acoustic stimulation (EAS) benefit for speech recognition in diffuse noise. There was no reliable relationship among measures of audiometric threshold in the implanted ear nor elevation in threshold after surgery and improvement in speech understanding in reverberation. There was a significant correlation between interaural time difference threshold at 250 Hz and EAS-related benefit for the adaptive speech reception threshold. The findings of this study suggest that (1) preserved low-frequency hearing improves speech understanding for CI recipients, (2) testing in complex listening environments, in which binaural timing cues differ for signal and noise, may best demonstrate the value of having two ears with low-frequency acoustic hearing, and (3) preservation of binaural timing cues, although poorer than observed for individuals with normal hearing, is possible after unilateral cochlear implantation with hearing preservation and is associated with EAS benefit. The results of this study demonstrate significant communicative benefit for hearing preservation in the implanted ear and provide support for the expansion of CI criteria to include individuals with low-frequency thresholds in even the normal to near-normal range.
Do ambient noise exposure levels predict hearing loss in a modern industrial cohort?
Rabinowitz, P M; Galusha, D; Dixon‐Ernst, C; Slade, M D; Cullen, M R
2007-01-01
Background Much of what is known about the exposure–response relationship between occupational noise exposures and hearing loss comes from cross‐sectional studies conducted before the widespread implementation of workplace hearing conservation programmes. Little is known about the current relationship of ambient noise exposure measurements to hearing loss risk. Aim To examine the relationship between rates of high frequency hearing loss and measured levels of noise exposure in a modern industrial workforce. Methods Ten‐year hearing loss rates were determined for 6217 employees of an aluminium manufacturing company. Industrial hygiene and human resources records allowed for reconstruction of individual noise exposures. Hearing loss rates were compared to ANSI 3.44 predictions based on age and noise exposure. Associations between hearing loss, noise exposure, and covariate risk factors were assessed using multivariate regression. Results Workers in higher ambient noise jobs tended to experience less high frequency hearing loss than co‐workers exposed at lower noise levels. This trend was also seen in stratified analyses of white males and non‐hunters. At higher noise exposure levels, the magnitude of hearing loss was less than predicted by ANSI 3.44 formulae. There was no indication that a healthy worker effect could explain these findings. The majority of 10 dB standard threshold shifts (STS) occurred in workers whose calculated ambient noise exposures were less than or equal to 85 dBA. Conclusions In this modern industrial cohort, hearing conservation efforts appear to be reducing hearing loss rates, especially at higher ambient noise levels. This could be related to differential use of hearing protection. The greatest burden of preventable occupational hearing loss was found in workers whose noise exposure averaged 85 dBA or less. To further reduce rates of occupational hearing loss, hearing conservation programmes may require innovative approaches targeting workers with noise exposures close to 85 dBA. PMID:16973736
Kommareddi, Pavan; Nair, Thankam; Kakaraparthi, Bala Naveen; Galano, Maria M; Miller, Danielle; Laczkovich, Irina; Thomas, Trey; Lu, Lillian; Rule, Kelli; Kabara, Lisa; Kanicki, Ariane; Hughes, Elizabeth D; Jones, Julie M; Hoenerhoff, Mark; Fisher, Susan G; Altschuler, Richard A; Dolan, David; Kohrman, David C; Saunders, Thomas L; Carey, Thomas E
2015-12-01
SLC44A2 (solute carrier 44a2), also known as CTL2 (choline transporter-like protein 2), is expressed in many supporting cell types in the cochlea and is implicated in hair cell survival and antibody-induced hearing loss. In mice with the mixed C57BL/6-129 background, homozygous deletion of Slc44a2 exons 3–10 (Slc44a2(Δ/Δ)resulted in high-frequency hearing loss and hair cell death. To reduce effects associated with age-related hearing loss (ARHL) in these strains, mice carrying the Slc44a2Δ allele were backcrossed to the ARHL-resistant FVB/NJ strain and evaluated after backcross seven(N7) (99 % FVB). Slc44a2(Δ/Δ) mice produced abnormally spliced Slc44a2 transcripts that contain a frame shift and premature stop codons. Neither full-length SLC44A2 nor a putative truncated protein could be detected in Slc44a2(Δ/Δ) mice, suggesting a likely null allele. Auditory brain stem responses (ABRs) of mice carrying the Slc44a2Δ allele on an FVB/NJ genetic background were tested longitudinally between the ages of 2 and 10 months. By 6 months of age,Slc44a2(Δ/Δ) mice exhibited hearing loss at 32 kHz,but at 12 and 24 kHz had sound thresholds similar to those of wild-type Slc44a2(+/+) and heterozygous +/Slc44a2Δ mice. After 6 months of age, Slc44a2(Δ/Δ) mutants exhibited progressive hearing loss at all frequencies and +/Slc44a2(Δ) mice exhibited moderate threshold elevations at high frequency. Histologic evaluation of Slc44a2(Δ/Δ) mice revealed extensive hair cell and spiral ganglion cell loss, especially in the basal turn of the cochlea. We conclude that Slc44a2 function is required for long-term hair cell survival and maintenance of hearing.
Audio-visual temporal perception in children with restored hearing.
Gori, Monica; Chilosi, Anna; Forli, Francesca; Burr, David
2017-05-01
It is not clear how audio-visual temporal perception develops in children with restored hearing. In this study we measured temporal discrimination thresholds with an audio-visual temporal bisection task in 9 deaf children with restored audition, and 22 typically hearing children. In typically hearing children, audition was more precise than vision, with no gain in multisensory conditions (as previously reported in Gori et al. (2012b)). However, deaf children with restored audition showed similar thresholds for audio and visual thresholds and some evidence of gain in audio-visual temporal multisensory conditions. Interestingly, we found a strong correlation between auditory weighting of multisensory signals and quality of language: patients who gave more weight to audition had better language skills. Similarly, auditory thresholds for the temporal bisection task were also a good predictor of language skills. This result supports the idea that the temporal auditory processing is associated with language development. Copyright © 2017. Published by Elsevier Ltd.
Hearing Tests Based on Biologically Calibrated Mobile Devices: Comparison With Pure-Tone Audiometry
Grysiński, Tomasz; Kręcicki, Tomasz
2018-01-01
Background Hearing screening tests based on pure-tone audiometry may be conducted on mobile devices, provided that the devices are specially calibrated for the purpose. Calibration consists of determining the reference sound level and can be performed in relation to the hearing threshold of normal-hearing persons. In the case of devices provided by the manufacturer, together with bundled headphones, the reference sound level can be calculated once for all devices of the same model. Objective This study aimed to compare the hearing threshold measured by a mobile device that was calibrated using a model-specific, biologically determined reference sound level with the hearing threshold obtained in pure-tone audiometry. Methods Trial participants were recruited offline using face-to-face prompting from among Otolaryngology Clinic patients, who own Android-based mobile devices with bundled headphones. The hearing threshold was obtained on a mobile device by means of an open access app, Hearing Test, with incorporated model-specific reference sound levels. These reference sound levels were previously determined in uncontrolled conditions in relation to the hearing threshold of normal-hearing persons. An audiologist-assisted self-measurement was conducted by the participants in a sound booth, and it involved determining the lowest audible sound generated by the device within the frequency range of 250 Hz to 8 kHz. The results were compared with pure-tone audiometry. Results A total of 70 subjects, 34 men and 36 women, aged 18-71 years (mean 36, standard deviation [SD] 11) participated in the trial. The hearing threshold obtained on mobile devices was significantly different from the one determined by pure-tone audiometry with a mean difference of 2.6 dB (95% CI 2.0-3.1) and SD of 8.3 dB (95% CI 7.9-8.7). The number of differences not greater than 10 dB reached 89% (95% CI 88-91), whereas the mean absolute difference was obtained at 6.5 dB (95% CI 6.2-6.9). Sensitivity and specificity for a mobile-based screening method were calculated at 98% (95% CI 93-100.0) and 79% (95% CI 71-87), respectively. Conclusions The method of hearing self-test carried out on mobile devices with bundled headphones demonstrates high compatibility with pure-tone audiometry, which confirms its potential application in hearing monitoring, screening tests, or epidemiological examinations on a large scale. PMID:29321124
Hearing Tests Based on Biologically Calibrated Mobile Devices: Comparison With Pure-Tone Audiometry.
Masalski, Marcin; Grysiński, Tomasz; Kręcicki, Tomasz
2018-01-10
Hearing screening tests based on pure-tone audiometry may be conducted on mobile devices, provided that the devices are specially calibrated for the purpose. Calibration consists of determining the reference sound level and can be performed in relation to the hearing threshold of normal-hearing persons. In the case of devices provided by the manufacturer, together with bundled headphones, the reference sound level can be calculated once for all devices of the same model. This study aimed to compare the hearing threshold measured by a mobile device that was calibrated using a model-specific, biologically determined reference sound level with the hearing threshold obtained in pure-tone audiometry. Trial participants were recruited offline using face-to-face prompting from among Otolaryngology Clinic patients, who own Android-based mobile devices with bundled headphones. The hearing threshold was obtained on a mobile device by means of an open access app, Hearing Test, with incorporated model-specific reference sound levels. These reference sound levels were previously determined in uncontrolled conditions in relation to the hearing threshold of normal-hearing persons. An audiologist-assisted self-measurement was conducted by the participants in a sound booth, and it involved determining the lowest audible sound generated by the device within the frequency range of 250 Hz to 8 kHz. The results were compared with pure-tone audiometry. A total of 70 subjects, 34 men and 36 women, aged 18-71 years (mean 36, standard deviation [SD] 11) participated in the trial. The hearing threshold obtained on mobile devices was significantly different from the one determined by pure-tone audiometry with a mean difference of 2.6 dB (95% CI 2.0-3.1) and SD of 8.3 dB (95% CI 7.9-8.7). The number of differences not greater than 10 dB reached 89% (95% CI 88-91), whereas the mean absolute difference was obtained at 6.5 dB (95% CI 6.2-6.9). Sensitivity and specificity for a mobile-based screening method were calculated at 98% (95% CI 93-100.0) and 79% (95% CI 71-87), respectively. The method of hearing self-test carried out on mobile devices with bundled headphones demonstrates high compatibility with pure-tone audiometry, which confirms its potential application in hearing monitoring, screening tests, or epidemiological examinations on a large scale. ©Marcin Masalski, Tomasz Grysiński, Tomasz Kręcicki. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 10.01.2018.
Underwater hearing sensitivity of a male and a female Steller sea lion (Eumetopias jubatus).
Kastelein, Ronald A; van Schie, Robbert; Verboom, Wim C; de Haan, Dick
2005-09-01
The unmasked underwater hearing sensitivities of an 8-year-old male and a 7-year-old female Steller sea lion were measured in a pool, by using behavioral psychophysics. The animals were trained with positive reinforcement to respond when they detected an acoustic signal and not to respond when they did not. The signals were narrow-band, frequency-modulated stimuli with a duration of 600 ms and center frequencies ranging from 0.5 to 32 kHz for the male and from 4 to 32 kHz for the female. Detection thresholds at each frequency were measured by varying signal amplitude according to the up-down staircase method. The resulting underwater audiogram (50% detection thresholds) for the male Steller sea lion showed the typical mammalian U-shape. His maximum sensitivity (77 dB re: 1 microPa, rms) occurred at 1 kHz. The range of best hearing (10 dB from the maximum sensitivity) was from 1 to 16 kHz (4 octaves). Higher hearing thresholds (indicating poorer sensitivity) were observed below 1 kHz and above 16 kHz. The maximum sensitivity of the female (73 dB re: 1 microPa, rms) occurred at 25 kHz. Higher hearing thresholds (indicating poorer sensitivity) were observed for signals below 16 kHz and above 25 kHz. At frequencies for which both subjects were tested, hearing thresholds of the male were significantly higher than those of the female. The hearing sensitivity differences between the male and female Steller sea lion in this study may be due to individual differences in sensitivity between the subjects or due to sexual dimorphism in hearing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuur, Charlotte L.; Simis, Yvonne J.; Lamers, Emmy A.
2009-06-01
Purpose: Radiotherapy (RT) is a common treatment of head-and-neck carcinoma. The objective of this study was to perform a prospective multivariate assessment of the dose-effect relationship between intensity-modulated RT and hearing loss. Methods and Materials: Pure tone audiometry at 0.250-16 kHz was obtained before and after treatment in 101 patients (202 ears). All patients received full-course intensity-modulated RT (range, 56-70 Gy), with a median cochlear dose of 11.4 Gy (range, 0.2-69.7). Results: Audiometry was performed 1 week before and a median of 9 weeks (range, 1-112) after treatment. The mean hearing deterioration at pure tone average air-conduction 1-2-4 kHz wasmore » small (from 28.6 dB HL to 30.1 dB HL). However, individual patients showed clinically significant hearing loss, with 10-dB threshold shift incidences of 13% and 18% at pure tone averages air-conduction 1-2-4 kHz and 8-10-12.5 kHz, respectively. Post-treatment hearing capability was unfavorable in the case of greater inner ear radiation doses (p <0.0001), unfavorable baseline hearing capability (p <0.0001), green-eyed patients (p <0.0001), and older age (p <0.0001). Using multivariate analysis, a prediction of individual hearing capabiltity after treatment was made. Conclusion: RT-induced hearing loss in the mean population is modest. However, clinically significant hearing loss was observed in older patients with green eyes and unfavorable pretreatment hearing. In these patients, the intended radiation dose may be adjusted according to the proposed predictive model, aiming to decrease the risk of ototoxicity.« less
Weichenberger, Markus; Bauer, Martin; Kühler, Robert; Hensel, Johannes; Forlim, Caroline Garcia; Ihlenfeld, Albrecht; Ittermann, Bernd; Gallinat, Jürgen; Koch, Christian; Kühn, Simone
2017-01-01
In the present study, the brain's response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold-as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a 'medium loud' hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings.
Verkerk, Paul H.; Dijk, Peter H.; Van Straaten, Henrica L. M.
2013-01-01
Background Severe unconjugated hyperbilirubinemia may cause deafness. In the Netherlands, 25% lower total serum bilirubin (TSB) treatment thresholds were recently implemented for preterm infants. Objective To determine the rate of hearing loss in jaundiced preterms treated at high or at low TSB thresholds. Design/Methods In this retrospective study conducted at two neonatal intensive care units in the Netherlands, we included preterms (gestational age <32 weeks) treated for unconjugated hyperbilirubinemia at high or low TSB thresholds. Infants with major congenital malformations, syndromes, chromosomal abnormalities or toxoplasmosis, rubella, cytomegalovirus, herpes, syphilis, and human immunodeficiency infections were excluded. We analyzed clinical characteristics and TSB levels during the first ten postnatal days. After two failed automated Auditory Brainstem Response (ABR) tests we used the results of the diagnostic ABR examination to define normal, unilateral, and bilateral hearing loss (>35 dB). Results There were 479 patients in the high and 144 in the low threshold group. Both groups had similar gestational ages (29.5 weeks) and birth weights (1300 g). Mean and mean peak TSB levels were significantly lower after the implementation of the novel thresholds: 152±43 µmol/L and 212±52 µmol/L versus 131±37 µmol/L and 188±46 µmol/L for the high versus low thresholds, respectively (P<0.001). The incidence of hearing loss was 2.7% (13/479) in the high and 0.7% (1/144) in the low TSB threshold group (NNT = 50, 95% CI, 25–3302). Conclusions Implementation of lower treatment thresholds resulted in reduced mean and peak TSB levels. The incidence of hearing impairment in preterms with a gestational age <32 weeks treated at low TSB thresholds was substantially lower compared to preterms treated at high TSB thresholds. Further research with larger sample sizes and power is needed to determine if this effect is statistically significant. PMID:23667532
Hulzebos, Christian V; van Dommelen, Paula; Verkerk, Paul H; Dijk, Peter H; Van Straaten, Henrica L M
2013-01-01
Severe unconjugated hyperbilirubinemia may cause deafness. In the Netherlands, 25% lower total serum bilirubin (TSB) treatment thresholds were recently implemented for preterm infants. To determine the rate of hearing loss in jaundiced preterms treated at high or at low TSB thresholds. In this retrospective study conducted at two neonatal intensive care units in the Netherlands, we included preterms (gestational age <32 weeks) treated for unconjugated hyperbilirubinemia at high or low TSB thresholds. Infants with major congenital malformations, syndromes, chromosomal abnormalities or toxoplasmosis, rubella, cytomegalovirus, herpes, syphilis, and human immunodeficiency infections were excluded. We analyzed clinical characteristics and TSB levels during the first ten postnatal days. After two failed automated Auditory Brainstem Response (ABR) tests we used the results of the diagnostic ABR examination to define normal, unilateral, and bilateral hearing loss (>35 dB). There were 479 patients in the high and 144 in the low threshold group. Both groups had similar gestational ages (29.5 weeks) and birth weights (1300 g). Mean and mean peak TSB levels were significantly lower after the implementation of the novel thresholds: 152 ± 43 µmol/L and 212 ± 52 µmol/L versus 131 ± 37 µmol/L and 188 ± 46 µmol/L for the high versus low thresholds, respectively (P<0.001). The incidence of hearing loss was 2.7% (13/479) in the high and 0.7% (1/144) in the low TSB threshold group (NNT = 50, 95% CI, 25-3302). Implementation of lower treatment thresholds resulted in reduced mean and peak TSB levels. The incidence of hearing impairment in preterms with a gestational age <32 weeks treated at low TSB thresholds was substantially lower compared to preterms treated at high TSB thresholds. Further research with larger sample sizes and power is needed to determine if this effect is statistically significant.
Bravo-Torres, Sofía; Der-Mussa, Carolina; Fuentes-López, Eduardo
2018-01-01
To describe, in terms of functional gain and word recognition, the audiological results of patients under 18 years of age implanted with the active bone conduction implant, Bonebridge™. Retrospective case studies conducted by reviewing the medical records of patients receiving implants between 2014 and 2016 in the public health sector in Chile. All patients implanted with the Bonebridge were included (N = 15). Individuals who had bilateral conductive hearing loss, secondary to external ear malformations, were considered as candidates. The average hearing threshold one month after switch on was 25.2 dB (95%CI 23.5-26.9). Hearing thresholds between 0.5 and 4 kHz were better when compared with bone conduction hearing aids. Best performance was observed at 4 kHz, where improvements to hearing were observed throughout the adaptation process. There was evidence of a significant increase in the recognition of monosyllables. The Bonebridge implant showed improvements to hearing thresholds and word recognition in paediatric patients with congenital conductive hearing loss.
Mirzaee, Ramazan; Allameh, Abdolamir; Mortazavi, Seyed Bagher; Khavanin, Ali; Kazemnejad, Anoshirvan; Akbary, Mehdi
2007-06-01
To investigate the interaction between welding fumes and noise in causation of hearing impairment. Groups of rabbits (n=6) were exposed to noise, welding fumes or combination of both prior to Distortion Product Otoacoustic-Emissions (DPOAEs) analysis. The function of outer hair cells (OHCs) was examined by DPOAE assessment over a broad range of frequencies. Variations in DPOAE amplitude were compared between control (n=6) and exposed (n=18) groups. The DPOAEs levels measured at different frequencies (1379-6299 Hz) were found to decrease significantly (P<0.05) in rabbits exposed to 110 dB sound pressure level (SPL) broadband noise (8h/day, 12 days). In rabbits, exposed to carbon-steel welding fumes alone (157 mg/m(3)), the threshold shift was limited to the high frequencies (2759-6299 Hz), whereas, mixed exposure to noise and fumes resulted in reduction of DPOAEs at all the frequencies. Changes in DPOAEs were associated with increased susceptibility of erythrocytes to oxidation (P<0.05). Exposure to noise or fumes alone or simultaneously, suppressed total antioxidant ability of plasma as measured by ferric reducing ability of plasma (FRAP). Noise alone or in combination with fumes resulted in depletion of blood glutathione (GSH). Despite suppression of FRAP in the exposed groups, GSH was found to remain unchanged due to welding fumes suggesting that antioxidants other than GSH are affected by toxicants present in metal welding fumes. Exposure to very high levels of welding fumes can increase noise-related effects on OHC function by extending hearing threshold shift to wide band frequencies.
Pitch and Loudness from Tinnitus in Individuals with Noise-induced Hearing Loss
Flores, Leticia Sousa; Teixeira, Adriane Ribeiro; Rosito, Leticia Petersen Schmidt; Seimetz, Bruna Macagnin; Dall'Igna, Celso
2015-01-01
Introduction Tinnitus is one of the symptoms that affects individuals suffering from noise induced hearing loss. This condition can be disabling, leading the affected individual to turn away from work. Objective This literature review aims to analyze the possible association between gender and tinnitus pitch and loudness, the degree of hearing loss and the frequencies affected in subjects with noise-induced hearing loss. Methods This contemporary cohort study was conducted through a cross-sectional analysis. The study sample consisted of adults with unilateral or bilateral tinnitus, who had been diagnosed with noise-induced hearing loss. The patients under analysis underwent an otorhinolaryngological evaluation, pure tone audiometry, and acuphenometry. Results The study included 33 subjects with noise-induced hearing loss diagnoses, of which 22 (66.7%) were men. Authors observed no statistical difference between gender and loudness/pitch tinnitus and loudness/pitch in subjects with bilateral tinnitus. Authors found an inverse relation between tinnitus loudness with intensity greater hearing threshold and the average of the thresholds and the grade of hearing loss. The tinnitus pitch showed no association with higher frequency of hearing threshold. Conclusion Data analysis shows that, among the individuals evaluated, the greater the hearing loss, the lower the loudness of tinnitus. We did not observe an association between hearing loss and tinnitus pitch. PMID:27413408
Mulsow, Jason; Finneran, James J; Houser, Dorian S
2011-04-01
Although electrophysiological methods of measuring the hearing sensitivity of pinnipeds are not yet as refined as those for dolphins and porpoises, they appear to be a promising supplement to traditional psychophysical procedures. In order to further standardize electrophysiological methods with pinnipeds, a within-subject comparison of psychophysical and auditory steady-state response (ASSR) measures of aerial hearing sensitivity was conducted with a 1.5-yr-old California sea lion. The psychophysical audiogram was similar to those previously reported for otariids, with a U-shape, and thresholds near 10 dB re 20 μPa at 8 and 16 kHz. ASSR thresholds measured using both single and multiple simultaneous amplitude-modulated tones closely reproduced the psychophysical audiogram, although the mean ASSR thresholds were elevated relative to psychophysical thresholds. Differences between psychophysical and ASSR thresholds were greatest at the low- and high-frequency ends of the audiogram. Thresholds measured using the multiple ASSR method were not different from those measured using the single ASSR method. The multiple ASSR method was more rapid than the single ASSR method, and allowed for threshold measurements at seven frequencies in less than 20 min. The multiple ASSR method may be especially advantageous for hearing sensitivity measurements with otariid subjects that are untrained for psychophysical procedures.
Contralateral Occlusion Test: The effect of external ear canal occlusion on hearing thresholds.
Reis, Luis Roque; Fernandes, Paulo; Escada, Pedro
Bedside testing with tuning forks may decrease turnaround time and improve decision making for a quick qualitative assessment of hearing loss. The purpose of this study was to quantify the effects of ear canal occlusion on hearing, in order to decide which tuning fork frequency is more appropriate to use for quantifying hearing loss with the Contralateral Occlusion Test. Twenty normal-hearing adults (forty ears) underwent sound field pure tone audiometry with and without ear canal occlusion. Each ear was tested with the standard frequencies. The contralateral ear was suppressed with by masking. Ear occlusion was performed by two examiners. Participants aged between 21 and 30 years (25.6±3.03 years) showed an increase in hearing thresholds with increasing frequencies from 19.94dB (250Hz) to 39.25dB (2000Hz). The threshold difference between occluded and unoccluded conditions was statistically significant and increased from 10.69dB (250Hz) to 32.12dB (2000Hz). There were no statistically significant differences according to gender or between the examiners. The occlusion effect increased the hearing thresholds and became more evident with higher frequencies. The occlusion method as performed demonstrated reproducibility. In the Contralateral Occlusion Test, 256Hz or 512Hz tuning forks should be used for diagnosis of mild hearing loss, and a 2048Hz tuning fork should be used for moderate hearing loss. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
A review of the perceptual effects of hearing loss for frequencies above 3 kHz.
Moore, Brian C J
2016-12-01
Hearing loss caused by exposure to intense sounds usually has its greatest effects on audiometric thresholds at 4 and 6 kHz. However, in several countries compensation for occupational noise-induced hearing loss is calculated using the average of audiometric thresholds for selected frequencies up to 3 kHz, based on the implicit assumption that hearing loss for frequencies above 3 kHz has no material adverse consequences. This paper assesses whether this assumption is correct. Studies are reviewed that evaluate the role of hearing for frequencies above 3 kHz. Several studies show that frequencies above 3 kHz are important for the perception of speech, especially when background sounds are present. Hearing at high frequencies is also important for sound localization, especially for resolving front-back confusions. Hearing for frequencies above 3 kHz is important for the ability to understand speech in background sounds and for the ability to localize sounds. The audiometric threshold at 4 kHz and perhaps 6 kHz should be taken into account when assessing hearing in a medico-legal context.
Hearing impairment related to age in Usher syndrome types 1B and 2A.
Wagenaar, M; van Aarem, A; Huygen, P; Pieke-Dahl, S; Kimberling, W; Cremers, C
1999-04-01
To evaluate hearing impairment in 2 common genetic subtypes of Usher syndrome, USH1B and USH2A. Cross-sectional analysis of hearing threshold related to age in patients with genotypes determined by linkage and mutation analysis. Otolaryngology department, university referral center. Nineteen patients with USH1B and 27 with USH2A were examined. All participants were living in the Netherlands and Belgium. Pure tone audiometry of the best ear at last visit. The patients with USH1B had residual hearing without age dependence, with minimum thresholds of 80, 95, and 120 dB at 0.25, 0.5, and 1 to 2 kHz, respectively. Mean thresholds of patients with USH2A were about 45 to 55 dB better than these minimum values. Distinctive audiographic features of patients with USH2A were maximum hearing thresholds of 70, 80, and 100 dB at 0.25, 0.5, and 1 kHz, respectively, only at younger than 40 years. Progression of hearing impairment in USH2A was 0.7 dB/y on average for 0.25 to 4 kHz and could not be explained by presbyacusis alone. The USH1B and USH2A can be easily distinguished by hearing impairment at younger than 40 years at the low frequencies. Hearing impairment in our patients with USH2A could be characterized as progressive.
Lapsley Miller, Judi A; Reed, Charlotte M; Robinson, Sarah R; Perez, Zachary D
2018-02-21
Clinical pure-tone audiometry is conducted using stimuli delivered through supra-aural headphones or insert earphones. The stimuli are calibrated in an acoustic (average ear) coupler. Deviations in individual-ear acoustics from the coupler acoustics affect test validity, and variations in probe insertion and headphone placement affect both test validity and test-retest reliability. Using an insert earphone designed for otoacoustic emission testing, which contains a microphone and loudspeaker, an individualized in-the-ear calibration can be calculated from the ear-canal sound pressure measured at the microphone. However, the total sound pressure level (SPL) measured at the microphone may be affected by standing-wave nulls at higher frequencies, producing errors in stimulus level of up to 20 dB. An alternative is to calibrate using the forward pressure level (FPL) component, which is derived from the total SPL using a wideband acoustic immittance measurement, and represents the pressure wave incident on the eardrum. The objective of this study is to establish test-retest reliability for FPL calibration of pure-tone audiometry stimuli, compared with in-the-ear and coupler sound pressure calibrations. The authors compared standard audiometry using a modern clinical audiometer with TDH-39P supra-aural headphones calibrated in a coupler to a prototype audiometer with an ER10C earphone calibrated three ways: (1) in-the-ear using the total SPL at the microphone, (2) in-the-ear using the FPL at the microphone, and (3) in a coupler (all three are derived from the same measurement). The test procedure was similar to that commonly used in hearing-conservation programs, using pulsed-tone test frequencies at 0.5, 1, 2, 3, 4, 6, and 8 kHz, and an automated modified Hughson-Westlake audiometric procedure. Fifteen adult human participants with normal to mildly-impaired hearing were selected, and one ear from each was tested. Participants completed 10 audiograms on each system, with test-order randomly varied and with headphones and earphones refitted by the tester between tests. Fourteen of 15 ears had standing-wave nulls present between 4 and 8 kHz. The mean intrasubject SD at 6 and 8 kHz was lowest for the FPL calibration, and was comparable with the low-frequency reliability across calibration methods. This decrease in variability translates to statistically-derived significant threshold shift criteria indicating that 15 dB shifts in hearing can be reliably detected at 6 and 8 kHz using FPL-calibrated ER10C earphones, compared with 20 to 25 dB shifts using standard TDH-39P headphones with a coupler calibration. These results indicate that reliability is better with insert earphones, especially with in-the-ear FPL calibration, compared with a standard clinical audiometer with supra-aural headphones. However, in-the-ear SPL calibration should not be used due to its sensitivity to standing waves. The improvement in reliability is clinically meaningful, potentially allowing hearing-conservation programs to more confidently determine significant threshold shifts at 6 kHz-a key frequency for the early detection of noise-induced hearing loss.
Hearing parameters in noise exposed industrial workers.
Celik, O; Yalçin, S; Oztürk, A
1998-12-01
This paper presents the results of a study carried out in a group of noise-exposed workers in a hydro-electric power plant. Thus, the main focus of the study is on 130 industrial workers who were exposed to high level of noise. The control group was consisted of 33 subjects with normal hearing. Hearing and acoustic reflex thresholds were obtained from all subjects and the results from age-matched subgroups were compared. The sensorineural hearing loss which were detected in 71 workers were bilateral, symmetrical and affected mainly frequencies of 4-6 kHz. In essence, the hearing losses were developed within the first 10 years of noise exposure and associated with slight progress in the following years. When acoustic reflex thresholds derived from the study and control groups were compared, statistically significant difference was determined only for the thresholds obtained at 4 kHz (p < 0.0005).
A Psychophysical Evaluation of Spectral Enhancement
ERIC Educational Resources Information Center
DiGiovanni, Jeffrey J.; Nelson, Peggy B.; Schlauch, Robert S.
2005-01-01
Listeners with sensorineural hearing loss have well-documented elevated hearing thresholds; reduced auditory dynamic ranges; and reduced spectral (or frequency) resolution that may reduce speech intelligibility, especially in the presence of competing sounds. Amplification and amplitude compression partially compensate for elevated thresholds and…
Kastelein, Ronald A; Hoek, Lean; de Jong, Christ A F
2011-08-01
Helicopter long range active sonar (HELRAS), a "dipping" sonar system used by lowering transducer and receiver arrays into water from helicopters, produces signals within the functional hearing range of many marine animals, including the harbor porpoise. The distance at which the signals can be heard is unknown, and depends, among other factors, on the hearing sensitivity of the species to these particular signals. Therefore, the hearing thresholds of a harbor porpoise for HELRAS signals were quantified by means of a psychophysical technique. Detection thresholds were obtained for five 1.25 s simulated HELRAS signals, varying in their harmonic content and amplitude envelopes. The 50% hearing thresholds for the different signals were similar: 76 dB re 1 μPa (broadband sound pressure level, averaged over the signal duration). The detection thresholds were similar to those found in the same porpoise for tonal signals in the 1-2 kHz range measured in a previous study. Harmonic distortion, which occurred in three of the five signals, had little influence on their audibility. The results of this study, combined with information on the source level of the signal, the propagation conditions and ambient noise levels, allow the calculation of accurate estimates of the distances at which porpoises can detect HELRAS signals.
Bernstein, Leslie R; Trahiotis, Constantine
2016-11-01
This study assessed whether audiometrically-defined "slight" or "hidden" hearing losses might be associated with degradations in binaural processing as measured in binaural detection experiments employing interaurally delayed signals and maskers. Thirty-one listeners participated, all having no greater than slight hearing losses (i.e., no thresholds greater than 25 dB HL). Across the 31 listeners and consistent with the findings of Bernstein and Trahiotis [(2015). J. Acoust. Soc. Am. 138, EL474-EL479] binaural detection thresholds at 500 Hz and 4 kHz increased with increasing magnitude of interaural delay, suggesting a loss of precision of coding with magnitude of interaural delay. Binaural detection thresholds were consistently found to be elevated for listeners whose absolute thresholds at 4 kHz exceeded 7.5 dB HL. No such elevations were observed in conditions having no binaural cues available to aid detection (i.e., "monaural" conditions). Partitioning and analyses of the data revealed that those elevated thresholds (1) were more attributable to hearing level than to age and (2) result from increased levels of internal noise. The data suggest that listeners whose high-frequency monaural hearing status would be classified audiometrically as being normal or "slight loss" may exhibit substantial and perceptually meaningful losses of binaural processing.
Gifford, René H.; Dorman, Michael F.; Skarzynski, Henryk; Lorens, Artur; Polak, Marek; Driscoll, Colin L. W.; Roland, Peter; Buchman, Craig A.
2012-01-01
Objective The aim of this study was to assess the benefit of having preserved acoustic hearing in the implanted ear for speech recognition in complex listening environments. Design The current study included a within subjects, repeated-measures design including 21 English speaking and 17 Polish speaking cochlear implant recipients with preserved acoustic hearing in the implanted ear. The patients were implanted with electrodes that varied in insertion depth from 10 to 31 mm. Mean preoperative low-frequency thresholds (average of 125, 250 and 500 Hz) in the implanted ear were 39.3 and 23.4 dB HL for the English- and Polish-speaking participants, respectively. In one condition, speech perception was assessed in an 8-loudspeaker environment in which the speech signals were presented from one loudspeaker and restaurant noise was presented from all loudspeakers. In another condition, the signals were presented in a simulation of a reverberant environment with a reverberation time of 0.6 sec. The response measures included speech reception thresholds (SRTs) and percent correct sentence understanding for two test conditions: cochlear implant (CI) plus low-frequency hearing in the contralateral ear (bimodal condition) and CI plus low-frequency hearing in both ears (best aided condition). A subset of 6 English-speaking listeners were also assessed on measures of interaural time difference (ITD) thresholds for a 250-Hz signal. Results Small, but significant, improvements in performance (1.7 – 2.1 dB and 6 – 10 percentage points) were found for the best-aided condition vs. the bimodal condition. Postoperative thresholds in the implanted ear were correlated with the degree of EAS benefit for speech recognition in diffuse noise. There was no reliable relationship among measures of audiometric threshold in the implanted ear nor elevation in threshold following surgery and improvement in speech understanding in reverberation. There was a significant correlation between ITD threshold at 250 Hz and EAS-related benefit for the adaptive SRT. Conclusions Our results suggest that (i) preserved low-frequency hearing improves speech understanding for CI recipients (ii) testing in complex listening environments, in which binaural timing cues differ for signal and noise, may best demonstrate the value of having two ears with low-frequency acoustic hearing and (iii) preservation of binaural timing cues, albeit poorer than observed for individuals with normal hearing, is possible following unilateral cochlear implantation with hearing preservation and is associated with EAS benefit. Our results demonstrate significant communicative benefit for hearing preservation in the implanted ear and provide support for the expansion of cochlear implant criteria to include individuals with low-frequency thresholds in even the normal to near-normal range. PMID:23446225
Swept-sine noise-induced damage as a hearing loss model for preclinical assays
Sanz, Lorena; Murillo-Cuesta, Silvia; Cobo, Pedro; Cediel-Algovia, Rafael; Contreras, Julio; Rivera, Teresa; Varela-Nieto, Isabel; Avendaño, Carlos
2015-01-01
Mouse models are key tools for studying cochlear alterations in noise-induced hearing loss (NIHL) and for evaluating new therapies. Stimuli used to induce deafness in mice are usually white and octave band noises that include very low frequencies, considering the large mouse auditory range. We designed different sound stimuli, enriched in frequencies up to 20 kHz (“violet” noises) to examine their impact on hearing thresholds and cochlear cytoarchitecture after short exposure. In addition, we developed a cytocochleogram to quantitatively assess the ensuing structural degeneration and its functional correlation. Finally, we used this mouse model and cochleogram procedure to evaluate the potential therapeutic effect of transforming growth factor β1 (TGF-β1) inhibitors P17 and P144 on NIHL. CBA mice were exposed to violet swept-sine noise (VS) with different frequency ranges (2–20 or 9–13 kHz) and levels (105 or 120 dB SPL) for 30 min. Mice were evaluated by auditory brainstem response (ABR) and otoacoustic emission tests prior to and 2, 14 and 28 days after noise exposure. Cochlear pathology was assessed with gross histology; hair cell number was estimated by a stereological counting method. Our results indicate that functional and morphological changes induced by VS depend on the sound level and frequency composition. Partial hearing recovery followed the exposure to 105 dB SPL, whereas permanent cochlear damage resulted from the exposure to 120 dB SPL. Exposure to 9–13 kHz noise caused an auditory threshold shift (TS) in those frequencies that correlated with hair cell loss in the corresponding areas of the cochlea that were spotted on the cytocochleogram. In summary, we present mouse models of NIHL, which depending on the sound properties of the noise, cause different degrees of cochlear damage, and could therefore be used to study molecules which are potential players in hearing loss protection and repair. PMID:25762930
Cochlear neuropathy and the coding of supra-threshold sound.
Bharadwaj, Hari M; Verhulst, Sarah; Shaheen, Luke; Liberman, M Charles; Shinn-Cunningham, Barbara G
2014-01-01
Many listeners with hearing thresholds within the clinically normal range nonetheless complain of difficulty hearing in everyday settings and understanding speech in noise. Converging evidence from human and animal studies points to one potential source of such difficulties: differences in the fidelity with which supra-threshold sound is encoded in the early portions of the auditory pathway. Measures of auditory subcortical steady-state responses (SSSRs) in humans and animals support the idea that the temporal precision of the early auditory representation can be poor even when hearing thresholds are normal. In humans with normal hearing thresholds (NHTs), paradigms that require listeners to make use of the detailed spectro-temporal structure of supra-threshold sound, such as selective attention and discrimination of frequency modulation (FM), reveal individual differences that correlate with subcortical temporal coding precision. Animal studies show that noise exposure and aging can cause a loss of a large percentage of auditory nerve fibers (ANFs) without any significant change in measured audiograms. Here, we argue that cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this manifests both behaviorally and in SSSRs in humans. Furthermore, recent studies suggest that noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate nerve fibers. Based on our hypothesis, we suggest some approaches that may yield particularly sensitive, objective measures of supra-threshold coding deficits that arise due to neuropathy. Finally, we comment on the potential clinical significance of these ideas and identify areas for future investigation.
Chang, Jiwon; Ryou, Namhyung; Jun, Hyung Jin; Hwang, Soon Young; Song, Jae-Jun; Chae, Sung Won
2016-01-01
Objectives In the present study, we aimed to determine the effect of both active and passive smoking on the prevalence of the hearing impairment and the hearing thresholds in different age groups through the analysis of data collected from the Korea National Health and Nutrition Examination Survey (KNHANES). Study Design Cross-sectional epidemiological study. Methods The KNHANES is an ongoing population study that started in 1998. We included a total of 12,935 participants aged ≥19 years in the KNHANES, from 2010 to 2012, in the present study. Pure-tone audiometric (PTA) testing was conducted and the frequencies tested were 0.5, 1, 2, 3, 4, and 6 kHz. Smoking status was categorized into three groups; current smoking group, passive smoking group and non-smoking group. Results In the current smoking group, the prevalence of speech-frequency bilateral hearing impairment was increased in ages of 40−69, and the rate of high frequency bilateral hearing impairment was elevated in ages of 30−79. When we investigated the impact of smoking on hearing thresholds, we found that the current smoking group had significantly increased hearing thresholds compared to the passive smoking group and non-smoking groups, across all ages in both speech-relevant and high frequencies. The passive smoking group did not have an elevated prevalence of either speech-frequency bilateral hearing impairment or high frequency bilateral hearing impairment, except in ages of 40s. However, the passive smoking group had higher hearing thresholds than the non-smoking group in the 30s and 40s age groups. Conclusion Current smoking was associated with hearing impairment in both speech-relevant frequency and high frequency across all ages. However, except in the ages of 40s, passive smoking was not related to hearing impairment in either speech-relevant or high frequencies. PMID:26756932
Popov, Vladimir V; Supin, Alexander Ya; Rozhnov, Viatcheslav V; Nechaev, Dmitry I; Sysueva, Evgenia V
2014-05-15
The influence of fatiguing sound level and duration on post-exposure temporary threshold shift (TTS) was investigated in two beluga whales (Delphinapterus leucas). The fatiguing sound was half-octave noise with a center frequency of 22.5 kHz. TTS was measured at a test frequency of 32 kHz. Thresholds were measured by recording rhythmic evoked potentials (the envelope following response) to a test series of short (eight cycles) tone pips with a pip rate of 1000 s(-1). TTS increased approximately proportionally to the dB measure of both sound pressure (sound pressure level, SPL) and duration of the fatiguing noise, as a product of these two variables. In particular, when the noise parameters varied in a manner that maintained the product of squared sound pressure and time (sound exposure level, SEL, which is equivalent to the overall noise energy) at a constant level, TTS was not constant. Keeping SEL constant, the highest TTS appeared at an intermediate ratio of SPL to sound duration and decreased at both higher and lower ratios. Multiplication (SPL multiplied by log duration) better described the experimental data than an equal-energy (equal SEL) model. The use of SEL as a sole universal metric may result in an implausible assessment of the impact of a fatiguing sound on hearing thresholds in odontocetes, including under-evaluation of potential risks. © 2014. Published by The Company of Biologists Ltd.
Cumulative Lead Exposure and Age-related Hearing Loss: The VA Normative Aging Study
Park, Sung Kyun; Elmarsafawy, Sahar; Mukherjee, Bhramar; Spiro, Avron; Vokonas, Pantel S.; Nie, Huiling; Weisskopf, Marc G.; Schwartz, Joel; Hu, Howard
2010-01-01
Although lead has been associated with hearing loss in occupational settings and in children, little epidemiologic research has been conducted on the impact of cumulative lead exposure on age-related hearing loss in the general population. We determined whether bone lead levels, a marker of cumulative lead exposure, are associated with decreased hearing ability in 448 men from the Normative Aging Study, seen between 1962 and 1996 (2,264 total observations). Air conduction hearing thresholds were measured at 0.25 to 8 kHz and pure tone averages (PTA) (mean of 0.5, 1, 2 and 4 kHz) were computed. Tibia and patella lead levels were measured using K x-ray fluorescence between 1991 and 1996. In cross-sectional analyses, after adjusting for potential confounders including occupational noise, patella lead levels were significantly associated with poorer hearing thresholds at 2, 3, 4, 6 and 8 kHz and PTA. The odds of hearing loss significantly increased with patella lead levels. We also found significant positive associations between tibia lead and the rate change in hearing thresholds at 1, 2, and 8 kHz and PTA in longitudinal analyses. Our results suggest that chronic low-level lead exposure may be an important risk factor for age-related hearing loss and reduction of lead exposure could help prevent or delay development of age-related hearing loss. PMID:20638461
Jürgens, Tim; Clark, Nicholas R; Lecluyse, Wendy; Meddis, Ray
2016-01-01
To use a computer model of impaired hearing to explore the effects of a physiologically-inspired hearing-aid algorithm on a range of psychoacoustic measures. A computer model of a hypothetical impaired listener's hearing was constructed by adjusting parameters of a computer model of normal hearing. Absolute thresholds, estimates of compression, and frequency selectivity (summarized to a hearing profile) were assessed using this model with and without pre-processing the stimuli by a hearing-aid algorithm. The influence of different settings of the algorithm on the impaired profile was investigated. To validate the model predictions, the effect of the algorithm on hearing profiles of human impaired listeners was measured. A computer model simulating impaired hearing (total absence of basilar membrane compression) was used, and three hearing-impaired listeners participated. The hearing profiles of the model and the listeners showed substantial changes when the test stimuli were pre-processed by the hearing-aid algorithm. These changes consisted of lower absolute thresholds, steeper temporal masking curves, and sharper psychophysical tuning curves. The hearing-aid algorithm affected the impaired hearing profile of the model to approximate a normal hearing profile. Qualitatively similar results were found with the impaired listeners' hearing profiles.
Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.
2013-01-01
SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590
Hearing loss in the developing world: evaluating the iPhone mobile device as a screening tool.
Peer, S; Fagan, J J
2015-01-01
Developing countries have the world's highest prevalence of hearing loss, and hearing screening programmes are scarce. Mobile devices such as smartphones have potential for audiometric testing. To evaluate the uHear app using an Apple iPhone as a possible hearing screening tool in the developing world, and to determine accuracy of certain hearing thresholds that could prove useful in early detection of hearing loss for high-risk populations in resource-poor communities. This was a quasi-experimental study design. Participants recruited from the Otolaryngology Clinic, Groote Schuur Hospital, Cape Town, South Africa, completed a uHear test in three settings--waiting room (WR), quiet roon (QR) and soundproof room (SR). Thresholds were compared with formal audiograms. Twenty-five patients were tested (50 ears). The uHear test detected moderate or worse hearing loss (pure-tone average (PTA) > 40 dB accurately with a sensitivity of 100% in all three environments. Specificity was 88% (SR), 73% (QR) and 68% (WR). Its was highly accurate in detecting high-frequency hearing loss (2 000, 4 000, 6 000 Hz) in the QR and SR with 'good' and 'very good' kappa values, showing statistical significance (p < 0.05). It was moderately accurate in low-frequency hearing loss (250, 500, 1 000 Hz) in the SR, and poor in the QR and WR. Using the iPhone, uHear is a feasible screening test to rule out significant hearing loss (PTA > 40 dB). It is highly sensitive for detecting threshold changes at high frequencies, making it reasonably well suited to detect presbycusis and ototoxic hearing loss from HIV, tuberculosis therapy and chemotherapy. Portability and ease of use make it appropriate to use in developing world communities that lack screening programmes.
Evaluation of auditory functions for Royal Canadian Mounted Police officers.
Vaillancourt, Véronique; Laroche, Chantal; Giguère, Christian; Beaulieu, Marc-André; Legault, Jean-Pierre
2011-06-01
Auditory fitness for duty (AFFD) testing is an important element in an assessment of workers' ability to perform job tasks safely and effectively. Functional hearing is particularly critical to job performance in law enforcement. Most often, assessment is based on pure-tone detection thresholds; however, its validity can be questioned and challenged in court. In an attempt to move beyond the pure-tone audiogram, some organizations like the Royal Canadian Mounted Police (RCMP) are incorporating additional testing to supplement audiometric data in their AFFD protocols, such as measurements of speech recognition in quiet and/or in noise, and sound localization. This article reports on the assessment of RCMP officers wearing hearing aids in speech recognition and sound localization tasks. The purpose was to quantify individual performance in different domains of hearing identified as necessary components of fitness for duty, and to document the type of hearing aids prescribed in the field and their benefit for functional hearing. The data are to help RCMP in making more informed decisions regarding AFFD in officers wearing hearing aids. The proposed new AFFD protocol included unaided and aided measures of speech recognition in quiet and in noise using the Hearing in Noise Test (HINT) and sound localization in the left/right (L/R) and front/back (F/B) horizontal planes. Sixty-four officers were identified and selected by the RCMP to take part in this study on the basis of hearing thresholds exceeding current audiometrically based criteria. This article reports the results of 57 officers wearing hearing aids. Based on individual results, 49% of officers were reclassified from nonoperational status to operational with limitations on fine hearing duties, given their unaided and/or aided performance. Group data revealed that hearing aids (1) improved speech recognition thresholds on the HINT, the effects being most prominent in Quiet and in conditions of spatial separation between target and noise (Noise Right and Noise Left) and least considerable in Noise Front; (2) neither significantly improved nor impeded L/R localization; and (3) substantially increased F/B errors in localization in a number of cases. Additional analyses also pointed to the poor ability of threshold data to predict functional abilities for speech in noise (r² = 0.26 to 0.33) and sound localization (r² = 0.03 to 0.28). Only speech in quiet (r² = 0.68 to 0.85) is predicted adequately from threshold data. Combined with previous findings, results indicate that the use of hearing aids can considerably affect F/B localization abilities in a number of individuals. Moreover, speech understanding in noise and sound localization abilities were poorly predicted from pure-tone thresholds, demonstrating the need to specifically test these abilities, both unaided and aided, when assessing AFFD. Finally, further work is needed to develop empirically based hearing criteria for the RCMP and identify best practices in hearing aid fittings for optimal functional hearing abilities. American Academy of Audiology.
Hoffman, Howard J; Dobie, Robert A; Ko, Chia-Wen; Themann, Christa L; Murphy, William J
2010-12-01
(1) To present hearing threshold data from a recent nationally representative survey in the United States (National Health and Nutrition Examination Survey, 1999-2004) in a distributional format that might be appropriate to replace Annex B in international (ISO-1999) and national (ANSI S3.44) standards and (2) to compare these recent data with older survey data (National Health Examination Survey I, 1959-1962) on which the current Annex B is based. Better-ear threshold distributions (selected percentiles and their confidence intervals) were estimated using linear interpolation. The 95% confidence intervals for the medians for the two surveys were compared graphically for each of the four age groups and for both men and women. In addition, we calculated odds ratios comparing the prevalences of better-ear hearing impairment (thresholds > 25 dB HL) between the two surveys, for 500, 1000, 2000, and 4000 Hz, and for their four-frequency average. Across age and sex groups, median thresholds were lower (better) in the 1999-2004 survey at 500, 3000, 4000, and 6000 Hz (8000 Hz was not tested in the 1959-1962 survey). For both men and women, the prevalence of hearing impairment was significantly lower in 1999-2004 at 500, 2000, and 4000 Hz, but not at 1000 Hz. For men and women of a specific age, high-frequency hearing thresholds were lower (better) in 1999-2004 than in 1959-1962. The prevalences of hearing impairment were also lower in the recent survey. Differences seen at 500 Hz may be attributable at least in part to changes in standards for ambient noise in audiometry. The National Health and Nutrition Examination Survey 1999-2004 distributions are offered as a possible replacement for Annex B in ISO-1999 and ANSI S3.44.
Saliba, Joe; Al-Reefi, Mahmoud; Carriere, Junie S; Verma, Neil; Provencal, Christiane; Rappaport, Jamie M
2017-04-01
Objectives (1) To compare the accuracy of 2 previously validated mobile-based hearing tests in determining pure tone thresholds and screening for hearing loss. (2) To determine the accuracy of mobile audiometry in noisy environments through noise reduction strategies. Study Design Prospective clinical study. Setting Tertiary hospital. Subjects and Methods Thirty-three adults with or without hearing loss were tested (mean age, 49.7 years; women, 42.4%). Air conduction thresholds measured as pure tone average and at individual frequencies were assessed by conventional audiogram and by 2 audiometric applications (consumer and professional) on a tablet device. Mobile audiometry was performed in a quiet sound booth and in a noisy sound booth (50 dB of background noise) through active and passive noise reduction strategies. Results On average, 91.1% (95% confidence interval [95% CI], 89.1%-93.2%) and 95.8% (95% CI, 93.5%-97.1%) of the threshold values obtained in a quiet sound booth with the consumer and professional applications, respectively, were within 10 dB of the corresponding audiogram thresholds, as compared with 86.5% (95% CI, 82.6%-88.5%) and 91.3% (95% CI, 88.5%-92.8%) in a noisy sound booth through noise cancellation. When screening for at least moderate hearing loss (pure tone average >40 dB HL), the consumer application showed a sensitivity and specificity of 87.5% and 95.9%, respectively, and the professional application, 100% and 95.9%. Overall, patients preferred mobile audiometry over conventional audiograms. Conclusion Mobile audiometry can correctly estimate pure tone thresholds and screen for moderate hearing loss. Noise reduction strategies in mobile audiometry provide a portable effective solution for hearing assessments outside clinical settings.
Modeling the measurements of cochlear microcirculation and hearing function after loud noise.
Arpornchayanon, Warangkana; Canis, Martin; Suckfuell, Markus; Ihler, Fritz; Olzowy, Bernhard; Strieth, Sebastian
2011-09-01
Recent findings support the crucial role of microcirculatory disturbance and ischemia for hearing impairment especially after noise-induced hearing loss (NIHL). The aim of this study was to establish an animal model for in vivo analysis of cochlear microcirculation and hearing function after a loud noise to allow precise measurements of both parameters in vivo. Randomized controlled trial. Setting. Animal study. Subjects and Methods. After assessment of normacusis (0 minutes) using evoked auditory brainstem responses (ABRs), noise (106-dB sound pressure level [SPL]) was applied to both ears in 6 guinea pigs for 30 minutes while unexposed animals served as controls. In vivo fluorescence microscopy of the stria vascularis capillaries was performed after surgical exposure of 1 cochlea. ABR measurements were derived from the contralateral ear. After noise exposure, red blood cell velocity was reduced significantly by 24.3% (120 minutes) and further decreased to 44.5% at the end of the observation (210 minutes) in contrast to stable control measurements. Vessel diameters were not affected in both groups. A gradual decrease of segmental blood flow became significant (38.1%) after 150 minutes compared with controls. Hearing thresholds shifted significantly from 20.0 ± 5.5 dB SPL (0 minutes) to 32.5 ± 4.2 dB SPL (60 minutes) only in animals exposed to loud noise. With regard to novel treatments targeting the stria vascularis in NIHL, this standardized model allows us to analyze in detail cochlear microcirculation and hearing function in vivo.
Assessment of central auditory processing in a group of workers exposed to solvents.
Fuente, Adrian; McPherson, Bradley; Muñoz, Verónica; Pablo Espina, Juan
2006-12-01
Despite having normal hearing thresholds and speech recognition thresholds, results for central auditory tests were abnormal in a group of workers exposed to solvents. Workers exposed to solvents may have difficulties in everyday listening situations that are not related to a decrement in hearing thresholds. A central auditory processing disorder may underlie these difficulties. To study central auditory processing abilities in a group of workers occupationally exposed to a mix of organic solvents. Ten workers exposed to a mix of organic solvents and 10 matched non-exposed workers were studied. The test battery comprised pure-tone audiometry, tympanometry, acoustic reflex measurement, acoustic reflex decay, dichotic digit, pitch pattern sequence, masking level difference, filtered speech, random gap detection and hearing-in-noise tests. All the workers presented normal hearing thresholds and no signs of middle ear abnormalities. Workers exposed to solvents had lower results in comparison with the control group and previously reported normative data, in the majority of the tests.
Auditory steady state response in sound field.
Hernández-Pérez, H; Torres-Fortuny, A
2013-02-01
Physiological and behavioral responses were compared in normal-hearing subjects via analyses of the auditory steady-state response (ASSR) and conventional audiometry under sound field conditions. The auditory stimuli, presented through a loudspeaker, consisted of four carrier tones (500, 1000, 2000, and 4000 Hz), presented singly for behavioral testing but combined (multiple frequency technique), to estimate thresholds using the ASSR. Twenty normal-hearing adults were examined. The average differences between the physiological and behavioral thresholds were between 17 and 22 dB HL. The Spearman rank correlation between ASSR and behavioral thresholds was significant for all frequencies (p < 0.05). Significant differences were found in the ASSR amplitude among frequencies, and strong correlations between the ASSR amplitude and the stimulus level (p < 0.05). The ASSR in sound field testing was found to yield hearing threshold estimates deemed to be reasonably well correlated with behaviorally assessed thresholds.
Basel, Türker; Lütkenhöner, Bernd
2013-01-01
Nearly half a century ago, administration of glycerol was shown to temporarily improve the threshold of hearing in patients with suspected Menière's disease (glycerol test). Although a positive test result provides strong evidence of Menière's disease, the test has not gained widespread acceptance. A probable reason is that there is no consensus as to the definition of positive. Moreover, a negative test result is of little diagnostic value because Menière's disease cannot be excluded. By reanalyzing archived data, the authors sought to understand the test in light of signal detection theory. Moreover, they explored the possibility of estimating the probability of a positive test result from the pretest audiogram. The study is based on audiograms from 347 patients (356 ears) who underwent a glycerol test to corroborate a suspected diagnosis of Menière's disease. Subsequent to an initial pure-tone audiogram, glycerol (1.2 mL/kg body weight) was orally administered; follow-up audiograms were obtained after 1, 2, 3, and 4 hr. Transcription of the audiograms into a computer-readable form made them available for automated reanalysis. Averaged difference audiograms provided detailed insight into the frequency dependence and the temporal dynamics of the glycerol-induced threshold reduction. The strongest threshold reduction was observed 4 hr after glycerol intake, although nearly the same effect was already found after 3 hr. Strong overall threshold reductions were associated with a pronounced maximum at approximately 1000 Hz; weaker effects were associated with a plateau between 125 and 1000 Hz and a rapid decrease toward higher frequencies. To date, criteria suggested for a positive test result vastly differ in both sensitivity (with regard to the detection of a threshold reduction) and specificity (1 minus false-positive rate). Here, a criterion based on the aggregate threshold reduction in adjacent audiometric frequencies is suggested. This approach does not only seem to be more robust but also permits to freely adjust the false-positive rate. A positive test result is particularly likely when the mean low-frequency hearing loss is approximately 60 dB and the mean high-frequency hearing loss does not exceed 50 dB. If the pretest audiogram does not render a positive test result unlikely, a state-of-the-art implementation of the glycerol test is a competitive method for corroborating a suspected diagnosis of Menière's disease.
Lie, Arve; Skogstad, Marit; Johnsen, Torstein Seip; Engdahl, Bo; Tambs, Kristian
2014-01-01
Objective Railway workers performing maintenance work of trains and tracks could be at risk of developing noise-induced hearing loss, since they are exposed to noise levels of 75–90 dB(A) with peak exposures of 130–140 dB(C). The objective was to make a risk assessment by comparing the hearing thresholds among train and track maintenance workers with a reference group not exposed to noise and reference values from the ISO 1999. Design Cross-sectional. Setting A major Norwegian railway company. Participants 1897 and 2730 male train and track maintenance workers, respectively, all exposed to noise, and 2872 male railway traffic controllers and office workers not exposed to noise. Outcome measures The primary outcome was the hearing threshold (pure tone audiometry, frequencies from 0.5 to 8 kHz), and the secondary outcome was the prevalence of audiometric notches (Coles notch) of the most recent audiogram. Results Train and track maintenance workers aged 45 years or older had a small mean hearing loss in the 3–6 kHz area of 3–5 dB. The hearing loss was less among workers younger than 45 years. Audiometric notches were slightly more prevalent among the noise exposed (59–64%) group compared with controls (49%) for all age groups. They may therefore be a sensitive measure in disclosing an early hearing loss at a group level. Conclusions Train and track maintenance workers aged 45 years or older, on average, have a slightly greater hearing loss and more audiometric notches compared with reference groups not exposed to noise. Younger (<45 years) workers have hearing thresholds comparable to the controls. PMID:25324318
Honkura, Yohei; Matsuo, Hirotaka; Murakami, Shohei; Sakiyama, Masayuki; Mizutari, Kunio; Shiotani, Akihiro; Yamamoto, Masayuki; Morita, Ichiro; Shinomiya, Nariyoshi; Kawase, Tetsuaki; Katori, Yukio; Motohashi, Hozumi
2016-01-01
Noise-induced hearing loss (NIHL) is one of the most common sensorineural hearing deficits. Recent studies have demonstrated that the pathogenesis of NIHL is closely related to ischemia-reperfusion injury of cochlea, which is caused by blood flow decrease and free radical production due to excessive noise. This suggests that protecting the cochlea from oxidative stress is an effective therapeutic approach for NIHL. NRF2 is a transcriptional activator playing an essential role in the defense mechanism against oxidative stress. To clarify the contribution of NRF2 to cochlear protection, we examined Nrf2–/– mice for susceptibility to NIHL. Threshold shifts of the auditory brainstem response at 7 days post-exposure were significantly larger in Nrf2–/– mice than wild-type mice. Treatment with CDDO-Im, a potent NRF2-activating drug, before but not after the noise exposure preserved the integrity of hair cells and improved post-exposure hearing levels in wild-type mice, but not in Nrf2–/– mice. Therefore, NRF2 activation is effective for NIHL prevention. Consistently, a human NRF2 SNP was significantly associated with impaired sensorineural hearing levels in a cohort subjected to occupational noise exposure. Thus, high NRF2 activity is advantageous for cochlear protection from noise-induced injury, and NRF2 is a promising target for NIHL prevention. PMID:26776972
Honkura, Yohei; Matsuo, Hirotaka; Murakami, Shohei; Sakiyama, Masayuki; Mizutari, Kunio; Shiotani, Akihiro; Yamamoto, Masayuki; Morita, Ichiro; Shinomiya, Nariyoshi; Kawase, Tetsuaki; Katori, Yukio; Motohashi, Hozumi
2016-01-18
Noise-induced hearing loss (NIHL) is one of the most common sensorineural hearing deficits. Recent studies have demonstrated that the pathogenesis of NIHL is closely related to ischemia-reperfusion injury of cochlea, which is caused by blood flow decrease and free radical production due to excessive noise. This suggests that protecting the cochlea from oxidative stress is an effective therapeutic approach for NIHL. NRF2 is a transcriptional activator playing an essential role in the defense mechanism against oxidative stress. To clarify the contribution of NRF2 to cochlear protection, we examined Nrf2(-/-) mice for susceptibility to NIHL. Threshold shifts of the auditory brainstem response at 7 days post-exposure were significantly larger in Nrf2(-/-) mice than wild-type mice. Treatment with CDDO-Im, a potent NRF2-activating drug, before but not after the noise exposure preserved the integrity of hair cells and improved post-exposure hearing levels in wild-type mice, but not in Nrf2(-/-) mice. Therefore, NRF2 activation is effective for NIHL prevention. Consistently, a human NRF2 SNP was significantly associated with impaired sensorineural hearing levels in a cohort subjected to occupational noise exposure. Thus, high NRF2 activity is advantageous for cochlear protection from noise-induced injury, and NRF2 is a promising target for NIHL prevention.
Braun, T; Dochtermann, S; Krause, E; Schmidt, M; Schorn, K; Hempel, J M
2011-09-01
The present study analyzes the best combination of frequencies for the calculation of mean hearing loss in pure tone threshold audiometry for correlation with hearing loss for numbers in speech audiometry, since the literature describes different calculation variations for plausibility checking in expertise. Three calculation variations, A (250, 500 and 1000 Hz), B (500 and 1000 Hz) and C (500, 1000 and 2000 Hz), were compared. Audiograms in 80 patients with normal hearing, 106 patients with hearing loss and 135 expertise patients were analyzed in a retrospective manner. Differences between mean pure tone audiometry thresholds and hearing loss for numbers were calculated and statistically compared separately for the right and the left ear in the three patient collectives. We found the calculation variation A to be the best combination of frequencies, since it yielded the smallest standard deviations while being statistically different to calculation variations B and C. The 1- and 2.58-fold standard deviation (representing 68.3% and 99.0% of all values) was ±4.6 and ±11.8 dB for calculation variation A in patients with hearing loss, respectively. For plausibility checking in expertise, the mean threshold from the frequencies 250, 500 and 1000 Hz should be compared to the hearing loss for numbers. The common recommendation reported by the literature to doubt plausibility when the difference of these values exceeds ±5 dB is too strict as shown by this study.
Hearing thresholds and ventilation tube treatment in children with unilateral cleft lip and palate.
Tengroth, Birgitta; Hederstierna, Christina; Neovius, Erik; Flynn, Traci
2017-06-01
Children with cleft lip and palate have a high prevalence of otitis media with effusion (OME) which is often associated with a fluctuating, conductive hearing loss in the low and mid-frequencies and a risk for permanent hearing loss in the higher frequencies. Although common, there is no consensus on the treatment of OME with ventilation tubes. The aim of this study is to document if the risk for permanent hearing loss and acquired cholesteatoma increases due to treatment with ventilation tubes (VT treatments) during childhood in a group of children with cleft lip and palate. A retrospective medical chart review of 33 children (25 boys and 8 girls) born with unilateral cleft lip and palate (UCLP) was completed. Audiological data (results of hearing sensitivity tests, the total number of hearing tests, and number of VT treatments) were extracted from medical records from when the children were 4-7 and >7-10 years of age. The hearing thresholds in the speech frequencies improved with age (p < 0,05) but a minority of the children continued to present with elevated hearing thresholds in the higher frequencies at >7-10 years of age. There were no significant correlations between number of VT treatments and hearing thresholds at >7-10 years. Four of the 33 children presented with complications: two children exhibited perforations of the ear drum (6.1%) and two children developed unilateral cholesteatoma (6.1%). In the current study, the hearing sensitivity of children with cleft lip and palate improved with age. However, this improvement was not seen in the higher frequencies. Twelve percent of the children experienced complications following VT treatments. Due to these complications, it is recommended that all children with cleft palate should have routine follow-ups by an ENT doctor and audiologist. As part of the routine follow-up care, hearing assessments should be performed before and after VT treatments. Copyright © 2017 Elsevier B.V. All rights reserved.
Acute hyperfibrinogenemia impairs cochlear blood flow and hearing function in guinea pigs in vivo.
Ihler, Fritz; Strieth, Sebastian; Pieri, Nicos; Göhring, Peter; Canis, Martin
2012-03-01
Impairment of microcirculation is a possible cause of sudden sensorineural hearing loss (SSNHL). Fibrinogen is known as a risk factor for both microvascular dysfunction and SSNHL. Therefore, the aim of this study was to investigate the effect of elevated serum levels of fibrinogen on cochlear blood flow and hearing function in vivo. One group of guinea pigs received two consecutive injections of 100 mg fibrinogen while a control group received equimolar doses of albumin. Measurements of cochlear microcirculation by intravital microscopy and of hearing thresholds by auditory brainstem response (ABR) recordings were carried out before, after first and after second injection. Ten healthy guinea pigs were randomly assigned to a treatment group or a control group of five animals each. Serum fibrinogen levels were elevated after the first and second injections of fibrinogen compared to basal values and control group respectively. Increasing levels of fibrinogen were paralleled by decreasing cochlear blood flow as well as increasing hearing thresholds. Hearing threshold correlated negatively with cochlear blood flow. The effect of microcirculatory impairment on hearing function could be explained by a malfunction of the cochlear amplifier. Further investigation is needed to quantify cochlear potentials under elevated serum fibrinogen levels.
Mostafapour, S P; Lahargoue, K; Gates, G A
1998-12-01
No consensus exists regarding the magnitude of the risk of noise-induced hearing loss (NIHL) associated with leisure noise, in particular, personal listening devices in young adults. Examine the magnitude of hearing loss associated with personal listening devices and other sources of leisure noise in causing NIHL in young adults. Prospective auditory testing of college student volunteers with retrospective history exposure to home stereos, personal listening devices, firearms, and other sources of recreational noise. Subjects underwent audiologic examination consisting of estimation of pure-tone thresholds, speech reception thresholds, and word recognition at 45 dB HL. Fifty subjects aged 18 to 30 years were tested. All hearing thresholds of all subjects (save one-a unilateral 30 dB HL threshold at 6 kHz) were normal, (i.e., 25 dB HL or better). A 10 dB threshold elevation (notch) in either ear at 3 to 6 kHz as compared with neighboring frequencies was noted in 11 (22%) subjects and an unequivocal notch (15 dB or greater) in either ear was noted in 14 (28%) of subjects. The presence or absence of any notch (small or large) did not correlate with any single or cumulative source of noise exposure. No difference in pure-tone threshold, speech reception threshold, or speech discrimination was found among subjects when segregated by noise exposure level. The majority of young users of personal listening devices are at low risk for substantive NIHL. Interpretation of the significance of these findings in relation to noise exposure must be made with caution. NIHL is an additive process and even subtle deficits may contribute to unequivocal hearing loss with continued exposure. The low prevalence of measurable deficits in this study group may not exclude more substantive deficits in other populations with greater exposures. Continued education of young people about the risk to hearing from recreational noise exposure is warranted.
The Impact of Different Permissible Exposure Limits on Hearing Threshold Levels Beyond 25 dBA.
Sayapathi, Balachandar S; Su, Anselm Ting; Koh, David
2014-10-01
Development of noise-induced hearing loss is reliant on a few factors such as frequency, intensity, and duration of noise exposure. The occurrence of this occupational malady has doubled from 120 million to 250 million in a decade. Countries such as Malaysia, India, and the US have adopted 90 dBA as the permissible exposure limit. According to the US Occupational Safety and Health Administration (OSHA), the exposure limit for noise is 90 dBA, while that of the US National Institute of Occupational Safety and Health (NIOSH) is 85 dBA for 8 hours of noise exposure. This study aimed to assess the development of hearing threshold levels beyond 25 dBA on adoption of 85 dBA as the permissible exposure limit compared to 90 dBA. This is an intervention study done on two automobile factories. There were 203 employees exposed to noise levels beyond the action level. Hearing protection devices were distributed to reduce noise levels to a level between the permissible exposure limit and action level. The permissible exposure limits were 90 and 85 dBA in factories 1 and 2, respectively, while the action levels were 85 and 80 dBA, respectively. The hearing threshold levels of participants were measured at baseline and at first month of postshift exposure of noise. The outcome was measured by a manual audiometer. McNemar and chi-square tests were used in the statistical analysis. We found that hearing threshold levels of more than 25 dBA has changed significantly from pre-intervention to post-intervention among participants from both factories (3000 Hz for the right ear and 2000 Hz for the left ear). There was a statistically significant association between participants at 3000 Hz on the right ear at 'deteriorated' level ( χ² (1) = 4.08, φ = - 0.142, P = 0.043), whereas there was worsening of hearing threshold beyond 25 dBA among those embraced 90 dBA. The adoption of 85 dBA as the permissible exposure limit has preserved hearing threshold level among participants at 3000 Hz compared to those who embraced 90 dBA.
Finneran, James J; Schlundt, Carolyn E
2007-07-01
Studies of underwater hearing are often hampered by the behavior of sound waves in small experimental tanks. At lower frequencies, tank dimensions are often not sufficient for free field conditions, resulting in large spatial variations of sound pressure. These effects may be mitigated somewhat by increasing the frequency bandwidth of the sound stimulus, so effects of multipath interference average out over many frequencies. In this study, acoustic fields and bottlenose dolphin (Tursiops truncatus) hearing thresholds were compared for pure tone and frequency modulated signals. Experiments were conducted in a vinyl-walled, seawater-filled pool approximately 3.7 x 6 x 1.5 m. Acoustic signals were pure tone and linear and sinusoidal frequency modulated tones with bandwidths/modulation depths of 1%, 2%, 5%, 10%, and 20%. Thirteen center frequencies were tested between 1 and 100 kHz. Acoustic fields were measured (without the dolphin present) at three water depths over a 60 x 65 cm grid with a 5-cm spacing. Hearing thresholds were measured using a behavioral response paradigm and up/down staircase technique. The use of FM signals significantly improved the sound field without substantially affecting the measured hearing thresholds.
Personally Modifiable Risk Factors Associated with Pediatric Hearing Loss: A Systematic Review
Vasconcellos, Adam P.; Kyle, Meghann E.; Gilani, Sapideh; Shin, Jennifer J.
2015-01-01
Background Pediatric hearing loss is an increasingly recognized problem with significant implications. Increasing our quantitative understanding of potentially modifiable environmental risk factors for hearing loss may form the foundation for prevention and screening programs. Objective To determine whether specific threshold exposure levels of personally modifiable risk factors for hearing loss have been defined, with the overarching goal of providing actionable guidance for the prevention of pediatric hearing loss. Data Sources A systematic review was performed. Computerized searches of PubMed, EMBASE, and the Cochrane Library were completed and supplemented with manual searches. Review Methods Inclusion/exclusion criteria were designed to determine specific threshold values of personally modifiable risk factors on hearing loss in the pediatric population. Searches and data extraction were performed by independent reviewers. Results There were 38 criterion-meeting studies, including a total of 50,651 subjects. Threshold noise exposures significantly associated with hearing loss in youth included: (1) more than 4 hours per week or more than 5 years of personal headphone usage, (2) more than 4 visits per month to a discotheque, and (3) working on a mechanized farm. Quantified tobacco levels of concern included any level of in utero smoke exposure as well as secondhand exposure sufficient to elevate serum cotinine. Conclusions Specific thresholds analyses are limited. Future studies would ideally focus on stratifying risk according to clearly defined levels of exposure, in order to provide actionable guidance for children and families. PMID:24671457
Changes to Hearing Levels Over the First Year After Stapes Surgery: An Analysis of 139 Patients.
Nash, Robert; Patel, Bhavesh; Lavy, Jeremy
2018-06-15
Stapes surgery is performed for hearing restoration in patients with otosclerosis. Results from stapes surgery are good, although a small proportion will have a persistent conductive hearing loss and will consider revision surgery. The timing of such surgery depends on expected changes to hearing thresholds during the postoperative period. We performed a retrospective case series analysis of a database of outcomes from stapes surgery performed between July 26, 2013 and March 11, 2016 at one center. Hearing outcomes over the year subsequent to surgery were recorded. There was a significant improvement in hearing outcomes between the postoperative visit at 6 weeks (mean air-bone gap 6.0 dB) and the hearing outcome at 6 months (mean air-bone gap 3.3 dB) (p < 0.01). This improvement was maintained at 12 months (mean air-bone gap 3.1 dB), although there were individual patients whose hearing outcome improved or deteriorated during this period. Improvements in air conduction thresholds mirrored improvements in air-bone gap measurements. Patients with an initial suboptimal or poor result after stapes surgery may observed improvement in their hearing thresholds in the year after surgery. These patients may have large preoperative air-bone gaps, and have a trend to have obliterated footplates. Revision surgery should not be considered until at least 6 months after primary surgery.
Liu, Yan; Yang, Dong; Xiong, Fen; Yu, Lan; Ji, Fei; Wang, Qiu-Ju
2015-09-01
Hearing loss affects more than 27 million people in mainland China. It would be helpful to develop a portable and self-testing audiometer for the timely detection of hearing loss so that the optimal clinical therapeutic schedule can be determined. The objective of this study was to develop a software-based hearing self-testing system. The software-based self-testing system consisted of a notebook computer, an external sound card, and a pair of 10-Ω insert earphones. The system could be used to test the hearing thresholds by individuals themselves in an interactive manner using software. The reliability and validity of the system at octave frequencies of 0.25 Hz to 8.0 kHz were analyzed in three series of experiments. Thirty-seven normal-hearing particpants (74 ears) were enrolled in experiment 1. Forty individuals (80 ears) with sensorineural hearing loss (SNHL) participated in experiment 2. Thirteen normal-hearing participants (26 ears) and 37 participants (74 ears) with SNHL were enrolled in experiment 3. Each participant was enrolled in only one of the three experiments. In all experiments, pure-tone audiometry in a sound insulation room (standard test) was regarded as the gold standard. SPSS for Windows, version 17.0, was used for statistical analysis. The paired t-test was used to compare the hearing thresholds between the standard test and software-based self-testing (self-test) in experiments 1 and 2. In experiment 3 (main study), one-way analysis of variance and post hoc comparisons were used to compare the hearing thresholds among the standard test and two rounds of the self-test. Linear correlation analysis was carried out for the self-tests performed twice. The concordance was analyzed between the standard test and the self-test using the kappa method. p < 0.05 was considered statistically significant. Experiments 1 and 2: The hearing thresholds determined by the two methods were not significantly different at frequencies of 250, 500, or 8000 Hz (p > 0.05) but were significantly different at frequencies of 1000, 2000, and 4000 Hz (p < 0.05), except for 1000 Hz in the right ear in experiment 2. Experiment 3: The hearing thresholds determined by the standard test and self-tests repeated twice were not significantly different at any frequency (p > 0.05). The overall sensitivity of the self-test method was 97.6%, and the specificity was 98.3%. The sensitivity was 97.6% and the specificity was 97% for the patients with SNHL. The self-test had significant concordance with the standard test (kappa value = 0.848, p < 0.001). This portable hearing self-testing system based on a notebook personal computer is a reliable and sensitive method for hearing threshold assessment and monitoring. American Academy of Audiology.
Adaptive spatial filtering improves speech reception in noise while preserving binaural cues.
Bissmeyer, Susan R S; Goldsworthy, Raymond L
2017-09-01
Hearing loss greatly reduces an individual's ability to comprehend speech in the presence of background noise. Over the past decades, numerous signal-processing algorithms have been developed to improve speech reception in these situations for cochlear implant and hearing aid users. One challenge is to reduce background noise while not introducing interaural distortion that would degrade binaural hearing. The present study evaluates a noise reduction algorithm, referred to as binaural Fennec, that was designed to improve speech reception in background noise while preserving binaural cues. Speech reception thresholds were measured for normal-hearing listeners in a simulated environment with target speech generated in front of the listener and background noise originating 90° to the right of the listener. Lateralization thresholds were also measured in the presence of background noise. These measures were conducted in anechoic and reverberant environments. Results indicate that the algorithm improved speech reception thresholds, even in highly reverberant environments. Results indicate that the algorithm also improved lateralization thresholds for the anechoic environment while not affecting lateralization thresholds for the reverberant environments. These results provide clear evidence that this algorithm can improve speech reception in background noise while preserving binaural cues used to lateralize sound.
Comparison of Various Anthropometric Indices as Risk Factors for Hearing Impairment in Asian Women.
Kang, Seok Hui; Jung, Da Jung; Lee, Kyu Yup; Choi, Eun Woo; Do, Jun Young
2015-01-01
The objective of the present study was to examine the associations between various anthropometric measures and metabolic syndrome and hearing impairment in Asian women. We identified 11,755 women who underwent voluntary routine health checkups at Yeungnam University Hospital between June 2008 and April 2014. Among these patients, 2,485 participants were <40 years old, and 1,072 participants lacked information regarding their laboratory findings or hearing and were therefore excluded. In total 8,198 participants were recruited into our study. The AUROC value for metabolic syndrome was 0.790 for the waist to hip ratio (WHR). The cutoff value was 0.939. The sensitivity and specificity for predicting metabolic syndrome were 72.7% and 71.7%, respectively. The AUROC value for hearing loss was 0.758 for WHR. The cutoff value was 0.932. The sensitivity and specificity for predicting hearing loss were 65.8% and 73.4%, respectively. The WHR had the highest AUC and was the best predictor of metabolic syndrome and hearing loss. Univariate and multivariate linear regression analyses showed that WHR levels were positively associated with four hearing thresholds including averaged hearing threshold and low, middle, and high frequency thresholds. In addition, multivariate logistic analysis revealed that those with a high WHR had a 1.347-fold increased risk of hearing loss compared with the participants with a low WHR. Our results demonstrated that WHR may be a surrogate marker for predicting the risk of hearing loss resulting from metabolic syndrome.
Individual Differences Reveal Correlates of Hidden Hearing Deficits
Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G.
2015-01-01
Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of “normal hearing.” PMID:25653371
Music students: conventional hearing thresholds and at high frequencies.
Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de
2014-01-01
Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Iwasaki, Satoshi; Usami, Shin-Ichi; Takahashi, Haruo; Kanda, Yukihiko; Tono, Tetsuya; Doi, Katsumi; Kumakawa, Kozo; Gyo, Kiyofumi; Naito, Yasushi; Kanzaki, Sho; Yamanaka, Noboru; Kaga, Kimitaka
2017-07-01
To report on the safety and efficacy of an investigational active middle ear implant (AMEI) in Japan, and to compare results to preoperative results with a hearing aid. Prospective study conducted in Japan in which 23 Japanese-speaking adults suffering from conductive or mixed hearing loss received a VIBRANT SOUNDBRIDGE with implantation at the round window. Postoperative thresholds, speech perception results (word recognition scores, speech reception thresholds, signal-to-noise ratio [SNR]), and quality of life questionnaires at 20 weeks were compared with preoperative results with all patients receiving the same, best available hearing aid (HA). Statistically significant improvements in postoperative AMEI-aided thresholds (1, 2, 4, and 8 kHz) and on the speech reception thresholds and word recognition scores tests, compared with preoperative HA-aided results, were observed. On the SNR, the subjects' mean values showed statistically significant improvement, with -5.7 dB SNR for the AMEI-aided mean and -2.1 dB SNR for the preoperative HA-assisted mean. The APHAB quality of life questionnaire also showed statistically significant improvement with the AMEI. Results with the AMEI applied to the round window exceeded those of the best available hearing aid in speech perception as well as quality of life questionnaires. There were minimal adverse events or changes to patients' residual hearing.
Transient threshold shift after gunshot noise exposure.
Saedi, B; Ghasemi, M; Motiee, M; Mojtahed, M; Safavi, A
2013-01-01
Many people, such as soldiers, are routinely exposed to gunshot noise during target practice. It is suspected that this high-intensity noise may affect audition through repeated Transient Threshold Shifts (TTS); it can also mechanically alter auditory components such as waves. This study investigates the scope of gunshot noise from the AK-47 rifle (Kalashnikov) and the impact on the shooters' audition. Forty soldiers (80 ears) were recruited in this study. They were all young and being exposed to gunshot noise for the first time. Gunshot characteristics were measured before exposure. The soldiers underwent auditory evaluation with Pure Tone Audiometry (PTA) and Oto-Acoustic Emission (OAE) once before exposure and immediately (less than one hour) after exposure. The AK-47 gunshot noise pressure level varied between L(AIm) = 73.7 dBA to L(AIm) = 111.4 dBA. Fourteen participants had subclinical hearing impairment in their pre-exposure evaluation; this number increased to 16 after the exposure. Six months post-exposure and later, the number of cases with impairment had fallen to eight (improvement in 50%). Both pre- and post-exposure OAE results were within normal values, while PTA results indicated a significant threshold alteration only at 6 kHz. The results of this study confirm that exposure to gunshot noise with no ear protection can represent a significant hazard for auditory function, especially at higher frequencies.
Variation in hearing within a wild population of beluga whales (Delphinapterus leucas).
Mooney, T Aran; Castellote, Manuel; Quakenbush, Lori; Hobbs, Roderick; Gaglione, Eric; Goertz, Caroline
2018-05-08
Documenting hearing abilities is vital to understanding a species' acoustic ecology and for predicting the impacts of increasing anthropogenic noise. Cetaceans use sound for essential biological functions such as foraging, navigation and communication; hearing is considered to be their primary sensory modality. Yet, we know little regarding the hearing of most, if not all, cetacean populations, which limits our understanding of their sensory ecology, population level variability and the potential impacts of increasing anthropogenic noise. We obtained audiograms (5.6-150 kHz) of 26 wild beluga whales to measure hearing thresholds during capture-release events in Bristol Bay, AK, USA, using auditory evoked potential methods. The goal was to establish the baseline population audiogram, incidences of hearing loss and general variability in wild beluga whales. In general, belugas showed sensitive hearing with low thresholds (<80 dB) from 16 to 100 kHz, and most individuals (76%) responded to at least 120 kHz. Despite belugas often showing sensitive hearing, thresholds were usually above or approached the low ambient noise levels measured in the area, suggesting that a quiet environment may be associated with hearing sensitivity and that hearing thresholds in the most sensitive animals may have been masked. Although this is just one wild population, the success of the method suggests that it should be applied to other populations and species to better assess potential differences. Bristol Bay beluga audiograms showed substantial (30-70 dB) variation among individuals; this variation increased at higher frequencies. Differences among individual belugas reflect that testing multiple individuals of a population is necessary to best describe maximum sensitivity and population variance. The results of this study quadruple the number of individual beluga whales for which audiograms have been conducted and provide the first auditory data for a population of healthy wild odontocetes. © 2018. Published by The Company of Biologists Ltd.
Cigarette smoking causes hearing impairment among Bangladeshi population.
Sumit, Ahmed Faisal; Das, Anindya; Sharmin, Zinat; Ahsan, Nazmul; Ohgami, Nobutaka; Kato, Masashi; Akhand, Anwarul Azim
2015-01-01
Lifestyle including smoking, noise exposure with MP3 player and drinking alcohol are considered as risk factors for affecting hearing synergistically. However, little is known about the association of cigarette smoking with hearing impairment among subjects who carry a lifestyle without using MP3 player and drinking alcohol. We showed here the influence of smoking on hearing among Bangladeshi subjects who maintain a lifestyle devoid of using MP3 player and drinking alcohol. A total of 184 subjects (smokers: 90; non-smokers: 94) were included considering their duration and frequency of smoking for conducting this study. The mean hearing thresholds of non-smoker subjects at 1, 4, 8 and 12 kHz frequencies were 5.63 ± 2.10, 8.56±5.75, 21.06 ± 11.06, 40.79 ± 20.36 decibel (dB), respectively and that of the smokers were 7 ± 3.8, 13.27 ± 8.4, 30.66 ± 12.50 and 56.88 ± 21.58 dB, respectively. The hearing thresholds of the smokers at 4, 8 and 12 kHz frequencies were significantly (p<0.05) higher than those of the non-smokers, while no significant differences were observed at 1 kHz frequency. We also observed no significant difference in auditory thresholds among smoker subgroups based on smoking frequency. In contrast, subjects smoked for longer duration (>5 years) showed higher level of auditory threshold (62.16 ± 19.87 dB) at 12 kHz frequency compared with that (41.52 ± 19.21 dB) of the subjects smoked for 1-5 years and the difference in auditory thresholds was statistically significant (p<0.0002). In this study, the Brinkman Index (BI) of smokers was from 6 to 440 and the adjusted odds ratio showed a positive correlation between hearing loss and smoking when adjusted for age and body mass index (BMI). In addition, age, but not BMI, also played positive role on hearing impairment at all frequencies. Thus, these findings suggested that cigarette smoking affects hearing level at all the frequencies tested but most significantly at extra higher frequencies.
Cigarette Smoking Causes Hearing Impairment among Bangladeshi Population
Sumit, Ahmed Faisal; Das, Anindya; Sharmin, Zinat; Ahsan, Nazmul; Ohgami, Nobutaka; Kato, Masashi; Akhand, Anwarul Azim
2015-01-01
Lifestyle including smoking, noise exposure with MP3 player and drinking alcohol are considered as risk factors for affecting hearing synergistically. However, little is known about the association of cigarette smoking with hearing impairment among subjects who carry a lifestyle without using MP3 player and drinking alcohol. We showed here the influence of smoking on hearing among Bangladeshi subjects who maintain a lifestyle devoid of using MP3 player and drinking alcohol. A total of 184 subjects (smokers: 90; non-smokers: 94) were included considering their duration and frequency of smoking for conducting this study. The mean hearing thresholds of non-smoker subjects at 1, 4, 8 and 12 kHz frequencies were 5.63±2.10, 8.56±5.75, 21.06±11.06, 40.79±20.36 decibel (dB), respectively and that of the smokers were 7±3.8, 13.27±8.4, 30.66±12.50 and 56.88±21.58 dB, respectively. The hearing thresholds of the smokers at 4, 8 and 12 kHz frequencies were significantly (p<0.05) higher than those of the non-smokers, while no significant differences were observed at 1 kHz frequency. We also observed no significant difference in auditory thresholds among smoker subgroups based on smoking frequency. In contrast, subjects smoked for longer duration (>5 years) showed higher level of auditory threshold (62.16±19.87 dB) at 12 kHz frequency compared with that (41.52±19.21 dB) of the subjects smoked for 1-5 years and the difference in auditory thresholds was statistically significant (p<0.0002). In this study, the Brinkman Index (BI) of smokers was from 6 to 440 and the adjusted odds ratio showed a positive correlation between hearing loss and smoking when adjusted for age and body mass index (BMI). In addition, age, but not BMI, also played positive role on hearing impairment at all frequencies. Thus, these findings suggested that cigarette smoking affects hearing level at all the frequencies tested but most significantly at extra higher frequencies. PMID:25781179
Hepatocyte nuclear factor-4 alpha in noise-induced cochlear neuropathy.
