Sample records for heart muscle function

  1. The 'aerobic/resistance/inspiratory muscle training hypothesis in heart failure'.

    PubMed

    Laoutaris, Ioannis D

    2018-01-01

    Evidence from large multicentre exercise intervention trials in heart failure patients, investigating both moderate continuous aerobic training and high intensity interval training, indicates that the 'crème de la crème' exercise programme for this population remains to be found. The 'aerobic/resistance/inspiratory (ARIS) muscle training hypothesis in heart failure' is introduced, suggesting that combined ARIS muscle training may result in maximal exercise pathophysiological and functional benefits in heart failure patients. The hypothesis is based on the decoding of the 'skeletal muscle hypothesis in heart failure' and on revision of experimental evidence to date showing that exercise and functional intolerance in heart failure patients are associated not only with reduced muscle endurance, indication for aerobic training (AT), but also with reduced muscle strength and decreased inspiratory muscle function contributing to weakness, dyspnoea, fatigue and low aerobic capacity, forming the grounds for the addition of both resistance training (RT) and inspiratory muscle training (IMT) to AT. The hypothesis will be tested by comparing all potential exercise combinations, ARIS, AT/RT, AT/IMT, AT, evaluating both functional and cardiac indices in a large sample of heart failure patients of New York Heart Association class II-III and left ventricular ejection fraction ≤35% ad hoc by the multicentre randomized clinical trial, Aerobic Resistance, InSpiratory Training OutcomeS in Heart Failure (ARISTOS-HF trial).

  2. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal

    PubMed Central

    Vermillion, Katie L.; Anderson, Kyle J.; Hampton, Marshall

    2015-01-01

    Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation. PMID:25572546

  3. Muscle electrical stimulation improves neurovascular control and exercise tolerance in hospitalised advanced heart failure patients.

    PubMed

    Groehs, Raphaela V; Antunes-Correa, Ligia M; Nobre, Thais S; Alves, Maria-Janieire Nn; Rondon, Maria Urbana Pb; Barreto, Antônio Carlos Pereira; Negrão, Carlos E

    2016-10-01

    We investigated the effects of muscle functional electrical stimulation on muscle sympathetic nerve activity and muscle blood flow, and, in addition, exercise tolerance in hospitalised patients for stabilisation of heart failure. Thirty patients hospitalised for treatment of decompensated heart failure, class IV New York Heart Association and ejection fraction ≤ 30% were consecutively randomly assigned into two groups: functional electrical stimulation (n = 15; 54 ± 2 years) and control (n = 15; 49 ± 2 years). Muscle sympathetic nerve activity was directly recorded via microneurography and blood flow by venous occlusion plethysmography. Heart rate and blood pressure were evaluated on a beat-to-beat basis (Finometer), exercise tolerance by 6-minute walk test, quadriceps muscle strength by a dynamometer and quality of life by Minnesota questionnaire. Functional electrical stimulation consisted of stimulating the lower limbs at 10 Hz frequency, 150 ms pulse width and 70 mA intensity for 60 minutes/day for 8-10 consecutive days. The control group underwent electrical stimulation at an intensity of < 20 mA. Baseline characteristics were similar between groups, except age that was higher and C-reactive protein and forearm blood flow that were smaller in the functional electrical stimulation group. Functional electrical stimulation significantly decreased muscle sympathetic nerve activity and increased muscle blood flow and muscle strength. No changes were found in the control group. Walking distance and quality of life increased in both groups. However, these changes were greater in the functional electrical stimulation group. Functional electrical stimulation improves muscle sympathetic nerve activity and vasoconstriction and increases exercise tolerance, muscle strength and quality of life in hospitalised heart failure patients. These findings suggest that functional electrical stimulation may be useful to hospitalised patients with decompensated chronic heart failure. © The European Society of Cardiology 2016.

  4. SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy.

    PubMed

    Goldstein, Jeffery A; Kelly, Sean M; LoPresti, Peter P; Heydemann, Ahlke; Earley, Judy U; Ferguson, Edwin L; Wolf, Matthew J; McNally, Elizabeth M

    2011-03-01

    Loss-of-function mutations in the genes encoding dystrophin and the associated membrane proteins, the sarcoglycans, produce muscular dystrophy and cardiomyopathy. The dystrophin complex provides stability to the plasma membrane of striated muscle during muscle contraction. Increased SMAD signaling due to activation of the transforming growth factor-β (TGFβ) pathway has been described in muscular dystrophy; however, it is not known whether this canonical TGFβ signaling is pathogenic in the muscle itself. Drosophila deleted for the γ/δ-sarcoglycan gene (Sgcd) develop progressive muscle and heart dysfunction and serve as a model for the human disorder. We used dad-lacZ flies to demonstrate the signature of TGFβ activation in response to exercise-induced injury in Sgcd null flies, finding that those muscle nuclei immediately adjacent to muscle injury demonstrate high-level TGFβ signaling. To determine the pathogenic nature of this signaling, we found that partial reduction of the co-SMAD Medea, homologous to SMAD4, or the r-SMAD, Smox, corrected both heart and muscle dysfunction in Sgcd mutants. Reduction in the r-SMAD, MAD, restored muscle function but interestingly not heart function in Sgcd mutants, consistent with a role for activin but not bone morphogenic protein signaling in cardiac dysfunction. Mammalian sarcoglycan null muscle was also found to exhibit exercise-induced SMAD signaling. These data demonstrate that hyperactivation of SMAD signaling occurs in response to repetitive injury in muscle and heart. Reduction of this pathway is sufficient to restore cardiac and muscle function and is therefore a target for therapeutic reduction.

  5. SMAD signaling drives heart and muscle dysfunction in a Drosophila model of muscular dystrophy

    PubMed Central

    Goldstein, Jeffery A.; Kelly, Sean M.; LoPresti, Peter P.; Heydemann, Ahlke; Earley, Judy U.; Ferguson, Edwin L.; Wolf, Matthew J.; McNally, Elizabeth M.

    2011-01-01

    Loss-of-function mutations in the genes encoding dystrophin and the associated membrane proteins, the sarcoglycans, produce muscular dystrophy and cardiomyopathy. The dystrophin complex provides stability to the plasma membrane of striated muscle during muscle contraction. Increased SMAD signaling due to activation of the transforming growth factor-β (TGFβ) pathway has been described in muscular dystrophy; however, it is not known whether this canonical TGFβ signaling is pathogenic in the muscle itself. Drosophila deleted for the γ/δ-sarcoglycan gene (Sgcd) develop progressive muscle and heart dysfunction and serve as a model for the human disorder. We used dad-lacZ flies to demonstrate the signature of TGFβ activation in response to exercise-induced injury in Sgcd null flies, finding that those muscle nuclei immediately adjacent to muscle injury demonstrate high-level TGFβ signaling. To determine the pathogenic nature of this signaling, we found that partial reduction of the co-SMAD Medea, homologous to SMAD4, or the r-SMAD, Smox, corrected both heart and muscle dysfunction in Sgcd mutants. Reduction in the r-SMAD, MAD, restored muscle function but interestingly not heart function in Sgcd mutants, consistent with a role for activin but not bone morphogenic protein signaling in cardiac dysfunction. Mammalian sarcoglycan null muscle was also found to exhibit exercise-induced SMAD signaling. These data demonstrate that hyperactivation of SMAD signaling occurs in response to repetitive injury in muscle and heart. Reduction of this pathway is sufficient to restore cardiac and muscle function and is therefore a target for therapeutic reduction. PMID:21138941

  6. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting

    PubMed Central

    Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.

    2011-01-01

    A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824

  7. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  8. Short-term effects of β2-AR blocker ICI 118,551 on sarcoplasmic reticulum SERCA2a and cardiac function of rats with heart failure.

    PubMed

    Gong, Haibin; Li, Yanfei; Wang, Lei; Lv, Qian; Wang, Xiuli

    2016-09-01

    The study was conducted to examine the effects of ICI 118,551 on the systolic function of cardiac muscle cells of rats in heart failure and determine the molecular mechanism of selective β2-adrenergic receptor (β2-AR) antagonist on these cells. The chronic heart failure model for rats was prepared through abdominal aortic constriction and separate cardiac muscle cells using the collagenase digestion method. The rats were then divided into Sham, HF and HF+ICI 50 nM goups and cultivated for 48 h. β2-AR, Gi/Gs and sarcoplasmic reticulum Ca 2+ -ATPase (SERCA2a) protein expression levels in the cardiac muscle cells were evaluated by western blotting and changes in the systolic function of cardiac muscle cells based on the boundary detection system of contraction dynamics for individual cells was measured. The results showed that compared with the Sham group, the survival rate, percentage of basic contraction and maximum contraction amplitude percentage of cardiac muscle cells with heart failure decreased, Gi protein expression increased while Gs and SERCA2a protein expression decreased. Compared with the HF group, the maximum contraction amplitude percentage of cardiac muscle cells in group HF+ICI 50 nM decreased, the Gi protein expression level increased while the SERCA2a protein expression level decreased. Following the stimulation of Ca 2+ and ISO, the maximum contraction amplitude percentage of cardiac muscle cells in the HF+ICI 50 nM group was lower than that in group HF. This indicated that ICI 118,551 has negative inotropic effects on cardiac muscle cells with heart failure, which may be related to Gi protein. Systolic function of cardiac muscle cells with heart failure can therefore be reduced by increasing Gi protein expression and lowering SERCA2a protein expression.

  9. Muscle wasting and sarcopenia in heart failure and beyond: update 2017.

    PubMed

    Springer, Jochen; Springer, Joshua-I; Anker, Stefan D

    2017-11-01

    Sarcopenia (loss of muscle mass and muscle function) is a strong predictor of frailty, disability and mortality in older persons and may also occur in obese subjects. The prevalence of sarcopenia is increased in patients suffering from chronic heart failure. However, there are currently few therapy options. The main intervention is resistance exercise, either alone or in combination with nutritional support, which seems to enhance the beneficial effects of training. Also, testosterone has been shown to increased muscle power and function; however, a possible limitation is the side effects of testosterone. Other investigational drugs include selective androgen receptor modulators, growth hormone, IGF-1, compounds targeting myostatin signaling, which have their own set of side effects. There are abundant prospective targets for improving muscle function in the elderly with or without chronic heart failure, and the continuing development of new treatment strategies and compounds for sarcopenia and cardiac cachexia makes this field an exciting one. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  10. Cardiac consequences to skeletal muscle-centric therapeutics for Duchenne muscular dystrophy.

    PubMed

    Townsend, DeWayne; Yasuda, Soichiro; Chamberlain, Jeffrey; Metzger, Joseph M

    2009-02-01

    Duchenne muscular dystrophy (DMD) is a fatal disease of muscle deterioration. Duchenne muscular dystrophy affects all striated muscles in the body, including the heart. Recent advances in palliative care, largely directed at improving respiratory function, have extended life but paradoxically further unmasked emergent heart disease in DMD patients. New experimental strategies have shown promise in restoring dystrophin in the skeletal muscles of dystrophin- deficient animals. These strategies often have little or no capacity for restitution of dystrophin in the hearts of these animals. This article draws on both clinical data and recent experimental data to posit that effective skeletal muscle restricted therapies for DMD will paradoxically heighten cardiomyopathy and heart failure in these patients.

  11. Supplementation of l-Alanyl-l-Glutamine and Fish Oil Improves Body Composition and Quality of Life in Patients With Chronic Heart Failure.

    PubMed

    Wu, Christina; Kato, Tomoko S; Ji, Ruiping; Zizola, Cynthia; Brunjes, Danielle L; Deng, Yue; Akashi, Hirokazu; Armstrong, Hilary F; Kennel, Peter J; Thomas, Tiffany; Forman, Daniel E; Hall, Jennifer; Chokshi, Aalap; Bartels, Matthew N; Mancini, Donna; Seres, David; Schulze, P Christian

    2015-11-01

    Skeletal muscle dysfunction and exercise intolerance are clinical hallmarks of patients with heart failure. These have been linked to a progressive catabolic state, skeletal muscle inflammation, and impaired oxidative metabolism. Previous studies suggest beneficial effects of ω-3 polyunsaturated fatty acids and glutamine on exercise performance and muscle protein balance. In a randomized double-blind, placebo-controlled trial, 31 patients with heart failure were randomized to either l-alanyl-l-glutamine (8 g/d) and polyunsaturated fatty acid (6.5 g/d) or placebo (safflower oil and milk powder) for 3 months. Cardiopulmonary exercise testing, dual-energy x-ray absorptiometry, 6-minute walk test, hand grip strength, functional muscle testing, echocardiography, and quality of life and lateral quadriceps muscle biopsy were performed at baseline and at follow-up. Oxidative capacity and metabolic gene expression were analyzed on muscle biopsies. No differences in muscle function, echocardiography, 6-minute walk test, or hand grip strength and a nonsignificant increase in peak VO2 in the treatment group were found. Lean body mass increased and quality of life improved in the active treatment group. Molecular analysis revealed no differences in muscle fiber composition, fiber cross-sectional area, gene expression of metabolic marker genes (PGC1α, CPT1, PDK4, and GLUT4), and skeletal muscle oxidative capacity. The combined supplementation of l-alanyl-l-glutamine and polyunsaturated fatty acid did not improve exercise performance or muscle function but increased lean body mass and quality of life in patients with chronic stable heart failure. These findings suggest potentially beneficial effects of high-dose nutritional polyunsaturated fatty acids and amino acid supplementations in patients with chronic stable heart failure. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01534663. © 2015 American Heart Association, Inc.

  12. [Heart functions in monkeys during a 2-week antiorthostatic hypokinesia

    NASA Technical Reports Server (NTRS)

    Krotov, V. P.; Convertino, V.; Korol'kov, V. I.; Latham, R.; Trambovetskii, E. V.; Fanton, J.; Crisman, R.; Truzhennikov, A. N.; Evert, D.; Nosovskii, A. M.; hide

    1996-01-01

    Dynamics of the left heart ventricular muscle contractility and compliance was studied in 4 monkeys in the head down position (antiorthostatic hypokinesia) with the body angle 10 during 2 weeks. Functional tests on a tilt table and under two conditions of centrifuge rotation were performed prior to and after the antiorthostatic hypokinesia. No changes in the left heart ventricular muscle contractility was found. However, the sensitivity level of the baroreflex control decreased. Compliance of the left heart myocardial fibre increased in the first hours and days of the antiorthostatic hypokinesia.

  13. The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure.

    PubMed

    Hwee, Darren T; Kennedy, Adam R; Hartman, James J; Ryans, Julie; Durham, Nickie; Malik, Fady I; Jasper, Jeffrey R

    2015-04-01

    Heart failure-mediated skeletal myopathy, which is characterized by muscle atrophy and muscle metabolism dysfunction, often manifests as dyspnea and limb muscle fatigue. We have previously demonstrated that increasing Ca(2+) sensitivity of the sarcomere by a small-molecule fast skeletal troponin activator improves skeletal muscle force and exercise performance in healthy rats and models of neuromuscular disease. The objective of this study was to investigate the effect of a novel fast skeletal troponin activator, CK-2127107 (2-aminoalkyl-5-N-heteroarylpyrimidine), on skeletal muscle function and exercise performance in rats exhibiting heart failure-mediated skeletal myopathy. Rats underwent a left anterior descending coronary artery ligation, resulting in myocardial infarction and a progressive decline in cardiac function [left anterior descending coronary artery heart failure (LAD-HF)]. Compared with sham-operated control rats, LAD-HF rat hindlimb and diaphragm muscles exhibited significant muscle atrophy. Fatigability was increased during repeated in situ isokinetic plantar flexor muscle contractions. CK-2127107 produced a leftward shift in the force-Ca(2+) relationship of skinned, single diaphragm, and extensor digitorum longus fibers. Exercise performance, which was assessed by rotarod running, was lower in vehicle-treated LAD-HF rats than in sham controls (116 ± 22 versus 193 ± 31 seconds, respectively; mean ± S.E.M.; P = 0.04). In the LAD-HF rats, a single oral dose of CK-2127107 (10 mg/kg p.o.) increased running time compared with vehicle treatment (283 ± 47 versus 116 ± 22 seconds; P = 0.0004). In summary, CK-2127107 substantially increases exercise performance in this heart failure model, suggesting that modulation of skeletal muscle function by a fast skeletal troponin activator may be a useful therapeutic in heart failure-associated exercise intolerance. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Muscle wasting and sarcopenia in heart failure and beyond: update 2017

    PubMed Central

    Springer, Joshua‐I.; Anker, Stefan D.

    2017-01-01

    Abstract Sarcopenia (loss of muscle mass and muscle function) is a strong predictor of frailty, disability and mortality in older persons and may also occur in obese subjects. The prevalence of sarcopenia is increased in patients suffering from chronic heart failure. However, there are currently few therapy options. The main intervention is resistance exercise, either alone or in combination with nutritional support, which seems to enhance the beneficial effects of training. Also, testosterone has been shown to increased muscle power and function; however, a possible limitation is the side effects of testosterone. Other investigational drugs include selective androgen receptor modulators, growth hormone, IGF‐1, compounds targeting myostatin signaling, which have their own set of side effects. There are abundant prospective targets for improving muscle function in the elderly with or without chronic heart failure, and the continuing development of new treatment strategies and compounds for sarcopenia and cardiac cachexia makes this field an exciting one. PMID:29154428

  15. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications.

    PubMed

    Stugiewicz, Magdalena; Tkaczyszyn, Michał; Kasztura, Monika; Banasiak, Waldemar; Ponikowski, Piotr; Jankowska, Ewa A

    2016-07-01

    Skeletal and respiratory myopathy not only constitutes an important pathophysiological feature of heart failure and chronic obstructive pulmonary disease, but also contributes to debilitating symptomatology and predicts worse outcomes in these patients. Accumulated evidence from laboratory experiments, animal models, and interventional studies in sports medicine suggests that undisturbed systemic iron homeostasis significantly contributes to the effective functioning of skeletal muscles. In this review, we discuss the role of iron status for the functioning of skeletal muscle tissue, and highlight iron deficiency as an emerging therapeutic target in chronic diseases accompanied by a marked muscle dysfunction. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.

  16. Abnormal cardiovascular response to exercise in hypertension: contribution of neural factors.

    PubMed

    Mitchell, Jere H

    2017-06-01

    During both dynamic (e.g., endurance) and static (e.g., strength) exercise there are exaggerated cardiovascular responses in hypertension. This includes greater increases in blood pressure, heart rate, and efferent sympathetic nerve activity than in normal controls. Two of the known neural factors that contribute to this abnormal cardiovascular response are the exercise pressor reflex (EPR) and functional sympatholysis. The EPR originates in contracting skeletal muscle and reflexly increases sympathetic efferent nerve activity to the heart and blood vessels as well as decreases parasympathetic efferent nerve activity to the heart. These changes in autonomic nerve activity cause an increase in blood pressure, heart rate, left ventricular contractility, and vasoconstriction in the arterial tree. However, arterial vessels in the contracting skeletal muscle have a markedly diminished vasoconstrictor response. The markedly diminished vasoconstriction in contracting skeletal muscle has been termed functional sympatholysis. It has been shown in hypertension that there is an enhanced EPR, including both its mechanoreflex and metaboreflex components, and an impaired functional sympatholysis. These conditions set up a positive feedback or vicious cycle situation that causes a progressively greater decrease in the blood flow to the exercising muscle. Thus these two neural mechanisms contribute significantly to the abnormal cardiovascular response to exercise in hypertension. In addition, exercise training in hypertension decreases the enhanced EPR, including both mechanoreflex and metaboreflex function, and improves the impaired functional sympatholysis. These two changes, caused by exercise training, improve the muscle blood flow to exercising muscle and cause a more normal cardiovascular response to exercise in hypertension. Copyright © 2017 the American Physiological Society.

  17. Chronic losartan administration reduces mortality and preserves cardiac but not skeletal muscle function in dystrophic mice.

    PubMed

    Bish, Lawrence T; Yarchoan, Mark; Sleeper, Meg M; Gazzara, Jeffrey A; Morine, Kevin J; Acosta, Pedro; Barton, Elisabeth R; Sweeney, H Lee

    2011-01-01

    Duchenne muscular dystrophy (DMD) is a degenerative disorder affecting skeletal and cardiac muscle for which there is no effective therapy. Angiotension receptor blockade (ARB) has excellent therapeutic potential in DMD based on recent data demonstrating attenuation of skeletal muscle disease progression during 6-9 months of therapy in the mdx mouse model of DMD. Since cardiac-related death is major cause of mortality in DMD, it is important to evaluate the effect of any novel treatment on the heart. Therefore, we evaluated the long-term impact of ARB on both the skeletal muscle and cardiac phenotype of the mdx mouse. Mdx mice received either losartan (0.6 g/L) (n = 8) or standard drinking water (n = 9) for two years, after which echocardiography was performed to assess cardiac function. Skeletal muscle weight, morphology, and function were assessed. Fibrosis was evaluated in the diaphragm and heart by Trichrome stain and by determination of tissue hydroxyproline content. By the study endpoint, 88% of treated mice were alive compared to only 44% of untreated (p = 0.05). No difference in skeletal muscle morphology, function, or fibrosis was noted in losartan-treated animals. Cardiac function was significantly preserved with losartan treatment, with a trend towards reduction in cardiac fibrosis. We saw no impact on the skeletal muscle disease progression, suggesting that other pathways that trigger fibrosis dominate over angiotensin II in skeletal muscle long term, unlike the situation in the heart. Our study suggests that ARB may be an important prophylactic treatment for DMD-associated cardiomyopathy, but will not impact skeletal muscle disease.

  18. Mitochondria and heart failure.

    PubMed

    Murray, Andrew J; Edwards, Lindsay M; Clarke, Kieran

    2007-11-01

    Energetic abnormalities in cardiac and skeletal muscle occur in heart failure and correlate with clinical symptoms and mortality. It is likely that the cellular mechanism leading to energetic failure involves mitochondrial dysfunction. Therefore, it is crucial to elucidate the causes of mitochondrial myopathy, in order to improve cardiac and skeletal muscle function, and hence quality of life, in heart failure patients. Recent studies identified several potential stresses that lead to mitochondrial dysfunction in heart failure. Chronically elevated plasma free fatty acid levels in heart failure are associated with decreased metabolic efficiency and cellular insulin resistance. Tissue hypoxia, resulting from low cardiac output and endothelial impairment, can lead to oxidative stress and mitochondrial DNA damage, which in turn causes dysfunction and loss of mitochondrial mass. Therapies aimed at protecting mitochondrial function have shown promise in patients and animal models with heart failure. Despite current therapies, which provide substantial benefit to patients, heart failure remains a relentlessly progressive disease, and new approaches to treatment are necessary. Novel pharmacological agents are needed that optimize substrate metabolism and maintain mitochondrial integrity, improve oxidative capacity in heart and skeletal muscle, and alleviate many of the clinical symptoms associated with heart failure.

  19. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundantmore » mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.« less

  20. Restoration of heart functions using human embryonic stem cells derived heart muscle cells.

    PubMed

    Gepstein, Lior; Kehat, Izhak

    2005-02-01

    Extract: Recent advances in molecular and cellular biology and specifically in the areas of stem cell biology and tissue engineering have paved the way for the development of a new field in biomedicine, regenerative medicine. This exciting approach seeks to develop new biological solutions, using the mobilization of endogenous stem cells or delivery of exogenous cells to replace or modify the function of diseased, absent, or malfunctioning tissue. The adult heart represents an attractive candidate for these emerging technologies, since adult cardiomyocytes have limited regenerative capacity. Thus, any significant heart cell loss or dysfunction, such as occurs during heart attack, is mostly irreversible and may lead to the development of progressive heart failure, one of the leading causes of world-wide morbidity and mortality. Similarly, dysfunction of the specialized electrical conduction system within the heart may result in inefficient rhythm initiation or impulse conduction, leading to significant slowing of the heart rate, usually requiring the implantation of a permanent electronic pacemaker. Replacement of the dysfunctional myocardium (heart muscle) by implantation of external heart muscle cells is emerging as a novel paradigm for restoration of the myocardial electromechanical properties, but has been significantly hampered by the paucity of cell sources for human heart cells and by the relatively limited evidence for functional integration between grafted and host cells. The recently described human embryonic stem cell (hESC) lines may provide a possible solution for the aforementioned cell sourcing problem.

  1. Rapidly progressive heart failure requiring transplantation in muscular dystrophy: a need for frequent screening.

    PubMed

    Pick, Justin M; Ellis, Zachary D; Alejos, Juan C; Chang, Anthony C

    2017-11-01

    Fukuyama congenital muscular dystrophy weakens both skeletal and cardiac muscles, but the rate of cardiomyopathic progression can accelerate faster than that of skeletal muscles. A 14-year-old boy with Fukuyama congenital muscular dystrophy presented with mild skeletal myopathy but severe cardiomyopathy requiring heart transplantation within 1 year of declining heart function. These patients need frequent screening regardless of musculoskeletal symptoms.

  2. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengpeng; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leadsmore » to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.« less

  3. A Cycle Ergometer Exercise Program Improves Exercise Capacity and Inspiratory Muscle Function in Hospitalized Patients Awaiting Heart Transplantation: a Pilot Study

    PubMed Central

    Forestieri, Patrícia; Guizilini, Solange; Peres, Monique; Bublitz, Caroline; Bolzan, Douglas W.; Rocco, Isadora S.; Santos, Vinícius B.; Moreira, Rita Simone L.; Breda, João R.; de Almeida, Dirceu R.; Carvalho, Antonio Carlos de C.; Arena, Ross; Gomes, Walter J.

    2016-01-01

    Objective The purpose of this study was to evaluate the effect of a cycle ergometer exercise program on exercise capacity and inspiratory muscle function in hospitalized patients with heart failure awaiting heart transplantation with intravenous inotropic support. Methods Patients awaiting heart transplantation were randomized and allocated prospectively into two groups: 1) Control Group (n=11) - conventional protocol; and 2) Intervention Group (n=7) - stationary cycle ergometer exercise training. Functional capacity was measured by the six-minute walk test and inspiratory muscle strength assessed by manovacuometry before and after the exercise protocols. Results Both groups demonstrated an increase in six-minute walk test distance after the experimental procedure compared to baseline; however, only the intervention group had a significant increase (P=0.08 and P=0.001 for the control and intervention groups, respectively). Intergroup comparison revealed a greater increase in the intervention group compared to the control (P<0.001). Regarding the inspiratory muscle strength evaluation, the intragroup analysis demonstrated increased strength after the protocols compared to baseline for both groups; statistical significance was only demonstrated for the intervention group, though (P=0.22 and P<0.01, respectively). Intergroup comparison showed a significant increase in the intervention group compared to the control (P<0.01). Conclusion Stationary cycle ergometer exercise training shows positive results on exercise capacity and inspiratory muscle strength in patients with heart failure awaiting cardiac transplantation while on intravenous inotropic support. PMID:27982348

  4. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy*

    PubMed Central

    Woodall, Benjamin P.; Woodall, Meryl C.; Luongo, Timothy S.; Grisanti, Laurel A.; Tilley, Douglas G.; Elrod, John W.; Koch, Walter J.

    2016-01-01

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2fl/fl) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β2-adrenergic receptor (β2AR) agonist, was significantly enhanced in MLC-Cre:GRK2fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β2AR-induced hypertrophy. PMID:27566547

  5. [Significance of insulin resistance in the pathogenesis of sarcopenia and chronic heart failure in elderly hypertensive patients].

    PubMed

    Gorshunova, N K; Medvedev, N V

    2016-01-01

    To determine the pathogenic role of insulin resistance in the formation of involutive sarcopenia and chronic heart failure (CHF) were examined 88 elderly patients with arterial hypertension (AH) and 32 elderly patients without cardiovascular disease by methods of carbohydrate metabolism and the level of brain natriuretic peptide precursor evaluation, muscle mass and strength measuring, echocardiography, 6 minute walking test. It was found that in the group of hypertensive patients with low mass and muscle strength significantly increased indices of insulin resistance and more expressed signs of the left ventricle myocardial dysfunction and functional class of heart failure, probably as a result of disorders of energy homeostasis, resulting from the deterioration of glucose into the muscle cells of the heart and skeletal muscles.

  6. Relation of systemic and local muscle exercise capacity to skeletal muscle characteristics in men with congestive heart failure

    NASA Technical Reports Server (NTRS)

    Massie, B. M.; Simonini, A.; Sahgal, P.; Wells, L.; Dudley, G. A.

    1996-01-01

    OBJECTIVES. The present study was undertaken to further characterize changes in skeletal muscle morphology and histochemistry in congestive heart failure and to determine the relation of these changes to abnormalities of systemic and local muscle exercise capacity. BACKGROUND. Abnormalities of skeletal muscle appear to play a role in the limitation of exercise capacity in congestive heart failure, but information on the changes in muscle morphology and biochemistry and their relation to alterations in muscle function is limited. METHODS. Eighteen men with predominantly mild to moderate congestive heart failure (mean +/- SEM New York Heart Association functional class 2.6 +/- 0.2, ejection fraction 24 +/- 2%) and eight age- and gender-matched sedentary control subjects underwent measurements of peak systemic oxygen consumption (VO2) during cycle ergometry, resistance to fatigue of the quadriceps femoris muscle group and biopsy of the vastus lateralis muscle. RESULTS. Peak VO2 and resistance to fatigue were lower in the patients with heart failure than in control subjects (15.7 +/- 1.2 vs. 25.1 +/- 1.5 ml/min-kg and 63 +/- 2% vs. 85 +/- 3%, respectively, both p < 0.001). Patients had a lower proportion of slow twitch, type I fibers than did control subjects (36 +/- 3% vs. 46 +/- 5%, p = 0.048) and a higher proportion of fast twitch, type IIab fibers (18 +/- 3% vs. 7 +/- 2%, p = 0.004). Fiber cross-sectional area was smaller, and single-fiber succinate dehydrogenase activity, a mitochondrial oxidative marker, was lower in patients (both p < or = 0.034). Likewise, the ratio of average fast twitch to slow twitch fiber cross-sectional area was lower in patients (0.780 +/- 0.06 vs. 1.05 +/- 0.08, p = 0.019). Peak VO2 was strongly related to integrated succinate dehydrogenase activity in patients (r = 0.896, p = 0.001). Peak VO2, resistance to fatigue and strength also correlated significantly with several measures of fiber size, especially of fast twitch fibers, in patients. None of the skeletal muscle characteristics examined correlated with exercise capacity in control subjects. CONCLUSIONS. These results indicate that congestive heart failure is associated with changes in the characteristics of skeletal muscle and local as well as systemic exercise performance. There are fewer slow twitch fibers, smaller fast twitch fibers and lower succinate dehydrogenase activity. The latter finding suggests that mitochondrial content of muscle is reduced in heart failure and that impaired aerobic-oxidative capacity may play a role in the limitation of systemic exercise capacity.

  7. Ubiquinol reduces muscle wasting but not fatigue in tumor-bearing mice.

    PubMed

    Clark, Yvonne Y; Wold, Loren E; Szalacha, Laura A; McCarthy, Donna O

    2015-05-01

    Fatigue is the most common and distressing symptom reported by cancer patients during and after treatment. Tumor growth increases oxidative stress and cytokine production, which causes skeletal muscle wasting and cardiac dysfunction. The purpose of this study was to determine whether treatment with the antioxidant ubiquinol improves muscle mass, cardiac function, and behavioral measures of fatigue in tumor-bearing mice. Adult female mice were inoculated with colon26 tumor cells. Half the control and tumor-bearing mice were administered ubiquinol (500 mg/kg/day) in their drinking water. Voluntary wheel running (i.e., voluntary running activity [VRA]) and grip strength were measured at Days 0, 8, 14, and 17 of tumor growth. Cardiac function was measured using echocardiography on Day 18 or 19. Biomarkers of inflammation, protein degradation, and oxidative stress were measured in serum and heart and gastrocnemius tissue. VRA and grip strength progressively declined in tumor-bearing mice. Muscle mass and myocardial diastolic function were decreased, and expression of proinflammatory cytokines was increased in serum and muscle and heart tissue on Day 19 of tumor growth. Oxidative stress was present only in the heart, while biomarkers of protein degradation were increased only in the gastrocnemius muscle. Ubiquinol increased muscle mass in the tumor-bearing and control animals but had no effect on the expression of biomarkers of inflammation, protein degradation, or oxidative stress or on behavioral measures of fatigue. © The Author(s) 2014.

  8. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development

    PubMed Central

    Kirchmaier, Bettina C.; Poon, Kar Lai; Schwerte, Thorsten; Huisken, Jan; Winkler, Christoph; Jungblut, Benno; Stainier, Didier Y.; Brand, Thomas

    2013-01-01

    The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)s878) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system. PMID:22290329

  9. Resistance training alters skeletal muscle structure and function in human heart failure: effects at the tissue, cellular and molecular levels

    PubMed Central

    Toth, Michael J; Miller, Mark S; VanBuren, Peter; Bedrin, Nicholas G; LeWinter, Martin M; Ades, Philip A; Palmer, Bradley M

    2012-01-01

    Reduced skeletal muscle function in heart failure (HF) patients may be partially explained by altered myofilament protein content and function. Resistance training increases muscle function, although whether these improvements are achieved by correction of myofilament deficits is not known. To address this question, we examined 10 HF patients and 14 controls prior to and following an 18 week high-intensity resistance training programme. Evaluations of whole muscle size and strength, single muscle fibre size, ultrastructure and tension and myosin–actin cross-bridge mechanics and kinetics were performed. Training improved whole muscle isometric torque in both groups, although there were no alterations in whole muscle size or single fibre cross-sectional area or isometric tension. Unexpectedly, training reduced the myofibril fractional area of muscle fibres in both groups. This structural change manifested functionally as a reduction in the number of strongly bound myosin–actin cross-bridges during Ca2+ activation. When post-training single fibre tension data were corrected for the loss of myofibril fractional area, we observed an increase in tension with resistance training. Additionally, training corrected alterations in cross-bridge kinetics (e.g. myosin attachment time) in HF patients back to levels observed in untrained controls. Collectively, our results indicate that improvements in myofilament function in sedentary elderly with and without HF may contribute to increased whole muscle function with resistance training. More broadly, these data highlight novel cellular and molecular adaptations in muscle structure and function that contribute to the resistance-trained phenotype. PMID:22199163

  10. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish.

    PubMed

    Bühler, Anja; Kustermann, Monika; Bummer, Tiziana; Rottbauer, Wolfgang; Sandri, Marco; Just, Steffen

    2016-01-30

    Orchestrated protein synthesis and degradation is fundamental for proper cell function. In muscle, impairment of proteostasis often leads to severe cellular defects finally interfering with contractile function. Here, we analyze for the first time the role of Atrogin-1, a muscle-specific E3 ubiquitin ligase known to be involved in the regulation of protein degradation via the ubiquitin proteasome and the autophagy/lysosome systems, in the in vivo model system zebrafish (Danio rerio). We found that targeted inactivation of zebrafish Atrogin-1 leads to progressive impairment of heart and skeletal muscle function and disruption of muscle structure without affecting early cardiogenesis and skeletal muscle development. Autophagy is severely impaired in Atrogin-1-deficient zebrafish embryos resulting in the disturbance of the cytoarchitecture of cardiomyocytes and skeletal muscle cells. These observations are consistent with molecular and ultrastructural findings in an Atrogin-1 knockout mouse and demonstrate that the zebrafish is a suitable vertebrate model to study the molecular mechanisms of Atrogin-1-mediated autophagic muscle pathologies and to screen for novel therapeutically active substances in high-throughput in vivo small compound screens (SCS).

  11. A Comparison Between the Hemodynamic Effects of Cisatracurium and Atracurium in Patient with Low Function of Left Ventricle who are Candidate for Open Heart Surgery.

    PubMed

    Ghorbanlo, Masoud; Mohaghegh, Mahmoud Reza; Yazdanian, Forozan; Mesbah, Mehrdad; Totonchi, Ziya

    2016-07-27

    The need for muscle relaxants in general anesthesia in different surgeries including cardiac surgeries, and the type of relaxant to be used considering its different hemodynamic effects on patients with heart disease can be of considerable importance. In this study, the hemodynamic effects of two muscle relaxants, Cisatracurium and Atracurium in patients whit low function of left ventricle who are candidate for open heart surgery have been considered. This study has been designed as a randomized prospective double-blind clinical trial. The target population included all adult patients with heart disease whose ejection fraction reported by echocardiography or cardiac catheterization was 35% or less before the surgery, and were candidate for open heart surgery in Shahid Rajaei Heart Center. Taking into account the inclusion and exclusion criteria, the patients were randomly placed in two groups of 30 people each. In the induction stage, all the patients received midazolam, etomidate, and one of the considered muscle relaxant, either 0.2 mg/kg of cisatracurium or 0.5mg/kg of Atracurium within one minute. In the maintenance stage of anesthesia, the patients were administered by infusion of midazolam, sufentanil and the same muscle relaxant used in the induction stage. The hemodynamic indexes were recorded and evaluated in different stages of anesthesia and surgery as well as prior to transfer to ICU. In regard with descriptive indexes (age and sex distributions, premedication with cardiac drugs, ejection fraction before surgery, basic disease) there was no statistically significant difference between the groups. The significant difference of hemodynamic indexes between the two groups of this study, and the need for hemodynamic stability in all stages of surgery for patients with low function of left ventricle who are candidate for open heart surgery, proves that administering Cisatracurium as the muscle relaxant is advantageous and better.

  12. Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.

    PubMed

    Poole, David C; Hirai, Daniel M; Copp, Steven W; Musch, Timothy I

    2012-03-01

    The defining characteristic of chronic heart failure (CHF) is an exercise intolerance that is inextricably linked to structural and functional aberrations in the O(2) transport pathway. CHF reduces muscle O(2) supply while simultaneously increasing O(2) demands. CHF severity varies from moderate to severe and is assessed commonly in terms of the maximum O(2) uptake, which relates closely to patient morbidity and mortality in CHF and forms the basis for Weber and colleagues' (167) classifications of heart failure, speed of the O(2) uptake kinetics following exercise onset and during recovery, and the capacity to perform submaximal exercise. As the heart fails, cardiovascular regulation shifts from controlling cardiac output as a means for supplying the oxidative energetic needs of exercising skeletal muscle and other organs to preventing catastrophic swings in blood pressure. This shift is mediated by a complex array of events that include altered reflex and humoral control of the circulation, required to prevent the skeletal muscle "sleeping giant" from outstripping the pathologically limited cardiac output and secondarily impacts lung (and respiratory muscle), vascular, and locomotory muscle function. Recently, interest has also focused on the dysregulation of inflammatory mediators including tumor necrosis factor-α and interleukin-1β as well as reactive oxygen species as mediators of systemic and muscle dysfunction. This brief review focuses on skeletal muscle to address the mechanistic bases for the reduced maximum O(2) uptake, slowed O(2) uptake kinetics, and exercise intolerance in CHF. Experimental evidence in humans and animal models of CHF unveils the microvascular cause(s) and consequences of the O(2) supply (decreased)/O(2) demand (increased) imbalance emblematic of CHF. Therapeutic strategies to improve muscle microvascular and oxidative function (e.g., exercise training and anti-inflammatory, antioxidant strategies, in particular) and hence patient exercise tolerance and quality of life are presented within their appropriate context of the O(2) transport pathway.

  13. Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20.

    PubMed

    Rexiati, Maimaiti; Sun, Mingming; Guo, Wei

    2018-01-05

    Alternative splicing is an essential post-transcriptional process to generate multiple functional RNAs or proteins from a single transcript. Progress in RNA biology has led to a better understanding of muscle-specific RNA splicing in heart disease. The recent discovery of the muscle-specific splicing factor RNA-binding motif 20 (RBM20) not only provided great insights into the general alternative splicing mechanism but also demonstrated molecular mechanism of how this splicing factor is associated with dilated cardiomyopathy. Here, we review our current knowledge of muscle-specific splicing factors and heart disease, with an emphasis on RBM20 and its targets, RBM20-dependent alternative splicing mechanism, RBM20 disease origin in induced Pluripotent Stem Cells (iPSCs), and RBM20 mutations in dilated cardiomyopathy. In the end, we will discuss the multifunctional role of RBM20 and manipulation of RBM20 as a potential therapeutic target for heart disease.

  14. Physiological and functional failure in chronic obstructive pulmonary disease, congestive heart failure and cancer: a debilitating intersection of sarcopenia, cachexia and breathlessness.

    PubMed

    Dudgeon, Deborah; Baracos, Vickie E

    2016-09-01

    Loss of skeletal muscle mass and cachexia are important manifestations of chronic obstructive pulmonary disease and have been associated with breathlessness, functional limitation and poor prognosis. A number of other life-limiting illnesses, including cancer and chronic heart failure as well as acute conditions seen in ICU such as sepsis, are characteristically associated with cachexia and sarcopenia. These conditions may have respiratory muscle atrophy of sufficient magnitude to contribute to the development of breathlessness and associated functional limitation. The purpose of this review is to summarize findings related to a direct role for severe respiratory muscle wasting in the etiology of breathlessness in advanced, life limiting illness. Localized wasting of respiratory muscles appears to be part of systemic wasting of skeletal muscles, driven by deconditioning, nutritional insufficiencies and inflammation, and because of disease-specific factors (tumor factors and exacerbations), anabolic insufficiency, autonomic dysfunction, drugs (such as corticosteroids and chemotherapy agents), mechanical ventilation and comorbidities. Marked morphological and biochemical abnormalities have been noted in diaphragm muscle biopsies. Older patients with multiple comorbidities associated with muscle loss and cachexia are likely to be at elevated risk of respiratory muscle atrophy and functional loss, because of the presence of multiple, interacting etiologic factors.

  15. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy.

    PubMed

    Woodall, Benjamin P; Woodall, Meryl C; Luongo, Timothy S; Grisanti, Laurel A; Tilley, Douglas G; Elrod, John W; Koch, Walter J

    2016-10-14

    GRK2, a G protein-coupled receptor kinase, plays a critical role in cardiac physiology. Adrenergic receptors are the primary target for GRK2 activity in the heart; phosphorylation by GRK2 leads to desensitization of these receptors. As such, levels of GRK2 activity in the heart directly correlate with cardiac contractile function. Furthermore, increased expression of GRK2 after cardiac insult exacerbates injury and speeds progression to heart failure. Despite the importance of this kinase in both the physiology and pathophysiology of the heart, relatively little is known about the role of GRK2 in skeletal muscle function and disease. In this study we generated a novel skeletal muscle-specific GRK2 knock-out (KO) mouse (MLC-Cre:GRK2 fl/fl ) to gain a better understanding of the role of GRK2 in skeletal muscle physiology. In isolated muscle mechanics testing, GRK2 ablation caused a significant decrease in the specific force of contraction of the fast-twitch extensor digitorum longus muscle yet had no effect on the slow-twitch soleus muscle. Despite these effects in isolated muscle, exercise capacity was not altered in MLC-Cre:GRK2 fl/fl mice compared with wild-type controls. Skeletal muscle hypertrophy stimulated by clenbuterol, a β 2 -adrenergic receptor (β 2 AR) agonist, was significantly enhanced in MLC-Cre:GRK2 fl/fl mice; mechanistically, this seems to be due to increased clenbuterol-stimulated pro-hypertrophic Akt signaling in the GRK2 KO skeletal muscle. In summary, our study provides the first insights into the role of GRK2 in skeletal muscle physiology and points to a role for GRK2 as a modulator of contractile properties in skeletal muscle as well as β 2 AR-induced hypertrophy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux.

    PubMed

    Ost, Mario; Keipert, Susanne; van Schothorst, Evert M; Donner, Verena; van der Stelt, Inge; Kipp, Anna P; Petzke, Klaus-Jürgen; Jove, Mariona; Pamplona, Reinald; Portero-Otin, Manuel; Keijer, Jaap; Klaus, Susanne

    2015-04-01

    Recent studies on mouse and human skeletal muscle (SM) demonstrated the important link between mitochondrial function and the cellular metabolic adaptation. To identify key compensatory molecular mechanisms in response to chronic mitochondrial distress, we analyzed mice with ectopic SM respiratory uncoupling in uncoupling protein 1 transgenic (UCP1-TG) mice as model of muscle-specific compromised mitochondrial function. Here we describe a detailed metabolic reprogramming profile associated with mitochondrial perturbations in SM, triggering an increased protein turnover and amino acid metabolism with induced biosynthetic serine/1-carbon/glycine pathway and the longevity-promoting polyamine spermidine as well as the trans-sulfuration pathway. This is related to an induction of NADPH-generating pathways and glutathione metabolism as an adaptive mitohormetic response and defense against increased oxidative stress. Strikingly, consistent muscle retrograde signaling profiles were observed in acute stress states such as muscle cell starvation and lipid overload, muscle regeneration, and heart muscle inflammation, but not in response to exercise. We provide conclusive evidence for a key compensatory stress-signaling network that preserves cellular function, oxidative stress tolerance, and survival during conditions of increased SM mitochondrial distress, a metabolic reprogramming profile so far only demonstrated for cancer cells and heart muscle. © FASEB.

  17. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification.

    PubMed

    Pillai, Indulekha C L; Li, Shen; Romay, Milagros; Lam, Larry; Lu, Yan; Huang, Jie; Dillard, Nathaniel; Zemanova, Marketa; Rubbi, Liudmilla; Wang, Yibin; Lee, Jason; Xia, Ming; Liang, Owen; Xie, Ya-Hong; Pellegrini, Matteo; Lusis, Aldons J; Deb, Arjun

    2017-02-02

    Mammalian tissues calcify with age and injury. Analogous to bone formation, osteogenic cells are thought to be recruited to the affected tissue and induce mineralization. In the heart, calcification of cardiac muscle leads to conduction system disturbances and is one of the most common pathologies underlying heart blocks. However the cell identity and mechanisms contributing to pathological heart muscle calcification remain unknown. Using lineage tracing, murine models of heart calcification and in vivo transplantation assays, we show that cardiac fibroblasts (CFs) adopt an osteoblast cell-like fate and contribute directly to heart muscle calcification. Small-molecule inhibition of ENPP1, an enzyme that is induced upon injury and regulates bone mineralization, significantly attenuated cardiac calcification. Inhibitors of bone mineralization completely prevented ectopic cardiac calcification and improved post injury heart function. Taken together, these findings highlight the plasticity of fibroblasts in contributing to ectopic calcification and identify pharmacological targets for therapeutic development. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effects of moderate heart failure and functional overload on rat plantaris muscle

    NASA Technical Reports Server (NTRS)

    Spangenburg, Espen E.; Lees, Simon J.; Otis, Jeff S.; Musch, Timothy I.; Talmadge, Robert J.; Williams, Jay H.

    2002-01-01

    It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression.

  19. An extract of lionfish (Pterois volitans) spine tissue contains acetylcholine and a toxin that affects neuromuscular transmission.

    PubMed

    Cohen, A S; Olek, A J

    1989-01-01

    A soluble toxic extract derived from spine tissue of the lionfish (Pterois volitans) decreased heart rate and force of contraction in isolated clam and frog hearts. These actions were due to the presence of micromolar concentrations of acetylcholine in the extract. Toxicity was retained after hydrolysis of acetylcholine by exogenous acetylcholinesterase, but heart function was no longer affected. Toxin treated in this way induced muscle fibrillation in an isolated nerve-muscle preparation, followed by blockade of neuromuscular transmission. Bursts of transient depolarizations were recorded at the muscle endplate shortly after toxin addition that correlated in time with the duration of toxin-induced muscle fibrillation. These effects are thought to be due to the increased release and then depletion of acetylcholine from the nerve terminal.

  20. Enhanced Skeletal Muscle Expression of EcSOD Mitigates Streptozotocin-Induced Diabetic Cardiomyopathy by Reducing Oxidative Stress and Aberrant Cell Signaling

    PubMed Central

    Call, Jarrod A.; Chain, Kristopher H.; Martin, Kyle S.; Lira, Vitor A.; Okutsu, Mitsuharu; Zhang, Mei; Yan, Zhen

    2015-01-01

    Background Exercise training enhances extracellular superoxide dismutase (EcSOD) expression in skeletal muscle and elicits positive health outcomes in individuals with diabetes. The goal of this study was to determine if enhanced skeletal muscle expression of EcSOD is sufficient to mitigate streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM). Methods and Results Exercise training promotes EcSOD expression in skeletal muscle and provides protection against DCM; however, it is not known if enhanced EcSOD expression in skeletal muscle plays a functional role in this protection. Here, we show that skeletal muscle-specific EcSOD transgenic mice (TG) are protected from cardiac hypertrophy, fibrosis and dysfunction under the condition of type-1 diabetes induced by STZ injection. We also show that both exercise training and muscle-specific transgenic expression of EcSOD result in elevated EcSOD protein in the blood and heart without increased transcription in the heart, suggesting enhanced expression of EcSOD from skeletal muscle redistributes to the heart. Importantly, cardiac tissue in TG mice displayed significantly reduced oxidative stress, aberrant cell signaling and inflammatory cytokine expression compared with wild type mice under the same diabetic condition. Conclusions Enhanced expression of EcSOD in skeletal muscle is sufficient to mitigate STZ-induced DCM through attenuation of oxidative stress, aberrant cell signaling and inflammation, suggesting a cross-organ mechanism by which exercise training improves cardiac function in diabetes. PMID:25504759

  1. Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle.

    PubMed

    Passier, R; Richardson, J A; Olson, E N

    2000-04-01

    In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.

  2. Extracellular Superoxide Dismutase Ameliorates Skeletal Muscle Abnormalities, Cachexia and Exercise Intolerance in Mice with Congestive Heart Failure

    PubMed Central

    Okutsu, Mitsuharu; Call, Jarrod A.; Lira, Vitor A.; Zhang, Mei; Donet, Jean A.; French, Brent A.; Martin, Kyle S.; Peirce-Cottler, Shayn M.; Rembold, Christopher M.; Annex, Brian H.; Yan, Zhen

    2014-01-01

    Background Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide (NO)-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of the NO-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. Methods and Results We demonstrated that systemic administration of endogenous nitric oxide donor S-Nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis [muscle creatine kinase (MCK)-EcSOD] in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF [α-myosin heavy chain (MHC)-calsequestrin] MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced heart failure. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria and vascular rarefaction in skeletal muscle. Conclusions EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF. PMID:24523418

  3. Neuromuscular electrical stimulation improves GLUT-4 and morphological characteristics of skeletal muscle in rats with heart failure.

    PubMed

    de Leon, E B; Bortoluzzi, A; Rucatti, A; Nunes, R B; Saur, L; Rodrigues, M; Oliveira, U; Alves-Wagner, A B; Xavier, L L; Machado, U F; Schaan, B D; Dall'Ago, P

    2011-02-01

    Changes in skeletal muscle morphology and metabolism are associated with limited functional capacity in heart failure, which can be attenuated by neuromuscular electrical stimulation (ES). The purpose of the present study was to analyse the effects of ES upon GLUT-4 protein content, fibre structure and vessel density of the skeletal muscle in a rat model of HF subsequent to myocardial infarction. Forty-four male Wistar rats were assigned to one of four groups: sham (S), sham submitted to ES (S+ES), heart failure (HF) and heart failure submitted to ES (HF+ES). The rats in the ES groups were submitted to ES of the left leg during 20 days (2.5 kHz, once a day, 30 min, duty cycle 50%- 15 s contraction/15 s rest). After this period, the left tibialis anterior muscle was collected from all the rats for analysis. HF+ES rats showed lower values of lung congestion when compared with HF rats (P = 0.0001). Although muscle weight was lower in HF rats than in the S group, thus indicating hypotrophy, 20 days of ES led to their recovery (P < 0.0001). In both groups submitted to ES, there was an increase in muscle vessel density (P < 0.04). Additionally, heart failure determined a 49% reduction in GLUT-4 protein content (P < 0.03), which was recovered by ES (P < 0.01). In heart failure, ES improves morphological changes and raises GLUT-4 content in skeletal muscle. © 2010 The Authors. Acta Physiologica © 2010 Scandinavian Physiological Society.

  4. Chronic obstructive pulmonary disease and chronic heart failure: two muscle diseases?

    PubMed

    Troosters, Thierry; Gosselink, Rik; Decramer, Marc

    2004-01-01

    Chronic obstructive pulmonary disease and congestive heart failure are two increasingly prevalent chronic diseases. Although care for these patients often is provided by different clinical teams, both disease conditions have much in common. In recent decades, more knowledge about the systemic impact of both diseases has become available, highlighting remarkable similarities in terms of prognostic factors and disease management. Rehabilitation programs deal with the systemic consequences of both diseases. Although clinical research also is conducted by various researchers investigating chronic obstructive pulmonary disease and chronic heart failure, it is worthwhile to compare the progress in relation to these two diseases over recent decades. Such comparison, the purpose of the current review, may help clinicians and scientists to learn about progress made in different, yet related, fields. The current review focuses on the similarities observed in the clinical impact of muscle weakness, the mechanisms of muscle dysfunction, the strategies to improve muscle function, and the effects of exercise training on chronic obstructive pulmonary disease and chronic heart failure.

  5. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016.

    PubMed

    Saitoh, Masakazu; Ishida, Junichi; Doehner, Wolfram; von Haehling, Stephan; Anker, Markus S; Coats, Andrew J S; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Cachexia in the context of heart failure (HF) has been termed cardiac cachexia, and represents a progressive involuntary weight loss. Cachexia is mainly the result of an imbalance in the homeostasis of muscle protein synthesis and degradation due to a lower activity of protein synthesis pathways and an over-activation of protein degradation. In addition, muscle wasting leads to of impaired functional capacity, even after adjusting for clinical relevant variables in patients with HF. However, there is no sufficient therapeutic strategy in muscle wasting in HF patients and very few studies in animal models. Exercise training represents a promising intervention that can prevent or even reverse the process of muscle wasting, and worsening the muscle function and performance in HF with muscle wasting and cachexia. The pathological mechanisms and effective therapeutic approach of cardiac cachexia remain uncertain, because of the difficulty to establish animal cardiac cachexia models, thus novel animal models are warranted. Furthermore, the use of improved animal models will lead to a better understanding of the pathways that modulate muscle wasting and therapeutics of muscle wasting of cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Structure and Function of Cardiac Troponin C (TNNC1): Implications for Heart Failure, Cardiomyopathies, and Troponin Modulating Drugs

    PubMed Central

    Li, Monica X.; Hwang, Peter M.

    2015-01-01

    In striated muscle, the protein troponin complex turns contraction on and off in a calcium-dependent manner. The calcium-sensing component of the complex is troponin C, which is expressed from the TNNC1 gene in both cardiac muscle and slow-twitch skeletal muscle (identical transcript in both tissues) and the TNNC2 gene in fast-twitch skeletal muscle. Cardiac troponin C (cTnC) is made up of two globular EF-hand domains connected by a flexible linker. The structural C-domain (cCTnC) contains two high affinity calcium-binding sites that are always occupied by Ca2+ or Mg2+ under physiologic conditions, stabilizing an open conformation that remains anchored to the rest of the troponin complex. In contrast, the regulatory N-domain (cNTnC) contains a single low affinity site that is largely unoccupied at resting calcium concentrations. During muscle activation, calcium binding to cNTnC favors an open conformation that binds to the switch region of troponin I, removing adjacent inhibitory regions of troponin I from actin and allowing muscle contraction to proceed. Regulation of the calcium binding affinity of cNTnC is physiologically important, because it directly impacts the calcium sensitivity of muscle contraction. Calcium sensitivity can be modified by drugs that stabilize the open form of cNTnC, post-translational modifications like phosphorylation of troponin I, or downstream thin filament protein interactions that impact the availability of the troponin I switch region. Recently, mutations in cTnC have been associated with hypertrophic or dilated cardiomyopathy. A detailed understanding of how calcium sensitivity is regulated through the troponin complex is necessary for explaining how mutations perturb its function to promote cardiomyopathy and how post-translational modifications in the thin filament affect heart function and heart failure. Troponin modulating drugs are being developed for the treatment of cardiomyopathies and heart failure. PMID:26232335

  7. Nature's Autonomous Oscillators

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  8. Cardiac mechanics: Physiological, clinical, and mathematical considerations

    NASA Technical Reports Server (NTRS)

    Mirsky, I. (Editor); Ghista, D. N.; Sandler, H.

    1974-01-01

    Recent studies concerning the basic physiological and biochemical principles underlying cardiac muscle contraction, methods for the assessment of cardiac function in the clinical situation, and mathematical approaches to cardiac mechanics are presented. Some of the topics covered include: cardiac ultrastructure and function in the normal and failing heart, myocardial energetics, clinical applications of angiocardiography, use of echocardiography for evaluating cardiac performance, systolic time intervals in the noninvasive assessment of left ventricular performance in man, evaluation of passive elastic stiffness for the left ventricle and isolated heart muscle, a conceptual model of myocardial infarction and cardiogenic shock, application of Huxley's sliding-filament theory to the mechanics of normal and hypertrophied cardiac muscle, and a rheological modeling of the intact left ventricle. Individual items are announced in this issue.

  9. T-Box Genes in Drosophila Mesoderm Development.

    PubMed

    Reim, I; Frasch, M; Schaub, C

    2017-01-01

    In Drosophila there are eight genes encoding transcription factors of the T-box family, which are known to exert a variety of crucial developmental functions during ectodermal patterning processes, neuronal cell specification, mesodermal tissue development, and the development of extraembryonic tissues. In this review, we focus on the prominent roles of Drosophila T-box genes in mesodermal tissues. First, we describe the contributions of brachyenteron (byn) and optomotor-blind-related-gene-1 (org-1) to the development of the visceral mesoderm. Second, we provide an overview on the functions of the three Dorsocross paralogs (Doc1-3) and the two Tbx20-related paralogs (midline and H15) during Drosophila heart development. Third, we portray the roles of org-1 and midline/H15 in the specification of individual body wall and organ-attached muscles, including the function of org-1 in the transdifferentiation of certain heart-attached muscles during metamorphosis. The functional analysis of these evolutionarily conserved T-box genes, along with their interactions with other types of transcription factors and various signaling pathways, has provided key insights into the regulation of Drosophila visceral mesoderm, muscle, and heart development. © 2017 Elsevier Inc. All rights reserved.

  10. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy.

    PubMed

    Petchey, Louisa K; Risebro, Catherine A; Vieira, Joaquim M; Roberts, Tom; Bryson, John B; Greensmith, Linda; Lythgoe, Mark F; Riley, Paul R

    2014-07-01

    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease.

  11. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy

    PubMed Central

    Petchey, Louisa K.; Risebro, Catherine A.; Vieira, Joaquim M.; Roberts, Tom; Bryson, John B.; Greensmith, Linda; Lythgoe, Mark F.; Riley, Paul R.

    2014-01-01

    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease. PMID:24938781

  12. Natural disease history of mouse models for limb girdle muscular dystrophy types 2D and 2F

    PubMed Central

    Putker, K.; Tanganyika-de Winter, C. L.; Boertje-van der Meulen, J. W.; van Vliet, L.; Overzier, M.; Plomp, J. J.; Aartsma-Rus, A.; van Putten, M.

    2017-01-01

    Limb-girdle muscular dystrophy types 2D and 2F (LGMD 2D and 2F) are autosomal recessive disorders caused by mutations in the alpha- and delta sarcoglycan genes, respectively, leading to severe muscle weakness and degeneration. The cause of the disease has been well characterized and a number of animal models are available for pre-clinical studies to test potential therapeutic interventions. To facilitate transition from drug discovery to clinical trials, standardized procedures and natural disease history data were collected for these mouse models. Implementing the TREAD-NMD standardized operating procedures, we here subjected LGMD2D (SGCA-null), LGMD2F (SGCD-null) and wild type (C57BL/6J) mice to five functional tests from the age of 4 to 32 weeks. To assess whether the functional test regime interfered with disease pathology, sedentary groups were taken along. Muscle physiology testing of tibialis anterior muscle was performed at the age of 34 weeks. Muscle histopathology and gene expression was analysed in skeletal muscles and heart. Muscle histopathology and gene expression was analysed in skeletal muscles and heart. Mice successfully accomplished the functional tests, which did not interfere with disease pathology. Muscle function of SGCA- and SGCD-null mice was impaired and declined over time. Interestingly, female SGCD-null mice outperformed males in the two and four limb hanging tests, which proved the most suitable non-invasive tests to assess muscle function. Muscle physiology testing of tibialis anterior muscle revealed lower specific force and higher susceptibility to eccentric-induced damage in LGMD mice. Analyzing muscle histopathology and gene expression, we identified the diaphragm as the most affected muscle in LGMD strains. Cardiac fibrosis was found in SGCD-null mice, being more severe in males than in females. Our study offers a comprehensive natural history dataset which will be useful to design standardized tests and future pre-clinical studies in LGMD2D and 2F mice. PMID:28797108

  13. Establishing the framework to support bioartificial heart fabrication using fibrin-based three-dimensional artificial heart muscle.

    PubMed

    Hogan, Matthew; Mohamed, Mohamed; Tao, Ze-Wei; Gutierrez, Laura; Birla, Ravi

    2015-02-01

    Only 3000 heart transplants are performed in the USA every year, leaving some 30 000-70 000 Americans without proper care. Current treatment modalities for heart failure have saved many lives yet still do not correct the underlying problems of congestive heart failure. Tissue engineering represents a potential field of study wherein a combination of cells, scaffolds, and/or bioreactors can be utilized to create constructs to mimic, replace, and/or repair defective tissue. The focus of this study was to generate a bioartificial heart (BAH) model using artificial heart muscle (AHM), composed of fibrin gel and neonatal rat cardiac myocytes, and a decellularized scaffold, formed by subjecting an adult rat heart to a series of decellularization solutions. By suturing the AHM around the outside of the decellularized heart and culturing while suspended in media, we were able to retain functional cardiac cells on the scaffold as evinced by visible contractility. Observed contractility rate was correlated with biopotential measurements to confirm essential functionality of cardiac constructs. Cross-sections of the BAH show successful decellularization of the scaffold and contiguous cell-rich AHM around the perimeter of the heart. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  14. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure.

    PubMed

    Sung, Miranda M; Byrne, Nikole J; Robertson, Ian M; Kim, Ty T; Samokhvalov, Victor; Levasseur, Jody; Soltys, Carrie-Lynn; Fung, David; Tyreman, Neil; Denou, Emmanuel; Jones, Kelvin E; Seubert, John M; Schertzer, Jonathan D; Dyck, Jason R B

    2017-04-01

    We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction <45) was administered resveratrol (~450 mg·kg -1 ·day -1 ) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O 2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients. NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms. Copyright © 2017 the American Physiological Society.

  15. Resting handgrip force and impaired cardiac function at rest and during exercise in COPD patients.

    PubMed

    Cortopassi, Felipe; Divo, Miguel; Pinto-Plata, Victor; Celli, Bartolome

    2011-05-01

    Cardiac function measured as the oxygen pulse (O(2) pulse) is impaired during exercise (CPET) in patients with COPD. We investigated the relationship between handgrip force and O(2) pulse in COPD and controls. We measured anthropometrics, lung function, respiratory muscle force, handgrip (HG) force and fat free mass (FFM) at rest in 18 men with COPD (FEV(1)%=45±20) and 15 controls. We then performed a symptom limited cardiopulmonary exercise test (CPET) with similar load and used heart rate, and oxygen pulse (VO(2)/HR) to express cardiac function at rest and during exercise. We corrected the O(2) pulse by FFM. Patients and controls were similar in BMI and FFM. COPD patients had lower handgrip (37.8±7 vs. 55±2) kg. O(2) pulse and HG were associated (r=0.665). At rest, COPD patients had faster heart rate (76±11 vs. 61±5) and lower oxygen pulse. COPD patients had lower oxygen pulse mL/beat at exercise isotime (10.6±3.7 vs. 14.3±2.7), even adjusted by muscle mass. Handgrip is associated with impaired heart function at rest and during exercise in COPD patients even adjusting for muscle mass differences. Lower handgrip may be a marker of impaired cardiac function in COPD patients. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. [Endurance training and cardial adaptation (athlete's heart)].

    PubMed

    Dickhuth, Hans-Hermann; Röcker, Kai; Mayer, Frank; König, Daniel; Korsten-Reck, Ulrike

    2004-06-01

    One essential function of the cardiovascular system is to provide an adequate blood supply to all organs, including the skeletal muscles at rest and during exercise. Adaptation to chronic exercise proceeds mainly via the autonomic nervous system. On the one hand, peripheral muscles influence the autonomic reactions through "feedback" control via ergoreceptors, in particular, mechano- and chemoreceptors. On the other hand, there is central control in the sense of a "feed forward" regulation, e. g., the reaction of an athlete before competition. Along with other influential factors, such as circulatory presso-, chemo-, and volume receptors, the incoming impulses are processed in vegetative centers.A cardiovascular reaction, then, is the result of nerval and humoral sympathetic and parasympathetic activity. At rest, the parasympathetic tone dominates. It reduces heart frequency and conduction velocity. The high vagal tone is initially reduced with increasing physical exertion and switches at higher intensity to increasingly sympathetic activation. This mechanism of reaction to exercise is supported by inverse central and peripheral transmissions.Chronic endurance training leads to an improved local aerobic capacity of the exercised musculature. At rest, it augments parasympathetic activity when the muscle mass is sufficiently large, i. e., 20-30% of the skeletal musculature. The extent of the adaptation depends on individual factors, such as scope, intensity of training, and type of muscle fiber. A higher vagal tone delays the increase in the sympathetic tone during physical exertion. The regulatory range of heart rate, contractility, diastolic function, and blood pressure is increased. In addition, adaptation results in functional and structural changes in the vascular system. Cardiocirculatory work is economized, and maximum performance and oxygen uptake are improved. Endurance training exceeding an individual limit causes harmonic enlargement and hypertrophy of the heart. The thickness of both, the septum and posterior wall increases to the same extent as the interior volume. The mass/volume ratio, and therefore the maximum systolic wall stress, remains constant in contrast to pathologic forms of hypertrophy. Adaptations, including function and size of the heart, show a regression in healthy inactive persons without any structural heart disease.

  17. Creatine kinase and mitochondrial respiration in hearts of trout, cod and freshwater turtle.

    PubMed

    Birkedal, R; Gesser, H

    2003-08-01

    The importance of the creatine kinase system in the cardiac muscle of ectothermic vertebrates is unclear. Mammalian cardiac muscle seems to be structurally organized in a manner that compartmentalizes the intracellular environment as evidenced by the substantially higher mitochondrial apparent Km for ADP in skinned fibres compared to isolated mitochondria. A mitochondrial fraction of creatine kinase is functionally coupled to the mitochondrial respiration, and the transport of phosphocreatine and creatine as energy equivalents of ATP and ADP, respectively, increases the mitochondrial apparent ADP affinity, i.e. lowers the Km. This function of creatine kinase seems to be absent in hearts of frog species. To find out whether this applies to hearts of ectothermic vertebrate species in general, we investigated the effect of creatine on the mitochondrial respiration of saponin-skinned fibres from the ventricle of rainbow trout, Atlantic cod and freshwater turtle. For all three species, the apparent Km for ADP appeared to be substantially higher than for isolated mitochondria. Creatine lowered this Km in trout and turtle, thus indicating a functional coupling between mitochondrial creatine kinase and respiration. However, creatine had no effect on Km in cod ventricle. In conclusion, the creatine kinase-system in trout and turtle hearts seems to fulfil the same functions as in the mammalian heart, i.e. facilitating energy transport and communication between cellular compartments. In cod heart, however, this does not seem to be the case.

  18. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs

    PubMed Central

    Wang, Bo; Patnaik, Sourav S.; Brazile, Bryn; Butler, J. Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2016-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications. PMID:27480586

  19. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs.

    PubMed

    Wang, Bo; Patnaik, Sourav S; Brazile, Bryn; Butler, J Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2015-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications.

  20. Exercise training in Tgαq*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism.

    PubMed

    Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta

    2017-08-01

    Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O 2 delivery, were mainly responsible for the functional improvement. Copyright © 2017 the American Physiological Society.

  1. [Role of sialic acid loss in the myocardium in depressing the contractile function of the heart muscle during stress].

    PubMed

    Meerson, F Z; Saulia, A I; Gudumak, V S

    1985-01-01

    Under conditions of stress a time-dependent decrease in content of sialic acids was found in adult rats; within 9 hrs of the animal immobilization the sialic acid content was decreased by 40% as compared with controls. At the same time, activities of trypsin and LDHI were increased in blood serum. The data obtained suggest that activation of proteases occurring during the stress led to increased hydrolysis of base components of glycocalyx and to impairment of the cardiomyocyte sarcolemma. These phenomena appear to be responsible for the post-stress deterioration of heart muscle contractile functions.

  2. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction.

    PubMed

    Lee, Heow Won; Ahmad, Monir; Wang, Hong-Wei; Leenen, Frans H H

    2017-03-01

    What is the central question of this study? Exercise training increases brain-derived neurotrophic factor (BDNF) in the hippocampus, which depends on a myokine, fibronectin type III domain-containing protein 5 (FNDC5). Whether exercise training after myocardial infarction induces parallel increases in FNDC5 and BDNF expression in skeletal muscle and the heart has not yet been studied. What is the main finding and its importance? Exercise training after myocardial infarction increases BDNF protein in skeletal muscle and the non-infarct area of the LV without changes in FNDC5 protein, suggesting that BDNF is not regulated by FNDC5 in skeletal muscle and heart. An increase in cardiac BDNF may contribute to the improvement of cardiac function by exercise training. Exercise training after myocardial infarction (MI) attenuates progressive left ventricular (LV) remodelling and dysfunction, but the peripheral stimuli induced by exercise that trigger these beneficial effects are still unclear. We investigated as possible mediators fibronectin type III domain-containing protein 5 (FNDC5) and brain-derived neurotrophic factor (BDNF) in the skeletal muscle and heart. Male Wistar rats underwent either sham surgery or ligation of the left descending coronary artery, and surviving MI rats were allocated to either a sedentary (Sed-MI) or an exercise group (ExT-MI). Exercise training was done for 4 weeks on a motor-driven treadmill. At the end, LV function was evaluated, and FNDC5 and BDNF mRNA and protein were assessed in soleus muscle, quadriceps and non-, peri- and infarct areas of the LV. At 5 weeks post MI, FNDC5 mRNA was decreased in soleus muscle and all areas of the LV, but FNDC5 protein was increased in the soleus muscle and the infarct area. Mature BDNF (mBDNF) protein was decreased in the infarct area without a change in mRNA. Exercise training attenuated the decrease in ejection fraction and the increase in LV end-diastolic pressure post MI. Exercise training had no effect on FNDC5 mRNA and protein, but increased mBDNF protein in soleus muscle, quadriceps and the non-infarct area of the LV. The mBDNF protein in the non-infarct area correlated positively with ejection fraction and inversely with LV end-diastolic pressure. In conclusion, mBDNF is induced by exercise training in skeletal muscle and the non-infarct area of the LV, which may contribute to improvement of muscle dysfunction and cardiac function post MI. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  3. M-cadherin and its sisters in development of striated muscle.

    PubMed

    Kaufmann, U; Martin, B; Link, D; Witt, K; Zeitler, R; Reinhard, S; Starzinski-Powitz, A

    1999-04-01

    Cadherins are calcium-dependent, transmembrane intercellular adhesion proteins with morphoregulatory functions in the development and maintenance of tissues. In the development of striated muscle, the expression and function of mainly M-, N-, and R-cadherin has been studied so far. While these three cadherins are expressed in skeletal muscle cells, of these only N-cadherin is expressed in cardiac muscle. In this review, M-, N-, and R-cadherin are discussed as important players in the terminal differentiation and possibly also in the commitment of skeletal muscle cells. Furthermore, reports are described which evaluate the essential role of N-cadherin in the formation of heart tissue.

  4. Long-term administration of the TNF blocking drug Remicade (cV1q) to mdx mice reduces skeletal and cardiac muscle fibrosis, but negatively impacts cardiac function

    PubMed Central

    Ermolova, N.E.; Martinez, L.; Vetrone, S.A.; Jordan, M. C.; Roos, K. .P.; Sweeney, H.L.; Spencer, M.J.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease caused by mutations in the gene encoding dystrophin (DYS). Tumor necrosis factor (TNF) has been implicated in the pathogenesis of DMD since short-term treatment of mdx mice with TNF blocking drugs proved beneficial; however, it is not clear whether long-term treatment will also improve long-term outcomes of fibrosis and cardiac health. In this investigation, short and long-term dosing studies were carried out using the TNF blocking drug Remicade and a variety of outcome measures were assessed. Here we show no demonstrable benefit to muscle strength or morphology with 10mg/kg or 20 mg/kg Remicade; however, 3mg/kg produced positive strength benefits. Remicade treatment correlated with reductions in myostatin mRNA in the heart, and concomitant reductions in cardiac and skeletal fibrosis. Surprisingly, although Remicade treated mdx hearts were less fibrotic, reductions in LV mass and ejection fraction were also observed, and these changes coincided with reductions in AKT phosphorylation on threonine 308. Thus, TNF blockade benefits mdx skeletal muscle strength and fibrosis, but negatively impacts AKT activation, leading to deleterious changes to dystrophic heart function. These studies uncover a previously unknown relationship between TNF blockade and alteration of muscle growth signaling pathways. PMID:24844454

  5. Bcl-2-associated athanogene 3 (BAG3) is an enhancer of small heat shock protein turnover via activation of autophagy in the heart.

    PubMed

    Inomata, Yui; Nagasaka, Shouta; Miyate, Kazuki; Goto, Yuta; Hino, Chizuru; Toukairin, Chihiro; Higashio, Rieko; Ishida, Kinji; Saino, Tomoyuki; Hirose, Masamichi; Tsumura, Hideki; Sanbe, Atsushi

    2018-02-19

    Bcl-2-associated athanogene 3 (BAG3) is strongly expressed in both cardiac and skeletal muscle. A recent study showed that BAG3 may play a protective role in muscles. Little is known, however, regarding the detailed role of BAG3 in cardiac muscle. To better understand the functional role of cardiac BAG3 in the heart, we generated transgenic (TG) mice that overexpress BAG3. A decrease in fractional shortening, and the induction of cardiac atrial natriuretic peptide, were observed in BAG3 TG mice. Moreover, a marked reduction in the protein level of small HSPs was detected in BAG3 TG mouse hearts. We analyzed the cardiac small HSP levels when either the ubiquitin-proteasome system (UPS) or the autophagy system (AS) was inhibited in BAG3 TG mice. The protein turnovers of small HSPs by the AS were activated in BAG3 TG mouse hearts. Thus, BAG3 is critical for the protein turnover of small HSPs via activation of autophagy in the heart. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Chamber identity programs drive early functional partitioning of the heart.

    PubMed

    Mosimann, Christian; Panáková, Daniela; Werdich, Andreas A; Musso, Gabriel; Burger, Alexa; Lawson, Katy L; Carr, Logan A; Nevis, Kathleen R; Sabeh, M Khaled; Zhou, Yi; Davidson, Alan J; DiBiase, Anthony; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Zon, Leonard I

    2015-08-26

    The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we delineate the functional contribution of the FHF and SHF to the zebrafish heart using the cis-regulatory elements of the draculin (drl) gene. The drl reporters initially delineate the lateral plate mesoderm, including heart progenitors. Subsequent myocardial drl reporter expression restricts to FHF descendants. We harnessed this unique feature to uncover that loss of tbx5a and pitx2 affect relative FHF versus SHF contributions to the heart. High-resolution physiology reveals distinctive electrical properties of each heart field territory that define a functional boundary within the single zebrafish ventricle. Our data establish that the transcriptional program driving cardiac septation regulates physiologic ventricle partitioning, which successively provides mechanical advantages of sequential contraction.

  7. Metabolic 'engines' of flight drive genome size reduction in birds.

    PubMed

    Wright, Natalie A; Gregory, T Ryan; Witt, Christopher C

    2014-03-22

    The tendency for flying organisms to possess small genomes has been interpreted as evidence of natural selection acting on the physical size of the genome. Nonetheless, the flight-genome link and its mechanistic basis have yet to be well established by comparative studies within a volant clade. Is there a particular functional aspect of flight such as brisk metabolism, lift production or maneuverability that impinges on the physical genome? We measured genome sizes, wing dimensions and heart, flight muscle and body masses from a phylogenetically diverse set of bird species. In phylogenetically controlled analyses, we found that genome size was negatively correlated with relative flight muscle size and heart index (i.e. ratio of heart to body mass), but positively correlated with body mass and wing loading. The proportional masses of the flight muscles and heart were the most important parameters explaining variation in genome size in multivariate models. Hence, the metabolic intensity of powered flight appears to have driven genome size reduction in birds.

  8. Post-hatching development of mitochondrial function, organ mass and metabolic rate in two ectotherms, the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina)

    PubMed Central

    Sirsat, Sarah K. G.; Sirsat, Tushar S.; Price, Edwin R.; Dzialowski, Edward M.

    2016-01-01

    ABSTRACT The ontogeny of endothermy in birds is associated with disproportionate growth of thermogenic organs and increased mitochondrial oxidative capacity. However, no similar study has been made of the development of these traits in ectotherms. For comparison, we therefore investigated the metabolism, growth and muscle mitochondrial function in hatchlings of a turtle and a crocodilian, two ectotherms that never develop endothermy. Metabolic rate did not increase substantially in either species by 30 days post-hatching. Yolk-free body mass and heart mass did not change through 30 days in alligators and heart mass was a constant proportion of body mass, even after 1 year. Yolk-free body mass and liver mass grew 36% and 27%, respectively, in turtles during the first 30 days post-hatch. The mass-specific oxidative phosphorylation capacity of mitochondria, assessed using permeabilized muscle fibers, increased by a non-significant 47% in alligator thigh and a non-significant 50% in turtle thigh over 30 days, but did not increase in the heart. This developmental trajectory of mitochondrial function is slower and shallower than that previously observed in ducks, which demonstrate a 90% increase in mass-specific oxidative phosphorylation capacity in thigh muscles over just a few days, a 60% increase in mass-specific oxidative phosphorylation capacity of the heart over a few days, and disproportionate growth of the heart and other organs. Our data thus support the hypothesis that these developmental changes in ducks represent mechanistic drivers for attaining endothermy. PMID:26962048

  9. Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure.

    PubMed

    Ichige, Marcelo H A; Pereira, Marcelo G; Brum, Patrícia C; Michelini, Lisete C

    2017-01-01

    Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients' morbimortality.

  10. The heart of the matter: from guided microtools to 3-D printing and precision genome editing, promising research could lead to new advances in pediatric cardiology.

    PubMed

    Chandler, David L

    2015-01-01

    The smooth, powerful muscles of a newborn baby?s heart are pulsing normally, squeezing in and letting go rhythmically as a 3-mm-wide catheter-like tube snakes its way through, entering via an artery and being guided slowly by a surgeon. When it reaches its target?a protruding knot of malformed muscle tissue within a ventricle that has been partly blocking the valve?the tip of the precisely controlled tube whirs into action, with tiny scissor-like rotating blades gently grinding up the excess tissue as those pieces are sucked back into the device, leaving no floating particles that could lead to a blockage elsewhere. The defect is fully removed, and the heart?s function is restored to normal, leaving the child with the prospect of a normal life. The whole minimally invasive process takes place inside a beating heart and would otherwise have required open-heart surgery, with the heart stopped for a cardiopulmonary bypass.

  11. Skeletal muscle biopsy studies of cardiac patients.

    PubMed

    Fekete, G; Boros, Z; Cserhalmi, L; Apor, P

    1987-01-01

    Eleven patients diagnosed and treated for congestive cardiomyopathy (COCM) of unknown aetiology, and another 10 patients, with congestive alcoholic heart muscle disease (ACOCM) were studied. Muscle biopsy samples were obtained from the vastus lateralis (VL) and the gastrocnemius (G) muscles. In part of the sample muscle the fibre pattern was classified by means of ATPase activity staining, a technique based on the pH lability of the fibres concerned. Fibre typing and area measurements were carried out by light microscope. The other part of the sample was used as muscle homogenate of which the Ca2+-activated ATPase activity as well as citrate synthetase (CS) and aldolase activities were measured. No significant difference was found in these enzyme activities between the two groups of patients. The proportion of the slow twitch (ST) fibres in the VL, mainly in the patients with ACOCM, was lower as compared to data for healthy subjects. A similar tendency was revealed for G. In both muscles tested, the area of ST fibres was smaller in the ACOCM group. The fast twitch (FT) fibre area proved to be slightly different in the two groups of subjects tested. Occurrence of degenerative signs in the histological tests was higher in the ACOCM than in the COCM group. It was concluded that differences in the skeletal muscles of patients with ACOCM and COCM may primarily account for the alcoholism. The disease of the heart muscle has little effect on the function of skeletal muscle. Even so, a low amount or lack of physical activity may have an unfavourable influence on the skeletal muscles of patients with heart muscle disease.

  12. Small Heat Shock Protein 20 (HspB6) in Cardiac Hypertrophy and Failure

    PubMed Central

    Fan, Guo-Chang; Kranias, Evangelia G.

    2010-01-01

    Hsp20, referred to as HspB6, is constitutively expressed in various tissues. Specifically, HspB6 is most highly expressed in different types of muscle including vascular, airway, colonic, bladder, and uterine smooth muscle; cardiac muscle; and skeletal muscle. It can be phosphorylated at Ser-16 by both cAMP- and cGMP-dependent protein kinases (PKA/PKG). Recently, Hsp20 and its phosphorylation have been implicated in multiple physiological and pathophysiological processes including smooth muscle relaxation, platelet aggregation, exercise training, myocardial infarction, atherosclerosis, insulin resistance and Alzheimer’s disease. In the heart, key advances have been made in elucidating the significance of Hsp20 in contractile function and cardioprotection over the last decade. This mini-review highlights exciting findings in animal models and human patients, with special emphasis on the potential salutary effects of Hsp20 in heart disease. PMID:20869365

  13. Systemic SMAD7 Gene Therapy Increases Striated Muscle Mass and Enhances Exercise Capacity in a Dose-Dependent Manner.

    PubMed

    Maricelli, Joseph W; Bishaw, Yemeserach M; Wang, Bo; Du, Min; Rodgers, Buel D

    2018-03-01

    Striated muscle wasting occurs with a variety of disease indications, contributing to mortality and compromising life quality. Recent studies indicate that the recombinant adeno-associated virus (serotype 6) Smad7 gene therapeutic, AVGN7, enhances skeletal and cardiac muscle mass and prevents cancer-induced wasting of both tissues. This is accomplished by attenuating ActRIIb intracellular signaling and, as a result, the physiological actions of myostatin and other ActRIIb ligands. AVGN7 also enhances isolated skeletal muscle twitch force, but is unknown to improve systemic muscle function similarly, especially exercise capacity. A 2-month-long dose-escalation study was therefore conducted using 5 × 10 11 , 1 × 10 12 , and 5 × 10 12 vg/mouse and different tests of systemic muscle function. Body mass, skeletal muscle mass, heart mass, and forelimb grip strength were all increased in a dose-dependent manner, as was the fiber cross-sectional area of tibialis anterior muscles. Maximal oxygen consumption (VO 2 max), a measure of metabolic rate, was similarly enhanced during forced treadmill running, and although the total distance traveled was only elevated by the highest dose, all doses reduced the energy expenditure rate compared to control mice injected with an empty vector. Such improvements in VO 2 max are consistent with physiological cardiac hypertrophy, which is highly beneficial and a normal adaptive response to exercise. This was particularly evident at the lowest dose tested, which had minimal significant effects on skeletal muscle mass and/or function, but increased heart weight and exercise capacity. These results together suggest that AVGN7 enhances striated muscle mass and systemic muscle function. They also define minimally effective and optimal doses for future preclinical trials and toxicology studies and in turn will aid in establishing dose ranges for clinical trials.

  14. Striated Muscle Function, Regeneration, and Repair

    PubMed Central

    Shadrin, I.Y.; Khodabukus, A.; Bursac, N.

    2016-01-01

    As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice. PMID:27271751

  15. Voluntary physical activity protects from susceptibility to skeletal muscle contraction-induced injury but worsens heart function in mdx mice.

    PubMed

    Hourdé, Christophe; Joanne, Pierre; Medja, Fadia; Mougenot, Nathalie; Jacquet, Adeline; Mouisel, Etienne; Pannerec, Alice; Hatem, Stéphane; Butler-Browne, Gillian; Agbulut, Onnik; Ferry, Arnaud

    2013-05-01

    It is well known that inactivity/activity influences skeletal muscle physiological characteristics. However, the effects of inactivity/activity on muscle weakness and increased susceptibility to muscle contraction-induced injury have not been extensively studied in mdx mice, a murine model of Duchenne muscular dystrophy with dystrophin deficiency. In the present study, we demonstrate that inactivity (ie, leg immobilization) worsened the muscle weakness and the susceptibility to contraction-induced injury in mdx mice. Inactivity also mimicked these two dystrophic features in wild-type mice. In contrast, we demonstrate that these parameters can be improved by activity (ie, voluntary wheel running) in mdx mice. Biochemical analyses indicate that the changes induced by inactivity/activity were not related to fiber-type transition but were associated with altered expression of different genes involved in fiber growth (GDF8), structure (Actg1), and calcium homeostasis (Stim1 and Jph1). However, activity reduced left ventricular function (ie, ejection and shortening fractions) in mdx, but not C57, mice. Altogether, our study suggests that muscle weakness and susceptibility to contraction-induced injury in dystrophic muscle could be attributable, at least in part, to inactivity. It also suggests that activity exerts a beneficial effect on dystrophic skeletal muscle but not on the heart. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Similar efficacy from specific and non-specific mineralocorticoid receptor antagonist treatment of muscular dystrophy mice.

    PubMed

    Lowe, Jeovanna; Floyd, Kyle T; Rastogi, Neha; Schultz, Eric J; Chadwick, Jessica A; Swager, Sarah A; Zins, Jonathan G; Kadakia, Feni K; Smart, Suzanne; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E; Raman, Subha V; Janssen, Paul M L; Rafael-Fortney, Jill A

    2016-01-01

    Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus , and cardiac papillary muscle force was measured ex vivo , followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.

  17. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension.

    PubMed

    Ragot, Hélène; Monfort, Astrid; Baudet, Mathilde; Azibani, Fériel; Fazal, Loubina; Merval, Régine; Polidano, Evelyne; Cohen-Solal, Alain; Delcayre, Claude; Vodovar, Nicolas; Chatziantoniou, Christos; Samuel, Jane-Lise

    2016-08-01

    Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway. © 2016 American Heart Association, Inc.

  18. Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium

    PubMed Central

    Lescroart, Fabienne; Hamou, Wissam; Francou, Alexandre; Théveniau-Ruissy, Magali; Kelly, Robert G.; Buckingham, Margaret

    2015-01-01

    Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease. PMID:25605943

  19. Clonal analysis reveals a common origin between nonsomite-derived neck muscles and heart myocardium.

    PubMed

    Lescroart, Fabienne; Hamou, Wissam; Francou, Alexandre; Théveniau-Ruissy, Magali; Kelly, Robert G; Buckingham, Margaret

    2015-02-03

    Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease.

  20. Increased plasma lipid levels exacerbate muscle pathology in the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Milad, Nadia; White, Zoe; Tehrani, Arash Y; Sellers, Stephanie; Rossi, Fabio M V; Bernatchez, Pascal

    2017-09-12

    Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin expression and leads to severe ambulatory and cardiac function decline. However, the dystrophin-deficient mdx murine model of DMD only develops a very mild form of the disease. Our group and others have shown vascular abnormalities in animal models of MD, a likely consequence of the fact that blood vessels express the same dystrophin-associated glycoprotein complex (DGC) proteins as skeletal muscles. To test the blood vessel contribution to muscle damage in DMD, mdx 4cv mice were given elevated lipid levels via apolipoprotein E (ApoE) gene knockout combined with normal chow or lipid-rich Western diets. Ambulatory function and heart function (via echocardiogram) were assessed at 4 and 7 months of age. After sacrifice, muscle histology and aortic staining were used to assess muscle pathology and atherosclerosis development, respectively. Plasma levels of total cholesterol, high-density lipoprotein (HDL), triglycerides, and creatine kinase (CK) were also measured. Although there was an increase in left ventricular heart volume in mdx-ApoE mice compared to that in mdx mice, parameters of heart function were not affected. Compared with wild-type and ApoE-null, only mdx-ApoE KO mice showed significant ambulatory dysfunction. Despite no significant difference in plasma CK, histological analyses revealed that elevated plasma lipids in chow- and Western diet-fed mdx-ApoE mice was associated with severe exacerbation of muscle pathology compared to mdx mice: significant increase in myofiber damage and fibrofatty replacement in the gastrocnemius and triceps brachii muscles, more reminiscent of human DMD pathology. Finally, although both ApoE and mdx-ApoE groups displayed increased plasma lipids, mdx-ApoE exhibited atherosclerotic plaque deposition equal to or less than that of ApoE mice. Since others have shown that lipid abnormalities correlate with DMD severity, our data suggest that plasma lipids could be primary contributors to human DMD severity and that the notoriously mild phenotype of mdx mice might be attributable in part to their endogenously low plasma lipid profiles. Hence, DMD patients may benefit from lipid-lowering and vascular-targeted therapies.

  1. Nutritional status and its effects on muscle wasting in patients with chronic heart failure: insights from Studies Investigating Co-morbidities Aggravating Heart Failure.

    PubMed

    Saitoh, Masakazu; Dos Santos, Marcelo Rodrigues; Ebner, Nicole; Emami, Amir; Konishi, Masaaki; Ishida, Junichi; Valentova, Miroslava; Sandek, Anja; Doehner, Wolfram; Anker, Stefan D; von Haehling, Stephan

    2016-12-01

    Inadequate nutritional status has been linked to poor outcomes in patients with heart failure (HF). Skeletal muscle wasting affects about 20% of ambulatory patients with HF. The impact of nutritional intake and appetite on skeletal muscle wasting has not been investigated so far. We sought to investigate the impact of nutritional status on muscle wasting and mortality in ambulatory patients with HF. We studied 130 ambulatory patients with HF who were recruited as a part of the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF) program. Muscle wasting was defined according to criteria of sarcopenia, i.e., appendicular skeletal muscle mass two standard deviations below the mean of a healthy reference group aged 18-40 years. Nutritional status was evaluated using the Mini-Nutritional Assessment-Short Form (MNA-SF). Functional capacity was assessed as peak oxygen consumption (peak VO 2 ) by cardiopulmonary exercise testing, 6‑minute walk testing, and the Short Physical Performance Battery (SPPB). At baseline, 19 patients (15%) presented with muscle wasting. Patients with muscle wasting had significantly lower values of peak VO 2 , 6‑minute walk distance, SPPB, and MNA-SF score than patients without (all p < 0.05). In multivariate analysis, MNA-SF remained an independent predictor of muscle wasting after adjustment for age and New York Heart Association class (odds ratio [OR] 0.66; confidence interval [CI] 0.50-0.88; p < 0.01). A total of 16 (12%) patients died during a mean follow-up of 21 months. In Cox regression analysis, MNA-SF (OR 0.80, CI 0.64-0.99, p = 0.04), left ventricular ejection fraction (OR 0.93, CI 0.86-0.99, p = 0.05), and peak VO 2 (OR 0.78, CI 0.65-0.94, p = 0.008) were predictors of death. MNA-SF is an independent predictor of muscle wasting and mortality in ambulatory patients with HF. Nutritional screening should be included as a fundamental part of the overall assessment of these patients.

  2. Morphological variations of papillary muscles in the mitral valve complex in human cadaveric hearts.

    PubMed

    Gunnal, Sandhya Arvind; Wabale, Rajendra Namdeo; Farooqui, Mujeebuddin Samsamuddin

    2013-01-01

    Papillary muscle rupture and dysfunction can lead to complications of prolapsed mitral valve and mitral regurgitation. Multiple operative procedures of the papillary muscles, such as resection, repositioning and realignment, are carried out to restore normal physiological function. Therefore, it is important to know both the variations and the normal anatomy of papillary muscles. This study was carried out on 116 human cadaveric hearts. The left ventricles were opened along the left border in order to view the papillary muscles. The number, shape, position and pattern of the papillary muscles were observed. In this series, the papillary muscles were mostly found in groups instead of in twos, as is described in standard textbooks. Four different shapes of papillary muscles were identified - conical, broad-apexed, pyramidal and fan-shaped. We also discovered various patterns of papillary muscles. No two mitral valve complexes have the same architectural arrangement. Each case seems to be unique. Therefore, it is important for scientists worldwide to study the variations in the mitral valve complex in order to ascertain the reason behind each specific architectural arrangement. This will enable cardiothoracic surgeons to tailor the surgical procedures according to the individual papillary muscle pattern.

  3. Post-hatching development of mitochondrial function, organ mass and metabolic rate in two ectotherms, the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina).

    PubMed

    Sirsat, Sarah K G; Sirsat, Tushar S; Price, Edwin R; Dzialowski, Edward M

    2016-04-15

    The ontogeny of endothermy in birds is associated with disproportionate growth of thermogenic organs and increased mitochondrial oxidative capacity. However, no similar study has been made of the development of these traits in ectotherms. For comparison, we therefore investigated the metabolism, growth and muscle mitochondrial function in hatchlings of a turtle and a crocodilian, two ectotherms that never develop endothermy. Metabolic rate did not increase substantially in either species by 30 days post-hatching. Yolk-free body mass and heart mass did not change through 30 days in alligators and heart mass was a constant proportion of body mass, even after 1 year. Yolk-free body mass and liver mass grew 36% and 27%, respectively, in turtles during the first 30 days post-hatch. The mass-specific oxidative phosphorylation capacity of mitochondria, assessed using permeabilized muscle fibers, increased by a non-significant 47% in alligator thigh and a non-significant 50% in turtle thigh over 30 days, but did not increase in the heart. This developmental trajectory of mitochondrial function is slower and shallower than that previously observed in ducks, which demonstrate a 90% increase in mass-specific oxidative phosphorylation capacity in thigh muscles over just a few days, a 60% increase in mass-specific oxidative phosphorylation capacity of the heart over a few days, and disproportionate growth of the heart and other organs. Our data thus support the hypothesis that these developmental changes in ducks represent mechanistic drivers for attaining endothermy. © 2016. Published by The Company of Biologists Ltd.

  4. Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging.

    PubMed

    Zhou, Jin; Chong, Shu Yun; Lim, Andrea; Singh, Brijesh K; Sinha, Rohit A; Salmon, Adam B; Yen, Paul M

    2017-02-26

    Aging causes a general decline in cellular metabolic activity, and function in different tissues and whole body homeostasis. However, the understanding about the metabolomic and autophagy changes in skeletal muscle and heart during aging is still limited. We thus examined markers for macroautophagy, chaperone-mediated autophagy (CMA), mitochondrial quality control, as well as cellular metabolites in skeletal and cardiac muscle from young (5 months old) and aged (27 months old) mice. We found decreased autophagic degradation of p62 and increased ubiquitinated proteins in both tissues from aged mice, suggesting a decline in macroautophagy during aging. In skeletal muscle from aged mice, there also was a decline in LC3B-I conjugation to phosphatidylethanolamine (PE) possibly due to decreased protein levels of ATG3 and ATG12-ATG5. The CMA markers, LAMP-2A and Hsc70, and mitochondrial turnover markers, Drp1, PINK1 and PGC1α also were decreased. Metabolomics analysis showed impaired β-oxidation in heart of aged mice, whereas increased branched-chain amino acids (BCAAs) and ceramide levels were found in skeletal muscle of aged mice that in turn, may contribute to insulin resistance in muscle. Taken together, our studies showed similar declines in macroautophagy but distinct effects on CMA, mitochondrial turnover, and metabolic dysfunction in muscle vs. heart during aging.