Groth, Jane Bjerg; Kao, Shyan-Yuan; Briët, Martijn C; Stankovic, Konstantina M
2016-12-01
Noise-induced hearing loss (NIHL) is a problem of profound clinical significance and growing magnitude. Alarmingly, even moderate noise levels, previously assumed to cause only temporary shifts in auditory thresholds ("temporary" NIHL), are now known to cause cochlear synaptopathy and subsequent neuropathy. To uncover molecular mechanisms of this neuropathy, a network analysis of genes reported to have significantly altered expression after temporary threshold shift-inducing noise exposure was performed. The transcription factor Hepatocyte Nuclear Factor-4 alpha (HNF4α), which had not previously been studied in the context of cochlear response to noise, was identified as a hub of a top-ranking network. Hnf4α expression and localization using quantitative RT-PCR and in situ hybridization, respectively, were described in adolescent and adult mice exposed to neuropathic noise levels in adolescence. Isoforms α3 and α12 in the cochlea were also identified. At every age examined, Hnf4α mRNA expression in the cochlear apex was similar to expression in the base. Hnf4α expression was evident in select cochlear cells, including spiral ganglion neurons (SGNs) and hair cells, and was significantly upregulated from 6 to 70 weeks of age, especially in SGNs. This age-related Hnf4α upregulation was inhibited by neuropathic noise exposure in adolescence. Hnf4α silencing with shRNA transfection into auditory neuroblast cells (VOT-33) reduced cell viability, as measured with the MTT assay, suggesting that Hnf4α may be involved in SGN survival. Our results motivate future studies of HNF4α in cochlear pathophysiology, especially because HNF4α mutations and polymorphisms are associated with human diseases that may include hearing loss. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1374-1386, 2016. © 2016 Wiley Periodicals, Inc.
Audiometric Predictions Using SFOAE and Middle-Ear Measurements
Ellison, John C.; Keefe, Douglas H.
2006-01-01
Objective The goals of the study are to determine how well stimulus-frequency otoacoustic emissions (SFOAEs) identify hearing loss, classify hearing loss as mild or moderate-severe, and correlate with pure-tone thresholds in a population of adults with normal middle-ear function. Other goals are to determine if middle-ear function as assessed by wideband acoustic transfer function (ATF) measurements in the ear canal account for the variability in normal thresholds, and if the inclusion of ATFs improves the ability of SFOAEs to identify hearing loss and predict pure-tone thresholds. Design The total suppressed SFOAE signal and its corresponding noise were recorded in 85 ears (22 normal ears and 63 ears with sensorineural hearing loss) at octave frequencies from 0.5 – 8 kHz using a nonlinear residual method. SFOAEs were recorded a second time in three impaired ears to assess repeatability. Ambient-pressure ATFs were obtained in all but one of these 85 ears, and were also obtained from an additional 31 normal-hearing subjects in whom SFOAE data were not obtained. Pure-tone air-and bone-conduction thresholds and 226-Hz tympanograms were obtained on all subjects. Normal tympanometry and the absence of air-bone gaps were used to screen subjects for normal middle-ear function. Clinical decision theory was used to assess the performance of SFOAE and ATF predictors in classifying ears as normal or impaired, and linear regression analysis was used to test the ability of SFOAE and ATF variables to predict the air-conduction audiogram. Results The ability of SFOAEs to classify ears as normal or hearing impaired was significant at all test frequencies. The ability of SFOAEs to classify impaired ears as either mild or moderate-severe was significant at test frequencies from 0.5 to 4 kHz. SFOAEs were present in cases of severe hearing loss. SFOAEs were also significantly correlated with air-conduction thresholds from 0.5 to 8 kHz. The best performance occurred using the SFOAE signal-to-noise ratio (S/N) as the predictor, and the overall best performance was at 2 kHz. The SFOAE S/N measures were repeatable to within 3.5 dB in impaired ears. The ATF measures explained up to 25% of the variance in the normal audiogram; however, ATF measures did not improve SFOAEs predictors of hearing loss except at 4 kHz. Conclusions In common with other OAE types, SFOAEs are capable of identifying the presence of hearing loss. In particular, SFOAEs performed better than distortion-product and click-evoked OAEs in predicting auditory status at 0.5 kHz; SFOAE performance was similar to that of other OAE types at higher frequencies except for a slight performance reduction at 4 kHz. Because SFOAEs were detected in ears with mild to severe cases of hearing loss they may also provide an estimate of the classification of hearing loss. Although SFOAEs were significantly correlated with hearing threshold, they do not appear to have clinical utility in predicting a specific behavioral threshold. Information on middle-ear status as assessed by ATF measures offered minimal improvement in SFOAE predictions of auditory status in a population of normal and impaired ears with normal middle-ear function. However, ATF variables did explain a significant fraction of the variability in the audiograms of normal ears, suggesting that audiometric thresholds in normal ears are partially constrained by middle-ear function as assessed by ATF tests. PMID:16230898
Le Prell, Colleen G; Brungart, Douglas S
2016-09-01
In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yu; Zhong, Cuiping; Hong, Liu
2009-12-18
Noise over-stimulation may induce hair cells loss and hearing deficit. The c-myc oncogene is a major regulator for cell proliferation, growth, and apoptosis. However, the role of this gene in the mammalian cochlea is still unclear. The study was designed to firstly investigate its function under noise condition, from the aspect of cochlear ultrastructural changes. We had established the adenoviral vector of c-myc gene and delivered the adenovirus suspension into the scala tympani of guinea pigs 4 days before noise exposure. The empty adenoviral vectors were injected as control. Then, all subjects were exposed to 4-kHz octave-band noise at 110more » dB SPL for 8 h/day, 3 days consecutively. Auditory thresholds were assessed by auditory brainstem response, prior to and 7 days following noise exposure. On the seventh days after noise exposure, the cochlear sensory epithelia surface was observed microscopically and the cochleae were taken to study the ultrastructural changes. The results indicated that auditory threshold shift after noise exposure was higher in the ears treated with Ad.EGFP than that treated with Ad.c-myc-EGFP. Stereocilia loss and the disarrangement of outer hair cells were observed, with greater changes found in the Ad.EGFP group. Also, the ultrastructure changes were severe in the Ad.EGFP group, but not obvious in the Ad.c-myc-EGFP group. Therefore, c-myc gene might play an unexpected role in hearing functional and morphological protection from acoustic trauma.« less
Hurd, Elizabeth A; Adams, Meredith E; Layman, Wanda S; Swiderski, Donald L; Beyer, Lisa A; Halsey, Karin E; Benson, Jennifer M; Gong, Tzy-Wen; Dolan, David F; Raphael, Yehoash; Martin, Donna M
2011-12-01
Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7(Gt)(/+) mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7(Gt)(/+) mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7(Gt)(/+) mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7(Gt)(/+) mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears. Copyright © 2011 Elsevier B.V. All rights reserved.
Hurd, Elizabeth A.; Adams, Meredith E.; Layman, Wanda S.; Swiderski, Donald L.; Beyer, Lisa A.; Halsey, Karin E.; Benson, Jennifer M.; Gong, Tzy-Wen; Dolan, David F.; Raphael, Yehoash; Martin, Donna M.
2011-01-01
Heterozygous mutations in the gene encoding chromodomain-DNA-binding-protein 7 (CHD7) cause CHARGE syndrome, a multiple anomaly condition which includes vestibular dysfunction and hearing loss. Mice with heterozygous Chd7 mutations exhibit semicircular canal dysgenesis and abnormal inner ear neurogenesis, and are an excellent model of CHARGE syndrome. Here we characterized Chd7 expression in mature middle and inner ears, analyzed morphological features of mutant ears and tested whether Chd7 mutant mice have altered responses to noise exposure and correlated those responses to inner and middle ear structure. We found that Chd7 is highly expressed in mature inner and outer hair cells, spiral ganglion neurons, vestibular sensory epithelia and middle ear ossicles. There were no obvious defects in individual hair cell morphology by Prestin immunostaining or scanning electron microscopy, and cochlear innervation appeared normal in Chd7Gt/+ mice. Hearing thresholds by auditory brainstem response (ABR) testing were elevated at 4 and 16 kHz in Chd7Gt/+ mice, and there were reduced distortion product otoacoustic emissions (DPOAE). Exposure of Chd7Gt/+ mice to broadband noise resulted in variable degrees of hair cell loss which inversely correlated with severity of stapedial defects. The degrees of hair cell loss and threshold shifts after noise exposure were more severe in wild type mice than in mutants. Together, these data indicate that Chd7Gt/+ mice have combined conductive and sensorineural hearing loss, correlating with changes in both middle and inner ears. PMID:21875659
Potts, Lisa G; Skinner, Margaret W; Litovsky, Ruth A; Strube, Michael J; Kuk, Francis
2009-06-01
The use of bilateral amplification is now common clinical practice for hearing aid users but not for cochlear implant recipients. In the past, most cochlear implant recipients were implanted in one ear and wore only a monaural cochlear implant processor. There has been recent interest in benefits arising from bilateral stimulation that may be present for cochlear implant recipients. One option for bilateral stimulation is the use of a cochlear implant in one ear and a hearing aid in the opposite nonimplanted ear (bimodal hearing). This study evaluated the effect of wearing a cochlear implant in one ear and a digital hearing aid in the opposite ear on speech recognition and localization. A repeated-measures correlational study was completed. Nineteen adult Cochlear Nucleus 24 implant recipients participated in the study. The participants were fit with a Widex Senso Vita 38 hearing aid to achieve maximum audibility and comfort within their dynamic range. Soundfield thresholds, loudness growth, speech recognition, localization, and subjective questionnaires were obtained six-eight weeks after the hearing aid fitting. Testing was completed in three conditions: hearing aid only, cochlear implant only, and cochlear implant and hearing aid (bimodal). All tests were repeated four weeks after the first test session. Repeated-measures analysis of variance was used to analyze the data. Significant effects were further examined using pairwise comparison of means or in the case of continuous moderators, regression analyses. The speech-recognition and localization tasks were unique, in that a speech stimulus presented from a variety of roaming azimuths (140 degree loudspeaker array) was used. Performance in the bimodal condition was significantly better for speech recognition and localization compared to the cochlear implant-only and hearing aid-only conditions. Performance was also different between these conditions when the location (i.e., side of the loudspeaker array that presented the word) was analyzed. In the bimodal condition, the speech-recognition and localization tasks were equal regardless of which side of the loudspeaker array presented the word, while performance was significantly poorer for the monaural conditions (hearing aid only and cochlear implant only) when the words were presented on the side with no stimulation. Binaural loudness summation of 1-3 dB was seen in soundfield thresholds and loudness growth in the bimodal condition. Measures of the audibility of sound with the hearing aid, including unaided thresholds, soundfield thresholds, and the Speech Intelligibility Index, were significant moderators of speech recognition and localization. Based on the questionnaire responses, participants showed a strong preference for bimodal stimulation. These findings suggest that a well-fit digital hearing aid worn in conjunction with a cochlear implant is beneficial to speech recognition and localization. The dynamic test procedures used in this study illustrate the importance of bilateral hearing for locating, identifying, and switching attention between multiple speakers. It is recommended that unilateral cochlear implant recipients, with measurable unaided hearing thresholds, be fit with a hearing aid.
Weichenberger, Markus; Bauer, Martin; Kühler, Robert; Hensel, Johannes; Forlim, Caroline Garcia; Ihlenfeld, Albrecht; Ittermann, Bernd; Gallinat, Jürgen; Koch, Christian; Kühn, Simone
2017-01-01
In the present study, the brain’s response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold—as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a ‘medium loud’ hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings. PMID:28403175
Dai, Chuanfu; Zhao, Zeqi; Zhang, Duo; Lei, Guanxiong
2018-01-01
Background The aim of this study was to explore the value of the spectral ripple discrimination test in speech recognition evaluation among a deaf (post-lingual) Mandarin-speaking population in China following cochlear implantation. Material/Methods The study included 23 Mandarin-speaking adult subjects with normal hearing (normal-hearing group) and 17 deaf adults who were former Mandarin-speakers, with cochlear implants (cochlear implantation group). The normal-hearing subjects were divided into men (n=10) and women (n=13). The spectral ripple discrimination thresholds between the groups were compared. The correlation between spectral ripple discrimination thresholds and Mandarin speech recognition rates in the cochlear implantation group were studied. Results Spectral ripple discrimination thresholds did not correlate with age (r=−0.19; p=0.22), and there was no significant difference in spectral ripple discrimination thresholds between the male and female groups (p=0.654). Spectral ripple discrimination thresholds of deaf adults with cochlear implants were significantly correlated with monosyllabic recognition rates (r=0.84; p=0.000). Conclusions In a Mandarin Chinese speaking population, spectral ripple discrimination thresholds of normal-hearing individuals were unaffected by both gender and age. Spectral ripple discrimination thresholds were correlated with Mandarin monosyllabic recognition rates of Mandarin-speaking in post-lingual deaf adults with cochlear implants. The spectral ripple discrimination test is a promising method for speech recognition evaluation in adults following cochlear implantation in China. PMID:29806954
Dai, Chuanfu; Zhao, Zeqi; Shen, Weidong; Zhang, Duo; Lei, Guanxiong; Qiao, Yuehua; Yang, Shiming
2018-05-28
BACKGROUND The aim of this study was to explore the value of the spectral ripple discrimination test in speech recognition evaluation among a deaf (post-lingual) Mandarin-speaking population in China following cochlear implantation. MATERIAL AND METHODS The study included 23 Mandarin-speaking adult subjects with normal hearing (normal-hearing group) and 17 deaf adults who were former Mandarin-speakers, with cochlear implants (cochlear implantation group). The normal-hearing subjects were divided into men (n=10) and women (n=13). The spectral ripple discrimination thresholds between the groups were compared. The correlation between spectral ripple discrimination thresholds and Mandarin speech recognition rates in the cochlear implantation group were studied. RESULTS Spectral ripple discrimination thresholds did not correlate with age (r=-0.19; p=0.22), and there was no significant difference in spectral ripple discrimination thresholds between the male and female groups (p=0.654). Spectral ripple discrimination thresholds of deaf adults with cochlear implants were significantly correlated with monosyllabic recognition rates (r=0.84; p=0.000). CONCLUSIONS In a Mandarin Chinese speaking population, spectral ripple discrimination thresholds of normal-hearing individuals were unaffected by both gender and age. Spectral ripple discrimination thresholds were correlated with Mandarin monosyllabic recognition rates of Mandarin-speaking in post-lingual deaf adults with cochlear implants. The spectral ripple discrimination test is a promising method for speech recognition evaluation in adults following cochlear implantation in China.
Kastelein, Ronald A; Hoek, Lean; Wensveen, Paul J; Terhune, John M; de Jong, Christ A F
2010-02-01
The underwater hearing sensitivities of two 2-year-old female harbor seals were quantified in a pool built for acoustic research by using a behavioral psycho-acoustic technique. The animals were trained only to respond when they detected an acoustic signal ("go/no-go" response). Detection thresholds were obtained for pure tone signals (frequencies: 0.2-40 kHz; durations: 0.5-5000 ms, depending on the frequency; 59 frequency-duration combinations). Detection thresholds were quantified by varying the signal amplitude by the 1-up, 1-down staircase method, and were defined as the stimulus levels, resulting in a 50% detection rate. The hearing thresholds of the two seals were similar for all frequencies except for 40 kHz, for which the thresholds differed by, on average, 3.7 dB. There was an inverse relationship between the time constant (tau), derived from an exponential model of temporal integration, and the frequency [log(tau)=2.86-0.94 log(f);tau in ms and f in kHz]. Similarly, the thresholds increased when the pulse was shorter than approximately 780 cycles (independent of the frequency). For pulses shorter than the integration time, the thresholds increased by 9-16 dB per decade reduction in the duration or number of cycles in the pulse. The results of this study suggest that most published hearing thresholds
Vignesh, S S; Jaya, V; Moses, Anand; Muraleedharan, A
2015-09-01
Diabetes mellitus (DM) is a metabolic disorder caused by hyperglycemia which leads to dysfunction of various organs. Hearing acuity is equally hindered by this disorder. Among individuals with DM audiological characteristics of DM type 1 are of great concern in the literature. This study aims at establishing high frequency audiometry (HFA) as a useful tool in identifying early onset of hearing loss in individuals with DM type 2. 20 non-diabetic participants and 20 individuals with DM type 2 in the age range of 20-40 years were considered for the study. Subjects in both groups underwent otoscopic examination, PTA at 0.25, 0.5, 1, 2, 4 and 8 kHz and HFA at 9, 10, 11.2, 12.5, 14 and 16 kHz. Results revealed statistically significant difference in thresholds of both PTA and HFA at all frequencies across the group, but the mean threshold difference between the diabetic and non-diabetic group was marked in HFA than in PTA. In the diabetic subjects the thresholds of PTA was within 25 dBHL at all frequencies when compared to the thresholds of HFA. Individuals with DM type 2 showed bilateral symmetrical mild hearing loss in HFA and the hearing loss increased with ascending test frequencies from 9,000 to 16,000 Hz. Mild hearing loss in HFA is an indicator for early onset of hearing loss in DM type 2. Hence this present study emphasis the clinical utility of HFA in young adults with DM type 2.
Auditory brainstem response to complex sounds predicts self-reported speech-in-noise performance.
Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina
2013-02-01
To compare the ability of the auditory brainstem response to complex sounds (cABR) to predict subjective ratings of speech understanding in noise on the Speech, Spatial, and Qualities of Hearing Scale (SSQ; Gatehouse & Noble, 2004) relative to the predictive ability of the Quick Speech-in-Noise test (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) and pure-tone hearing thresholds. Participants included 111 middle- to older-age adults (range = 45-78) with audiometric configurations ranging from normal hearing levels to moderate sensorineural hearing loss. In addition to using audiometric testing, the authors also used such evaluation measures as the QuickSIN, the SSQ, and the cABR. Multiple linear regression analysis indicated that the inclusion of brainstem variables in a model with QuickSIN, hearing thresholds, and age accounted for 30% of the variance in the Speech subtest of the SSQ, compared with significantly less variance (19%) when brainstem variables were not included. The authors' results demonstrate the cABR's efficacy for predicting self-reported speech-in-noise perception difficulties. The fact that the cABR predicts more variance in self-reported speech-in-noise (SIN) perception than either the QuickSIN or hearing thresholds indicates that the cABR provides additional insight into an individual's ability to hear in background noise. In addition, the findings underscore the link between the cABR and hearing in noise.
le Clercq, Carlijn M P; van Ingen, Gijs; Ruytjens, Liesbet; van der Schroeff, Marc P
2016-10-01
Exposure to loud music has increased significantly because of the current development of personal music players and mobile phones. The aim of this study was to provide an overview of music-induced hearing loss and its symptoms in children. The search was performed in the databases Embase, Medline (OvidSP), Web-of-science, Scopus, Cinahl, Cochrane, PubMed publisher, and Google Scholar. Only articles written in English were included. Articles describing hearing levels and music exposure in children were used, published from 1990 until April 2015. The quality of the studies was assessed on reporting, validity, power, and the quality of audiometric testing. Data of each publication was extracted into spreadsheet software and analyzed using best evidence synthesis. The prevalence of increased hearing levels (>15 dB HL) was 9.6%, and high-frequency hearing loss was found in 9.3%. The average hearing thresholds were 4.79 dB HL at low frequencies (0.5, 1, and 2 kHz) and 9.54 dB HL at high frequencies (3, 4, and 6 kHz). Most studies reported no significant association between pure-tone air thresholds and exposure to loud music. However, significant changes in hearing thresholds and otoacoustic emissions, and a high tinnitus prevalence suggest an association between music exposure and hearing loss in children.
Cognitive abilities relate to self-reported hearing disability.
Zekveld, Adriana A; George, Erwin L J; Houtgast, Tammo; Kramer, Sophia E
2013-10-01
In this explorative study, the authors investigated the relationship between auditory and cognitive abilities and self-reported hearing disability. Thirty-two adults with mild to moderate hearing loss completed the Amsterdam Inventory for Auditory Disability and Handicap (AIADH; Kramer, Kapteyn, Festen, & Tobi, 1996) and performed the Text Reception Threshold (TRT; Zekveld, George, Kramer, Goverts, & Houtgast, 2007) test as well as tests of spatial working memory (SWM) and visual sustained attention. Regression analyses examined the predictive value of age, hearing thresholds (pure-tone averages [PTAs]), speech perception in noise (speech reception thresholds in noise [SRTNs]), and the cognitive tests for the 5 AIADH factors. Besides the variance explained by age, PTA, and SRTN, cognitive abilities were related to each hearing factor. The reported difficulties with sound detection and speech perception in quiet were less severe for participants with higher age, lower PTAs, and better TRTs. Fewer sound localization and speech perception in noise problems were reported by participants with better SRTNs and smaller SWM. Fewer sound discrimination difficulties were reported by subjects with better SRTNs and TRTs and smaller SWM. The results suggest a general role of the ability to read partly masked text in subjective hearing. Large working memory was associated with more reported hearing difficulties. This study shows that besides auditory variables and age, cognitive abilities are related to self-reported hearing disability.
Yao, Wai Na; Turner, Christopher W; Gantz, Bruce J
2006-10-01
The purpose of this study was to investigate the stability over time of low-frequency auditory thresholds to better determine if the new technique of using a short-electrode cochlear implant that preserves residual low-frequency acoustic hearing can be a long-term solution for those with severe-to-profound hearing loss at high frequencies. The present study determined the long-term rate of decline in acoustic hearing in patients who have a preexisting hearing loss yet have not been implanted with a cochlear implant. A retrospective analysis of patients' audiograms that fit into the range for candidacy for the short-electrode device was performed to calculate the rate of change of threshold over time. The analysis of adult patients' data indicated that there was an average of only 1.05 dB hearing deterioration per year in the low frequencies and that presbycusis accounted for approximately one third to one half of this decline. The average deterioration of hearing threshold for pediatric patients was 1.2 dB per year; however, the rates of change in pediatric patients were considerably more variable (across individuals and across frequencies) than in adults. These data provide support for the idea that the short-electrode cochlear implant may be a practical solution for most adults in the long run, but this may not be the case for all pediatric patients.
ERIC Educational Resources Information Center
Shinn-Cunningham, Barbara
2017-01-01
Purpose: This review provides clinicians with an overview of recent findings relevant to understanding why listeners with normal hearing thresholds (NHTs) sometimes suffer from communication difficulties in noisy settings. Method: The results from neuroscience and psychoacoustics are reviewed. Results: In noisy settings, listeners focus their…
Stam, Mariska; Smits, Cas; Twisk, Jos W R; Lemke, Ulrike; Festen, Joost M; Kramer, Sophia E
2015-01-01
The first aim of the present study was to determine the change in speech recognition in noise over a period of 5 years in participants ages 18 to 70 years at baseline. The second aim was to investigate whether age, gender, educational level, the level of initial speech recognition in noise, and reported chronic conditions were associated with a change in speech recognition in noise. The baseline and 5-year follow-up data of 427 participants with and without hearing impairment participating in the National Longitudinal Study on Hearing (NL-SH) were analyzed. The ability to recognize speech in noise was measured twice with the online National Hearing Test, a digit-triplet speech-in-noise test. Speech-reception-threshold in noise (SRTn) scores were calculated, corresponding to 50% speech intelligibility. Unaided SRTn scores obtained with the same transducer (headphones or loudspeakers) at both test moments were included. Changes in SRTn were calculated as a raw shift (T1 - T0) and an adjusted shift for regression towards the mean. Paired t tests and multivariable linear regression analyses were applied. The mean increase (i.e., deterioration) in SRTn was 0.38-dB signal-to-noise ratio (SNR) over 5 years (p < 0.001). Results of the multivariable regression analyses showed that the age group of 50 to 59 years had a significantly larger deterioration in SRTn compared with the age group of 18 to 39 years (raw shift: beta: 0.64-dB SNR; 95% confidence interval: 0.07-1.22; p = 0.028, adjusted for initial speech recognition level - adjusted shift: beta: 0.82-dB SNR; 95% confidence interval: 0.27-1.34; p = 0.004). Gender, educational level, and the number of chronic conditions were not associated with a change in SRTn over time. No significant differences in increase of SRTn were found between the initial levels of speech recognition (i.e., good, insufficient, or poor) when taking into account the phenomenon regression towards the mean. The study results indicate that hearing deterioration of speech recognition in noise over 5 years can also be detected in adults ages 18 to 70 years. This rather small numeric change might represent a relevant impact on an individual's ability to understand speech in everyday life.
Longitudinal predictors of aided speech audibility in infants and children
McCreery, Ryan W.; Walker, Elizabeth A.; Spratford, Meredith; Bentler, Ruth; Holte, Lenore; Roush, Patricia; Oleson, Jacob; Van Buren, John; Moeller, Mary Pat
2015-01-01
Objectives Amplification is a core component of early intervention for children who are hard of hearing (CHH), but hearing aids (HAs) have unique effects that may be independent from other components of the early intervention process, such as caregiver training or speech and language intervention. The specific effects of amplification are rarely described in studies of developmental outcomes. The primary purpose of this manuscript is to quantify aided speech audibility during the early childhood years and examine the factors that influence audibility with amplification for children in the Outcomes of Children with Hearing Loss (OCHL) study. Design Participants were 288 children with permanent hearing loss who were followed as part of the OCHL study. All of the children in this analysis had bilateral hearing loss and wore air-conduction behind-the-ear HAs. At every study visit, hearing thresholds were measured using developmentally-appropriate behavioral methods. Data were obtained for a total of 1043 audiometric evaluations across all subjects for the first four study visits. In addition, the aided audibility of speech through the HA was assessed using probe microphone measures. Hearing thresholds and aided audibility were analyzed. Repeated-measures analyses of variance were conducted to determine if patterns of thresholds and aided audibility were significantly different between ears (left vs. right) or across the first four study visits. Furthermore, a cluster analysis was performed based on the aided audibility at entry into the study, aided audibility at the child’s final visit, and change in aided audibility between these two intervals to determine if there were different patterns of longitudinal aided audibility within the sample. Results Eighty-four percent of children in the study had stable audiometric thresholds during the study, defined as threshold changes <10 dB for any single study visit. There were no significant differences in hearing thresholds, aided audibility, or deviation of the HA fitting from prescriptive targets between ears or across test intervals for the first four visits. Approximately 35% of the children in the study had aided audibility that was below the average for the normative range for the Speech Intelligibility Index (SII) based on degree of hearing loss. The cluster analysis of longitudinal aided audibility revealed three distinct groups of children: a group with consistently high aided audibility throughout the study, a group with decreasing audibility during the study, and a group with consistently low aided audibility. Conclusions The current results indicated that approximately 65% of children in the study had adequate aided audibility of speech and stable hearing during the study period. Limited audibility was associated with greater degrees of hearing loss and larger deviations from prescriptive targets. Studies of developmental outcomes will help to determine how aided audibility is necessary to affects developmental outcomes in CHH. PMID:26731156
Critical ratios of beluga whales (Delphinapterus leucas) and masked signal duration.
Erbe, Christine
2008-10-01
This article examines the masking of a complex beluga vocalization by natural and anthropogenic noise. The call consisted of six 150 ms pulses exhibiting spectral peaks between 800 Hz and 8 kHz. Comparing the spectra and spectrograms of the call and noises at detection threshold showed that the animal did not hear the entire call at threshold. It only heard parts of the call in frequency and time. From the masked hearing thresholds in broadband continuous noises, critical ratios were computed. Fletcher critical bands were narrower than either 15 or 111 of an octave at the low frequencies of the call (<2 kHz), depending on which frequency the animal cued on. From the masked hearing thresholds in intermittent noises, the audible signal duration at detection threshold was computed. The intermittent noises differed in gap length, gap number, and masking, but the total audible signal duration at threshold was the same: 660 ms. This observation supports a multiple-looks model. The two amplitude modulated noises exhibited weaker masking than the unmodulated noises hinting at a comodulation masking release.
Aliabadi, Mohsen; Farhadian, Maryam; Darvishi, Ebrahim
2015-08-01
Prediction of hearing loss in noisy workplaces is considered to be an important aspect of hearing conservation program. Artificial intelligence, as a new approach, can be used to predict the complex phenomenon such as hearing loss. Using artificial neural networks, this study aims to present an empirical model for the prediction of the hearing loss threshold among noise-exposed workers. Two hundred and ten workers employed in a steel factory were chosen, and their occupational exposure histories were collected. To determine the hearing loss threshold, the audiometric test was carried out using a calibrated audiometer. The personal noise exposure was also measured using a noise dosimeter in the workstations of workers. Finally, data obtained five variables, which can influence the hearing loss, were used for the development of the prediction model. Multilayer feed-forward neural networks with different structures were developed using MATLAB software. Neural network structures had one hidden layer with the number of neurons being approximately between 5 and 15 neurons. The best developed neural networks with one hidden layer and ten neurons could accurately predict the hearing loss threshold with RMSE = 2.6 dB and R(2) = 0.89. The results also confirmed that neural networks could provide more accurate predictions than multiple regressions. Since occupational hearing loss is frequently non-curable, results of accurate prediction can be used by occupational health experts to modify and improve noise exposure conditions.
[Natural history of occupational hearing loss induced by noise].
de Almeida, S I; Albernaz, P L; Zaia, P A; Xavier, O G; Karazawa, E H
2000-01-01
To evaluate the clinical and audiometric characteristics of occupational hearing loss induced by noise, according to age and time of exposition in years. 222 patients with occupational sensorineural hearing loss induced by noise were studied retrospectively, correlating the auditive clinical claims, alterations of audiometric thresholds at frequencies of 250 Hz to 8000 Hz, speech discrimination indicator with age and time of exposure. As a control group were used the audiometric threshold of a population of same medium age, without morbid antecedents of hearing illness, as preconized by ISO 1999 (1990). The group were divided into subgroups and three decades of exposure were analyzed. It was verified that the clinical claims of hipoacusia increases according to the age and time of exposure. The frequency of tinnitus is constant. The audiometric thresholds in the second decade of exposure present variations that depend on the age. The several audiometric curves are parallel, but they are not horizontal. The worst thresholds were found in the high frequencies from 3000 Hz to 8000 Hz, as a clinical and physiopathological consequences of the commitment of basal areas of cochlea. The speech discrimination showed to be worst according to the increase of age and time of exposure. Patients with hearing loss disacusia induced by occupational noise present characteristic audiometric thresholds that vary according to age and time of exposure to noise. These characteristics defined and resumed in audiometric curves can constitute a standard of comparison, evaluation and control for exposed populations.
Accuracy of cochlear implant recipients in speech reception in the presence of background music.
Gfeller, Kate; Turner, Christopher; Oleson, Jacob; Kliethermes, Stephanie; Driscoll, Virginia
2012-12-01
This study examined speech recognition abilities of cochlear implant (CI) recipients in the spectrally complex listening condition of 3 contrasting types of background music, and compared performance based upon listener groups: CI recipients using conventional long-electrode devices, Hybrid CI recipients (acoustic plus electric stimulation), and normal-hearing adults. We tested 154 long-electrode CI recipients using varied devices and strategies, 21 Hybrid CI recipients, and 49 normal-hearing adults on closed-set recognition of spondees presented in 3 contrasting forms of background music (piano solo, large symphony orchestra, vocal solo with small combo accompaniment) in an adaptive test. Signal-to-noise ratio thresholds for speech in music were examined in relation to measures of speech recognition in background noise and multitalker babble, pitch perception, and music experience. The signal-to-noise ratio thresholds for speech in music varied as a function of category of background music, group membership (long-electrode, Hybrid, normal-hearing), and age. The thresholds for speech in background music were significantly correlated with measures of pitch perception and thresholds for speech in background noise; auditory status was an important predictor. Evidence suggests that speech reception thresholds in background music change as a function of listener age (with more advanced age being detrimental), structural characteristics of different types of music, and hearing status (residual hearing). These findings have implications for everyday listening conditions such as communicating in social or commercial situations in which there is background music.
Round window vibroplasty: long-term results.
Böheim, Klaus; Mlynski, Robert; Lenarz, Thomas; Schlögel, Max; Hagen, Rudolf
2012-10-01
The round window (RW) approach in the use of the Vibrant Soundbridge(®) (VSB) is a safe and effective treatment of conductive and mixed hearing losses for a period of more than 3 years of device use. To investigate the long-term safety and efficacy as well as user satisfaction of patients with conductive and mixed hearing losses implanted with the VSB using RW vibroplasty. Twelve patients with conductive and mixed hearing losses were evaluated after 40 months of daily VSB use. Safety was assessed by evaluating reports of postoperative medical and surgical complications as well as by changes in bone conduction hearing thresholds. Efficacy outcome measures included aided and unaided hearing thresholds, speech recognition in quiet and in noise and subjective benefit questionnaires. The safety results revealed no significant medical complications. One subject experienced sudden hearing loss after 18-24 months of device use, but still continues to wear the device to her satisfaction. With regard to efficacy, there were no significant changes from short- to long-term results in aided word understanding, functional gain or speech recognition threshold, suggesting that the outcomes are stable over time. Subjective questionnaires revealed either the same or better results compared with the short-term data.
Seixas, N S; Kujawa, S G; Norton, S; Sheppard, L; Neitzel, R; Slee, A
2004-11-01
To examine the relations between noise exposure and other risk factors with hearing function as measured by audiometric thresholds and distortion product otoacoustic emissions. A total of 456 subjects were studied (393 apprentices in construction trades and 63 graduate students). Hearing and peripheral auditory function were quantified using standard, automated threshold audiometry, tympanometry, and distortion product otoacoustic emissions (DPOAEs). The analysis addressed relations of noise exposure history and other risk factors with hearing threshold levels (HTLs) and DPOAEs at the baseline test for the cohort. The cohort had a mean age of 27 (7) years. The construction apprentices reported more noise exposure than students in both their occupational and non-occupational exposure histories. A strong effect of age and years of work in construction was observed at 4, 6, and 8 kHz for both HTLs and DPOAEs. Each year of construction work reported prior to baseline was associated with a 0.7 dB increase in HTL or 0.2 dB decrease DPOAE amplitude. Overall, there was a very similar pattern of effects between the HTLs and DPOAEs. This analysis shows a relatively good correspondence between the associations of noise exposures and other risk factors with DPOAEs and the associations observed with pure-tone audiometric thresholds in a young adult working population. The results provide further evidence that DPOAEs can be used to assess damage to hearing from a variety of exposures including noise. Clarifying advantages of DPOAEs or HTLs in terms of sensitivity to early manifestations of noise insults, or their utility in predicting future loss in hearing will require longitudinal follow up.
Dement, John; Ringen, Knut; Welch, Laura; Bingham, Eula; Quinn, Patricia
2005-11-01
Medical screening programs at three Departments of Energy (DOE) nuclear weapons facilities (Hanford Nuclear Reservation, Oak Ridge, and the Savannah River Site) have included audiometric testing since approximately 1996. This report summarizes hearing evaluations through March 31, 2003. Occupational examinations included a medical history, limited physical examination, and tests for medical effects from specific hazards, including audiometric testing. Hearing thresholds by frequency for DOE workers were compared to age-standardized thresholds among an external comparison population of industrial workers with noise exposures <80 dBA. Multivariate analyses were used to explore the risk of hearing impairment by duration of construction trade work and self-reported noise exposure, while controlling for potential confounders such as age, race, sex, smoking, elevated serum cholesterol, hypertension, solvent exposures, and recreational noise exposures. Hearing thresholds among DOE workers were much higher than observed in a comparison population of industrial workers with low noise exposures. Overall, 59.7% of workers examined were found to have material hearing impairment by NIOSH criteria. Age, duration of construction work, smoking, and self-reported noise exposure increased the risk of hearing loss. The risk of material hearing impairment was significantly elevated for construction trade workers compared to the external comparison population (odds-ratio = 1.6, 95% CI = 1.3-2.1) and increased with the duration of trade work. These medical screening programs confirm worker concerns about risks for hearing loss and the need for hearing conservation programs for construction workers, with emphasis on the prevention of noise exposures.
Comparison of Various Anthropometric Indices as Risk Factors for Hearing Impairment in Asian Women
Lee, Kyu Yup; Choi, Eun Woo; Do, Jun Young
2015-01-01
Background The objective of the present study was to examine the associations between various anthropometric measures and metabolic syndrome and hearing impairment in Asian women. Methods We identified 11,755 women who underwent voluntary routine health checkups at Yeungnam University Hospital between June 2008 and April 2014. Among these patients, 2,485 participants were <40 years old, and 1,072 participants lacked information regarding their laboratory findings or hearing and were therefore excluded. In total 8,198 participants were recruited into our study. Results The AUROC value for metabolic syndrome was 0.790 for the waist to hip ratio (WHR). The cutoff value was 0.939. The sensitivity and specificity for predicting metabolic syndrome were 72.7% and 71.7%, respectively. The AUROC value for hearing loss was 0.758 for WHR. The cutoff value was 0.932. The sensitivity and specificity for predicting hearing loss were 65.8% and 73.4%, respectively. The WHR had the highest AUC and was the best predictor of metabolic syndrome and hearing loss. Univariate and multivariate linear regression analyses showed that WHR levels were positively associated with four hearing thresholds including averaged hearing threshold and low, middle, and high frequency thresholds. In addition, multivariate logistic analysis revealed that those with a high WHR had a 1.347–fold increased risk of hearing loss compared with the participants with a low WHR. Conclusion Our results demonstrated that WHR may be a surrogate marker for predicting the risk of hearing loss resulting from metabolic syndrome. PMID:26575369
NASA Astrophysics Data System (ADS)
Holland, Nicholas Vedder, III
Exposure to loud sounds is one of the leading causes of hearing loss in the United States. The purpose of the current research was to measure the sound pressure levels generated within a university concert band and determine if those levels exceeded permissible sound limits for exposure according to criteria set by the Occupational Safety and Health Administration (OSHA) and the National Institute of Occupational Safety and Health (NIOSH). Time-weighted averages (TWA) were obtained via a dosimeter during six rehearsals for nine members of the ensemble (plus the conductor), who were seated in frontal proximity to "instruments of power" (trumpets, trombones, and percussion; (Backus, 1977). Subjects received audiometer tests prior to and after each rehearsal to determine any temporary threshold shifts (TTS). Single sample t tests were calculated to compare TWA means and the maximum sound intensity exposures set by OSHA and NIOSH. Correlations were calculated between TWAs and TTSs, as well as TTSs and the number of semesters subjects reported being seated in proximity to instruments of power. The TWA-OSHA mean of 90.2 dBA was not significantly greater than the specified OSHA maximum standard of 90.0 dBA (p > .05). The TWA-NIOSH mean of 93.1 dBA was, however, significantly greater than the NIOSH specified maximum standard of 85.0 dBA (p < .05). The correlation between TWAs and TTSs was considered weak (r = .21 for OSHA, r = .20 for NIOSH); the correlation between TTSs and semesters of proximity to instruments of power was also considered weak (r = .13). TWAs cumulatively exceeded both association's sound exposure limits at 11 specified locations (nine subjects and both ears of the conductor) throughout the concert band's rehearsals. In addition, hearing acuity, as determined by TTSs, was substantially affected negatively by the intensities produced in the concert band. The researcher concluded that conductors, as well as their performers, must be aware of possible damaging sound intensities in rehearsals or performances.
Moteki, Hideaki; Nishio, Shin-Ya; Miyagawa, Maiko; Tsukada, Keita; Iwasaki, Satoshi; Usami, Shin-Ichi
2017-05-01
Differences were found between patients with stable hearing and those with progressive hearing loss in the lower frequencies with respect to the rate of progression in the contralateral ear. It is suggested that the electric acoustic stimulation (EAS) can provide improvement in hearing ability over the long-term if residual hearing might be lost to some extent. To evaluate the long-term threshold changes in the low frequency hearing of the implanted ear as compared with the non-implanted ear, and the hearing abilities with EAS along with the extent of residual hearing. Seventeen individuals were enrolled and received the EAS implant with a 24-mm FLEXeas electrode array. Hearing thresholds and speech perception were measured pre- and post-operatively for 1-5 years. Post-operative hearing preservation (HP) rates were calculated using the preservation numerical scale. The average linear regression coefficient for the decline in hearing preservation score was -6.9 for the implanted ear and the patients were subsequently categorized into two groups: those with better than average, stable hearing; and those with worse than average, progressive hearing loss. EAS showed better results than electric stimulation alone, in spite of an absence of speech perception with acoustic stimulation.
The Impact of Different Permissible Exposure Limits on Hearing Threshold Levels Beyond 25 dBA
Sayapathi, Balachandar S; Su, Anselm Ting; Koh, David
2014-01-01
Background: Development of noise-induced hearing loss is reliant on a few factors such as frequency, intensity, and duration of noise exposure. The occurrence of this occupational malady has doubled from 120 million to 250 million in a decade. Countries such as Malaysia, India, and the US have adopted 90 dBA as the permissible exposure limit. According to the US Occupational Safety and Health Administration (OSHA), the exposure limit for noise is 90 dBA, while that of the US National Institute of Occupational Safety and Health (NIOSH) is 85 dBA for 8 hours of noise exposure. Objectives: This study aimed to assess the development of hearing threshold levels beyond 25 dBA on adoption of 85 dBA as the permissible exposure limit compared to 90 dBA. Patients and Methods: This is an intervention study done on two automobile factories. There were 203 employees exposed to noise levels beyond the action level. Hearing protection devices were distributed to reduce noise levels to a level between the permissible exposure limit and action level. The permissible exposure limits were 90 and 85 dBA in factories 1 and 2, respectively, while the action levels were 85 and 80 dBA, respectively. The hearing threshold levels of participants were measured at baseline and at first month of postshift exposure of noise. The outcome was measured by a manual audiometer. McNemar and chi-square tests were used in the statistical analysis. Results: We found that hearing threshold levels of more than 25 dBA has changed significantly from pre-intervention to post-intervention among participants from both factories (3000 Hz for the right ear and 2000 Hz for the left ear). There was a statistically significant association between participants at 3000 Hz on the right ear at ‘deteriorated’ level ( χ² (1) = 4.08, φ = - 0.142, P = 0.043), whereas there was worsening of hearing threshold beyond 25 dBA among those embraced 90 dBA. Conclusions: The adoption of 85 dBA as the permissible exposure limit has preserved hearing threshold level among participants at 3000 Hz compared to those who embraced 90 dBA. PMID:25763196
Fabijańska, Anna; Smurzyński, Jacek; Hatzopoulos, Stavros; Kochanek, Krzysztof; Bartnik, Grażyna; Raj-Koziak, Danuta; Mazzoli, Manuela; Skarżyński, Piotr H; Jędrzejczak, Wieslaw W; Szkiełkowska, Agata; Skarżyński, Henryk
2012-12-01
The aim of this study was to evaluate distortion product otoacoustic emissions (DPOAEs) and extended high-frequency (EHF) thresholds in a control group and in patients with normal hearing sensitivity in the conventional frequency range and reporting unilateral tinnitus. Seventy patients were enrolled in the study: 47 patients with tinnitus in the left ear (Group 1) and 23 patients with tinnitus in the right ear (Group 2). The control group included 60 otologically normal subjects with no history of pathological tinnitus. Pure-tone thresholds were measured at all standard frequencies from 0.25 to 8 kHz, and at 10, 12.5, 14, and 16 kHz. The DPOAEs were measured in the frequency range from approximately 0.5 to 9 kHz using the primary tones presented at 65/55 dB SPL. The left ears of patients in Group 1 had higher median hearing thresholds than those in the control subjects at all 4 EHFs, and lower mean DPOAE levels than those in the controls for almost all primary frequencies, but significantly lower only in the 2-kHz region. Median hearing thresholds in the right ears of patients in Group 2 were higher than those in the right ears of the control subjects in the EHF range at 12.5, 14, and 16 kHz. The mean DPOAE levels in the right ears were lower in patients from Group 2 than those in the controls for the majority of primary frequencies, but only reached statistical significance in the 8-kHz region. Hearing thresholds in tinnitus ears with normal hearing sensitivity in the conventional range were higher in the EHF region than those in non-tinnitus control subjects, implying that cochlear damage in the basal region may result in the perception of tinnitus. In general, DPOAE levels in tinnitus ears were lower than those in ears of non-tinnitus subjects, suggesting that subclinical cochlear impairment in limited areas, which can be revealed by DPOAEs but not by conventional audiometry, may exist in tinnitus ears. For patients with tinnitus, DPOAE measures combined with behavioral EHF hearing thresholds may provide additional clinical information about the status of the peripheral hearing.