  5. Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging

    PubMed Central

    Zhou, Jin; Yun Chong, Shu; Lim, Andrea; Singh, Brijesh K.; Sinha, Rohit A.; Salmon, Adam B.; Yen, Paul M.

    2017-01-01

    Aging causes a general decline in cellular metabolic activity, and function in different tissues and whole body homeostasis. However, the understanding about the metabolomic and autophagy changes in skeletal muscle and heart during aging is still limited. We thus examined markers for macroautophagy, chaperone-mediated autophagy (CMA), mitochondrial quality control, as well as cellular metabolites in skeletal and cardiac muscle from young (5 months old) and aged (27 months old) mice. We found decreased autophagic degradation of p62 and increased ubiquitinated proteins in both tissues from aged mice, suggesting a decline in macroautophagy during aging. In skeletal muscle from aged mice, there also was a decline in LC3B-I conjugation to phosphatidylethanolamine (PE) possibly due to decreased protein levels of ATG3 and ATG12-ATG5. The CMA markers, LAMP-2A and Hsc70, and mitochondrial turnover markers, Drp1, PINK1 and PGC1α also were decreased. Metabolomics analysis showed impaired β-oxidation in heart of aged mice, whereas increased branched-chain amino acids (BCAAs) and ceramide levels were found in skeletal muscle of aged mice that in turn, may contribute to insulin resistance in muscle. Taken together, our studies showed similar declines in macroautophagy but distinct effects on CMA, mitochondrial turnover, and metabolic dysfunction in muscle vs. heart during aging. PMID:28238968

  6. Effect of voluntary physical activity initiated at age 7 months on skeletal hindlimb and cardiac muscle function in mdx mice of both genders.

    PubMed

    Ferry, Arnaud; Benchaouir, Rachid; Joanne, Pierre; Peat, Rachel A; Mougenot, Nathalie; Agbulut, Onnik; Butler-Browne, Gillian

    2015-11-01

    The effects of voluntary activity initiated in adult mdx (C57BL/10ScSc-DMD(mdx) /J) mice on skeletal and cardiac muscle function have not been studied extensively. We studied the effects of 3 months of voluntary wheel running initiated at age 7 months on hindlimb muscle weakness, increased susceptibility to muscle contraction-induced injury, and left ventricular function in mdx mice. We found that voluntary wheel running did not worsen the deficit in force-generating capacity and the force drop after lengthening contractions in either mdx mouse gender. It increased the absolute maximal force of skeletal muscle in female mdx mice. Moreover, it did not affect left ventricular function, structural heart dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers. These results indicate that voluntary activity initiated at age 7 months had no detrimental effects on skeletal or cardiac muscles in either mdx mouse gender. © 2015 Wiley Periodicals, Inc.

  7. Deregulated Cardiac Specific MicroRNAs in Postnatal Heart Growth.

    PubMed

    Yu, Pujiao; Wang, Hongbao; Xie, Yuan; Zhou, Jinzhe; Yao, Jianhua; Che, Lin

    2016-01-01

    The heart is recognized as an organ that is terminally differentiated by adulthood. However, during the process of human development, the heart is the first organ with function in the embryo and grows rapidly during the postnatal period. MicroRNAs (miRNAs, miRs), as regulators of gene expression, play important roles during the development of multiple systems. However, the role of miRNAs in postnatal heart growth is still unclear. In this study, by using qRT-PCR, we compared the expression of seven cardiac- or muscle-specific miRNAs that may be related to heart development in heart tissue from mice at postnatal days 0, 3, 8, and 14. Four miRNAs-miR-1a-3p, miR-133b-3p, miR-208b-3p, and miR-206-3p-were significantly decreased while miR-208a-3p was upregulated during the postnatal heart growth period. Based on these results, GeneSpring GX was used to predict potential downstream targets by performing a 3-way comparison of predictions from the miRWalk, PITA, and microRNAorg databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to identify potential functional annotations and signaling pathways related to postnatal heart growth. This study describes expression changes of cardiac- and muscle-specific miRNAs during postnatal heart growth and may provide new therapeutic targets for cardiovascular diseases.

  8. Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement.

    PubMed

    Weisleder, Noah; Soumaka, Elisavet; Abbasi, Shahrzad; Taegtmeyer, Heinrich; Capetanaki, Yassemi

    2004-01-01

    Mice deficient in desmin, the muscle-specific member of the intermediate filament gene family, display defects in all muscle types and particularly in the myocardium. Desmin null hearts develop cardiomyocyte hypertrophy and dilated cardiomyopathy (DCM) characterized by extensive myocyte cell death, calcific fibrosis and multiple ultrastructural defects. Several lines of evidence suggest impaired vascular function in desmin null animals. To determine whether altered capillary function or an intrinsic cardiomyocyte defect is responsible for desmin null DCM, transgenic mice were generated to rescue desmin expression specifically to cardiomyocytes. Desmin rescue mice display a wild-type cardiac phenotype with no fibrosis or calcification in the myocardium and normalization of coronary flow. Cardiomyocyte ultrastructure is also restored to normal. Markers of hypertrophy upregulated in desmin null hearts return to wild-type levels in desmin rescue mice. Working hearts were perfused to assess coronary flow and cardiac power. Restoration of a wild-type cardiac phenotype in a desmin null background by expression of desmin specifically within cardiomyocyte indicates that defects in the desmin null heart are due to an intrinsic cardiomyocytes defect rather than compromised coronary circulation.

  9. Intercostal and forearm muscle deoxygenation during respiratory fatigue in patients with heart failure: potential role of a respiratory muscle metaboreflex.

    PubMed

    Moreno, A M; Castro, R R T; Silva, B M; Villacorta, H; Sant'Anna Junior, M; Nóbrega, A C L

    2014-11-01

    The purpose of this study was to determine the effect of respiratory muscle fatigue on intercostal and forearm muscle perfusion and oxygenation in patients with heart failure. Five clinically stable heart failure patients with respiratory muscle weakness (age, 66 ± 12 years; left ventricle ejection fraction, 34 ± 3%) and nine matched healthy controls underwent a respiratory muscle fatigue protocol, breathing against a fixed resistance at 60% of their maximal inspiratory pressure for as long as they could sustain the predetermined inspiratory pressure. Intercostal and forearm muscle blood volume and oxygenation were continuously monitored by near-infrared spectroscopy with transducers placed on the seventh left intercostal space and the left forearm. Data were compared by two-way ANOVA and Bonferroni correction. Respiratory fatigue occurred at 5.1 ± 1.3 min in heart failure patients and at 9.3 ± 1.4 min in controls (P<0.05), but perceived effort, changes in heart rate, and in systolic blood pressure were similar between groups (P>0.05). Respiratory fatigue in heart failure reduced intercostal and forearm muscle blood volume (P<0.05) along with decreased tissue oxygenation both in intercostal (heart failure, -2.6 ± 1.6%; controls, +1.6 ± 0.5%; P<0.05) and in forearm muscles (heart failure, -4.5 ± 0.5%; controls, +0.5 ± 0.8%; P<0.05). These results suggest that respiratory fatigue in patients with heart failure causes an oxygen demand/delivery mismatch in respiratory muscles, probably leading to a reflex reduction in peripheral limb muscle perfusion, featuring a respiratory metaboreflex.

  10. Sublethal effect of copper toxicity against histopathological changes in the spiny lobster, Panulirus homarus (Linnaeus, 1758).

    PubMed

    Maharajan, A; Rajalakshmi, S; Vijayakumaran, M; Kumarasamy, P

    2012-02-01

    The tissue damage induced by various organic pollutants in aquatic animals is well documented, but there is a dearth of information relating to the histological alterations induced by copper in the spiny lobster. In the present study, intermoult juveniles of the spiny lobster Panulirus homarus (average weight 150-200 g) were exposed to two sublethal concentrations of the copper (9.55 and 19.1 μg/l) for a period of 28 days. The muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of the lobsters were then dissected out and processed for light microscopic studies. Exposure to copper was found to result in several alterations in the histoarchitecture of the muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of P. homarus. The alterations included disruption and congestion of muscle bundle in muscle tissue; blackened haemocytes; distended lumen and F cell; necrosis of the tubules of the hepatopancreas; disarrangement of circular muscle of the midgut; accumulation of haemocytes in the haemocoelic space; swelling and fusion of lamellae; abnormal gill tips; hyperplastic, necrotic, and blackened secondary gill lamellae of the gills; damaged neurosecretory cell and sensory and motor fibre; necrotic of the thoracic ganglion; dispersedly arranged muscle bands; clumped satellite cells and nucleus of the heart. The results obtained suggest that the muscle, hepatopancreas, midgut, gills, thoracic ganglion and heart of lobsters exposed to copper were structurally altered. Such alterations could affect vital physiological functions, such as absorption, storage and secretion of the hepatopancreas, digestion of gut and respiration, osmotic and ionic regulations of the gills, which in turn could ultimately affect the survival and growth of P. homarus. Thus, all possible remedial measures should be adopted to prevent the occurrence of copper contamination in the aquatic environment.

  11. Vascular and Skeletal Muscle Function in Gulf War Veterans Illness

    DTIC Science & Technology

    2016-07-01

    Approximately 40% of Gulf War Veterans (over ¼ million Veterans) have GWI by the Center for Disease Control criteria for GWI (a recommended method for defining...for Disease Control and Prevention (CDC)’s clinical diagnostic criteria for GWI is one of two recommended by an Expert Committee, and is based on...other illnesses with muscle fatigue, pain, and abnormal muscle metabolism, such as peripheral artery disease and chronic heart failure, and advance

  12. Engineering human ventricular heart muscles based on a highly efficient system for purification of human pluripotent stem cell-derived ventricular cardiomyocytes.

    PubMed

    Li, Bin; Yang, Hui; Wang, Xiaochen; Zhan, Yongkun; Sheng, Wei; Cai, Huanhuan; Xin, Haoyang; Liang, Qianqian; Zhou, Ping; Lu, Chao; Qian, Ruizhe; Chen, Sifeng; Yang, Pengyuan; Zhang, Jianyi; Shou, Weinian; Huang, Guoying; Liang, Ping; Sun, Ning

    2017-09-29

    Most infarctions occur in the left anterior descending coronary artery and cause myocardium damage of the left ventricle. Although current pluripotent stem cells (PSCs) and directed cardiac differentiation techniques are able to generate fetal-like human cardiomyocytes, isolation of pure ventricular cardiomyocytes has been challenging. For repairing ventricular damage, we aimed to establish a highly efficient purification system to obtain homogeneous ventricular cardiomyocytes and prepare engineered human ventricular heart muscles in a dish. The purification system used TALEN-mediated genomic editing techniques to insert the neomycin or EGFP selection marker directly after the myosin light chain 2 (MYL2) locus in human pluripotent stem cells. Purified early ventricular cardiomyocytes were estimated by immunofluorescence, fluorescence-activated cell sorting, quantitative PCR, microelectrode array, and patch clamp. In subsequent experiments, the mixture of mature MYL2-positive ventricular cardiomyocytes and mesenchymal cells were cocultured with decellularized natural heart matrix. Histological and electrophysiology analyses of the formed tissues were performed 2 weeks later. Human ventricular cardiomyocytes were efficiently isolated based on the purification system using G418 or flow cytometry selection. When combined with the decellularized natural heart matrix as the scaffold, functional human ventricular heart muscles were prepared in a dish. These engineered human ventricular muscles can be great tools for regenerative therapy of human ventricular damage as well as drug screening and ventricular-specific disease modeling in the future.

  13. Animal models of cardiac cachexia.

    PubMed

    Molinari, Francesca; Malara, Natalia; Mollace, Vincenzo; Rosano, Giuseppe; Ferraro, Elisabetta

    2016-09-15

    Cachexia is the loss of body weight associated with several chronic diseases including chronic heart failure (CHF). The cachectic condition is mainly due to loss of skeletal muscle mass and adipose tissue depletion. The majority of experimental in vivo studies on cachexia rely on animal models of cancer cachexia while a reliable and appropriate model for cardiac cachexia has not yet been established. A critical issue in generating a cardiac cachexia model is that genetic modifications or pharmacological treatments impairing the heart functionality and used to obtain the heart failure model might likely impair the skeletal muscle, this also being a striated muscle and sharing with the myocardium several molecular and physiological mechanisms. On the other hand, often, the induction of heart damage in the several existing models of heart failure does not necessarily lead to skeletal muscle loss and cachexia. Here we describe the main features of cardiac cachexia and illustrate some animal models proposed for cardiac cachexia studies; they include the genetic calsequestrin and Dahl salt-sensitive models, the monocrotaline model and the surgical models obtained by left anterior descending (LAD) ligation, transverse aortic constriction (TAC) and ascending aortic banding. The availability of a specific animal model for cardiac cachexia is a crucial issue since, besides the common aspects of cachexia in the different syndromes, each disease has some peculiarities in its etiology and pathophysiology leading to cachexia. Such peculiarities need to be unraveled in order to find new targets for effective therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Nuclear accumulation of myocyte muscle LIM protein is regulated by heme oxygenase 1 and correlates with cardiac function in the transition to failure

    PubMed Central

    Paudyal, Anju; Dewan, Sukriti; Ikie, Cindy; Whalley, Benjamin J; de Tombe, Pieter P.

    2016-01-01

    Key points The present study investigated the mechanism associated with impaired cardiac mechanosensing that leads to heart failure by examining the factors regulating muscle LIM protein subcellular distribution in myocytes.In myocytes, muscle LIM protein subcellular distribution is regulated by cell contractility rather than passive stretch via heme oxygenase‐1 and histone deacetylase signalling. The result of the present study provide new insights into mechanotransduction in cardiac myocytes.Myocyte mechanosensitivity, as indicated by the muscle LIM protein ratio, is also correlated with cardiac function in the transition to failure in a guinea‐pig model of disease. This shows that the loss mechanosensitivity plays an important role during the transition to failure in the heart.The present study provides the first indication that mechanosensing could be modified pharmacologically during the transition to heart failure. Abstract Impaired mechanosensing leads to heart failure and a decreased ratio of cytoplasmic to nuclear CSRP3/muscle LIM protein (MLP ratio) is associated with a loss of mechanosensitivity. In the present study, we tested whether passive or active stress/strain was important in modulating the MLP ratio and determined whether this correlated with heart function during the transition to failure. We exposed cultured neonatal rat myocytes to a 10% cyclic mechanical stretch at 1 Hz, or electrically paced myocytes at 6.8 V (1 Hz) for 48 h. The MLP ratio decreased by 50% (P < 0.05, n = 4) only in response to electrical pacing, suggesting impaired mechanosensitivity. Inhibition of contractility with 10 μm blebbistatin resulted in an ∼3‐fold increase in the MLP ratio (n = 8, P < 0.05), indicating that myocyte contractility regulates nuclear MLP. Inhibition of histone deacetylase (HDAC) signalling with trichostatin A increased nuclear MLP following passive stretch, suggesting that HDACs block MLP nuclear accumulation. Inhibition of heme oxygenase1 (HO‐1) activity with protoporphyrin IX zinc(II) blocked MLP nuclear accumulation. To examine how mechanosensitivity changes during the transition to heart failure, we studied a guinea‐pig model of angiotensin II infusion (400 ng kg–1 min–1) over 12 weeks. Using subcellular fractionation, we showed that the MLP ratio increased by 88% (n = 4, P < 0.01) during compensated hypertrophy but decreased significantly during heart failure (P < 0.001, n = 4). The MLP ratio correlated significantly with the E/A ratio (r = 0.71, P < 0.01, n = 12), a clinical measure of diastolic function. These data indicate for the first time that myocyte mechanosensitivity as indicated by the MLP ratio is regulated primarily by myocyte contractility via HO‐1 and HDAC signalling. PMID:26847743

  15. Aerobic Exercise Training in Post-Polio Syndrome: Process Evaluation of a Randomized Controlled Trial.

    PubMed

    Voorn, Eric L; Koopman, Fieke S; Brehm, Merel A; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H L; Nollet, Frans

    2016-01-01

    To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. A process evaluation using data from an RCT. Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60-70% heart rate reserve). The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Netherlands National Trial Register NTR1371.

  16. Multi-Material Tissue Engineering Scaffold with Hierarchical Pore Architecture.

    PubMed

    Morgan, Kathy Ye; Sklaviadis, Demetra; Tochka, Zachary L; Fischer, Kristin M; Hearon, Keith; Morgan, Thomas D; Langer, Robert; Freed, Lisa E

    2016-08-23

    Multi-material polymer scaffolds with multiscale pore architectures were characterized and tested with vascular and heart cells as part of a platform for replacing damaged heart muscle. Vascular and muscle scaffolds were constructed from a new material, poly(limonene thioether) (PLT32i), which met the design criteria of slow biodegradability, elastomeric mechanical properties, and facile processing. The vascular-parenchymal interface was a poly(glycerol sebacate) (PGS) porous membrane that met different criteria of rapid biodegradability, high oxygen permeance, and high porosity. A hierarchical architecture of primary (macroscale) and secondary (microscale) pores was created by casting the PLT32i prepolymer onto sintered spheres of poly(methyl methacrylate) (PMMA) within precisely patterned molds followed by photocuring, de-molding, and leaching out the PMMA. Pre-fabricated polymer templates were cellularized, assembled, and perfused in order to engineer spatially organized, contractile heart tissue. Structural and functional analyses showed that the primary pores guided heart cell alignment and enabled robust perfusion while the secondary pores increased heart cell retention and reduced polymer volume fraction.

  17. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation.

    PubMed

    Walker, Ryan G; Poggioli, Tommaso; Katsimpardi, Lida; Buchanan, Sean M; Oh, Juhyun; Wattrus, Sam; Heidecker, Bettina; Fong, Yick W; Rubin, Lee L; Ganz, Peter; Thompson, Thomas B; Wagers, Amy J; Lee, Richard T

    2016-04-01

    Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging. © 2016 American Heart Association, Inc.

  18. Cardiac Cachexia: Perspectives for Prevention and Treatment.

    PubMed

    Okoshi, Marina Politi; Capalbo, Rafael Verardino; Romeiro, Fernando G; Okoshi, Katashi

    2017-01-01

    Cachexia is a prevalent pathological condition associated with chronic heart failure. Its occurrence predicts increased morbidity and mortality independent of important clinical variables such as age, ventricular function, or heart failure functional class. The clinical consequences of cachexia are dependent on both weight loss and systemic inflammation, which accompany cachexia development. Skeletal muscle wasting is an important component of cachexia; it often precedes cachexia development and predicts poor outcome in heart failure. Cachexia clinically affects several organs and systems. It is a multifactorial condition where underlying pathophysiological mechanisms are not completely understood making it difficult to develop specific prevention and treatment therapies. Preventive strategies have largely focused on muscle mass preservation. Different treatment options have been described, mostly in small clinical studies or experimental settings. These include nutritional support, neurohormonal blockade, reducing intestinal bacterial translocation, anemia and iron deficiency treatment, appetite stimulants, immunomodulatory agents, anabolic hormones, and physical exercise regimens. Currently, nonpharmacological therapy such as nutritional support and physical exercise are considered central to cachexia prevention and treatment.

  19. Using Acellular Bioactive Extracellular Matrix Scaffolds to Enhance Endogenous Cardiac Repair

    PubMed Central

    Svystonyuk, Daniyil A.; Mewhort, Holly E. M.; Fedak, Paul W. M.

    2018-01-01

    An inability to recover lost cardiac muscle following acute ischemic injury remains the biggest shortcoming of current therapies to prevent heart failure. As compared to standard medical and surgical treatments, tissue engineering strategies offer the promise of improved heart function by inducing regeneration of functional heart muscle. Tissue engineering approaches that use stem cells and genetic manipulation have shown promise in preclinical studies but have also been challenged by numerous critical barriers preventing effective clinical translational. We believe that surgical intervention using acellular bioactive ECM scaffolds may yield similar therapeutic benefits with minimal translational hurdles. In this review, we outline the limitations of cellular-based tissue engineering strategies and the advantages of using acellular biomaterials with bioinductive properties. We highlight key anatomic targets enriched with cellular niches that can be uniquely activated using bioactive scaffold therapy. Finally, we review the evolving cardiovascular tissue engineering landscape and provide critical insights into the potential therapeutic benefits of acellular scaffold therapy. PMID:29696148

  20. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    PubMed

    Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  1. Gene Expression Deregulation in Postnatal Skeletal Muscle of TK2 Deficient Mice Reveals a Lower Pool of Proliferating Myogenic Progenitor Cells

    PubMed Central

    Paredes, João A.; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue. PMID:23341978

  2. Benefits of combined aerobic/resistance/inspiratory training in patients with chronic heart failure. A complete exercise model? A prospective randomised study.

    PubMed

    Laoutaris, Ioannis D; Adamopoulos, Stamatis; Manginas, Athanassios; Panagiotakos, Demosthenes B; Kallistratos, Manolis S; Doulaptsis, Costas; Kouloubinis, Alexandros; Voudris, Vasilis; Pavlides, Gregory; Cokkinos, Dennis V; Dritsas, Athanasios

    2013-09-01

    We hypothesised that combined aerobic training (AT) with resistance training (RT) and inspiratory muscle training (IMT) could result in additional benefits over AT alone in patients with chronic heart failure (CHF). Twenty-seven patients, age 58 ± 9 years, NYHA II/III and LVEF 29 ± 7% were randomly assigned to a 12-week AT (n=14) or a combined AT/RT/IMT (ARIS) (n=13) exercise program. AT consisted of bike exercise at 70-80% of max heart rate. ARIS training consisted of AT with RT of the quadriceps at 50% of 1 repetition maximum (1RM) and upper limb exercises using dumbbells of 1-2 kg as well as IMT at 60% of sustained maximal inspiratory pressure (SPI(max)). At baseline and after intervention patients underwent cardiopulmonary exercise testing, echocardiography, evaluation of dyspnea, muscle function and quality of life (QoL) scores. The ARIS program as compared to AT alone, resulted in additional improvement in quadriceps muscle strength (1RM, p=0.005) and endurance (50%1 RM × number of max repetitions, p=0.01), SPI(max) (p<0.001), exercise time (p=0.01), circulatory power (peak oxygen consumption × peak systolic blood pressure, p=0.05), dyspnea (p=0.03) and QoL (p=0.03). ARIS training was safe and resulted in incremental benefits in both peripheral and respiratory muscle weakness, cardiopulmonary function and QoL compared to that of AT. The present findings may add a new prospective to cardiac rehabilitation programs of heart failure patients whilst the clinical significance of these outcomes need to be addressed in larger randomised studies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Vascular delay of the latissimus dorsi muscle: an essential component of cardiomyoplasty.

    PubMed

    Carroll, S M; Carroll, C M; Stremel, R W; Heilman, S J; Tobin, G R; Barker, J H

    1997-04-01

    Cardiomyoplasty (CMP) uses the latissimus dorsi muscle (LDM) to assist the heart in cases of cardiac failure. Distal ischemia and necrosis of the LDM is a recognized complication of CMP that can reduce distal muscle function and the mechanical effectiveness of CMP. Canine (n = 9) LDMs were subjected to a 10-day period of vascular delay followed by a simulated CMP. Two weeks after simulated CMP (corresponding to the healing delay between CMP and the onset of LDM stimulation used in the clinical setting), LDM perfusion was measured in the distal, middle, and proximal segments of the muscle, and circumferential (distal and middle squeezing muscle function) and longitudinal (proximal pulling muscle function) force generation and fatigue rates were measured. The results were compared with the contralateral nondelayed simulated CMP. Muscle perfusion was significantly (p < 0.05) greater in the distal and middle segments of vascular-delayed LDMs. Circumferential muscle force generation and fatigue rates were significantly (p < 0.05) improved in the vascular-delayed LDMs. Vascular delay can significantly improve LDM perfusion and function in a model that closely reflects clinical CMP, and the use of vascular delay may improve clinical outcomes in CMP.

  4. SKELETAL MUSCLE ULTRASTRUCTURE AND FUNCTION IN STATIN-TOLERANT INDIVIDUALS

    PubMed Central

    Rengo, Jason L.; Callahan, Damien M.; Savage, Patrick D.; Ades, Philip A.; Toth, Michael J.

    2015-01-01

    Skeletal Muscle Ultrastructure and Function in Statin-Tolerant Individuals: Introduction Statins have well-known benefits on cardiovascular mortality, though up to 15% of patients experience side effects. With guidelines from the American Heart Association, American College of Cardiology, and American Diabetics Association expected to double the number of statin users, the overall incidence of myalgia and myopathy will increase. Methods We evaluated skeletal muscle structure and contractile function at the molecular, cellular, and whole tissue levels in 12 statin tolerant and 12 control subjects. Results Myosin isoform expression, fiber type distributions, single fiber maximal Ca2+-activated tension, and whole muscle contractile force were similar between groups. No differences were observed in myosin-actin cross-bridge kinetics in myosin heavy chain (MHC) I or IIA fibers. Discussion We found no evidence for statin-induced changes in muscle morphology at the molecular, cellular, or whole tissue levels. Collectively, our data show that chronic statin therapy in healthy asymptomatic individuals does not promote deleterious myofilament structural or functional adaptations. PMID:26059690

  5. Alternative Splicing of Four Trafficking Genes Regulates Myofiber Structure and Skeletal Muscle Physiology.

    PubMed

    Giudice, Jimena; Loehr, James A; Rodney, George G; Cooper, Thomas A

    2016-11-15

    During development, transcriptional and post-transcriptional networks are coordinately regulated to drive organ maturation. Alternative splicing contributes by producing temporal-specific protein isoforms. We previously found that genes undergoing splicing transitions during mouse postnatal heart development are enriched for vesicular trafficking and membrane dynamics functions. Here, we show that adult trafficking isoforms are also expressed in adult skeletal muscle and hypothesize that striated muscle utilizes alternative splicing to generate specific isoforms required for function of adult tissue. We deliver morpholinos into flexor digitorum brevis muscles in adult mice to redirect splicing of four trafficking genes to the fetal isoforms. The splicing switch results in multiple structural and functional defects, including transverse tubule (T-tubule) disruption and dihydropyridine receptor alpha (DHPR) and Ryr1 mislocalization, impairing excitation-contraction coupling, calcium handling, and force generation. The results demonstrate a previously unrecognized role for trafficking functions in adult muscle tissue homeostasis and a specific requirement for the adult splice variants. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Attraction and repulsion of spiral waves by inhomogeneity of conduction anisotropy--a model of spiral wave interaction with electrical remodeling of heart tissue.

    PubMed

    Kuklik, Pawel; Sanders, Prashanthan; Szumowski, Lukasz; Żebrowski, Jan J

    2013-01-01

    Various forms of heart disease are associated with remodeling of the heart muscle, which results in a perturbation of cell-to-cell electrical coupling. These perturbations may alter the trajectory of spiral wave drift in the heart muscle. We investigate the effect of spatially extended inhomogeneity of transverse cell coupling on the spiral wave trajectory using a simple active media model. The spiral wave was either attracted or repelled from the center of inhomogeneity as a function of cell excitability and gradient of the cell coupling. High levels of excitability resulted in an attraction of the wave to the center of inhomogeneity, whereas low levels resulted in an escape and termination of the spiral wave. The spiral wave drift velocity was related to the gradient of the coupling and the initial position of the wave. In a diseased heart, a region of altered transverse coupling corresponds with local gap junction remodeling that may be responsible for stabilization-destabilization of spiral waves and hence reflect potentially important targets in the treatment of heart arrhythmias.

  7. [Isn't the heart the source of energy for blood circulation? "The heart doesn't know the basic laws of physics"].

    PubMed

    Papp, Lajos

    2008-08-03

    For hundreds of years, universal medical practice has depicted the heart to be the central organ, showing the heart's function as the primary source of energy for blood circulation, paying particular importance to the role of the heart valves. At present the generally accepted paradigm: the main force component of blood circulation is the pressure-gradient generated by the working heart. In serious combined illnesses of heart valves, the function of the valve is almost nonexistent. Based on the value of pressure in the chambers of the heart and in the great arteries and veins, blood flows from a place of high pressure to lower pressure, and should work the other way around as well. It is a fact, however, that even in such cases the circulation of blood is directed from the main arteries towards the veins: without the function of the valves--seemingly opposing the basic laws of physics--it keeps its original direction. Therefore we can justifiably infer that it isn't the work of the heart muscle that provides the source of energy for blood circulation. The heart has an essential function in the maintenance of blood circulation: pulse generation. The principal role of the heart is to generate pulses and not pressure.

  8. Structure and function of gap junction proteins: role of gap junction proteins in embryonic heart development.

    PubMed

    Ahir, Bhavesh K; Pratten, Margaret K

    2014-01-01

    Intercellular (cell-to-cell) communication is a crucial and complex mechanism during embryonic heart development. In the cardiovascular system, the beating of the heart is a dynamic and key regulatory process, which is functionally regulated by the coordinated spread of electrical activity through heart muscle cells. Heart tissues are composed of individual cells, each bearing specialized cell surface membrane structures called gap junctions that permit the intercellular exchange of ions and low molecular weight molecules. Gap junction channels are essential in normal heart function and they assist in the mediated spread of electrical impulses that stimulate synchronized contraction (via an electrical syncytium) of cardiac tissues. This present review describes the current knowledge of gap junction biology. In the first part, we summarise some relevant biochemical and physiological properties of gap junction proteins, including their structure and function. In the second part, we review the current evidence demonstrating the role of gap junction proteins in embryonic development with particular reference to those involved in embryonic heart development. Genetics and transgenic animal studies of gap junction protein function in embryonic heart development are considered and the alteration/disruption of gap junction intercellular communication which may lead to abnormal heart development is also discussed.

  9. Excess Coenzyme A Reduces Skeletal Muscle Performance and Strength in Mice Overexpressing Human PANK2

    PubMed Central

    Corbin, Deborah R.; Rehg, Jerold E.; Shepherd, Danielle L.; Stoilov, Peter; Percifield, Ryan J.; Horner, Linda; Frase, Sharon; Zhang, Yong-Mei; Rock, Charles O.; Hollander, John M.; Jackowski, Suzanne; Leonardi, Roberta

    2017-01-01

    Coenzyme A (CoA) is a cofactor that is central to energy metabolism and CoA synthesis is controlled by the enzyme pantothenate kinase (PanK). A transgenic mouse strain expressing human PANK2 was derived to determine the physiological impact of PANK overexpression and elevated CoA levels. The Tg(PANK2) mice expressed high levels of the transgene in skeletal muscle and heart; however, CoA was substantially elevated only in skeletal muscle, possibly associated with the comparatively low endogenous levels of acetyl-CoA, a potent feedback inhibitor of PANK2. Tg(PANK2) mice were smaller, had less skeletal muscle mass and displayed significantly impaired exercise tolerance and grip strength. Skeletal myofibers were characterized by centralized nuclei and aberrant mitochondria. Both the content of fully assembled complex I of the electron transport chain and ATP levels were reduced, while markers of oxidative stress were elevated in Tg(PANK2) skeletal muscle. These abnormalities were not detected in the Tg(PANK2) heart muscle, with the exception of spotty loss of cristae organization in the mitochondria. The data demonstrate that excessively high CoA may be detrimental to skeletal muscle function. PMID:28189602

  10. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears.

    PubMed

    Barrows, N D; Nelson, O L; Robbins, C T; Rourke, B C

    2011-01-01

    Grizzly bears (Ursus arctos horribilis) tolerate extended periods of extremely low heart rate during hibernation without developing congestive heart failure or cardiac chamber dilation. Left ventricular atrophy and decreased left ventricular compliance have been reported in this species during hibernation. We evaluated the myocardial response to significantly reduced heart rate during hibernation by measuring relative myosin heavy-chain (MyHC) isoform expression and expression of a set of genes important to muscle plasticity and mass regulation in the left atria and left ventricles of active and hibernating bears. We supplemented these data with measurements of systolic and diastolic function via echocardiography in unanesthetized grizzly bears. Atrial strain imaging revealed decreased atrial contractility, decreased expansion/reservoir function (increased atrial stiffness), and decreased passive-filling function (increased ventricular stiffness) in hibernating bears. Relative MyHC-α protein expression increased significantly in the atrium during hibernation. The left ventricle expressed 100% MyHC-β protein in both groups. Insulin-like growth factor (IGF-I) mRNA expression was reduced by ∼50% in both chambers during hibernation, consistent with the ventricular atrophy observed in these bears. Interestingly, mRNA expression of the atrophy-related ubiquitin ligases Muscle Atrophy F-box (MAFBx) and Muscle Ring Finger 1 did not increase, nor did expression of myostatin or hypoxia-inducible factor 1α (HIF-1α). We report atrium-specific decreases of 40% and 50%, respectively, in MAFBx and creatine kinase mRNA expression during hibernation. Decreased creatine kinase expression is consistent with lowered energy requirements and could relate to reduced atrial emptying function during hibernation. Taken together with our hemodynamic assessment, these data suggest a potential downregulation of atrial chamber function during hibernation to prevent fatigue and dilation due to excessive work against an optimally filled ventricle, a response unpredicted by the Frank-Starling mechanism.

  11. Effects of enhanced external counterpulsation on skeletal muscle gene expression in patients with severe heart failure.

    PubMed

    Melin, Michael; Montelius, Andreas; Rydén, Lars; Gonon, Adrian; Hagerman, Inger; Rullman, Eric

    2018-01-01

    Enhanced external counterpulsation (EECP) is a non-invasive treatment in which leg cuff compressions increase diastolic aortic pressure and coronary perfusion. EECP is offered to patients with refractory angina pectoris and increases physical capacity. Benefits in heart failure patients have been noted, but EECP is still considered to be experimental and its effects must be confirmed. The mechanism of action is still unclear. The aim of this study was to evaluate the effect of EECP on skeletal muscle gene expression and physical performance in patients with severe heart failure. Patients (n = 9) in NYHA III-IV despite pharmacological therapy were subjected to 35 h of EECP during 7 weeks. Before and after, lateral vastus muscle biopsies were obtained, and functional capacity was evaluated with a 6-min walk test. Skeletal muscle gene expression was evaluated using Affymetrix Hugene 1.0 arrays. Maximum walking distance increased by 15%, which is in parity to that achieved after aerobic exercise training in similar patients. Skeletal muscle gene expression analysis using Ingenuity Pathway Analysis showed an increased expression of two networks of genes with FGF-2 and IGF-1 as central regulators. The increase in gene expression was quantitatively small and no overlap with gene expression profiles after exercise training could be detected despite adequate statistical power. EECP treatment leads to a robust improvement in walking distance in patients with severe heart failure and does induce a skeletal muscle transcriptional response, but this response is small and with no significant overlap with the transcriptional signature seen after exercise training. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  12. Effects of Trichothecenes on Cardiac Cell Electrical Function

    DTIC Science & Technology

    1985-12-16

    toxic effects . These studies demonstrated unequivocal reversible effects of certain mycotoxins on heart cell electrical activity. Preliminary studies...muscle cells shown in Figure 8 illustrate the typical effects of trichothecene mycotoxins in canine ventricular cells. T-2 tetraol, for 3xample...false tendon cells and V ventricular muscle cells (shown in Figure 8) illustrate the typical effects of trichothecene mycotoxins in canine cardiac

  13. The challenge of frailty and sarcopenia in heart failure with preserved ejection fraction.

    PubMed

    Kinugasa, Yoshiharu; Yamamoto, Kazuhiro

    2017-02-01

    Frailty is a clinical state in which there is an increase in an individual's vulnerability for developing increased dependency and/or mortality when exposed to stressors. Frailty is often accompanied by heart failure with preserved ejection fraction (HFpEF), and frailty is likely to affect its clinical features and outcomes. Frail patients with HFpEF are frequently associated with sarcopenia (ie, muscle loss and weakness), which is a major component of the pathophysiology of frailty. Sarcopenia is a systemic skeletal muscle disease that impairs the function of limb skeletal muscles, as well as respiratory muscles, and this results in further functional decline. In addition, sarcopenia may contribute to cardiovascular remodelling and dysfunction, leading to the development of HFpEF through several metabolic and endocrine abnormalities. Although there is no established strategy for frail patients with HFpEF, a multidisciplinary approach, including various types of muscular training and nutritional intervention, may provide beneficial effects for these patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. [Analogies between heart and respiratory muscle failure. Importance to clinical practice].

    PubMed

    Köhler, D

    2009-01-01

    Heart failure is an established diagnosis. Respiratory muscle or ventilatory pump failure, however, is less well known. The latter becomes obvious through hypercapnia, caused by hypoventilation. The respiratory centre tunes into hypercapnea in order to prevent the danger of respiratory muscle overload (hypercapnic ventilatory failure). Hypoventilation will consecutively cause hypoxemia but this will not be responsible for performance limitation. One therefore has to distinguish primary hypoxemia evolving from diseases in the lung parenchyma. Here hypoxemia is the key feature and compensatory hyperventilation usually decreases PaCO2 levels. The cardiac as well as the respiratory pump adapt to an inevitable burden caused by chronic disease. In either case organ muscle mass will increase. If the burden exceeds the range of possible physiological adaptation, compensatory mechanisms will set in that are similar in both instances. During periods of overload either muscle system is mainly fueled by muscular glycogen. In the recovery phase (e. g. during sleep) stores are replenished, which can be recognized by down-regulation of the blood pressure in case of the cardiac pumb or by augmentation of hypercapnia through hypoventilation in case of the respiratory pump. The main function of cardiac and respiratory pump is maintenance of oxygen transport. The human body has developed certain compensatory mechanisms to adapt to insufficient oxygen supply especially during periods of overload. These mechanisms include shift of the oxygen binding curve, expression of respiratory chain isoenzymes capable of producing ATP at lower partial pressures of oxygen and the development of polyglobulia. Medically or pharmacologically the cardiac pump can be unloaded with beta blockers, the respiratory pump by application of inspired oxygen. Newer forms of therapy augment the process of recovery. The heart can be supported through bypass surgery or intravascular pump systems, while respiratory muscles may be supported through elective ventilatory support (mainly non-invasive) in the patient's home. The latter treatment in particular will increase patient endurance and quality of life and decrease mortality. Heart and respiratory pump failure share many common features. Since both take care of oxygen supply to the body, their function and compensatory mechanisms are closely related and linked.

  15. Functional and molecular effects of arginine butyrate and prednisone on muscle and heart in the mdx mouse model of Duchenne Muscular Dystrophy.

    PubMed

    Guerron, Alfredo D; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P; Nagaraju, Kanneboyina

    2010-06-21

    The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity.

  16. Functional and Molecular Effects of Arginine Butyrate and Prednisone on Muscle and Heart in the mdx Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Guerron, Alfredo D.; Rawat, Rashmi; Sali, Arpana; Spurney, Christopher F.; Pistilli, Emidio; Cha, Hee-Jae; Pandey, Gouri S.; Gernapudi, Ramkishore; Francia, Dwight; Farajian, Viken; Escolar, Diana M.; Bossi, Laura; Becker, Magali; Zerr, Patricia; de la Porte, Sabine; Gordish-Dressman, Heather; Partridge, Terence; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2010-01-01

    Background The number of promising therapeutic interventions for Duchenne Muscular Dystrophy (DMD) is increasing rapidly. One of the proposed strategies is to use drugs that are known to act by multiple different mechanisms including inducing of homologous fetal form of adult genes, for example utrophin in place of dystrophin. Methodology/Principal Findings In this study, we have treated mdx mice with arginine butyrate, prednisone, or a combination of arginine butyrate and prednisone for 6 months, beginning at 3 months of age, and have comprehensively evaluated the functional, biochemical, histological, and molecular effects of the treatments in this DMD model. Arginine butyrate treatment improved grip strength and decreased fibrosis in the gastrocnemius muscle, but did not produce significant improvement in muscle and cardiac histology, heart function, behavioral measurements, or serum creatine kinase levels. In contrast, 6 months of chronic continuous prednisone treatment resulted in deterioration in functional, histological, and biochemical measures. Arginine butyrate-treated mice gene expression profiling experiments revealed that several genes that control cell proliferation, growth and differentiation are differentially expressed consistent with its histone deacetylase inhibitory activity when compared to control (saline-treated) mdx mice. Prednisone and combination treated groups showed alterations in the expression of genes that control fibrosis, inflammation, myogenesis and atrophy. Conclusions/Significance These data indicate that 6 months treatment with arginine butyrate can produce modest beneficial effects on dystrophic pathology in mdx mice by reducing fibrosis and promoting muscle function while chronic continuous treatment with prednisone showed deleterious effects to skeletal and cardiac muscle. Our results clearly indicate the usefulness of multiple assays systems to monitor both beneficial and toxic effects of drugs with broad range of in vivo activity. PMID:20574530

  17. Cardiac function in muscular dystrophy associates with abdominal muscle pathology.

    PubMed

    Gardner, Brandon B; Swaggart, Kayleigh A; Kim, Gene; Watson, Sydeaka; McNally, Elizabeth M

    The muscular dystrophies target muscle groups differentially. In mouse models of muscular dystrophy, notably the mdx model of Duchenne Muscular Dystrophy, the diaphragm muscle shows marked fibrosis and at an earlier age than other muscle groups, more reflective of the histopathology seen in human muscular dystrophy. Using a mouse model of limb girdle muscular dystrophy, the Sgcg mouse, we compared muscle pathology across different muscle groups and heart. A cohort of nearly 200 Sgcg mice were studied using multiple measures of pathology including echocardiography, Evans blue dye uptake and hydroxyproline content in multiple muscle groups. Spearman rank correlations were determined among echocardiographic and pathological parameters. The abdominal muscles were found to have more fibrosis than other muscle groups, including the diaphragm muscle. The abdominal muscles also had more Evans blue dye uptake than other muscle groups. The amount of diaphragm fibrosis was found to correlate positively with fibrosis in the left ventricle, and abdominal muscle fibrosis correlated with impaired left ventricular function. Fibrosis in the abdominal muscles negatively correlated with fibrosis in the diaphragm and right ventricles. Together these data reflect the recruitment of abdominal muscles as respiratory muscles in muscular dystrophy, a finding consistent with data from human patients.

  18. Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles.

    PubMed

    Chadwick, Jessica A; Bhattacharya, Sayak; Lowe, Jeovanna; Weisleder, Noah; Rafael-Fortney, Jill A

    2017-02-01

    Angiotensin-converting enzyme inhibitors (ACEi) and mineralocorticoid receptor (MR) antagonists are FDA-approved drugs that inhibit the renin-angiotensin-aldosterone system (RAAS) and are used to treat heart failure. Combined treatment with the ACEi lisinopril and the nonspecific MR antagonist spironolactone surprisingly improves skeletal muscle, in addition to heart function and pathology in a Duchenne muscular dystrophy (DMD) mouse model. We recently demonstrated that MR is present in all limb and respiratory muscles and functions as a steroid hormone receptor in differentiated normal human skeletal muscle fibers. The goals of the current study were to begin to define cellular and molecular mechanisms mediating the skeletal muscle efficacy of RAAS inhibitor treatment. We also compared molecular changes resulting from RAAS inhibition with those resulting from the current DMD standard-of-care glucocorticoid treatment. Direct assessment of muscle membrane integrity demonstrated improvement in dystrophic mice treated with lisinopril and spironolactone compared with untreated mice. Short-term treatments of dystrophic mice with specific and nonspecific MR antagonists combined with lisinopril led to overlapping gene-expression profiles with beneficial regulation of metabolic processes and decreased inflammatory gene expression. Glucocorticoids increased apoptotic, proteolytic, and chemokine gene expression that was not changed by RAAS inhibitors in dystrophic mice. Microarray data identified potential genes that may underlie RAAS inhibitor treatment efficacy and the side effects of glucocorticoids. Direct effects of RAAS inhibitors on membrane integrity also contribute to improved pathology of dystrophic muscles. Together, these data will inform clinical development of MR antagonists for treating skeletal muscles in DMD. Copyright © 2017 the American Physiological Society.

  19. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets.

    PubMed

    Wacker, Michael J; Touchberry, Chad D; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J; Bonewald, Lynda F; Andresen, Jon; Brotto, Marco

    2016-01-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL-slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated.

  20. Skeletal Muscle, but not Cardiovascular Function, Is Altered in a Mouse Model of Autosomal Recessive Hypophosphatemic Rickets

    PubMed Central

    Wacker, Michael J.; Touchberry, Chad D.; Silswal, Neerupma; Brotto, Leticia; Elmore, Chris J.; Bonewald, Lynda F.; Andresen, Jon; Brotto, Marco

    2016-01-01

    Autosomal recessive hypophosphatemic rickets (ARHR) is a heritable disorder characterized by hypophosphatemia, osteomalacia, and poor bone development. ARHR results from inactivating mutations in the DMP1 gene with the human phenotype being recapitulated in the Dmp1 null mouse model which displays elevated plasma fibroblast growth factor 23. While the bone phenotype has been well-characterized, it is not known what effects ARHR may also have on skeletal, cardiac, or vascular smooth muscle function, which is critical to understand in order to treat patients suffering from this condition. In this study, the extensor digitorum longus (EDL-fast-twitch muscle), soleus (SOL–slow-twitch muscle), heart, and aorta were removed from Dmp1 null mice and ex-vivo functional tests were simultaneously performed in collaboration by three different laboratories. Dmp1 null EDL and SOL muscles produced less force than wildtype muscles after normalization for physiological cross sectional area of the muscles. Both EDL and SOL muscles from Dmp1 null mice also produced less force after the addition of caffeine (which releases calcium from the sarcoplasmic reticulum) which may indicate problems in excitation contraction coupling in these mice. While the body weights of the Dmp1 null were smaller than wildtype, the heart weight to body weight ratio was higher. However, there were no differences in pathological hypertrophic gene expression compared to wildtype and maximal force of contraction was not different indicating that there may not be cardiac pathology under the tested conditions. We did observe a decrease in the rate of force development generated by cardiac muscle in the Dmp1 null which may be related to some of the deficits observed in skeletal muscle. There were no differences observed in aortic contractions induced by PGF2α or 5-HT or in endothelium-mediated acetylcholine-induced relaxations or endothelium-independent sodium nitroprusside-induced relaxations. In summary, these results indicate that there are deficiencies in both fast twitch and slow twitch muscle fiber type contractions in this model of ARHR, while there was less of a phenotype observed in cardiac muscle, and no differences observed in aortic function. These results may help explain skeletal muscle weakness reported by some patients with osteomalacia and need to be further investigated. PMID:27242547

  1. Submaximal Exercise Capacity in Juvenile Dermatomyositis after Longterm Disease: The Contribution of Muscle, Lung, and Heart Involvement.