Lie, Arve; Skogstad, Marit; Johnsen, Torstein Seip; Engdahl, Bo; Tambs, Kristian
2014-10-16
Railway workers performing maintenance work of trains and tracks could be at risk of developing noise-induced hearing loss, since they are exposed to noise levels of 75-90 dB(A) with peak exposures of 130-140 dB(C). The objective was to make a risk assessment by comparing the hearing thresholds among train and track maintenance workers with a reference group not exposed to noise and reference values from the ISO 1999. Cross-sectional. A major Norwegian railway company. 1897 and 2730 male train and track maintenance workers, respectively, all exposed to noise, and 2872 male railway traffic controllers and office workers not exposed to noise. The primary outcome was the hearing threshold (pure tone audiometry, frequencies from 0.5 to 8 kHz), and the secondary outcome was the prevalence of audiometric notches (Coles notch) of the most recent audiogram. Train and track maintenance workers aged 45 years or older had a small mean hearing loss in the 3-6 kHz area of 3-5 dB. The hearing loss was less among workers younger than 45 years. Audiometric notches were slightly more prevalent among the noise exposed (59-64%) group compared with controls (49%) for all age groups. They may therefore be a sensitive measure in disclosing an early hearing loss at a group level. Train and track maintenance workers aged 45 years or older, on average, have a slightly greater hearing loss and more audiometric notches compared with reference groups not exposed to noise. Younger (<45 years) workers have hearing thresholds comparable to the controls. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Individual differences reveal correlates of hidden hearing deficits.
Bharadwaj, Hari M; Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G
2015-02-04
Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of "normal hearing." Copyright © 2015 the authors 0270-6474/15/352161-12$15.00/0.
Lima, Aline Patrícia; Mantello, Erika Barioni; Anastasio, Adriana Ribeiro Tavares
2016-04-01
Introduction Treatment for auditory neuropathy spectrum disorder (ANSD) is not yet well established, including the use of hearing aids (HAs). Not all patients diagnosed with ASND have access to HAs, and in some cases HAs are even contraindicated. Objective To monitor the hearing handicap and the recognition threshold of sentences in silence and in noise in a patient with ASND using an HA. Resumed Report A 47-year-old woman reported moderate sensorineural hearing loss in the right ear and high-frequency loss of 4 kHz in the left ear, with bilateral otoacoustic emissions. Auditory brainstem response suggested changes in the functioning of the auditory pathway (up to the inferior colliculus) on the right. An HA was indicated on the right. The patient was tested within a 3-month period before the HA fitting with respect to recognition threshold of sentences in quiet and in noise and for handicap determination. After HA use, she showed a 2.1-dB improvement in the recognition threshold of sentences in silence, a 6.0-dB improvement for recognition threshold of sentences in noise, and a rapid improvement of the signal-to-noise ratio from +3.66 to -2.4 dB when compared with the same tests before the fitting of the HA. Conclusion There was a reduction of the auditory handicap, although speech perception continued to be severely limited. There was a significant improvement of the recognition threshold of sentences in silence and in noise and of the signal-to-noise ratio after 3 months of HA use.
Lima, Aline Patrícia; Mantello, Erika Barioni; Anastasio, Adriana Ribeiro Tavares
2015-01-01
Introduction Treatment for auditory neuropathy spectrum disorder (ANSD) is not yet well established, including the use of hearing aids (HAs). Not all patients diagnosed with ASND have access to HAs, and in some cases HAs are even contraindicated. Objective To monitor the hearing handicap and the recognition threshold of sentences in silence and in noise in a patient with ASND using an HA. Resumed Report A 47-year-old woman reported moderate sensorineural hearing loss in the right ear and high-frequency loss of 4 kHz in the left ear, with bilateral otoacoustic emissions. Auditory brainstem response suggested changes in the functioning of the auditory pathway (up to the inferior colliculus) on the right. An HA was indicated on the right. The patient was tested within a 3-month period before the HA fitting with respect to recognition threshold of sentences in quiet and in noise and for handicap determination. After HA use, she showed a 2.1-dB improvement in the recognition threshold of sentences in silence, a 6.0-dB improvement for recognition threshold of sentences in noise, and a rapid improvement of the signal-to-noise ratio from +3.66 to −2.4 dB when compared with the same tests before the fitting of the HA. Conclusion There was a reduction of the auditory handicap, although speech perception continued to be severely limited. There was a significant improvement of the recognition threshold of sentences in silence and in noise and of the signal-to-noise ratio after 3 months of HA use. PMID:27096026
Poulsen, Torben; Oakley, Sebastian
2009-05-01
Hearing threshold sound pressure levels were measured for the Sennheiser HDA 280 audiometric earphone. Hearing thresholds were measured for 25 normal-hearing test subjects at the 11 audiometric test frequencies from 125 Hz to 8000 Hz. Sennheiser HDA 280 is a supra-aural earphone that may be seen as a substitute for the classical Telephonics TDH 39. The results are given as the equivalent threshold sound pressure level (ETSPL) measured in an acoustic coupler specified in IEC 60318-3. The results are in good agreement with an independent investigation from PTB, Braunschweig, Germany. From acoustic laboratory measurements ETSPL values are calculated for the ear simulator specified in IEC 60318-1. Fitting of earphone and coupler is discussed. The data may be used for a future update of the RETSPL standard for supra-aural audiometric earphones, ISO 389-1.
Occupational noise exposure and age correction: the problem of selection bias.
Dobie, Robert A
2009-12-01
Selection bias often invalidates conclusions about populations based on clinical convenience samples. A recent paper in this journal makes two surprising assertions about noise-induced permanent threshold shift (NIPTS): first, that there is more NIPTS at 2 kHz than at higher frequencies; second, that NIPTS declines with advancing age. Neither assertion can be supported with the data presented, which were obtained from a clinical sample; both are consistent with the hypothesis that people who choose to attend an audiology clinic have worse hearing, especially at 2 kHz, than people of the same age and gender who choose not to attend.
Auditory maturation in premature infants: a potential pitfall for early cochlear implantation.
Hof, Janny R; Stokroos, Robert J; Wix, Eduard; Chenault, Mickey; Gelders, Els; Brokx, Jan
2013-08-01
To describe spontaneous hearing improvement in the first years of life of a number of preterm neonates relative to cochlear implant candidacy. Retrospective case study. Hearing levels of 14 preterm neonates (mean gestational age at birth = 29 weeks) referred after newborn hearing screening were evaluated. Initial hearing thresholds ranged from 40 to 105 dBHL (mean = 85 dBHL). Hearing level improved to normal levels for four neonates and to moderate levels for five, whereas for five neonates, no improvement in hearing thresholds was observed and cochlear implantation was recommended. Three of the four neonates in whom the hearing improved to normal levels were born prior to 28 weeks gestational age. Hearing improvement was mainly observed prior to a gestational age of 80 weeks. Delayed maturation of an immature auditory pathway might be an important reason for referral after newborn hearing screening in premature infants. Caution is advised regarding early cochlear implantation in preterm born infants. Audiological follow-ups until at least 80 weeks gestational age are therefore recommended. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
Altschuler, R A; Dolan, D F; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, D C; Miller, R A; Schacht, J
2015-04-30
This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Wilson, Richard H; Noe, Colleen M; Cruickshanks, Karen J; Wiley, Terry L; Nondahl, David M
2010-01-01
The Epidemiology of Hearing Loss Study (EHLS) conducted in Beaver Dam, Wisconsin, was a population-based study that focused on the prevalence of hearing loss among 3,753 participants between 1993 and 1995. This article reports the results of several auditory measures from 999 veteran and 590 nonveteran males 48 to 92 years of age included in the EHLS. The auditory measures included pure tone thresholds, tympanometry and acoustic reflexes, word recognition in quiet and in competing message, and the Hearing Handicap Inventory for the Elderly-Screening (HHIE-S) version. Hearing loss in the auditory domains of pure tone thresholds, word recognition in quiet, and word recognition in competing message increased with age but were not significantly different for the veterans and nonveterans. No significant differences were found between participant groups on the HHIE-S; however, regarding hearing aid usage, mixed differences were found.
Potts, Lisa G.; Skinner, Margaret W.; Litovsky, Ruth A.; Strube, Michael J; Kuk, Francis
2010-01-01
Background The use of bilateral amplification is now common clinical practice for hearing aid users but not for cochlear implant recipients. In the past, most cochlear implant recipients were implanted in one ear and wore only a monaural cochlear implant processor. There has been recent interest in benefits arising from bilateral stimulation that may be present for cochlear implant recipients. One option for bilateral stimulation is the use of a cochlear implant in one ear and a hearing aid in the opposite nonimplanted ear (bimodal hearing). Purpose This study evaluated the effect of wearing a cochlear implant in one ear and a digital hearing aid in the opposite ear on speech recognition and localization. Research Design A repeated-measures correlational study was completed. Study Sample Nineteen adult Cochlear Nucleus 24 implant recipients participated in the study. Intervention The participants were fit with a Widex Senso Vita 38 hearing aid to achieve maximum audibility and comfort within their dynamic range. Data Collection and Analysis Soundfield thresholds, loudness growth, speech recognition, localization, and subjective questionnaires were obtained six–eight weeks after the hearing aid fitting. Testing was completed in three conditions: hearing aid only, cochlear implant only, and cochlear implant and hearing aid (bimodal). All tests were repeated four weeks after the first test session. Repeated-measures analysis of variance was used to analyze the data. Significant effects were further examined using pairwise comparison of means or in the case of continuous moderators, regression analyses. The speech-recognition and localization tasks were unique, in that a speech stimulus presented from a variety of roaming azimuths (140 degree loudspeaker array) was used. Results Performance in the bimodal condition was significantly better for speech recognition and localization compared to the cochlear implant–only and hearing aid–only conditions. Performance was also different between these conditions when the location (i.e., side of the loudspeaker array that presented the word) was analyzed. In the bimodal condition, the speech-recognition and localization tasks were equal regardless of which side of the loudspeaker array presented the word, while performance was significantly poorer for the monaural conditions (hearing aid only and cochlear implant only) when the words were presented on the side with no stimulation. Binaural loudness summation of 1–3 dB was seen in soundfield thresholds and loudness growth in the bimodal condition. Measures of the audibility of sound with the hearing aid, including unaided thresholds, soundfield thresholds, and the Speech Intelligibility Index, were significant moderators of speech recognition and localization. Based on the questionnaire responses, participants showed a strong preference for bimodal stimulation. Conclusions These findings suggest that a well-fit digital hearing aid worn in conjunction with a cochlear implant is beneficial to speech recognition and localization. The dynamic test procedures used in this study illustrate the importance of bilateral hearing for locating, identifying, and switching attention between multiple speakers. It is recommended that unilateral cochlear implant recipients, with measurable unaided hearing thresholds, be fit with a hearing aid. PMID:19594084
Topsakal, Vedat; Fransen, Erik; Schmerber, Sébastien; Declau, Frank; Yung, Matthew; Gordts, Frans; Van Camp, Guy; Van de Heyning, Paul
2006-09-01
To report the preoperative audiometric profile of surgically confirmed otosclerosis. Retrospective, multicenter study. Four tertiary referral centers. One thousand sixty-four surgically confirmed patients with otosclerosis. Therapeutic ear surgery for hearing improvement. Preoperative audiometric air conduction (AC) and bone conduction (BC) hearing thresholds were obtained retrospectively for 1064 patients with otosclerosis. A cross-sectional multiple linear regression analysis was performed on audiometric data of affected ears. Influences of age and sex were analyzed and age-related typical audiograms were created. Bone conduction thresholds were corrected for Carhart effect and presbyacusis; in addition, we tested to see if separate cochlear otosclerosis component existed. Corrected thresholds were than analyzed separately for progression of cochlear otosclerosis. The study population consisted of 35% men and 65% women (mean age, 44 yr). The mean pure-tone average at 0.5, 1, and 2 kHz was 57 dB hearing level. Multiple linear regression analysis showed significant progression for all measured AC and BC thresholds. The average annual threshold deterioration for AC was 0.45 dB/yr and the annual threshold deterioration for BC was 0.37 dB/yr. The average annual gap expansion was 0.08 dB/year. The corrected BC thresholds for Carhart effect and presbyacusis remained significantly different from zero, but only showed progression at 2 kHz. The preoperative audiological profile of otosclerosis is described. There is a significant sensorineural component in patients with otosclerosis planned for stapedotomy, which is worse than age-related hearing loss by itself. Deterioration rates of AC and BC thresholds have been reported, which can be helpful in clinical practice and might also guide the characterization of allegedly different phenotypes for familial and sporadic otosclerosis.
Sudden onset unilateral sensorineural hearing loss after rabies vaccination.
Okhovat, Saleh; Fox, Richard; Magill, Jennifer; Narula, Antony
2015-12-15
A 33-year-old man developed profound sudden onset right-sided hearing loss with tinnitus and vertigo, within 24 h of pretravel rabies vaccination. There was no history of upper respiratory tract infection, systemic illness, ototoxic medication or trauma, and normal otoscopic examination. Pure tone audiograms (PTA) demonstrated right-sided sensorineural hearing loss (thresholds 90-100 dB) and normal left-sided hearing. MRI internal acoustic meatus, viral serology (hepatitis B, C, HIV and cytomegalovirus) and syphilis screen were normal. Positive Epstein-Barr virus IgG, viral capsid IgG and anticochlear antibodies (anti-HSP-70) were noted. Initial treatment involved a course of high-dose oral prednisolone and acyclovir. Repeat PTAs after 12 days of treatment showed a small improvement in hearing thresholds. Salvage intratympanic steroid injections were attempted but failed to improve hearing further. Sudden onset sensorineural hearing loss (SSNHL) is an uncommon but frightening experience for patients. This is the first report of SSNHL following rabies immunisation in an adult. 2015 BMJ Publishing Group Ltd.
Liu, Yuewei; Wang, Haijiao; Weng, Shaofan; Su, Wenjin; Wang, Xin; Guo, Yanfei; Yu, Dan; Du, Lili; Zhou, Ting; Chen, Weihong; Shi, Tingming
2015-01-01
Occupational hearing loss is an increasingly prevalent occupational condition worldwide, and has been reported to occur in a wide range of workplaces; however, its prevalence among workers from municipal solid waste landfills (MSWLs) remains less clear. This study aimed to investigate the occupational hearing loss among Chinese MSWL workers. A cross-sectional study of 247 workers from 4 Chinese MSWLs was conducted. Noise and total volatile organic compounds (TVOCs) levels at worksites were determined. We conducted hearing examinations to determine hearing thresholds. A worker was identified as having hearing loss if the mean threshold at 2000, 3000 and 4000 Hz in either ear was equal to or greater than 25 dB. Prevalence of occupational hearing loss was then evaluated. Using unconditional Logistic regression models, we estimated the odds ratios (ORs) of MSWL work associated with hearing loss. According to the job title for each worker, the study subjects were divided into 3 groups, including group 1 of 63 workers without MSWL occupational hazards exposure (control group), group 2 of 84 workers with a few or short-period MSWL occupational hazards exposure, and group 3 of 100 workers with continuous MSWL occupational hazards exposure. Both noise and TVOCs levels were significantly higher at worksites for group 3. Significantly poorer hearing thresholds at frequencies of 2000, 3000 and 4000 Hz were found in group 3, compared with that in group 1 and group 2. The overall prevalence rate of hearing loss was 23.5%, with the highest in group 3 (36.0%). The OR of MSWL work associated with hearing loss was 3.39 (95% confidence interval [CI]: 1.28-8.96). The results of this study suggest significantly higher prevalence of hearing loss among MSWL workers. Further studies are needed to explore possible exposure-response relationship between MSWL occupational hazards exposure and hearing loss.
Flynn, Traci; Persson, Christina; Moller, Claes; Lohmander, Anette; Magnusson, Lennart
2014-09-01
Objective : To describe and compare the middle ear status and hearing sensitivity in adolescence with isolated cleft palate plus additional malformations and/or syndromes with those with only an isolated cleft palate. Design : Retrospective and longitudinal. Two groups of individuals with isolated cleft palate were compared. Participants : A cohort of individuals born over 4 years in the western region of Sweden. The cohort was divided into one group with isolated cleft palate (n = 31; ICP) and one group with isolated cleft palate plus additional malformations and/or syndromes (n = 37; ICP+). Methods : Middle ear status and hearing thresholds were collected from the medical records at 7, 10, 13, and 16 years of age, examined, and compared within and between groups over time. Results : The ICP+ group demonstrated a significantly higher prevalence of abnormal middle ear status and elevated hearing thresholds as compared with the ICP group. As the individuals aged, the prevalence of abnormal middle ear status decreased. The hearing levels in both groups decreased in the low to middle frequencies as individuals aged; however, the hearing in the high frequencies did not. Conclusions : Individuals with cleft palate need to be followed routinely for middle ear status and hearing thresholds to ensure optimal audiological rehabilitation, with particular attention to those with additional malformations and/or syndromes.
Money, M K; Pippin, G W; Weaver, K E; Kirsch, J P; Webster, D B
1995-07-01
Exogenous administration of GM1 ganglioside to CBA/J mice with a neonatal conductive hearing loss ameliorates the atrophy of spiral ganglion neurons, ventral cochlear nucleus neurons, and ventral cochlear nucleus volume. The present investigation demonstrates the extent of a conductive loss caused by atresia and tests the hypothesis that GM1 ganglioside treatment will ameliorate the conductive hearing loss. Auditory brainstem responses were recorded from four groups of seven mice each: two groups received daily subcutaneous injections of saline (one group had normal hearing; the other had a conductive hearing loss); the other two groups received daily subcutaneous injections of GM1 ganglioside (one group had normal hearing; the other had a conductive hearing loss). In mice with a conductive loss, decreases in hearing sensitivity were greatest at high frequencies. The decreases were determined by comparing mean ABR thresholds of the conductive loss mice with those of normal hearing mice. The conductive hearing loss induced in the mice in this study was similar to that seen in humans with congenital aural atresias. GM1 ganglioside treatment had no significant effect on ABR wave I thresholds or latencies in either group.
Cortical Reorganisation during a 30-Week Tinnitus Treatment Program
McMahon, Catherine M.; Ibrahim, Ronny K.; Mathur, Ankit
2016-01-01
Subjective tinnitus is characterised by the conscious perception of a phantom sound. Previous studies have shown that individuals with chronic tinnitus have disrupted sound-evoked cortical tonotopic maps, time-shifted evoked auditory responses, and altered oscillatory cortical activity. The main objectives of this study were to: (i) compare sound-evoked brain responses and cortical tonotopic maps in individuals with bilateral tinnitus and those without tinnitus; and (ii) investigate whether changes in these sound-evoked responses occur with amelioration of the tinnitus percept during a 30-week tinnitus treatment program. Magnetoencephalography (MEG) recordings of 12 bilateral tinnitus participants and 10 control normal-hearing subjects reporting no tinnitus were recorded at baseline, using 500 Hz, 1000 Hz, 2000 Hz, and 4000 Hz tones presented monaurally at 70 dBSPL through insert tube phones. For the tinnitus participants, MEG recordings were obtained at 5-, 10-, 20- and 30- week time points during tinnitus treatment. Results for the 500 Hz and 1000 Hz sources (where hearing thresholds were within normal limits for all participants) showed that the tinnitus participants had a significantly larger and more anteriorly located source strengths when compared to the non-tinnitus participants. During the 30-week tinnitus treatment, the participants’ 500 Hz and 1000 Hz source strengths remained higher than the non-tinnitus participants; however, the source locations shifted towards the direction recorded from the non-tinnitus control group. Further, in the left hemisphere, there was a time-shifted association between the trajectory of change of the individual’s objective (source strength and anterior-posterior source location) and subjective measures (using tinnitus reaction questionnaire, TRQ). The differences in source strength between the two groups suggest that individuals with tinnitus have enhanced central gain which is not significantly influenced by the tinnitus treatment, and may result from the hearing loss per se. On the other hand, the shifts in the tonotopic map towards the non-tinnitus participants’ source location suggests that the tinnitus treatment might reduce the disruptions in the map, presumably produced by the tinnitus percept directly or indirectly. Further, the similarity in the trajectory of change across the objective and subjective parameters after time-shifting the perceptual changes by 5 weeks suggests that during or following treatment, perceptual changes in the tinnitus percept may precede neurophysiological changes. Subgroup analyses conducted by magnitude of hearing loss suggest that there were no differences in the 500 Hz and 1000 Hz source strength amplitudes for the mild-moderate compared with the mild-severe hearing loss subgroup, although the mean source strength was consistently higher for the mild-severe subgroup. Further, the mild-severe subgroup had 500 Hz and 1000 Hz source locations located more anteriorly (i.e., more disrupted compared to the control group) compared to the mild-moderate group, although this was trending towards significance only for the 500Hz left hemisphere source. While the small numbers of participants within the subgroup analyses reduce the statistical power, this study suggests that those with greater magnitudes of hearing loss show greater cortical disruptions with tinnitus and that tinnitus treatment appears to reduce the tonotopic map disruptions but not the source strength (or central gain). PMID:26901425
Audio-visual speech experience with age influences perceived audio-visual asynchrony in speech.
Alm, Magnus; Behne, Dawn
2013-10-01
Previous research indicates that perception of audio-visual (AV) synchrony changes in adulthood. Possible explanations for these age differences include a decline in hearing acuity, a decline in cognitive processing speed, and increased experience with AV binding. The current study aims to isolate the effect of AV experience by comparing synchrony judgments from 20 young adults (20 to 30 yrs) and 20 normal-hearing middle-aged adults (50 to 60 yrs), an age range for which a decline of cognitive processing speed is expected to be minimal. When presented with AV stop consonant syllables with asynchronies ranging from 440 ms audio-lead to 440 ms visual-lead, middle-aged adults showed significantly less tolerance for audio-lead than young adults. Middle-aged adults also showed a greater shift in their point of subjective simultaneity than young adults. Natural audio-lead asynchronies are arguably more predictable than natural visual-lead asynchronies, and this predictability may render audio-lead thresholds more prone to experience-related fine-tuning.
[Effects of sildenafil citrate on mice hearing].
Luo, Xiaoqin; Guo, Xuyao; Chen, Lin; Chen, Xiaohong; Zhang, Xueyuan; Yuan, Wei
2014-06-01
The purpose of this investigation was to study the effects of the Sildenafil citrate on mice hearing. Seven-week-old adult male Kunming mice were used. The mice were randomly divided into four groups with 10 mice in each group.Sildenafil groups were orally administered daily with sildenafil [0.1 mg/(kg·d), 1 mg/(kg·d), 10 mg/(kg·d)] and control group was orally administered with normal saline. Then mice were tested for auditory brainstem response (ABR) to observe the changes of ABR's thresholds at before administration and 1, 5, 10, 15, 20 day afterwards. The mice basilar membrane samples were studied by immunofluorescent labeling.High performance liquid chromatography was used for determination the concentration of sildenafil in endolymph of mice cochlea. Statistical analysis was performed using SPSS 13.0. After 30 min following administration, the Sildenafil in endolymph of mice cochlear could be assayed by high performance liquid chromatography, and it was dose-related.Sildenafil increased the hearing thresholds with the time of administration. Hearing thresholds increased significantly in the sildenafil group at 20 d compared to the control group (P < 0.05). After administered high dose of Sildenafil, on the 20th day, the ABR thresholds average threshold was (60.0 ± 10.0) dBnHL, and the control group was (14.5 ± 6.0) dBnHL.Hair cells damages in the base ring of cochlea could be observed in experimental group in a concentration-dependent manner. Sildenafil can pass through blood-labyrinth barrier to the inner ear, and doses of sildenafil administration can induce hearing impairment in mice.
Xiong, Hao; Pang, Jiaqi; Yang, Haidi; Dai, Min; Liu, Yimin; Ou, Yongkang; Huang, Qiuhong; Chen, Suijun; Zhang, Zhigang; Xu, Yaodong; Lai, Lan; Zheng, Yiqing
2015-04-01
The molecular mechanisms underlying age-related hearing loss are not fully understood, and currently, there is no treatment for this disorder. MicroRNAs have recently been reported to be increasingly associated with age-related diseases and are emerging as promising therapeutic targets. In this study, miR-34a/Sirtuin 1 (SIRT1)/p53 signaling was examined in cochlear hair cells during aging. MiR-34a, p53 acetylation, and apoptosis increased in the cochlea of C57BL/6 mice with aging, whereas an age-related decrease in SIRT1 was observed. In the inner ear HEI-OC1 cell line, miR-34a overexpression inhibited SIRT1, leading to an increase in p53 acetylation and apoptosis. Moreover, miR-34a knockdown increased SIRT1 expression and diminished p53 acetylation, and apoptosis. Additionally, resveratrol, an activator of SIRT1, significantly rescued miR-34a overexpression-induced HEI-OC1 cell death and significantly reduced hearing threshold shifts and hair cell loss in C57BL/6 mice after a 2-month administration. Our results support a link between age-related cochlear hair cell apoptosis and miR-34a/SIRT1/p53 signaling, which may serve as a potential target for age-related hearing loss treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
Auditory Brainstem Response Thresholds to Air- and Bone-Conducted CE-Chirps in Neonates and Adults
ERIC Educational Resources Information Center
Cobb, Kensi M.; Stuart, Andrew
2016-01-01
Purpose The purpose of this study was to compare auditory brainstem response (ABR) thresholds to air- and bone-conducted CE-Chirps in neonates and adults. Method Thirty-two neonates with no physical or neurologic challenges and 20 adults with normal hearing participated. ABRs were acquired with a starting intensity of 30 dB normal hearing level…
Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera)
Lakes-Harlan, Reinhard; Scherberich, Jan
2015-01-01
A primary task of auditory systems is the localization of sound sources in space. Sound source localization in azimuth is usually based on temporal or intensity differences of sounds between the bilaterally arranged ears. In mammals, localization in elevation is possible by transfer functions at the ear, especially the pinnae. Although insects are able to locate sound sources, little attention is given to the mechanisms of acoustic orientation to elevated positions. Here we comparatively analyse the peripheral hearing thresholds of three species of bushcrickets in respect to sound source positions in space. The hearing thresholds across frequencies depend on the location of a sound source in the three-dimensional hearing space in front of the animal. Thresholds differ for different azimuthal positions and for different positions in elevation. This position-dependent frequency tuning is species specific. Largest differences in thresholds between positions are found in Ancylecha fenestrata. Correspondingly, A. fenestrata has a rather complex ear morphology including cuticular folds covering the anterior tympanal membrane. The position-dependent tuning might contribute to sound source localization in the habitats. Acoustic orientation might be a selective factor for the evolution of morphological structures at the bushcricket ear and, speculatively, even for frequency fractioning in the ear. PMID:26543574
Position-dependent hearing in three species of bushcrickets (Tettigoniidae, Orthoptera).
Lakes-Harlan, Reinhard; Scherberich, Jan
2015-06-01
A primary task of auditory systems is the localization of sound sources in space. Sound source localization in azimuth is usually based on temporal or intensity differences of sounds between the bilaterally arranged ears. In mammals, localization in elevation is possible by transfer functions at the ear, especially the pinnae. Although insects are able to locate sound sources, little attention is given to the mechanisms of acoustic orientation to elevated positions. Here we comparatively analyse the peripheral hearing thresholds of three species of bushcrickets in respect to sound source positions in space. The hearing thresholds across frequencies depend on the location of a sound source in the three-dimensional hearing space in front of the animal. Thresholds differ for different azimuthal positions and for different positions in elevation. This position-dependent frequency tuning is species specific. Largest differences in thresholds between positions are found in Ancylecha fenestrata. Correspondingly, A. fenestrata has a rather complex ear morphology including cuticular folds covering the anterior tympanal membrane. The position-dependent tuning might contribute to sound source localization in the habitats. Acoustic orientation might be a selective factor for the evolution of morphological structures at the bushcricket ear and, speculatively, even for frequency fractioning in the ear.
Football match spectator sound exposure and effect on hearing: a pretest-post-test study.
Swanepoel, De Wet; Hall, James W
2010-03-30
To determine (i) noise exposure levels of spectators at a FIFA 2010 designated training stadium during a premier soccer league match; and (ii) changes in auditory functioning after the match. This was a one-group pretest-post-test design of football spectators attending a premier soccer league match at a designated FIFA 2010 training stadium in Gauteng, South Africa. Individual spectator noise exposure for the duration of the football match and post-match changes in hearing thresholds were measured with pure-tone audiometry, and cochlear functioning was measured with distortion product oto-acoustic emissions (DPOAEs). The average sound exposure level during the match was 100.5 LAeq (dBA), with peak intensities averaging 140.4 dB(C). A significant (p=0.005) deterioration of post-match hearing thresholds was evident at 2 000 Hz, and post-match DPOAE amplitudes were significantly reduced at 1,266, 3,163 and 5,063 Hz (p=0.011, 0.019, 0.013, respectively). Exposure levels exceeded limits of permissible average and peak sound levels. Significant changes in post-match hearing thresholds and cochlear responsiveness highlight the possible risk for noise-induced hearing loss. Public awareness and personal hearing protection should be prioritized as preventive measures.
Schmuziger, Nicolas; Probst, Rudolf; Smurzynski, Jacek
2004-04-01
The purposes of the study were: (1) To evaluate the intrasession test-retest reliability of pure-tone thresholds measured in the 0.5-16 kHz frequency range for a group of otologically healthy subjects using Sennheiser HDA 200 circumaural and Etymotic Research ER-2 insert earphones and (2) to compare the data with existing criteria of significant threshold shifts related to ototoxicity and noise-induced hearing loss. Auditory thresholds in the frequency range from 0.5 to 6 kHz and in the extended high-frequency range from 8 to 16 kHz were measured in one ear of 138 otologically healthy subjects (77 women, 61 men; mean age, 24.4 yr; range, 12-51 yr) using HDA 200 and ER-2 earphones. For each subject, measurements of thresholds were obtained twice for both transducers during the same test session. For analysis, the extended high-frequency range from 8 to 16 kHz was subdivided into 8 to 12.5 and 14 to 16 kHz ranges. Data for each frequency and frequency range were analyzed separately. There were no significant differences in repeatability for the two transducer types for all frequency ranges. The intrasession variability increased slightly, but significantly, as frequency increased with the greatest amount of variability in the 14 to 16 kHz range. Analyzing each individual frequency, variability was increased particularly at 16 kHz. At each individual frequency and for both transducer types, intrasession test-retest repeatability from 0.5 to 6 kHz and 8 to 16 kHz was within 10 dB for >99% and >94% of measurements, respectively. The results indicated a false-positive rate of <3% in reference to the criteria for cochleotoxicity for both transducer types. In reference to the Occupational Safety and Health Administration Standard Threshold Shift criteria for noise-induced hazards, the results showed a minor false-positive rate of <1% for the HDA 200. Repeatability was similar for both transducer types. Intrasession test-retest repeatability from 0.5 to 12.5 kHz at each individual frequency including the frequency range susceptible to noise-induced hearing loss was excellent for both transducers. Repeatability was slightly, but significantly poorer in the frequency range from 14 to 16 kHz compared with the frequency ranges from 0.5 to 6 or 8 to 12.5 kHz. Measurements in the extended high-frequency range from 8 to 14 kHz, but not up to 16 kHz, may be recommended for monitoring purposes.
Wang, Z; Gu, J; Jiang, X J
2017-04-20
Objective: To learn the relationship between the auditory steady state responses(ASSR)threshold and C-level and behavior T-level in cochlear implants in prelingually deaf children. Method: One hundred and twelve children with Nucleus CI24R(CA) cochlear implants were divided into residual hearing group and no residual hearing group on the basis of the results of ASSR before operation in this study.Compare the difference between the two groups in C-level and behavior T-level one year after operation. Result: There was difference in C-level and behavior T-level between residual hearing group and no residual hearing group( P <0.05 or P <0.01). Conclusion: According to the results of ASSR before operation,we can estimate the effect of cochlear implants,providing reference for the selection of choosing operating ears,and providing a reasonable expectation for physicians and parents of the patients. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
Audiological manifestations in HIV-positive adults.
Matas, Carla Gentile; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluisio Augusto Cotrim
2014-07-01
To characterize the findings of behavioral hearing assessment in HIV-positive individuals who received and did not receive antiretroviral treatment. This research was a cross-sectional study. The participants were 45 HIV-positive individuals (18 not exposed and 27 exposed to antiretroviral treatment) and 30 control-group individuals. All subjects completed an audiological evaluation through pure-tone audiometry, speech audiometry, and high-frequency audiometry. The hearing thresholds obtained by pure-tone audiometry were different between groups. The group that had received antiretroviral treatment had higher thresholds for the frequencies ranging from 250 to 3000 Hz compared with the control group and the group not exposed to treatment. In the range of frequencies from 4000 through 8000 Hz, the HIV-positive groups presented with higher thresholds than did the control group. The hearing thresholds determined by high-frequency audiometry were different between groups, with higher thresholds in the HIV-positive groups. HIV-positive individuals presented poorer results in pure-tone and high-frequency audiometry, suggesting impairment of the peripheral auditory pathway. Individuals who received antiretroviral treatment presented poorer results on both tests compared with individuals not exposed to antiretroviral treatment.
The effect of symmetrical and asymmetrical hearing impairment on music quality perception.
Cai, Yuexin; Zhao, Fei; Chen, Yuebo; Liang, Maojin; Chen, Ling; Yang, Haidi; Xiong, Hao; Zhang, Xueyuan; Zheng, Yiqing
2016-09-01
The purpose of this study was to investigate the effect of symmetrical, asymmetrical and unilateral hearing impairment on music quality perception. Six validated music pieces in the categories of classical music, folk music and pop music were used to assess music quality in terms of its 'pleasantness', 'naturalness', 'fullness', 'roughness' and 'sharpness'. 58 participants with sensorineural hearing loss [20 with unilateral hearing loss (UHL), 20 with bilateral symmetrical hearing loss (BSHL) and 18 with bilateral asymmetrical hearing loss (BAHL)] and 29 normal hearing (NH) subjects participated in the present study. Hearing impaired (HI) participants had greater difficulty in overall music quality perception than NH participants. Participants with BSHL rated music pleasantness and naturalness to be higher than participants with BAHL. Moreover, the hearing thresholds of the better ears from BSHL and BAHL participants as well as the hearing thresholds of the worse ears from BSHL participants were negatively correlated to the pleasantness and naturalness perception. HI participants rated the familiar music pieces higher than unfamiliar music pieces in the three music categories. Music quality perception in participants with hearing impairment appeared to be affected by symmetry of hearing loss, degree of hearing loss and music familiarity when they were assessed using the music quality rating test (MQRT). This indicates that binaural symmetrical hearing is important to achieve a high level of music quality perception in HI listeners. This emphasizes the importance of provision of bilateral hearing assistive devices for people with asymmetrical hearing impairment.
de Kleijn, Jasper L; van Kalmthout, Ludwike W M; van der Vossen, Martijn J B; Vonck, Bernard M D; Topsakal, Vedat; Bruijnzeel, Hanneke
2018-05-24
Although current guidelines recommend cochlear implantation only for children with profound hearing impairment (HI) (>90 decibel [dB] hearing level [HL]), studies show that children with severe hearing impairment (>70-90 dB HL) could also benefit from cochlear implantation. To perform a systematic review to identify audiologic thresholds (in dB HL) that could serve as an audiologic candidacy criterion for pediatric cochlear implantation using 4 domains of speech and language development as independent outcome measures (speech production, speech perception, receptive language, and auditory performance). PubMed and Embase databases were searched up to June 28, 2017, to identify studies comparing speech and language development between children who were profoundly deaf using cochlear implants and children with severe hearing loss using hearing aids, because no studies are available directly comparing children with severe HI in both groups. If cochlear implant users with profound HI score better on speech and language tests than those with severe HI who use hearing aids, this outcome could support adjusting cochlear implantation candidacy criteria to lower audiologic thresholds. Literature search, screening, and article selection were performed using a predefined strategy. Article screening was executed independently by 4 authors in 2 pairs; consensus on article inclusion was reached by discussion between these 4 authors. This study is reported according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. Title and abstract screening of 2822 articles resulted in selection of 130 articles for full-text review. Twenty-one studies were selected for critical appraisal, resulting in selection of 10 articles for data extraction. Two studies formulated audiologic thresholds (in dB HLs) at which children could qualify for cochlear implantation: (1) at 4-frequency pure-tone average (PTA) thresholds of 80 dB HL or greater based on speech perception and auditory performance subtests and (2) at PTA thresholds of 88 and 96 dB HL based on a speech perception subtest. In 8 of the 18 outcome measures, children with profound HI using cochlear implants performed similarly to children with severe HI using hearing aids. Better performance of cochlear implant users was shown with a picture-naming test and a speech perception in noise test. Owing to large heterogeneity in study population and selected tests, it was not possible to conduct a meta-analysis. Studies indicate that lower audiologic thresholds (≥80 dB HL) than are advised in current national and manufacturer guidelines would be appropriate as audiologic candidacy criteria for pediatric cochlear implantation.
Underwater psychophysical audiogram of a young male California sea lion (Zalophus californianus).
Mulsow, Jason; Houser, Dorian S; Finneran, James J
2012-05-01
Auditory evoked potential (AEP) data are commonly obtained in air while sea lions are under gas anesthesia; a procedure that precludes the measurement of underwater hearing sensitivity. This is a substantial limitation considering the importance of underwater hearing data in designing criteria aimed at mitigating the effects of anthropogenic noise exposure. To determine if some aspects of underwater hearing sensitivity can be predicted using rapid aerial AEP methods, this study measured underwater psychophysical thresholds for a young male California sea lion (Zalophus californianus) for which previously published aerial AEP thresholds exist. Underwater thresholds were measured in an aboveground pool at frequencies between 1 and 38 kHz. The underwater audiogram was very similar to those previously published for California sea lions, suggesting that the current and previously obtained psychophysical data are representative for this species. The psychophysical and previously measured AEP audiograms were most similar in terms of high-frequency hearing limit (HFHL), although the underwater HFHL was sharper and occurred at a higher frequency. Aerial AEP methods are useful for predicting reductions in the HFHL that are potentially independent of the testing medium, such as those due to age-related sensorineural hearing loss.
The effect of head protection on the hearing of rugby players.
Kieran, S M; Dunne, J; Hughes, J P; Fenton, J E
2008-09-01
Professional rugby players utilise various methods of head protection to prevent against the development of a pinna haematoma. This study tests the hypothesis that these measures, whilst preventing injury, decrease the wearers' hearing threshold and therefore their performance. Eight patients had free field audiometry performed in a soundproof room, with warble tones. All patients were young men (mean 24.75 years (range 22-34)). No participant had ear symptomatology or a past history of ear surgery. Three separate audiological assessments were performed on each patient: normal free field audiometry in a sound field room, following application of adhesive tape and whilst wearing a scrum cap. All measurements were performed by a single audiological scientist. A significant clinical drop in hearing threshold was defined as an increase of 10 dB. No patient demonstrated a significant drop in hearing threshold following the application of either tape or a scrum cap, nor was there a significant difference in the mean (SD) warble tone average: air 7.03 (5.47); tape 7.19 (6.40); scrum cap 6.56 (5.58). Theoretical concerns that "ear taping" and scrum caps affect hearing of rugby players are unfounded and should not discourage their use.
ERIC Educational Resources Information Center
Schlauch, Robert S.; Han, Heekyung J.; Yu, Tzu-Ling J.; Carney, Edward
2017-01-01
Purpose: The purpose of this article is to examine explanations for pure-tone average-spondee threshold differences in functional hearing loss. Method: Loudness magnitude estimation functions were obtained from 24 participants for pure tones (0.5 and 1.0 kHz), vowels, spondees, and speech-shaped noise as a function of level (20-90 dB SPL).…
Temporal and speech processing skills in normal hearing individuals exposed to occupational noise.
Kumar, U Ajith; Ameenudin, Syed; Sangamanatha, A V
2012-01-01
Prolonged exposure to high levels of occupational noise can cause damage to hair cells in the cochlea and result in permanent noise-induced cochlear hearing loss. Consequences of cochlear hearing loss on speech perception and psychophysical abilities have been well documented. Primary goal of this research was to explore temporal processing and speech perception Skills in individuals who are exposed to occupational noise of more than 80 dBA and not yet incurred clinically significant threshold shifts. Contribution of temporal processing skills to speech perception in adverse listening situation was also evaluated. A total of 118 participants took part in this research. Participants comprised three groups of train drivers in the age range of 30-40 (n= 13), 41 50 ( = 13), 41-50 (n = 9), and 51-60 (n = 6) years and their non-noise-exposed counterparts (n = 30 in each age group). Participants of all the groups including the train drivers had hearing sensitivity within 25 dB HL in the octave frequencies between 250 and 8 kHz. Temporal processing was evaluated using gap detection, modulation detection, and duration pattern tests. Speech recognition was tested in presence multi-talker babble at -5dB SNR. Differences between experimental and control groups were analyzed using ANOVA and independent sample t-tests. Results showed a trend of reduced temporal processing skills in individuals with noise exposure. These deficits were observed despite normal peripheral hearing sensitivity. Speech recognition scores in the presence of noise were also significantly poor in noise-exposed group. Furthermore, poor temporal processing skills partially accounted for the speech recognition difficulties exhibited by the noise-exposed individuals. These results suggest that noise can cause significant distortions in the processing of suprathreshold temporal cues which may add to difficulties in hearing in adverse listening conditions.
Bongers, Suzan; Slottje, Pauline; Kromhout, Hans
2017-11-01
To study the effects of repeated exposure to MRI-related acoustic noise during image acquisition procedures (scans) on hearing. A retrospective occupational cohort study was performed among workers of an MRI manufacturing facility (n=474). Longitudinal audiometry data from the facility's medical surveillance scheme collected from 1973 to 2010 were analysed by studying the association of cumulative exposure to MRI-related acoustic noise from voluntary (multiple) MRI scans and the hearing threshold of the volunteer. Repeated acoustic noise exposure during volunteer MRI scans was found to be associated with a small exposure-dependent increased rate change of hearing threshold level (dB/year), but the association was only found related to the number of voluntary MRI scans and not to modelled cumulative noise exposure (dB*hour) based on MRI-system type. The increased rate change of hearing threshold level was found to be statistically significant for the frequencies 500, 1000, 2000, 3000 and 4000 Hz in the right ear. From our longitudinal cohort study, it appeared that exposure to noise from voluntarily MRI scans may have resulted in a slight amount of hearing loss. Mandatory use of hearing protection might have prevented more severe hearing loss. Lack of consistency in findings between the left and right ears and between the two exposure measures prohibits definitive conclusions. Further research that addresses the study's methodological limitations is warranted to corroborate our findings. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Hearing in Cichlid Fishes under Noise Conditions
Ladich, Friedrich; Schulz-Mirbach, Tanja
2013-01-01
Background Hearing thresholds of fishes are typically acquired under laboratory conditions. This does not reflect the situation in natural habitats, where ambient noise may mask their hearing sensitivities. In the current study we investigate hearing in terms of sound pressure (SPL) and particle acceleration levels (PAL) of two cichlid species within the naturally occurring range of noise levels. This enabled us to determine whether species with and without hearing specializations are differently affected by noise. Methodology/Principal Findings We investigated auditory sensitivities in the orange chromide Etroplus maculatus, which possesses anterior swim bladder extensions, and the slender lionhead cichlid Steatocranus tinanti, in which the swim bladder is much smaller and lacks extensions. E. maculatus was tested between 0.2 and 3kHz and S. tinanti between 0.1 and 0.5 kHz using the auditory evoked potential (AEP) recording technique. In both species, SPL and PAL audiograms were determined in the presence of quiet laboratory conditions (baseline) and continuous white noise of 110 and 130 dB RMS. Baseline thresholds showed greatest hearing sensitivity around 0.5 kHz (SPL) and 0.2 kHz (PAL) in E. maculatus and 0.2 kHz in S. tinanti. White noise of 110 dB elevated the thresholds by 0–11 dB (SPL) and 7–11 dB (PAL) in E. maculatus and by 1–2 dB (SPL) and by 1–4 dB (PAL) in S. tinanti. White noise of 130 dB elevated hearing thresholds by 13–29 dB (SPL) and 26–32 dB (PAL) in E. maculatus and 6–16 dB (SPL) and 6–19 dB (PAL) in S. tinanti. Conclusions Our data showed for the first time for SPL and PAL thresholds that the specialized species was masked by different noise regimes at almost all frequencies, whereas the non-specialized species was much less affected. This indicates that noise can limit sound detection and acoustic orientation differently within a single fish family. PMID:23469032
Tone perception in Mandarin-speaking school age children with otitis media with effusion
McPherson, Bradley; Li, Caiwei; Yang, Feng
2017-01-01
Objectives The present study explored tone perception ability in school age Mandarin-speaking children with otitis media with effusion (OME) in noisy listening environments. The study investigated the interaction effects of noise, tone type, age, and hearing status on monaural tone perception, and assessed the application of a hierarchical clustering algorithm for profiling hearing impairment in children with OME. Methods Forty-one children with normal hearing and normal middle ear status and 84 children with OME with or without hearing loss participated in this study. The children with OME were further divided into two subgroups based on their severity and pattern of hearing loss using a hierarchical clustering algorithm. Monaural tone recognition was measured using a picture-identification test format incorporating six sets of monosyllabic words conveying four lexical tones under speech spectrum noise, with the signal-to-noise ratio (SNR) conditions ranging from -9 to -21 dB. Results Linear correlation indicated tone recognition thresholds of children with OME were significantly correlated with age and pure tone hearing thresholds at every frequency tested. Children with hearing thresholds less affected by OME performed similarly to their peers with normal hearing. Tone recognition thresholds of children with auditory status more affected by OME were significantly inferior to those of children with normal hearing or with minor hearing loss. Younger children demonstrated poorer tone recognition performance than older children with OME. A mixed design repeated-measure ANCOVA showed significant main effects of listening condition, hearing status, and tone type on tone recognition. Contrast comparisons revealed that tone recognition scores were significantly better under -12 dB SNR than under -15 dB SNR conditions and tone recognition scores were significantly worse under -18 dB SNR than those obtained under -15 dB SNR conditions. Tone 1 was the easiest tone to identify and Tone 3 was the most difficult tone to identify for all participants, when considering -12, -15, and -18 dB SNR as within-subject variables. The interaction effect between hearing status and tone type indicated that children with greater levels of OME-related hearing loss had more impaired tone perception of Tone 1 and Tone 2 compared to their peers with lesser levels of OME-related hearing loss. However, tone perception of Tone 3 and Tone 4 remained similar among all three groups. Tone 2 and Tone 3 were the most perceptually difficult tones for children with or without OME-related hearing loss in all listening conditions. Conclusions The hierarchical clustering algorithm demonstrated usefulness in risk stratification for tone perception deficiency in children with OME-related hearing loss. There was marked impairment in tone perception in noise for children with greater levels of OME-related hearing loss. Monaural lexical tone perception in younger children was more vulnerable to noise and OME-related hearing loss than that in older children. PMID:28829840
Tone perception in Mandarin-speaking school age children with otitis media with effusion.