    PubMed

    Berntsen, Kristin Schjander; Tollisen, Anita; Schwartz, Thomas; Kirkhus, Eva; Aaløkken, Trond Mogens; Lund, May Brit; Flatø, Berit; Sjaastad, Ivar; Sanner, Helga

    2017-06-01

    To compare submaximal exercise capacity in patients with juvenile dermatomyositis (JDM) with controls, and analyze contributions of muscle, heart, and lung impairment in patients. Fifty-nine patients with JDM, with a mean 16.9 years after symptom onset, and 59 sex- and age-matched controls completed a 6-min walk test (6MWT) and a timed up and go (TUG) test. Muscle function, disease activity/damage, and health-related quality of life (HRQOL) were assessed by validated tools; heart function by echocardiography and electrocardiography; and lung function by spirometry, DLCO, and body plethysmography. A thoracic high-resolution computed tomography (HRCT) scan and magnetic resonance imaging of the thighs were completed in patients. The 6MWT distance (6MWD) was 592 ± 81 m in patients versus 649 ± 79 m in controls (p < 0.001), and 563 ± 75 m in active versus 622 ± 76 m in inactive JDM (p = 0.004). The TUG time was 13.1 ± 2.1 s in patients versus 12.3 ± 2.0 s in controls (p = 0.034), and 13.7 ± 2.2 s in active versus 12.5 ± 1.8 s in inactive JDM (p = 0.028). No statistically significant difference was found between inactive JDM and controls in either test. In patients, the Childhood Myositis Assessment Score influenced the 6MWD and TUG time the most, followed by a low DLCO and HRCT pathology in the 6MWT and forced vital capacity in the TUG test. Medical Outcomes Study Short Form-36 physical component summary correlated strongly with both tests. Submaximal exercise capacity was reduced in patients with JDM, particularly those with active disease. This reduction was associated with muscle and lung dysfunction and poorer HRQOL.

  2. Electrostimulation of muscles as a method for the treatment and prophylaxis of hemodynamic disturbances during prolonged hypokinesia

    NASA Technical Reports Server (NTRS)

    Dukhin, Y. O.; Zhukovskyy, L. Y.

    1980-01-01

    Hemodynamic and periopheral circulation indexes were recorded before, at the end of, and 5 days after 10 days of electrostimulation for 45 min daily, at rest and after a physical loading test. It was found that stroke and minute volume, cardiac output, and regional circulation improved and heart rate and peripheral resistance decreased. The functional state of the cardiac muscle and vascular tone are improved by electrostimulation of selected groups of skeletal muscles.

  3. Functional impairment of skeletal muscle oxidative metabolism during knee extension exercise after bed rest.

    PubMed

    Salvadego, Desy; Lazzer, Stefano; Marzorati, Mauro; Porcelli, Simone; Rejc, Enrico; Simunic, Bostjan; Pisot, Rado; di Prampero, Pietro Enrico; Grassi, Bruno

    2011-12-01

    A functional evaluation of skeletal muscle oxidative metabolism during dynamic knee extension (KE) incremental exercises was carried out following a 35-day bed rest (BR) (Valdoltra 2008 BR campaign). Nine young male volunteers (age: 23.5 ± 2.2 yr; mean ± SD) were evaluated. Pulmonary gas exchange, heart rate and cardiac output (by impedance cardiography), skeletal muscle (vastus lateralis) fractional O(2) extraction, and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined during incremental KE. Values at exhaustion were considered "peak". Peak heart rate (147 ± 18 beats/min before vs. 146 ± 17 beats/min after BR) and peak cardiac output (17.8 ± 3.3 l/min before vs. 16.1 ± 1.8 l/min after BR) were unaffected by BR. As expected, brain oxygenation did not decrease during KE. Peak O(2) uptake was lower after vs. before BR, both when expressed as liters per minute (0.99 ± 0.17 vs. 1.26 ± 0.27) and when normalized per unit of quadriceps muscle mass (46.5 ± 6.4 vs. 56.9 ± 11.0 ml·min(-1)·100 g(-1)). Skeletal muscle peak fractional O(2) extraction, expressed as a percentage of the maximal values obtained during a transient limb ischemia, was lower after (46.3 ± 12.1%) vs. before BR (66.5 ± 11.2%). After elimination, by the adopted exercise protocol, of constraints related to cardiovascular O(2) delivery, a decrease in peak O(2) uptake and muscle peak capacity of fractional O(2) extraction was found after 35 days of BR. These findings suggest a substantial impairment of oxidative function at the muscle level, "downstream" with respect to bulk blood flow to the exercising muscles, that is possibly at the level of blood flow distribution/O(2) utilization inside the muscle, peripheral O(2) diffusion, and intracellular oxidative metabolism.

  4. Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL, calcitonin gene-related peptide, adrenomedullin, adrenomedullin-2/intermedin) in mouse and human heart valves.

    PubMed

    Pfeil, Uwe; Bharathala, Subhashini; Murtaza, Ghulam; Mermer, Petra; Papadakis, Tamara; Boening, Andreas; Kummer, Wolfgang

    2016-12-01

    Heart valves are highly organized structures determining the direction of blood flow through the heart. Smooth muscle cells within the valve are thought to play an active role during the heart cycle, rather than being just passive flaps. The mature heart valve is composed of extracellular matrix (ECM), various differentiations of valvular interstitial cells (VIC), smooth muscle cells and overlying endothelium. VIC are important for maintaining the structural integrity of the valve, thereby affecting valve function and ECM remodelling. Accumulating evidence suggests an important role of calcitonin receptor-like receptor (CRL) signalling in preventing heart damage under several pathological conditions. Thus we investigate the existence of a putative CRL signalling system in mouse and human heart valves by real-time RT-PCR, laser-assisted microdissection, immunofluorescence and NADPH-diaphorase histochemistry. Mouse and human heart valves expressed mRNAs for the CRL ligands adrenomedullin (AM), adrenomedullin-2 (AM-2) and calcitonin gene-related peptide (CGRP) and for their receptor components, i.e., CRL and receptor-activity-modifying proteins 1-3. Immunofluorescence analysis revealed AM-, AM-2- and CRL-immunolabelling in endothelial cells and VIC, whereas CGRP immunoreactivity was restricted to nerve fibres and some endothelial cells. Nitric oxide synthase activity, as demonstrated by NADPH-diaphorase histochemistry, was shown mainly in valvular endothelial cells in mice, whereas in human aortic valves, VIC and smooth muscle cells were positive. Our results showed the presence of an intrinsic AM/AM-2/CGRP signalling system in murine and human heart valves with distinct cellular localization, suggesting its involvement in the regulation of valve stiffness and ECM production and turnover.

  5. Exercise Benefits Coronary Heart Disease.

    PubMed

    Wang, Lei; Ai, Dongmei; Zhang, Ning

    2017-01-01

    Coronary heart disease (CHD) is a group of diseases that include: no symptoms, angina, myocardial infarction, ischemia cardiomyopathy and sudden cardiac death. And it results from multiple risks factors consisting of invariable factors (e.g. age, gender, etc.) and variable factors (e.g. dyslipidemia, hypertension, diabetes, smoking, etc.). Meanwhile, CHD could cause impact not only localized in the heart, but also on pulmonary function, whole-body skeletal muscle function, activity ability, psychological status, etc. Nowadays, CHD has been the leading cause of death in the world. However, many clinical researches showed that exercise training plays an important role in cardiac rehabilitation and can bring a lot of benefits for CHD patients.

  6. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  7. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  8. Contraction of the Ventral Abdomen Potentiates Extracardiac Retrograde Hemolymph Propulsion in the Mosquito Hemocoel

    PubMed Central

    Andereck, Jonathan W.; King, Jonas G.; Hillyer, Julián F.

    2010-01-01

    Background Hemolymph circulation in mosquitoes is primarily controlled by the contractile action of a dorsal vessel that runs underneath the dorsal midline and is subdivided into a thoracic aorta and an abdominal heart. Wave-like peristaltic contractions of the heart alternate in propelling hemolymph in anterograde and retrograde directions, where it empties into the hemocoel at the terminal ends of the insect. During our analyses of hemolymph propulsion in Anopheles gambiae, we observed periodic ventral abdominal contractions and hypothesized that they promote extracardiac hemolymph circulation in the abdominal hemocoel. Methodology/Principal Findings We devised methods to simultaneously analyze both heart and abdominal contractions, as well as to measure hemolymph flow in the abdominal hemocoel. Qualitative and quantitative analyses revealed that ventral abdominal contractions occur as series of bursts that propagate in the retrograde direction. Periods of ventral abdominal contraction begin only during periods of anterograde heart contraction and end immediately following a heartbeat directional reversal, suggesting that ventral abdominal contractions function to propel extracardiac hemolymph in the retrograde direction. To test this functional role, fluorescent microspheres were intrathoracically injected and their trajectory tracked throughout the hemocoel. Quantitative measurements of microsphere movement in extracardiac regions of the abdominal cavity showed that during periods of abdominal contractions hemolymph flows in dorsal and retrograde directions at a higher velocity and with greater acceleration than during periods of abdominal rest. Histochemical staining of the abdominal musculature then revealed that ventral abdominal contractions result from the contraction of intrasegmental lateral muscle fibers, intersegmental ventral muscle bands, and the ventral transverse muscles that form the ventral diaphragm. Conclusions/Significance These data show that abdominal contractions potentiate extracardiac retrograde hemolymph propulsion in the abdominal hemocoel during periods of anterograde heart flow. PMID:20886066

  9. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice.

    PubMed

    Yuan, Baiyin; Wan, Ping; Chu, Dandan; Nie, Junwei; Cao, Yunshan; Luo, Wen; Lu, Shuangshuang; Chen, Jiong; Yang, Zhongzhou

    2014-07-01

    Actin dynamics are critical for muscle development and function, and mutations leading to deregulation of actin dynamics cause various forms of heritable muscle diseases. AIP1 is a major cofactor of the actin depolymerizing factor/cofilin in eukaryotes, promoting actin depolymerizing factor/cofilin-mediated actin disassembly. Its function in vertebrate muscle has been unknown. To investigate functional roles of AIP1 in myocardium, we generated conditional knockout (cKO) mice with cardiomyocyte-specific deletion of Wdr1, the mammalian homolog of yeast AIP1. Wdr1 cKO mice began to die at postnatal day 13 (P13), and none survived past P24. At P12, cKO mice exhibited cardiac hypertrophy and impaired contraction of the left ventricle. Electrocardiography revealed reduced heart rate, abnormal P wave, and abnormal T wave at P10 and prolonged QT interval at P12. Actin filament (F-actin) accumulations began at P10 and became prominent at P12 in the myocardium of cKO mice. Within regions of F-actin accumulation in myofibrils, the sarcomeric components α-actinin and tropomodulin-1 exhibited disrupted patterns, indicating that F-actin accumulations caused by Wdr1 deletion result in disruption of sarcomeric structure. Ectopic cofilin colocalized with F-actin aggregates. In adult mice, Wdr1 deletion resulted in similar but much milder phenotypes of heart hypertrophy, F-actin accumulations within myofibrils, and lethality. Taken together, these results demonstrate that AIP1-regulated actin dynamics play essential roles in heart function in mice. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Computational approaches to understand cardiac electrophysiology and arrhythmias

    PubMed Central

    Roberts, Byron N.; Yang, Pei-Chi; Behrens, Steven B.; Moreno, Jonathan D.

    2012-01-01

    Cardiac rhythms arise from electrical activity generated by precisely timed opening and closing of ion channels in individual cardiac myocytes. These impulses spread throughout the cardiac muscle to manifest as electrical waves in the whole heart. Regularity of electrical waves is critically important since they signal the heart muscle to contract, driving the primary function of the heart to act as a pump and deliver blood to the brain and vital organs. When electrical activity goes awry during a cardiac arrhythmia, the pump does not function, the brain does not receive oxygenated blood, and death ensues. For more than 50 years, mathematically based models of cardiac electrical activity have been used to improve understanding of basic mechanisms of normal and abnormal cardiac electrical function. Computer-based modeling approaches to understand cardiac activity are uniquely helpful because they allow for distillation of complex emergent behaviors into the key contributing components underlying them. Here we review the latest advances and novel concepts in the field as they relate to understanding the complex interplay between electrical, mechanical, structural, and genetic mechanisms during arrhythmia development at the level of ion channels, cells, and tissues. We also discuss the latest computational approaches to guiding arrhythmia therapy. PMID:22886409

  11. Morphological dynamics of mitochondria--a special emphasis on cardiac muscle cells.

    PubMed

    Hom, Jennifer; Sheu, Shey-Shing

    2009-06-01

    Mitochondria play a critical role in cellular energy metabolism, Ca(2+) homeostasis, reactive oxygen species generation, apoptosis, aging, and development. Many recent publications have shown that a continuous balance of fusion and fission of these organelles is important in maintaining their proper function. Therefore, there is a steep correlation between the form and function of mitochondria. Many major proteins involved in mitochondrial fusion and fission have been identified in different cell types, including heart. However, the functional role of mitochondrial dynamics in the heart remains, for the most part, unexplored. In this review we will cover the recent field of mitochondrial dynamics and its physiological and pathological implications, with a particular emphasis on the experimental and theoretical basis of mitochondrial dynamics in the heart.

  12. Aerobic Exercise Training in Post-Polio Syndrome: Process Evaluation of a Randomized Controlled Trial

    PubMed Central

    Voorn, Eric L.; Koopman, Fieke S.; Brehm, Merel A.; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H. L.; Nollet, Frans

    2016-01-01

    Objective To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. Design A process evaluation using data from an RCT. Patients Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Methods Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60–70% heart rate reserve). Results The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Conclusion Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Trial Registration Netherlands National Trial Register NTR1371 PMID:27419388

  13. Megestrol acetate improves cardiac function in a model of cancer cachexia-induced cardiomyopathy by autophagic modulation.

    PubMed

    Musolino, Vincenzo; Palus, Sandra; Tschirner, Anika; Drescher, Cathleen; Gliozzi, Micaela; Carresi, Cristina; Vitale, Cristiana; Muscoli, Carolina; Doehner, Wolfram; von Haehling, Stephan; Anker, Stefan D; Mollace, Vincenzo; Springer, Jochen

    2016-12-01

    Cachexia is a complex metabolic syndrome associated with cancer. One of the features of cachexia is the loss of muscle mass, characterized by an imbalance between protein synthesis and protein degradation. Muscle atrophy is caused by the hyperactivation of some of the main cellular catabolic pathways, including autophagy. Cachexia also affects the cardiac muscle. As a consequence of the atrophy of the heart, cardiac function is impaired and mortality is increased. Anti-cachectic therapy in patients with cancer cachexia is so far limited to nutritional support and anabolic steroids. The use of the appetite stimulant megestrol acetate (MA) has been discussed as a treatment for cachexia. In this study the effects of MA were tested in cachectic tumour-bearing rats (Yoshida AH-130 ascites hepatoma). Rats were treated daily with 100 mg/kg of MA or placebo starting one day after tumour inoculation, and for a period of 16 days. Body weight and body composition were assessed at baseline and at the end of the study. Cardiac function was analysed by echocardiography at baseline and at day 11. Locomotor activity and food intake were assessed before tumour inoculation and at day 11. Autophagic markers were assessed in gastrocnemius muscle and heart by western blot analysis. Treatment with 100 mg/kg/day MA significantly attenuated the loss of body weight (-9 ± 12%, P  < 0.05) and the wasting of lean and fat mass (-7.0 ± 6% and -22.4 ± 3 %, P  < 0.001 and P  < 0.05, respectively). Administration of 100 mg/kg/day MA significantly protected the heart from general atrophy (633.8 ± 30 mg vs. placebo 474 ± 13 mg, P  < 0.001). Tumour-bearing rats displayed cardiac dysfunction, as indicated by the significant impairment of the left ventricular ejection fraction, the left ventricular fractional shortening, the stroke volume, the end dyastolic volume, and the end systolic volume. In contrast, MA significantly improved left ventricular ejection fraction, left ventricular fractional shortening, and left ventricular end systolic volume. Western blotting analysis showed an upregulation of the autophagic pathway in the gastrocnemius and hearts of the placebo-treated tumour-bearing rats. Treatment with MA, however, was able to modulate the autophagic markers (e.g. Beclin-1, p62, TRAF6, and LC3) in the gastrocnemius and in the hearts of tumour-bearing rats. Most importantly, 100 mg/kg/day MA reduced mortality [hazard ratio (HR): 0.44; 95%CI: 0.20-1.00; P  = 0.0486]. Megestrol acetate improved survival and reduced wasting through a marked downregulation of autophagy, occurring in both skeletal and heart muscle, the latter effect leading to a significant improvement of cardiac function. Our data suggest that MA might represent a valuable strategy to counteract the development of cancer cachexia-induced cardiomyopathy.

  14. NK4 Antagonizes Tbx1/10 to Promote Cardiac versus Pharyngeal Muscle Fate in the Ascidian Second Heart Field

    PubMed Central

    Wang, Wei; Razy-Krajka, Florian; Siu, Eric; Ketcham, Alexandra; Christiaen, Lionel

    2013-01-01

    The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS), where mutations of TBX1 cause malformations in the pharyngeal apparatus and cardiac outflow tract. Cardiac progenitors of the first heart field (FHF) do not require TBX1 and segregate precociously from common progenitors of the second heart field (SHF) and pharyngeal muscles. However, the cellular and molecular mechanisms that govern heart versus pharyngeal muscle specification within this lineage remain elusive. Here, we harness the simplicity of the ascidian larva to show that, following asymmetric cell division of common progenitors, NK4/NKX2-5 promotes GATAa/GATA4/5/6 expression and cardiac specification in the second heart precursors by antagonizing Tbx1/10-mediated inhibition of GATAa and activation of Collier/Olf/EBF (COE), the determinant of atrial siphon muscle (ASM) specification. Our results uncover essential regulatory connections between the conserved cardio-pharyngeal factor Tbx1/10 and muscle determinant COE, as well as a mutual antagonism between NK4 and Tbx1/10 activities upstream of GATAa and COE. The latter cross-antagonism underlies a fundamental heart versus pharyngeal muscle fate choice that occurs in a conserved lineage of cardio-pharyngeal progenitors. We propose that this basic ontogenetic motif underlies cardiac and pharyngeal muscle development and evolution in chordates. PMID:24311985

  15. Cardiac conduction system

    MedlinePlus Videos and Cool Tools

    ... cardiac muscle cells in the walls of the heart that send signals to the heart muscle causing it to contract. The main components ... the cardiac conduction system's electrical activity in the heart.

  16. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    PubMed

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  17. Assessment of skeletal muscle fatigue of road maintenance workers based on heart rate monitoring and myotonometry

    PubMed Central

    Roja, Zenija; Kalkis, Valdis; Vain, Arved; Kalkis, Henrijs; Eglite, Maija

    2006-01-01

    Objective This research work is dedicated to occupational health problems caused by ergonomic risks. The research object was road building industry, where workers have to work very intensively, have long work hours, are working in forced/constrained work postures and overstrain during the work specific parts of their bodies. The aim of this study was to evaluate the work heaviness degree and to estimate the muscle fatigue of workers after one week work cycle. The study group consisted of 10 road construction and maintenance workers and 10 pavers aged between 20 and 60 years. Methods Physical load were analyzed by measuring heart rate (HR), work postures (OWAS) and perceived exertion (RPE). Assessments of the muscles strain and functional state (tone) were carried out using myotonometric (MYO) measurements. The reliability of the statistical processing of heart rate monitoring and myotonometry data was determined using correlating analysis. Results This study showed that that road construction and repairing works should be considered as a hard work according to average metabolic energy consumption 8.1 ± 1.5 kcal/min; paving, in its turn, was a moderately hard work according to 7.2 ± 1.1 kcal/min. Several muscle tone levels were identified allowing subdivision of workers into three conditional categories basing on muscle tone and fatigue: I – absolute muscle relaxation and ability to relax; II – a state of equilibrium, when muscles are able to adapt to the work load and are partly able to relax; and III – muscle fatigue and increased tone. It was also found out that the increase of muscle tone and fatigue mainly depend on workers physical preparedness and length of service, and less – on their age. Conclusion We have concluded that a complex ergonomic analysis consisting of heart rate monitoring, assessment of compulsive working postures and myotonometry is appropriate to assess the work heaviness degree and can provide prognosis of occupational pathology or work-related musculoskeletal disorders for the workers under different workload conditions. These results can also be used when deciding on necessary rest time and its periodicity. PMID:16872518

  18. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation

    PubMed Central

    2016-01-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and “basic” OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H+. The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. PMID:27283913

  19. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.

    PubMed

    Korzeniewski, Bernard

    2016-08-01

    A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise. Copyright © 2016 the American Physiological Society.

  20. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration.

    PubMed

    Park, Chong Yon; Pierce, Stephanie A; von Drehle, Morgan; Ivey, Kathryn N; Morgan, Jayson A; Blau, Helen M; Srivastava, Deepak

    2010-11-30

    Cardiac and skeletal muscle development and maintenance require complex interactions between DNA-binding proteins and chromatin remodeling factors. We previously reported that Smyd1, a muscle-restricted histone methyltransferase, is essential for cardiogenesis and functions with a network of cardiac regulatory proteins. Here we show that the muscle-specific transcription factor skNAC is the major binding partner for Smyd1 in the developing heart. Targeted deletion of skNAC in mice resulted in partial embryonic lethality by embryonic day 12.5, with ventricular hypoplasia and decreased cardiomyocyte proliferation that were similar but less severe than in Smyd1 mutants. Expression of Irx4, a ventricle-specific transcription factor down-regulated in hearts lacking Smyd1, also depended on the presence of skNAC. Viable skNAC(-/-) adult mice had reduced postnatal skeletal muscle growth and impaired regenerative capacity after cardiotoxin-induced injury. Satellite cells isolated from skNAC(-/-) mice had impaired survival compared with wild-type littermate satellite cells. Our results indicate that skNAC plays a critical role in ventricular cardiomyocyte expansion and regulates postnatal skeletal muscle growth and regeneration in mice.

  1. Examination of mitral regurgitation with a goat heart model for the development of intelligent artificial papillary muscle.

    PubMed

    Shiraishi, Y; Yambe, T; Yoshizawa, M; Hashimoto, H; Yamada, A; Miura, H; Hashem, M; Kitano, T; Shiga, T; Homma, D

    2012-01-01

    Annuloplasty for functional mitral or tricuspid regurgitation has been made for surgical restoration of valvular diseases. However, these major techniques may sometimes be ineffective because of chamber dilation and valve tethering. We have been developing a sophisticated intelligent artificial papillary muscle (PM) by using an anisotropic shape memory alloy fiber for an alternative surgical reconstruction of the continuity of the mitral structural apparatus and the left ventricular myocardium. This study exhibited the mitral regurgitation with regard to the reduction in the PM tension quantitatively with an originally developed ventricular simulator using isolated goat hearts for the sophisticated artificial PM. Aortic and mitral valves with left ventricular free wall portions of isolated goat hearts (n=9) were secured on the elastic plastic membrane and statically pressurized, which led to valvular leaflet-papillary muscle positional change and central mitral regurgitation. PMs were connected to the load cell, and the relationship between the tension of regurgitation and PM tension were measured. Then we connected the left ventricular specimen model to our hydraulic ventricular simulator and achieved hemodynamic simulation with the controlled tension of PMs.

  2. Molecular and immunohistochemical analyses of cardiac troponin T during cardiac development in the Mexican axolotl, Ambystoma mexicanum.

    PubMed

    Zhang, C; Pietras, K M; Sferrazza, G F; Jia, P; Athauda, G; Rueda-de-Leon, E; Rveda-de-Leon, E; Maier, J A; Dube, D K; Lemanski, S L; Lemanski, L F

    2007-01-01

    The Mexican axolotl, Ambystoma mexicanum, is an excellent animal model for studying heart development because it carries a naturally occurring recessive genetic mutation, designated gene c, for cardiac nonfunction. The double recessive mutants (c/c) fail to form organized myofibrils in the cardiac myoblasts resulting in hearts that fail to beat. Tropomyosin expression patterns have been studied in detail and show dramatically decreased expression in the hearts of homozygous mutant embryos. Because of the direct interaction between tropomyosin and troponin T (TnT), and the crucial functions of TnT in the regulation of striated muscle contraction, we have expanded our studies on this animal model to characterize the expression of the TnT gene in cardiac muscle throughout normal axolotl development as well as in mutant axolotls. In addition, we have succeeded in cloning the full-length cardiac troponin T (cTnT) cDNA from axolotl hearts. Confocal microscopy has shown a substantial, but reduced, expression of TnT protein in the mutant hearts when compared to normal during embryonic development. 2006 Wiley-Liss, Inc.

  3. Oxidative muscular injury and its relevance to hyperthyroidism.

    PubMed

    Asayama, K; Kato, K

    1990-01-01

    In experimental hyperthyroidism, acceleration of lipid peroxidation occurs in heart and slow-oxidative muscles, suggesting the contribution of reactive oxygen species to the muscular injury caused by thyroid hormones. This article reviews various models of oxidative muscular injury and considers the relevance of the accompanying metabolic derangements to thyrotoxic myopathy and cardiomyopathy, which are the major complications of hyperthyroidism. The muscular injury models in which reactive oxygen species are supposed to play a role are ischemia/reperfusion syndrome, exercise-induced myopathy, heart and skeletal muscle diseases related to the nutritional deficiency of selenium and vitamin E and related disorders, and genetic muscular dystrophies. These models provide evidence that mitochondrial function and the glutathione-dependent antioxidant system are important for the maintenance of the structural and functional integrity of muscular tissues. Thyroid hormones have a profound effect on mitochondrial oxidative activity, synthesis and degradation of proteins and vitamin E, the sensitivity of the tissues to catecholamine, the differentiation of muscle fibers, and the levels of antioxidant enzymes. The large volume of circumstantial evidence presented here indicates that hyperthyroid muscular tissues undergo several biochemical changes that predispose them to free radical-mediated injury.

  4. Mechanisms of impaired exercise capacity in short duration experimental hyperthyroidism.

    PubMed Central

    Martin, W H; Spina, R J; Korte, E; Yarasheski, K E; Angelopoulos, T J; Nemeth, P M; Saffitz, J E

    1991-01-01

    To investigate the mechanism of reduced exercise tolerance in hyperthyroidism, we characterized cardiovascular function and determinants of skeletal muscle metabolism in 18 healthy subjects aged 26 +/- 1 yr (mean +/- SE) before and after 2 wk of daily ingestion of 100 micrograms of triiodothyronine (T3). Resting oxygen uptake, heart rate, and cardiac output increased and heart rate and cardiac output at the same submaximal exercise intensity were higher in the hyperthyroid state (P less than 0.05). However, maximal oxygen uptake decreased after T3 administration (3.08 +/- 0.17 vs. 2.94 +/- 0.19 l/min; P less than 0.001) despite increased heart rate and cardiac output at maximal exercise (P less than 0.05). Plasma lactic acid concentration at an equivalent submaximal exercise intensity was elevated 25% (P less than 0.01) and the arteriovenous oxygen difference at maximal effort was reduced (P less than 0.05) in the hyperthyroid state. These effects were associated with a 21-37% decline in activities of oxidative (P less than 0.001) and glycolytic (P less than 0.05) enzymes in skeletal muscle and a 15% decrease in type IIA muscle fiber cross-sectional area (P less than 0.05). Lean body mass was reduced (P less than 0.001) and the rates of whole body leucine oxidation and protein breakdown were enhanced (P less than 0.05). Thus, exercise tolerance is impaired in short duration hyperthyroidism because of decreased skeletal muscle mass and oxidative capacity related to accelerated protein catabolism but cardiac pump function is not reduced. PMID:1752962

  5. Effects of Aerobic Exercise Applied Early After Coronary Artery Bypass Grafting on Pulmonary Function, Respiratory Muscle Strength, and Functional Capacity: A Randomized Controlled Trial.

    PubMed

    Borges, Daniel L; Silva, Mayara Gabrielle; Silva, Luan Nascimento; Fortes, João Vyctor; Costa, Erika Thalita; Assunção, Rebeca Pessoa; Lima, Carlos Magno; da Silva Nina, Vinícius José; Bernardo-Filho, Mário; Caputo, Danúbia Sá

    2016-09-01

    Physical activity is beneficial in several clinical situations and recommended for patients with ischemic heart disease, as well as for those undergoing cardiac surgery. In a randomized controlled trial, 34 patients underwent coronary artery bypass grafting. A randomized control group (n = 15) submitted to conventional physiotherapy. The intervention group (n = 19) received the same protocol plus additional aerobic exercise with cycle ergometer. Pulmonary function by spirometry, respiratory muscle strength by manovacuometry, and functional capacity through 6-minute walking test was assessed before surgery and at hospital discharge. There was significant reduction in pulmonary function in both groups. In both groups, inspiratory muscle strength was maintained while expiratory muscle strength significantly decreased. Functional capacity was maintained in the intervention group (364.5 [324.5 to 428] vs. 348 [300.7 to 413.7] meters, P = .06), but it decreased significantly in control group patients (320 [288.5 to 393.0] vs. 292 [237.0 to 336.0] meters, P = .01). A significant difference in functional capacity was also found in intergroup analyses at hospital discharge (P = .03). Aerobic exercise applied early on coronary artery bypass grafting patients may promote maintenance of functional capacity, with no impact on pulmonary function and respiratory muscle strength when compared with conventional physiotherapy.

  6. Biomaterial strategies for alleviation of myocardial infarction

    PubMed Central

    Venugopal, Jayarama Reddy; Prabhakaran, Molamma P.; Mukherjee, Shayanti; Ravichandran, Rajeswari; Dan, Kai; Ramakrishna, Seeram

    2012-01-01

    World Health Organization estimated that heart failure initiated by coronary artery disease and myocardial infarction (MI) leads to 29 per cent of deaths worldwide. Heart failure is one of the leading causes of death in industrialized countries and is expected to become a global epidemic within the twenty-first century. MI, the main cause of heart failure, leads to a loss of cardiac tissue impairment of left ventricular function. The damaged left ventricle undergoes progressive ‘remodelling’ and chamber dilation, with myocyte slippage and fibroblast proliferation. Repair of diseased myocardium with in vitro-engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for heart failure patients. These events reflect an apparent lack of effective intrinsic mechanism for myocardial repair and regeneration. Motivated by the desire to develop minimally invasive procedures, the last 10 years observed growing efforts to develop injectable biomaterials with and without cells to treat cardiac failure. Biomaterials evaluated include alginate, fibrin, collagen, chitosan, self-assembling peptides, biopolymers and a range of synthetic hydrogels. The ultimate goal in therapeutic cardiac tissue engineering is to generate biocompatible, non-immunogenic heart muscle with morphological and functional properties similar to natural myocardium to repair MI. This review summarizes the properties of biomaterial substrates having sufficient mechanical stability, which stimulates the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering. PMID:21900319

  7. Expression of beta 3-adrenoceptor mRNA in rat tissues.

    PubMed

    Evans, B A; Papaioannou, M; Bonazzi, V R; Summers, R J

    1996-01-01

    1. This study examines the expression of beta 3-adrenoceptor messenger RNA (beta 3-AR mRNA) in rat tissues to allow comparison with atypical beta-adrenoceptors determined by functional and radioligand binding techniques. 2. A reverse transcription/polymerase chain reaction protocol has been developed for determining the relative amounts of beta 3-AR mRNA in rat tissues. 3. Measurement of adipsin and uncoupling protein (UCP) mRNA was used to examine all tissues for the presence of white and brown adipose tissue which may contribute beta 3-AR mRNA. 4. The beta 3-AR mRNA is expressed at high levels in brown and white adipose tissue, stomach fundus, the longitudinal/circular smooth muscle of both colon and ileum, and colon submucosa. There was substantial expression of adipsin in colon submucosa and moderate expression in fundus, suggesting that in these regions at least some of the beta 3-AR signal may be contributed by fat. Pylorus and colon mucosa showed moderate levels of beta 3-AR mRNA with lower levels of adipsin. Ileum mucosa and submucosa showed low but readily detectable levels of beta 3-AR. 5. Expression of adipsin in rat skeletal muscles coupled to very low levels of beta 3-AR mRNA indicates that the observed beta 3-AR may be due to the presence of intrinsic fat. beta 3-AR mRNA was virtually undetectable in heart, lung and liver. These results raise the possibility that the atypical beta-AR demonstrated by functional and/or binding studies in muscle and in heart is not the beta 3-AR. 6. By use of two different sets of primers for amplification of beta 3-AR cDNA, no evidence was found for differential splicing of the mRNA in any of the tissues examined. 7. The detection of beta 3-AR mRNA in the gut mucosa and submucosa suggests that in addition to its established roles in lipolysis, thermogenesis and regulation of gut motility beta 3-AR may subserve other functions in the gastrointestinal tract. The absence of beta 3-AR mRNA in rat heart or its presence with adipsin in skeletal muscle suggests that atypical beta-adrenoceptor responses in heart and skeletal muscle are unlikely to be mediated by beta 3-AR.

  8. The Popeye Domain Containing Genes and Their Function as cAMP Effector Proteins in Striated Muscle.

    PubMed

    Brand, Thomas

    2018-03-13

    The Popeye domain containing (POPDC) genes encode transmembrane proteins, which are abundantly expressed in striated muscle cells. Hallmarks of the POPDC proteins are the presence of three transmembrane domains and the Popeye domain, which makes up a large part of the cytoplasmic portion of the protein and functions as a cAMP-binding domain. Interestingly, despite the prediction of structural similarity between the Popeye domain and other cAMP binding domains, at the protein sequence level they strongly differ from each other suggesting an independent evolutionary origin of POPDC proteins. Loss-of-function experiments in zebrafish and mouse established an important role of POPDC proteins for cardiac conduction and heart rate adaptation after stress. Loss-of function mutations in patients have been associated with limb-girdle muscular dystrophy and AV-block. These data suggest an important role of these proteins in the maintenance of structure and function of striated muscle cells.

  9. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice.

    PubMed

    Bowen, T Scott; Aakerøy, Lars; Eisenkolb, Sophia; Kunth, Patricia; Bakkerud, Fredrik; Wohlwend, Martin; Ormbostad, Anne Marie; Fischer, Tina; Wisloff, Ulrik; Schuler, Gerhard; Steinshamn, Sigurd; Adams, Volker; Bronstad, Eivind

    2017-05-01

    Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Smoking reduced body weight by 26% (P < 0.05) without overt airway destruction (P > 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P < 0.05), but these were either attenuated or reversed by exercise training (P < 0.05). Compared with controls, smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P < 0.05), but these were attenuated by exercise training (P < 0.05). Prolonged cigarette smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.

  10. FA composition of heart and skeletal muscle during embryonic development of the king penguin.

    PubMed

    Decrock, Frederic; Groscolas, Rene; Speake, Brian K

    2002-04-01

    Since the yolk lipids of the king penguin (Aptenodytes patagonicus) naturally contain the highest concentrations of DHA and EPA yet reported for the eggs of any avian species, the effects of this (n-3)-rich yolk on the FA profiles of the embryonic heart and skeletal muscle were investigated. The concentrations (mg/g wet tissue) of phospholipid (PL) in the developing heart and leg muscle of the penguin doubled between days 27 and 55 from the beginning of egg incubation (i.e., from the halfway stage of embryonic development to 2 d posthatch), whereas no net increase occurred in pectoral muscle. During this period, the concentration of TAG in heart decreased by half but increased two- and sixfold in leg and pectoral muscle, respectively. The most notable change in cholesteryl ester concentration occurred in pectoral muscle, increasing ninefold between days 27 and 55. Arachidonic acid (ARA) was the major polyunsaturate in PL of the penguin's heart, where it formed about 20% (w/w) of FA at day 55. At the equivalent developmental stage, the heart PL of the chicken contained a 1.3-fold greater proportion of ARA, contained a fifth less DHA, and was almost devoid of EPA, whereas the latter FA was a significant component (7% of FA) of penguin heart PL. Similarly, in PL of leg and pectoral muscle, the chicken displayed about 1.4-fold more ARA, up to 50% less DHA, and far less EPA in comparison with the penguin. Thus, although ARA-rich PL profiles are achieved in the heart and muscle of the penguin embryo, these profiles are significantly affected by the high n-3 content of the yolk.

  11. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy

    PubMed Central

    Echigoya, Yusuke; Nakamura, Akinori; Nagata, Tetsuya; Urasawa, Nobuyuki; Trieu, Nhu; Panesar, Dharminder; Kuraoka, Mutsuki; Moulton, Hong M.; Saito, Takashi; Aoki, Yoshitsugu; Iversen, Patrick; Sazani, Peter; Kole, Ryszard; Maruyama, Rika; Partridge, Terry; Takeda, Shin’ichi; Yokota, Toshifumi

    2017-01-01

    Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMDJ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMDJ dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMDJ dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart. PMID:28373570

  12. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy.

    PubMed

    Echigoya, Yusuke; Nakamura, Akinori; Nagata, Tetsuya; Urasawa, Nobuyuki; Lim, Kenji Rowel Q; Trieu, Nhu; Panesar, Dharminder; Kuraoka, Mutsuki; Moulton, Hong M; Saito, Takashi; Aoki, Yoshitsugu; Iversen, Patrick; Sazani, Peter; Kole, Ryszard; Maruyama, Rika; Partridge, Terry; Takeda, Shin'ichi; Yokota, Toshifumi

    2017-04-18

    Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle. To increase therapeutic potency in cardiac muscle, we tested a next-generation morpholino: arginine-rich, cell-penetrating peptide-conjugated PMOs (PPMOs) in the canine X-linked muscular dystrophy in Japan (CXMD J ) dog model of DMD. A PPMO cocktail designed to skip dystrophin exons 6 and 8 was injected intramuscularly, intracoronarily, or intravenously into CXMD J dogs. Intravenous injections with PPMOs restored dystrophin expression in the myocardium and cardiac Purkinje fibers, as well as skeletal muscles. Vacuole degeneration of cardiac Purkinje fibers, as seen in DMD patients, was ameliorated in PPMO-treated dogs. Although symptoms and functions in skeletal muscle were not ameliorated by i.v. treatment, electrocardiogram abnormalities (increased Q-amplitude and Q/R ratio) were improved in CXMD J dogs after intracoronary or i.v. administration. No obvious evidence of toxicity was found in blood tests throughout the monitoring period of one or four systemic treatments with the PPMO cocktail (12 mg/kg/injection). The present study reports the rescue of dystrophin expression and recovery of the conduction system in the heart of dystrophic dogs by PPMO-mediated multiexon skipping. We demonstrate that rescued dystrophin expression in the Purkinje fibers leads to the improvement/prevention of cardiac conduction abnormalities in the dystrophic heart.

  13. Hypothyroidism-induced myocardial damage and heart failure: an overlooked entity.

    PubMed

    Shuvy, Mony; Shifman, Oshrat E Tayer; Nusair, Samir; Pappo, Orit; Lotan, Chaim

    2009-01-01

    Hypothyroid state may induce cardiac muscle impairment such as diastolic dysfunction and abnormal relaxation time. Advanced heart failure in hypothyroid patients has been described only in severe symptomatic cases, mostly during myxedematous coma. We describe an unusual case of asymptomatic patient with hypothyroidism who presented with severely reduced cardiac function with elevated cardiac enzymes reflecting significant myocardial injury. Comprehensive evaluation for heart failure was suggestive only for long-standing untreated hypothyroidism. Endomyocadial biopsy demonstrated unique histological findings of mucopolysaccharide accumulation attributed to hypothyroid state. Asymptomatic hypothyroidism may cause severe reduction in cardiac function accompanied with elevated cardiac enzymes. To our knowledge, this is the first description of human myocardial biopsy revealing mucopolysaccharide accumulation attributed to hypothyroid state.

  14. Combined aerobic and resistance exercise program improves task performance in patients with heart failure.

    PubMed

    Gary, Rebecca A; Cress, M Elaine; Higgins, Melinda K; Smith, Andrew L; Dunbar, Sandra B

    2011-09-01

    To assess the effects of a home-based aerobic and resistance training program on the physical function of adults with New York Heart Association (NYHA) class II and III patients and systolic heart failure (HF). Randomized controlled trial. Home based. Stable patients (N=24; mean age, 60 ± 10 y; left ventricular ejection fraction, 25% ± 9%; 50% white; 50% women) with New York Heart Association (NYHA) classes II and III (NYHA class III, 58%) systolic heart failure (HF). A 12-week progressive home-based program of moderate-intensity aerobic and resistance exercise. Attention control wait list participants performed light stretching and flexibility exercises. A 10-item performance-based physical function measure, the Continuous Scale Physical Functional Performance test (CS-PFP10), was the major outcome variable and included specific physical activities measured in time to complete a task, weight carried during a task, and distance walked. Other measures included muscle strength, HRQOL (Minnesota Living With Heart Failure Questionnaire, Epworth Sleepiness Scale), functional capacity (Duke Activity Status Index), and disease severity (brain natriuretic peptide) levels. After the exercise intervention, 9 of 10 specific task activities were performed more rapidly, with increased weight carried by exercise participants compared with the attention control wait list group. Exercise participants also showed significant improvements in CS-PFP10 total score (P<.025), upper and lower muscle strength, and HRQOL (P<.001) compared with the attention control wait list group. Adherence rates were 83% and 99% for the aerobic and resistance training, respectively. Patients with stable HF who participate in a moderate-intensity combined aerobic and resistance exercise program may improve performance of routine physical activities of daily living by using a home-based exercise approach. Performance-based measures such as the CS-PFP10 may provide additional insights into physical function in patients with HF that more commonly used exercise tests may not identify. Early detection of subtle changes that may signal declining physical function that are amenable to intervention potentially may slow further loss of function in this patient population. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Myocardin-related transcription factors are required for cardiac development and function

    PubMed Central

    Mokalled, Mayssa H.; Carroll, Kelli J.; Cenik, Bercin K.; Chen, Beibei; Liu, Ning; Olson, Eric N.; Bassel-Duby, Rhonda

    2016-01-01

    Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks. PMID:26386146

  16. Mutations in FOXC2 in humans (lymphoedema distichiasis syndrome) cause lymphatic dysfunction on dependency.

    PubMed

    Mellor, Russell H; Tate, Naomi; Stanton, Anthony W B; Hubert, Charlotte; Mäkinen, Taija; Smith, Alberto; Burnand, Kevin G; Jeffery, Steve; Levick, J Rodney; Mortimer, Peter S

    2011-01-01

    Human lymphoedema distichiasis syndrome (LDS) results from germline mutations in transcription factor FOXC2. In a mouse model, lack of lymphatic and venous valves is observed plus abnormal smooth muscle cell recruitment to initial lymphatics. We investigated the mechanism of lymphoedema in humans with FOXC2 mutations, specifically the effect of gravitational forces on dermal lymphatic function. We performed (1) quantitative fluorescence microlymphangiography (FML) on the skin of the forearm (non-swollen region) at heart level, and the foot (swollen region) below heart level (dependent) and then at heart level, and (2) immunohistochemical staining of microlymphatics in forearm and foot skin biopsies, using antibodies to podoplanin, LYVE-1 and smooth muscle actin. FML revealed a marked reduction in fluid uptake by initial lymphatics in the LDS foot during dependency, yet normal uptake (similar to controls) in the same foot at heart level and in LDS forearms. In control subjects, dependency did not impair initial lymphatic filling. Immunohistochemical microlymphatic density in forearm and foot did not differ between LDS and controls. FOXC2 mutations cause a functional failure of dermal initial lymphatics during gravitational stress (dependency), but not hypoplasia. The results reveal a pathophysiological mechanism contributing to swelling in LDS. Copyright © 2011 S. Karger AG, Basel.

  17. Morphological Dynamics of Mitochondria – A Special Emphasis on Cardiac Muscle Cells

    PubMed Central

    Hom, Jennifer; Sheu, Shey-Shing

    2010-01-01

    Mitochondria play a critical role in cellular energy metabolism, Ca2+ homeostasis, reactive oxygen species generation, apoptosis, aging, and development. Many recent publications have shown that a continuous balance of fusion and fission of these organelles is important in maintaining their proper function. Therefore, there is a steep correlation between the form and function of mitochondria. Many major proteins involved in mitochondrial fusion and fission have been identified in different cell types, including heart. However, the functional role of mitochondrial dynamics in the heart remains, for the most part, unexplored. In this review we will cover the recent field of mitochondrial dynamics and its physiological and pathological implications, with a particular emphasis on the experimental and theoretical basis of mitochondrial dynamics in the heart. PMID:19281816

  18. Exercise-stimulated FGF23 promotes exercise performance via controlling the excess reactive oxygen species production and enhancing mitochondrial function in skeletal muscle.

    PubMed

    Li, Dong-Jie; Fu, Hui; Zhao, Ting; Ni, Min; Shen, Fu-Ming

    2016-05-01

    Physical exercise induces many adaptive changes in skeletal muscle and the whole body and improves metabolic characteristics. Fibroblast growth-factor 23 (FGF23) is a unique member of the FGF family that acts as a hormone regulating phosphate metabolism, calcitriol concentration, and kidney functions. The role of FGF23 in exercise and skeletal muscle is largely unknown yet. C57BL/6J mice were exercised on a motor treadmill. Mice serum FGF23 levels; FGF23 mRNA expression in various organs including the liver, heart, skeletal muscle tissue, and thyroid; and FGF23 receptor Klotho mRNA expression were examined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunoblotting, respectively, after a single bout of acute exercise (60min), exhaustive exercise, and chronic prolonged exercise (60min every day for one week). C57BL/6J mice were injected with recombinant FGF23 (100mg/kg, twice per day, i.p.) or vehicle control (saline) for 3days, and then the exercise performance, reactive oxygen species (ROS), H2O2 production, and mitochondrial functional biomarkers in muscle (gene expression of sirtuin 1, PPAR-δ, PGC-1α and mitochondrial transcription factor A [TFAM], and citrate synthase activity) were assayed. Three forms of exercise, acute exercise, exhaustive exercise, and chronic exercise, increased serum FGF23 levels. However, only chronic exercise upregulated FGF23 mRNA and protein expression in skeletal muscle. FGF23 mRNA expression in the heart, liver, and thyroid was not affected. FGF23 protein was mainly located in the cytoplasm in skeletal muscle tissue and the localization of FGF23 was not altered by exercise. Exogenous FGF23 treatment significantly extended the time to exhaustion and reduced the exercise-induced ROS and H2O2 production. FGF23 treatment increased the mRNA level of PPAR-δ and citrate synthase activity, but did not influence the mRNA expression of sirtuin 1, PGC-1α, and TFAM in skeletal muscle. These results demonstrate that exercise-stimulated FGF23 promotes exercise performance via controlling the excess ROS production and enhancing mitochondrial function in skeletal muscle, which reveals an entirely novel role of FGF23 in skeletal muscle. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  20. Molecular Characterization of Striated Muscle-Specific Gab1 Isoform as a Critical Signal Transducer for Neuregulin-1/ErbB Signaling in Cardiomyocytes

    PubMed Central

    Yasui, Taku; Masaki, Takeshi; Arita, Yoh; Ishibashi, Tomohiko; Inagaki, Tadakatsu; Okazawa, Makoto; Oka, Toru; Shioyama, Wataru; Yamauchi-Takihara, Keiko; Komuro, Issei; Sakata, Yasushi; Nakaoka, Yoshikazu

    2016-01-01

    Grb2-associated binder (Gab) docking proteins regulate signals downstream of a variety of growth factors and receptor tyrosine kinases. Neuregulin-1 (NRG-1), a member of epidermal growth factor family, plays a critical role for cardiomyocyte proliferation and prevention of heart failure via ErbB receptors. We previously reported that Gab1 and Gab2 in the myocardium are essential for maintenance of myocardial function in the postnatal heart via transmission of NRG-1/ErbB-signaling through analysis of Gab1/Gab2 cardiomyocyte-specific double knockout mice. In that study, we also found that there is an unknown high-molecular weight (high-MW) Gab1 isoform (120 kDa) expressed exclusively in the heart, in addition to the ubiquitously expressed low-MW (100 kDa) Gab1. However, the high-MW Gab1 has been molecularly ill-defined to date. Here, we identified the high-MW Gab1 as a striated muscle-specific isoform. The high-MW Gab1 has an extra exon encoding 27 amino acid residues between the already-known 3rd and 4th exons of the ubiquitously expressed low-MW Gab1. Expression analysis by RT-PCR and immunostaining with the antibody specific for the high-MW Gab1 demonstrate that the high-MW Gab1 isoform is exclusively expressed in striated muscle including heart and skeletal muscle. The ratio of high-MW Gab1/ total Gab1 mRNAs increased along with heart development. The high-MW Gab1 isoform in heart underwent tyrosine-phosphorylation exclusively after intravenous administration of NRG-1, among several growth factors. Adenovirus-mediated overexpression of the high-MW Gab1 induces more sustained activation of AKT after stimulation with NRG-1 in cardiomyocytes compared with that of β-galactosidase. On the contrary, siRNA-mediated knockdown of the high-MW Gab1 significantly attenuated AKT activation after stimulation with NRG-1 in cardiomyocytes. Taken together, these findings suggest that the striated muscle-specific high-MW isoform of Gab1 has a crucial role for NRG-1/ErbB signaling in cardiomyocytes. PMID:27861634

  1. Molecular Characterization of Striated Muscle-Specific Gab1 Isoform as a Critical Signal Transducer for Neuregulin-1/ErbB Signaling in Cardiomyocytes.

    PubMed

    Yasui, Taku; Masaki, Takeshi; Arita, Yoh; Ishibashi, Tomohiko; Inagaki, Tadakatsu; Okazawa, Makoto; Oka, Toru; Shioyama, Wataru; Yamauchi-Takihara, Keiko; Komuro, Issei; Sakata, Yasushi; Nakaoka, Yoshikazu

    2016-01-01

    Grb2-associated binder (Gab) docking proteins regulate signals downstream of a variety of growth factors and receptor tyrosine kinases. Neuregulin-1 (NRG-1), a member of epidermal growth factor family, plays a critical role for cardiomyocyte proliferation and prevention of heart failure via ErbB receptors. We previously reported that Gab1 and Gab2 in the myocardium are essential for maintenance of myocardial function in the postnatal heart via transmission of NRG-1/ErbB-signaling through analysis of Gab1/Gab2 cardiomyocyte-specific double knockout mice. In that study, we also found that there is an unknown high-molecular weight (high-MW) Gab1 isoform (120 kDa) expressed exclusively in the heart, in addition to the ubiquitously expressed low-MW (100 kDa) Gab1. However, the high-MW Gab1 has been molecularly ill-defined to date. Here, we identified the high-MW Gab1 as a striated muscle-specific isoform. The high-MW Gab1 has an extra exon encoding 27 amino acid residues between the already-known 3rd and 4th exons of the ubiquitously expressed low-MW Gab1. Expression analysis by RT-PCR and immunostaining with the antibody specific for the high-MW Gab1 demonstrate that the high-MW Gab1 isoform is exclusively expressed in striated muscle including heart and skeletal muscle. The ratio of high-MW Gab1/ total Gab1 mRNAs increased along with heart development. The high-MW Gab1 isoform in heart underwent tyrosine-phosphorylation exclusively after intravenous administration of NRG-1, among several growth factors. Adenovirus-mediated overexpression of the high-MW Gab1 induces more sustained activation of AKT after stimulation with NRG-1 in cardiomyocytes compared with that of β-galactosidase. On the contrary, siRNA-mediated knockdown of the high-MW Gab1 significantly attenuated AKT activation after stimulation with NRG-1 in cardiomyocytes. Taken together, these findings suggest that the striated muscle-specific high-MW isoform of Gab1 has a crucial role for NRG-1/ErbB signaling in cardiomyocytes.

  2. Blood flow

    MedlinePlus Videos and Cool Tools

    As the heart pumps, the arteries carry oxygen-rich blood (shown in red) away from the heart and toward the body's tissues and vital organs. ... brain, liver, kidneys, stomach, and muscles, including the heart muscle itself. At the same time, the veins ...

  3. Forces generated during stretch in the heart of the lobster Homarus americanus are anisotropic and are altered by neuromodulators

    PubMed Central

    Dickinson, E. S.; Johnson, A. S.; Ellers, O.; Dickinson, P. S.

    2016-01-01

    ABSTRACT Mechanical and neurophysiological anisotropies mediate three-dimensional responses of the heart of Homarus americanus. Although hearts in vivo are loaded multi-axially by pressure, studies of invertebrate cardiac function typically use uniaxial tests. To generate whole-heart length–tension curves, stretch pyramids at constant lengthening and shortening rates were imposed uniaxially and biaxially along longitudinal and transverse axes of the beating whole heart. To determine whether neuropeptides that are known to modulate cardiac activity in H. americanus affect the active or passive components of these length–tension curves, we also performed these tests in the presence of SGRNFLRFamide (SGRN) and GYSNRNYLRFamide (GYS). In uniaxial and biaxial tests, both passive and active forces increased with stretch along both measurement axes. The increase in passive forces was anisotropic, with greater increases along the longitudinal axis. Passive forces showed hysteresis and active forces were higher during lengthening than shortening phases of the stretch pyramid. Active forces at a given length were increased by both neuropeptides. To exert these effects, neuropeptides might have acted indirectly on the muscle via their effects on the cardiac ganglion, directly on the neuromuscular junction, or directly on the muscles. Because increases in response to stretch were also seen in stimulated motor nerve-muscle preparations, at least some of the effects of the peptides are likely peripheral. Taken together, these findings suggest that flexibility in rhythmic cardiac contractions results from the amplified effects of neuropeptides interacting with the length–tension characteristics of the heart. PMID:26896540

  4. Impact of angiotensin II on skeletal muscle metabolism and function in mice: contribution of IGF-1, Sirtuin-1 and PGC-1α.

    PubMed

    Kackstein, Katharina; Teren, Andrej; Matsumoto, Yasuharu; Mangner, Norman; Möbius-Winkler, Sven; Linke, Axel; Schuler, Gerhard; Punkt, Karla; Adams, Volker

    2013-05-01

    Activation of the renin-angiotensin-aldosterone system and increased levels of angiotensin II (Ang-II) occurs in numerous cardiovascular diseases such as chronic heart failure (CHF). Another hallmark in CHF is a reduced exercise tolerance with impaired skeletal muscle function. The aim of this study was to investigate in an animal model the impact of Ang-II on skeletal muscle function and concomitant molecular alterations. Mice were infused with Ang-II for 4 weeks. Subsequently, skeletal muscle function of the soleus muscle was assessed. Expression of selected proteins was quantified by qRT-PCR and Western blot. Infusion of Ang-II resulted in a 33% reduction of contractile force, despite a lack of changes in muscle weight. At the molecular level an increased expression of NAD(P)H oxidase and a reduced expression of Sirt1, PGC-1α and IGF-1 were noticed. No change was evident for the ubiquitin E3-ligases MuRF1 and MafBx and α-sarcomeric actin expression. Cytophotometrical analysis of the soleus muscle revealed a metabolic shift toward a glycolytic profile. This study provides direct evidence of Ang-II-mediated, metabolic deterioration of skeletal muscle function despite preserved muscle mass. One may speculate that the Ang-II-mediated loss of muscle force is due to an activation of NAD(P)H oxidase expression and a subsequent ROS-induced down regulation of IGF-1, PGC-1α and Sirt1. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Alterations in cervical muscle activity in functional and stressful tasks in female office workers with neck pain.

    PubMed

    Johnston, V; Jull, G; Darnell, R; Jimmieson, N L; Souvlis, T

    2008-06-01

    This study determined differences between computer workers with varying levels of neck pain in terms of work stressors, employee strain, electromyography (EMG) amplitude and heart rate response to various tasks. Participants included 85 workers (33, no pain; 38, mild pain; 14, moderate pain) and 22 non-working controls. Work stressors evaluated were job demands, decision authority, and social support. Heart rate was recorded during three tasks: copy-typing, typing with superimposed stress and a colour word task. Measures included electromyography signals from the sternocleidomastoid (SCM), anterior scalene (AS), cervical extensor (CE) and upper trapezius (UT) muscles bilaterally. Results showed no difference between groups in work stressors or employee strain measures. Workers with and without pain had higher measured levels of EMG amplitude in SCM, AS and CE muscles during the tasks than controls (all P < 0.02). In workers with neck pain, the UT had difficulty in switching off on completion of tasks compared with controls and workers without pain. There was an increase in heart rate, perceived tension and pain and decrease in accuracy for all groups during the stressful tasks with symptomatic workers producing more typing errors than controls and workers without pain. These findings suggest an altered muscle recruitment pattern in the neck flexor and extensor muscles. Whether this is a consequence or source of the musculoskeletal disorder cannot be determined from this study. It is possible that workers currently without symptoms may be at risk of developing a musculoskeletal disorder.

  6. Effects of concurrent physical and cognitive demands on muscle activity and heart rate variability in a repetitive upper-extremity precision task.

    PubMed

    Srinivasan, Divya; Mathiassen, Svend Erik; Hallman, David M; Samani, Afshin; Madeleine, Pascal; Lyskov, Eugene

    2016-01-01

    Most previous studies of concurrent physical and cognitive demands have addressed tasks of limited relevance to occupational work, and with dissociated physical and cognitive task components. This study investigated effects on muscle activity and heart rate variability of executing a repetitive occupational task with an added cognitive demand integral to correct task performance. Thirty-five healthy females performed 7.5 min of standardized repetitive pipetting work in a baseline condition and a concurrent cognitive condition involving a complex instruction for correct performance. Average levels and variabilities of electromyographic activities in the upper trapezius and extensor carpi radialis (ECR) muscles were compared between these two conditions. Heart rate and heart rate variability were also assessed to measure autonomic nervous system activation. Subjects also rated perceived fatigue in the neck-shoulder region, as well as exertion. Concurrent cognitive demands increased trapezius muscle activity from 8.2% of maximum voluntary exertion (MVE) in baseline to 9.0% MVE (p = 0.0005), but did not significantly affect ECR muscle activity, heart rate, heart rate variability, perceived fatigue or exertion. Trapezius muscle activity increased by about 10%, without any accompanying cardiovascular response to indicate increased sympathetic activation. We suggest this slight increase in trapezius muscle activity to be due to changed muscle activation patterns within or among shoulder muscles. The results suggest that it may be possible to introduce modest cognitive demands necessary for correct performance in repetitive precision work without any major physiological effects, at least in the short term.

  7. Effects of inspiratory muscle training on autonomic activity, endothelial vasodilator function, and N-terminal pro-brain natriuretic peptide levels in chronic heart failure.

    PubMed

    Laoutaris, Ioannis D; Dritsas, Athanasios; Brown, Margaret D; Manginas, Athanassios; Kallistratos, Manolis S; Chaidaroglou, Antigoni; Degiannis, Dimitrios; Alivizatos, Peter A; Cokkinos, Dennis V

    2008-01-01

    To assess the effects of inspiratory muscle training (IMT) on autonomic activity, endothelial function, and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels in patients with chronic heart failure. Using age- and sex-matched controlled study, 23 patients (mean left ventricular ejection fraction 29 +/- 2%) were assigned to either a high-intensity training group (n = 14), New York Heart Association (NYHA) class II (n = 9)/III (n = 5), or a low-intensity training group (n = 9), NYHA class II (n = 6)/III (n = 3), exercising at 60% and 15% of sustained maximum inspiratory pressure (SPImax), respectively, 3 times per week for 10 weeks. Before and following IMT, patients underwent cardiopulmonary exercise testing and dyspnea evaluation on exertion. Sympathovagal balance was assessed by heart rate variability (HRV) from 24-hour electrocardiogram and endothelial function, using venous occlusion plethysmography. Serum levels of NT-proBNP were determined. High-intensity training group improved maximum inspiratory pressure (PImax, 105.4 +/- 5.3 vs 79.1 +/- 5 cm H2O, P = .001), SPImax (511 +/- 42 vs 308 +/- 28 cm H2O/sec/10, P = .001), peak oxygen consumption (19 +/- 1.2 vs 17.1 +/- 0.7 mL.kgmin, P = .01) and dyspnea (17.6 +/- 0.2 vs 18.1 +/- 0.1, P = .02). Endothelium-dependent vasodilation, HRV, and NT-proBNP levels were not altered. Low-intensity training group increased only the PImax (97.6 +/- 11.3 vs 84.2 +/- 8.7 cm H2O, P = .03). Improvement in dyspnea and exercise tolerance after IMT were not associated with changes in markers of HRV, endothelial function, and NT-proBNP in patients with mild to moderate chronic heart failure. Further studies on the effects of IMT in advanced heart failure would be worthwhile.

  8. Myogenic nature of insect heartbeat and intestinal peristalsis, revealed by neuromuscular paralysis caused by the sting of a braconid wasp.

    PubMed

    Sláma, Karel; Lukáš, Jan

    2011-02-01

    Larvae of the greater waxmoth (Galleria mellonella) become paralysed by the venom of the braconid wasp (Habrobracon hebetor) a few minutes after intoxication. The profound neuromuscular paralysis, which may last for several weeks, includes all somatic muscles that are innervated through neuromuscular transmission. The peristaltic contractions of the heart and intestine, which are regulated by the depolarisation potentials of the myocardium or intestinal epithelial muscles, remain unaffected and fully functional. Heartbeat patterns and intestinal pulsations were monitored in the motionless, paralysed larvae by means of advanced electrocardiographic recording methods (contact thermography, pulse-light optocardiography). The records revealed more or less constant cardiac pulsations characterised by 20-25 systolic contractions per minute. The contractions were peristaltically propagated in the forward (anterograde) direction, with a more or less constant speed of 10mm per second (23-25°C). Additional electrocardiographic investigations on larvae immobilised by decapitation revealed the autonomic (brain independent) nature of heartbeat regulation. Sectioning performed in the middle of the heart (4th abdominal segment) seriously impaired the pacemaker rhythmicity and slowed down the rate of heartbeat in the anterior sections. By contrast, the functions of the posterior compartments of the disconnected heart remained unaffected. These results confirmed our previous conclusions about the existence of an autonomic, myogenic, pacemaker nodus in the terminal part of an insect heart. They show an analogy to the similar myogenic, sinoatrial or atrioventricular nodi regulating rhythmicity of the human heart. Peristaltic contractions of the intestine also represent a purely myogenic system, which is fully functional in larvae with complete neuromuscular paralysis. Unlike the constant anterograde direction of the heartbeat, intestinal peristaltic waves periodically reversed anterograde and retrograde directions. A possibility that the functional similarity between insect and human hearts may open new avenues in the field of comparative cardiology has been discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Mechanisms and management of the heart in Myotonic Dystrophy

    PubMed Central

    McNally, Elizabeth M.; Sparano, Dina

    2015-01-01

    Myotonic dystrophy (DM) is the most common form of adult onset muscular dystrophy and is caused by expansion of short nucleotide repeats that, in turn, produce toxic RNA aggregates within cells. DM is multisystemic, and the heart is primary site of pathology. DM patients exhibit cardiac conduction disorders including atrial fibrillation, atrio-ventricular heart block and ventricular arrhythmias. DM patients are also at risk for cardiomyopathy and congestive heart failure. Myotonic dystrophy is also characterized by myotonia, muscle weakness, and profound fatigue. The management of these symptoms requires input from the cardiologist and a team approach to minimize the debilitating aspects of the disorder and optimize cardiac function. PMID:21642660

  10. Aerobic Exercise Training Prevents Heart Failure-Induced Skeletal Muscle Atrophy by Anti-Catabolic, but Not Anabolic Actions

    PubMed Central

    Souza, Rodrigo W. A.; Piedade, Warlen P.; Soares, Luana C.; Souza, Paula A. T.; Aguiar, Andreo F.; Vechetti-Júnior, Ivan J.; Campos, Dijon H. S.; Fernandes, Ana A. H.; Okoshi, Katashi; Carvalho, Robson F.; Cicogna, Antonio C.; Dal-Pai-Silva, Maeli

    2014-01-01

    Background Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting. Methods and Results We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels. Conclusions Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state. PMID:25330387

  11. Differential involvement of various sources of reactive oxygen species in thyroxin-induced hemodynamic changes and contractile dysfunction of the heart and diaphragm muscles

    PubMed Central

    Elnakish, Mohammad T.; Schultz, Eric J.; Gearinger, Rachel L.; Saad, Nancy S.; Rastogi, Neha; Ahmed, Amany A.E.; Mohler, Peter J.; Janssen, Paul M.L.

    2015-01-01

    Thyroid hormones are key regulators of basal metabolic state and oxidative metabolism. Hyperthyroidism has been reported to cause significant alterations in hemodynamics, and in cardiac and diaphragm muscle function, all of which have been linked to increased oxidative stress. However, the definite source of increased reactive oxygen species (ROS) in each of these phenotypes is still unknown. The goal of the current study was to test the hypothesis that thyroxin (T4) may produce distinct hemodynamic, cardiac, and diaphragm muscle abnormalities by differentially affecting various sources of ROS. Wild-type and T4 mice with and without 2-week treatments with allopurinol (xanthine oxidase inhibitor), apocynin (NADPH oxidase inhibitor), L-NIO (nitric oxide synthase inhibitor), or MitoTEMPO (mitochondria-targeted antioxidant) were studied. Blood pressure and echocardiography were noninvasively evaluated, followed by ex vivo assessments of isolated heart and diaphragm muscle functions. Treatment with L-NIO attenuated the T4-induced hypertension in mice. However, apocynin improved the left-ventricular (LV) dysfunction without preventing the cardiac hypertrophy in these mice. Both allopurinol and MitoTEMPO reduced the T4-induced fatigability of the diaphragm muscles. In conclusion, we show here for the first time that T4 exerts differential effects on various sources of ROS to induce distinct cardiovascular and skeletal muscle phenotypes. Additionally, we find that T4-induced LV dysfunction is independent of cardiac hypertrophy and NADPH oxidase is a key player in this process. Furthermore, we prove the significance of both xanthine oxidase and mitochondrial ROS pathways in T4-induced fatigability of diaphragm muscles. Finally, we confirm the importance of the nitric oxide pathway in T4-induced hypertension. PMID:25795514

  12. A Restrictive Cardiomyopathy Mutation in an Invariant Proline at the Myosin Head/Rod Junction Enhances Head Flexibility and Function, Yielding Muscle Defects in Drosophila

    PubMed Central

    Achal, Madhulika; Trujillo, Adriana S.; Melkani, Girish C.; Farman, Gerrie P.; Ocorr, Karen; Viswanathan, Meera C.; Kaushik, Gaurav; Newhard, Christopher S.; Glasheen, Bernadette M.; Melkani, Anju; Suggs, Jennifer A.; Moore, Jeffrey R.; Swank, Douglas M.; Bodmer, Rolf; Cammarato, Anthony; Bernstein, Sanford I.

    2016-01-01

    An “invariant proline” separates the myosin S1 head from its S2 tail and is proposed to be critical for orienting S1 during its interaction with actin, a process that leads to muscle contraction. Mutation of the invariant proline to leucine (P838L) caused dominant restrictive cardiomyopathy in a pediatric patient (Karam et al., Congenit. Heart Dis. 3:138–43, 2008). Here, we use Drosophila melanogaster to model this mutation and dissect its effects on the biochemical and biophysical properties of myosin, as well as on the structure and physiology of skeletal and cardiac muscles. P838L mutant myosin isolated from indirect flight muscles of transgenic Drosophila showed elevated ATPase and actin sliding velocity in vitro. Furthermore, the mutant heads exhibited increased rotational flexibility, and there was an increase in the average angle between the two heads. Indirect flight muscle myofibril assembly was minimally affected in mutant homozygotes, and isolated fibers displayed normal mechanical properties. However, myofibrils degraded during aging, correlating with reduced flight abilities. In contrast, hearts from homozygotes and heterozygotes showed normal morphology, myofibrillar arrays, and contractile parameters. When P838L was placed in trans to Mhc5, an allele known to cause cardiac restriction in flies, it did not yield the constricted phenotype. Overall, our studies suggest that increased rotational flexibility of myosin S1 enhances myosin ATPase and actin sliding. Moreover, instability of P838L myofibrils leads to decreased function during aging of Drosophila skeletal muscle, but not cardiac muscle, despite the strong evolutionary conservation of the P838 residue. PMID:27107639

  13. The relationship of muscle perfusion and metabolism with cardiovascular variables before and after detomidine injection during propofol-ketamine anaesthesia in horses.

    PubMed

    Edner, Anna; Nyman, Görel; Essén-Gustavsson, Birgitta

    2002-10-01

    To study in horses (1) the relationship between cardiovascular variables and muscle perfusion during propofol-ketamine anaesthesia, (2) the physiological effects of a single intravenous (IV) detomidine injection, (3) the metabolic response of muscle to anaesthesia, and (4) the effects of propofol-ketamine infusion on respiratory function. Prospective experimental study. Seven standardbred trotters, 5-12 years old, 416-581 kg. Anaesthesia was induced with intravenous (IV) guaifenesin and propofol (2 mg kg -1 ) and maintained with a continuous IV infusion of propofol (0.15 mg kg -1 minute -1 ) and ketamine (0.05 mg kg -1 minute -1 ) with horses positioned in left lateral recumbency. After 1 hour, detomidine (0.01 mg kg -1 ) was administered IV and 40-50 minutes later anaesthesia was discontinued. Cardiovascular and respiratory variables (heart rate, cardiac output, systemic and pulmonary artery blood pressures, respiratory rate, tidal volume, and inspiratory and expiratory O 2 and CO 2 ) and muscle temperature were measured at pre-determined times. Peripheral perfusion was measured continuously in the gluteal muscles and skin using laser Doppler flowmetry (LDF). Muscle biopsy samples from the left and right gluteal muscles were analysed for glycogen, creatine phosphate, creatine, adenine nucleotides, inosine monophosphate and lactate. Arterial blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation and HCO 3 . Mixed venous blood was analysed for PO 2 , PCO 2 , pH, oxygen saturation, HCO 3 , cortisol, lactate, uric acid, hypoxanthine, xanthine, creatine kinase, creatinine, aspartate aminotransferase, electrolytes, total protein, haemoglobin, haematocrit and white blood cell count. Circulatory function was preserved during propofol-ketamine anaesthesia. Detomidine caused profound hypertension and bradycardia and decreased cardiac output and muscle perfusion. Ten minutes after detomidine injection muscle perfusion had recovered to pre-injection levels, although heart rate and cardiac output had not. No difference in indices of muscle metabolism was found between dependent and independent muscles. Anaerobic muscle metabolism, indicated by decreased muscle and creatine phosphate levels was evident after anaesthesia. Muscle perfusion was closely related to cardiac output but not arterial blood pressure. Total intravenous anaesthesia with propofol-ketamine deserves further study despite its respiratory depression effects, as the combination preserves cardiovascular function. Decreases in high-energy phosphate stores during recovery show that muscle is vulnerable after anaesthesia. Continued research is required to clarify the course of muscle metabolic events during recovery. Copyright © 2002 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.

  14. Cardiac damage in athlete's heart: When the "supernormal" heart fails!

    PubMed

    Carbone, Andreina; D'Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele

    2017-06-26

    Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete's blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete's heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded.

  15. Cardiac damage in athlete’s heart: When the “supernormal” heart fails!

    PubMed Central

    Carbone, Andreina; D’Andrea, Antonello; Riegler, Lucia; Scarafile, Raffaella; Pezzullo, Enrica; Martone, Francesca; America, Raffaella; Liccardo, Biagio; Galderisi, Maurizio; Bossone, Eduardo; Calabrò, Raffaele

    2017-01-01

    Intense exercise may cause heart remodeling to compensate increases in blood pressure or volume by increasing muscle mass. Cardiac changes do not involve only the left ventricle, but all heart chambers. Physiological cardiac modeling in athletes is associated with normal or enhanced cardiac function, but recent studies have documented decrements in left ventricular function during intense exercise and the release of cardiac markers of necrosis in athlete’s blood of uncertain significance. Furthermore, cardiac remodeling may predispose athletes to heart disease and result in electrical remodeling, responsible for arrhythmias. Athlete’s heart is a physiological condition and does not require a specific treatment. In some conditions, it is important to differentiate the physiological adaptations from pathological conditions, such as hypertrophic cardiomyopathy, arrhythmogenic dysplasia of the right ventricle, and non-compaction myocardium, for the greater risk of sudden cardiac death of these conditions. Moreover, some drugs and performance-enhancing drugs can cause structural alterations and arrhythmias, therefore, their use should be excluded. PMID:28706583

  16. Losartan Decreases Cardiac Muscle Fibrosis and Improves Cardiac Function in Dystrophin-Deficient Mdx Mice

    PubMed Central

    Spurney, Christopher F.; Sali, Arpana; Guerron, Alfredo D.; Iantorno, Micaela; Yu, Qing; Gordish-Dressman, Heather; Rayavarapu, Sree; van der Meulen, Jack; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2014-01-01

    Recent studies showed that chronic administration of losartan, an angiotensin II type I receptor antagonist, improved skeletal muscle function in dystrophin-deficient mdx mice. In this study, C57BL/10ScSn-Dmdmdx/J female mice were either untreated or treated with losartan (n = 15) in the drinking water at a dose of 600 mg/L over a 6-month period. Cardiac function was assessed via in vivo high frequency echocardiography and skeletal muscle function was assessed using grip strength testing, Digiscan monitoring, Rotarod timing, and in vitro force testing. Fibrosis was assessed using picrosirius red staining and Image J analysis. Gene expression was evaluated using real-time polymerized chain reaction (RT-PCR). Percentage shortening fraction was significantly decreased in untreated (26.9% ± 3.5%) mice compared to losartan-treated (32.2% ± 4.2%; P < .01) mice. Systolic blood pressure was significantly reduced in losartan-treated mice (56 ± 6 vs 69 ± 7 mm Hg; P < .0005). Percentage cardiac fibrosis was significantly reduced in losartan-treated hearts (P < .05) along with diaphragm (P < .01), extensor digitorum longus (P < .05), and gastrocnemius (P < .05) muscles compared to untreated mdx mice. There were no significant differences in skeletal muscle function between treated and untreated groups. Chronic treatment with losartan decreases cardiac and skeletal muscle fibrosis and improves cardiac systolic function in dystrophin-deficient mdx mice. PMID:21304057

  17. Anaesthetic management of a patient with Pompe disease for kyphoscoliosis correction.

    PubMed

    Kumbar, Vaishali; Simha, Jayashree; Gundappa, Parameswara

    2016-05-01

    Pompe disease (PD) is a type II glycogen storage disease, characterised by abnormal glycogen deposition, mainly in heart and skeletal muscles, leading to progressive loss of muscle function. The infantile variety is associated with severe hypertrophic cardiomyopathy and generally do not reach adulthood. The juvenile variety presents with progressive muscle weakness and respiratory failure. Anaesthetic management concerns in the patient reported here were mainly due to respiratory failure, myopathy and sensitivity to muscle relaxants and significant haemodynamic changes perioperatively. We successfully managed a 13-year-old girl with juvenile PD on respiratory support scheduled for thoracolumbar kyphoscoliosis corrective surgery. Ketamine and dexmedetomidine were used for induction of anaesthesia and maintenance. Muscle relaxants were diligently avoided in this case.

  18. BAG3: a new player in the heart failure paradigm.

    PubMed

    Knezevic, Tijana; Myers, Valerie D; Gordon, Jennifer; Tilley, Douglas G; Sharp, Thomas E; Wang, JuFang; Khalili, Kamel; Cheung, Joseph Y; Feldman, Arthur M

    2015-07-01

    BAG3 is a cellular protein that is expressed predominantly in skeletal and cardiac muscle but can also be found in the brain and in the peripheral nervous system. BAG3 functions in the cell include: serving as a co-chaperone with members of the heat-shock protein family of proteins to facilitate the removal of misfolded and degraded proteins, inhibiting apoptosis by interacting with Bcl2 and maintaining the structural integrity of the Z-disk in muscle by binding with CapZ. The importance of BAG3 in the homeostasis of myocytes and its role in the development of heart failure was evidenced by the finding that single allelic mutations in BAG3 were associated with familial dilated cardiomyopathy. Furthermore, significant decreases in the level of BAG3 have been found in end-stage failing human heart and in animal models of heart failure including mice with heart failure secondary to trans-aortic banding and in pigs after myocardial infarction. Thus, it becomes relevant to understand the cellular biology and molecular regulation of BAG3 expression in order to design new therapies for the treatment of patients with both hereditary and non-hereditary forms of dilated cardiomyopathy.

  19. Skeletal muscle proteomic signature and metabolic impairment in pulmonary hypertension.

    PubMed

    Malenfant, Simon; Potus, François; Fournier, Frédéric; Breuils-Bonnet, Sandra; Pflieger, Aude; Bourassa, Sylvie; Tremblay, Ève; Nehmé, Benjamin; Droit, Arnaud; Bonnet, Sébastien; Provencher, Steeve

    2015-05-01

    Exercise limitation comes from a close interaction between cardiovascular and skeletal muscle impairments. To better understand the implication of possible peripheral oxidative metabolism dysfunction, we studied the proteomic signature of skeletal muscle in pulmonary arterial hypertension (PAH). Eight idiopathic PAH patients and eight matched healthy sedentary subjects were evaluated for exercise capacity, skeletal muscle proteomic profile, metabolism, and mitochondrial function. Skeletal muscle proteins were extracted, and fractioned peptides were tagged using an iTRAQ protocol. Proteomic analyses have documented a total of 9 downregulated proteins in PAH skeletal muscles and 10 upregulated proteins compared to healthy subjects. Most of the downregulated proteins were related to mitochondrial structure and function. Focusing on skeletal muscle metabolism and mitochondrial health, PAH patients presented a decreased expression of oxidative enzymes (pyruvate dehydrogenase, p < 0.01) and an increased expression of glycolytic enzymes (lactate dehydrogenase activity, p < 0.05). These findings were supported by abnormal mitochondrial morphology on electronic microscopy, lower citrate synthase activity (p < 0.01) and lower expression of the transcription factor A of the mitochondria (p < 0.05), confirming a more glycolytic metabolism in PAH skeletal muscles. We provide evidences that impaired mitochondrial and metabolic functions found in the lungs and the right ventricle are also present in skeletal muscles of patients. • Proteomic and metabolic analysis show abnormal oxidative metabolism in PAH skeletal muscle. • EM of PAH patients reveals abnormal mitochondrial structure and distribution. • Abnormal mitochondrial health and function contribute to exercise impairments of PAH. • PAH may be considered a vascular affliction of heart and lungs with major impact on peripheral muscles.

  20. Telomere correlations during early life in a long-lived seabird.

    PubMed

    Schmidt, Jacob E; Sirman, Aubrey E; Kittilson, Jeffrey D; Clark, Mark E; Reed, Wendy L; Heidinger, Britt J

    2016-12-01

    Telomere dynamics in blood cells have been linked to aging in a variety of organisms. However, whether blood telomeres are correlated with telomeres in other parts of the body is not well known, especially during early life when telomere loss is expected to be most rapid. We investigated this question in Franklin's gulls (Leucophaeus pipixcan) by measuring telomere lengths in blood and several other tissues including: heart, liver, and skeletal muscle at the end of embryonic (n=31) and post-natal development (n=20). In late-stage embryos, blood telomeres were significantly positively correlated with heart and skeletal muscle, but not liver telomeres. However, at the end of post-natal development, there were no significant correlations among blood telomeres and telomeres in any other tissues. In late-stage embryos, heart telomeres were significantly longer than blood, liver, and skeletal muscle telomeres, but at the end of post-natal development telomere lengths did not significantly differ among tissues. These results suggest that blood telomere length is not necessarily indicative of other tissues at all stages of development and highlights the importance of understanding any functional consequences of tissue specific telomere dynamics in early life. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Microgravity

    NASA Image and Video Library

    2001-05-15

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  2. Microgravity

    NASA Image and Video Library

    2001-05-15

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  3. Muscle Contraction.

    PubMed

    Sweeney, H Lee; Hammers, David W

    2018-02-01

    SUMMARYMuscle cells are designed to generate force and movement. There are three types of mammalian muscles-skeletal, cardiac, and smooth. Skeletal muscles are attached to bones and move them relative to each other. Cardiac muscle comprises the heart, which pumps blood through the vasculature. Skeletal and cardiac muscles are known as striated muscles, because the filaments of actin and myosin that power their contraction are organized into repeating arrays, called sarcomeres, that have a striated microscopic appearance. Smooth muscle does not contain sarcomeres but uses the contraction of filaments of actin and myosin to constrict blood vessels and move the contents of hollow organs in the body. Here, we review the principal molecular organization of the three types of muscle and their contractile regulation through signaling mechanisms and discuss their major structural and functional similarities that hint at the possible evolutionary relationships between the cell types. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. The role of exercise testing in heart failure.

    PubMed

    Swedberg, K; Gundersen, T

    1993-01-01

    The objectives of exercise testing in congestive heart failure (CHF) may be summarized as follows: (a) detect impaired cardiac performance, (b) grade severity of cardiac failure and classify functional capability, and (c) assess effects of interventions. Several different methods are available to make these assessments, and we have to ask ourselves how well exercise testing achieves these objectives. It has to be kept in mind that the power generated by the exercising muscles is dependent on the oxygen delivery to the skeletal muscles. Oxygen uptake is the result of an integrated performance of the lungs, heart, and peripheral circulation. In patients, as well as in normal subjects, oxygen uptake is related to hemodynamic indices such as cardiac output, stroke volume, or exercise duration when a stepwise regulated maximal exercise protocol is used. However, there are major differences in the concept of a true maximum in normal subjects versus heart failure patients. Fit-normal subjects will achieve a real maximal oxygen uptake, whereas patients may stop testing before a maximum is reached because of symptoms such as dyspnea or leg fatigue. Therefore, it is better if the actual oxygen uptake can be measured. "Peak" rather than true maximal oxygen uptake has been suggested for the classification of the severity of heart failure. Peripheral factors modify the cardiac output through such factors as vascular resistance, organ function, and hormonal release. Maximal exercise will stress the cardiovascular system to a point where the weakest chain will impose a limiting effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients.

    PubMed

    Lafarga, Tomas; Hayes, Maria

    2014-10-01

    Bioactive peptides are sequences of between 2-30 amino acids in length that impart a positive health effect to the consumer when ingested. They have been identified from a range of foods, including milk and muscle sources including beef, chicken, pork and marine muscles. The myriad of peptides identified from these sources have known antihypertensive, opioid, antioxidant, antithrombotic and other bioactivities. Indeed, bioactive peptides could play a role in the prevention of diseases associated with the development of metabolic syndrome and mental health diseases. The aim of this work is to present an overview of the bioactive peptides identified in muscle proteins and by-products generated during the processing of meat. The paper looks at the isolation, enrichment and characterisation strategies that have been employed to date to generate bioactive peptides and the potential future applications of these peptides in functional foods for the prevention of heart and mental health problems and obesity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Thermal acclimation in American alligators: Effects of temperature regime on growth rate, mitochondrial function, and membrane composition.

    PubMed

    Price, Edwin R; Sirsat, Tushar S; Sirsat, Sarah K G; Kang, Gurdeep; Keereetaweep, Jantana; Aziz, Mina; Chapman, Kent D; Dzialowski, Edward M

    2017-08-01

    We investigated the ability of juvenile American alligators (Alligator mississippiensis) to acclimate to temperature with respect to growth rate. We hypothesized that alligators would acclimate to cold temperature by increasing the metabolic capacity of skeletal muscles and the heart. Additionally, we hypothesized that lipid membranes in the thigh muscle and liver would respond to low temperature, either to maintain fluidity (via increased unsaturation) or to maintain enzyme reaction rates (via increased docosahexaenoic acid). Alligators were assigned to one of 3 temperature regimes beginning at 9 mo of age: constant warm (30°C), constant cold (20°C), and daily cycling for 12h at each temperature. Growth rate over the following 7 mo was highest in the cycling group, which we suggest occurred via high digestive function or feeding activity during warm periods and energy-saving during cold periods. The warm group also grew faster than the cold group. Heart and liver masses were proportional to body mass, while kidney was proportionately larger in the cold group compared to the warm animals. Whole-animal metabolic rate was higher in the warm and cycling groups compared to the cold group - even when controlling for body mass - when assayed at 30°C, but not at 20°C. Mitochondrial oxidative phosphorylation capacity in permeabilized fibers of thigh muscle and heart did not differ among treatments. Membrane fatty acid composition of the brain was largely unaffected by temperature treatment, but adjustments were made in the phospholipid headgroup composition that are consistent with homeoviscous adaptation. Thigh muscle cell membranes had elevated polyunsaturated fatty acids in the cold group relative to the cycling group, but this was not the case for thigh muscle mitochondrial membranes. Liver mitochondria from cold alligators had elevated docosahexaenoic acid, which might be important for maintenance of reaction rates of membrane-bound enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The molecular mechanism of serum microRNA124b induced coronary heart disease by inducing myocardial cell senescence.

    PubMed

    Guo, M-L; Guo, L-L; Qin, Q-J; Weng, Y-Q; Wang, Y-N; Yao, J; Wang, Y-B; Zhang, X-Z; Ge, Z-M

    2018-04-01

    The incidence and mortality of coronary heart disease are rapidly increasing in recent years. Myocardial cell dysfunction and cell senescence may play a role in coronary heart disease. MicroRNA controls a variety of biological processes, but leaving its role in coronary heart disease has yet to be explored. Patients with coronary heart disease were regarded as subjects, and healthy volunteers as the control, on both of which microRNA124b level of serum was studied by Real-time PCR, and the heart function of patients was detected by using ultrasound. The relationship between serum microRNA124b level and cardiac function was analyzed along with the model of rat coronary artery disease; the level of aging proteins P21 and P53 in cardiac muscle cells was also tested. MicroRNA124b in the serum of patients with coronary heart disease was increased, and the heart function of patients was decreased (p < 0.05). Serum level of microRNA124b in a rat model of coronary heart disease was increased, and the cardiac function was decreased (p < 0.05). When myocardial cell appeared ageing, the level of P21 and P53 was increased, and the level of microRNA124b was related with P53. The level of microRNA124b in the serum of coronary heart disease patients and rat model may be related to the occurrence of coronary heart disease; microRNA124b may lead to the occurrence of coronary heart disease by causing cell senescence.

  8. Aquaporins in Cardiovascular System.

    PubMed

    Tie, Lu; Wang, Di; Shi, Yundi; Li, Xuejun

    2017-01-01

    Recent studies have shown that some aquaporins (AQPs ), including AQP1, AQP4, AQP7 and AQP9, are expressed in endothelial cells, vascular smooth muscle cells and heart of cardiovascular system. These AQPs are involved in the cardiovascular function and in pathological process of related diseases, such as cerebral ischemia , congestion heart failure , hypertension and angiogenesis. Therefore, it is important to understand the accurate association between AQPs and cardiovascular system, which may provide novel approaches to prevent and treat related diseases. Here we will discuss the expression and physiological function of AQPs in cardiovascular system and summarize recent researches on AQPs related cardiovascular diseases.

  9. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) alpha knock-out mice. Evidence for compensatory regulation by PPAR delta.

    PubMed

    Muoio, Deborah M; MacLean, Paul S; Lang, David B; Li, Shi; Houmard, Joseph A; Way, James M; Winegar, Deborah A; Corton, J Christopher; Dohm, G Lynis; Kraus, William E

    2002-07-19

    Ablation of peroxisome proliferator activated receptor (PPAR) alpha, a lipid-activated transcription factor that regulates expression of beta-oxidative genes, results in profound metabolic abnormalities in liver and heart. In the present study we used PPAR alpha knockout (KO) mice to determine whether this transcription factor is essential for regulating fuel metabolism in skeletal muscle. When animals were challenged with exhaustive exercise or starvation, KO mice exhibited lower serum levels of glucose, lactate, and ketones and higher nonesterified fatty acids than wild type (WT) littermates. During exercise, KO mice exhausted earlier than WT and exhibited greater rates of glycogen depletion in liver but not skeletal muscle. Fatty acid oxidative capacity was similar between muscles of WT and KO when animals were fed and only 28% lower in KO muscles when animals were starved. Exercise-induced regulation and starvation-induced regulation of pyruvate-dehydrogenase kinase 4 and uncoupling protein 3, two classical and robustly responsive PPAR alpha target genes, were similar between WT and KO in skeletal muscle but markedly different between genotypes in heart. Real time quantitative PCR analyses showed that unlike in liver and heart, in mouse skeletal muscle PPAR delta is severalfold more abundant than either PPAR alpha or PPAR gamma. In both human and rodent myocytes, the highly selective PPAR delta agonist GW742 increased fatty acid oxidation about 2-fold and induced expression of several lipid regulatory genes, including pyruvate-dehydrogenase kinase 4 and uncoupling protein 3, responses that were similar to those elicited by the PPAR alpha agonist GW647. These results show redundancy in the functions of PPARs alpha and delta as transcriptional regulators of fatty acid homeostasis and suggest that in skeletal muscle high levels of the delta-subtype can compensate for deficiency of PPAR alpha.

  10. Heart regeneration.

    PubMed

    Breckwoldt, Kaja; Weinberger, Florian; Eschenhagen, Thomas

    2016-07-01

    Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effects of hypothyroidism on the skeletal muscle blood flow response to contractions.

    PubMed

    Bausch, L; McAllister, R M

    2003-04-01

    Hypothyroidism is associated with impaired blood flow to skeletal muscle under whole body exercise conditions. It is unclear whether poor cardiac and/or vascular function account for blunted muscle blood flow. Our experiment isolated a small group of hindlimb muscles and simulated exercise via tetanic contractions. We hypothesized that muscle blood flow would be attenuated in hypothyroid rats (HYPO) compared with euthyroid rats (EUT). Rats were made hypothyroid by mixing propylthiouracil in their drinking water (2.35 x 10-3 mol/l). Treatment efficacy was evidenced by lower serum T3 concentrations and resting heart rates in HYPO (both P<0.05). In the experimental preparation, isometric contractions of the lower right hindlimb muscles at a rate of 30 tetani/min were induced via sciatic nerve stimulation. Regional blood flows were determined by the radiolabelled microsphere method at three time points: rest, 2 min of contractions and 10 min of contractions. Muscle blood flow generally increased from rest ( approximately 5-10 ml/min per 100 g) through contractions for both groups. Further, blood flow during contractions did not differ between groups for any muscle (eg. red section of gastrocnemius muscle; EUT, 59.9 +/- 14.1; HYPO, 61.1 +/- 15.0; NS between groups). These findings indicate that hypothyroidism does not significantly impair skeletal muscle blood flow when only a small muscle mass is contracting. Our findings suggest that impaired blood flow under whole body exercise is accounted for by inadequate cardiac function rather than abnormal vascular function.

  12. [Evaluation of heart impact in the 100 m extreme intensity sport using near-infrared non-invasive muscle oxygen detecting device and sports heart rate detection technology].

    PubMed

    Wang, Pei-Yong; Long, Fei-Xiao; Fu, Lan-Ying; Li, Yue; Ding, Hai-Shu; Qu, An-Lian; Zhou, Xiao-Ping

    2010-02-01

    Using continuous two wavelength near-infrared technology to detect the variation in the consistency of oxygen hemoglobin in the muscle and the sports heart rate wireless real time collection technology, we devised the real time muscle tissue oxygenation and instantaneous heart rate experiment scheme and implemented it for the process of the 100 m run with two parameters given simultaneously. The experiment shows that the concentration of the oxygen hemoglobin in the muscle tissue continues decreasing after the end of the 100 m run, and the time interval between the moment when the concentration of the oxygen hemoglobin attains the minimum value and the moment when the athletes finish the 100 m run is (6.65 +/- 1.10) sec; while the heart rate continues increasing after the end of the 100 m run, and the time interval between the moment when the heart rate attains the maximum value and the moment when the athletes finish the 100 m run is (8.00 +/- 1.57) sec. The results show that the two wavelength near-infrared tissue oxygenation detection technology and the sports heart rate real time collection equipment can accurately measure the sports tissue oxygenation and the heart rate in the extreme intensity sport, and reveal the process of muscle oxygen transportation and consumption and its dynamic character with the heart rate in the extreme intensity sport.

  13. Battery of Candidate Physical Tests for Consideration as Occupational Physical Selection Standards for Canadian Forces Trades,

    DTIC Science & Technology

    1981-07-01

    causes a response of the cardio-pulmonary functions similar to that induced by treadmill and bicycle ergometer exercise (89,90). Therefore, a measure of...Flow, and the Blood Pressure and Heart Rate Response to Isometric Exercise . Saint Louis Uni., AFOSR- TR-75-0086, 1974. 51. T.M. PRINTY. A...relationship between the muscle or muscle group and the corresponding lever system responsible for a given movement. Second, the restrictions of the

  14. Chemical Fluxes in Cellular Steady States Measured by Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Qian, Hong; Elson, Elliot L.

    Genetically, identical cells adopt phenotypes that have different structures, functions, and metabolic properties. In multi-cellular organisms, for example, tissue-specific phenotypes distinguish muscle cells, liver cells, fibroblasts, and blood cells that differ in biochemical functions, geometric forms, and interactions with extracellular environments. Tissue-specific cells usually have different metabolic functions such as synthesis of distinct spectra of secreted proteins, e.g., by liver or pancreatic cells, or of structural proteins, e.g., muscle vs. epithelial cells. But more importantly, a phenotype should include a dynamic aspect: different phenotypes can have distinctly different dynamic functions such as contraction of muscle cells and locomotion of leukocytes. The phenotypes of differentiated tissue cells are typically stable, but they can respond to changes in external conditions, e.g., as in the hypertrophy of muscle cells in response to extra load [1] or the phenotypic shift of fibroblasts to myofibroblasts as part of the wound healing response [2]. Cells pass through sequences of phenotypes during development and also undergo malignant phenotypic transformations as occur in cancer and heart disease.

  15. Dmpk gene deletion or antisense knockdown does not compromise cardiac or skeletal muscle function in mice

    PubMed Central

    Carrell, Samuel T.; Carrell, Ellie M.; Auerbach, David; Pandey, Sanjay K.; Bennett, C. Frank; Dirksen, Robert T.; Thornton, Charles A.

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is a genetic disorder in which dominant-active DM protein kinase (DMPK) transcripts accumulate in nuclear foci, leading to abnormal regulation of RNA processing. A leading approach to treat DM1 uses DMPK-targeting antisense oligonucleotides (ASOs) to reduce levels of toxic RNA. However, basal levels of DMPK protein are reduced by half in DM1 patients. This raises concern that intolerance for further DMPK loss may limit ASO therapy, especially since mice with Dmpk gene deletion reportedly show cardiac defects and skeletal myopathy. We re-examined cardiac and muscle function in mice with Dmpk gene deletion, and studied post-maturity knockdown using Dmpk-targeting ASOs in mice with heterozygous deletion. Contrary to previous reports, we found no effect of Dmpk gene deletion on cardiac or muscle function, when studied on two genetic backgrounds. In heterozygous knockouts, the administration of ASOs reduced Dmpk expression in cardiac and skeletal muscle by > 90%, yet survival, electrocardiogram intervals, cardiac ejection fraction and muscle strength remained normal. The imposition of cardiac stress by pressure overload, or muscle stress by myotonia, did not unmask a requirement for DMPK. Our results support the feasibility and safety of using ASOs for post-transcriptional silencing of DMPK in muscle and heart. PMID:27522499

  16. Cardiac muscle regeneration: lessons from development

    PubMed Central

    Mercola, Mark; Ruiz-Lozano, Pilar; Schneider, Michael D.

    2011-01-01

    The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart. PMID:21325131

  17. Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions

    PubMed Central

    Barreiro, Esther

    2016-01-01

    Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF), chronic obstructive pulmonary disease (COPD), cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions. PMID:28248228

  18. The giant protein titin regulates the length of the striated muscle thick filament.

    PubMed

    Tonino, Paola; Kiss, Balazs; Strom, Josh; Methawasin, Mei; Smith, John E; Kolb, Justin; Labeit, Siegfried; Granzier, Henk

    2017-10-19

    The contractile machinery of heart and skeletal muscles has as an essential component the thick filament, comprised of the molecular motor myosin. The thick filament is of a precisely controlled length, defining thereby the force level that muscles generate and how this force varies with muscle length. It has been speculated that the mechanism by which thick filament length is controlled involves the giant protein titin, but no conclusive support for this hypothesis exists. Here we show that in a mouse model in which we deleted two of titin's C-zone super-repeats, thick filament length is reduced in cardiac and skeletal muscles. In addition, functional studies reveal reduced force generation and a dilated cardiomyopathy (DCM) phenotype. Thus, regulation of thick filament length depends on titin and is critical for maintaining muscle health.