Cai, Ting; McPherson, Bradley; Li, Caiwei; Yang, Feng
2017-01-01
The present study explored tone perception ability in school age Mandarin-speaking children with otitis media with effusion (OME) in noisy listening environments. The study investigated the interaction effects of noise, tone type, age, and hearing status on monaural tone perception, and assessed the application of a hierarchical clustering algorithm for profiling hearing impairment in children with OME. Forty-one children with normal hearing and normal middle ear status and 84 children with OME with or without hearing loss participated in this study. The children with OME were further divided into two subgroups based on their severity and pattern of hearing loss using a hierarchical clustering algorithm. Monaural tone recognition was measured using a picture-identification test format incorporating six sets of monosyllabic words conveying four lexical tones under speech spectrum noise, with the signal-to-noise ratio (SNR) conditions ranging from -9 to -21 dB. Linear correlation indicated tone recognition thresholds of children with OME were significantly correlated with age and pure tone hearing thresholds at every frequency tested. Children with hearing thresholds less affected by OME performed similarly to their peers with normal hearing. Tone recognition thresholds of children with auditory status more affected by OME were significantly inferior to those of children with normal hearing or with minor hearing loss. Younger children demonstrated poorer tone recognition performance than older children with OME. A mixed design repeated-measure ANCOVA showed significant main effects of listening condition, hearing status, and tone type on tone recognition. Contrast comparisons revealed that tone recognition scores were significantly better under -12 dB SNR than under -15 dB SNR conditions and tone recognition scores were significantly worse under -18 dB SNR than those obtained under -15 dB SNR conditions. Tone 1 was the easiest tone to identify and Tone 3 was the most difficult tone to identify for all participants, when considering -12, -15, and -18 dB SNR as within-subject variables. The interaction effect between hearing status and tone type indicated that children with greater levels of OME-related hearing loss had more impaired tone perception of Tone 1 and Tone 2 compared to their peers with lesser levels of OME-related hearing loss. However, tone perception of Tone 3 and Tone 4 remained similar among all three groups. Tone 2 and Tone 3 were the most perceptually difficult tones for children with or without OME-related hearing loss in all listening conditions. The hierarchical clustering algorithm demonstrated usefulness in risk stratification for tone perception deficiency in children with OME-related hearing loss. There was marked impairment in tone perception in noise for children with greater levels of OME-related hearing loss. Monaural lexical tone perception in younger children was more vulnerable to noise and OME-related hearing loss than that in older children.
Helbig, Silke; Adel, Youssef; Leinung, Martin; Stöver, Timo; Baumann, Uwe; Weissgerber, Tobias
2018-06-15
This study reviewed outcomes of hearing preservation (HP) surgery depending on the angle of insertion (AOI) in a cochlear implant (CI) patient population who used electric stimulation (ES) or combined electric-acoustic stimulation (EAS). Retrospective case review. Tertiary referral university hospital. Ninety-one patients with different degrees of preoperative low-frequency residual hearing who underwent HP surgery with a free-fitting lateral-wall electrode array (MED-EL Flex) with lengths ranging from 20.0 to 31.5 mm. Cochlear implantation using HP surgery technique and subsequent fitting with CI speech processor for ES, or combined CI and hearing aid speech processor for EAS. Individual AOI were estimated using modified Stenvers' projection. Freiburg monosyllable test in quiet (free-field presentation at 65 dB SPL) and pure-tone averages for low frequencies (125, 250, and 500 Hz; PTAlow) were evaluated during a follow-up period of 12 months after implantation. Estimated AOIs showed bimodal distribution: shallow insertion (SI) with mean AOI of 377 degrees and deep insertion (DI) with mean AOI of 608 degrees. Speech test scores after 12 months were comparable between AOI groups, however, they were significantly different between stimulation types with better scores for EAS. Only ES showed a positive correlation (r = 0.293) between speech test score and AOI. When HP was possible, both SI and DI showed significant postoperative PTAlow shifts with mean of 17.8 and 21.6 dB, respectively. These were comparable between AOI groups and no significant shifts were observed in follow-up intervals. Audiometric indication for HP and subsequent EAS is proposed up to 65 dB HL at 500 Hz, and up to 87 dB HL for HP. CI candidates can benefit from HP surgery with deep insertion when only using ES due to insufficient residual hearing. Conversely, candidates with preoperative threshold up to 65 dB HL at 500 Hz could perform significantly better with EAS which requires shallow insertion.
Hearing loss in the royal Norwegian Navy: a cross-sectional study.
Irgens-Hansen, Kaja; Sunde, Erlend; Bråtveit, Magne; Baste, Valborg; Oftedal, Gunnhild; Koefoed, Vilhelm; Lind, Ola; Moen, Bente Elisabeth
2015-07-01
Prior studies have indicated a high prevalence of noise-induced hearing loss (NIHL) among Navy personnel; however, it is not clear whether this is caused by work on board. The present study aimed to assess the prevalence of hearing loss among Navy personnel in the Royal Norwegian Navy (RNoN), and to investigate whether there is an association between work on board RNoN vessels and occurrence of hearing loss. Navy personnel currently working on board RNoN vessels were recruited to complete a questionnaire on noise exposure and health followed by pure tone audiometry. Hearing loss was defined as hearing threshold levels ≥25 dB in either ear at the frequencies 3,000, 4,000 or 6,000 Hz. Hearing thresholds were adjusted for age and gender using ISO 7029. The prevalence of hearing loss among Navy personnel was 31.4 %. The work exposure variables: years of work in the Navy, years on vessel(s) in the Navy and years of sailing in the Navy were associated with reduced hearing after adjusting for age, gender and otitis as an adult. Among the work exposure variables, years of sailing in the Navy was the strongest predictor of reduced hearing, and significantly reduced hearing was found at the frequencies 1,000, 3,000 and 4,000 Hz. Our results indicate that time spent on board vessels in the RNoN is a predictor of reduced hearing.
Binaural pitch fusion: Comparison of normal-hearing and hearing-impaired listenersa)
Reiss, Lina A. J.; Shayman, Corey S.; Walker, Emily P.; Bennett, Keri O.; Fowler, Jennifer R.; Hartling, Curtis L.; Glickman, Bess; Lasarev, Michael R.; Oh, Yonghee
2017-01-01
Binaural pitch fusion is the fusion of dichotically presented tones that evoke different pitches between the ears. In normal-hearing (NH) listeners, the frequency range over which binaural pitch fusion occurs is usually <0.2 octaves. Recently, broad fusion ranges of 1–4 octaves were demonstrated in bimodal cochlear implant users. In the current study, it was hypothesized that hearing aid (HA) users would also exhibit broad fusion. Fusion ranges were measured in both NH and hearing-impaired (HI) listeners with hearing losses ranging from mild-moderate to severe-profound, and relationships of fusion range with demographic factors and with diplacusis were examined. Fusion ranges of NH and HI listeners averaged 0.17 ± 0.13 octaves and 1.7 ± 1.5 octaves, respectively. In HI listeners, fusion ranges were positively correlated with a principal component measure of the covarying factors of young age, early age of hearing loss onset, and long durations of hearing loss and HA use, but not with hearing threshold, amplification level, or diplacusis. In NH listeners, no correlations were observed with age, hearing threshold, or diplacusis. The association of broad fusion with early onset, long duration of hearing loss suggests a possible role of long-term experience with hearing loss and amplification in the development of broad fusion. PMID:28372056
[Clinical diagnosis of Treacher Collins syndrome and the efficacy of using BAHA].
Wang, Y B; Chen, X W; Wang, P; Fan, X M; Fan, Y; Liu, Q; Gao, Z Q
2017-04-20
Objective: To evaluate the efficacy of soft or implanted BAHA in the patients of Treacher Collins syndrome(TCS). Method: Six patients of TCS were studied. The Teber scoring system was used to evaluate the deformity degree. The air and bone auditory thresholds were assessed by auditory brain stem response(ABR). The infant-toddler meaningful auditory integration scale(IT-MAIS) was used to assess the auditory development at three time levels: baseline,3 months and 6 months. The hearing threshold and speech recognition score were measured under unaided and aided conditions. Result: The average score of deformity degree was 14.0±0.6. The TCOF1 gene was tested in two patients. The bone conduction hearing thresholds of patients was(18.0±4.5)dBnHL and the air conduction hearing thresholds was (70.5±7.0)dBnHL. The IT-MAIS total, detection and perception scores were improved significantly after wearing softband BAHA and approached the normal level in the 2 patients under 2 years old. The hearing thresholds of 6 patients in unaided and softband BAHA conditions were(65.8±3.8)dBHL and (30.0±3.2)dBHL ( P <0.01) respectively, and 1 implanted BAHA was 15 dBHL. The speech recognition scores of 3 patients in unaided and softband BAHA conditions were(31.7±3.5)% and(86.0±1.7)%( P <0.05) respectively, and 1 implanted BAHA was 96%. Conclusion: Whenever the patient was diagnosed as TCS by the clinical manifestations and genetic testing, BAHA system could help to rehabilitate the hearing to a normal condition. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
Role of ocular VEMP test in assessing the occurrence of vertigo in otosclerosis patients.
Lin, Kuei-You; Young, Yi-Ho
2015-01-01
This study adopted an inner ear test battery comprising audiometry, caloric test, ocular vestibular-evoked myogenic potential (oVEMP) test and cervical VEMP (cVEMP) test to find the factors related to the occurrence of vertigo in patients with otosclerosis. Fifty otosclerosis patients comprising 27 patients with vertigo (Group A) and 23 patients without vertigo/dizziness (Group B) were enrolled. Each patient underwent otoscopy, image study, audiometry, caloric test, and oVEMP and cVEMP tests via bone vibration stimuli. The sequence of inner ear deficits in Group A was in the order from oVEMP test (84%), cVEMP test (51%), caloric test (38%) and mean bone-conducted (BC) hearing threshold (14%), exhibiting a significantly declining trend (p<0.001). The rate of inner ear dysfunction in Group B also declined significantly but in a different order - cVEMP test (55%), oVEMP test (52%), mean BC hearing threshold (33%), and caloric test (18%). Comparison between the two groups revealed a significant difference in the oVEMP test results (p<0.01), but not in the results of the BC hearing threshold, caloric test or cVEMP test (p>0.05). Further, no significant differences existed between the BC hearing threshold and vestibular function test results. Otosclerosis patients with vertigo have more frequent abnormalities of oVEMPs to impulsive stimulation than do those without, consistent with more frequent abnormalities of the utricle. Abnormalities of oVEMPs and cVEMPs are more frequent than for caloric testing and BC hearing thresholds. The relative frequency of abnormalities may reflect the degree of pathological involvement of the utricle, saccule, semicircular canals and cochlea in otosclerosis patients with vertigo. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Nakagawa, Tatsuo
1996-01-01
Examined the effectiveness of the Aided Articulation Index (AAI) in the evaluation of the fitting of hearing aids, using a sample of hearing-impaired children in a kindergarten and primary school for the deaf in Japan. Found that AAI decreased with hearing threshold level and an AAI of 0.3 is necessary for children to function effectively with…
Hydrogen-rich saline alleviates experimental noise-induced hearing loss in guinea pigs.
Zhou, Y; Zheng, H; Ruan, F; Chen, X; Zheng, G; Kang, M; Zhang, Q; Sun, X
2012-05-03
To examine the efficiency of hydrogen-rich saline in the treatment of intensive noise-induced cochlear injury. Forty guinea pigs were assigned to one of four groups: HS+NOISE (i.p. injection hydrogen-rich saline), NS+NOISE (i.p. injection normal saline), NOISE ALONE (noise control), and NO TREATMENT (normal control) groups. The HS+NOISE, NS+NOISE, and NOISE ALONE groups were exposed to intensive noise (4 h at 115 dB SPL noise of 4000±100 Hz). The auditory brainstem response (ABR) was used to examine the hearing threshold in each group. Distortion product otoacoustic emission (DPOAE) was used to examine outer hair cell function. We also examined cochlear morphology to evaluate inner and outer hair cell trauma induced by noise exposure. Hydrogen-rich saline was administered twice daily for 6 days (2.5 ml/kg, i.p.) 24 h after noise exposure. Baseline ABR thresholds and DPOAE values were normal in all groups at the measured frequencies (2, 4, 8, and 16 kHz) before noise exposure. The ABR threshold shift was 50-55 dB across the frequencies tested, and average DPOAE declined in the NOISE ALONE, NS+NOISE, and HS+NOISE groups 24 h after noise exposure. However, the changes in cochlear parameters were different between groups. The HS+NOISE group showed a significantly decreased ABR threshold value as compared with the NS+NOISE or NOISE ALONE group (P<0.01) on day 7. The mean DPOAE recovered to some extent in the three noise exposure groups, but at most frequencies the HS+NOISE group showed significantly increased DPOAE on day 7 as compared with the NS+NOISE group or NOISE ALONE group (P<0.01). Surface Corti organ preparations stained with succinate dehydrogenase (SDH) showed that most outer hair cells (OHCs) were still dropsical and a few were missing 7 days after noise exposure in the NS+NOISE group. Only a few OHCs were slightly dropsical in the HS+NOISE group. The numbers of missing hair cells 7 days after noise exposure were significantly greater in the NOISE ONLY and NS+NOISE groups than the HS+NOISE group (P<0.01). Hydrogen-rich saline can alleviate experimental noise-induced hearing loss in guinea pigs, partially by preventing the death of cochlear hair cells after intensive noise exposure. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Assessing the Effectiveness of Ramp-Up During Sonar Operations Using Exposure Models.
von Benda-Beckmann, Alexander M; Wensveen, Paul J; Kvadsheim, Petter H; Lam, Frans-Peter A; Miller, Patrick J O; Tyack, Peter L; Ainslie, Michael A
2016-01-01
Ramp-up procedures are used to mitigate the impact of sound on marine mammals. Sound exposure models combined with observations of marine mammals responding to sound can be used to assess the effectiveness of ramp-up procedures. We found that ramp-up procedures before full-level sonar operations can reduce the risk of hearing threshold shifts with marine mammals, but their effectiveness depends strongly on the responsiveness of the animals. In this paper, we investigated the effect of sonar parameters (source level, pulse-repetition time, ship speed) on sound exposure by using a simple analytical model and highlight the mechanisms that limit the effectiveness of ramp-up procedures.
Acoustic Reflex Testing in Neonatal Hearing Screening and Subsequent Audiological Evaluation.
Jacob-Corteletti, Lilian Cássia Bórnia; Araújo, Eliene Silva; Duarte, Josilene Luciene; Zucki, Fernanda; Alvarenga, Kátia de Freitas
2018-06-18
The aims of the study were to examine the acoustic reflex screening and threshold in healthy neonates and those at risk of hearing loss and to determine the effect of birth weight and gestational age on acoustic stapedial reflex (ASR). We assessed 18 healthy neonates (Group I) and 16 with at least 1 risk factor for hearing loss (Group II); all of them passed the transient evoked otoacoustic emission test that assessed neonatal hearing. The test battery included an acoustic reflex screening with activators of 0.5, 1, 2, and 4 kHz and broadband noise and an acoustic reflex threshold test with all of them, except for the broadband noise activator. In the evaluated neonates, the main risk factors were the gestational age at birth and a low birth weight; hence, these were further analyzed. The lower the gestational age at birth and birth weight, the less likely that an acoustic reflex would be elicited by pure-tone activators. This effect was significant at the frequencies of 0.5, 1, and 2 kHz for gestational age at birth and at the frequencies of 1 and 2 kHz for birth weight. When the broadband noise stimulus was used, a response was elicited in all neonates in both groups. When the pure-tone stimulus was used, the Group II showed the highest acoustic reflex thresholds and the highest percentage of cases with an absent ASR. The ASR threshold varied from 50 to 100 dB HL in both groups. Group II presented higher mean ASR thresholds than Group I, this difference being significant at frequencies of 1, 2, and 4 kHz. Birth weight and gestational age at birth were related to the elicitation of the acoustic reflex. Neonates with these risk factors for hearing impairment were less likely to exhibit the acoustic reflex and had higher thresholds.
Park, Marn Joon; Lee, Jae Ryung; Yang, Chan Joo; Yoo, Myung Hoon; Jin, In Suk; Choi, Chi Ho; Park, Hong Ju
2016-11-01
Transcutaneous devices have a disadvantage, the dampening effect by soft tissue between the bone and devices. We investigated hearing outcomes with percutaneous and transcutaneous devices using test-bands in an induced unilateral conductive hearing loss. Comparison of hearing outcomes of two devices in the same individuals. The right ear was plugged in 30 subjects and a test-band with devices (Cochlear™ Baha® BP110 Power and Sophono® Alpha-2 MPO™) was applied on the right mastoid tip with the left ear masked. Sound-field thresholds, speech recognition thresholds (SRTs), and word recognition scores (WRSs) were compared. Aided thresholds of Sophono were significantly better than those of Baha at most frequencies. Sophono WRSs (86 ± 12%) at 40 dB SPL and SRTs (14 ± 5 dB HL) were significantly better than those (73 ± 24% and 23 ± 8 dB HL) of Baha. However, Sophono WRSs (98 ± 3%) at 60 dB SPL did not differ from Baha WRSs (95 ± 12%). Amplifications of the current transcutaneous device were not inferior to those of percutaneous devices with a test-band in subjects with normal bone-conduction thresholds. Since the percutaneous devices can increase the gain when fixed to the skull by eliminating the dampening effect, both devices are expected to provide sufficient hearing amplification.
Automated audiometry using apple iOS-based application technology.
Foulad, Allen; Bui, Peggy; Djalilian, Hamid
2013-11-01
The aim of this study is to determine the feasibility of an Apple iOS-based automated hearing testing application and to compare its accuracy with conventional audiometry. Prospective diagnostic study. Setting Academic medical center. An iOS-based software application was developed to perform automated pure-tone hearing testing on the iPhone, iPod touch, and iPad. To assess for device variations and compatibility, preliminary work was performed to compare the standardized sound output (dB) of various Apple device and headset combinations. Forty-two subjects underwent automated iOS-based hearing testing in a sound booth, automated iOS-based hearing testing in a quiet room, and conventional manual audiometry. The maximum difference in sound intensity between various Apple device and headset combinations was 4 dB. On average, 96% (95% confidence interval [CI], 91%-100%) of the threshold values obtained using the automated test in a sound booth were within 10 dB of the corresponding threshold values obtained using conventional audiometry. When the automated test was performed in a quiet room, 94% (95% CI, 87%-100%) of the threshold values were within 10 dB of the threshold values obtained using conventional audiometry. Under standardized testing conditions, 90% of the subjects preferred iOS-based audiometry as opposed to conventional audiometry. Apple iOS-based devices provide a platform for automated air conduction audiometry without requiring extra equipment and yield hearing test results that approach those of conventional audiometry.
30 CFR 62.174 - Follow-up corrective measures when a standard threshold shift is detected.
Code of Federal Regulations, 2012 CFR
2012-07-01
... threshold shift is detected. 62.174 Section 62.174 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... measures when a standard threshold shift is detected. The mine operator must, within 30 calendar days of receiving evidence or confirmation of a standard threshold shift, unless a physician or audiologist...
Relating age and hearing loss to monaural, bilateral, and binaural temporal sensitivity1
Gallun, Frederick J.; McMillan, Garnett P.; Molis, Michelle R.; Kampel, Sean D.; Dann, Serena M.; Konrad-Martin, Dawn L.
2014-01-01
Older listeners are more likely than younger listeners to have difficulties in making temporal discriminations among auditory stimuli presented to one or both ears. In addition, the performance of older listeners is often observed to be more variable than that of younger listeners. The aim of this work was to relate age and hearing loss to temporal processing ability in a group of younger and older listeners with a range of hearing thresholds. Seventy-eight listeners were tested on a set of three temporal discrimination tasks (monaural gap discrimination, bilateral gap discrimination, and binaural discrimination of interaural differences in time). To examine the role of temporal fine structure in these tasks, four types of brief stimuli were used: tone bursts, broad-frequency chirps with rising or falling frequency contours, and random-phase noise bursts. Between-subject group analyses conducted separately for each task revealed substantial increases in temporal thresholds for the older listeners across all three tasks, regardless of stimulus type, as well as significant correlations among the performance of individual listeners across most combinations of tasks and stimuli. Differences in performance were associated with the stimuli in the monaural and binaural tasks, but not the bilateral task. Temporal fine structure differences among the stimuli had the greatest impact on monaural thresholds. Threshold estimate values across all tasks and stimuli did not show any greater variability for the older listeners as compared to the younger listeners. A linear mixed model applied to the data suggested that age and hearing loss are independent factors responsible for temporal processing ability, thus supporting the increasingly accepted hypothesis that temporal processing can be impaired for older compared to younger listeners with similar hearing and/or amounts of hearing loss. PMID:25009458
Brännström, K Jonas; Waechter, Sebastian
2018-06-01
A common complaint by people with tinnitus is that they experience that the tinnitus causes attention and concentration problems. Previous studies have examined how tinnitus influences cognitive performance on short and intensive cognitive tasks but without proper control of hearing status. To examine the impact tinnitus and high-frequency hearing thresholds have on reading comprehension in quiet and in background noise. A between-group design with matched control participants. One group of participants with tinnitus (n = 20) and an age and gender matched control group without tinnitus (n = 20) participated. Both groups had normal hearing thresholds (20 dB HL at frequencies 0.125 to 8 kHz). Measurements were made assessing hearing thresholds and immediate and delayed recall using a reading comprehension test in quiet and in noise. All participants completed the Swedish version of the Hospital Anxiety and Depression Scale, and participants with tinnitus also completed the Tinnitus Questionnaire. The groups did not differ in immediate nor delayed recall. Accounting for the effect of age, a significant positive correlation was found between best ear high-frequency pure tone average (HF-PTA; 10000, 12500, and 14000 Hz) and the difference score between immediate and delayed recall in noise. Tinnitus seems to have no effect on immediate and delayed recall in quiet or in background noise when hearing status is controlled for. The detrimental effect of background noise on the processes utilized for efficient encoding into long-term memory is larger in participants with better HF-PTA. More specifically, when reading in noise, participants with better HF-PTA seem to recall less information than participants with poorer HF-PTA. American Academy of Audiology.
Revisiting gender, race, and ear differences in peripheral auditory function
NASA Astrophysics Data System (ADS)
Boothalingam, Sriram; Klyn, Niall A. M.; Stiepan, Samantha M.; Wilson, Uzma S.; Lee, Jungwha; Siegel, Jonathan H.; Dhar, Sumitrajit
2018-05-01
Various measures of auditory function are reported to be superior in females as compared to males, in African American compared to Caucasian individuals, and in right compared to left ears. We re-examined the influence of these subject variables on hearing thresholds and otoacoustic emissions (OAEs) in a sample of 887 human participants between 10 and 68 years of age. Even though the variables of interest here have been examined before, previous attempts have largely been limited to frequencies up to 8 kHz. We used state-of-the-art signal delivery and recording techniques that compensated for individual differences in ear canal acoustics, allowing us to measure hearing thresholds and OAEs up to 20 kHz. The use of these modern calibration and recording techniques provided the motivation for re-examining these commonly studied variables. While controlling for age, noise exposure history, and general health history, we attempted to isolate the effects of gender, race, and ear (left versus right) on hearing thresholds and OAEs. Our results challenge the notion of a right ear advantage and question the existence of a significant gender and race differences in both hearing thresholds and OAE levels. These results suggest that ear canal anatomy and acoustics should be important considerations when evaluating the influence of gender, race, and ear on peripheral auditory function.
Piniak, Wendy E. D.; Mann, David A.; Harms, Craig A.; Jones, T. Todd; Eckert, Scott A.
2016-01-01
Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2–39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment. PMID:27741231
Piniak, Wendy E D; Mann, David A; Harms, Craig A; Jones, T Todd; Eckert, Scott A
2016-01-01
Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2-39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment.
Shen, Yi
2015-01-01
Purpose Gap detection and the temporal modulation transfer function (TMTF) are 2 common methods to obtain behavioral estimates of auditory temporal acuity. However, the agreement between the 2 measures is not clear. This study compares results from these 2 methods and their dependencies on listener age and hearing status. Method Gap detection thresholds and the parameters that describe the TMTF (sensitivity and cutoff frequency) were estimated for young and older listeners who were naive to the experimental tasks. Stimuli were 800-Hz-wide noises with upper frequency limits of 2400 Hz, presented at 85 dB SPL. A 2-track procedure (Shen & Richards, 2013) was used for the efficient estimation of the TMTF. Results No significant correlation was found between gap detection threshold and the sensitivity or the cutoff frequency of the TMTF. No significant effect of age and hearing loss on either the gap detection threshold or the TMTF cutoff frequency was found, while the TMTF sensitivity improved with increasing hearing threshold and worsened with increasing age. Conclusion Estimates of temporal acuity using gap detection and TMTF paradigms do not seem to provide a consistent description of the effects of listener age and hearing status on temporal envelope processing. PMID:25087722
Experimental Analysis of the Mechanism of Hearing under Water
Chordekar, Shai; Kishon-Rabin, Liat; Kriksunov, Leonid; Adelman, Cahtia; Sohmer, Haim
2015-01-01
The mechanism of human hearing under water is debated. Some suggest it is by air conduction (AC), others by bone conduction (BC), and others by a combination of AC and BC. A clinical bone vibrator applied to soft tissue sites on the head, neck, and thorax also elicits hearing by a mechanism called soft tissue conduction (STC) or nonosseous BC. The present study was designed to test whether underwater hearing at low intensities is by AC or by osseous BC based on bone vibrations or by nonosseous BC (STC). Thresholds of normal hearing participants to bone vibrator stimulation with their forehead in air were recorded and again when forehead and bone vibrator were under water. A vibrometer detected vibrations of a dry human skull in all similar conditions (in air and under water) but not when water was the intermediary between the sound source and the skull forehead. Therefore, the intensities required to induce vibrations of the dry skull in water were significantly higher than the underwater hearing thresholds of the participants, under conditions when hearing by AC and osseous BC is not likely. The results support the hypothesis that hearing under water at low sound intensities may be attributed to nonosseous BC (STC). PMID:26770975
Development and evaluation of an audiology app for iPhone/iPad mobile devices.
Larrosa, Francisco; Rama-Lopez, Julio; Benitez, Jesus; Morales, Jose M; Martinez, Asuncion; Alañon, Miguel A; Arancibia-Tagle, Diego; Batuecas-Caletrio, Angel; Martinez-Lopez, Marta; Perez-Fernandez, Nicolas; Gimeno, Carlos; Ispizua, Angel; Urrutikoetxea, Alberto; Rey-Martinez, Jorge
2015-01-01
The application described in this study appears to be accurate and valid, thus allowing calculation of a hearing handicap and assessment of the pure-tone air conduction threshold with iPhone/iPad devices. To develop and evaluate a newly developed professional, computer-based hearing handicap calculator and a manual hearing sensitivity assessment test for the iPhone and iPad (AudCal). Multi-center prospective non-randomized validation study. One hundred and ten consecutive adult participants underwent two hearing evaluations, a standard audiometry and a pure-tone air conduction test using AudCal with an iOS device. The hearing handicap calculation accuracy was evaluated comparing AudCal vs a web-based calculator. Hearing loss was found in 83 and 84 out of 220 standard audiometries and AudCal hearing tests (Cohen's Kappa = 0.89). The mean difference between AudCal and standard audiogram thresholds was -0.21 ± 6.38 dB HL. Excellent reliability and concordance between standard audiometry and the application's hearing loss assessment test were obtained (Cronbach's alpha = 0.96; intra-class correlation coefficient = 0.93). AudCal vs a web-based calculator were perfectly correlated (Pearson's r = 1).
CO2 laser stapedotomy safety: influence of laser energy and time on bone-conduction hearing levels.
Schönfeld, Uwe; Weiming, Hu; Hofmann, Veit M; Jovanovic, Sergije; Albers, Andreas E
2017-12-01
Total laser energy in CO 2 stapedotomy depends on the laser settings and the amount of applications. It is unclear if the amount of total laser energy affects bone-conduction hearing thresholds and if possible effects are temporary or permanent. Alterations of bone-conduction hearing thresholds after single or multiple-shot CO 2 laser stapedotomy were analyzed between 1 and 3 weeks and 1.5-6 months after primary (n = 501) or revision surgeries (n = 153) and correlated to time, laser energy, frequency, surgical technique, and pathology encountered in revision stapedotomy. In both time periods, most patients showed a lower bone-conduction threshold in the four-tone puretone average (PTA) at frequencies of 0.5, 1, 2, and 3 kHz that further improved over time. Between 1 and 3 weeks, the improvement was significant in subgroups with cumulative energies lower 1 J and successful one-shot technique or in revisions without laser application. The remaining subgroups with higher total energies showed significant improvements between 1.5 and 6 months. At 4 and 8 kHz, significant improvements were found during 1.5-6 months after primary and revision surgery independent of the used energy. Repeated CO 2 laser applications showed no impairment in bone-conduction thresholds and can thus be considered as safe. In most patients, significant, yet unexplained, improvements in bone-conduction hearing thresholds were noticed in a time- and energy-related pattern.
Watson, Charles S; Kidd, Gary R; Miller, James D; Smits, Cas; Humes, Larry E
2012-01-01
An estimated 36 million US citizens have impaired hearing, but nearly half of them have never had a hearing test. As noted by a recent National Institutes of Health/National Institute on Deafness and Other Communication Disorders (NIH/NIDCD) Working Group, "In the United States (in contrast to many other nations) there are no readily accessible low cost hearing screening programs…" (Donahue et al, 2010, p. 2). Since 2004, telephone administered screening tests utilizing three-digit sequences presented in noise have been developed, validated, and implemented in seven countries. Each of these tests has been based on a test protocol conceived by Smits and colleagues in The Netherlands. Investigators from Communication Disorders Technology, Inc., Indiana University, and VU University Medical Center of Amsterdam agreed to collaborate in the development and validation of a screening test for hearing impairment suitable for delivery over the telephone, for use in the United States. This test, utilizing spoken three-digit sequences (triplets), was to be based on the design of Smits and his colleagues. A version of the digits-in-noise test was developed utilizing digit triplets spoken in Middle American dialect. The stimuli were individually adjusted to speech-to-noise ratio (SNR) values yielding 50% correct identification, on the basis of data collected from a group of 10 young adult listeners with normal hearing. A final set of 64 homogeneous stimuli were selected from an original 160 recorded triplets. Each test consisted of a series of 40 triplets drawn at random, presented in a noise background. The SNR threshold for 50% correct identification of the triplets was determined by a one-down, one-up adaptive procedure. The test was implemented by telephone, and administered to listeners with varying levels of hearing impairment. The listeners were then evaluated with pure-tone tests and other audiometric measures as clinically appropriate. Ninety participants included 72 who were volunteers from the regular client population at the Indiana University Hearing Clinic, and 18 who were recruited with a newspaper ad offering a free hearing test. Of the 90 participants, 49 were later determined to have mean pure-tone thresholds greater than 20 dB hearing level (HL). The primary data analyses were correlations between telephone test thresholds and other measures, including pure-tone thresholds and speech recognition tests, collected for the same participants. The correlation between the telephone test and pure-tone thresholds (r = 0.74) was within the range of correlations observed with successful telephone screening tests in use in other countries. Thresholds based on the average of only 21 trials (trials five through 25 of the 40-trial tracking history) yielded sensitivity and specificity values of 0.80 and 0.83, respectively, using pure-tone average((0.5, 1.0, 2.0 kHz)) >20 dB HL as the criterion measure. This US version of the digits-in-noise telephone screening test is sufficiently valid to be implemented for use by the general public. Its properties are quite similar to those telephone screening tests currently in use in most European countries. Telephone tests provide efficient, easy to use, and valid screening for functional hearing impairment. The results of this test are a reasonable basis for advising those who fail to seek a comprehensive hearing evaluation by an audiologist. American Academy of Audiology.
Dewey, James B; Dhar, Sumitrajit
2017-11-01
Behavioral hearing thresholds and otoacoustic emission (OAE) spectra often exhibit quasiperiodic fluctuations with frequency. For behavioral and OAE responses to single tones-the latter referred to as stimulus-frequency otoacoustic emissions (SFOAEs)-this microstructure has been attributed to intracochlear reflections of SFOAE energy between its region of generation and the middle ear boundary. However, the relationship between behavioral and SFOAE microstructures, as well as their presumed dependence on the properties of the SFOAE-generation mechanism, have yet to be adequately examined. To address this, behavioral thresholds and SFOAEs evoked by near-threshold tones were compared in 12 normal-hearing female subjects. The microstructures observed in thresholds and both SFOAE amplitudes and delays were found to be strikingly similar. SFOAE phase accumulated an integer number of cycles between the frequencies of microstructure maxima, consistent with a dependence of microstructure periodicity on SFOAE propagation delays. Additionally, microstructure depth was correlated with SFOAE magnitude in a manner resembling that predicted by the intracochlear reflection framework, after assuming reasonable values of parameters related to middle ear transmission. Further exploration of this framework may yield more precise estimates of such parameters and provide insight into their frequency dependence.
A window on perception: Response times of odontocete cetaceans in audiometric tests
NASA Astrophysics Data System (ADS)
Blackwood, Diane J.; Ridgway, Sam H.; Evans, William E.
2002-05-01
A standard psychometric measurement is response time, the interval elapsing between a stimulus and a response. While studies of response time have been published for humans and other terrestrial mammals, this study marks the first report of response times for odontocete cetaceans at threshold in an audiometric task. Two white whales (Delphinapterus leucas) and four Atlantic bottlenose dolphins (Tursiops truncatus) were given audiometric tests to determine masked hearing thresholds. Animals were tested at 26 frequencies over a range from 200 Hz to 100 kHz using pure tones. The test tone amplitudes covered a range of 20 dB re 1 microPascal including the hearing threshold of the animal at that frequency. Hearing thresholds varied from 87.5 dB to 125.5 dB depending on frequency, masking noise intensity and individual animal. Data was analyzed to determine characteristic relationships between response time and amplitude of test tone for each frequency and animal. The two whales responded significantly slower (640 ms, 0.001) than the four dolphins (430 ms). As in terrestrial animals, reaction time became shorter as stimulus strength increased. At threshold, median response time across frequencies within each animal varied about 150 ms.
Meister, Hartmut; Rählmann, Sebastian; Walger, Martin; Margolf-Hackl, Sabine; Kießling, Jürgen
2015-01-01
To examine the association of cognitive function, age, and hearing loss with clinically assessed hearing aid benefit in older hearing-impaired persons. Hearing aid benefit was assessed using objective measures regarding speech recognition in quiet and noisy environments as well as a subjective measure reflecting everyday situations captured using a standardized questionnaire. A broad range of general cognitive functions such as attention, memory, and intelligence were determined using different neuropsychological tests. Linear regression analyses were conducted with the outcome of the neuropsychological tests as well as age and hearing loss as independent variables and the benefit measures as dependent variables. Thirty experienced older hearing aid users with typical age-related hearing impairment participated. Most of the benefit measures revealed that the participants obtained significant improvement with their hearing aids. Regression models showed a significant relationship between a fluid intelligence measure and objective hearing aid benefit. When individual hearing thresholds were considered as an additional independent variable, hearing loss was the only significant contributor to the benefit models. Lower cognitive capacity - as determined by the fluid intelligence measure - was significantly associated with greater hearing loss. Subjective benefit could not be predicted by any of the variables considered. The present study does not give evidence that hearing aid benefit is critically associated with cognitive function in experienced hearing aid users. However, it was found that lower fluid intelligence scores were related to higher hearing thresholds. Since greater hearing loss was associated with a greater objective benefit, these results strongly support the advice of using hearing aids regardless of age and cognitive function to counter hearing loss and the adverse effects of age-related hearing impairment. Still, individual cognitive capacity might be relevant for hearing aid benefit during an initial phase of hearing aid provision if acclimatization has not yet taken place.
ERIC Educational Resources Information Center
Capewell, Carmel
2014-01-01
Glue ear, a condition resulting in intermittent hearing loss in young children, affects about 80% of young children under seven years old. About 60% of children will spend a third of their time unable to hear within normal thresholds. Teachers are unlikely to consider the sound quality in classrooms. In my research young people provided…
The effect of noise-induced hearing loss on the intelligibility of speech in noise
NASA Astrophysics Data System (ADS)
Smoorenburg, G. F.; Delaat, J. A. P. M.; Plomp, R.
1981-06-01
Speech reception thresholds, both in quiet and in noise, and tone audiograms were measured for 14 normal ears (7 subjects) and 44 ears (22 subjects) with noise-induced hearing loss. Maximum hearing loss in the 4-6 kHz region equalled 40 to 90 dB (losses exceeded by 90% and 10%, respectively). Hearing loss for speech in quiet measured with respect to the median speech reception threshold for normal ears ranged from 1.8 dB to 13.4 dB. For speech in noise the numbers are 1.2 dB to 7.0 dB which means that the subjects with noise-induced hearing loss need a 1.2 to 7.0 dB higher signal-to-noise ratio than normal to understand sentences equally well. A hearing loss for speech of 1 dB corresponds to a decrease in sentence intelligibility of 15 to 20%. The relation between hearing handicap conceived as a reduced ability to understand speech and tone audiogram is discussed. The higher signal-to-noise ratio needed by people with noise-induced hearing loss to understand speech in noisy environments is shown to be due partly to the decreased bandwidth of their hearing caused by the noise dip.
Mackersie, Carol; Boothroyd, Arthur; Lithgow, Alexandra
2018-06-11
The objective was to determine self-adjusted output response and speech intelligibility index (SII) in individuals with mild to moderate hearing loss and to measure the effects of prior hearing aid experience. Thirteen hearing aid users and 13 nonusers, with similar group-mean pure-tone thresholds, listened to prerecorded and preprocessed sentences spoken by a man. Starting with a generic level and spectrum, participants adjusted (1) overall level, (2) high-frequency boost, and (3) low-frequency cut. Participants took a speech perception test after an initial adjustment before making a final adjustment. The three self-selected parameters, along with individual thresholds and real-ear-to-coupler differences, were used to compute output levels and SIIs for the starting and two self-adjusted conditions. The values were compared with an NAL second nonlinear threshold-based prescription (NAL-NL2) and, for the hearing aid users, performance of their existing hearing aids. All participants were able to complete the self-adjustment process. The generic starting condition provided outputs (between 2 and 8 kHz) and SIIs that were significantly below those prescribed by NAL-NL2. Both groups increased SII to values that were not significantly different from prescription. The hearing aid users, but not the nonusers, increased high-frequency output and SII significantly after taking the speech perception test. Seventeen of the 26 participants (65%) met an SII criterion of 60% under the generic starting condition. The proportion increased to 23 out of 26 (88%) after the final self-adjustment. Of the 13 hearing aid users, 8 (62%) met the 60% criterion with their existing hearing aids. With the final self-adjustment, 12 out of 13 (92%) met this criterion. The findings support the conclusion that user self-adjustment of basic amplification characteristics can be both feasible and effective with or without prior hearing aid experience.
Developmental Conductive Hearing Loss Reduces Modulation Masking Release
Chen, Yi-Wen; Sanes, Dan H.
2016-01-01
Hearing-impaired individuals experience difficulties in detecting or understanding speech, especially in background sounds within the same frequency range. However, normally hearing (NH) human listeners experience less difficulty detecting a target tone in background noise when the envelope of that noise is temporally gated (modulated) than when that envelope is flat across time (unmodulated). This perceptual benefit is called modulation masking release (MMR). When flanking masker energy is added well outside the frequency band of the target, and comodulated with the original modulated masker, detection thresholds improve further (MMR+). In contrast, if the flanking masker is antimodulated with the original masker, thresholds worsen (MMR−). These interactions across disparate frequency ranges are thought to require central nervous system (CNS) processing. Therefore, we explored the effect of developmental conductive hearing loss (CHL) in gerbils on MMR characteristics, as a test for putative CNS mechanisms. The detection thresholds of NH gerbils were lower in modulated noise, when compared with unmodulated noise. The addition of a comodulated flanker further improved performance, whereas an antimodulated flanker worsened performance. However, for CHL-reared gerbils, all three forms of masking release were reduced when compared with NH animals. These results suggest that developmental CHL impairs both within- and across-frequency processing and provide behavioral evidence that CNS mechanisms are affected by a peripheral hearing impairment. PMID:28215119
He, Tingting; Aiken, Steve; Bance, Manohar; Yin, Shankai; Wang, Jian
2012-01-01
Noise-exposure at levels low enough to avoid a permanent threshold shift has been found to cause a massive, delayed degeneration of spiral ganglion neurons (SGNs) in mouse cochleae. Damage to the afferent innervation was initiated by a loss of synaptic ribbons, which is largely irreversible in mice. A similar delayed loss of SGNs has been found in guinea pig cochleae, but at a reduced level, suggesting a cross-species difference in SGN sensitivity to noise. Ribbon synapse damage occurs “silently” in that it does not affect hearing thresholds as conventionally measured, and the functional consequence of this damage is not clear. In the present study, we further explored the effect of noise on cochlear afferent innervation in guinea pigs by focusing on the dynamic changes in ribbon counts over time, and resultant changes in temporal processing. It was found that (1) contrary to reports in mice, the initial loss of ribbons largely recovered within a month after the noise exposure, although a significant amount of residual damage existed; (2) while the response threshold fully recovered in a month, the temporal processing continued to be deteriorated during this period. PMID:23185359
Masked hearing thresholds of a beluga whale ( Delphinapterus leucas) in icebreaker noise
NASA Astrophysics Data System (ADS)
Erbe, C.; Farmer, D. M.