  19. Physiological pump loading of isolated cardiac muscle.

    PubMed

    Paulus, W J; Claes, V A; Brutsaert, D L

    1976-05-01

    Cat papillary muscles were subjected to a continuously changing load, resulting from an analysis of the left ventricle as a muscle pump system. The papillary muscle was assumed to be part of a circumferential bundle of muscle fibers of a simplified ejecting ventricle. The load included the pressure--stress relationship of this ventricle and the peripheral vascular load with its inertial, resistive and capacitive components. When this loading function was imposed on a shortening muscle through an electronic feedback circuit, the time course of force development and the velocity versus force plots closely resembled data obtained in the intact heart. Analysis of mechanical work (delta 1 X f) and power (V X f) and their respective time course permitted distinction between changes of contractile performance due to (1) positive or negative inotropic interventions, (2) altered hypothetical ventricular dimensions and changed preload, and (3) the long-term load-dependent memory of cardiac muscle.

  20. Acute Dietary Nitrate Intake Improves Muscle Contractile Function in Patients with Heart Failure: A Double-Blind, Placebo-Controlled, Randomized Trial

    PubMed Central

    Coggan, Andrew R.; Leibowitz, Joshua L.; Spearie, Catherine Anderson; Kadkhodayan, Ana; Thomas, Deepak P.; Ramamurthy, Sujata; Mahmood, Kiran; Park, Soo; Waller, Suzanne; Farmer, Marsha; Peterson, Linda R.

    2015-01-01

    Background Skeletal muscle strength, velocity, and power are markedly reduced in heart failure (HF) patients, which contributes to their impaired exercise capacity and lower quality of life. This muscle dysfunction may be partially due to decreased nitric oxide (NO) bioavailability. We therefore sought to determine whether ingestion of inorganic nitrate (NO3−) would increase NO production and improve muscle function in patients with HF due to systolic dysfunction. Methods and Results Using a double-blind, placebo-controlled, randomized crossover design, we determined the effects of dietary NO3− in nine HF patients. After fasting overnight, subjects drank beetroot juice containing or devoid of 11.2 mmol NO3−. Two hours later, muscle function was assessed using isokinetic dynamometry. Dietary NO3− increased (P<0.05–0.001) breath NO by 35–50%. This was accompanied by 9% (P=0.07) and 11% (P<0.05) increases in peak knee extensor power at the two highest movement velocities tested (i.e., 4.71 and 6.28 rad/s). Maximal power (calculated by fitting peak power data with a parabola) was therefore greater (i.e., 4.74±0.41 vs. 4.20±0.33 W/kg; P<0.05) after dietary NO3− intake. Calculated maximal velocity of knee extension was also higher following NO3− ingestion (i.e., 12.48±0.95 vs. 11.11±0.53 rad/s; P<0.05). Blood pressure was unchanged, and no adverse clinical events occurred. Conclusions In this pilot study, acute dietary NO3− intake was well-tolerated and enhanced NO bioavailability and muscle power in patients with systolic HF. Larger-scale studies should be conducted to determine whether the latter translates into an improved quality of life in this population. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT01682356. PMID:26179185

  1. Functional assembly of Kv7.1/Kv7.5 channels with emerging properties on vascular muscle physiology.

    PubMed

    Oliveras, Anna; Roura-Ferrer, Meritxell; Solé, Laura; de la Cruz, Alicia; Prieto, Angela; Etxebarria, Ainhoa; Manils, Joan; Morales-Cano, Daniel; Condom, Enric; Soler, Concepció; Cogolludo, Angel; Valenzuela, Carmen; Villarroel, Alvaro; Comes, Núria; Felipe, Antonio

    2014-07-01

    Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension. © 2014 American Heart Association, Inc.

  2. Cardiac myofilaments: mechanics and regulation

    NASA Technical Reports Server (NTRS)

    de Tombe, Pieter P.; Bers, D. M. (Principal Investigator)

    2003-01-01

    The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.

  3. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth

    PubMed Central

    Kimball, Todd; Rasmussen, Tara L.; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R.; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O.; Vondriska, Thomas M.

    2016-01-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. PMID:27663768

  4. The chromatin-binding protein Smyd1 restricts adult mammalian heart growth.

    PubMed

    Franklin, Sarah; Kimball, Todd; Rasmussen, Tara L; Rosa-Garrido, Manuel; Chen, Haodong; Tran, Tam; Miller, Mickey R; Gray, Ricardo; Jiang, Shanxi; Ren, Shuxun; Wang, Yibin; Tucker, Haley O; Vondriska, Thomas M

    2016-11-01

    All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1. Copyright © 2016 the American Physiological Society.

  5. 2017 George Lyman Duff Memorial Lecture: Fat in the Blood, Fat in the Artery, Fat in the Heart: Triglyceride in Physiology and Disease.

    PubMed

    Goldberg, Ira J

    2018-04-01

    Cholesterol is not the only lipid that causes heart disease. Triglyceride supplies the heart and skeletal muscles with highly efficient fuel and allows for the storage of excess calories in adipose tissue. Failure to transport, acquire, and use triglyceride leads to energy deficiency and even death. However, overabundance of triglyceride can damage and impair tissues. Circulating lipoprotein-associated triglycerides are lipolyzed by lipoprotein lipase (LpL) and hepatic triglyceride lipase. We inhibited these enzymes and showed that LpL inhibition reduces high-density lipoprotein cholesterol by >50%, and hepatic triglyceride lipase inhibition shifts low-density lipoprotein to larger, more buoyant particles. Genetic variations that reduce LpL activity correlate with increased cardiovascular risk. In contrast, macrophage LpL deficiency reduces macrophage function and atherosclerosis. Therefore, muscle and macrophage LpL have opposite effects on atherosclerosis. With models of atherosclerosis regression that we used to study diabetes mellitus, we are now examining whether triglyceride-rich lipoproteins or their hydrolysis by LpL affect the biology of established plaques. Following our focus on triglyceride metabolism led us to show that heart-specific LpL hydrolysis of triglyceride allows optimal supply of fatty acids to the heart. In contrast, cardiomyocyte LpL overexpression and excess lipid uptake cause lipotoxic heart failure. We are now studying whether interrupting pathways for lipid uptake might prevent or treat some forms of heart failure. © 2018 American Heart Association, Inc.

  6. Leonardo da Vinci's studies of the heart.

    PubMed

    Shoja, Mohammadali M; Agutter, Paul S; Loukas, Marios; Benninger, Brion; Shokouhi, Ghaffar; Namdar, Husain; Ghabili, Kamyar; Khalili, Majid; Tubbs, R Shane

    2013-08-20

    Leonardo da Vinci's detailed drawings are justly celebrated; however, less well known are his accounts of the structures and functions of the organs. In this paper, we focus on his illustrations of the heart, his conjectures about heart and blood vessel function, his experiments on model systems to test those conjectures, and his unprecedented conclusions about the way in which the cardiovascular system operates. In particular, da Vinci seems to have been the first to recognize that the heart is a muscle and that systole is the active phase of the pump. He also seems to have understood the functions of the auricles and pulmonary veins, identified the relationship between the cardiac cycle and the pulse, and explained the hemodynamic mechanism of valve opening and closure. He also described anatomical variations and changes in structure and function that occurred with age. We outline da Vinci's varied career and suggest ways in which his personality, experience, skills and intellectual heritage contributed to these advances in understanding. We also consider his influence on later studies in anatomy and physiology. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Respiratory muscle training improves hemodynamics, autonomic function, baroreceptor sensitivity, and respiratory mechanics in rats with heart failure

    PubMed Central

    Jaenisch, Rodrigo B.; Hentschke, Vítor S.; Quagliotto, Edson; Cavinato, Paulo R.; Schmeing, Letiane A.; Xavier, Léder L.

    2011-01-01

    Respiratory muscle training (RMT) improves functional capacity in chronic heart-failure (HF) patients, but the basis for this improvement remains unclear. We evaluate the effects of RMT on the hemodynamic and autonomic function, arterial baroreflex sensitivity (BRS), and respiratory mechanics in rats with HF. Rats were assigned to one of four groups: sedentary sham (n = 8), trained sham (n = 8), sedentary HF (n = 8), or trained HF (n = 8). Trained animals underwent a RMT protocol (30 min/day, 5 day/wk, 6 wk of breathing through a resistor), whereas sedentary animals did not. In HF rats, RMT had significant effects on several parameters. It reduced left ventricular (LV) end-diastolic pressure (P < 0.01), increased LV systolic pressure (P < 0.01), and reduced right ventricular hypertrophy (P < 0.01) and pulmonary (P < 0.001) and hepatic (P < 0.001) congestion. It also decreased resting heart rate (HR; P < 0.05), indicating a decrease in the sympathetic and an increase in the vagal modulation of HR. There was also an increase in baroreflex gain (P < 0.05). The respiratory system resistance was reduced (P < 0.001), which was associated with the reduction in tissue resistance after RMT (P < 0.01). The respiratory system and tissue elastance (Est) were also reduced by RMT (P < 0.01 and P < 0.05, respectively). Additionally, the quasistatic Est was reduced after RMT (P < 0.01). These findings show that a 6-wk RMT protocol in HF rats promotes an improvement in hemodynamic function, sympathetic and vagal heart modulation, arterial BRS, and respiratory mechanics, all of which are benefits associated with improvements in cardiopulmonary interaction. PMID:21903877

  8. MOXI Is a Mitochondrial Micropeptide That Enhances Fatty Acid β-Oxidation.

    PubMed

    Makarewich, Catherine A; Baskin, Kedryn K; Munir, Amir Z; Bezprozvannaya, Svetlana; Sharma, Gaurav; Khemtong, Chalermchai; Shah, Akansha M; McAnally, John R; Malloy, Craig R; Szweda, Luke I; Bassel-Duby, Rhonda; Olson, Eric N

    2018-06-26

    Micropeptide regulator of β-oxidation (MOXI) is a conserved muscle-enriched protein encoded by an RNA transcript misannotated as non-coding. MOXI localizes to the inner mitochondrial membrane where it associates with the mitochondrial trifunctional protein, an enzyme complex that plays a critical role in fatty acid β-oxidation. Isolated heart and skeletal muscle mitochondria from MOXI knockout mice exhibit a diminished ability to metabolize fatty acids, while transgenic MOXI overexpression leads to enhanced β-oxidation. Additionally, hearts from MOXI knockout mice preferentially oxidize carbohydrates over fatty acids in an isolated perfused heart system compared to wild-type (WT) animals. MOXI knockout mice also exhibit a profound reduction in exercise capacity, highlighting the role of MOXI in metabolic control. The functional characterization of MOXI provides insight into the regulation of mitochondrial metabolism and energy homeostasis and underscores the regulatory potential of additional micropeptides that have yet to be identified. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. NAD+ : A big player in cardiac and skeletal muscle remodeling and aging.

    PubMed

    Chaturvedi, Pankaj; Tyagi, Suresh C

    2018-03-01

    In the past decade, NAD+ has gained importance for its beneficial effects as antioxidant and anti-aging molecule. A paper in science by Zhang et al. () has described that NAD+ when replenished, ameliorates muscle dystrophy in mice by improving mitochondrial function. NAD+ was also demonstrated by the authors to improve the life span of mice. Cox et al. () demonstrated the cardiac effects of NAD+ which mitigated chronic heart failure via mitochondrial redox state mechanism. Cox et al. () also demonstrated that NAD+ is provided in the drinking water, it improves cardiac relaxation in volume overload model of heart failure. Although NAD+ has a profound anti-aging and anti-oxidant effects, its effect on humans and use as a dietary supplement needs more exploration. © 2017 Wiley Periodicals, Inc.

  10. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes.

    PubMed

    Hagberg, Carolina E; Mehlem, Annika; Falkevall, Annelie; Muhl, Lars; Fam, Barbara C; Ortsäter, Henrik; Scotney, Pierre; Nyqvist, Daniel; Samén, Erik; Lu, Li; Stone-Elander, Sharon; Proietto, Joseph; Andrikopoulos, Sofianos; Sjöholm, Ake; Nash, Andrew; Eriksson, Ulf

    2012-10-18

    The prevalence of type 2 diabetes is rapidly increasing, with severe socioeconomic impacts. Excess lipid deposition in peripheral tissues impairs insulin sensitivity and glucose uptake, and has been proposed to contribute to the pathology of type 2 diabetes. However, few treatment options exist that directly target ectopic lipid accumulation. Recently it was found that vascular endothelial growth factor B (VEGF-B) controls endothelial uptake and transport of fatty acids in heart and skeletal muscle. Here we show that decreased VEGF-B signalling in rodent models of type 2 diabetes restores insulin sensitivity and improves glucose tolerance. Genetic deletion of Vegfb in diabetic db/db mice prevented ectopic lipid deposition, increased muscle glucose uptake and maintained normoglycaemia. Pharmacological inhibition of VEGF-B signalling by antibody administration to db/db mice enhanced glucose tolerance, preserved pancreatic islet architecture, improved β-cell function and ameliorated dyslipidaemia, key elements of type 2 diabetes and the metabolic syndrome. The potential use of VEGF-B neutralization in type 2 diabetes was further elucidated in rats fed a high-fat diet, in which it normalized insulin sensitivity and increased glucose uptake in skeletal muscle and heart. Our results demonstrate that the vascular endothelium can function as an efficient barrier to excess muscle lipid uptake even under conditions of severe obesity and type 2 diabetes, and that this barrier can be maintained by inhibition of VEGF-B signalling. We propose VEGF-B antagonism as a novel pharmacological approach for type 2 diabetes, targeting the lipid-transport properties of the endothelium to improve muscle insulin sensitivity and glucose disposal.

  11. Ribose in the heart.

    PubMed

    Herrick, James; St Cyr, John

    2008-01-01

    Every cell needs energy, i.e., adenosine triphosphate (ATP), to carry out its function. Decreased oxygen levels, decreased blood flow, and other stressful conditions can drastically effect the intracellular concentrations of these energy compounds. Skeletal muscle, unlike the heart, can address this drop in ATP by employing the myokinase reaction, ultimately producing ATP with a subsequent elevation in adenosine monophosphate (AMP). Ribose, a naturally occurring 5-carbon monosaccharide, is a key component of RNA, DNA (which has deoxyribose), acetyl coenzyme A, and ATP. Each cell produces its own ribose, involved in the pentose phosphate pathway (PPP), to aid in ATP production. States of ischemia and/or hypoxia can severely lower levels of cellular energy compounds in the heart, with an associated compromise in cellular processes, ultimately reflected in altered function. Ribose appears to provide a solution to the problem in replenishing the depressed ATP levels and improving functional status of patients afflicted with cardiovascular diseases.

  12. The heart as a self-regulating system: integration of homeodynamic mechanisms.

    PubMed

    Kresh, J Y; Armour, J A

    1997-04-01

    In the past the study of mechanical and electrical properties of the heart has been disjointed with minimal overlap and unification. The fact remains that these features are tightly coupled and central to the functioning heart. The maintenance of adequate cardiac output relies upon the highly integrated autoregulatory mechanisms and modulation of cardiac myocyte function. Regional ventricular mechanics and energetics are dependent upon muscle fiber stress-strain rate, the passive properties of myocardial collagen matrix, adequate vascular perfusion, transcapillary transport and electrical activation pattern. Intramural hydraulic "loading" is regulated by coronary arterial and venous dynamics. All of these components are under the constant influence of intrinsic cardiac and extracardiac autonomic neurons, as well as circulating hormones. A brief overview of the putative regulation of these various components is presented in this paper.

  13. Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice

    PubMed Central

    Asahi, Michio; Otsu, Kinya; Nakayama, Hiroyuki; Hikoso, Shungo; Takeda, Toshihiro; Gramolini, Anthony O.; Trivieri, Maria G.; Oudit, Gavin Y.; Morita, Takashi; Kusakari, Yoichiro; Hirano, Shuta; Hongo, Kenichi; Hirotani, Shinichi; Yamaguchi, Osamu; Peterson, Alan; Backx, Peter H.; Kurihara, Satoshi; Hori, Masatsugu; MacLennan, David H.

    2004-01-01

    Sarcolipin (SLN) inhibits the cardiac sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) by direct binding and is superinhibitory if it binds through phospholamban (PLN). To determine whether overexpression of SLN in the heart might impair cardiac function, transgenic (TG) mice were generated with cardiac-specific overexpression of NF-SLN (SLN tagged at its N terminus with the FLAG epitope). The level of NF-SLN expression (the NF-SLN/PLN expression ratio) was equivalent to that which induces profound superinhibition when coexpressed with PLN and SERCA2a in HEK-293 cells. In TG hearts, the apparent affinity of SERCA2a for Ca2+ was decreased compared with non-TG littermate control hearts. Invasive hemodynamic and echocardiographic analyses revealed impaired cardiac contractility and ventricular hypertrophy in TG mice. Basal PLN phosphorylation was reduced. In isolated papillary muscle subjected to isometric tension, peak amplitudes of Ca2+ transients and peak tensions were reduced, whereas decay times of Ca2+ transients and relaxation times of tension were increased in TG mice. Isoproterenol largely restored contractility in papillary muscle and stimulated PLN phosphorylation to wild-type levels in intact hearts. No compensatory changes in expression of SERCA2a, PLN, ryanodine receptor, and calsequestrin were observed in TG hearts. Coimmunoprecipitation indicated that overexpressed NF-SLN was bound to both SERCA2a and PLN, forming a ternary complex. These data suggest that NF-SLN overexpression inhibits SERCA2a through stabilization of SERCA2a–PLN interaction in the absence of PLN phosphorylation and through the inhibition of PLN phosphorylation. Inhibition of SERCA2a impairs contractility and calcium cycling, but responsiveness to β-adrenergic agonists may prevent progression to heart failure. PMID:15201433

  14. Antibodies to myofibril antigens in cosmonauts after spaceflights

    NASA Technical Reports Server (NTRS)

    Tashpulatov, R. Y.; Danilova, T. A.; Lesnyak, A. T.; Legenkov, V. I.; Znamenskiy, V. S.; Dedyuyeva, Y. Y.

    1980-01-01

    Serum samples obtained from 15 astronauts before and after spaceflights were studied with the use of the indirect immunofluorescent method. In seven astronauts antibodies to different elements of the human heart muscle appeared after flights. Strong and very strong luminescence of the elements of heart muscle tissue was detected in the astronauts after the third space flight. In a study of the sera on sections of bovine heart muscle tissue the reactions of the sera taken before and after flight were found to show no essential differences.

  15. Early chordate origins of the vertebrate second heart field.

    PubMed

    Stolfi, Alberto; Gainous, T Blair; Young, John J; Mori, Alessandro; Levine, Michael; Christiaen, Lionel

    2010-07-30

    The vertebrate heart is formed from diverse embryonic territories, including the first and second heart fields. The second heart field (SHF) gives rise to the right ventricle and outflow tract, yet its evolutionary origins are unclear. We found that heart progenitor cells of the simple chordate Ciona intestinalis also generate precursors of the atrial siphon muscles (ASMs). These precursors express Islet and Tbx1/10, evocative of the splanchnic mesoderm that produces the lower jaw muscles and SHF of vertebrates. Evidence is presented that the transcription factor COE is a critical determinant of ASM fate. We propose that the last common ancestor of tunicates and vertebrates possessed multipotent cardiopharyngeal muscle precursors, and that their reallocation might have contributed to the emergence of the SHF.

  16. Funktionelle Elektrostimulation Paraplegischer Patienten.

    PubMed

    Kern, Helmut

    2014-07-08

    Functional Electrical Stimulation on Paraplegic Patients. We report on clinical and physiological effects of 8 months Functional Electrical Stimulation (FES) of quadriceps femoris muscle on 16 paraplegic patients. Each patient had muscle biopsies, CT-muscle diameter measurements, knee extension strength testing carried out before and after 8 months FES training. Skin perfusion was documented through infrared telethermography and xenon clearance, muscle perfusion was recorded through thallium scintigraphy. After 8 months FES training baseline skin perfusion showed 86 % increase, muscle perfusion was augmented by 87 %. Muscle fiber diameters showed an average increase of 59 % after 8 months FES training. Muscles in patients with spastic paresis as well as in patients with denervation showed an increase in aerob and anaerob muscle enzymes up to the normal range. Even without axonal neurotropic substances FES was able to demonstrate fiberhypertrophy, enzyme adaptation and intracellular structural benefits in denervated muscles. The increment in muscle area as visible on CT-scans of quadriceps femoris was 30 % in spastic paraplegia and 10 % in denervated patients respectively. FES induced changes were less in areas not directly underneath the surface electrodes. We strongly recommend the use of Kern's current for FES in denervated muscles to induce tetanic muscle contractions as we formed a very critical opinion of conventional exponential current. In patients with conus-cauda-lesions FES must be integrated into modern rehabilitation to prevent extreme muscle degeneration and decubital ulcers. Using FES we are able to improve metabolism and induce positive trophic changes in our patients lower extremities. In spastic paraplegics the functions "rising and walking" achieved through FES are much better training than FES ergometers. Larger muscle masses are activated and an increased heart rate is measured, therefore the impact on cardiovascular fitness and metabolism is much greater. This effectively addresses and prevents all problems which result from inactivity in paraplegic patients.

  17. Functional adaptations of the coronary microcirculation to anaemia in fetal sheep.

    PubMed

    Jonker, Sonnet S; Davis, Lowell; Soman, Divya; Belcik, J Todd; Davidson, Brian P; Atkinson, Tamara M; Wilburn, Adrienne; Louey, Samantha; Giraud, George D; Lindner, Jonathan R

    2016-11-01

    In fetuses, chronic anaemia stimulates cardiac growth; simultaneously, blood flow to the heart muscle itself is increased, and reserve blood flow capacity of the coronary vascular bed is preserved. Here we examined functional adaptations of the capillaries and small blood vessels responsible for delivering oxygen to the anaemic fetal heart muscle using contrast-enhanced echocardiography. We demonstrate that coronary microvascular flux rate doubled in anaemic fetuses compared to control fetuses, both at rest and during maximal flow, suggesting reduced microvascular resistance consistent with capillary widening. Cardiac fractional microvascular blood volume was not greater in anaemic fetuses, suggesting that growth of new microvascular vessels does not contribute to the increased flow per volume of myocardium. These unusual changes in microvascular function during anaemia may indicate novel adaptive strategies in the fetal heart. Fetal anaemia causes cardiac adaptations that have immediate and life-long repercussions on heart function and health. It is known that resting and maximal coronary conductance both increase during chronic fetal anaemia, but the coronary microvascular changes responsible for the adaptive response are unknown. Until recently, technical limitations have prevented quantifying functional capillary-level adaptations in the in vivo fetal heart. Our objective was to characterise functional microvascular adaptations in chronically anaemic fetal sheep. Chronically instrumented fetuses were randomized to a control group (n = 11) or were made anaemic by isovolumetric haemorrhage (n = 12) for 1 week prior to myocardial contrast echocardiography at 85% of gestation. Anaemia augmented cardiac mass by 23% without changing body weight. In anaemic fetuses, microvascular blood flow per volume of myocardium was twice that of control fetuses at rest, during vasodilatory hyperaemia, and during hyperaemia plus increased aortic pressure. The elevated blood flow was attributable almost entirely to an increase in microvascular blood flux rate whereas microvascular blood volumes were not different between groups at baseline, during hyperaemia, or with hyperaemia plus increased aortic pressure. Increased coronary microvascular flux rate in response to chronic fetal anaemia is consistent with expected reductions in capillary resistance from capillary diameter widening detected in earlier histological studies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. Deficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex

    PubMed Central

    2005-01-01

    Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant differences in the dimeric status of the α-/β-dystroglycan subcomplex in the dystrophic mdx heart as compared to normal cardiac tissue. In analogy to skeletal muscle fibres, heart muscle also exhibited a greatly reduced abundance of both dystroglycans in dystrophin-deficient cells. Immunoblotting demonstrated that the degree of reduction in α-dystroglycan is more pronounced in matured mdx skeletal muscle as contrasted to the mdx heart. The fact that the deficiency in dystrophin triggers a similar pathobiochemical response in both types of muscle suggests that the cardiomyopathic complications observed in x-linked muscular dystrophy might be initiated by the loss of the dystrophin-associated surface glycoprotein complex. PMID:15689636

  19. Targeted Deletion of the Muscular Dystrophy Gene myotilin Does Not Perturb Muscle Structure or Function in Mice▿

    PubMed Central

    Moza, Monica; Mologni, Luca; Trokovic, Ras; Faulkner, Georgine; Partanen, Juha; Carpén, Olli

    2007-01-01

    Myotilin, palladin, and myopalladin form a novel small subfamily of cytoskeletal proteins that contain immunoglobulin-like domains. Myotilin is a thin filament-associated protein localized at the Z-disk of skeletal and cardiac muscle cells. The direct binding to F-actin, efficient cross-linking of actin filaments, and prevention of induced disassembly of filaments are key roles of myotilin that are thought to be involved in structural maintenance and function of the sarcomere. Missense mutations in the myotilin-encoding gene cause dominant limb girdle muscular dystrophy type 1A and spheroid body myopathy and are the molecular defect that can cause myofibrillar myopathy. Here we describe the generation and analysis of mice that lack myotilin, myo−/− mice. Surprisingly, myo−/− mice maintain normal muscle sarcomeric and sarcolemmal integrity. Also, loss of myotilin does not cause alterations in the heart or other organs of newborn or adult myo−/− mice. The mice develop normally and have a normal life span, and their muscle capacity does not significantly differ from wild-type mice even after prolonged physical stress. The results suggest that either myotilin does not participate in muscle development and basal function maintenance or other proteins serve as structural and functional compensatory molecules when myotilin is absent. PMID:17074808

  20. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function.

    PubMed

    Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Ferguson, Scott K; McCullough, Danielle J; Behnke, Bradley J; Musch, Timothy I; Poole, David C

    2014-03-01

    Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms. We tested the hypothesis that exercise training would improve contracting muscle microvascular oxygenation in CHF rats partly via improved NO-mediated function. CHF rats (left ventricular end-diastolic pressure = 17 ± 2 mmHg) were assigned to sedentary (n = 11) or progressive treadmill exercise training (n = 11; 5 days/wk, 6-8 wk, final workload of 60 min/day at 35 m/min; -14% grade downhill running) groups. PO2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP; NO donor; 300 μM), and N(G)-nitro-l-arginine methyl ester (L-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained CHF rats had greater peak oxygen uptake and spinotrapezius muscle citrate synthase activity than their sedentary counterparts (p < 0.05 for both). The overall speed of the PO2mv fall during contractions (mean response time; MRT) was slowed markedly in trained compared with sedentary CHF rats (sedentary: 20.8 ± 1.4, trained: 32.3 ± 3.0 s; p < 0.05), and the effect was not abolished by L-NAME (sedentary: 16.8 ± 1.5, trained: 31.0 ± 3.4 s; p > 0.05). Relative to control, SNP increased MRT in both groups such that trained CHF rats had slower kinetics (sedentary: 43.0 ± 6.8, trained: 55.5 ± 7.8 s; p < 0.05). Improved NO-mediated function is not obligatory for training-induced improvements in skeletal muscle microvascular oxygenation (slowed PO2mv kinetics) following contractions onset in rats with CHF.

  1. Skeletal muscle microvascular oxygenation dynamics in heart failure: exercise training and nitric oxide-mediated function

    PubMed Central

    Copp, Steven W.; Holdsworth, Clark T.; Ferguson, Scott K.; McCullough, Danielle J.; Behnke, Bradley J.; Musch, Timothy I.; Poole, David C.

    2014-01-01

    Chronic heart failure (CHF) impairs nitric oxide (NO)-mediated regulation of skeletal muscle O2 delivery-utilization matching such that microvascular oxygenation falls faster (i.e., speeds PO2mv kinetics) during increases in metabolic demand. Conversely, exercise training improves (slows) muscle PO2mv kinetics following contractions onset in healthy young individuals via NO-dependent mechanisms. We tested the hypothesis that exercise training would improve contracting muscle microvascular oxygenation in CHF rats partly via improved NO-mediated function. CHF rats (left ventricular end-diastolic pressure = 17 ± 2 mmHg) were assigned to sedentary (n = 11) or progressive treadmill exercise training (n = 11; 5 days/wk, 6–8 wk, final workload of 60 min/day at 35 m/min; −14% grade downhill running) groups. PO2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP; NO donor; 300 μM), and NG-nitro-l-arginine methyl ester (L-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained CHF rats had greater peak oxygen uptake and spinotrapezius muscle citrate synthase activity than their sedentary counterparts (p < 0.05 for both). The overall speed of the PO2mv fall during contractions (mean response time; MRT) was slowed markedly in trained compared with sedentary CHF rats (sedentary: 20.8 ± 1.4, trained: 32.3 ± 3.0 s; p < 0.05), and the effect was not abolished by L-NAME (sedentary: 16.8 ± 1.5, trained: 31.0 ± 3.4 s; p > 0.05). Relative to control, SNP increased MRT in both groups such that trained CHF rats had slower kinetics (sedentary: 43.0 ± 6.8, trained: 55.5 ± 7.8 s; p < 0.05). Improved NO-mediated function is not obligatory for training-induced improvements in skeletal muscle microvascular oxygenation (slowed PO2mv kinetics) following contractions onset in rats with CHF. PMID:24414070

  2. Myeloid cells are capable of synthesizing aldosterone to exacerbate damage in muscular dystrophy.

    PubMed

    Chadwick, Jessica A; Swager, Sarah A; Lowe, Jeovanna; Welc, Steven S; Tidball, James G; Gomez-Sanchez, Celso E; Gomez-Sanchez, Elise P; Rafael-Fortney, Jill A

    2016-12-01

    FDA-approved mineralocorticoid receptor (MR) antagonists are used to treat heart failure. We have recently demonstrated efficacy of MR antagonists for skeletal muscles in addition to heart in Duchenne muscular dystrophy mouse models and that mineralocorticoid receptors are present and functional in skeletal muscles. The goal of this study was to elucidate the underlying mechanisms of MR antagonist efficacy on dystrophic skeletal muscles. We demonstrate for the first time that infiltrating myeloid cells clustered in damaged areas of dystrophic skeletal muscles have the capacity to produce the natural ligand of MR, aldosterone, which in excess is known to exacerbate tissue damage. Aldosterone synthase protein levels are increased in leukocytes isolated from dystrophic muscles compared with controls and local aldosterone levels in dystrophic skeletal muscles are increased, despite normal circulating levels. All genes encoding enzymes in the pathway for aldosterone synthesis are expressed in muscle-derived leukocytes. 11β-HSD2, the enzyme that inactivates glucocorticoids to increase MR selectivity for aldosterone, is also increased in dystrophic muscle tissues. These results, together with the demonstrated preclinical efficacy of antagonists, suggest MR activation is in excess of physiological need and likely contributes to the pathology of muscular dystrophy. This study provides new mechanistic insight into the known contribution of myeloid cells to muscular dystrophy pathology. This first report of myeloid cells having the capacity to produce aldosterone may have implications for a wide variety of acute injuries and chronic diseases with inflammation where MR antagonists may be therapeutic. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Adaptive responses of heart and skeletal muscle to spermine oxidase overexpression: Evaluation of a new transgenic mouse model.

    PubMed

    Ceci, Roberta; Duranti, Guglielmo; Leonetti, Alessia; Pietropaoli, Stefano; Spinozzi, Federico; Marcocci, Lucia; Amendola, Roberto; Cecconi, Francesco; Sabatini, Stefania; Mariottini, Paolo; Cervelli, Manuela

    2017-02-01

    Spermine oxidase oxidizes spermine to produce H 2 O 2 , spermidine, and 3-aminopropanal. It is involved in cell drug response, apoptosis, and in the etiology of several pathologies, including cancer. Spermine oxidase is an important positive regulator of muscle gene expression and fiber size and, when repressed, leads to muscle atrophy. We have generated a transgenic mouse line overexpressing Smox gene in all organs, named Total-Smox. The spermine oxidase overexpression was revealed by β-Gal staining and reverse-transcriptase/PCR analysis, in all tissues analysed. Spermine oxidase activity resulted higher in Total-Smox than controls. Considering the important role of this enzyme in muscle physiology, we have focused our study on skeletal muscle and heart of Total-Smox mice by measuring redox status and oxidative damage. We assessed the redox homeostasis through the analysis of the reduced/oxidized glutathione ratio. Chronic H 2 O 2 production induced by spermine oxidase overexpression leads to a cellular redox state imbalance in both tissues, although they show different redox adaptation. In skeletal muscle, catalase and glutathione S-transferase activities were significantly increased in Total-Smox mice compared to controls. In the heart, no differences were found in CAT activity level, while GST activity decreased compared to controls. The skeletal muscle showed a lower oxidative damage than in the heart, evaluated by lipid peroxidation and protein carbonylation. Altogether, our findings illustrate that skeletal muscle adapts more efficiently than heart to oxidative stress H 2 O 2 -induced. The Total-Smox line is a new genetic model useful to deepen our knowledge on the role of spermine oxidase in muscle atrophy and muscular pathological conditions like dystrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Phosphorylation of translation factors in response to anoxia in turtles, Trachemys scripta elegans: role of the AMP-activated protein kinase and target of rapamycin signalling pathways.

    PubMed

    Rider, Mark H; Hussain, Nusrat; Dilworth, Stephen M; Storey, Kenneth B

    2009-12-01

    Long-term survival of oxygen deprivation by animals with well-developed anoxia tolerance depends on multiple biochemical adaptations including strong metabolic rate depression. We investigated whether the AMP-activated protein kinase (AMPK) could play a regulatory role in the suppression of protein synthesis that occurs when turtles experience anoxic conditions. AMPK activity and the phosphorylation state of ribosomal translation factors were measured in liver, heart, red muscle and white muscle of red-eared slider turtles (Trachemys scripta elegans) subjected to 20 h of anoxic submergence. AMPK activity increased twofold in white muscle of anoxic turtles compared with aerobic controls but remained unchanged in liver and red muscle, whereas in heart AMPK activity decreased by 40%. Immunoblotting with phospho-specific antibodies revealed that eukaryotic elongation factor-2 phosphorylation at the inactivating Thr56 site increased six- and eightfold in red and white muscles from anoxic animals, respectively, but was unchanged in liver and heart. The phosphorylation state of the activating Thr389 site of p70 ribosomal protein S6 kinase was reduced under anoxia in red muscle and heart but was unaffected in liver and white muscle. Exposure to anoxia decreased 40S ribosomal protein S6 phosphorylation in heart and promoted eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) dephosphorylation in red muscle, but surprisingly increased 4E-BP1 phosphorylation in white muscle. The changes in phosphorylation state of translation factors suggest that organ-specific patterns of signalling and response are involved in achieving the anoxia-induced suppression of protein synthesis in turtles.

  5. Cyclic AMP-dependent signaling system is a primary metabolic target for non-thermal effect of microwaves on heart muscle hydration.

    PubMed

    Narinyan, Lilia; Ayrapetyan, Sinerik

    2017-01-01

    Previously, we have suggested that cell hydration is a universal and extra-sensitive sensor for the structural changes of cell aqua medium caused by the impact of weak chemical and physical factors. The aim of present work is to elucidate the nature of the metabolic messenger through which physiological solution (PS) treated by non-thermal (NT) microwaves (MW) could modulate heart muscle hydration of rats. For this purpose, the effects of NT MW-treated PS on heart muscle hydration, [ 3 H]-ouabain binding with cell membrane, 45 Ca 2+ uptake and intracellular cyclic nucleotides contents in vivo and in vitro experiments were studied. It is shown that intraperitoneal injections of both Sham-treated PS and NT MW-treated PS elevate heart muscle hydration. However, the effect of NT MW-treated PS on muscle hydration is more pronounced than the effect of Sham-treated PS. In vitro experiments NT MW-treated PS has dehydration effect on muscle, which is not changed by decreasing Na + gradients on membrane. Intraperitoneal injection of Sham- and NT MW-treated PS containing 45 Ca 2+ have similar dehydration effect on muscle, while NT MW-treated PS has activation effect on Na + /Ca 2+ exchange in reverse mode. The intraperitoneal injection of NT MW-treated PS depresses [ 3 H]-ouabain binding with its high-affinity membrane receptors, elevates intracellular cAMP and decreases cGMP contents. Based on the obtained data, it is suggested that cAMP-dependent signaling system serves as a primary metabolic target for NT MW effect on heart muscle hydration.

  6. Multidimensional protein identification technology (MudPIT): technical overview of a profiling method optimized for the comprehensive proteomic investigation of normal and diseased heart tissue.

    PubMed

    Kislinger, Thomas; Gramolini, Anthony O; MacLennan, David H; Emili, Andrew

    2005-08-01

    An optimized analytical expression profiling strategy based on gel-free multidimensional protein identification technology (MudPIT) is reported for the systematic investigation of biochemical (mal)-adaptations associated with healthy and diseased heart tissue. Enhanced shotgun proteomic detection coverage and improved biological inference is achieved by pre-fractionation of excised mouse cardiac muscle into subcellular components, with each organellar fraction investigated exhaustively using multiple repeat MudPIT analyses. Functional-enrichment, high-confidence identification, and relative quantification of hundreds of organelle- and tissue-specific proteins are achieved readily, including detection of low abundance transcriptional regulators, signaling factors, and proteins linked to cardiac disease. Important technical issues relating to data validation, including minimization of artifacts stemming from biased under-sampling and spurious false discovery, together with suggestions for further fine-tuning of sample preparation, are discussed. A framework for follow-up bioinformatic examination, pattern recognition, and data mining is also presented in the context of a stringent application of MudPIT for probing fundamental aspects of heart muscle physiology as well as the discovery of perturbations associated with heart failure.

  7. beta-Galactoside-binding muscle lectins of man and monkey show antigenic cross-reactions with those of bovine origin.

    PubMed Central

    Childs, R A; Feizi, T

    1979-01-01

    Endogenous beta-galactoside-binding lectins were isolated from human heart and from human and rhesus-monkey skeletal muscles. Gel precipitation and radioimmunoassays with rabbit antisera to calf heart lectin revealed antigenic cross-reactions between the primate and bovine muscle lectins. Images Fig. 1. Fig. 2. PMID:120198

  8. Desmin: molecular interactions and putative functions of the muscle intermediate filament protein.

    PubMed

    Costa, M L; Escaleira, R; Cataldo, A; Oliveira, F; Mermelstein, C S

    2004-12-01

    Desmin is the intermediate filament (IF) protein occurring exclusively in muscle and endothelial cells. There are other IF proteins in muscle such as nestin, peripherin, and vimentin, besides the ubiquitous lamins, but they are not unique to muscle. Desmin was purified in 1977, the desmin gene was characterized in 1989, and knock-out animals were generated in 1996. Several isoforms have been described. Desmin IFs are present throughout smooth, cardiac and skeletal muscle cells, but can be more concentrated in some particular structures, such as dense bodies, around the nuclei, around the Z-line or in costameres. Desmin is up-regulated in muscle-derived cellular adaptations, including conductive fibers in the heart, electric organs, some myopathies, and experimental treatments with drugs that induce muscle degeneration, like phorbol esters. Many molecules have been reported to associate with desmin, such as other IF proteins (including members of the membrane dystroglycan complex), nebulin, the actin and tubulin binding protein plectin, the molecular motor dynein, the gene regulatory protein MyoD, DNA, the chaperone alphaB-crystallin, and proteases such as calpain and caspase. Desmin has an important medical role, since it is used as a marker of tumors' origin. More recently, several myopathies have been described, with accumulation of desmin deposits. Yet, after almost 30 years since its identification, the function of desmin is still unclear. Suggested functions include myofibrillogenesis, mechanical support for the muscle, mitochondrial localization, gene expression regulation, and intracellular signaling. This review focuses on the biochemical interactions of desmin, with a discussion of its putative functions.

  9. Physical Education and the Healthy Child.

    ERIC Educational Resources Information Center

    Gabbard, Carl

    1993-01-01

    American children today are fatter, less fit, and more sedentary than their 1960s counterparts. Teachers mistakenly assume that participation in a general activity program is sufficient to develop and maintain physical fitness. Health-related fitness, defined as optimal functioning of the heart, lungs, and muscles, improves with activities to…

  10. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.

    PubMed

    Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng

    Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.

  11. [Tricuspid valve insufficiency: what should be done?].

    PubMed

    von Segesser, L K; Stauffer, J C; Delabays, A; Chassot, P G

    1998-12-01

    Tricuspid regurgitation is relatively common. Due to the progress made in echocardiography, its diagnosis is in general made readily and in reliable fashion. Basically one has to distinguish between functional tricuspid valve regurgitation due to volume and/or pressure overload of the right ventricle with intact valve structures versus tricuspid valve regurgitation due to pathologic valve structures. The clear identification of the regurgitation mechanism is of prime importance for the treatment. Functional tricuspid valve regurgitation can often be improved by medical treatment of heart failure, and eventually a tricuspid valve plasty can solve the problem. However, the presence of pathologic tricuspid valve structures makes in general more specific plastic surgical procedures and even prosthetic valve replacements necessary. A typical example for a structural tricuspid valve regurgitation is the case of a traumatic papillary muscle rupture. Due to the sudden onset, this pathology is not well tolerated and requires in general surgical reinsertion of the papillary muscle. In contrast, tricuspid valve regurgitation resulting from chronic pulmonary embolism with pulmonary artery hypertension, can be improved by pulmonary artery thrombendarteriectomy and even completely cured with an additional tricuspid annuloplasty. However, tricuspid regurgitations due to terminal heart failure are not be addressed with surgery directed to tricuspid valve repair or replacement. Heart transplantation, dynamic cardiomyoplasty or mechanical circulatory support should be evaluated instead.

  12. The Frank-Starling mechanism involves deceleration of cross-bridge kinetics and is preserved in failing human right ventricular myocardium.

    PubMed

    Milani-Nejad, Nima; Canan, Benjamin D; Elnakish, Mohammad T; Davis, Jonathan P; Chung, Jae-Hoon; Fedorov, Vadim V; Binkley, Philip F; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L

    2015-12-15

    Cross-bridge cycling rate is an important determinant of cardiac output, and its alteration can potentially contribute to reduced output in heart failure patients. Additionally, animal studies suggest that this rate can be regulated by muscle length. The purpose of this study was to investigate cross-bridge cycling rate and its regulation by muscle length under near-physiological conditions in intact right ventricular muscles of nonfailing and failing human hearts. We acquired freshly explanted nonfailing (n = 9) and failing (n = 10) human hearts. All experiments were performed on intact right ventricular cardiac trabeculae (n = 40) at physiological temperature and near the normal heart rate range. The failing myocardium showed the typical heart failure phenotype: a negative force-frequency relationship and β-adrenergic desensitization (P < 0.05), indicating the expected pathological myocardium in the right ventricles. We found that there exists a length-dependent regulation of cross-bridge cycling kinetics in human myocardium. Decreasing muscle length accelerated the rate of cross-bridge reattachment (ktr) in both nonfailing and failing myocardium (P < 0.05) equally; there were no major differences between nonfailing and failing myocardium at each respective length (P > 0.05), indicating that this regulatory mechanism is preserved in heart failure. Length-dependent assessment of twitch kinetics mirrored these findings; normalized dF/dt slowed down with increasing length of the muscle and was virtually identical in diseased tissue. This study shows for the first time that muscle length regulates cross-bridge kinetics in human myocardium under near-physiological conditions and that those kinetics are preserved in the right ventricular tissues of heart failure patients. Copyright © 2015 the American Physiological Society.

  13. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview.

    PubMed

    Ebner, Nicole; Elsner, Sebastian; Springer, Jochen; von Haehling, Stephan

    2014-03-01

    This article aims to describe molecular pathways involved in the development of muscle wasting and cachexia, diagnostic possibilities, and potential treatments that have seen clinical testing in recent heart failure trials. An understanding of the specific changes that cause an anabolic-catabolic imbalance is an essential first step in the development of pharmaceutical intervention strategies aimed at blocking muscle wasting. Skeletal muscle mass and muscle strength are the most important determinants of exercise capacity in patients with heart failure. In contrast to cachexia, muscle wasting is not usually associated with weight loss, implying the need for sophisticated assessment methods to correctly diagnose muscle wasting, for example the use of computed tomography, magnetic resonance imaging, or dual energy X-ray absorptiometry. Simpler techniques such as handgrip strength, exercise testing, or even a biomarker may help in determining patients with a high pre-test probability of muscle wasting. Despite intensive research efforts in the field of muscle wasting during the last couple of decades, no effective treatment of muscle wasting currently exists other than exercise training. This situation remains true even though study of the molecular pathways involved in muscle wasting suggests many therapeutic targets. Easily applicable diagnostic tools may help to identify patients at risk of developing muscle wasting.

  14. Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism.

    PubMed

    Gan, Zhenji; Rumsey, John; Hazen, Bethany C; Lai, Ling; Leone, Teresa C; Vega, Rick B; Xie, Hui; Conley, Kevin E; Auwerx, Johan; Smith, Steven R; Olson, Eric N; Kralli, Anastasia; Kelly, Daniel P

    2013-06-01

    The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

  15. Physiological roles of taurine in heart and muscle

    PubMed Central

    2010-01-01

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an essential or semi-essential nutrient for many mammals. PMID:20804594

  16. Physiological roles of taurine in heart and muscle.

    PubMed

    Schaffer, Stephen W; Jong, Chian Ju; Ramila, K C; Azuma, Junichi

    2010-08-24

    Taurine (aminoethane sulfonic acid) is an ubiquitous compound, found in very high concentrations in heart and muscle. Although taurine is classified as an amino acid, it does not participate in peptide bond formation. Nonetheless, the amino group of taurine is involved in a number of important conjugation reactions as well as in the scavenging of hypochlorous acid. Because taurine is a fairly inert compound, it is an ideal modulator of basic processes, such as osmotic pressure, cation homeostasis, enzyme activity, receptor regulation, cell development and cell signalling. The present review discusses several physiological functions of taurine. First, the observation that taurine depletion leads to the development of a cardiomyopathy indicates a role for taurine in the maintenance of normal contractile function. Evidence is provided that this function of taurine is mediated by changes in the activity of key Ca2+ transporters and the modulation Ca2+ sensitivity of the myofibrils. Second, in some species, taurine is an established osmoregulator, however, in mammalian heart the osmoregulatory function of taurine has recently been questioned. Third, taurine functions as an indirect regulator of oxidative stress. Although this action of taurine has been widely discussed, its mechanism of action is unclear. A potential mechanism for the antioxidant activity of taurine is discussed. Fourth, taurine stabilizes membranes through direct interactions with phospholipids. However, its inhibition of the enzyme, phospholipid N-methyltransferase, alters the phosphatidylcholine and phosphatidylethanolamine content of membranes, which in turn affects the function of key proteins within the membrane. Finally, taurine serves as a modulator of protein kinases and phosphatases within the cardiomyocyte. The mechanism of this action has not been studied. Taurine is a chemically simple compound, but it has profound effects on cells. This has led to the suggestion that taurine is an essential or semi-essential nutrient for many mammals.

  17. Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure

    PubMed Central

    Ferguson, Scott K.; Holdsworth, Clark T.; Colburn, Trenton D.; Wright, Jennifer L.; Craig, Jesse C.; Fees, Alex; Jones, Andrew M.; Allen, Jason D.; Musch, Timothy I.

    2016-01-01

    Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3−) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3− supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3−-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min−1·100 g−1 in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min−1·100 g−1·mmHg−1 in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3− supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF. PMID:27445296

  18. Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure.