An experiment is presented that measured masked hearing thresholds of a beluga whale at the Vancouver Aquarium. The masked signal was a typical beluga vocalization; the masking noise included two types of icebreaker noise and naturally occurring icecracking noise. Thresholds were measured behaviorally in a go/no-go paradigm. Results were that bubbler system noise exhibited the strongest masking effect with a critical noise-to-signal ratio of 15.4 dB. Propeller cavitation noise completely masked the vocalization for noise-to-signal ratios greater than 18.0 dB. Natural icecracking noise showed the least interference with a threshold at 29.0 dB. A psychophysical analysis indicated that the whale did not have a consistent decision bias.
Atlantic bottlenose dolphin (Tursiops truncatus) hearing threshold for brief broadband signals.
Au, Whitlow W L; Lemonds, David W; Vlachos, Stephanie; Nachtigall, Paul E; Roitblat, Herbert L
2002-06-01
The hearing sensitivity of an Atlantic bottlenose dolphin (Tursiops truncatus) to both pure tones and broadband signals simulating echoes from a 7.62-cm water-filled sphere was measured. Pure tones with frequencies between 40 and 140 kHz in increments of 20 kHz were measured along with broadband thresholds using a stimulus with a center frequency of 97.3 kHz and 88.2 kHz. The pure-tone thresholds were compared with the broadband thresholds by converting the pure-tone threshold intensity to energy flux density. The results indicated that dolphins can detect broadband signals slightly better than a pure-tone signal. The broadband results suggest that an echolocating bottlenose dolphin should be able to detect a 7.62-cm diameter water-filled sphere out to a range of 178 m in a quiet environment.
Maternal Distancing Strategies toward Twin Sons, One with Mild Hearing Loss: A Case Study
ERIC Educational Resources Information Center
Munoz-Silva, Alicia; Sanchez-Garcia, Manuel
2004-01-01
The authors apply descriptive and sequential analyses to a mother's distancing strategies toward her 3-year-old twin sons in puzzle assembly and book reading tasks. One boy had normal hearing and the other a mild hearing loss (threshold: 30 dB). The results show that the mother used more distancing behaviors with the son with a hearing loss, and…
ERIC Educational Resources Information Center
Yao, Wai Na; Turner, Christopher W.; Gantz, Bruce J.
2006-01-01
The purpose of this study was to investigate the stability over time of low-frequency auditory thresholds to better determine if the new technique of using a short-electrode cochlear implant that preserves residual low-frequency acoustic hearing can be a long-term solution for those with severe-to-profound hearing loss at high frequencies. The…
Su, Yu; Yuan, Hu; Song, Yue-shuai; Shen, Wei-dong; Han, Wei-ju; Liu, Jun; Han, Dong-yi; Dai, Pu
2014-08-01
Congenital absence of the oval window (CAOW) is a rare condition in which the stapes footplate fails to develop, resulting in a significant conductive hearing loss in the affected ear. The purpose of this study was to describe the surgical management and outcomes of patients with CAOW undergoing the oval window drill-out (OWD) procedure. A retrospective chart review of patients with CAOW between 1996 and 2011 was performed. Clinical data of patients who underwent OWD were collected. Seventy-nine patients (103 ears) were confirmed using exploratory tympanotomy as having congenital stapes anomalies and CAOW without any anomalies of the tympanic membrane and external auditory canal. Demographic data, CT findings, operative findings, complications, and preoperative/postoperative audiometry data of patients who underwent OWD were collected. The preoperative and postoperative audiologic findings were analyzed in 42 patients (56 ears) with complete data. Hearing restoration surgery was aborted for various reasons in 14 cases. Six patients underwent revision operations for worsening hearing after their first surgery. The average preoperative 4 tone air conduction threshold was 67 dB; the average 6-month postoperative four tone air conduction threshold was 49 dB, and the average postoperative hearing gain was 18 dB. For the 56 ears, the average 4 tone air conduction threshold 6 months after surgery was significantly lower than the preoperative threshold. The oval window drill-out procedure is a viable operation for patients with congenital absence of the oval window, and it is important for surgeons to develop personalized treatment programs to improve patients' hearing with minimal complications.
Perspectives on the Pure-Tone Audiogram.
Musiek, Frank E; Shinn, Jennifer; Chermak, Gail D; Bamiou, Doris-Eva
The pure-tone audiogram, though fundamental to audiology, presents limitations, especially in the case of central auditory involvement. Advances in auditory neuroscience underscore the considerably larger role of the central auditory nervous system (CANS) in hearing and related disorders. Given the availability of behavioral audiological tests and electrophysiological procedures that can provide better insights as to the function of the various components of the auditory system, this perspective piece reviews the limitations of the pure-tone audiogram and notes some of the advantages of other tests and procedures used in tandem with the pure-tone threshold measurement. To review and synthesize the literature regarding the utility and limitations of the pure-tone audiogram in determining dysfunction of peripheral sensory and neural systems, as well as the CANS, and to identify other tests and procedures that can supplement pure-tone thresholds and provide enhanced diagnostic insight, especially regarding problems of the central auditory system. A systematic review and synthesis of the literature. The authors independently searched and reviewed literature (journal articles, book chapters) pertaining to the limitations of the pure-tone audiogram. The pure-tone audiogram provides information as to hearing sensitivity across a selected frequency range. Normal or near-normal pure-tone thresholds sometimes are observed despite cochlear damage. There are a surprising number of patients with acoustic neuromas who have essentially normal pure-tone thresholds. In cases of central deafness, depressed pure-tone thresholds may not accurately reflect the status of the peripheral auditory system. Listening difficulties are seen in the presence of normal pure-tone thresholds. Suprathreshold procedures and a variety of other tests can provide information regarding other and often more central functions of the auditory system. The audiogram is a primary tool for determining type, degree, and configuration of hearing loss; however, it provides the clinician with information regarding only hearing sensitivity, and no information about central auditory processing or the auditory processing of real-world signals (i.e., speech, music). The pure-tone audiogram offers limited insight into functional hearing and should be viewed only as a test of hearing sensitivity. Given the limitations of the pure-tone audiogram, a brief overview is provided of available behavioral tests and electrophysiological procedures that are sensitive to the function and integrity of the central auditory system, which provide better diagnostic and rehabilitative information to the clinician and patient. American Academy of Audiology
A Novel Therapeutic for the Treatment and Prevention of Hearing Loss from Acoustic Trauma
2016-10-01
hearing thresholds at various times post noise exposure. Although numerous exposure conditions were evaluated , this impulse model resulted in a severe...a treatment protocol , to l imit hearing impairment. Establ i sh the kinetics of P13 peptide transfer across the tympanic membrane and quanti fy
Underwater audiogram of a tucuxi (Sotalia fluviatilis guianensis).
Sauerland, M; Dehnhardt, G
1998-02-01
Using a go/no go response paradigm, a tucuxi (Sotalia fluviatilis guianensis) was trained to respond to pure-tone signals for an underwater hearing test. Auditory thresholds were obtained from 4 to 135 kHz. The audiogram curve shows that this Sotalia had an upper limit of hearing at 135 kHz; from 125 to 135 kHz sensitivity decreased by 475 dB/oct. This coincides with results from electrophysiological threshold measurements. The range of best hearing (defined as 10 dB from maximum sensitivity) was between 64 and 105 kHz. This range appears to be narrower and more restricted to higher frequencies in Sotalia fluviatilis guianensis than in other odontocete species that had been tested before. Peak frequencies of echolocation pulses reported from free-ranging Sotalia correspond with the range of most sensitive hearing of this test subject.
Best, Virginia; Keidser, Gitte; Buchholz, Jörg M; Freeston, Katrina
2015-01-01
There is increasing demand in the hearing research community for the creation of laboratory environments that better simulate challenging real-world listening environments. The hope is that the use of such environments for testing will lead to more meaningful assessments of listening ability, and better predictions about the performance of hearing devices. Here we present one approach for simulating a complex acoustic environment in the laboratory, and investigate the effect of transplanting a speech test into such an environment. Speech reception thresholds were measured in a simulated reverberant cafeteria, and in a more typical anechoic laboratory environment containing background speech babble. The participants were 46 listeners varying in age and hearing levels, including 25 hearing-aid wearers who were tested with and without their hearing aids. Reliable SRTs were obtained in the complex environment, but led to different estimates of performance and hearing-aid benefit from those measured in the standard environment. The findings provide a starting point for future efforts to increase the real-world relevance of laboratory-based speech tests.
Best, Virginia; Keidser, Gitte; Buchholz, J(x004E7)rg M.; Freeston, Katrina
2016-01-01
Objective There is increasing demand in the hearing research community for the creation of laboratory environments that better simulate challenging real-world listening environments. The hope is that the use of such environments for testing will lead to more meaningful assessments of listening ability, and better predictions about the performance of hearing devices. Here we present one approach for simulating a complex acoustic environment in the laboratory, and investigate the effect of transplanting a speech test into such an environment. Design Speech reception thresholds were measured in a simulated reverberant cafeteria, and in a more typical anechoic laboratory environment containing background speech babble. Study Sample The participants were 46 listeners varying in age and hearing levels, including 25 hearing-aid wearers who were tested with and without their hearing aids. Results Reliable SRTs were obtained in the complex environment, but led to different estimates of performance and hearing aid benefit from those measured in the standard environment. Conclusions The findings provide a starting point for future efforts to increase the real-world relevance of laboratory-based speech tests. PMID:25853616
Hearing status among Norwegian train drivers and train conductors.
Lie, A; Skogstad, M; Johnsen, T S; Engdahl, B; Tambs, K
2013-12-01
There is a general perception that train drivers and conductors may be at increased risk of developing noise-induced hearing loss. To study job-related hearing loss among train drivers and train conductors. Audiograms from train drivers and train conductors were obtained from the medical records of the occupational health service of the major Norwegian railway company. The results were compared with audiograms from an internal control group of railway workers and an external reference group of people not occupationally exposed to noise. The monaural hearing threshold level at 4kHz, the mean binaural value at 3, 4 and 6kHz and the prevalence of audiometric notches (≥25 dB at 4kHz) were used for comparison. Audiograms were available for 1567 drivers, 1565 conductors, 4029 railway worker controls and 15 012 people not occupationally exposed to noise. No difference in hearing level or prevalence of audiometric notches was found between study groups after adjusting for age and gender. Norwegian train drivers and conductors have normal hearing threshold levels comparable with those in non-exposed groups.
A prospective study on radiation-induced changes in hearing function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, Franziska; Doerr, Wolfgang; Experimental Center, Medical Faculty Carl Gustav Carus, University of Technology-Dresden, Dresden
Purpose: To quantitate changes in hearing function after radiotherapy for head-and-neck tumors. Methods and Materials: At the Department of Radiotherapy and Radiation Oncology, 32 patients were irradiated for head-and-neck tumors. Three-dimensional treatment planning was applied. Total tumor doses were 30.0-77.6 Gy, local doses to the inner ear (n = 64) ranged from 1.7 to 64.3 Gy. Audiometry was performed before the onset of radiotherapy (RT), at a tumor dose of 40 Gy or at the end of palliative treatment, at the end of curative RT, and 2-6 months post-RT. Assays applied were frequency-specific threshold measurements for air and bone conduction,more » measurements according to Weber and Rinne, tympanometry and assessment of the stapedius reflex. Results: Age and prior disease significantly decreased, whereas previous or concurrent alcohol consumption significantly increased hearing ability. A significant reduction in hearing ability during RT was found for high frequencies (at 40 Gy) and low frequencies (at end of RT), which persisted after RT. No differences were observed for air or bone conduction. None of the other assays displayed time- or dose-dependent changes. Dose-effect analyses revealed an ED50 (dose at which a 50% incidence is expected) for significant changes in hearing thresholds (15 dB) in the range of 20-25 Gy, with large confidence limits. Conclusions: Radiation effects on hearing ability were confined to threshold audiogram values, which started during the treatment without reversibility during 6 months postradiotherapy.« less
Aging and Hearing Health: The Life-course Approach.
Davis, Adrian; McMahon, Catherine M; Pichora-Fuller, Kathleen M; Russ, Shirley; Lin, Frank; Olusanya, Bolajoko O; Chadha, Shelly; Tremblay, Kelly L
2016-04-01
Sensory abilities decline with age. More than 5% of the world's population, approximately 360 million people, have disabling hearing loss. In adults, disabling hearing loss is defined by thresholds greater than 40 dBHL in the better hearing ear.Hearing disability is an important issue in geriatric medicine because it is associated with numerous health issues, including accelerated cognitive decline, depression, increased risk of dementia, poorer balance, falls, hospitalizations, and early mortality. There are also social implications, such as reduced communication function, social isolation, loss of autonomy, impaired driving ability, and financial decline. Furthermore, the onset of hearing loss is gradual and subtle, first affecting the detection of high-pitched sounds and with difficulty understanding speech in noisy but not in quiet environments. Consequently, delays in recognizing and seeking help for hearing difficulties are common. Age-related hearing loss has no known cure, and technologies (hearing aids, cochlear implants, and assistive devices) improve thresholds but do not restore hearing to normal. Therefore, health care for persons with hearing loss and people within their communication circles requires education and counseling (e.g., increasing knowledge, changing attitudes, and reducing stigma), behavior change (e.g., adapting communication strategies), and environmental modifications (e.g., reducing noise). In this article, we consider the causes, consequences, and magnitude of hearing loss from a life-course perspective. We examine the concept of "hearing health," how to achieve it, and implications for policy and practice. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mehraei, Golbarg; Gallardo, Andreu Paredes; Shinn-Cunningham, Barbara G.; Dau, Torsten
2017-01-01
In rodent models, acoustic exposure too modest to elevate hearing thresholds can nonetheless cause auditory nerve fiber deafferentation, interfering with the coding of supra-threshold sound. Low-spontaneous rate nerve fibers, important for encoding acoustic information at supra-threshold levels and in noise, are more susceptible to degeneration than high-spontaneous rate fibers. The change in auditory brainstem response (ABR) wave-V latency with noise level has been shown to be associated with auditory nerve deafferentation. Here, we measured ABR in a forward masking paradigm and evaluated wave-V latency changes with increasing masker-to-probe intervals. In the same listeners, behavioral forward masking detection thresholds were measured. We hypothesized that 1) auditory nerve fiber deafferentation increases forward masking thresholds and increases wave-V latency and 2) a preferential loss of low-SR fibers results in a faster recovery of wave-V latency as the slow contribution of these fibers is reduced. Results showed that in young audiometrically normal listeners, a larger change in wave-V latency with increasing masker-to-probe interval was related to a greater effect of a preceding masker behaviorally. Further, the amount of wave-V latency change with masker-to-probe interval was positively correlated with the rate of change in forward masking detection thresholds. Although we cannot rule out central contributions, these findings are consistent with the hypothesis that auditory nerve fiber deafferentation occurs in humans and may predict how well individuals can hear in noisy environments. PMID:28159652
Kastelein, Ronald A; Wensveen, Paul; Hoek, Lean; Terhune, John M
2009-07-01
The underwater hearing sensitivities of two 1.5-year-old female harbor seals were quantified in a quiet pool built specifically for acoustic research, by using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not ("go/no-go" response). Fourteen narrowband noise signals (1/3-octave bands but with some energy in adjacent bands), at 1/3-octave center frequencies of 0.2-80 kHz, and of 900 ms duration, were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. Between 0.5 and 40 kHz, the thresholds corresponded to a 1/3-octave band noise level of approximately 60 dB re 1 microPa (SD+/-3.0 dB). At lower frequencies, the thresholds increased to 66 dB re 1 microPa and at 80 kHz the thresholds rose to 114 dB re 1 microPa. The 1/3-octave noise band thresholds of the two seals did not differ from each other, or from the narrowband frequency-modulated tone thresholds at the same frequencies obtained a few months before for the same animals. These hearing threshold values can be used to calculate detection ranges of underwater calls and anthropogenic noises by harbor seals.
Wilson, Uzma S.; Kaf, Wafaa A.; Danesh, Ali A.; Lichtenhan, Jeffery T.
2016-01-01
Objective To determine the clinical utility of narrow-band chirp evoked 40-Hz sinusoidal auditory steady state responses (s-ASSR) in the assessment of low-frequency hearing in noisy participants. Design Tone bursts and narrow-band chirps were used to respectively evoke auditory brainstem responses (tb-ABR) and 40-Hz s-ASSR thresholds with the Kalman-weighted filtering technique and were compared to behavioral thresholds at 500, 2000, and 4000 Hz. A repeated measure ANOVA and post-hoc t-tests, and simple regression analyses were performed for each of the three stimulus frequencies. Study Sample Thirty young adults aged 18–25 with normal hearing participated in this study. Results When 4000 equivalent responses averages were used, the range of mean s-ASSR thresholds from 500, 2000, and 4000 Hz were 17–22 dB lower (better) than when 2000 averages were used. The range of mean tb-ABR thresholds were lower by 11–15 dB for 2000 and 4000 Hz when twice as many equivalent response averages were used, while mean tb-ABR thresholds for 500 Hz were indistinguishable regardless of additional response averaging Conclusion Narrow band chirp evoked 40-Hz s-ASSR requires a ~15 dB smaller correction factor than tb-ABR for estimating low-frequency auditory threshold in noisy participants when adequate response averaging is used. PMID:26795555
Distribution Characteristics of Air-Bone Gaps – Evidence of Bias in Manual Audiometry
Margolis, Robert H.; Wilson, Richard H.; Popelka, Gerald R.; Eikelboom, Robert H.; Swanepoel, De Wet; Saly, George L.
2015-01-01
Objective Five databases were mined to examine distributions of air-bone gaps obtained by automated and manual audiometry. Differences in distribution characteristics were examined for evidence of influences unrelated to the audibility of test signals. Design The databases provided air- and bone-conduction thresholds that permitted examination of air-bone gap distributions that were free of ceiling and floor effects. Cases with conductive hearing loss were eliminated based on air-bone gaps, tympanometry, and otoscopy, when available. The analysis is based on 2,378,921 threshold determinations from 721,831 subjects from five databases. Results Automated audiometry produced air-bone gaps that were normally distributed suggesting that air- and bone-conduction thresholds are normally distributed. Manual audiometry produced air-bone gaps that were not normally distributed and show evidence of biasing effects of assumptions of expected results. In one database, the form of the distributions showed evidence of inclusion of conductive hearing losses. Conclusions Thresholds obtained by manual audiometry show tester bias effects from assumptions of the patient’s hearing loss characteristics. Tester bias artificially reduces the variance of bone-conduction thresholds and the resulting air-bone gaps. Because the automated method is free of bias from assumptions of expected results, these distributions are hypothesized to reflect the true variability of air- and bone-conduction thresholds and the resulting air-bone gaps. PMID:26627469
Noise-induced hearing impairment and handicap
NASA Technical Reports Server (NTRS)
1984-01-01
A permanent, noise-induced hearing loss has doubly harmful effect on speech communications. First, the elevation in the threshold of hearing means that many speech sounds are too weak to be heard, and second, very intense speech sounds may appear to be distorted. The whole question of the impact of noise-induced hearing loss upon the impairments and handicaps experienced by people with such hearing losses was somewhat controversial partly because of the economic aspects of related practical noise control and workmen's compensation.
Diao, Wen-wen; Ni, Dao-feng; Li, Feng-rong; Shang, Ying-ying
2011-03-01
Auditory brainstem responses (ABR) evoked by tone burst is an important method of hearing assessment in referral infants after hearing screening. The present study was to compare the thresholds of tone burst ABR with filter settings of 30 - 1500 Hz and 30 - 3000 Hz at each frequency, figure out the characteristics of ABR thresholds with the two filter settings and the effect of the waveform judgement, so as to select a more optimal frequency specific ABR test parameter. Thresholds with filter settings of 30 - 1500 Hz and 30 - 3000 Hz in children aged 2 - 33 months were recorded by click, tone burst ABR. A total of 18 patients (8 male/10 female), 22 ears were included. The thresholds of tone burst ABR with filter settings of 30 - 3000 Hz were higher than that with filter settings of 30 - 1500 Hz. Significant difference was detected for that at 0.5 kHz and 2.0 kHz (t values were 2.238 and 2.217, P < 0.05), no significant difference between the two filter settings was detected at the rest frequencies tone evoked ABR thresholds. The waveform of ABR with filter settings of 30 - 1500 Hz was smoother than that with filter settings of 30 - 3000 Hz at the same stimulus intensity. Response curve of the latter appeared jagged small interfering wave. The filter setting of 30 - 1500 Hz may be a more optimal parameter of frequency specific ABR to improve the accuracy of frequency specificity ABR for infants' hearing assessment.
Kastelein, Ronald A; Hoek, Lean; de Jong, Christ A F; Wensveen, Paul J
2010-11-01
The underwater hearing sensitivity of a young male harbor porpoise for tonal signals of various signal durations was quantified by using a behavioral psychophysical technique. The animal was trained to respond only when it detected an acoustic signal. Fifty percent detection thresholds were obtained for tonal signals (15 frequencies between 0.25-160 kHz, durations 0.5-5000 ms depending on the frequency; 134 frequency-duration combinations in total). Detection thresholds were quantified by varying signal amplitude by the 1-up 1-down staircase method. The hearing thresholds increased when the signal duration fell below the time constant of integration. The time constants, derived from an exponential model of integration [Plomp and Bouman, J. Acoust. Soc. Am. 31, 749-758 (1959)], varied from 629 ms at 2 kHz to 39 ms at 64 kHz. The integration times of the porpoises were similar to those of other mammals including humans, even though the porpoise is a marine mammal and a hearing specialist. The results enable more accurate estimations of the distances at which porpoises can detect short-duration environmental tonal signals. The audiogram thresholds presented by Kastelein et al. [J. Acoust. Soc. Am. 112, 334-344 (2002)], after correction for the frequency bandwidth of the FM signals, are similar to the results of the present study for signals of 1500 ms duration. Harbor porpoise hearing is more sensitive between 2 and 10 kHz, and less sensitive above 10 kHz, than formerly believed.
Canis, Martin; Arpornchayanon, Warangkana; Messmer, Catalina; Suckfuell, Markus; Olzowy, Bernhard; Strieth, Sebastian
2010-02-01
Impairment of cochlear blood flow (CBF) is considered to be important in inner ear pathology. However, direct measurement of CBF is difficult and has not been investigated in combination with hearing function. Six guinea pigs were used to show feasibility of an animal model for the analysis of cochlear microcirculation by intravital microscopy in combination with investigation of the hearing threshold by brainstem response audiometry (ABR). By the application of sodium nitroprusside (SNP), CBF was increased over 30 min. Reproducibility of measurements was shown by retest measurements. Mean baseline velocity of CBF was 109 +/- 19 mum/s. Vessel diameters had a mean value of 9.4 +/- 2.7 mum. Mean hearing threshold was 19 +/- 6 dB. In response to SNP, CBF velocity increased significantly to 161 +/- 26 mum/s. Mean arterial pressure decreased significantly to 36 +/- 11 mmHg. After the end of the application, CBF velocity recovered to a minimum of 123 +/- 17 microm/s. Within the retest, CBF velocity significantly increased to a maximum of 160 +/- 31 microm/s. Second recovery of CBF velocity was 125 +/- 14 mum/s. Within the second retest, CBF increased significantly to 157 +/- 25 microm/s. ABR thresholds did not change significantly. The increase in blood flow velocity occurred in spite of substantial hypotension as induced by a vasodilator. This may explain the fact that ABR threshold remained unchanged reflecting a maintained blood supply in this part of the brain. This technique can be used to evaluate effects of treatments aimed at cochlear microcirculation in inner ear pathologies.
Central auditory processing effects induced by solvent exposure.
Fuente, Adrian; McPherson, Bradley
2007-01-01
Various studies have demonstrated that organic solvent exposure may induce auditory damage. Studies conducted in workers occupationally exposed to solvents suggest, on the one hand, poorer hearing thresholds than in matched non-exposed workers, and on the other hand, central auditory damage due to solvent exposure. Taking into account the potential auditory damage induced by solvent exposure due to the neurotoxic properties of such substances, the present research aimed at studying the possible auditory processing disorder (APD), and possible hearing difficulties in daily life listening situations that solvent-exposed workers may acquire. Fifty workers exposed to a mixture of organic solvents (xylene, toluene, methyl ethyl ketone) and 50 non-exposed workers matched by age, gender and education were assessed. Only subjects with no history of ear infections, high blood pressure, kidney failure, metabolic and neurological diseases, or alcoholism were selected. The subjects had either normal hearing or sensorineural hearing loss, and normal tympanometric results. Hearing-in-noise (HINT), dichotic digit (DD), filtered speech (FS), pitch pattern sequence (PPS), and random gap detection (RGD) tests were carried out in the exposed and non-exposed groups. A self-report inventory of each subject's performance in daily life listening situations, the Amsterdam Inventory for Auditory Disability and Handicap, was also administered. Significant threshold differences between exposed and non-exposed workers were found at some of the hearing test frequencies, for both ears. However, exposed workers still presented normal hearing thresholds as a group (equal or better than 20 dB HL). Also, for the HINT, DD, PPS, FS and RGD tests, non-exposed workers obtained better results than exposed workers. Finally, solvent-exposed workers reported significantly more hearing complaints in daily life listening situations than non-exposed workers. It is concluded that subjects exposed to solvents may acquire an APD and thus the sole use of pure-tone audiometry is insufficient to assess hearing in solvent-exposed populations.
Palmer, Shannon B; Musiek, Frank E
2014-01-01
Temporal processing ability has been linked to speech understanding ability and older adults often complain of difficulty understanding speech in difficult listening situations. Temporal processing can be evaluated using gap detection procedures. There is some research showing that gap detection can be evaluated using an electrophysiological procedure. However, there is currently no research establishing gap detection threshold using the N1-P2 response. The purposes of the current study were to 1) determine gap detection thresholds in younger and older normal-hearing adults using an electrophysiological measure, 2) compare the electrophysiological gap detection threshold and behavioral gap detection threshold within each group, and 3) investigate the effect of age on each gap detection measure. This study utilized an older adult group and younger adult group to compare performance on an electrophysiological and behavioral gap detection procedure. The subjects in this study were 11 younger, normal-hearing adults (mean = 22 yrs) and 11 older, normal-hearing adults (mean = 64.36 yrs). All subjects completed an adaptive behavioral gap detection procedure in order to determine their behavioral gap detection threshold (BGDT). Subjects also completed an electrophysiologic gap detection procedure to determine their electrophysiologic gap detection threshold (EGDT). Older adults demonstrated significantly larger gap detection thresholds than the younger adults. However, EGDT and BGDT were not significantly different in either group. The mean difference between EGDT and BGDT for all subjects was 0.43 msec. Older adults show poorer gap detection ability when compared to younger adults. However, this study shows that gap detection thresholds can be measured using evoked potential recordings and yield results similar to a behavioral measure. American Academy of Audiology.
Assessment of potential effects of the electromagnetic fields of mobile phones on hearing
Uloziene, Ingrida; Uloza, Virgilijus; Gradauskiene, Egle; Saferis, Viktoras
2005-01-01
Background Mobile phones have become indispensable as communication tools; however, to date there is only a limited knowledge about interaction between electromagnetic fields (EMF) emitted by mobile phones and auditory function. The aim of the study was to assess potential changes in hearing function as a consequence of exposure to low-intensity EMF's produced by mobile phones at frequencies of 900 and 1800 MHz. Methods The within-subject study was performed on thirty volunteers (age 18–30 years) with normal hearing to assess possible acute effect of EMF. Participants attended two sessions: genuine and sham exposure of EMF. Hearing threshold levels (HTL) on pure tone audiometry (PTA) and transient evoked otoacoustic emissions (TEOAE's) were recorded before and immediately after 10 min of genuine and/or sham exposure of mobile phone EMF. The administration of genuine or sham exposure was double blind and counterbalanced in order. Results Statistical analysis revealed no significant differences in the mean HTLs of PTA and mean shifts of TEOAE's before and after genuine and/or sham mobile phone EMF 10 min exposure. The data collected showed that average TEOAE levels (averaged across a frequency range) changed less than 2.5 dB between pre- and post-, genuine and sham exposure. The greatest individual change was 10 dB, with a decrease in level from pre- to post- real exposure. Conclusion It could be concluded that a 10-min close exposure of EMFs emitted from a mobile phone had no immediate after-effect on measurements of HTL of PTA and TEOAEs in young human subjects and no measurable hearing deterioration was detected in our study. PMID:15840162
Safety of an intra-oral hearing device utilizing a split-mouth research design.
Miller, Ross; Hujoel, Philippe; Murray, Michael; Popelka, Gerald R
2011-01-01
The auditory deficits of Single Sided Deafness (SSD) can be treated effectively with a novel device, SoundBite, that delivers sound by applying imperceptible vibratory signals to the teeth (hereafter referred to as an intra-oral hearing device). The intra-oral hearing device is placed around two maxillary teeth and is similar to a small partial denture or retainer. The goal of this study was to report how this removable hearing device affects the oral structures. Twenty-two SSD patients wearing an intra-oral hearing device were enrolled in a prospective study for six months. Differences (delta) between the device-anchoring teeth and the equivalent contralateral non-device teeth were evaluated with four dental parameters using a paired t-test. Hearing thresholds were evaluated as a function of alveolar bone support using linear regression. Compared to the non-device teeth, the hearing device teeth did not exhibit any increased recession (delta = 0.1 mm, p-value = 0.48), increased pocket depth (delta = 0.0 mm, p-value = 0.48), increased root resorption (delta = 4%, p-value = 0.43), or increased alveolar bone loss (delta = 0.0 %, p-value = 0.43). There was no association between the amount of alveolar support and hearing thresholds (delta = 0.2, p-value = 0.34). The intra-oral component of the hearing device did not adversely affect the dental structures of the subjects in this trial.
Montiel-López, María; Corzo-Alvarez, Gilbert; Chacín-Almarza, Betulio; Rojas-González, Liliana; Quevedo, Ana; Rendiles, Hernando
2006-06-01
The purpose of the present study was to assess the impact of occupational exposure to noise and its relationship with other factors that can induce hearing loss in the electric plant workers of a petrochemical industry of the west of Venezuela. A cross-sectional study was conducted that included sonometry tests, carried out according to the established methodology by COVENIN rules, and the occupational medical evaluation and liminal tonal audiometrics test in 75 workers. The equivalent noise levels (Leq) was quantified in different workplaces. It was found out that most of the workers are exposed to high noise levels [>85 dB(A)] and during more time than the recommended. All workers use hearing protectors appropriately. The hearing loss prevalence in workers was 16.0%, there were not noise-induced hearing losses. The hearing threshold registered in the audiometrics test was diminished, but inside the normal threshold values. We diagnosed 12 cases of conductive hearing loss, all grade I; there were not sensorial or mixed hearing losses. There was not a relationship between the equivalent noise level and hearing loss. It is suggested the design and implantation of a program of auditory conservation to protect the health and security of the workers and to conduct a longitudinal study considering the findings of the present study as it basis.
Ridgway, S H; Carder, D A; Kamolnick, T; Smith, R R; Schlundt, C E; Elsberry, W R
2001-11-01
Hearing is attenuated in the aerial ear of humans and other land mammals tested in pressure chambers as a result of middle ear impedance changes that result from increased air density. We tested the hypothesis, based on recent middle ear models, that increasing the density of middle ear air at depth might attenuate whale hearing. Two white whales Delphinapterus leucas made dives to a platform at a depth of 5, 100, 200 or 300 m in the Pacific Ocean. During dives to station on the platform for up to 12 min, the whales whistled in response to 500 ms tones projected at random intervals to assess their hearing threshold at each depth. Analysis of response whistle spectra, whistle latency in response to tones and hearing thresholds showed that the increased hydrostatic pressure at depth changed each whale's whistle response at depth, but did not attenuate hearing overall. The finding that whale hearing is not attenuated at depth suggests that sound is conducted through the head tissues of the whale to the ear without requiring the usual ear drum/ossicular chain amplification of the aerial middle ear. These first ever hearing tests in the open ocean demonstrate that zones of audibility for human-made sounds are just as great throughout the depths to which these whales dive, or at least down to 300 m.
Snik, A; Cremers, C
2004-02-01
Typically, an implantable hearing device consists of a transducer that is coupled to the ossicular chain and electronics. The coupling is of major importance. The Vibrant Soundbridge (VSB) is such an implantable device; normally, the VSB transducer is fixed to the ossicular chain by means of a special clip that is crimped around the long process of the incus. In addition to crimping, bone cement was used to optimize the fixation in six patients. Long-term results were compared to those of five controls with crimp fixation alone. To assess the effect of bone cement (SerenoCem, Corinthian Medical Ltd, Nottingham, UK) on hearing thresholds, long-term post-surgery thresholds were compared to pre-surgery thresholds. Bone cement did not have any negative effect. Next, to test the hypothesis that aided thresholds might be better with the use of bone cement, aided thresholds were studied. After correction for the severity of hearing loss, only a small difference was found between the two groups at one frequency, viz. 2 kHz. It was concluded that there was no negative effect of using bone cement; however, there is also no reason to use bone cement in VSB users on a regular basis.
Attias, Joseph; Greenstein, Tally; Peled, Miriam; Ulanovski, David; Wohlgelernter, Jay; Raveh, Eyal
The aim of the study was to compare auditory and speech outcomes and electrical parameters on average 8 years after cochlear implantation between children with isolated auditory neuropathy (AN) and children with sensorineural hearing loss (SNHL). The study was conducted at a tertiary, university-affiliated pediatric medical center. The cohort included 16 patients with isolated AN with current age of 5 to 12.2 years who had been using a cochlear implant for at least 3.4 years and 16 control patients with SNHL matched for duration of deafness, age at implantation, type of implant, and unilateral/bilateral implant placement. All participants had had extensive auditory rehabilitation before and after implantation, including the use of conventional hearing aids. Most patients received Cochlear Nucleus devices, and the remainder either Med-El or Advanced Bionics devices. Unaided pure-tone audiograms were evaluated before and after implantation. Implantation outcomes were assessed by auditory and speech recognition tests in quiet and in noise. Data were also collected on the educational setting at 1 year after implantation and at school age. The electrical stimulation measures were evaluated only in the Cochlear Nucleus implant recipients in the two groups. Similar mapping and electrical measurement techniques were used in the two groups. Electrical thresholds, comfortable level, dynamic range, and objective neural response telemetry threshold were measured across the 22-electrode array in each patient. Main outcome measures were between-group differences in the following parameters: (1) Auditory and speech tests. (2) Residual hearing. (3) Electrical stimulation parameters. (4) Correlations of residual hearing at low frequencies with electrical thresholds at the basal, middle, and apical electrodes. The children with isolated AN performed equally well to the children with SNHL on auditory and speech recognition tests in both quiet and noise. More children in the AN group than the SNHL group were attending mainstream educational settings at school age, but the difference was not statistically significant. Significant between-group differences were noted in electrical measurements: the AN group was characterized by a lower current charge to reach subjective electrical thresholds, lower comfortable level and dynamic range, and lower telemetric neural response threshold. Based on pure-tone audiograms, the children with AN also had more residual hearing before and after implantation. Highly positive coefficients were found on correlation analysis between T levels across the basal and midcochlear electrodes and low-frequency acoustic thresholds. Prelingual children with isolated AN who fail to show expected oral and auditory progress after extensive rehabilitation with conventional hearing aids should be considered for cochlear implantation. Children with isolated AN had similar pattern as children with SNHL on auditory performance tests after cochlear implantation. The lower current charge required to evoke subjective and objective electrical thresholds in children with AN compared with children with SNHL may be attributed to the contribution to electrophonic hearing from the remaining neurons and hair cells. In addition, it is also possible that mechanical stimulation of the basilar membrane, as in acoustic stimulation, is added to the electrical stimulation of the cochlear implant.
The Effect of Tinnitus on Listening Effort in Normal-Hearing Young Adults: A Preliminary Study
ERIC Educational Resources Information Center
Degeest, Sofie; Keppler, Hannah; Corthals, Paul
2017-01-01
Purpose: The objective of this study was to investigate the effect of chronic tinnitus on listening effort. Method: Thirteen normal-hearing young adults with chronic tinnitus were matched with a control group for age, gender, hearing thresholds, and educational level. A dual-task paradigm was used to evaluate listening effort in different…
ERIC Educational Resources Information Center
Marschark, Marc; Shaver, Debra M.; Nagle, Katherine; Newman, Lynn A.
2015-01-01
Research suggests that the academic achievement of deaf and hard-of-hearing (DHH) students is the result of a complex interplay of many factors. These factors include characteristics of the students (e.g., hearing thresholds, language fluencies, mode of communication, and communication functioning), characteristics of their family environments…
MACIAS-REYES, Hector; DURAN-BARRAGAN, Sergio; CARDENAS-CONTRERAS, Cynthia R.; CHAVEZ-MARTIN, Cesar G.; GOMEZ-BAÑUELOS, Eduardo; NAVARRO-HERNANDEZ, Rosa E.; YANOWSKY-GONZALEZ, Carlos O.; GONZALEZ-LOPEZ, Laura; GAMEZ-NAVA, Jorge I.
2016-01-01
Objectives This study aims to evaluate the association of hearing impairment with carotid intima-media thickness and subclinical atherosclerosis in rheumatoid arthritis (RA) patients. Patients and methods A total of 41 RA patients (2 males, 39 females; mean age 46.5±10.2 years; range 20 to 63 years) with no known traditional cardiovascular risk factors were included. Routine clinical and laboratory assessments for RA patients were performed. Pure tone air (250-8000 Hz) and bone conduction (250-6000 Hz) thresholds were obtained, tympanograms and impedance audiometry were conducted. Sensorineural hearing impairment was defined if the average thresholds were ≥25 decibels. Carotid intima-media thickness was assessed and classified with a cut-off point of 0.6 mm. Results Thirteen patients (31.7%) had normal audition, while 28 (68.3%) had hearing impairment. Of these, 22 had bilateral sensorineural hearing impairment. Four patients had conductive hearing impairment (right in three patients and left in one patient). Patients with sensorineural hearing impairment had increased carotid intima-media thickness in the media segment of carotid common artery compared to patients with normal hearing (right ear p=0.007; left ear p=0.075). Thickening of the carotid intima-media thickness was associated with sensorineural hearing impairment in RA patients. Conclusion Rheumatoid arthritis patients should be evaluated by carotid intima-media thickness as a possible contributing factor of hearing impairment in patients without cardiovascular risk factors. PMID:29900940
Killer whale (Orcinus orca) behavioral audiograms.
Branstetter, Brian K; St Leger, Judy; Acton, Doug; Stewart, John; Houser, Dorian; Finneran, James J; Jenkins, Keith
2017-04-01
Killer whales (Orcinus orca) are one of the most cosmopolitan marine mammal species with potential widespread exposure to anthropogenic noise impacts. Previous audiometric data on this species were from two adult females [Szymanski, Bain, Kiehl, Pennington, Wong, and Henry (1999). J. Acoust. Soc. Am. 108, 1322-1326] and one sub-adult male [Hall and Johnson (1972). J. Acoust. Soc. Am. 51, 515-517] with apparent high-frequency hearing loss. All three killer whales had best sensitivity between 15 and 20 kHz, with thresholds lower than any odontocete tested to date, suggesting this species might be particularly sensitive to acoustic disturbance. The current study reports the behavioral audiograms of eight killer whales at two different facilities. Hearing sensitivity was measured from 100 Hz to 160 kHz in killer whales ranging in age from 12 to 52 year. Previously measured low thresholds at 20 kHz were not replicated in any individual. Hearing in the killer whales was generally similar to other delphinids, with lowest threshold (49 dB re 1 μPa) at approximately 34 kHz, good hearing (i.e., within 20 dB of best sensitivity) from 5 to 81 kHz, and low- and high-frequency hearing cutoffs (>100 dB re μPa) of 600 Hz and 114 kHz, respectively.
Ambient noise levels in industrial audiometric test rooms.
Frank, T; Williams, D L
1994-05-01
In 1983 the Occupational Safety and Health Administration (OSHA) specified maximum permissible ambient noise levels (MPANLs) that would allow valid hearing threshold measurements in an audiometric test room. However, ambient noise sound pressure levels (SPLs) in rooms used for industrial hearing tests are unknown. The present study reports octave band (125 to 8000 Hz) ambient noise SPLs measured in 490 single-walled prefabricated audiometric test rooms located in industrial settings that were obtained from eight sources. The ambient noise SPLs were highest in the lower frequencies and decreased as frequency increased. All 490 rooms met the OSHA MPANLs. Fortunately, the ambient noise SPLs were considerably lower than the OSHA MPANLs, since previous research has demonstrated that hearing thresholds cannot be obtained down to 0-dB HL in a test room having ambient noise levels equal to the OSHA MPANLs. In fact, 33%, or 162 of the 490 test rooms, met the more stringent MPANLs recently specified by the American National Standards Institute (ANSI) for industrial hearing testing. Given that the OSHA MPANLs are too high and that the test room ambient noise SPLs were considerably less than the OSHA MPANLs, that authors recommend that the OSHA MPANLs be revised to the more stringent ANSI 1991 MPANLs so that hearing thresholds for baseline and annual audiograms can be measured down to 0-dB HL.
Matas, Carla Gentile; Samelli, Alessandra Giannella; Magliaro, Fernanda Cristina Leite; Segurado, Aluisio
2017-08-02
The Human Immunodeficiency Virus (HIV) and infections related to it can affect multiple sites in the hearing system. The use of High-Activity Anti-Retroviral Therapy (HAART) can cause side effects such as ototoxicity. Thus, no consistent patterns of hearing impairment in adults with Human Immunodeficiency Virus / Acquired Immune Deficiency Syndrome have been established, and the problems that affect the hearing system of this population warrant further research. This study aimed to compare the audiological and electrophysiological data of Human Immunodeficiency Virus-positive patients with and without Acquired Immune Deficiency Syndrome, who were receiving High-Activity Anti-Retroviral Therapy, to healthy individuals. It was a cross-sectional study conducted with 71 subjects (30-48 years old), divided into groups: Research Group I: 16 Human Immunodeficiency Virus-positive individuals without Acquired Immunodeficiency Syndrome (not receiving antiretroviral treatment); Research Group II: 25 Human Immunodeficiency Virus-positive individuals with Acquired Immunodeficiency Syndrome (receiving antiretroviral treatment); Control Group: 30 healthy subjects. All individuals were tested by pure-tone air conduction thresholds at 0.25-8kHz, extended high frequencies at 9-20kHz, electrophysiological tests (Auditory Brainstem Response - ABR, Middle Latency Responses - MLR, Cognitive Potential - P300). Research Group I and Research Group II had higher hearing thresholds in both conventional and high frequency audiometry when compared to the control group, prolonged latency of waves I, III, V and interpeak I-V in Auditory Brainstem Response and prolonged latency of P300 Cognitive Potential. Regarding Middle Latency Responses, there was a decrease in the amplitude of the Pa wave of Research Group II compared to the Research Group I. Both groups with Human Immunodeficiency Virus had higher hearing thresholds when compared to healthy individuals (group exposed to antiretroviral treatment showed the worst hearing threshold) and seemed to have lower neuroelectric transmission speed along the auditory pathway in the brainstem, subcortical and cortical regions. Copyright © 2017. Published by Elsevier Editora Ltda.
Effects of serum zinc level on tinnitus.
Berkiten, Güler; Kumral, Tolgar Lütfi; Yıldırım, Güven; Salturk, Ziya; Uyar, Yavuz; Atar, Yavuz
2015-01-01
The aim of this study was to assess zinc levels in tinnitus patients, and to evaluate the effects of zinc deficiency on tinnitus and hearing loss. One-hundred patients, who presented to an outpatient clinic with tinnitus between June 2009 and 2014, were included in the study. Patients were divided into three groups according to age: Group I (patients between 18 and 30years of age); Group II (patients between 31 and 60years of age); and Group III (patients between 61 and 78years of age). Following a complete ear, nose and throat examination, serum zinc levels were measured and the severity of tinnitus was quantified using the Tinnitus Severity Index Questionnaire (TSIQ). Patients were subsequently asked to provide a subjective judgment regarding the loudness of their tinnitus. The hearing status of patients was evaluated by audiometry and high-frequency audiometry. An average hearing sensitivity was calculated as the mean value of hearing thresholds between 250 and 20,000Hz. Serum zinc levels between 70 and 120μg/dl were considered normal. The severity and loudness of tinnitus, and the hearing thresholds of the normal zinc level and zinc-deficient groups, were compared. Twelve of 100 (12%) patients exhibited low zinc levels. The mean age of the zinc-deficient group was 65.41±12.77years. Serum zinc levels were significantly lower in group III (p<0.01). The severity and loudness of tinnitus were greater in zinc-deficient patients (p=0.011 and p=0.015, respectively). Moreover, the mean thresholds of air conduction were significantly higher in zinc-deficient patients (p=0.000). We observed that zinc levels decrease as age increases. In addition, there was a significant correlation between zinc level and the severity and loudness of tinnitus. Zinc deficiency was also associated with impairments in hearing thresholds. Copyright © 2015 Elsevier Inc. All rights reserved.