    PubMed

    Ferguson, Scott K; Holdsworth, Clark T; Colburn, Trenton D; Wright, Jennifer L; Craig, Jesse C; Fees, Alex; Jones, Andrew M; Allen, Jason D; Musch, Timothy I; Poole, David C

    2016-09-01

    Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3 (-)) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3 (-) supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3 (-)-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min(-1)·100 g(-1) in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1) in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3 (-) supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF. Copyright © 2016 the American Physiological Society.

  19. Double gene deletion reveals the lack of cooperation between PPAR{alpha} and PPAR{beta} in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedu, E.; Desplanches, D.; Pequignot, J.

    2007-06-15

    The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPAR{alpha} and PPAR{beta} isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPAR{alpha}-/-, PPAR{beta}-/-, and double PPAR{alpha}-/- {beta}-/- mice. Heart and soleus muscle analyses show that the deletion of PPAR{alpha} induces a decrease of the HAD activity ({beta}-oxidation) while soleus contractile phenotype remains unchanged. A PPAR{beta} deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensationmore » of PPAR{beta} and PPAR{alpha} functions since double gene deletion PPAR{alpha}-PPAR{beta} mostly reproduces the null PPAR{alpha}-mediated reduced {beta}-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPAR{beta} is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPAR{alpha} in PPAR{alpha} null mice.« less

  20. Heart attack first aid

    MedlinePlus

    First aid - heart attack; First aid - cardiopulmonary arrest; First aid - cardiac arrest ... A heart attack occurs when the blood flow that carries oxygen to the heart is blocked. The heart muscle ...

  1. microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer.

    PubMed

    Yu, Hao; Lu, Yinhui; Li, Zhaofa; Wang, Qizhao

    2014-01-01

    microRNAs (miRNAs) are a class of small non-coding RNAs that are 18-25 nucleotides (nt) in length and negatively regulate gene expression post-transcriptionally. miRNAs are known to mediate myriad processes and pathways. While many miRNAs are expressed ubiquitously, some are expressed in a tissue specific manner. miR-133 is one of the most studied and best characterized miRNAs to date. Specifically expressed in muscles, it has been classified as myomiRNAs and is necessary for proper skeletal and cardiac muscle development and function. Genes encoding miR-133 (miR-133a-1, miR-133a-2 and miR-133b) are transcribed as bicistronic transcripts together with miR-1-2, miR-1-1, and miR-206, respectively. However, they exhibit opposing impacts on muscle development. miR-133 gets involved in muscle development by targeting a lot of genes, including SFR, HDAC4, cyclin D2 and so on. Its aberrant expression has been linked to many diseases in skeletal muscle and cardiac muscle such as cardiac hypertrophy, muscular dystrophy, heart failure, cardiac arrhythmia. Beyond the study in muscle, miR-133 has been implicated in cancer and identified as a key factor in cancer development, including bladder cancer, prostate cancer and so on. Much more attention has been drawn to the versatile molecular functions of miR-133, making it a truly valuable therapeutic gene in miRNA-based gene therapy. In this review, we identified and summarized the results of studies of miR-133 with emphasis on its function in human diseases in muscle and cancer, and highlighted its therapeutic value. It might provide researchers a new insight into the biological significance of miR-133.

  2. Skeletal muscle mass and exercise performance in stable ambulatory patients with heart failure.

    PubMed

    Lang, C C; Chomsky, D B; Rayos, G; Yeoh, T K; Wilson, J R

    1997-01-01

    The purpose of this study was to determine whether skeletal muscle atrophy limits the maximal exercise capacity of stable ambulatory patients with heart failure. Body composition and maximal exercise capacity were measured in 100 stable ambulatory patients with heart failure. Body composition was assessed by using dual-energy X-ray absorption. Peak exercise oxygen consumption (VO2peak) and the anaerobic threshold were measured by using a Naughton treadmill protocol and a Medical Graphics CardioO2 System. VO2peak averaged 13.4 +/- 3.3 ml.min-1.kg-1 or 43 +/- 12% of normal. Lean body mass averaged 52.9 +/- 10.5 kg and leg lean mass 16.5 +/- 3.6 kg. Leg lean mass correlated linearly with VO2peak (r = 0.68, P < 0.01), suggesting that exercise performance is influences by skeletal muscle mass. However, lean body mass was comparable to levels noted in 1,584 normal control subjects, suggesting no decrease in muscle mass. Leg muscle mass was comparable to levels noted in 34 normal control subjects, further supporting this conclusion. These findings suggest that exercise intolerance in stable ambulatory patients with heart failure is not due to skeletal muscle atrophy.

  3. Publication trends in cachexia and sarcopenia in elderly heart failure patients.

    PubMed

    Springer, Jochen; Anker, Stefan D

    2016-12-01

    The loss of skeletal mass - sarcopenia and cachexia - is considered to be a major contributor to morbidity and mortality in chronic heart failure (CHF). Unfortunately, sarcopenia is generally considered to be a geriatric syndrome, but not necessarily seen as a comorbidity in CHF, even though it has a wide range of adverse health outcomes. While there were 15,574 publication with the title word "heart failure" in PubMed in the 5‑year period from 1 June 2011 to 31 May 2016, only 22 or 71 publications were found with the search combination "sarcopenia" or "cachexia" (title word) and "heart failure" (all fields), respectively. This shows very clearly that loss of muscle quality and function due to heart failure is still an underappreciated problem in the medical field.

  4. Preconditions for constructing a biomechanical model of the heart as an integral musculovascular organ

    NASA Astrophysics Data System (ADS)

    Edemskii, M. L.; Kogan, V. A.

    1981-07-01

    Relative to its major function, pumping, the heart should be considered as an integral musculovascular organ. It is precisely this integration in the structural and functional sense which permits the heart not only to perform its pump function as a converter of chemical energy supplied by the blood into mechanical flow energy but also to combine the supply and conversion of energy into a single cycle, produce the hydrodynamics of cardiac output in definite fashion, and introduce a correction into the filling phase according to current arterial pressure as the most dynamic index of systemic hemodynamics. The breakdown of the structure of the cardiac pump into elements differing in their functional significance permits us to delineate at least three channels for the utilization of energy supplied to the heart and consumed in the major pumping function: the mechanical work performed by the lower part of the cardiac muscle that is displaced into the ventricular space, the energy consumed on maintaining the systolic pressure of the myocardial fibers which form the relatively immobile upper and side walls of the heart, and the energy consumed on maintaining the high tone of the muscular walls of the coronary arteries and arterioles which form the hydraulic frame of the heart. A representation of the heart which includes muscular and vascular components, in our view, is the basic prerequisite for the development of mathematical models for the cardiac pump based on energy balance equations and suitable for solving the problems posed by clinical medicine in regard to auxiliary blood circulation.

  5. Muscle wasting and cachexia in heart failure: mechanisms and therapies.

    PubMed

    von Haehling, Stephan; Ebner, Nicole; Dos Santos, Marcelo R; Springer, Jochen; Anker, Stefan D

    2017-06-01

    Body wasting is a serious complication that affects a large proportion of patients with heart failure. Muscle wasting, also known as sarcopenia, is the loss of muscle mass and strength, whereas cachexia describes loss of weight. After reaching guideline-recommended doses of heart failure therapies, the most promising approach to treating body wasting seems to be combined therapy that includes exercise, nutritional counselling, and drug treatment. Nutritional considerations include avoiding excessive salt and fluid intake, and replenishment of deficiencies in trace elements. Administration of omega-3 polyunsaturated fatty acids is beneficial in selected patients. High-calorific nutritional supplements can also be useful. The prescription of aerobic exercise training that provokes mild or moderate breathlessness has good scientific support. Drugs with potential benefit in the treatment of body wasting that have been tested in clinical studies in patients with heart failure include testosterone, ghrelin, recombinant human growth hormone, essential amino acids, and β 2 -adrenergic receptor agonists. In this Review, we summarize the pathophysiological mechanisms of muscle wasting and cachexia in heart failure, and highlight the potential treatment strategies. We aim to provide clinicians with the relevant information on body wasting to understand and treat these conditions in patients with heart failure.

  6. Intra- and Interorgan Communication in the Cardiovascular System: A Special View on Redox Regulation.

    PubMed

    Gödecke, Axel; Haendeler, Judith

    2017-04-20

    Intraorgan communication in the cardiovascular system is exerted not only by direct cell-cell contacts but also by locally released factors, which modulate neighboring cells by paracrine signals (e.g., NO, vascular endothelial growth factor, adenosine, reactive oxygen species). Moreover, cells in close proximity to the typical cardiovascular cells such as fibroblasts, red blood cells, as well as resident and invading immune cells must be considered in attempts to understand cardiovascular function in physiology and pathology. The second level of communication is the interorgan communication, which may be distinguished from intraorgan communication, since it involves signaling from remote organs to the heart and circulation. Therefore, mediators released by, for example, the kidney or skeletal muscle reach the heart and modulate its function. This is not only the case under physiological conditions, because there is increasing evidence that the organ-specific response to a primary insult may affect also the function of remote organs by the release of factors. This Forum will summarize novel mechanisms involved in intraorgan and interorgan communication of the cardiovascular system, with a special view on the remote organs, skeletal muscle and kidney. Antioxid. Redox Signal. 26, 613-615.

  7. Function and structure in early modern muscular mechanics. Four episodes and a dialogue between Stensen and Borelli on two chief muscular systems.

    PubMed

    Kardel, T

    1997-01-01

    The dispute on the movement of skeletal muscles in 1667 between Giovanni Alfonso Borelli, who maintained the ancient movement caused by inflation theory, and Niels Stensen (Nicolaus Steno), who proposed the first recorded theory of fibre contraction, had far reaching implications for understanding the relation between muscle morphology and function. A dialogue is reconstructed from citations from the two authors' main works. They had a similar dispute on the movement of the heart along the lines of the debate in the 1630s between William Harvey favouring contraction and René Descartes favouring swelling. Evidence is provided for the delayed general acceptance of fibre contraction in both heart and skeletal muscles. It is shown that the inflation interpretation of muscular mechanics elaborated by Borelli, Johann Bernoulli, his son Daniel, and by others, was maintained from ancient authors and Descartes in part due to a conceptual block resulting from the mechanical philosophy that denied any force of attraction in nature. The alternative theory, that of fibre contraction, was thought of as self-motion, which violated an accepted mechanical principle and therefore was rejected. In the mid-18th century, Albrecht von Haller recorded no microscopic structures in support of inflation. He adopted the view that contraction in fibres of muscles is generated through an 'irritability'. Research on this entity has taken place ever since with a clear preponderance of studies on single fibre properties and subcellular structures. Haller did not, however, refer to the original contribution of Stensen on fibre contraction. Haller even rejected Stensen's functional architecture of skeletal muscle. This structure, now called the unipennate, or semipennate, actuator, was overlooked and had to await confirmation by anatomical rediscovery and pragmatic demonstration through successful applications in computer models of muscular contraction in the 1980s.

  8. The physiological basis of rehabilitation in chronic heart and lung disease.

    PubMed

    Vogiatzis, Ioannis; Zakynthinos, Spyros

    2013-07-01

    Cardiopulmonary rehabilitation is recognized as a core component of management of individuals with congestive heart failure (CHF) or chronic obstructive pulmonary disease (COPD) that is designed to improve their physical and psychosocial condition without impacting on the primary organ impairment. This has lead the scientific community increasingly to believe that the main effects of cardiopulmonary rehabilitative exercise training are focused on skeletal muscles that are regarded as dysfunctional in both CHF and COPD. Accordingly, following completion of a cardiopulmonary rehabilitative exercise training program there are important peripheral muscular adaptations in both disease entities, namely increased capillary density, blood flow, mitochondrial volume density, fiber size, distribution of slow twitch fibers, and decreased lactic acidosis and vascular resistance. Decreased lactic acidosis at a given level of submaximal exercise not only offsets the occurrence of peripheral muscle fatigue, leading to muscle task failure and muscle discomfort, but also concurrently mitigates the additional burden on the respiratory muscles caused by the increased respiratory drive, thereby reducing dyspnea sensations. Furthermore in patients with COPD, exercise training reduces the degree of dynamic lung hyperinflation leading to improved arterial oxygen content and central hemodynamic responses, thus increasing systemic muscle oxygen availability. In patients with CHF, exercise training has beneficial direct and reflex sympathoinhibitory effects and favorable effects on normalization of neurohumoral excitation. These physiological benefits apply to all COPD and CHF patients independently of the degree of disease severity and are associated with improved exercise tolerance, functional capacity, and quality of life.

  9. Intracellular targeting of isoproteins in muscle cytoarchitecture

    PubMed Central

    1988-01-01

    Part of the muscle creatine kinase (MM-CK) in skeletal muscle of chicken is localized in the M-band of myofibrils, while chicken heart cells containing myofibrils and BB-CK, but not expressing MM-CK, do not show this association. The specificity of the MM-CK interaction was tested using cultured chicken heart cells as "living test tubes" by microinjection of in vitro generated MM-CK and hybrid M-CK/B-CK mRNA with SP6 RNA polymerase. The resulting translation products were detected in injected cells with isoprotein-specific antibodies. M-CK molecules and translation products of chimeric cDNA molecules containing the head half of the B-CK and the tail half of the M-CK coding regions were localized in the M-band of the myofibrils. The tail, but not the head portion of M-CK is essential for the association of M-CK with the M-band of myofibrils. We conclude that gross biochemical properties do not always coincide with a molecule's specific functions like the participation in cell cytoarchitecture which may depend on molecular targeting even within the same cellular compartment. PMID:3283147

  10. Myotoxic effects of clenbuterol in the rat heart and soleus muscle.

    PubMed

    Burniston, Jatin G; Ng, Yeelan; Clark, William A; Colyer, John; Tan, Lip-Bun; Goldspink, David F

    2002-11-01

    Myocyte-specific necrosis in the heart and soleus muscle of adult male Wistar rats was investigated in response to a single subcutaneous injection of the anabolic beta(2)-adrenergic receptor agonist clenbuterol. Necrosis was immunohistochemically detected by administration of a myosin antibody 1 h before the clenbuterol challenge and quantified by using image analysis. Clenbuterol-induced myocyte necrosis occurred against a background of zero damage in control muscles. In the heart, the clenbuterol-induced necrosis was not uniform, being more abundant in the left subendocardium and peaking 2.4 mm from the apex. After position (2.4 mm from the apex), dose (5 mg clenbuterol/kg), and sampling time (12 h) were optimized, maximum cardiomyocyte necrosis was found to be 1.0 +/- 0.2%. In response to the same parameters (i.e., 5 mg of clenbuterol and sampled at 12 h), skeletal myocyte necrosis was 4.4 +/- 0.8% in the soleus. These data show significant myocyte-specific necrosis in the heart and skeletal muscle of the rat. Such irreversible damage in the heart suggests that clenbuterol may be damaging to long-term health.

  11. Is Borg's perceived exertion scale a useful indicator of muscular and cardiovascular load in blue-collar workers with lifting tasks? A cross-sectional workplace study.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Persson, Roger; Andersen, Christoffer H; Andersen, Lars L

    2014-02-01

    To investigate associations between perceived exertion and objectively assessed muscular and cardiovascular load during a full working day among workers with manual lifting tasks. A total of 159 men and 41 women from 14 workplaces with manual lifting tasks participated. Participants reported perceived exertion (BORG-CR10) at midday and after work. Surface electromyography of the thigh, lower back and neck muscles were normalized to isometric voluntary contractions (MVC) to express relative muscle load during the day. Cardiovascular load was measured with electrocardiography and calculated as the average percentage of the heart rate reserve capacity (((heart rate during work - resting heart rate) / (maximum heart rate - resting heart rate)) * 100) during the day. Using linear regression, significant but weak associations (β < 0.23) were observed between perceived exertion and (1) high muscle activity (>60% of MVC) of the neck muscles and (2) inactivity (<1% of MVC) of the thigh muscles and (3) cardiovascular load, respectively. Using logistic regression, perceived exertion ≥4 (high exertion), referencing <4 (low-to-moderate exertion), was related to high activity of the trapezius muscle [OR 18 (95% CI 2-143)], i.e., the odds for experiencing high exertion during work increased 18-fold for each percentage increase in time above 60% MVC. During a full working day among blue-collar workers with lifting tasks, high neck muscle activity increases the odds for experiencing high perceived physical exertion. Perceived exertion of at least 4 on the BORG CR10 scale appears to be a good indicator that high muscular loading occurs.

  12. Mechanism of valvular regurgitation.

    PubMed

    Khoo, Nee S; Smallhorn, Jeffery F

    2011-10-01

    Despite improvements in surgical techniques, valvular regurgitation results in major morbidity in children with heart disease. Functional anatomy, mechanisms of valve closure and adaptation to changing hemodynamic stress in normal mitral and tricuspid valves are complex and only partially understood. As well, pathology of atrioventricular valve regurgitation is further complicated by congenital valve abnormalities involving leaflet tissue, supporting chordal apparatus and displaced papillary muscles. This review provides a current understanding of the mechanisms that result in atrioventricular valve failure. Mitral valve leaflets have contractile elements, in addition to atrial muscle modulation of leaflet tension. When placed under mechanical tethering stress, the mitral valve adapts by leaflet expansion, which increases coaptation surface reserve and chordal thickening. Both pediatric and adult studies are increasingly reporting on the importance of subvalvar apparatus function in maintaining valve competency. The maintenance of efficient valve function is accomplished by a complex series of events involving atrial and annular contraction, annular deformation, active leaflet tension, chordal transmission of papillary muscle contractions and ventricular contraction.

  13. Tandospirone reduces wasting and improves cardiac function in experimental cancer cachexia.

    PubMed

    Elkina, Yulia; Palus, Sandra; Tschirner, Anika; Hartmann, Kai; von Haehling, Stephan; Doehner, Wolfram; Mayer, Ulrike; Coats, Andrew J S; Beadle, John; Anker, Stefan D; Springer, Jochen

    2013-12-10

    Cancer cachexia is thought to be the cause of >20% of cancer related deaths. Symptoms of cancer cachexia patients include depression and anorexia significantly worsening their quality of life. Moreover, in rodent models of cancer cachexia atrophy of the heart has been shown to impair cardiac function. Here, we characterize the effects of the antidepressant and anxiolytic drug tandospirone on wasting, cardiac function and survival in experimental cancer cachexia. The well-established Yoshida hepatoma rat model was used and tumor-bearing rats were treated with 1mg/kg/d (LD), 10mg/kg/d (HD) tandospirone or placebo. Weight, body composition (NMR), cardiac function (echocardiography), activity and food intake were assessed. Noradrenalin and cortisol were measured in plasma and caspase activity in skeletal muscle. Ten mg/kg/d tandospirone decreased the loss of body weight (p=0.0003) compared to placebo animals, mainly due to preservation of muscle mass (p<0.001), while 1mg/kg/d tandospirone was not effective. Locomotor activity (p=0.0007) and food intake (p=0.0001) were increased by HD tandospirone. The weight (p=0.0277) and function of heart (left ventricular mass, fractional shortening, stroke volume, ejection fraction, all p<0.05) were significantly improved. In the HD tandospirone group, plasma levels of noradrenalin and cortisol were significantly reduced by 49% and 52%, respectively, which may have contributed to the lower caspase activity in the gastrocnemius muscle. Most importantly, HD tandospirone significantly improved survival compared to placebo rats (HR: 0.34; 95% CI: 0.13-0.86; p=0.0495). Tandospirone showed significant beneficial effects in the Yoshida hepatoma cancer cachexia model and should be further examined as a prospective drug for this syndrome. © 2013.

  14. Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing inter-domain interactions within the ryanodine receptor

    PubMed Central

    Kobayashi, Shigeki; Yano, Masafumi; Suetomi, Takeshi; Ono, Makoto; Tateishi, Hiroki; Mochizuki, Mamoru; Xu, Xiaojuan; Uchinoumi, Hitoshi; Okuda, Shinichi; Yamamoto, Takeshi; Koseki, Noritaka; Kyushiki, Hiroyuki; Ikemoto, Noriaki; Matsuzaki, Masunori

    2009-01-01

    Objectives To investigate the effect of dantrolene, a drug generally used to treat Malignant Hyperthermia (MH), on the Ca2+ release and cardiomyocyte function in failing hearts. Background The N-terminal (N: 1-600) and Central (C: 2000-2500) domains of the ryanodine receptor (RyR), harbor many mutations associated with MH in skeletal muscle RyR (RyR1) and polymorphic ventricular tachycardia in cardiac RyR (RyR2). There is strong evidence that inter-domain interaction between these regions plays an important role in the mechanism of channel regulation. Methods Sarcoplasmic reticulum (SR) vesicles and cardiomyocytes were isolated from dog LV muscles (normal or rapid ventricular pacing for 4 weeks), for Ca2+ leak, transient, and spark assays. To assess the zipped or unzipped state of the interacting domains, the RyR was fluorescently labeled with methylcoumarin acetate in a site-directed manner. We employed a quartz-crystal microbalance technique to identify the dantrolene binding site within the RyR2. Results Dantrolene specifically bound to domain 601-620 in RyR2. In the SR isolated from pacing-induced dog failing hearts, the defective inter-domain interaction_(domain unzipping) has already occurred, causing spontaneous Ca2+ leak. Dantrolene suppressed both domain unzipping and the Ca2+ leak, showing identical drug concentration-dependence (IC50=0.3 μmol/L). In failing cardiomyocytes, both diastolic Ca2+ sparks and delayed afterdepolarization were frequently observed, but 1 μmol/L dantrolene inhibited both events. Conclusions Dantrolene corrects defective inter-domain interactions within RyR2 in failing hearts, inhibits spontaneous Ca2+ leak, in turn improves cardiomyocyte function in failing hearts. Thus, dantrolene may have a potential to treat heart failure, specifically targeting the RyR2. PMID:19460614

  15. Identification of biochemical adaptations in hyper- or hypocontractile hearts from phospholamban mutant mice by expression proteomics.

    PubMed

    Pan, Yan; Kislinger, Thomas; Gramolini, Anthony O; Zvaritch, Elena; Kranias, Evangelia G; MacLennan, David H; Emili, Andrew

    2004-02-24

    Phospholamban (PLN) is a critical regulator of cardiac contractility through its binding to and regulation of the activity of the sarco(endo)plasmic reticulum Ca2+ ATPase. To uncover biochemical adaptations associated with extremes of cardiac muscle contractility, we used high-throughput gel-free tandem MS to monitor differences in the relative abundance of membrane proteins in standard microsomal fractions isolated from the hearts of PLN-null mice (PLN-KO) with high contractility and from transgenic mice overexpressing a superinhibitory PLN mutant in a PLN-null background (I40A-KO) with diminished contractility. Significant differential expression was detected for a subset of the 782 proteins identified, including known membrane-associated biomarkers, components of signaling pathways, and previously uninvestigated proteins. Proteins involved in fat and carbohydrate metabolism and proteins linked to G protein-signaling pathways activating protein kinase C were enriched in I40A-KO cardiac muscle, whereas proteins linked to enhanced contractile function were enriched in PLN-KO mutant hearts. These data demonstrate that Ca2+ dysregulation, leading to elevated or depressed cardiac contractility, induces compensatory biochemical responses.

  16. Massive palmitoylation-dependent endocytosis during reoxygenation of anoxic cardiac muscle

    PubMed Central

    Lin, Mei-Jung; Fine, Michael; Lu, Jui-Yun; Hofmann, Sandra L; Frazier, Gary; Hilgemann, Donald W

    2013-01-01

    In fibroblasts, large Ca transients activate massive endocytosis (MEND) that involves membrane protein palmitoylation subsequent to mitochondrial permeability transition pore (PTP) openings. Here, we characterize this pathway in cardiac muscle. Myocytes with increased expression of the acyl transferase, DHHC5, have decreased Na/K pump activity. In DHHC5-deficient myocytes, Na/K pump activity and surface area/volume ratios are increased, the palmitoylated regulatory protein, phospholemman (PLM), and the cardiac Na/Ca exchanger (NCX1) show greater surface membrane localization, and MEND is inhibited in four protocols. Both electrical and optical methods demonstrate that PTP-dependent MEND occurs during reoxygenation of anoxic hearts. Post-anoxia MEND is ablated in DHHC5-deficient hearts, inhibited by cyclosporine A (CsA) and adenosine, promoted by staurosporine (STS), reduced in hearts lacking PLM, and correlates with impaired post-anoxia contractile function. Thus, the MEND pathway appears to be deleterious in severe oxidative stress but may constitutively contribute to cardiac sarcolemma turnover in dependence on metabolic stress. DOI: http://dx.doi.org/10.7554/eLife.01295.001 PMID:24282237

  17. Thyroid disease and the cardiovascular system.

    PubMed

    Danzi, Sara; Klein, Irwin

    2014-06-01

    Thyroid hormones, specifically triiodothyronine (T3), have significant effects on the heart and cardiovascular system. Hypothyroidism, hyperthyroidism, subclinical thyroid disease, and low T3 syndrome each cause cardiac and cardiovascular abnormalities through both genomic and nongenomic effects on cardiac myocytes and vascular smooth muscle cells. In compromised health, such as occurs in heart disease, alterations in thyroid hormone metabolism may further impair cardiac and cardiovascular function. Diagnosis and treatment of cardiac disease may benefit from including analysis of thyroid hormone status, including serum total T3 levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Myosin Transducer Mutations Differentially Affect Motor Function, Myofibril Structure, and the Performance of Skeletal and Cardiac Muscles

    PubMed Central

    Cammarato, Anthony; Dambacher, Corey M.; Knowles, Aileen F.; Kronert, William A.; Bodmer, Rolf

    2008-01-01

    Striated muscle myosin is a multidomain ATP-dependent molecular motor. Alterations to various domains affect the chemomechanical properties of the motor, and they are associated with skeletal and cardiac myopathies. The myosin transducer domain is located near the nucleotide-binding site. Here, we helped define the role of the transducer by using an integrative approach to study how Drosophila melanogaster transducer mutations D45 and Mhc5 affect myosin function and skeletal and cardiac muscle structure and performance. We found D45 (A261T) myosin has depressed ATPase activity and in vitro actin motility, whereas Mhc5 (G200D) myosin has these properties enhanced. Depressed D45 myosin activity protects against age-associated dysfunction in metabolically demanding skeletal muscles. In contrast, enhanced Mhc5 myosin function allows normal skeletal myofibril assembly, but it induces degradation of the myofibrillar apparatus, probably as a result of contractile disinhibition. Analysis of beating hearts demonstrates depressed motor function evokes a dilatory response, similar to that seen with vertebrate dilated cardiomyopathy myosin mutations, and it disrupts contractile rhythmicity. Enhanced myosin performance generates a phenotype apparently analogous to that of human restrictive cardiomyopathy, possibly indicating myosin-based origins for the disease. The D45 and Mhc5 mutations illustrate the transducer's role in influencing the chemomechanical properties of myosin and produce unique pathologies in distinct muscles. Our data suggest Drosophila is a valuable system for identifying and modeling mutations analogous to those associated with specific human muscle disorders. PMID:18045988

  19. Relation of Low Body Mass Index to Low Urinary Creatinine Excretion Rate in Patients with Coronary Heart Disease

    PubMed Central

    Bansal, Nisha; Hsu, Chi-yuan; Zhao, Shoujun; Whooley, Mary A.; Ix, Joachim H.

    2011-01-01

    In patients with prevalent coronary heart disease (CHD), studies have found a paradoxical relationship in that patients with higher body mass index (BMI) have lower mortality. One possibility is that individuals with higher BMI have greater muscle mass; and higher BMI may be a marker of better overall health status. We evaluated whether the paradoxical association of BMI with mortality in CHD patients is attenuated when accounting for urinary creatinine excretion, a marker of muscle mass. The Heart and Soul Study is an observational study of outpatients with stable CHD designed to investigate the influence of psychosocial factors on the progression of CHD. Outpatient 24-hour timed urine collections were obtained. Participants were followed up for death for 5.9 (± 1.9) years. Cox proportional hazards models evaluate the association between sex-specific BMI quintiles and mortality. There were 886 participants in our study population. Participants in higher quintiles of BMI were younger, more likely to have diabetes mellitus and hypertension and had higher urinary creatinine excretion rate. Compared to the lowest BMI quintile, subjects in higher BMI quintiles were less likely to die during follow-up. Adjustment for major demographic variables, traditional cardiovascular risk factors and kidney function did not attenuate the relationship. Additional adjustment for urinary creatinine excretion rate did not materially change the association between BMI and all-cause mortality. In conclusion, low muscle mass and low BMI are each associated with greater all-cause mortality, however low muscle mass does not appear to explain why CHD patients with low BMI have worse survival. PMID:21529727

  20. Effect of hypokinesia on contractile function of cardiac muscle

    NASA Technical Reports Server (NTRS)

    Meyerson, F. Z.; Kapelko, V. I.; Trikhpoyeva, A. M.; Gorina, M. S.

    1980-01-01

    Rats were subjected to hypokinesia for two months and the contractile function of isolated papillary muscle was studied. Hypokinesia reduced significantly the isotonic contraction rate which depended on the ATPase activity of the myofibrils; it also reduced the rate and index of relaxation which depended on the functional capacity of the Ca(++) pump of the sarcoplasmic reticulum. The maximum force of isometric contraction determined by the quantity of actomyosin bridges in the myofibrils did not change after hypokinesia. This complex of changes is contrary to that observed in adaptation to exercise when the rate of isotonic contraction and relaxation increases while the force of isometric contraction does not change. The possible mechanism of this stability of the contractile force during adaptation and readaptation of the heart is discussed.

  1. The effects of respiratory-muscle training on exercise in older women.

    PubMed

    Watsford, Mark; Murphy, Arona

    2008-07-01

    This research examined the effects of respiratory-muscle (RM) training on RM function and exercise performance in older women. Twenty-six women (60-69 yr of age) were assessed for spirometry, RM strength (maximal inspiratory and expiratory pressure), inspiratory-muscle endurance, and walking performance to a perceived exertion rating of "hard." They were randomly allocated to a threshold RM training group (RMT) or a nonexercising control group (CON) for 8 wk.After training, the 22% (inspiratory) and 30% (expiratory) improvements in RM strength in the RMT group were significantly higher than in the CON group (p < .05). The RMT group also displayed several significant performance improvements, including improved within-group treadmill performance time (12%) and reductions in submaximal heart rate (5%), percentage of maximum voluntary ventilation (16%), and perceived exertion for breathing (8%). RM training appears to improve RM function in older women. Furthermore, these improvements appear to be related to improved submaximal exercise performance.

  2. Watermelon juice: potential functional drink for sore muscle relief in athletes.

    PubMed

    Tarazona-Díaz, Martha P; Alacid, Fernando; Carrasco, María; Martínez, Ignacio; Aguayo, Encarna

    2013-08-07

    l-Citrulline is an excellent candidate to reduce muscle soreness, and watermelon is a fruit rich in this amino acid. This study investigated the potential of watermelon juice as a functional drink for athletes. An in vitro study of intestinal absorption of l-citrulline in Caco-2 cells was performed using unpasteurized (NW), pasteurized (80 °C for 40 s) watermelon juice (PW) and, as control, a standard of l-citrulline. l-citrulline bioavailability was greater when it was contained in a matrix of watermelon and when no heat treatment was applied. In the in vivo experiment (maximum effort test in a cycloergometer), seven athletes were supplied with 500 mL of natural watermelon juice (1.17 g of l-citrulline), enriched watermelon juice (4.83 g of l-citrulline plus 1.17 g from watermelon), and placebo. Both watermelon juices helped to reduce the recovery heart rate and muscle soreness after 24 h.

  3. Heart Diseases and Disorders

    MedlinePlus

    ... the risk of injuries from falling. Circulatory Disorders Heart Attack (Myocardial Infarction ) When arteries become so clogged that ... damage or kill the heart muscle, causing a heart attack . Knowing the symptoms of a heart attack and ...

  4. Porcine Tricuspid Valve Anatomy and Human Compatibility: Relevance for Preclinical Validation of Novel Valve Interventions.

    PubMed

    Waziri, Farhad; Lyager Nielsen, Sten; Michael Hasenkam, John

    2016-09-01

    Tricuspid regurgitation may be a precursor for heart failure, reduced functional capacity, and poor survival. A human compatible experimental model is required to understand the pathophysiology of the tricuspid valve disease as a basis for validating novel tricuspid valve interventions before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin-fixed porcine hearts obtained from Danish Landrace pigs (body weight 80 kg). All valvular dimensions were compared with human data acquired from literature sources. No difference was seen in the tricuspid annulus circumference between porcine and human hearts (13.0 ± 1.2 cm versus 13.5 ± 1.5 cm; p = NS), or in valve area (5.7 ± 1.6 cm2 versus 5.6 ± 1.0 cm2; p = NS). The majority of chordae types exhibited a larger chordal length and thickness in human hearts compared to porcine hearts. In both species, the anterior papillary muscle (PM) was larger than other PMs in the right ventricle, but muscle length varied greatly (range: 5.2-40.3 mm) and was significantly different in pigs and in humans (12.2 ± 3.2 mm versus 19.2 mm; p <0.001). The porcine tricuspid valve was determined to be a valid model for preclinical animal studies, despite various anatomic differences being noted between porcine and human hearts.

  5. [Effect of different backpack loads on physiological parame ters in walking].

    PubMed

    Zhao, Meiya; Tian, Shan; Tang, Qiaohong; Ni, Yikun; Wang, Lizhen; Fan, Yubo

    2014-10-01

    This study investigated the effect of prolonged walking with load carriage on body posture, muscle fatigue, heart rate and blood pressure of the tested subjects. Ten healthy volunteers performed 30 min walking trials on treadmill (speed = 1.1 m/s) with different backpack loads [0% body weight (BW), 10% BW, 15% BW and 20% BW]. The change of body posture, muscle fatigue, heart rate and blood pressure before and after walking and the recovery of muscle fatigue during the rest time (0, 5, 10 and 15 min) were collected using the Bortec AMT-8 and the NDI Optotrak Certus. Results showed that the forward trunk and head angle, muscle fatigue, heart rate and blood pressure increased with the increasing backpack loads and bearing time. With the 20% BW load, the forward angle, muscle fatigue and systolic pressure were significantly higher than with lighter weights. No significantly increased heart rate and diastolic pressure were found. Decreased muscle fatigue was found after removing the backpack in each load trial. But the recovery of the person with 20% BW load was slower than that of 0% BW, 10% BW and 15% BW. These findings indicated that the upper limit of backpack loads for college-aged students should be between 15% BW and 20% BW according to muscle fatigue and forward angle. It is suggested that backpack loads should be restricted to no more than 15% BW for walks of up to 30 min duration to avoid irreversible muscle fatigue.

  6. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension.

    PubMed

    de Man, F S; Handoko, M L; Groepenhoff, H; van 't Hul, A J; Abbink, J; Koppers, R J H; Grotjohan, H P; Twisk, J W R; Bogaard, H-J; Boonstra, A; Postmus, P E; Westerhof, N; van der Laarse, W J; Vonk-Noordegraaf, A

    2009-09-01

    We determined the physiological effects of exercise training on exercise capacity and quadriceps muscle function in patients with idiopathic pulmonary arterial hypertension (iPAH). In total, 19 clinically stable iPAH patients (New York Heart Association II-III) underwent a supervised exercise training programme for the duration of 12 weeks. Maximal capacity, endurance capacity and quadriceps function were assessed at baseline and after 12 weeks. In 12 patients, serial quadriceps muscle biopsies were obtained. 6-min walk distance and peak exercise capacity did not change after training. However, endurance capacity improved significantly after training, demonstrated by a shift of the anaerobic threshold to a higher workload (from 32+/-5 to 46+/-6 W; p = 0.003) together with an increase in exercise endurance time (p<0.001). Moreover, exercise training increased quadriceps strength by 13% (p = 0.005) and quadriceps endurance by 34% (p = 0.001). Training enhanced aerobic capacity of the quadriceps, by increasing capillarisation (1.36+/-0.10 to 1.78+/-0.13 capillaries per muscle fibre; p<0.001) and oxidative enzyme activity, especially of the type-I (slow) muscle fibres. No changes were found in cross-sectional area and fibre type distribution. Exercise training in iPAH improves exercise endurance and quadriceps muscle function, which is also reflected by structural changes of the quadriceps.

  7. Complex IV Deficient Surf1−/− Mice Initiate Mitochondrial Stress Responses

    PubMed Central

    Pulliam, Daniel A.; Deepa, Sathyaseelan S.; Liu, Yuhong; Hill, Shauna; Lin, Ai-Ling; Bhattacharya, Arunabh; Shi, Yun; Sloane, Lauren; Viscomi, Carlo; Zeviani, Massimo; Van Remmen, Holly

    2014-01-01

    Summary Mutations in SURF1 cytochrome c oxidase (COX) assembly protein are associated with Leigh’s syndrome, a human mitochondrial disorder that manifests as severe mitochondrial phenotypes and early lethality. In contrast, mice lacking the Surf1 protein (Surf1−/−) are viable and were previously shown to have enhanced longevity and a greater than 50% reduction in COX activity. We measured mitochondrial function in heart and skeletal muscle, and despite the significant reduction in COX activity, we found little or no difference in reactive oxygen species (ROS) generation, membrane potential, ATP production or respiration in isolated mitochondria from Surf1−/− mice compared to wild-type. However, blood lactate levels are elevated and Surf1−/− mice have reduced running endurance, suggesting compromised mitochondrial energy metabolism in vivo. Decreased COX activity in Surf1−/− mice is associated with increased markers of mitochondrial biogenesis (PGC-1α and VDAC) in both heart and skeletal muscle. While mitochondrial biogenesis is a common response in the two tissues, skeletal muscle have an up-regulation of the mitochondrial unfolded protein response (UPRMT) and heart exhibits induction of the Nrf2 antioxidant response pathway. These data are the first to report induction of the UPRMT in a mammalian model of diminished COX activity. In addition our results suggest that impaired mitochondrial function can lead to induction of mitochondrial stress pathways to confer protective effects on cellular homeostasis. Loss of complex IV assembly factor Surf1 in mice results in compensatory responses including mitochondrial biogenesis, the nrf2 pathway and the mitochondrial unfolded protein response. This compensatory response may contribute to the lack of deleterious phenotypes under basal conditions. PMID:24911525

  8. Validity, prognostic value and optimal cutoff of respiratory muscle strength in patients with chronic heart failure changes with beta-blocker treatment.

    PubMed

    Frankenstein, Lutz; Nelles, Manfred; Meyer, F Joachim; Sigg, Caroline; Schellberg, Dieter; Remppis, B Andrew; Katus, Hugo A; Zugck, Christian

    2009-08-01

    Training studies frequently use maximum inspiratory mouth occlusion pressure (PImax) as a therapeutic target and surrogate marker. For patients on beta-blocker (BBL), prognostic data allowing this extrapolation do not exist. Furthermore, the effects of BBL, mainstay of modern chronic heart failure therapy, on respiratory muscle function remain controversial. Finally, no proper separate cutoff according to treatment exists. Prospective, observational inclusion of patients with stable systolic chronic heart failure and recording of 1 year and all-time mortality for endpoint analysis. In 686 patients, 81% men, 494 patients on BBL, PImax was measured along with clinical evaluation. The median follow-up was 50 months (interquartile range: 26-75 months). Patients with or without BBL did not differ significantly for PImax, percentage of predicted PImax or other marker of disease severity. PImax was a significant (hazard ratio: 0.925; 95% confidence interval: 0.879-0.975; chi(2): 8.62) marker of adverse outcome, independent of BBL-status or aetiology. Percentage of predicted PImax was not independent of PImax. The cutoff identified through receiver-operated characteristics for 1-year mortality was 4.14 kPa for patients on BBL and 7.29 kPa for patients not on BBL. When separated accordingly, 1-year mortality was 8.5 versus 21.4%, P=0.02, for patients not on BBL and 4.3 versus 16.2%, P<0.001, for patients on BBL. This study fills the gap between trials targeting respiratory muscle on a functional basis and the resultant prognostic information with regard to BBL. BBL lowered the optimal PImax cutoff values for risk stratification without changing the measured values of PImax. This should be considered at inclusion and evaluation of trials and interpretation of exercise parameters.

  9. Impact of Leucine Supplementation on Exercise Training Induced Anti-Cardiac Remodeling Effect in Heart Failure Mice

    PubMed Central

    de Moraes, Wilson Max Almeida Monteiro; Melara, Thaís Plasti; de Souza, Pamella Ramona Moraes; de Salvi Guimarães, Fabiana; Bozi, Luiz Henrique Marchesi; Brum, Patricia Chakur; Medeiros, Alessandra

    2015-01-01

    Leucine supplementation potentiates the effects of aerobic exercise training (AET) on skeletal muscle; however, its potential effects associated with AET on cardiac muscle have not been clarified yet. We tested whether leucine supplementation would potentiate the anti-cardiac remodeling effect of AET in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CARKO). Mice were assigned to five groups: wild type mice treated with placebo and sedentary (WT, n = 11), α2A/α2CARKO treated with placebo and sedentary (KO, n = 9), α2A/α2CARKO treated with leucine and sedentary (KOL, n = 11), α2A/α2CARKO treated with placebo and AET (KOT, n = 12) or α2A/α2CARKO treated with leucine and AET (KOLT, n = 12). AET consisted of four weeks on a treadmill with 60 min sessions (six days/week, 60% of maximal speed) and administration by gavage of leucine (1.35 g/kg/day) or placebo (distilled water). The AET significantly improved exercise capacity, fractional shortening and re-established cardiomyocytes’ diameter and collagen fraction in KOT. Additionally, AET significantly prevented the proteasome hyperactivity, increased misfolded proteins and HSP27 expression. Isolated leucine supplementation displayed no effect on cardiac function and structure (KOL), however, when associated with AET (KOLT), it increased exercise tolerance to a higher degree than isolated AET (KOT) despite no additional effects on AET induced anti-cardiac remodeling. Our results provide evidence for the modest impact of leucine supplementation on cardiac structure and function in exercised heart failure mice. Leucine supplementation potentiated AET effects on exercise tolerance, which might be related to its recognized impact on skeletal muscle. PMID:25988767

  10. Provision of tricuspid valve leaflets by septal papillary muscles in the right ventricle of human and other mammal hearts.

    PubMed

    Jezyk, Damian; Jerzemowski, Janusz; Grzybiak, Marek

    2003-01-01

    Leaflets of the tricuspid valve are provided by tendinous cords extending from the papillary muscles. The situation is complicated with the septal muscles, which generally occur in two groups, one as constant musculus coni arteriosi and the second as other variable septal muscles. We tested whether there is a variability in the provision of the tricuspid valve in different taxonomical groups of mammals. The material examined consisted of 299 hearts of mammals (Primates, Ungulata, Carnivora, Lagomorpha, Rodentia, Marsupialia). The musculus coni arteriosi in the majority of mammals provided only the front leaflet, but among Ungulata and Rodentia it provided simultaneously the front and septal leaflet. The other septal muscles provided the front, septal and even back leaflets. The following regularity was observed: in the hearts of Primates provision of the front leaflet and the front part of the septal leaflet predominated, among Ungulata the muscles provided the middle part of the septal leaflet, but among the other mammals the rest of the septal muscles provided, significantly, the back part of the septal leaflet. Such a provision was characteristic for predators, hares, rodents and marsupials. These circumstances may allow the conclusion to be drawn that there is a taxonomical dependence in the provision of the tricuspid valve in the hearts of the mammals under examination.

  11. Stem Cell Therapy in Acute Myocardial Infarction: A Pot of Gold or Pandora's Box

    PubMed Central

    Shah, V. K.; Shalia, K. K.

    2011-01-01

    Stem cell therapy for conditions characterized by myocyte loss in myocardial infarction and heart failure is intuitively appealing. Stem cells from various sources, including heart itself in preclinical and animal studies, have shown the potential to improve the function of ventricular muscle after ischaemic injury. The clinical experience from worldwide studies have indicated the safety profile but with modest benefits. The predominant mechanisms of transplanted cells for improving cardiac function have pointed towards paracrine effects rather than transdifferentiation into cardiomyocytes. Thus, further investigations should be encouraged towards bench side and bedside to resolve various issues for ensuring the correct type and dosing of cells, time, and method of delivery and identify correct mechanism of functional improvement. An interdisciplinary effort at the scientific, clinical, and the government front will bring successful realization of this therapy for healing the heart and may convert what seems now a Pandora's Box into a Pot of Gold. PMID:21804827

  12. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance.

    PubMed

    Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa

    2015-03-01

    Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.

  13. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation

    PubMed Central

    Ryu, Dongryeol; Zhang, Hongbo; Ropelle, Eduardo R.; Sorrentino, Vincenzo; Mázala, Davi A. G.; Mouchiroud, Laurent; Marshall, Philip L.; Campbell, Matthew D.; Ali, Amir Safi; Knowels, Gary M.; Bellemin, Stéphanie; Iyer, Shama R.; Wang, Xu; Gariani, Karim; Sauve, Anthony A.; Cantó, Carles; Conley, Kevin E.; Walter, Ludivine; Lovering, Richard M.; Chin, Eva R.; Jasmin, Bernard J.; Marcinek, David J.; Menzies, Keir J.; Auwerx, Johan

    2017-01-01

    Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD+) synthesis, consistent with a potential role for the essential cofactor NAD+ in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene’s muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5’-diphosphate (ADP)–ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD+ and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD+ levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD+ biosynthesis. Replenishing NAD+ stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr−/− mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD+ repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD+ may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures. PMID:27798264

  14. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia

    PubMed Central

    Ruozi, Giulia; Bortolotti, Francesca; Falcione, Antonella; Dal Ferro, Matteo; Ukovich, Laura; Macedo, Antero; Zentilin, Lorena; Filigheddu, Nicoletta; Cappellari, Gianluca Gortan; Baldini, Giovanna; Zweyer, Marina; Barazzoni, Rocco; Graziani, Andrea; Zacchigna, Serena; Giacca, Mauro

    2015-01-01

    Functional screening of expression libraries in vivo would offer the possibility of identifying novel biotherapeutics without a priori knowledge of their biochemical function. Here we describe a procedure for the functional selection of tissue-protective factors based on the in vivo delivery of arrayed cDNA libraries from the mouse secretome using adeno-associated virus (AAV) vectors. Application of this technique, which we call FunSel, in the context of acute ischaemia, revealed that the peptide ghrelin protects skeletal muscle and heart from ischaemic damage. When delivered to the heart using an AAV9 vector, ghrelin markedly reduces infarct size and preserves cardiac function over time. This protective activity associates with the capacity of ghrelin to sustain autophagy and remove dysfunctional mitochondria after myocardial infarction. Our findings describe an innovative tool to identify biological therapeutics and reveal a novel role of ghrelin as an inducer of myoprotective autophagy. PMID:26066847

  15. Cardiac cycle-synchronized electrical muscle stimulator for lower limb training with the potential to reduce the heart's pumping workload

    PubMed Central

    Matsuse, Hiroo; Akimoto, Ryuji; Kamiya, Shiro; Moritani, Toshio; Sasaki, Motoki; Ishizaki, Yuta; Ohtsuka, Masanori; Nakayoshi, Takaharu; Ueno, Takafumi; Shiba, Naoto; Fukumoto, Yoshihiro

    2017-01-01

    Background The lower limb muscle may play an important role in decreasing the heart’s pumping workload. Aging and inactivity cause atrophy and weakness of the muscle, leading to a loss of the heart-assisting role. An electrical lower limb muscle stimulator can prevent atrophy and weakness more effectively than conventional resistance training; however, it has been reported to increase the heart’s pumping workload in some situations. Therefore, more effective tools should be developed. Methods We newly developed a cardiac cycle-synchronized electrical lower limb muscle stimulator by combining a commercially available electrocardiogram monitor and belt electrode skeletal muscle electrical stimulator, making it possible to achieve strong and wide but not painful muscle contractions. Then, we tested the stimulator in 11 healthy volunteers to determine whether the special equipment enabled lower limb muscle training without harming the hemodynamics using plethysmography and a percutaneous cardiac output analyzer. Results In 9 of 11 subjects, the stimulator generated diastolic augmentation waves on the dicrotic notches and end-diastolic pressure reduction waves on the plethysmogram waveforms of the brachial artery, showing analogous waveforms in the intra-aortic balloon pumping heart-assisting therapy. The heart rate, stroke volume, and cardiac output significantly increased during the stimulation. There was no change in the systolic or diastolic blood pressure during the stimulation. Conclusion Cardiac cycle-synchronized electrical muscle stimulation for the lower limbs may enable muscle training without harmfully influencing the hemodynamics and with a potential to reduce the heart’s pumping workload, suggesting a promising tool for effectively treating both locomotor and cardiovascular disorders. PMID:29117189

  16. Anatomy of the septomarginal trabecula in goat hearts.

    PubMed

    Leão, Camila Ribeiro; Pacha, Diego Lago; Cyriaco, Thiago; da Silva, Cavalcante; Wafae, Nader; Pereira, Heloisa Maria Lemes; Ruiz, Cristiane Regina

    2010-01-01

    Our aim in this study was to examine the right septomarginal trabecula of goats regarding the frequency, origin course of the septal and free component, attachment to the papillaris magnus muscle and size . The material used consisted in 32 hearts from non-pedigree goats of both sexes, preserved in 10% formalin. The right septomarginal trabecula was present in all hearts. It could also present a prominence in the form of a cord in the septum before detaching and going towards the wall or the papillary muscle. We called this a septal component and found it in 69% of all hearts studied. In the remaining specimens, the exit of the septomarginal trabecula was abrupt, without presenting a septal component. It could be attached solely to the papillaris magnus muscle or to the papillary muscle and the ventricle wall, originated in the cranial third of the septum, and was attached to the middle third of the papillary muscle or its caudal third. Its free part, from the septum to the papillaris magnus muscle, ranged in length from 1.3 cm to 2.6 cm. The mean value was 1.7 cm, and the most frequent values were 1.9 and 1.5 cm. In conclusion, in goats, the septomarginal trabecula is a constant and invariable structure.