Schlund, M W
2000-10-01
Bedside hearing screenings are routinely conducted by speech and language pathologists for brain injury survivors during rehabilitation. Cognitive deficits resulting from brain injury, however, may interfere with obtaining estimates of auditory thresholds. Poor comprehension or attention deficits often compromise patient abilities to follow procedural instructions. This article describes the effects of jointly applying behavioral methods and psychophysical methods to improve two severely brain-injured survivors' attending and reporting on auditory test stimuli presentation. Treatment consisted of stimulus control training that involved differentially reinforcing responding in the presence and absence of an auditory test tone. Subsequent hearing screenings were conducted with novel auditory test tones and a common titration procedure. Results showed that prior stimulus control training improved attending and reporting such that hearing screenings were conducted and estimates of auditory thresholds were obtained.
Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms.
Liberman, M Charles; Kujawa, Sharon G
2017-06-01
Common causes of hearing loss in humans - exposure to loud noise or ototoxic drugs and aging - often damage sensory hair cells, reflected as elevated thresholds on the clinical audiogram. Recent studies in animal models suggest, however, that well before this overt hearing loss can be seen, a more insidious, but likely more common, process is taking place that permanently interrupts synaptic communication between sensory inner hair cells and subsets of cochlear nerve fibers. The silencing of affected neurons alters auditory information processing, whether accompanied by threshold elevations or not, and is a likely contributor to a variety of perceptual abnormalities, including speech-in-noise difficulties, tinnitus and hyperacusis. Work described here will review structural and functional manifestations of this cochlear synaptopathy and will consider possible mechanisms underlying its appearance and progression in ears with and without traditional 'hearing loss' arising from several common causes in humans. Copyright © 2017 Elsevier B.V. All rights reserved.
Spectral Ripple Discrimination in Normal-Hearing Infants.
Horn, David L; Won, Jong Ho; Rubinstein, Jay T; Werner, Lynne A
Spectral resolution is a correlate of open-set speech understanding in postlingually deaf adults and prelingually deaf children who use cochlear implants (CIs). To apply measures of spectral resolution to assess device efficacy in younger CI users, it is necessary to understand how spectral resolution develops in normal-hearing children. In this study, spectral ripple discrimination (SRD) was used to measure listeners' sensitivity to a shift in phase of the spectral envelope of a broadband noise. Both resolution of peak to peak location (frequency resolution) and peak to trough intensity (across-channel intensity resolution) are required for SRD. SRD was measured as the highest ripple density (in ripples per octave) for which a listener could discriminate a 90° shift in phase of the sinusoidally-modulated amplitude spectrum. A 2 × 3 between-subjects design was used to assess the effects of age (7-month-old infants versus adults) and ripple peak/trough "depth" (10, 13, and 20 dB) on SRD in normal-hearing listeners (experiment 1). In experiment 2, SRD thresholds in the same age groups were compared using a task in which ripple starting phases were randomized across trials to obscure within-channel intensity cues. In experiment 3, the randomized starting phase method was used to measure SRD as a function of age (3-month-old infants, 7-month-old infants, and young adults) and ripple depth (10 and 20 dB in repeated measures design). In experiment 1, there was a significant interaction between age and ripple depth. The infant SRDs were significantly poorer than the adult SRDs at 10 and 13 dB ripple depths but adult-like at 20 dB depth. This result is consistent with immature across-channel intensity resolution. In contrast, the trajectory of SRD as a function of depth was steeper for infants than adults suggesting that frequency resolution was better in infants than adults. However, in experiment 2 infant performance was significantly poorer than adults at 20 dB depth suggesting that variability of infants' use of within-channel intensity cues, rather than better frequency resolution, explained the results of experiment 1. In experiment 3, age effects were seen with both groups of infants showing poorer SRD than adults but, unlike experiment 1, no significant interaction between age and depth was seen. Measurement of SRD thresholds in individual 3 to 7-month-old infants is feasible. Performance of normal-hearing infants on SRD may be limited by across-channel intensity resolution despite mature frequency resolution. These findings have significant implications for design and stimulus choice for applying SRD for testing infants with CIs. The high degree of variability in infant SRD can be somewhat reduced by obscuring within-channel cues.
Nuesse, Theresa; Steenken, Rike; Neher, Tobias; Holube, Inga
2018-01-01
Elderly listeners are known to differ considerably in their ability to understand speech in noise. Several studies have addressed the underlying factors that contribute to these differences. These factors include audibility, and age-related changes in supra-threshold auditory processing abilities, and it has been suggested that differences in cognitive abilities may also be important. The objective of this study was to investigate associations between performance in cognitive tasks and speech recognition under different listening conditions in older adults with either age appropriate hearing or hearing-impairment. To that end, speech recognition threshold (SRT) measurements were performed under several masking conditions that varied along the perceptual dimensions of dip listening, spatial separation, and informational masking. In addition, a neuropsychological test battery was administered, which included measures of verbal working and short-term memory, executive functioning, selective and divided attention, and lexical and semantic abilities. Age-matched groups of older adults with either age-appropriate hearing (ENH, n = 20) or aided hearing impairment (EHI, n = 21) participated. In repeated linear regression analyses, composite scores of cognitive test outcomes (evaluated using PCA) were included to predict SRTs. These associations were different for the two groups. When hearing thresholds were controlled for, composed cognitive factors were significantly associated with the SRTs for the ENH listeners. Whereas better lexical and semantic abilities were associated with lower (better) SRTs in this group, there was a negative association between attentional abilities and speech recognition in the presence of spatially separated speech-like maskers. For the EHI group, the pure-tone thresholds (averaged across 0.5, 1, 2, and 4 kHz) were significantly associated with the SRTs, despite the fact that all signals were amplified and therefore in principle audible. PMID:29867654
Rodrigues, Jorge; Azevedo, Olga; Sousa, Nuno; Cunha, Damião; Mexedo, Alexandre; Fonseca, Rui
2018-06-01
Fabry disease (FD) is a lysosomal storage disorder (LSD) that involves the cochleovestibular system. Tinnitus and progressive sensorineural hearing loss are frequent complains. A stabilization of hearing function has been reported with enzyme replacement therapy (ERT). This study aims to characterize the inner ear involvement, identify factors associated to hearing loss and evaluate the effect of ERT on the hearing function of FD patients. We reviewed the clinical records of patients with confirmed diagnosis of FD followed in a Reference Centre on LSD in the North of Portugal. We included a total of 122 patients with a mean age of 47.1 ± 17.6 years and 48.3% males. Hearing loss was reported by 26.2% of the patients and 23.0% mentioned tinnitus. Pure tone audiometry revealed sensorineural hearing loss in 36.9% of the cases. FD patients presented worse age-adjusted hearing thresholds in all analysed frequencies compared to the normal population (p = .001). Patients with hearing loss presented a significantly higher value of microalbuminuria (p = .001) and a higher frequency of acroparesthesias (p = .032). Patients presented a comparable hearing level one year after starting ERT (p = .384). In FD, hearing loss is common and age-matched hearing thresholds by frequency are worse than in the general population. Hearing loss was associated to the presence of acroparesthesias and higher values of microalbuminuria. Hearing loss stabilized in patients under ERT. A careful cochleo-vestibular evaluation should be part of the clinical assessment of FD. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
30 CFR 62.140 - Dual hearing protection level.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dual hearing protection level. 62.140 Section... HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.140 Dual hearing protection level. If during any work shift a miner's noise exposure exceeds the dual hearing protection level, the mine operator must, in...
30 CFR 62.140 - Dual hearing protection level.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Dual hearing protection level. 62.140 Section... HEALTH REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.140 Dual hearing protection level. If during any work shift a miner's noise exposure exceeds the dual hearing protection level, the mine operator must, in...
Hall, Deborah A; Guest, Hannah; Prendergast, Garreth; Plack, Christopher J; Francis, Susan T
2018-01-01
Background Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. Objective Our Medical Research Council–funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). Methods Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. Results This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. Conclusions This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss. PMID:29523503
Cochlear implantation: is hearing preservation necessary in severe to profound hearing loss?
Derinsu, Ufuk; Serin, Gediz Murat; Akdaş, Ferda; Batman, Çağlar
2011-03-01
The goal of the cochlear implant surgery is to place the electrode array with minimal damage to preserve the residual hearing. Round-window insertion can be performed in a manner that is potentially less traumatic than the standard cochleostomy. The purpose of the study was to investigate audiological results of the round-window approach using standard electrode. A retrospective study was performed to evaluate our experience in patients with implanted through round window between January 2007 and March 2009. Sixty patients had undergone cochlear implant surgery through the round window with full insertion of a standard electrode array. Preoperative and postoperative pure-tone thresholds were measured for implanted ears in the range of 250 to 4000 Hz. Within these 60 cases, 31 patients had been evaluated. The population comprised 16 women and 15 men. The mean age was 15.96 years (range, 4-64 years). Follow-up times ranged from 6 to 26 months. Preservation of low-frequency hearing (250 and 500 Hz) was achieved in 27 (87%) of 31 patients. Complete hearing preservation (all frequencies) was accomplished in 11 patients (35.48%). No hearing could be determined postoperatively in 4 patients (12.9%), having preoperative thresholds of 120 dB at 250, 500, and 1000 Hz. Round-window approach has been widely used for preservation of residual hearing. In our patients with severe to profound hearing loss, we preserved residual hearing. Although the residual hearing cannot be sufficient for using additional acoustic stimulation, the preserved residual hearing means minimal damage and a more convenient cochlea, so this is promising for future development.
Dietz, Mathias; Hohmann, Volker; Jürgens, Tim
2015-01-01
For normal-hearing listeners, speech intelligibility improves if speech and noise are spatially separated. While this spatial release from masking has already been quantified in normal-hearing listeners in many studies, it is less clear how spatial release from masking changes in cochlear implant listeners with and without access to low-frequency acoustic hearing. Spatial release from masking depends on differences in access to speech cues due to hearing status and hearing device. To investigate the influence of these factors on speech intelligibility, the present study measured speech reception thresholds in spatially separated speech and noise for 10 different listener types. A vocoder was used to simulate cochlear implant processing and low-frequency filtering was used to simulate residual low-frequency hearing. These forms of processing were combined to simulate cochlear implant listening, listening based on low-frequency residual hearing, and combinations thereof. Simulated cochlear implant users with additional low-frequency acoustic hearing showed better speech intelligibility in noise than simulated cochlear implant users without acoustic hearing and had access to more spatial speech cues (e.g., higher binaural squelch). Cochlear implant listener types showed higher spatial release from masking with bilateral access to low-frequency acoustic hearing than without. A binaural speech intelligibility model with normal binaural processing showed overall good agreement with measured speech reception thresholds, spatial release from masking, and spatial speech cues. This indicates that differences in speech cues available to listener types are sufficient to explain the changes of spatial release from masking across these simulated listener types. PMID:26721918
Hearing loss and the risk of disability pension in Norway: the Hunt Study.
Helvik, Anne-Sofie; Krokstad, Steinar; Tambs, Kristian
2013-12-01
The purpose was to explore the possible associations between measured hearing thresholds and work related disability pension granted for other medical reasons in a Norwegian population. This study included 25,537 persons from the Nord-Trøndelag Health Study (HUNT) aged 20-54 years at baseline in HUNT1 (1984-1986) who also participated in the follow-up study 11 years later, HUNT2 (1995-1997) that included a hearing examination. Logistic regression analyses of disability pension granted up to 1996 or earlier in life were conducted for men and women separately and in two age strata. Effects of low, middle and high-frequency hearing thresholds were explored, adjusting the effects of each hearing frequency for each other. Further adjustment was made for educational level, category of work (seven categories) and general health in HUNT1. In all, 0.4% (16 of 4306) of the disability pensions granted up to 1996 was due to hearing related diagnoses. The risk of being granted disability pension up to 1996 with registered diagnoses not related to hearing loss increased with degree of loss of low-frequency hearing in young and middle-aged men and middle-aged women (OR 1.72, 95% CI 1.25-2.37; OR 1.16, 95% CI 1.04-1.30; OR 1.11, 95% CI 1.00-1.23). Hearing loss diagnoses are rarely reported as main causes in disability statistics, however, degree of hearing loss increased the risk of being granted with disability pensioning with diagnoses not related to hearing loss.
Attyé, Arnaud; Eliezer, Michael; Medici, Maud; Tropres, Irène; Dumas, Georges; Krainik, Alexandre; Schmerber, Sébastien
2018-07-01
A case-controlled imaging study demonstrated that saccular hydrops was specific to Meniere's disease (MD), but only present in a subset of patients. Here, we compared patients with definite MD, vertigo and sensorineural hearing loss (SNHL) to elucidate the relationship between saccular hydrops and extent of SNHL. In this prospective study, we performed 3D-FLAIR sequences between 4.5 and 5.5 h after contrast media injection in patients with MD (n=20), SNHL (n=20), vertigo (n=20) and 30 healthy subjects. Two radiologists independently graded saccular hydrops. ROC analysis was performed to determine the hearing loss threshold to differentiate patients with saccular hydrops. Saccular hydrops was found in 11 of 20 MD patients, 10 of 20 SNHL patients and in none of the vertigo patients and healthy subjects. In SNHL patients, 45 dB was the threshold above which there was a significant association with saccular hydrops, with sensitivity of 100 % and specificity of 90 %. In MD patients, 40 dB was the threshold above which there was a significant association with saccular hydrops, with sensitivity of 100 % and specificity of 44 %. Our results indicate saccular hydrops as a feature of worse than moderate SNHL rather than MD itself. • MRI helps clinicians to assess patients with isolated low-tone sensorineural hearing loss. • Saccular hydrops correlates with sensorineural hearing loss at levels above 40 dB. • Vertigo patients without sensorineural hearing loss do not have saccular hydrops. • Saccular hydrops is described in patients without clinical diagnosis of Meniere's disease.
Tsaneva, L
1993-01-01
The results from the investigation of the threshold of discomfort in 385 operators from firm "Kremikovtsi" are discussed. The most expressed changes are found in operators with increased tonal auditory threshold up to 45 and above 50 dB, in high confidential probability. The observed changes in the threshold of discomfort are classified into 3 groups: 1). Raised tonal auditory threshold (up to 30 dB) without decrease in the threshold of discomfort; 2). Decreased threshold of discomfort (with about 15-20 dB) in raised tonal auditory threshold (up to 45 dB); 3). Decreased threshold of discomfort on the background of raised (above 50 dB) tonal auditory threshold. On 4 figures are represented audiograms, illustrating the state of tonal auditory threshold, the field of hearing and the threshold of discomfort. The field of hearing of the operators from the III and IV groups is narrowed, and in the latter also deformed. The explanation of this pathophysiological phenomenon is related to the increased effect of the sound irritation and the presence of recruitment phenomenon with possible engagement of the central end of the auditory analyser. It is underlined, that the threshold of discomfort is sensitive index for the state of the individual norms of each operator for the speech-sound-noise discomfort.(ABSTRACT TRUNCATED AT 250 WORDS)
Hearing gain with a BAHA test-band in patients with single-sided deafness.
Kim, Do-Youn; Kim, Tae Su; Shim, Byoung Soo; Jin, In Suk; Ahn, Joong Ho; Chung, Jong Woo; Yoon, Tae Hyun; Park, Hong Ju
2014-01-01
It is assumed that preoperative use of a bone-anchored hearing aid (BAHA) test-band will give a patient lower gain compared to real post-operative gain because of the reduction of energy through the scalp when using a test-band. Hearing gains using a BAHA test-band were analyzed in patients with unilateral hearing loss. Nineteen patients with unilateral sensorineural hearing loss were enrolled. A test-band, which was connected to BAHA Intenso with full-on gain, was put on the mastoid. Conventional air-conduction (AC) pure-tone averages (PTAs) and sound-field PTAs and speech reception thresholds (SRTs) were obtained in conditions A (the better ear naked), B (the better ear plugged), and C (the better ear plugged with a test-band on the poorer mastoid). Air-conduction PTAs of the poorer and better ears were 91 ± 19 and 18 ± 8 dB HL. Sound-field PTAs in condition B were higher than those in condition A (54 vs. 26 dB HL), which means that earplugs can block the sound grossly up to 54 dB HL through the better ears. The aided PTAs (24 ± 6 dB HL) in condition C were similar to those of the better ears in condition A (26±9 dB HL), though condition C showed higher thresholds at 500 Hz and lower thresholds at 1 and 2kHz when compared to condition A. The hearing thresholds using a test-band were similar to the published results of BAHA users with the volume to most comfortable level (MCL). Our findings showed that a BAHA test-band on the poorer ear could transmit sound to the cochlea as much as the better ears can hear. The increased functional gain at 1 and 2kHz reflects the technical characteristics of BAHA processor. The reduction of energy through the scalp when using a test-band seems to be offset by the difference of output by setting the volume to full-on gain and using a high-powered speech processor. Preoperative hearing gains using a test-band with full-on gain seems to be similar to the post-operative gains of BAHA users with the volume to MCL. © 2013.
Eckert, Mark A; Matthews, Lois J; Dubno, Judy R
2017-01-01
Even older adults with relatively mild hearing loss report hearing handicap, suggesting that hearing handicap is not completely explained by reduced speech audibility. We examined the extent to which self-assessed ratings of hearing handicap using the Hearing Handicap Inventory for the Elderly (HHIE; Ventry & Weinstein, 1982) were significantly associated with measures of speech recognition in noise that controlled for differences in speech audibility. One hundred sixty-two middle-aged and older adults had HHIE total scores that were significantly associated with audibility-adjusted measures of speech recognition for low-context but not high-context sentences. These findings were driven by HHIE items involving negative feelings related to communication difficulties that also captured variance in subjective ratings of effort and frustration that predicted speech recognition. The average pure-tone threshold accounted for some of the variance in the association between the HHIE and audibility-adjusted speech recognition, suggesting an effect of central and peripheral auditory system decline related to elevated thresholds. The accumulation of difficult listening experiences appears to produce a self-assessment of hearing handicap resulting from (a) reduced audibility of stimuli, (b) declines in the central and peripheral auditory system function, and (c) additional individual variation in central nervous system function.
Matthews, Lois J.; Dubno, Judy R.
2017-01-01
Purpose Even older adults with relatively mild hearing loss report hearing handicap, suggesting that hearing handicap is not completely explained by reduced speech audibility. Method We examined the extent to which self-assessed ratings of hearing handicap using the Hearing Handicap Inventory for the Elderly (HHIE; Ventry & Weinstein, 1982) were significantly associated with measures of speech recognition in noise that controlled for differences in speech audibility. Results One hundred sixty-two middle-aged and older adults had HHIE total scores that were significantly associated with audibility-adjusted measures of speech recognition for low-context but not high-context sentences. These findings were driven by HHIE items involving negative feelings related to communication difficulties that also captured variance in subjective ratings of effort and frustration that predicted speech recognition. The average pure-tone threshold accounted for some of the variance in the association between the HHIE and audibility-adjusted speech recognition, suggesting an effect of central and peripheral auditory system decline related to elevated thresholds. Conclusion The accumulation of difficult listening experiences appears to produce a self-assessment of hearing handicap resulting from (a) reduced audibility of stimuli, (b) declines in the central and peripheral auditory system function, and (c) additional individual variation in central nervous system function. PMID:28060993
Lechner, W; Ladich, F
2011-01-01
Pigmentation disorders such as albinism are occasionally associated with hearing impairments in mammals. Therefore, we wanted to investigate whether such a phenomenon also exists in non-mammalian vertebrates. We measured the hearing abilities of normally pigmented and albinotic specimens of two catfish species, the European wels Silurus glanis (Siluridae) and the South American bronze catfish Corydoras aeneus (Callichthyidae). The non-invasive auditory evoked potential (AEP) recording technique was utilized to determine hearing thresholds at 10 frequencies from 0.05 to 5 kHz. Neither auditory sensitivity nor shape of AEP waveforms differed between normally pigmented and albinotic specimens at any frequency tested in both species. Silurus glanis and C. aeneus showed the best hearing between 0.3 and 1 kHz; the lowest thresholds were 78.4 dB at 0.5 kHz in S. glanis (pigmented), 75 dB at 1 kHz in S. glanis (albinotic), 77.6 dB at 0.5 kHz in C. aeneus (pigmented) and 76.9 dB at 1 kHz in C. aeneus (albinotic). This study indicates no association between albinism and hearing ability. Perhaps because of the lack of melanin in the fish inner ear, hearing in fishes is less likely to be affected by albinism than in mammals. PMID:21552308
Lechner, W; Ladich, F
2011-03-01
Pigmentation disorders such as albinism are occasionally associated with hearing impairments in mammals. Therefore, we wanted to investigate whether such a phenomenon also exists in non-mammalian vertebrates. We measured the hearing abilities of normally pigmented and albinotic specimens of two catfish species, the European wels Silurus glanis (Siluridae) and the South American bronze catfish Corydoras aeneus (Callichthyidae). The non-invasive auditory evoked potential (AEP) recording technique was utilized to determine hearing thresholds at 10 frequencies from 0.05 to 5 kHz. Neither auditory sensitivity nor shape of AEP waveforms differed between normally pigmented and albinotic specimens at any frequency tested in both species. Silurus glanis and C. aeneus showed the best hearing between 0.3 and 1 kHz; the lowest thresholds were 78.4 dB at 0.5 kHz in S. glanis (pigmented), 75 dB at 1 kHz in S. glanis (albinotic), 77.6 dB at 0.5 kHz in C. aeneus (pigmented) and 76.9 dB at 1 kHz in C. aeneus (albinotic). This study indicates no association between albinism and hearing ability. Perhaps because of the lack of melanin in the fish inner ear, hearing in fishes is less likely to be affected by albinism than in mammals.
Paraouty, Nihaad; Ewert, Stephan D; Wallaert, Nicolas; Lorenzi, Christian
2016-07-01
Frequency modulation (FM) and amplitude modulation (AM) detection thresholds were measured for a 500-Hz carrier frequency and a 5-Hz modulation rate. For AM detection, FM at the same rate as the AM was superimposed with varying FM depth. For FM detection, AM at the same rate was superimposed with varying AM depth. The target stimuli always contained both amplitude and frequency modulations, while the standard stimuli only contained the interfering modulation. Young and older normal-hearing listeners, as well as older listeners with mild-to-moderate sensorineural hearing loss were tested. For all groups, AM and FM detection thresholds were degraded in the presence of the interfering modulation. AM detection with and without interfering FM was hardly affected by either age or hearing loss. While aging had an overall detrimental effect on FM detection with and without interfering AM, there was a trend that hearing loss further impaired FM detection in the presence of AM. Several models using optimal combination of temporal-envelope cues at the outputs of off-frequency filters were tested. The interfering effects could only be predicted for hearing-impaired listeners. This indirectly supports the idea that, in addition to envelope cues resulting from FM-to-AM conversion, normal-hearing listeners use temporal fine-structure cues for FM detection.
SU-F-J-32: Do We Need KV Imaging During CBCT Based Patient Set-Up for Lung Radiation Therapy?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, A; Zhou, J; Prado, K
Purpose: To evaluate the role of 2D kilovoltage (kV) imaging to complement cone beam CT (CBCT) imaging in a shift threshold based image guided radiation therapy (IGRT) strategy for conventional lung radiotherapy. Methods: A retrospective study was conducted by analyzing IGRT couch shift trends for 15 patients that received lung radiation therapy to evaluate the benefit of performing orthogonal kV imaging prior to CBCT imaging. Herein, a shift threshold based IGRT protocol was applied, which would mandate additional CBCT verification if the applied patient shifts exceeded 3 mm to avoid intraobserver variability in CBCT registration and to confirm table shifts.more » For each patient, two IGRT strategies: kV + CBCT and CBCT alone, were compared and the recorded patient shifts were categorized into whether additional CBCT acquisition would have been mandated or not. The effectiveness of either strategy was gauged by the likelihood of needing additional CBCT imaging for accurate patient set-up. Results: The use of CBCT alone was 6 times more likely to require an additional CBCT than KV+CBCT, for a 3 mm shift threshold (88% vs 14%). The likelihood of additional CBCT verification generally increased with lower shift thresholds, and was significantly lower when kV+CBCT was used (7% with 5 mm shift threshold, 36% with 2 mm threshold), than with CBCT alone (61% with 5 mm shift threshold, 97% with 2 mm threshold). With CBCT alone, treatment time increased by 2.2 min and dose increased by 1.9 cGy per fraction on average due to additional CBCT with a 3mm shift threshold. Conclusion: The benefit of kV imaging to screen for gross misalignments led to more accurate CBCT based patient localization compared with using CBCT alone. The subsequently reduced need for additional CBCT verification will minimize treatment time and result in less overall patient imaging dose.« less
Yeung, Jeffrey C; Heley, Sophie; Beauregard, Yves; Champagne, Sandra; Bromwich, Matthew A
2015-08-01
The timely diagnosis and treatment of acquired hearing loss in the pediatric population has significant implications for a child's development. Audiological assessment in children, however, carries both technological and logistical challenges. Typically, specialized methods (such as play audiometry) are required to maintain the child's attention and can be resource intensive. These challenges were previously addressed by a novel, calibrated, interactive play audiometer for Apple(®) iOS(®) called "ShoeBOX Audiometry". This device has potential applications for deployment in environments where traditional clinical audiometry is either unavailable or impractical. The objective of this study was to assess the screening capability of the tablet audiometer in an uncontrolled environment using consumer ear-bud headphones. Consecutive patients presenting to the Audiology Clinic at the Children's Hospital of Eastern Ontario (ages 4 and older) were recruited. Participants' hearing was evaluted using the tablet audiometer calibrated to Apple(®) In-Ear headphones. The warble tone thresholds obtained were compared to gold standard measurements taken with a traditional clinical audiometer inside a soundbooth. 80 patients were enrolled. The majority of participants were capable of completing an audiologic assessment using the tablet computer. Due to ambient noise levels outside a soundbooth, thresholds obtained at 500Hz were not consistent with traditional audiometry. Excluding 500Hz threholds, the tablet audiometer demonstrated strong negative predictive value (89.7%) as well as strong sensitivity (91.2%) for hearing loss. Thresholds obtained in an uncontrolled setting are not reflective of diagnostic thresholds due to the uncalibrated nature of the headphones and variability of the setting without a booth. Nevertheless, the tablet audiometer proved to be both a valid and sensitive instrument for unsupervised screening of warble-tone thresholds in children. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Evaluation of Hearing Loss in Pilots
Atalay, Hayriye; Babakurban, Seda Türkoğlu; Aydın, Erdinç
2015-01-01
Objective High-intensity noise sources with an increase in air traffic and sudden changes in atmospheric pressure can cause hearing loss in pilots. The main goal of this research is to examine hearing loss due to age, the total flight hours and aircraft types and to evaluate the effects of personal conditions that can influence the hearing level. Methods We examined the data of 234 Turkish pilots aged between 25 and 54 years who were examined due to the aviation Law for annual control from January 2005 to January 2014 at Başkent University Medical Faculty, Ankara Hospital. The audiometric results of the pilots were used. While 1, 2, 3, 4, 6, and 8 KHz were used for the airway threshold, 1, 2, and 4 KHz were used for the bone conduction threshold. Results According to the data of the 234 pilots, there was a significant correlation between high-frequency hearing loss and the total flight hours and pilots’ ages. The average hearing loss was higher, particularly in the left ear, in pilots using helicopters than in those using other aircraft types. There was no statistically significant correlation between hearing loss and diabetes, hypercholesterolemia, high blood pressure, anemia, obesity, and smoking. Conclusion A significant correlation was observed between high frequency hearing loss and the total flight hours, pilots’ age, and aircraft types in our study. PMID:29392000
Upward spread of informational masking in normal-hearing and hearing-impaired listeners
NASA Astrophysics Data System (ADS)
Alexander, Joshua M.; Lutfi, Robert A.
2003-04-01
Thresholds for pure-tone signals of 0.8, 2.0, and 5.0 kHz were measured in the presence of a simultaneous multitone masker in 15 normal-hearing and 8 hearing-impaired listeners. The masker consisted of fixed-frequency tones ranging from 522-8346 Hz at 1/3-octave intervals, excluding the 2/3-octave interval on either side of the signal. Masker uncertainty was manipulated by independently and randomly playing individual masker tones with probability p=0.5 or p=1.0 on each trial. Informational masking (IM) was estimated by the threshold difference (p=0.5 minus p=1.0). Decision weights were estimated from correlations of the listener's response with the occurrence of the signal and individual masker components on each trial. IM was greater for normal-hearing listeners than for hearing-impaired listeners, and most listeners had at least 10 dB of IM for one of the signal frequencies. For both groups, IM increased as the number of masker components below the signal frequency increased. Decision weights were also similar for both groups-masker frequencies below the signal were weighted more than those above. Implications are that normal-hearing and hearing-impaired individuals do not weight information differently in these masking conditions and that factors associated with listening may be partially responsible for the greater effectiveness of low-frequency maskers. [Work supported by NIDCD.
Mizushima, Yu; Fujimoto, Chisato; Kashio, Akinori; Kondo, Kenji; Yamasoba, Tatsuya
2017-11-18
It has been suggested that macrophages or inflammatory monocytes participate in the pathology of noise-induced hearing loss (NIHL), but it is unclear how extensively these cells contribute to the development of temporary and/or permanent NIHL. To address this question, we used clodronate liposomes to deplete macrophages and monocytes. After clodronate liposome injection, mice were exposed to 4-kHz octave band noise at 121 dB for 4 h. Compared to vehicle-injected controls, clodronate-treated mice exhibited significantly reduced permanent threshold shifts at 4 and 8 kHz and significantly smaller outer hair cell losses in the lower-apical cochlear turn. Following noise exposure, the stria vascularis had significantly more cells expressing the macrophage-specific protein F4/80, and this effect was significantly suppressed by clodronate treatment. These F4/80-positive cells expressed interleukin 1 beta (IL-1β), which noise exposure activated. However, IL-1β deficient mice did not exhibit significant resistance to intense noise when compared to wild-type mice. These findings suggest that macrophages that enter the cochlea after noise exposure are involved in NIHL, whereas IL-1β inhibition does not reverse this cochlear damage. Therefore, macrophages may be a promising therapeutic target in human sensorineural hearing losses such as NIHL. Copyright © 2017 Elsevier Inc. All rights reserved.
Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss
NASA Astrophysics Data System (ADS)
Rhee, Chung-Ku; He, Peijie; Jung, Jae Yun; Ahn, Jin-Chul; Chung, Phil-Sang; Lee, Min Young; Suh, Myung-Whan
2013-12-01
The primary cause of hearing loss includes damage to cochlear hair cells. Low-level laser therapy (LLLT) has become a popular treatment for damaged nervous systems. Based on the idea that cochlea hair cells and neural cells are from same developmental origin, the effect of LLLT on hearing loss in animal models is evaluated. Hearing loss animal models were established, and the animals were irradiated by 830-nm diode laser once a day for 10 days. Power density of the laser treatment was 900 mW/cm2, and the fluence was 162 to 194 J. The tympanic membrane was evaluated after LLLT. Thresholds of auditory brainstem responses were evaluated before treatment, after gentamicin, and after 10 days of LLLT. Quantitative scanning electron microscopic (SEM) observations were done by counting remaining hair cells. Tympanic membranes were intact at the end of the experiment. No adverse tissue reaction was found. On SEM images, LLLT significantly increased the number of hair cells in middle and basal turns. Hearing was significantly improved by laser irradiation. After LLLT treatment, both the hearing threshold and hair-cell count significantly improved.
Great cormorants ( Phalacrocorax carbo) can detect auditory cues while diving
NASA Astrophysics Data System (ADS)
Hansen, Kirstin Anderson; Maxwell, Alyssa; Siebert, Ursula; Larsen, Ole Næsbye; Wahlberg, Magnus
2017-06-01
In-air hearing in birds has been thoroughly investigated. Sound provides birds with auditory information for species and individual recognition from their complex vocalizations, as well as cues while foraging and for avoiding predators. Some 10% of existing species of birds obtain their food under the water surface. Whether some of these birds make use of acoustic cues while underwater is unknown. An interesting species in this respect is the great cormorant ( Phalacrocorax carbo), being one of the most effective marine predators and relying on the aquatic environment for food year round. Here, its underwater hearing abilities were investigated using psychophysics, where the bird learned to detect the presence or absence of a tone while submerged. The greatest sensitivity was found at 2 kHz, with an underwater hearing threshold of 71 dB re 1 μPa rms. The great cormorant is better at hearing underwater than expected, and the hearing thresholds are comparable to seals and toothed whales in the frequency band 1-4 kHz. This opens up the possibility of cormorants and other aquatic birds having special adaptations for underwater hearing and making use of underwater acoustic cues from, e.g., conspecifics, their surroundings, as well as prey and predators.
Van Dun, Bram; Wouters, Jan; Moonen, Marc
2009-07-01
Auditory steady-state responses (ASSRs) are used for hearing threshold estimation at audiometric frequencies. Hearing impaired newborns, in particular, benefit from this technique as it allows for a more precise diagnosis than traditional techniques, and a hearing aid can be better fitted at an early age. However, measurement duration of current single-channel techniques is still too long for clinical widespread use. This paper evaluates the practical performance of a multi-channel electroencephalogram (EEG) processing strategy based on a detection theory approach. A minimum electrode set is determined for ASSRs with frequencies between 80 and 110 Hz using eight-channel EEG measurements of ten normal-hearing adults. This set provides a near-optimal hearing threshold estimate for all subjects and improves response detection significantly for EEG data with numerous artifacts. Multi-channel processing does not significantly improve response detection for EEG data with few artifacts. In this case, best response detection is obtained when noise-weighted averaging is applied on single-channel data. The same test setup (eight channels, ten normal-hearing subjects) is also used to determine a minimum electrode setup for 10-Hz ASSRs. This configuration allows to record near-optimal signal-to-noise ratios for 80% of subjects.
Ragab, A; Shreef, E; Behiry, E; Zalat, S; Noaman, M
2009-01-01
To investigate the safety and efficacy of ozone therapy in adult patients with sudden sensorineural hearing loss. Prospective, randomised, double-blinded, placebo-controlled, parallel group, clinical trial. Forty-five adult patients presented with sudden sensorineural hearing loss, and were randomly allocated to receive either placebo (15 patients) or ozone therapy (auto-haemotherapy; 30 patients). For the latter treatment, 100 ml of the patient's blood was treated immediately with a 1:1 volume, gaseous mixture of oxygen and ozone (from an ozone generator) and re-injected into the patient by intravenous infusion. Treatments were administered twice weekly for 10 sessions. The following data were recorded: pre- and post-treatment mean hearing gains; air and bone pure tone averages; speech reception thresholds; speech discrimination scores; and subjective recovery rates. Significant recovery was observed in 23 patients (77 per cent) receiving ozone treatment, compared with six (40 per cent) patients receiving placebo (p < 0.05). Mean hearing gains, pure tone averages, speech reception thresholds and subjective recovery rates were significantly better in ozone-treated patients compared with placebo-treated patients (p < 0.05). Ozone therapy is a significant modality for treatment of sudden sensorineural hearing loss; no complications were observed.
Pure-tone audiograms and hearing loss in the white whale (Delphinapterus leucas)
NASA Astrophysics Data System (ADS)
Finneran, James J.; Carder, Donald A.; Dear, Randall; Belting, Traci; Ridgway, Sam H.
2003-10-01
A behavioral response paradigm was used to measure pure-tone audiograms for two white whales (Delphinapterus leucas). Tests were conducted over a 20 month period at the Point Defiance Zoo and Aquarium, in Tacoma, Washington. Subjects consisted of two males, aged 8-10 and 9-11 during the course of the study. Subjects were born in an oceanarium and had been housed together for all of their lives. Hearing thresholds were measured using a modified up/down staircase procedure and acoustic response paradigm where subjects were trained to whistle in response to hearing test tones and to remain quiet otherwise. Test frequencies ranged from approximately 2 to 130 kHz. Best sensitivities ranged from 40 to 50 dB re: 1 Pa. Both subjects had traditional U-shaped mammalian audiograms; however, one subject exhibited significant high-frequency hearing loss, above approximately 37 kHz. The experimental setup and procedure will be presented and the measured hearing thresholds compared to those previously measured in white whales. The potential role of ototoxic antibiotics in the observed hearing loss will be discussed. [Work supported by ONR Marine Mammal S&T Program and the U.S. Navy CNO(N45).
Tokgöz, S Alicura; Vuralkan, E; Sonbay, N D; Çalişkan, M; Saka, C; Beşalti, Ö; Akin, İ
2012-05-01
This experimental study aimed to investigate the effects of vitamins E, B and C and L-carnitine in preventing cisplatin-induced ototoxicity. Twenty-five adult, male, Wistar albino rats were randomly allocated to receive intraperitoneal cisplatin either alone or preceded by vitamins B, E or C or L-carnitine. Auditory brainstem response (i.e. hearing thresholds and wave I-IV intervals) and distortion product otoacoustic emissions (i.e. signal-to-noise ratios) were recorded before and 72 hours after cisplatin administration. The following statistically significant differences were seen: control group pre- vs post-treatment wave I-IV interval values (p < 0.05); control vs vitamin E and B groups' I-IV interval values (p < 0.05); control vs other groups' hearing thresholds; vitamin E vs vitamin B and C and L-carnitine groups' hearing thresholds (p < 0.05); and vitamin B vs vitamin C and L-carnitine groups' hearing thresholds (p < 0.05). Statistically significant decreases were seen when comparing the initial and final signal-to-noise ratios in the control, vitamin B and L-carnitine groups (2000 and 3000 Hz; p < 0.01), and the initial and final signal-to-noise ratios in the control group (at 4000 Hz; p < 0.01). Vitamins B, E and C and L-carnitine appear to reduce cisplatin-induced ototoxicity in rats. The use of such additional treatments to decrease cisplatin-induced ototoxicity in humans is still under discussion.
The Effects of Age at Cleft Palate Repair on Middle Ear Function and Hearing Level.
Lou, Qun; Zhu, Hongping; Luo, Yi; Zhou, Zhibo; Ma, Lian; Ma, Xiaoran; Fu, Yuan
2018-05-01
To investigate the age effects of cleft palate repair on middle ear function and hearing level in patients who underwent cleft palate repair at different ages by audiologic examination. Medical histories were gathered in detail, and audiologic tests (ie, tympanometry and pure tone hearing threshold) were conducted in 126 patients after palatoplasty. The patients were divided into the following 4 groups according to their ages when they underwent cleft palate repair: group I (0-3 years, 73 patients), group II (4-7 years, 29 patients), group III (8-11 years, 16 patients), and group IV (12 years and older, 8 patients). The data regarding tympanograms, hearing levels, and the average hearing thresholds of each group were analyzed using chi-square tests. The prevalence of middle ear dysfunction and hearing loss in the patients who underwent palatoplasty before 3 years old (27.4% and 2.0% respectively) was significantly lower than that in patients who underwent palatopalsty at 12 years or older (75.0% and 43.7%, respectively). Linear-by-linear association revealed that the prevalences of middle ear dysfunction and hearing loss among the 4 groups were significantly different ( P < .05). The prevalence of middle ear dysfunction and hearing loss tended to increase with advancing age at the time of cleft palate repair. From an audiologist's perspective, palatoplasty at an early age is very beneficial in helping children with cleft palates acquire better middle ear function and hearing level.
USDA-ARS?s Scientific Manuscript database
Investigating the mechanisms responsible for ecological thresholds is essential to understanding processes leading to ecosystem regime shifts. Dryland ecosystems are especially prone to threshold behavior wherein stressor-mediated alteration of patterns and processes can shift systems to alternative...
Cervical VEMP threshold response curve in the identification of Ménière's disease.
Zhu, Yi; McPherson, James; Beatty, Charles; Driscoll, Colin; Neff, Brian; Eggers, Scott; Shepard, Neil T
2014-03-01
To investigate the sensitivity/specificity of a shift upward in the most sensitive frequency of the cervical vestibular evoked myogenic potential (cVEMP) threshold-response curve in the identification of Ménière's disease (MD). A secondary purpose was to investigate the clinical characteristics that had an impact on the sensitivity/specificity and to adjust the criteria for a positive shift upward in the cVEMP curve to maximize performance of the test. A retrospective review of patients diagnosed with MD and those without MD. Two hundred ninety-four patients met the inclusion criteria of symptom complaints of spontaneous events of vertigo and a full vestibular and balance evaluation with cVEMP threshold-response curve testing. Two hundred six of these patients were diagnosed with MD, and 88 patients were determined to be non-MD. Review of the patients' medical records was used to extract data on the results of the cVEMP curve, age, gender, duration from time of onset of spontaneous events, pure tone average from hearing test, and water caloric asymmetry. Student's t-test, χ² test, receiver operating characteristic (ROC) curve with area under the curve (AUC), Pearson correlation coefficient, and sensitivity/specificity from 2 × 2 tables were all used in the analysis. Basic sensitivity/specificity for a shift upward in the most sensitive frequency to 1000 Hz in the cVEMP threshold-response curve was 0.47/0.64 respectively. Clinical characteristics that were found to have a significant impact on the sensitivity/specificity were age equal to or above 60 yr and a caloric asymmetry ≥25%. Various combinations of age and caloric with the requirement of a shift upward in the cVEMP curve most sensitive frequency to 1000 Hz resulted in significant but modest improvements in sensitivity/specificity. However, the overall performance was not shown acceptable for routine clinical use with maximum sensitivity at 0.73. Therefore, placing an emphasis on specificity over sensitivity results showed specificity of 0.95 for those under 60 yr and 0.90 for those 60 yr of age or older with sensitivity at 0.20, but only in the context of a ≥25% caloric asymmetry. We recommend the use of the shift upward to 1000 Hz with a caloric asymmetry as the clinical protocol to maximize the use of the cVEMP threshold-response curve for assistance in the identification of MD, in the context of a ≥25% caloric asymmetry. This implies that if the test is negative no interpretation of identification of MD can be made. If the test is positive the results can be used to increase the argument for MD since the probability of the result being a false positive is only 5-10%. American Academy of Audiology.
Theory of Auditory Thresholds in Primates
NASA Astrophysics Data System (ADS)
Harrison, Michael J.
2001-03-01
The influence of thermal pressure fluctuations at the tympanic membrane has been previously investigated as a possible determinant of the threshold of hearing in humans (L.J. Sivian and S.D. White, J. Acoust. Soc. Am. IV, 4;288(1933).). More recent work has focussed more precisely on the relation between statistical mechanics and sensory signal processing by biological means in creatures' brains (W. Bialek, in ``Physics of Biological Systems: from molecules to species'', H. Flyvberg et al, (Eds), p. 252; Springer 1997.). Clinical data on the frequency dependence of hearing thresholds in humans and other primates (W.C. Stebbins, ``The Acoustic Sense of Animals'', Harvard 1983.) has long been available. I have derived an expression for the frequency dependence of hearing thresholds in primates, including humans, by first calculating the frequency dependence of thermal pressure fluctuations at eardrums from damped normal modes excited in model ear canals of given simple geometry. I then show that most of the features of the clinical data are directly related to the frequency dependence of the ratio of thermal noise pressure arising from without to that arising from within the masking bandwidth which signals must dominate in order to be sensed. The higher intensity of threshold signals in primates smaller than humans, which is clinically observed over much but not all of the human auditory spectrum is shown to arise from their smaller meatus dimensions. note
Some observations on the nature of the audiometric 4000 hz notch: data from 3430 veterans.
Wilson, Richard H
2011-01-01
Pure-tone, air-conduction audiograms notched at 4000 Hz have long been considered the signature configuration for noise-induced hearing loss even though there is an extensive literature that does not mesh with this simple explanation. There are many reports of notched audiograms from individuals with no history of noise exposure and, conversely, reports of audiograms with no notches from individuals with a history of noise exposure. Recent reports increasingly suggest that unilateral 4000 Hz notches are common. The prevalence of notched audiograms at 4000 Hz is dependent on the definition of the notch and the population under study. To examine the prevalence and characteristics of audiograms that are notched at 4000 Hz. Retrospective, descriptive. The participants were 3430 veterans evaluated in the Audiology Clinic at the VA Medical Center, Mountain Home, Tennessee. The mean age was 62.3 yr. Data Collection and Analyses: The data were collected in the course of a 60 min, routine audiological evaluation. In addition to pure-tone audiometry, a history, otoscopy, speech audiometry in quiet and in noise, and aural-acoustic immittance measures were included in the clinic protocol but were not evaluated in this report. A notch was defined when the 4000 Hz threshold minus the 2000 Hz threshold and the 4000 Hz threshold minus the 8000 Hz threshold both were ≥10 dB. Overall the mean LE (left ear) thresholds at 2000, 3000, and 4000 Hz were at hearing levels 2-3 dB higher than the hearing levels for the corresponding mean RE (right ear) thresholds; the differences were significant. A notched audiogram was observed in 40.6% of the participants in at least one ear with 15.4% having bilateral notches, 28.8% LE notches, and 27.1% RE notches. Unilateral 4000 Hz notches were almost twice as prevalent as bilateral 4000 Hz notches. Viewed as a function of age, notched audiograms were most common (∼35% of the participants) in the 40 and 50 yr groups with a diminishing prevalence in the 60-80 yr groups. The mean notch depth at 4000 Hz was consistently 20-26 dB across the seven age groups. In comparison to the thresholds of the audiograms that were not notched, the thresholds of the audiograms with 4000 Hz notches (1) at 250-2000 Hz were at hearing levels 2-3 dB lower, (2) at 3000 and 4000 Hz were at hearing levels 8-17 dB higher, and (3) at 8000 Hz were at hearing levels 3-4 dB lower; the threshold differences were significant at all frequencies for both ears. The data suggest that unilateral, 4000 Hz notched audiograms are as common or more common than bilateral notched audiograms and that unilateral notched audiograms are equally common for the LE and RE. The prevalence and characteristics of 4000 Hz notched audiograms in this veteran sample are similar to those observed in the population as a whole. American Academy of Audiology.
Fractionated Stereotactic Radiotherapy of Vestibular Schwannomas Accelerates Hearing Loss
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, Rune, E-mail: rune333@gmail.com; Claesson, Magnus; Stangerup, Sven-Eric
2012-08-01
Objective: To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hearing preservation was also investigated. Methods and Materials: Forty-two patients receiving FSRT between 1997 and 2008 with a minimum follow-up of 2 years were included. All patients received 54 Gy in 27-30 fractions during 5.5-6.0 weeks. Clinical and audiometry data were collected prospectively. From a 'wait-and-scan' group, 409 patients were selected as control subjects, matched by initial audiometric parameters. Radiation dosemore » to the cochlea was measured using the original treatment plan and then related to changes in acoustic parameters. Results: Actuarial 2-, 4-, and 10-year tumor control rates were 100%, 91.5%, and 85.0%, respectively. Twenty-one patients had serviceable hearing before FSRT, 8 of whom (38%) retained serviceable hearing at 2 years after FSRT. No patients retained serviceable hearing after 10 years. At 2 years, hearing preservation rates in the control group were 1.8 times higher compared with the group receiving FSRT (P=.007). Radiation dose to the cochlea was significantly correlated to deterioration of the speech reception threshold (P=.03) but not to discrimination loss. Conclusion: FSRT accelerates the naturally occurring hearing loss in patients with vestibular schwannoma. Our findings, using fractionation of radiotherapy, parallel results using single-dose radiation. The radiation dose to the cochlea is correlated to hearing loss measured as the speech reception threshold.« less
Pedersen, K; Rosenhall, U
1991-01-01
The relationship between self-assessed hearing handicap and audiometric measures using pure-tone and speech audiometry was studied in a group of elderly persons representative of an urban Swedish population. The study population consisted of two cohorts, one of which was followed longitudinally. Significant correlations between measured and self-assessed hearing were found. Speech discrimination scores showed lower correlations with the self-estimated hearing than pure-tone averages and speech reception threshold. Questions concerning conversation with one person and concerning difficulty in hearing the doorbell showed lower correlations with measured hearing than the other questions. The discrimination score test is an inadequate tool for measuring hearing handicap.
Midline Shift Threshold Value for Hemiparesis in Chronic Subdural Hematoma.
Juković, Mirela F; Stojanović, Dejan B
2015-01-01
Chronic subdural hematoma (CSDH) has a variety of clinical presentations, with numerous neurological symptoms and signs. Hemiparesis is one of the leading signs that potentially indicates CSDH. Purpose of this study was to determine the threshold (cut-off) value of midsagittal line (MSL) shift after which hemiparesis is likely to appear. The study evaluated 83 patients with 53 unilateral and 30 bilateral CSDHs in period of three years. Evaluated computed tomography (CT) findings in patients with CSDH were diameter of the hematoma and midsagittal line shift, measured on non-contrast CT scan in relation with occurrence of hemiparesis. Threshold values of MSL shift for both types of CSDHs were obtained as maximal (equal) sensitivity and specificity (intersection of the curves). MSL is a good predictor for hemiparesis occurrence (total sample, AUROC 0.75, p=0.0001). Unilateral and bilateral CSDHs had different threshold values of the MSL for hemiparesis development. Results suggested that in unilateral CSDH the threshold values of MSL could be at 10 mm (AUROC=0.65; p=0.07). For bilateral CSDH the threshold level of MSL shift was 4.5 mm (AUROC=0.77; p=0.01). Our study pointed on the phenomenon that midsagittal line shift can predict hemiparesis occurrence. Hemiparesis in patients with bilateral CSDH was more related to midsagittal line shift compared with unilateral CSDH. When value of midsagittal line shift exceed the threshold level, hemiparesis occurs with certain probability.
Firszt, Jill B; Reeder, Ruth M; Holden, Laura K
At a minimum, unilateral hearing loss (UHL) impairs sound localization ability and understanding speech in noisy environments, particularly if the loss is severe to profound. Accompanying the numerous negative consequences of UHL is considerable unexplained individual variability in the magnitude of its effects. Identification of covariables that affect outcome and contribute to variability in UHLs could augment counseling, treatment options, and rehabilitation. Cochlear implantation as a treatment for UHL is on the rise yet little is known about factors that could impact performance or whether there is a group at risk for poor cochlear implant outcomes when hearing is near-normal in one ear. The overall goal of our research is to investigate the range and source of variability in speech recognition in noise and localization among individuals with severe to profound UHL and thereby help determine factors relevant to decisions regarding cochlear implantation in this population. The present study evaluated adults with severe to profound UHL and adults with bilateral normal hearing. Measures included adaptive sentence understanding in diffuse restaurant noise, localization, roving-source speech recognition (words from 1 of 15 speakers in a 140° arc), and an adaptive speech-reception threshold psychoacoustic task with varied noise types and noise-source locations. There were three age-sex-matched groups: UHL (severe to profound hearing loss in one ear and normal hearing in the contralateral ear), normal hearing listening bilaterally, and normal hearing listening unilaterally. Although the normal-hearing-bilateral group scored significantly better and had less performance variability than UHLs on all measures, some UHL participants scored within the range of the normal-hearing-bilateral group on all measures. The normal-hearing participants listening unilaterally had better monosyllabic word understanding than UHLs for words presented on the blocked/deaf side but not the open/hearing side. In contrast, UHLs localized better than the normal-hearing unilateral listeners for stimuli on the open/hearing side but not the blocked/deaf side. This suggests that UHLs had learned strategies for improved localization on the side of the intact ear. The UHL and unilateral normal-hearing participant groups were not significantly different for speech in noise measures. UHL participants with childhood rather than recent hearing loss onset localized significantly better; however, these two groups did not differ for speech recognition in noise. Age at onset in UHL adults appears to affect localization ability differently than understanding speech in noise. Hearing thresholds were significantly correlated with speech recognition for UHL participants but not the other two groups. Auditory abilities of UHLs varied widely and could be explained only in part by hearing threshold levels. Age at onset and length of hearing loss influenced performance on some, but not all measures. Results support the need for a revised and diverse set of clinical measures, including sound localization, understanding speech in varied environments, and careful consideration of functional abilities as individuals with severe to profound UHL are being considered potential cochlear implant candidates.
2006-12-30
hearing in the potential and underwater behavioral hearing thresholds in four bottlenose beluga Delphinapterus leucas ," Dokl. Akad. Nauk SSSR 294...313, "Auditory filter shapes for the bottlenose dolphin (Tursiops truncatus) and 238-241. the white whale ( Delphinapterus leucas ) derived with...Rickards, F. W., Cohen, L. T., De Vidi, S., and Clark, G. M. of a beluga whale, Delphinapterus leucas ," Aquat. Mamm. 26, 212-228. (1995). "The
Corthals, Paul
2008-01-01
The aim of the present study is to construct a simple method for visualizing and quantifying the audibility of speech on the audiogram and to predict speech intelligibility. The proposed method involves a series of indices on the audiogram form reflecting the sound pressure level distribution of running speech. The indices that coincide with a patient's pure tone thresholds reflect speech audibility and give evidence of residual functional hearing capacity. Two validation studies were conducted among sensorineurally hearing-impaired participants (n = 56 and n = 37, respectively) to investigate the relation with speech recognition ability and hearing disability. The potential of the new audibility indices as predictors for speech reception thresholds is comparable to the predictive potential of the ANSI 1968 articulation index and the ANSI 1997 speech intelligibility index. The sum of indices or a weighted combination can explain considerable proportions of variance in speech reception results for sentences in quiet free field conditions. The proportions of variance that can be explained in questionnaire results on hearing disability are less, presumably because the threshold indices almost exclusively reflect message audibility and much less the psychosocial consequences of hearing deficits. The outcomes underpin the validity of the new audibility indexing system, even though the proposed method may be better suited for predicting relative performance across a set of conditions than for predicting absolute speech recognition performance. (c) 2007 S. Karger AG, Basel
Noise-induced hearing loss in workers exposed to urban stressors.
Caciari, Tiziana; Rosati, Maria Valeria; Casale, Teodorico; Loreti, Beatrice; Sancini, Angela; Riservato, Roberto; Nieto, Hector A; Frati, Paola; Tomei, Francesco; Tomei, Gianfranco
2013-10-01
The technological and industrial progress together with the intensification of vehicular traffic and the adoption of new social habits are the cause of an increasing noise pollution with possible negative effects on the auditory system. This study aims to assess the noise exposure levels and the effects on the hearing threshold in outdoor and indoor male workers of a big Italian city. The study was carried out on 357 outdoor male workers, exposed to urban noise and on a control group of 357 unexposed indoor workers. Noise levels were measured in 30 outdoor and indoor areas. The subjects underwent tonal liminal audiometry in order to determine the value of their hearing threshold. During their working activity, outdoor and indoor workers are exposed to different noise levels LEX<80 dB(A). At mid-low frequencies (250-2000 Hz), the results show significant differences in the average values of hearing threshold between the two groups in both ears and for all age classes; there are no significant differences between the two groups at higher frequencies. The outdoor noise levels measured are not usually ototoxic and the hearing loss at mid-low frequencies is not characteristic of the exposure to industrial noise. For these reasons the Authors hypothesize that the results may be due to the combined effect of the exposure to noise and to ototoxic air pollutants. The impairment of speech frequencies is disabling and involves the risk of missed forensic recognition. Copyright © 2013 Elsevier B.V. All rights reserved.
The article deals first with the theoretical foundations of underwater hearing, and the effects of the acoustical characteristics of water on hearing...lead to the conclusion that, in water , man can locate the direction of sound at low and at very high tonal frequencies of the audio range, but this ability is probably vanishing in the middle range of frequencies. (Author)
Walker, Matthew A.; Short, Ciara E.; Skinner, Kimberly G.
2017-01-01
Purpose This study evaluated the American Speech-Language-Hearing Association's recommendation that audiometric testing for patients with tinnitus should use pulsed or warble tones. Using listeners with varied audiometric configurations and tinnitus statuses, we asked whether steady, pulsed, and warble tones yielded similar audiometric thresholds, and which tone type was preferred. Method Audiometric thresholds (octave frequencies from 0.25–16 kHz) were measured using steady, pulsed, and warble tones in 61 listeners, who were divided into 4 groups on the basis of hearing and tinnitus status. Participants rated the appeal and difficulty of each tone type on a 1–5 scale and selected a preferred type. Results For all groups, thresholds were lower for warble than for pulsed and steady tones, with the largest effects above 4 kHz. Appeal ratings did not differ across tone type, but the steady tone was rated as more difficult than the warble and pulsed tones. Participants generally preferred pulsed and warble tones. Conclusions Pulsed tones provide advantages over steady and warble tones for patients regardless of hearing or tinnitus status. Although listeners preferred pulsed and warble tones to steady tones, pulsed tones are not susceptible to the effects of off-frequency listening, a consideration when testing listeners with sloping audiograms. PMID:28892822
Lentz, Jennifer J; Walker, Matthew A; Short, Ciara E; Skinner, Kimberly G
2017-09-18
This study evaluated the American Speech-Language-Hearing Association's recommendation that audiometric testing for patients with tinnitus should use pulsed or warble tones. Using listeners with varied audiometric configurations and tinnitus statuses, we asked whether steady, pulsed, and warble tones yielded similar audiometric thresholds, and which tone type was preferred. Audiometric thresholds (octave frequencies from 0.25-16 kHz) were measured using steady, pulsed, and warble tones in 61 listeners, who were divided into 4 groups on the basis of hearing and tinnitus status. Participants rated the appeal and difficulty of each tone type on a 1-5 scale and selected a preferred type. For all groups, thresholds were lower for warble than for pulsed and steady tones, with the largest effects above 4 kHz. Appeal ratings did not differ across tone type, but the steady tone was rated as more difficult than the warble and pulsed tones. Participants generally preferred pulsed and warble tones. Pulsed tones provide advantages over steady and warble tones for patients regardless of hearing or tinnitus status. Although listeners preferred pulsed and warble tones to steady tones, pulsed tones are not susceptible to the effects of off-frequency listening, a consideration when testing listeners with sloping audiograms.
Transient evoked otoacoustic emissions in rock musicians.
Høydal, Erik Harry; Lein Størmer, Carl Christian; Laukli, Einar; Stenklev, Niels Christian
2017-09-01
Our focus in this study was the assessment of transient evoked otoacoustic emissions (TEOAEs) in a large group of rock musicians. A further objective was to analyse tinnitus among rock musicians as related to TEOAEs. The study was a cross-sectional survey of rock musicians selected at random. A control group was included at random for comparison. We recruited 111 musicians and a control group of 40 non-musicians. Testing was conducted by using clinical examination, pure tone audiometry, TEOAEs and a questionnaire. TEOAE SNR in the half-octave frequency band centred on 4 kHz was significantly lower bilaterally in musicians than controls. This effect was strongly predicted by age and pure-tone hearing threshold levels in the 3-6 kHz range. Bilateral hearing thresholds were significantly higher at 6 kHz in musicians. Twenty percent of the musicians had permanent tinnitus. There was no association between the TEOAE parameters and permanent tinnitus. Our results suggest an incipient hearing loss at 6 kHz in rock musicians. Loss of TEOAE SNR in the 4 kHz half-octave frequency band was observed, but it was related to higher mean 3-6 kHz hearing thresholds and age. A large proportion of rock musicians have permanent tinnitus.
Hearing sensitivity during target presence and absence while a whale echolocates.
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2008-01-01
Hearing sensitivity was measured in a false killer whale during echolocation. Sensitivity was measured using probe stimuli as sinusoidally amplitude modulated signals with a 22.5-kHz carrier frequency and recording auditory evoked potentials as envelope-following responses. The probes were presented and responses were recorded during short 2-s periods when the animal echolocated to detect the presence or absence of a target in a go/no-go paradigm. In the target-absent trials, a hearing threshold of 90.4 dB re 1 muPa was found; in the target-present trials, the threshold was 109.8 dB. Thus, a 19.4-dB difference was found between thresholds in the target-present and target-absent trials. To check the possibility that this difference was the result of different masking degree of the probe by the emitted sonar clicks, click statistics were investigated in similar trials. No indication was found that the energy of the emitted clicks was higher in the target-present than in target-absent trials; on the contrary, mean click level, mean number of clicks per train, and overall train energy was slightly higher in the target-absent trials. Thus the data indicate that the hearing sensitivity of the whale varied depending on target presence or absence.
Effects of Sex and Gender on Adaptation to Space: Neurosensory Systems
Cohen, Helen S.; Cerisano, Jody M.; Clayton, Janine A.; Cromwell, Ronita; Danielson, Richard W.; Hwang, Emma Y.; Tingen, Candace; Allen, John R.; Tomko, David L.
2014-01-01
Abstract Sex and gender differences have long been a research topic of interest, yet few studies have explored the specific differences in neurological responses between men and women during and after spaceflight. Knowledge in this field is limited due to the significant disproportion of sexes enrolled in the astronaut corps. Research indicates that general neurological and sensory differences exist between the sexes, such as those in laterality of amygdala activity, sensitivity and discrimination in vision processing, and neuronal cell death (apoptosis) pathways. In spaceflight, sex differences may include a higher incidence of entry and space motion sickness and of post-flight vestibular instability in female as opposed to male astronauts who flew on both short- and long-duration missions. Hearing and auditory function in crewmembers shows the expected hearing threshold differences between men and women, in which female astronauts exhibit better hearing thresholds. Longitudinal observations of hearing thresholds for crewmembers yield normal age-related decrements; however, no evidence of sex-related differences from spaceflight has been observed. The impact of sex and gender differences should be studied by making spaceflight accessible and flying more women into space. Only in this way will we know if increasingly longer-duration missions cause significantly different neurophysiological responses in men and women. PMID:25401941
Association Between Childhood Hearing Disorders and Tinnitus in Adulthood.
Aarhus, Lisa; Engdahl, Bo; Tambs, Kristian; Kvestad, Ellen; Hoffman, Howard J
2015-11-01
The association between childhood hearing disorders and adult tinnitus has not been examined in longitudinal cohort studies. To determine the association between different types of childhood hearing loss and tinnitus in adulthood and evaluate whether tinnitus risk is mediated by adult hearing loss. Population-based cohort study of 32 430 adults (aged 20-56 years) who underwent pure-tone audiometry and completed a tinnitus questionnaire in the Nord-Trøndelag Hearing Loss Study, which was a part of the Nord-Trøndelag Health Study 2 (HUNT2). The study was conducted from January 1, 2014, to April 1, 2015. Data analysis was performed from April 1, 2014, to April 1, 2015. As children, the same individuals had undergone screening audiometry in a longitudinal primary school hearing investigation, including ear, nose, and throat examinations when indicated. Pure-tone audiometry, questionnaires, and ear, nose, and throat examinations. Self-reported tinnitus (yes or no) in adulthood measured by questionnaires. Adults who had hearing loss at the time of the school investigation (n = 3026) reported more tinnitus, measured as odds ratio (95% CI), than did adults with normal childhood hearing (n = 29 404) (1.4 [1.3-1.6]). Childhood hearing disorders associated with tinnitus in adulthood included sensorineural hearing loss, chronic suppurative otitis media, and hearing loss associated with a history of recurrent acute otitis media (2.4 [1.9-3.0], 2.4 [1.5-3.9], and 1.6 [1.3-2.0], respectively). These estimates were adjusted for age, sex, and noise exposure in adulthood. After further analyses that included adjustment for adult hearing threshold, none of these childhood hearing disorders remained positively associated with tinnitus. Childhood hearing disorders associated with tinnitus in adulthood include sensorineural hearing loss, chronic suppurative otitis media, and hearing loss associated with a history of recurrent acute otitis media. After adjustment for the adult hearing threshold, none of the childhood hearing disorders was positively associated with tinnitus. Hence, it appears that these significant associations are mediated or transmitted through adult hearing loss.
Vlastarakos, Petros V; Vasileiou, Alexandra; Nikolopoulos, Thomas P
2017-12-01
We conducted an analysis to assess the relative contribution of auditory brainstem response (ABR) testing and auditory steady-state response (ASSR) testing in providing appropriate hearing aid fitting in hearing-impaired children with difficult or unreliable behavioral audiometry. Of 150 infants and children who had been referred to us for hearing assessment as part of a neonatal hearing screening and cochlear implantation program, we identified 5 who exhibited significant discrepancies between click-ABR and ASSR testing results and difficult or unreliable behavioral audiometry. Hearing aid fitting in pediatric cochlear implant candidates for a trial period of 3 to 6 months is a common practice in many implant programs, but monitoring the progress of the amplified infants and providing appropriate hearing aid fitting can be challenging. If we accept the premise that we can assess the linguistic progress of amplified infants with an acceptable degree of certainty, the auditory behavior that we are monitoring presupposes appropriate bilateral hearing aid fitting. This may become very challenging in young children, or even in older children with difficult or unreliable behavioral audiometry results. This challenge can be addressed by using data from both ABR and ASSR testing. Fitting attempts that employ data from only ABR testing provide amplification that involves the range of spoken language but is not frequency-specific. Hearing aid fitting should also incorporate and take into account ASSR data because reliance on ABR testing alone might compromise the validity of the monitoring process. In conclusion, we believe that ASSR threshold-based bilateral hearing aid fitting is necessary to provide frequency-specific amplification of hearing and appropriate propulsion in the prelinguistic vocalizations of monitored infants.
The effect of guessing on the speech reception thresholds of children.
Moodley, A
1990-01-01
Speech audiometry is an essential part of the assessment of hearing impaired children and it is now widely used throughout the United Kingdom. Although instructions are universally agreed upon as an important aspect in the administration of any form of audiometric testing, there has been little, if any, research towards evaluating the influence which instructions that are given to a listener have on the Speech Reception Threshold obtained. This study attempts to evaluate what effect guessing has on the Speech Reception Threshold of children. A sample of 30 secondary school pupils between 16 and 18 years of age with normal hearing was used in the study. It is argued that the type of instruction normally used for Speech Reception Threshold in audiometric testing may not provide a sufficient amount of control for guessing and the implications of this, using data obtained in the study, are examined.
Hearing impairment and retirement.
Fischer, Mary E; Cruickshanks, Karen J; Pinto, Alex; Klein, Barbara E K; Klein, Ronald; Dalton, Dayna S
2014-02-01
Many factors influence the decision to retire including age, insurance, and pension availability along with physical and mental health. Hearing impairment may be one such factor. The purpose of this study was to compare the 15 yr retirement rate among subjects with and without hearing impairment. Prospective, population-based study. Subjects were participants in the Epidemiology of Hearing Loss Study (EHLS), a longitudinal investigation of age-related hearing loss. Participants who were working full- or part-time in 1993-1995 were included (n = 1410, mean age = 57.8 yr). Data from four EHLS phases (1993-1995, 1998-2000, 2003-2005, and 2009-2010) were analyzed in 2010-2012. Hearing impairment was defined as a pure tone threshold average (at 0.5, 1, 2, and 4 kHz) greater than 25 dB HL in the worse ear. Employment status was determined at each of the four phases. Kaplan-Meier estimates of the cumulative incidence of retirement were calculated, and Cox discrete-time modeling was used to determine the effect of hearing impairment on the rate of retirement. The cumulative incidence of retirement was significantly (p < 0.02) higher in those with a hearing impairment (77%) compared to those without a hearing impairment (74%). After adjustment for age, gender, self-reported health, and history of chronic disease, there was no significant difference in the rate of retirement between those with and without a hearing impairment (hazard ratio [HR] = 0.9, 95% confidence interval (CI) = 0.7, 1.1). Similar results were observed when hearing aid users were excluded, when hearing impairment was based on the better ear thresholds, and when analyses were restricted to those under 65 yr of age and working full-time at baseline. Participants with a hearing impairment were less likely to state that the main reason for retirement was that the time seemed right. Hearing impairment was found to be associated with a higher rate of retirement, but the association was not independent of the effects of age, gender, and health. American Academy of Audiology.
Comparison of hearing and voicing ranges in singing
NASA Astrophysics Data System (ADS)
Hunter, Eric J.; Titze, Ingo R.
2003-04-01
The spectral and dynamic ranges of the human voice of professional and nonprofessional vocalists were compared to the auditory hearing and feeling thresholds at a distance of one meter. In order to compare these, an analysis was done in true dB SPL, not just relative dB as is usually done in speech analysis. The methodology of converting the recorded acoustic signal to absolute pressure units was described. The human voice range of a professional vocalist appeared to match the dynamic range of the auditory system at some frequencies. In particular, it was demonstrated that professional vocalists were able to make use of the most sensitive part of the hearing thresholds (around 4 kHz) through the use of a learned vocal ring or singer's formant. [Work sponsored by NIDCD.
Comparison between ABR with click and narrow band chirp stimuli in children.
Zirn, Stefan; Louza, Julia; Reiman, Viktor; Wittlinger, Natalie; Hempel, John-Martin; Schuster, Maria
2014-08-01
Click and chirp-evoked auditory brainstem responses (ABR) are applied for the estimation of hearing thresholds in children. The present study analyzes ABR thresholds across a large sample of children's ears obtained with both methods. The aim was to demonstrate the correlation between both methods using narrow band chirp and click stimuli. Click and chirp evoked ABRs were measured in 253 children aged from 0 to 18 years to determine their individual auditory threshold. The delay-compensated stimuli were narrow band CE chirps with either 2000 Hz or 4000 Hz center frequencies. Measurements were performed consecutively during natural sleep, and under sedation or general anesthesia. Threshold estimation was performed for each measurement by two experienced audiologists. Pearson-correlation analysis revealed highly significant correlations (r=0.94) between click and chirp derived thresholds for both 2 kHz and 4 kHz chirps. No considerable differences were observed either between different age ranges or gender. Comparing the thresholds estimated using ABR with click stimuli and chirp stimuli, only 0.8-2% for the 2000 Hz NB-chirp and 0.4-1.2% of the 4000 Hz NB-chirp measurements differed more than 15 dB for different degrees of hearing loss or normal hearing. The results suggest that either NB-chirp or click ABR is sufficient for threshold estimation. This holds for the chirp frequencies of 2000 Hz and 4000 Hz. The use of either click- or chirp-evoked ABR allows a reduction of recording time in young infants. Nevertheless, to cross-check the results of one of the methods, we recommend measurements with the other method as well. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Sutbas, Aziz; Yetiser, Sertac; Satar, Bulent; Akcam, Timur; Karahatay, Serdar; Saglam, Kenan
2007-01-01
The aim of our study was to outline the prevalence of hyperlipidemia in patients who had high-frequency hearing loss and tinnitus due to noise exposure. We investigated the role of a low-cholesterol diet and antihyperlipidemic therapy to alleviate the severity of tinnitus and possibly promote hearing gain after therapy in patients with acoustic trauma. Forty-two hyperlipidemic patients with subjective tinnitus and hearing loss due to noise exposure were enrolled for the study. We placed patients on a low-cholesterol diet or antihyperlipidemic therapy and followed them for up to 24 months; then we designated two groups as either "unresponsive" (n = 22; no response to either of the therapies and still experiencing hyperlipidemia) or "responsive" (n = 20; lower cholesterol or triglyceride levels). We then compared tinnitus scores and hearing levels in the two groups. The difference between tinnitus scores in the unresponsive and responsive groups and the change in tinnitus scores before and after therapy in the responsive group were significant. When we compared self-rated tinnitus severity results in two groups after therapy, we found the difference was significant (p < .05). The difference between average air-conduction thresholds at high frequencies after the treatment in the two groups was also significant. The incidence of hyperlipidemia is high among patients with noise-induced hearing loss, and significant improvement by way of lowered tinnitus intensity and higher frequencies in average hearing thresholds can be achieved after lowering the serum lipid level.
Helvik, Anne-Sofie; Jacobsen, Geir; Wennberg, Siri; Arnesen, Haakon; Ringdahl, Anders; Hallberg, Lillemor R-M
2006-03-15
We first aimed to describe demographic and audiological characteristics of adults referred to a university hospital for hearing aid (HA) fitting and rehabilitation. Our second aim was to employ an inventory that assesses life consequences of hearing impairment (HI) in terms of perceived activity limitation and participation restriction for the first time in a Norwegian adult outpatient population. A third aim was to study life consequences by audiological and demographic characteristics. During one year consecutive patients (n = 343) were requested to answer the Hearing Disability and Handicap Scale (HDHS) assessing activity limitation and participation restriction in relation to an audiological examination and medical consultation. The mean threshold of hearing (MTH) was ascertained by pure tone thresholds at 0.5 - 1 - 2 - 4 kHz in the better ear. Activity limitation and participation restriction were both higher for HA experienced than HA naïve subjects ( p < 0.01). In a multivariable model, the explained adjusted variance of activity limitation (R2) was 43.4% with MTH, perceived duration, and severity of hearing problems as predictor variables. Correspondingly, the explained adjusted variance of participation restriction was 28.4% for a model with MTH, age, gender and perceived severity of hearing problems as predictors. As a standard supplement to audiometric tests, HDHS may be successfully applied as a clinical tool among similar hearing impaired outpatients in order to assess activity limitation and participation restriction as part of audiological rehabilitation.
[Idiopathic sudden deafness: a report of 96 patients].
Gabanou, F; Bera, G; Vincent, C
2012-01-01
Evaluation of the management of idiopathic sudden deafness indicating the usefulness of biological assessments and the pronostic factors of hearing recovery. This is a retrospective study of 96 patients with idiopathic sudden deafness referred to a tertiary centre between 2005 and 2009 treated with corticosteroids intravenously at a daily dose of 1 mg/kg. Mean tonal thresholds were assessed (PTA = [500 Hz + 1000 Hz + 2000 Hz + 4000 Hz]/4). Each audiogram was classified as five classes according to its frequency profile. The hearing recovery is significant between D0-D5 and D5-M1 for the frequencies 0.5, 1 and 2 kHz. For 4 kHz, the recovery is significant between 0 and J5. There is no statistically significant correlation between the presence of associated signs (tinnitus, vertigo) and hearing recovery. Hearing recovery according to the five types of audiograms has the same evolution in the follow-up time but with audiograms type E (cophosis or subcophosis) often associated with an hyporeactivity at the videonystagmography. The presence of cardiovascular disease is a predictor of poor hearing recovery. The usefullness of systematic extensive blood tests is low. In sudden deafness, the maximum hearing recovery takes place in the month following the onset of symptoms. The predictors of poor hearing recovery are an initial mean threshold > 70 dB, the existence of an associated cardiovascular disease.
Societal-level Risk Factors Associated with Pediatric Hearing Loss: A Systematic Review
Vasconcellos, Adam P.; Colello, Stephanie; Kyle, Meghann E.; Shin, Jennifer J.
2015-01-01
Objective To determine if the current body of evidence describes specific threshold values of concern for modifiable societal-level risk factors for pediatric hearing loss, with the overarching goal of providing actionable guidance for the prevention and screening of audiological deficits in children. Data Sources Three related systematic reviews were performed. Computerized PubMed, Embase, and Cochrane Library searches were performed from inception through October 2013 and were supplemented with manual searches. Review Methods Inclusion/exclusion criteria were designed to determine specific threshold values of societal-level risk factors on hearing loss in the pediatric population. Searches and data extraction were performed by independent reviewers. Results There were 20 criterion-meeting studies with 29,128 participants. Infants less than 2 standard deviations below standardized weight, length, or body mass index were at increased risk. Specific nutritional deficiencies related to iodine and thiamine may also increase risk, although data are limited and threshold values of concern have not been quantified. Blood lead levels above 10 μg/dL were significantly associated with pediatric sensorineural loss, and mixed findings were noted for other heavy metals. Hearing loss was also more prevalent among children of socioeconomically disadvantaged families, as measured by a poverty income ratio less than 0.3 to 1, higher deprivation category status, and head of household employment as a manual laborer. Conclusions Increasing our understanding of specific thresholds of risk associated with causative factors forms the foundation for preventive and targeted screening programs as well as future research endeavors. PMID:24671458
Societal-level Risk Factors Associated with Pediatric Hearing Loss: A Systematic Review.
Vasconcellos, Adam P; Colello, Stephanie; Kyle, Meghann E; Shin, Jennifer J
2014-07-01
To determine if the current body of evidence describes specific threshold values of concern for modifiable societal-level risk factors for pediatric hearing loss, with the overarching goal of providing actionable guidance for the prevention and screening of audiological deficits in children. Three related systematic reviews were performed. Computerized PubMed, Embase, and Cochrane Library searches were performed from inception through October 2013 and were supplemented with manual searches. Inclusion/exclusion criteria were designed to determine specific threshold values of societal-level risk factors on hearing loss in the pediatric population. Searches and data extraction were performed by independent reviewers. There were 20 criterion-meeting studies with 29,128 participants. Infants less than 2 standard deviations below standardized weight, length, or body mass index were at increased risk. Specific nutritional deficiencies related to iodine and thiamine may also increase risk, although data are limited and threshold values of concern have not been quantified. Blood lead levels above 10 µg/dL were significantly associated with pediatric sensorineural loss, and mixed findings were noted for other heavy metals. Hearing loss was also more prevalent among children of socioeconomically disadvantaged families, as measured by a poverty income ratio less than 0.3 to 1, higher deprivation category status, and head of household employment as a manual laborer. Increasing our understanding of specific thresholds of risk associated with causative factors forms the foundation for preventive and targeted screening programs as well as future research endeavors. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
How well can centenarians hear?
Mao, Zhongping; Zhao, Lijun; Pu, Lichun; Wang, Mingxiao; Zhang, Qian; He, David Z Z
2013-01-01
With advancements in modern medicine and significant improvements in life conditions in the past four decades, the elderly population is rapidly expanding. There is a growing number of those aged 100 years and older. While many changes in the human body occur with physiological aging, as many as 35% to 50% of the population aged 65 to 75 years have presbycusis. Presbycusis is a progressive sensorineural hearing loss that occurs as people get older. There are many studies of the prevalence of age-related hearing loss in the United States, Europe, and Asia. However, no audiological assessment of the population aged 100 years and older has been done. Therefore, it is not clear how well centenarians can hear. We measured middle ear impedance, pure-tone behavioral thresholds, and distortion-product otoacoustic emission from 74 centenarians living in the city of Shaoxing, China, to evaluate their middle and inner ear functions. We show that most centenarian listeners had an "As" type tympanogram, suggesting reduced static compliance of the tympanic membrane. Hearing threshold tests using pure-tone audiometry show that all centenarian subjects had varying degrees of hearing loss. More than 90% suffered from moderate to severe (41 to 80 dB) hearing loss below 2,000 Hz, and profound (>81 dB) hearing loss at 4,000 and 8,000 Hz. Otoacoustic emission, which is generated by the active process of cochlear outer hair cells, was undetectable in the majority of listeners. Our study shows the extent and severity of hearing loss in the centenarian population and represents the first audiological assessment of their middle and inner ear functions.
The RetroX auditory implant for high-frequency hearing loss.
Garin, P; Genard, F; Galle, C; Jamart, J
2004-07-01
The objective of this study was to analyze the subjective satisfaction and measure the hearing gain provided by the RetroX (Auric GmbH, Rheine, Germany), an auditory implant of the external ear. We conducted a retrospective case review. We conducted this study at a tertiary referral center at a university hospital. We studied 10 adults with high-frequency sensori-neural hearing loss (ski-slope audiogram). The RetroX consists of an electronic unit sited in the postaural sulcus connected to a titanium tube implanted under the auricle between the sulcus and the entrance of the external auditory canal. Implanting requires only minor surgery under local anesthesia. Main outcome measures were a satisfaction questionnaire, pure-tone audiometry in quiet, speech audiometry in quiet, speech audiometry in noise, and azimuth audiometry (hearing threshold in function of sound source location within the horizontal plane at ear level). : Subjectively, all 10 patients are satisfied or even extremely satisfied with the hearing improvement provided by the RetroX. They wear the implant daily, from morning to evening. We observe a statistically significant improvement of pure-tone thresholds at 1, 2, and 4 kHz. In quiet, the speech reception threshold improves by 9 dB. Speech audiometry in noise shows that intelligibility improves by 26% for a signal-to-noise ratio of -5 dB, by 18% for a signal-to-noise ratio of 0 dB, and by 13% for a signal-to-noise ratio of +5 dB. Localization audiometry indicates that the skull masks sound contralateral to the implanted ear. Of the 10 patients, one had acoustic feedback and one presented with a granulomatous reaction to the foreign body that necessitated removing the implant. The RetroX auditory implant is a semi-implantable hearing aid without occlusion of the external auditory canal. It provides a new therapeutic alternative for managing high-frequency hearing loss.
Calibration of an In-Ear Dosimeter for a Single Hearing Protection Device
2014-02-01
history of ototoxic medication use, audiological history of tinnitus , etc. A total of 54 subjects were screened to participate in this study.1 subject...was excluded from this study based on a history of seizures. 18 subjects were excluded based on hearing threshold results. 15 subjects were...Military Service: Implications for hearing loss and tinnitus ”, Washington, DC, National Academies Press. 7. United States Government Accountability Office
Underwater Hearing in Turtles.
Willis, Katie L
2016-01-01
The hearing of turtles is poorly understood compared with the other reptiles. Although the mechanism of transduction of sound into a neural signal via hair cells has been described in detail, the rest of the auditory system is largely a black box. What is known is that turtles have higher hearing thresholds than other reptiles, with best frequencies around 500 Hz. They also have lower underwater hearing thresholds than those in air, owing to resonance of the middle ear cavity. Further studies demonstrated that all families of turtles and tortoises share a common middle ear cavity morphology, with scaling best suited to underwater hearing. This supports an aquatic origin of the group. Because turtles hear best under water, it is important to examine their vulnerability to anthropogenic noise. However, the lack of basic data makes such experiments difficult because only a few species of turtles have published audiograms. There are also almost no behavioral data available (understandable due to training difficulties). Finally, few studies show what kinds of sounds are behaviorally relevant. One notable paper revealed that the Australian snake-necked turtle (Chelodina oblonga) has a vocal repertoire in air, at the interface, and under water. Findings like these suggest that there is more to the turtle aquatic auditory scene than previously thought.
Ekström, Seth-Reino; Borg, Erik
2011-01-01
The masking effect of a piano composition, played at different speeds and in different octaves, on speech-perception thresholds was investigated in 15 normal-hearing and 14 moderately-hearing-impaired subjects. Running speech (just follow conversation, JFC) testing and use of hearing aids increased the everyday validity of the findings. A comparison was made with standard audiometric noises [International Collegium of Rehabilitative Audiology (ICRA) noise and speech spectrum-filtered noise (SPN)]. All masking sounds, music or noise, were presented at the same equivalent sound level (50 dBA). The results showed a significant effect of piano performance speed and octave (P<.01). Low octave and fast tempo had the largest effect; and high octave and slow tempo, the smallest. Music had a lower masking effect than did ICRA noise with two or six speakers at normal vocal effort (P<.01) and SPN (P<.05). Subjects with hearing loss had higher masked thresholds than the normal-hearing subjects (P<.01), but there were smaller differences between masking conditions (P<.01). It is pointed out that music offers an interesting opportunity for studying masking under realistic conditions, where spectral and temporal features can be varied independently. The results have implications for composing music with vocal parts, designing acoustic environments and creating a balance between speech perception and privacy in social settings.
Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.
Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga
2015-11-01
Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection.
Hearing loss in children with otitis media with effusion: a systematic review.
Cai, Ting; McPherson, Bradley
2017-02-01
Otitis media with effusion (OME) is the presence of non-purulent inflammation in the middle ear. Hearing impairment is frequently associated with OME. Pure tone audiometry and speech audiometry are two of the most primarily utilised auditory assessments and provide valuable behavioural and functional estimation on hearing loss. This paper was designed to review and analyse the effects of the presence of OME on children's listening abilities. A systematic and descriptive review. Twelve articles reporting frequency-specific pure tone thresholds and/or speech perception measures in children with OME were identified using PubMed, Ovid, Web of Science, ProQuest and Google Scholar search platforms. The hearing loss related to OME averages 18-35 dB HL. The air conduction configuration is roughly flat with a slight elevation at 2000 Hz and a nadir at 8000 Hz. Both speech-in-quiet and speech-in-noise perception have been found to be impaired. OME imposes a series of disadvantages on hearing sensitivity and speech perception in children. Further studies investigating the full range of frequency-specific pure tone thresholds, and that adopt standardised speech test materials are advocated to evaluate hearing related disabilities with greater comprehensiveness, comparability and enhanced consideration of their real life implications.
Inner ear involvement in Behçet's disease.
Süslü, Ahmet Emre; Polat, Mualla; Köybaşi, Serap; Biçer, Yusuf Ozgür; Funda, Yasemin Ongun; Parlak, Ali Haydar
2010-06-01
To assess cochlear involvement and hearing loss in patients with Behçet's disease (BD). Forty-two patients with BD and 24 sex and age matched healthy subjects were included in the study. pure-tone audiometry including high frequencies (250-16000Hz) and DPOAE were performed to all participants. Results of the audiological evaluation were compared and correlation between the audiologic status and clinical manifestations of the BD were investigated. Bilateral sensorineural hearing loss was detected in 27 (64.3%) patients. Hearing thresholds were found to be higher in patients with BD at all of the frequencies except at 500Hz when compared to control group (p<0.05). The difference in the hearing levels tend to increase in high frequencies. Compared with control group, distortion products and SNR of the BD patients were lower in all of the tested frequencies (p<0.05) which indicates weaker outer hair cell motility. There was no correlation between the clinical manifestations and the audiological parameters. Even having hearing levels within normal limits in speech frequencies, increased hearing thresholds in high frequencies and decreased signal-noise ratios (SNR) in distortion product otoacoustic emission (DPOAE) indicate a cochlear involvement in patients with BD. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Reading Behind the Lines: The Factors Affecting the Text Reception Threshold in Hearing Aid Users.
Zekveld, Adriana A; Pronk, Marieke; Danielsson, Henrik; Rönnberg, Jerker
2018-03-15
The visual Text Reception Threshold (TRT) test (Zekveld et al., 2007) has been designed to assess modality-general factors relevant for speech perception in noise. In the last decade, the test has been adopted in audiology labs worldwide. The 1st aim of this study was to examine which factors best predict interindividual differences in the TRT. Second, we aimed to assess the relationships between the TRT and the speech reception thresholds (SRTs) estimated in various conditions. First, we reviewed studies reporting relationships between the TRT and the auditory and/or cognitive factors and formulated specific hypotheses regarding the TRT predictors. These hypotheses were tested using a prediction model applied to a rich data set of 180 hearing aid users. In separate association models, we tested the relationships between the TRT and the various SRTs and subjective hearing difficulties, while taking into account potential confounding variables. The results of the prediction model indicate that the TRT is predicted by the ability to fill in missing words in incomplete sentences, by lexical access speed, and by working memory capacity. Furthermore, in line with previous studies, a moderate association between higher age, poorer pure-tone hearing acuity, and poorer TRTs was observed. Better TRTs were associated with better SRTs for the correct perception of 50% of Hagerman matrix sentences in a 4-talker babble, as well as with better subjective ratings of speech perception. Age and pure-tone hearing thresholds significantly confounded these associations. The associations of the TRT with SRTs estimated in other conditions and with subjective qualities of hearing were not statistically significant when adjusting for age and pure-tone average. We conclude that the abilities tapped into by the TRT test include processes relevant for speeded lexical decision making when completing partly masked sentences and that these processes require working memory capacity. Furthermore, the TRT is associated with the SRT of hearing aid users as estimated in a challenging condition that includes informational masking and with experienced difficulties with speech perception in daily-life conditions. The current results underline the value of using the TRT test in studies involving speech perception and aid in the interpretation of findings acquired using the test.