  17. Funktionelle Elektrostimulation Paraplegischer Patienten

    PubMed Central

    2014-01-01

    Functional Electrical Stimulation on Paraplegic Patients. We report on clinical and physiological effects of 8 months Functional Electrical Stimulation (FES) of quadriceps femoris muscle on 16 paraplegic patients. Each patient had muscle biopsies, CT-muscle diameter measurements, knee extension strength testing carried out before and after 8 months FES training. Skin perfusion was documented through infrared telethermography and xenon clearance, muscle perfusion was recorded through thallium scintigraphy. After 8 months FES training baseline skin perfusion showed 86 % increase, muscle perfusion was augmented by 87 %. Muscle fiber diameters showed an average increase of 59 % after 8 months FES training. Muscles in patients with spastic paresis as well as in patients with denervation showed an increase in aerob and anaerob muscle enzymes up to the normal range. Even without axonal neurotropic substances FES was able to demonstrate fiberhypertrophy, enzyme adaptation and intracellular structural benefits in denervated muscles. The increment in muscle area as visible on CT-scans of quadriceps femoris was 30 % in spastic paraplegia and 10 % in denervated patients respectively. FES induced changes were less in areas not directly underneath the surface electrodes. We strongly recommend the use of Kern’s current for FES in denervated muscles to induce tetanic muscle contractions as we formed a very critical opinion of conventional exponential current. In patients with conus-cauda-lesions FES must be integrated into modern rehabilitation to prevent extreme muscle degeneration and decubital ulcers. Using FES we are able to improve metabolism and induce positive trophic changes in our patients lower extremities. In spastic paraplegics the functions „rising and walking“ achieved through FES are much better training than FES ergometers. Larger muscle masses are activated and an increased heart rate is measured, therefore the impact on cardiovascular fitness and metabolism is much greater. This effectively addresses and prevents all problems which result from inactivity in paraplegic patients. PMID:26913132

  18. Thrombopoietin modulates cardiac contractility in vitro and contributes to myocardial depressing activity of septic shock serum.

    PubMed

    Lupia, Enrico; Spatola, Tiziana; Cuccurullo, Alessandra; Bosco, Ornella; Mariano, Filippo; Pucci, Angela; Ramella, Roberta; Alloatti, Giuseppe; Montrucchio, Giuseppe

    2010-09-01

    Thrombopoietin (TPO) is a humoral growth factor that has been shown to increase platelet activation in response to several agonists. Patients with sepsis have increased circulating TPO levels, which may enhance platelet activation, potentially participating to the pathogenesis of multi-organ failure. Aim of this study was to investigate whether TPO affects myocardial contractility and participates to depress cardiac function during sepsis. We showed the expression of the TPO receptor c-Mpl on myocardial cells and tissue by RT-PCR, immunofluorescence and western blotting. We then evaluated the effect of TPO on the contractile function of rat papillary muscle and isolated heart. TPO did not change myocardial contractility in basal conditions, but, when followed by epinephrine (EPI) stimulation, it blunted the enhancement of contractile force induced by EPI both in papillary muscle and isolated heart. An inhibitor of TPO prevented TPO effect on cardiac inotropy. Treatment of papillary muscle with pharmacological inhibitors of phosphatidylinositol 3-kinase, NO synthase, and guanilyl cyclase abolished TPO effect, indicating NO as the final mediator. We finally studied the role of TPO in the negative inotropic effect exerted by human septic shock (HSS) serum and TPO cooperation with TNF-alpha and IL-1beta. Pre-treatment with the TPO inhibitor prevented the decrease in contractile force induced by HSS serum. Moreover, TPO significantly amplified the negative inotropic effect induced by TNF-alpha and IL-1beta in papillary muscle. In conclusion, TPO negatively modulates cardiac inotropy in vitro and contributes to the myocardial depressing activity of septic shock serum.

  19. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle.

    PubMed

    Zhang, Xuemeng; Kampourakis, Thomas; Yan, Ziqian; Sevrieva, Ivanka; Irving, Malcolm; Sun, Yin-Biao

    2017-02-23

    The Frank-Starling relation is a fundamental auto-regulatory property of the heart that ensures the volume of blood ejected in each heartbeat is matched to the extent of venous filling. At the cellular level, heart muscle cells generate higher force when stretched, but despite intense efforts the underlying molecular mechanism remains unknown. We applied a fluorescence-based method, which reports structural changes separately in the thick and thin filaments of rat cardiac muscle, to elucidate that mechanism. The distinct structural changes of troponin C in the thin filaments and myosin regulatory light chain in the thick filaments allowed us to identify two aspects of the Frank-Starling relation. Our results show that the enhanced force observed when heart muscle cells are maximally activated by calcium is due to a change in thick filament structure, but the increase in calcium sensitivity at lower calcium levels is due to a change in thin filament structure.

  20. The coiled-coil domain of MURC/cavin-4 is involved in membrane trafficking of caveolin-3 in cardiomyocytes.

    PubMed

    Naito, Daisuke; Ogata, Takehiro; Hamaoka, Tetsuro; Nakanishi, Naohiko; Miyagawa, Kotaro; Maruyama, Naoki; Kasahara, Takeru; Taniguchi, Takuya; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2015-12-15

    Muscle-restricted coiled-coil protein (MURC), also referred to as cavin-4, is a member of the cavin family that works cooperatively with caveolins in caveola formation and function. Cavins are cytoplasmic proteins with coiled-coil domains and form heteromeric complexes, which are recruited to caveolae in cells expressing caveolins. Among caveolins, caveolin-3 (Cav3) is exclusively expressed in muscle cells, similar to MURC/cavin-4. In the heart, Cav3 overexpression contributes to cardiac protection, and its deficiency leads to progressive cardiomyopathy. Mutations in the MURC/cavin-4 gene have been identified in patients with dilated cardiomyopathy. In the present study, we show the role of MURC/cavin-4 as a caveolar component in the heart. In H9c2 cells, MURC/cavin-4 was localized at the plasma membrane, whereas a MURC/cavin-4 mutant lacking the coiled-coil domain (ΔCC) was primarily localized to the cytoplasm. ΔCC bound to Cav3 and impaired membrane localization of Cav3 in cardiomyocytes. Additionally, although ΔCC did not alter Cav3 mRNA expression, ΔCC decreased the Cav3 protein level. MURC/cavin-4 and ΔCC similarly induced cardiomyocyte hypertrophy; however, ΔCC showed higher hypertrophy-related fetal gene expression than MURC/cavin-4. ΔCC induced ERK activation in cardiomyocytes. Transgenic mice expressing ΔCC in the heart (ΔCC-Tg mice) showed impaired cardiac function accompanied by cardiomyocyte hypertrophy and marked interstitial fibrosis. Hearts from ΔCC-Tg mice showed a reduction of the Cav3 protein level and activation of ERK. These results suggest that MURC/cavin-4 requires its coiled-coil domain to target the plasma membrane and to stabilize Cav3 at the plasma membrane of cardiomyocytes and that MURC/cavin-4 functions as a crucial caveolar component to regulate cardiac function. Copyright © 2015 the American Physiological Society.

  1. Effects of propranolol treatment on left ventricular function and intracellular calcium regulation in rats with postinfarction heart failure

    PubMed Central

    Litwin, Sheldon E; Katz, Sarah E; Morgan, James P; Douglas, Pamela S

    1999-01-01

    Chronic treatment with beta-adrenergic blocking agents can improve survival in patients with heart failure. The mechanisms underlying the beneficial effects and whether these effects are generalizable to ischaemic heart failure are unresolved.We performed echocardiographic-Doppler examinations in rats (n=28) 1 and 6 weeks after myocardial infarction (MI) or sham surgery. Rats were randomized to no treatment or propranolol (500 mg/l in drinking water) after the first echocardiogram. Isometric contractions and intracellular Ca transients were recorded simultaneously in noninfarcted left ventricular (LV) papillary muscles.Untreated MI rats had significant LV dilatation (10.6±0.4* vs 8.9±0.3 mm, MI vs control), impaired systolic function (fractional shortening=11±2* vs 38±2%), and a restrictive LV diastolic filling pattern. MI rats receiving propranolol had similar LV chamber sizes (10.6±0.5 mm) and systolic function (13±2%). The propranolol treated animals had higher LV end-diastolic pressures (27±2* vs 20±3 mmHg) and a more restricted LV diastolic filling pattern (increased ratio of early to late filling velocities and more rapid E wave deceleration rate). Contractility of papillary muscles from untreated MI rats was depressed (1.6±0.3 vs 2.4±0.5 g mm−2). In addition, Ca transients were prolonged and the inotropic response to isoproterenol was blunted. Propranolol treatment did not improve force development (1.6±0.3 g mm−2) or the duration of Ca transients during isoproterenol stimulation.Chronic propranolol treatment in rats with postinfarction heart failure did not improve LV remodeling or systolic function. LV diastolic pressures and filling patterns were worsened by propranolol. Treatment also did not produce appreciable improvement in contractility, intracellular Ca regulation or beta-adrenergic responsiveness in the noninfarcted myocardium. PMID:10455325

  2. Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair.

    PubMed

    Zimmermann, Wolfram-Hubertus

    2013-01-01

    The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application.

  3. Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair

    PubMed Central

    2013-01-01

    The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application. PMID:24229468

  4. Zebrafish cardiac development requires a conserved secondary heart field

    PubMed Central

    Hami, Danyal; Grimes, Adrian C.; Tsai, Huai-Jen; Kirby, Margaret L.

    2011-01-01

    The secondary heart field is a conserved developmental domain in avian and mammalian embryos that contributes myocardium and smooth muscle to the definitive cardiac arterial pole. This field is part of the overall heart field and its myocardial component has been fate mapped from the epiblast to the heart in both mammals and birds. In this study we show that the population that gives rise to the arterial pole of the zebrafish can be traced from the epiblast, is a discrete part of the mesodermal heart field, and contributes myocardium after initial heart tube formation, giving rise to both smooth muscle and myocardium. We also show that Isl1, a transcription factor associated with undifferentiated cells in the secondary heart field in other species, is active in this field. Furthermore, Bmp signaling promotes myocardial differentiation from the arterial pole progenitor population, whereas inhibiting Smad1/5/8 phosphorylation leads to reduced myocardial differentiation with subsequent increased smooth muscle differentiation. Molecular pathways required for secondary heart field development are conserved in teleosts, as we demonstrate that the transcription factor Tbx1 and the Sonic hedgehog pathway are necessary for normal development of the zebrafish arterial pole. PMID:21558385

  5. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome.

    PubMed

    Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo

    2017-12-01

    What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise frequency and duration for the improvement of metabolic syndrome and capillary density in skeletal muscle. Exercise intensity was a main factor in reversing microvascular rarefaction in the heart. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  6. Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice.

    PubMed

    Jia, Yuzhi; Chang, Hsiang-Chun; Schipma, Matthew J; Liu, Jing; Shete, Varsha; Liu, Ning; Sato, Tatsuya; Thorp, Edward B; Barger, Philip M; Zhu, Yi-Jun; Viswakarma, Navin; Kanwar, Yashpal S; Ardehali, Hossein; Thimmapaya, Bayar; Reddy, Janardan K

    2016-01-01

    Mediator, an evolutionarily conserved multi-protein complex consisting of about 30 subunits, is a key component of the polymerase II mediated gene transcription. Germline deletion of the Mediator subunit 1 (Med1) of the Mediator in mice results in mid-gestational embryonic lethality with developmental impairment of multiple organs including heart. Here we show that cardiomyocyte-specific deletion of Med1 in mice (csMed1-/-) during late gestational and early postnatal development by intercrossing Med1fl/fl mice to α-MyHC-Cre transgenic mice results in lethality within 10 days after weaning due to dilated cardiomyopathy-related ventricular dilation and heart failure. The csMed1-/- mouse heart manifests mitochondrial damage, increased apoptosis and interstitial fibrosis. Global gene expression analysis revealed that loss of Med1 in heart down-regulates more than 200 genes including Acadm, Cacna1s, Atp2a2, Ryr2, Pde1c, Pln, PGC1α, and PGC1β that are critical for calcium signaling, cardiac muscle contraction, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy and peroxisome proliferator-activated receptor regulated energy metabolism. Many genes essential for oxidative phosphorylation and proper mitochondrial function such as genes coding for the succinate dehydrogenase subunits of the mitochondrial complex II are also down-regulated in csMed1-/- heart contributing to myocardial injury. Data also showed up-regulation of about 180 genes including Tgfb2, Ace, Atf3, Ctgf, Angpt14, Col9a2, Wisp2, Nppa, Nppb, and Actn1 that are linked to cardiac muscle contraction, cardiac hypertrophy, cardiac fibrosis and myocardial injury. Furthermore, we demonstrate that cardiac specific deletion of Med1 in adult mice using tamoxifen-inducible Cre approach (TmcsMed1-/-), results in rapid development of cardiomyopathy and death within 4 weeks. We found that the key findings of the csMed1-/- studies described above are highly reproducible in TmcsMed1-/- mouse heart. Collectively, these observations suggest that Med1 plays a critical role in the maintenance of heart function impacting on multiple metabolic, compensatory and reparative pathways with a likely therapeutic potential in the management of heart failure.

  7. Healthy Muscles Matter

    MedlinePlus

    ... How can I keep my muscles more healthy? Physical activity Muscles that are not used will get smaller ... heart muscle as well! Get 60 minutes of physical activity every day. Get 60 minutes of physical activity ...

  8. Discordant orthostatic reflex renin-angiotensin and sympathoneural responses in premenopausal exercising-hypoestrogenic women.

    PubMed

    O'Donnell, Emma; Goodman, Jack M; Mak, Susanna; Murai, Hisayoshi; Morris, Beverley L; Floras, John S; Harvey, Paula J

    2015-05-01

    Our prior observations in normotensive postmenopausal women stimulated the hypotheses that compared with eumenorrheic women, active hypoestrogenic premenopausal women with functional hypothalamic amenorrhea would demonstrate attenuated reflex renin-angiotensin-aldosterone system responses to an orthostatic challenge, whereas to defend blood pressure reflex increases in muscle, sympathetic nerve activity would be augmented. To test these hypotheses, we assessed, in recreationally active women, 12 with amenorrhea (ExFHA; aged 25 ± 1 years; body mass index 20.7 ± 0.7 kg/m(2); mean ± SEM) and 17 with eumenorrhea (ExOv; 24 ± 1 years; 20.9 ± 0.5 kg/m(2)), blood pressure, heart rate, plasma renin, angiotensin II, aldosterone, and muscle sympathetic nerve activity at supine rest and during graded lower body negative pressure (-10, -20, and -40 mm Hg). At baseline, heart rate and systolic blood pressure were lower (P<0.05) in ExFHA (47 ± 2 beats/min and 94 ± 2 mm Hg) compared with ExOv (56 ± 2 beats/min and 105 ± 2 mm Hg), but muscle sympathetic nerve activity and renin-angiotensin-aldosterone system constituents were similar (P>0.05). In response to graded lower body negative pressure, heart rate increased (P<0.05) and systolic blood pressure decreased (P<0.05) in both groups, but these remained consistently lower in ExFHA (P<0.05). Lower body negative pressure elicited increases (P<0.05) in renin, angiotensin II, and aldosterone in ExOv, but not in ExFHA (P>0.05). Muscle sympathetic nerve activity burst incidence increased reflexively in both groups, but more so in ExFHA (P<0.05). Otherwise, healthy hypoestrogenic ExFHA women demonstrate low blood pressure and disruption of the normal circulatory response to an orthostatic challenge: plasma renin, angiotensin II, and aldosterone fail to increase and blood pressure is defended by an augmented sympathetic vasoconstrictor response. © 2015 American Heart Association, Inc.

  9. Exercise training in patients with heart disease: review of beneficial effects and clinical recommendations.

    PubMed

    Gielen, Stephan; Laughlin, M Harold; O'Conner, Christopher; Duncker, Dirk J

    2015-01-01

    Over the last decades exercise training has evolved into an established evidence-based therapeutic strategy with prognostic benefits in many cardiovascular diseases (CVDs): In stable coronary artery disease (CAD) exercise training attenuates disease progression by beneficially influencing CVD risk factors (i.e., hyperlipidemia, hypertension) and coronary endothelial function. In heart failure (HF) with reduced ejection fraction (HFrEF) training prevents the progressive loss of exercise capacity by antagonizing peripheral skeletal muscle wasting and by promoting left ventricular reverse remodeling with reduction in cardiomegaly and improvement of ejection fraction. Novel areas for exercise training interventions include HF with preserved ejection fraction (HFpEF), pulmonary hypertension, and valvular heart disease. In HFpEF, randomized studies indicate a lusitropic effect of training on left ventricular diastolic function associated with symptomatic improvement of exercise capacity. In pulmonary hypertension, reductions in pulmonary artery pressure were observed following endurance exercise training. Recently, innovative training methods such as high-intensity interval training, resistance training and others have been introduced. Although their prognostic value still needs to be determined, these approaches may achieve superior improvements in aerobic exercise capacity and gain in muscle mass, respectively. In this review, we give an overview of the prognostic and symptomatic benefits of exercise training in the most common cardiac disease entities. Additionally, key guideline recommendations for the initiation of training programs are summarized. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Computational optogenetics: A novel continuum framework for the photoelectrochemistry of living systems

    NASA Astrophysics Data System (ADS)

    Wong, Jonathan; Abilez, Oscar J.; Kuhl, Ellen

    2012-06-01

    Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second-order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.

  11. Computational Optogenetics: A Novel Continuum Framework for the Photoelectrochemistry of Living Systems.

    PubMed

    Wong, Jonathan; Abilez, Oscar J; Kuhl, Ellen

    2012-06-01

    Electrical stimulation is currently the gold standard treatment for heart rhythm disorders. However, electrical pacing is associated with technical limitations and unavoidable potential complications. Recent developments now enable the stimulation of mammalian cells with light using a novel technology known as optogenetics. The optical stimulation of genetically engineered cells has significantly changed our understanding of electrically excitable tissues, paving the way towards controlling heart rhythm disorders by means of photostimulation. Controlling these disorders, in turn, restores coordinated force generation to avoid sudden cardiac death. Here, we report a novel continuum framework for the photoelectrochemistry of living systems that allows us to decipher the mechanisms by which this technology regulates the electrical and mechanical function of the heart. Using a modular multiscale approach, we introduce a non-selective cation channel, channelrhodopsin-2, into a conventional cardiac muscle cell model via an additional photocurrent governed by a light-sensitive gating variable. Upon optical stimulation, this channel opens and allows sodium ions to enter the cell, inducing electrical activation. In side-by-side comparisons with conventional heart muscle cells, we show that photostimulation directly increases the sodium concentration, which indirectly decreases the potassium concentration in the cell, while all other characteristics of the cell remain virtually unchanged. We integrate our model cells into a continuum model for excitable tissue using a nonlinear parabolic second order partial differential equation, which we discretize in time using finite differences and in space using finite elements. To illustrate the potential of this computational model, we virtually inject our photosensitive cells into different locations of a human heart, and explore its activation sequences upon photostimulation. Our computational optogenetics tool box allows us to virtually probe landscapes of process parameters, and to identify optimal photostimulation sequences with the goal to pace human hearts with light and, ultimately, to restore mechanical function.

  12. Sex Differences in Muscle Wasting.

    PubMed

    Anderson, Lindsey J; Liu, Haiming; Garcia, Jose M

    2017-01-01

    With aging and other muscle wasting diseases, men and women undergo similar pathological changes in skeletal muscle: increased inflammation, enhanced oxidative stress, mitochondrial dysfunction, satellite cell senescence, elevated apoptosis and proteasome activity, and suppressed protein synthesis and myocyte regeneration. Decreased food intake and physical activity also indirectly contribute to muscle wasting. Sex hormones also play important roles in maintaining skeletal muscle homeostasis. Testosterone is a potent anabolic factor promoting muscle protein synthesis and muscular regeneration. Estrogens have a protective effect on skeletal muscle by attenuating inflammation; however, the mechanisms of estrogen action in skeletal muscle are less well characterized than those of testosterone. Age- and/or disease-induced alterations in sex hormones are major contributors to muscle wasting. Hence, men and women may respond differently to catabolic conditions because of their hormonal profiles. Here we review the similarities and differences between men and women with common wasting conditions including sarcopenia and cachexia due to cancer, end-stage renal disease/chronic kidney disease, liver disease, chronic heart failure, and chronic obstructive pulmonary disease based on the literature in clinical studies. In addition, the responses in men and women to the commonly used therapeutic agents and their efficacy to improve muscle mass and function are also reviewed.

  13. Hypertrophic cardiomyopathy

    MedlinePlus

    ... heart, forcing the heart to work harder to pump blood. It also can make it harder for the heart to relax ... from defects in the genes that control heart muscle growth. Younger people are likely to ...

  14. What Is the Apgar Score?

    MedlinePlus

    ... newborns soon after birth. This test checks a baby's heart rate, muscle tone, and other signs to see ... test, five things are used to check a baby's health. Each is scored on a scale of 0 to 2, ... P ulse (heart rate) G rimace response (reflexes) A ctivity (muscle ...

  15. Heart failure: when form fails to follow function.

    PubMed

    Katz, Arnold M; Rolett, Ellis L

    2016-02-01

    Cardiac performance is normally determined by architectural, cellular, and molecular structures that determine the heart's form, and by physiological and biochemical mechanisms that regulate the function of these structures. Impaired adaptation of form to function in failing hearts contributes to two syndromes initially called systolic heart failure (SHF) and diastolic heart failure (DHF). In SHF, characterized by high end-diastolic volume (EDV), the left ventricle (LV) cannot eject a normal stroke volume (SV); in DHF, with normal or low EDV, the LV cannot accept a normal venous return. These syndromes are now generally defined in terms of ejection fraction (EF): SHF became 'heart failure with reduced ejection fraction' (HFrEF) while DHF became 'heart failure with normal or preserved ejection fraction' (HFnEF or HFpEF). However, EF is a chimeric index because it is the ratio between SV--which measures function, and EDV--which measures form. In SHF the LV dilates when sarcomere addition in series increases cardiac myocyte length, whereas sarcomere addition in parallel can cause concentric hypertrophy in DHF by increasing myocyte thickness. Although dilatation in SHF allows the LV to accept a greater venous return, it increases the energy cost of ejection and initiates a vicious cycle that contributes to progressive dilatation. In contrast, concentric hypertrophy in DHF facilitates ejection but impairs filling and can cause heart muscle to deteriorate. Differences in the molecular signals that initiate dilatation and concentric hypertrophy can explain why many drugs that improve prognosis in SHF have little if any benefit in DHF. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  16. The wasting continuum in heart failure: from sarcopenia to cachexia.

    PubMed

    von Haehling, Stephan

    2015-11-01

    Sarcopenia (muscle wasting) and cachexia share some pathophysiological aspects. Sarcopenia affects approximately 20 %, cachexia <10 % of ambulatory patients with heart failure (HF). Whilst sarcopenia means loss of skeletal muscle mass and strength that predominantly affects postural rather than non-postural muscles, cachexia means loss of muscle and fat tissue that leads to weight loss. The wasting continuum in HF implies that skeletal muscle is lost earlier than fat tissue and may lead from sarcopenia to cachexia. Both tissues require conservation, and therapies that stop the wasting process have tremendous therapeutic appeal. The present paper reviews the pathophysiology of muscle and fat wasting in HF and discusses potential treatments, including exercise training, appetite stimulants, essential amino acids, growth hormone, testosterone, electrical muscle stimulation, ghrelin and its analogues, ghrelin receptor agonists and myostatin antibodies.

  17. Physiology of Exercise for Physical Education and Athletics. Second Edition.

    ERIC Educational Resources Information Center

    deVries, Herbert A.

    This three-part text, which is concerned with human functions under stress of muscular activity, provides a basis for the study of physical fitness and athletic training. Part 1 reviews pertinent areas of basic physiology. Muscles, the nervous system, the heart, respiratory system, exercise metabolism, and the endocrine system are reviewed. Part 2…

  18. Sarcospan Regulates Cardiac Isoproterenol Response and Prevents Duchenne Muscular Dystrophy-Associated Cardiomyopathy.

    PubMed

    Parvatiyar, Michelle S; Marshall, Jamie L; Nguyen, Reginald T; Jordan, Maria C; Richardson, Vanitra A; Roos, Kenneth P; Crosbie-Watson, Rachelle H

    2015-12-23

    Duchenne muscular dystrophy is a fatal cardiac and skeletal muscle disease resulting from mutations in the dystrophin gene. We have previously demonstrated that a dystrophin-associated protein, sarcospan (SSPN), ameliorated Duchenne muscular dystrophy skeletal muscle degeneration by activating compensatory pathways that regulate muscle cell adhesion (laminin-binding) to the extracellular matrix. Conversely, loss of SSPN destabilized skeletal muscle adhesion, hampered muscle regeneration, and reduced force properties. Given the importance of SSPN to skeletal muscle, we investigated the consequences of SSPN ablation in cardiac muscle and determined whether overexpression of SSPN into mdx mice ameliorates cardiac disease symptoms associated with Duchenne muscular dystrophy cardiomyopathy. SSPN-null mice exhibited cardiac enlargement, exacerbated cardiomyocyte hypertrophy, and increased fibrosis in response to β-adrenergic challenge (isoproterenol; 0.8 mg/day per 2 weeks). Biochemical analysis of SSPN-null cardiac muscle revealed reduced sarcolemma localization of many proteins with a known role in cardiomyopathy pathogenesis: dystrophin, the sarcoglycans (α-, δ-, and γ-subunits), and β1D integrin. Transgenic overexpression of SSPN in Duchenne muscular dystrophy mice (mdx(TG)) improved cardiomyofiber cell adhesion, sarcolemma integrity, cardiac functional parameters, as well as increased expression of compensatory transmembrane proteins that mediate attachment to the extracellular matrix. SSPN regulates sarcolemmal expression of laminin-binding complexes that are critical to cardiac muscle function and protects against transient and chronic injury, including inherited cardiomyopathy. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  19. Habitual exercise program protects murine intestinal, skeletal, and cardiac muscles against aging.

    PubMed

    Rosa, Eloi F; Silva, Antonio C; Ihara, Silvia S M; Mora, Oswaldo A; Aboulafia, Jeannine; Nouailhetas, Viviane L A

    2005-10-01

    Aging and aerobic exercise are two conditions known to interfere with health and quality of life, most likely by inducing oxidative stress to the organism. We studied the effects of aging on the morphological and functional properties of skeletal, cardiac, and intestinal muscles and their corresponding oxidative status in C57BL/6 mice and investigated whether a lifelong moderate exercise program would exert a protective effect against some deleterious effects of aging. As expected, aged animals presented a significant reduction of physical performance, accompanied by a decrease of gastrocnemius cross-sectional area and cardiac hypertrophy. However, most interesting was that aging dramatically interfered with the intestinal structure, causing a significant thickening of the ileum muscular layer. Senescent intestinal myocytes displayed many mitochondria with disorganized cristae and the presence of cytosolic lamellar corpuscles. Lipid peroxidation of ileum and gastrocnemius muscle, but not of the heart, increased in aged mice, thus suggesting enhanced oxidative stress. With exception of the intestinal muscle responsiveness, animals submitted to a daily session of 60 min, 5 days/wk, at 13 up to 21 m/min of moderate running in treadmill during animal life span exhibited a reversion of all the observed aging effects on intestinal, skeletal, and heart muscles. The introduction of this lifelong exercise protocol prevented the enhancement of lipid peroxidation and sarcopenia and also preserved cellular and ultracellular structures of the ileum. This is the first time that the protective effect of a lifelong regular aerobic physical activity against the deleterious effects of aging on intestinal muscle was demonstrated.

  20. Cdc42 and formin activity control non-muscle myosin dynamics during Drosophila heart morphogenesis

    PubMed Central

    Vogler, Georg; Liu, Jiandong; Iafe, Timothy W.; Migh, Ede; Mihály, József

    2014-01-01

    During heart formation, a network of transcription factors and signaling pathways guide cardiac cell fate and differentiation, but the genetic mechanisms orchestrating heart assembly and lumen formation remain unclear. Here, we show that the small GTPase Cdc42 is essential for Drosophila melanogaster heart morphogenesis and lumen formation. Cdc42 genetically interacts with the cardiogenic transcription factor tinman; with dDAAM which belongs to the family of actin organizing formins; and with zipper, which encodes nonmuscle myosin II. Zipper is required for heart lumen formation, and its spatiotemporal activity at the prospective luminal surface is controlled by Cdc42. Heart-specific expression of activated Cdc42, or the regulatory formins dDAAM and Diaphanous caused mislocalization of Zipper and induced ectopic heart lumina, as characterized by luminal markers such as the extracellular matrix protein Slit. Placement of Slit at the lumen surface depends on Cdc42 and formin function. Thus, Cdc42 and formins play pivotal roles in heart lumen formation through the spatiotemporal regulation of the actomyosin network. PMID:25267295

  1. β-hydroxy-β-methylbutyrate (HMB) attenuates muscle and body weight loss in experimental cancer cachexia.

    PubMed

    Aversa, Zaira; Bonetto, Andrea; Costelli, Paola; Minero, Valerio Giacomo; Penna, Fabio; Baccino, Francesco Maria; Lucia, Simone; Rossi Fanelli, Filippo; Muscaritoli, Maurizio

    2011-03-01

    β-hydroxy-β-methylbutyrate (HMB), a leucine metabolite, improves muscle mass and function. This study aimed at evaluating the effects of HMB administration in an experimental in vivo model of cancer cachexia (CC). Wistar rats were randomized to receive standard or 4% HMB-enriched chow. Rats from both groups were randomized to receive an i.p. inoculum of AH-130 cells (TB). All rats were weighed and sacrificed at day 24. Liver, heart and muscles were dissected and weighed. The protein levels of p-p70S6k, p-eIf2α, p-mTOR and p-4-EB-P1 were evaluated by Western blotting on gastrocnemius muscle (GSN). As expected, the growth of the AH-130 ascites hepatoma induced significant carcass weight and GSN muscle loss. HMB treatment significantly increased GSN and heart weight in controls (p=0.002 and p<0.001, respectively). In HMB-treated TB, body weight was not lost but significantly (p=0.003) increased, and GSN loss was significantly (p=0.04) attenuated with respect to TB. Phosphorylated eIF2α markedly decreased in TB-rats vs. C. Feeding the HMB-enriched diet resulted in decreased p-eIF2α levels in control animals, while no changes could be observed in the TB group. Phosphorylated p70S6K and phosphorylated mTOR were markedly increased by HMB treatment in controls and further increased in TB. Phosphorylated 4-EB-P1 was markedly increased in TB but substantially unaffected by HMB treatment. Administration of HMB attenuates body weight and muscle loss in experimental CC. Increased phosphorylation of key anabolic molecules suggests that these actions are mediated by improved protein anabolism in muscle.

  2. Molecular cloning and functional analysis of MRLC2 in Tianfu, Boer, and Chengdu Ma goats.

    PubMed

    Xu, H G; Xu, G Y; Wan, L; Ma, J

    2013-03-15

    To determine the molecular basis of heterosis in goats, fluorescence quantitative polymerase chain reaction (PCR) was performed to investigate myosin-regulatory light chain 2 (MRLC2) gene expression in the longissimus dorsi muscle tissues of the Tianfu goat and its parents, the Boer and Chengdu Ma goats. The goat MRLC2 gene was differentially expressed in the crossbreed, and the purebred mRNA were isolated and identified using fluorescence quantitative reverse transcription-PCR (RT-PCR). The complete coding sequence of MRLC2 was obtained using the cDNA method, and the full-length coding sequence consisted of 513 bp encoding 172 amino acids. The EF-hand superfamily domain of the MRLC2 protein is well conserved in caprine and other animals. The deduced amino acid sequence of MRLC2 shared significant identity with MRLC2 from other mammals. Phylogenetic tree analysis revealed that the MRLC2 protein was closely related to MRLC2 in other mammals. Several predicted miRNA target sites were found in the coding sequence of caprine MRLC2 mRNA. Analysis by RT-PCR showed that MRLC2 mRNA was present in the heart, stomach, liver, spleen, lung, small intestine, kidney, leg muscle, abdominal muscle, and longissimus dorsi muscles. In particular, the high expression of MRLC2 mRNA was detected in the longissimus dorsi, leg muscle, abdominal muscle, stomach, and heart, but low levels of expression were also observed in the liver, spleen, lung, small intestine, and kidney. The expression of the MRLC2 gene was upregulated in the longissimus dorsi muscle of Boer and Tianfu goats, and it was moderately upregulated in Chengdu Ma goats.

  3. Strategies for regeneration of heart muscle.

    PubMed

    Guyette, Jacques P; Cohen, Ira S; Gaudette, Glenn R

    2010-01-01

    Regenerative medicine has emerged to the forefront of cardiac research, marrying discoveries in both basic science and engineering to develop viable therapeutic approaches for treating the diseased heart. Signifi cant advancements in gene therapy, stem cell biology, and cardiomyoplasty provide new optimism for regenerating damaged myocardium. Exciting new strategies for endogenous and exogenous regeneration have been proposed. However, questions remain as to whether these approaches can provide enough new myocyte mass to sufficiently restore mechanical function to the heart. In this article, we consider the mechanisms of endogenous cardiomyocyte regeneration and exogenous cell differentiation (with respect to myoblasts, stem cells, and induced pluripotent cells being researched for cell therapies). We begin by reviewing some of the cues that are being harnessed in strategies of gene/cell therapy for regenerating myocardium. We also consider some of the technical challenges that remain in determining new myocyte generation, tracking delivered cells in vivo, and correlating new myocyte contractility with cardiac function. Strategies for regenerating the heart are being realized as both animal and clinical trials suggest that these new approaches provide short-term improvement of cardiac function. However, a more complete understanding of the underlying mechanisms and applications is necessary to sustain longer-term therapeutic success.

  4. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0.

    PubMed

    Kollberg, Gittan; Tulinius, Már; Gilljam, Thomas; Ostman-Smith, Ingegerd; Forsander, Gun; Jotorp, Peter; Oldfors, Anders; Holme, Elisabeth

    2007-10-11

    Storage of glycogen is essential for glucose homeostasis and for energy supply during bursts of activity and sustained muscle work. We describe three siblings with profound muscle and heart glycogen deficiency caused by a homozygous stop mutation (R462-->ter) in the muscle glycogen synthase gene. The oldest brother died from sudden cardiac arrest at the age of 10.5 years. Two years later, an 11-year-old brother showed muscle fatigability, hypertrophic cardiomyopathy, and an abnormal heart rate and blood pressure while exercising; a 2-year-old sister had no symptoms. In muscle-biopsy specimens obtained from the two younger siblings, there was lack of glycogen, predominance of oxidative fibers, and mitochondrial proliferation. Glucose tolerance was normal. Copyright 2007 Massachusetts Medical Society.

  5. Myostatin regulates energy homeostasis in the heart and prevents heart failure.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Wietelmann, Astrid; Hermann, Sven; Schäfers, Michael; Krüger, Marcus; Boettger, Thomas; Borchardt, Thilo; Braun, Thomas

    2014-07-07

    Myostatin is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes, including enhanced insulin sensitivity. However, the function of myostatin in the heart is barely understood, although it is upregulated in the myocardium under several pathological conditions. Here, we aimed to decipher the role of myostatin and myostatin-dependent signaling pathways for cardiac function and cardiac metabolism in adult mice. To avoid potential counterregulatory mechanisms occurring in constitutive and germ-line-based myostatin mutants, we generated a mouse model that allows myostatin inactivation in adult cardiomyocytes. Cardiac MRI revealed that genetic inactivation of myostatin signaling in the adult murine heart caused cardiac hypertrophy and heart failure, partially recapitulating effects of the age-dependent decline of the myostatin paralog growth and differentiation factor 11. We found that myostatin represses AMP-activated kinase activation in the heart via transforming growth factor-β-activated kinase 1, thereby preventing a metabolic switch toward glycolysis and glycogen accumulation. Furthermore, myostatin stimulated expression of regulator of G-protein signaling 2, a GTPase-activating protein that restricts Gaq and Gas signaling and thereby protects against cardiac failure. Inhibition of AMP-activated kinase in vivo rescued cardiac hypertrophy and prevented enhanced glycolytic flow and glycogen accumulation after inactivation of myostatin in cardiomyocytes. Our results uncover an important role of myostatin in the heart for maintaining cardiac energy homeostasis and preventing cardiac hypertrophy. © 2014 American Heart Association, Inc.

  6. Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle.

    PubMed

    Carter, W J; Van Der Weijden Benjamin, W S; Faas, F H

    1980-10-01

    Since experimental hyperthyroidism reduces skeletal muscle mass while simultaneously increasing cardiac muscle mass, the effect of hyperthyroidism on muscle protein degradation was compared in skeletal and cardiac muscle. Pulse-labeling studies using (3H) leucine and (14C) carboxyl labeled aspartate and glutamate were carried out. Hyperthyroidism caused a 25%-29% increase in protein breakdown in both sarcoplasmic and myofibrillar fractions of skeletal muscle. Increased muscle protein degradation may be a major factor in the development of skeletal muscle wasting and weakness in hyperthyroidism. In contrast, protein breakdown appeared to be reduced 22% in the sarcoplasmic fraction of hyperthyroid heart muscle and was unchanged in the myofibrillar fraction. Possible reasons for the contrasting effects of hyperthyroidism on skeletal and cardiac muscle include increased sensitivity of the hyperthyroid heart to catecholamines, increased cardiac work caused by the hemodynamic effects of hyperthyroidism, and a different direct effect of thyroid hormone at the nuclear level in cardiac as opposed to skeletal muscle.

  7. Carnitine supplementation and depletion: tissue carnitines and enzymes in fatty acid oxidation.

    PubMed

    Negrao, C E; Ji, L L; Schauer, J E; Nagle, F J; Lardy, H A

    1987-07-01

    Sixty-two male rats were randomly assigned into a 3 X 2 X 2 factorial design containing 12 groups according to carnitine treatment, exercise training (treadmill, 1 h, 5 times/wk, 8 wk, 26.8 m/min, 15% grade), and physical activity [rested for 60 h before they were killed or with an acute bout of exercise (1 h, 26.8 m/min, 15% grade) immediately before they were killed]. Isotonic saline was injected intraperitoneally 5 times/wk in the controls, whereas 750 mg/kg of L- or D-carnitine, respectively, were injected in the supplemented and depleted treatment groups. A significant increase in free and short-chain acyl carnitine concentration in skeletal muscle and heart was observed in L-carnitine supplemented rats, whereas a significant reduction in skeletal muscle, heart, and liver occurred in rats depleted of L-carnitine. Long-chain acyl carnitine in all tissues was not altered by carnitine treatment; training increased plasma and liver concentrations, whereas acute exercise decreased skeletal muscle and increased liver concentrations. An acute bout of exercise significantly increased short-chain acylcarnitine in liver, regardless of carnitine and/or training effects. beta-Hydroxyacyl-CoA dehydrogenase activity in skeletal muscle was induced by training but reduced by depletion. Carnitine acetyltransferase (CAT) was significantly increased in heart by L-carnitine supplementation, whereas it was reduced by depletion in skeletal muscle. Exercise training significantly increased CAT activity in skeletal muscle but not in heart, whereas acute exercise significantly increased activity in both tissues. Carnitine palmitoyltransferase activity was increased by acute exercise in the heart in only the supplemented and exercise-trained rats.

  8. Hippo signaling impedes adult heart regeneration

    PubMed Central

    Heallen, Todd; Morikawa, Yuka; Leach, John; Tao, Ge; Willerson, James T.; Johnson, Randy L.; Martin, James F.

    2013-01-01

    Heart failure due to cardiomyocyte loss after ischemic heart disease is the leading cause of death in the United States in large part because heart muscle regenerates poorly. The endogenous mechanisms preventing mammalian cardiomyocyte regeneration are poorly understood. Hippo signaling, an ancient organ size control pathway, is a kinase cascade that inhibits developing cardiomyocyte proliferation but it has not been studied postnatally or in fully mature adult cardiomyocytes. Here, we investigated Hippo signaling in adult cardiomyocyte renewal and regeneration. We found that unstressed Hippo-deficient adult mouse cardiomyocytes re-enter the cell cycle and undergo cytokinesis. Moreover, Hippo deficiency enhances cardiomyocyte regeneration with functional recovery after adult myocardial infarction as well as after postnatal day eight (P8) cardiac apex resection and P8 myocardial infarction. In damaged hearts, Hippo mutant cardiomyocytes also have elevated proliferation. Our findings reveal that Hippo signaling is an endogenous repressor of adult cardiomyocyte renewal and regeneration. Targeting the Hippo pathway in human disease might be beneficial for the treatment of heart disease. PMID:24255096

  9. Deep Sternal Wound Infection after Open-Heart Surgery: A 13-Year Single Institution Analysis.

    PubMed

    Juhl, Alexander Andersen; Hody, Sofie; Videbaek, Tina Senholt; Damsgaard, Tine Engberg; Nielsen, Per Hostrup

    2017-04-20

    The present study aimed to compare the clinical outcome for patients with or without muscle flap reconstruction after deep sternal wound infection due to open-heart surgery. The study was a retrospective cohort study, including patients who developed deep sternal wound infection after open-heart surgery in the Western Denmark Region from 1999 to 2011. Journals of included patients were reviewed for clinical data regarding the treatment of their sternal defect. Patients were divided into two groups depending on whether they received a muscle-flap-based sternal reconstruction or traditional rewiring of the sternum. A total of 130 patients developed deep sternal wound infection in the study period. In all, 12 patients died before being discharged, leaving a total of 118 patients for analysis. Of these, 50 (42%) patients received muscle flap reconstruction. Muscle flap recipients had significantly longer total hospital stays (p <0.001). However, after receiving muscle flap reconstruction, patients were discharged after a median of 14 days, with 74% not needing additional surgery. It is difficult to predict which patients eventually require muscle flap reconstruction after deep sternal wound infection. Although patients receiving muscle flap reconstructions have longer hospital stays, they are quickly discharged after the reconstruction.

  10. The Popeye Domain Containing Genes and Their Function in Striated Muscle

    PubMed Central

    Schindler, Roland F. R.; Scotton, Chiara; French, Vanessa; Ferlini, Alessandra; Brand, Thomas

    2016-01-01

    The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle. PMID:27347491

  11. Know the Warning Signs of a Heart Attack

    MedlinePlus

    ... No. 22 Know the Warning Signs of a Heart Attack What is a heart attack? Aheart attack happens when the blood vessels that ... hurting your heart muscle. Another name for a heart attack is myocardial infarction, or MI. If you have ...

  12. Org-1-dependent lineage reprogramming generates the ventral longitudinal musculature of the Drosophila heart.

    PubMed

    Schaub, Christoph; März, Johannes; Reim, Ingolf; Frasch, Manfred

    2015-02-16

    Only few examples of transdifferentiation, which denotes the conversion of one differentiated cell type to another, are known to occur during normal development, and more often, it is associated with regeneration processes. With respect to muscles, dedifferentiation/redifferentiation processes have been documented during post-traumatic muscle regeneration in blastema of newts as well as during myocardial regeneration. As shown herein, the ventral longitudinal muscles of the adult Drosophila heart arise from specific larval alary muscles in a process that represents the first known example of syncytial muscle transdifferentiation via dedifferentiation into mononucleate myoblasts during normal development. We demonstrate that this unique process depends on the reinitiation of a transcriptional program previously employed for embryonic alary muscle development, in which the factors Org-1 (Drosophila Tbx1) and Tailup (Drosophila Islet1) are key components. During metamorphosis, the action of these factors is combined with cell-autonomous inputs from the ecdysone steroid and the Hox gene Ultrabithorax, which provide temporal and spatial specificity to the transdifferentiation events. Following muscle dedifferentiation, inductive cues, particularly from the remodeling heart tube, are required for the redifferentiation of myoblasts into ventral longitudinal muscles. Our results provide new insights into mechanisms of lineage commitment and cell-fate plasticity during development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Perreault, C. L.; Shannon, R. P.; Komamura, K.; Vatner, S. F.; Morgan, J. P.

    1992-01-01

    24 d of rapid ventricular pacing induced dilated cardiomyopathy with both systolic and diastolic dysfunction in conscious, chronically instrumented dogs. We studied mechanical properties and intracellular calcium (Ca2+i) transients of trabeculae carneae isolated from 15 control dogs (n = 32) and 11 dogs with pacing-induced cardiac failure (n = 26). Muscles were stretched to maximum length at 30 degrees C and stimulated at 0.33 Hz; a subset (n = 17 control, n = 17 myopathic) was loaded with the [Ca2+]i indicator aequorin. Peak tension was depressed in the myopathic muscles, even in the presence of maximally effective (i.e., 16 mM) [Ca2+] in the perfusate. However, peak [Ca2+]i was similar (0.80 +/- 0.13 vs. 0.71 +/- 0.05 microM; [Ca2+]o = 2.5 mM), suggesting that a decrease in Cai2+ availability was not responsible for the decreased contractility. The time for decline from the peak of the Cai2+ transient was prolonged in the myopathic group, which correlated with prolongation of isometric contraction and relaxation. However, similar end-diastolic [Ca2+]i was achieved in both groups (0.29 +/- 0.05 vs. 0.31 +/- 0.02 microM), indicating that Cai2+ homeostasis can be maintained in myopathic hearts. The inotropic response of the myopathic muscles to milrinone was depressed compared with the controls. However, when cAMP production was stimulated by pretreatment with forskolin, the response of the myopathic muscles to milrinone was improved. Our findings provide direct evidence that abnormal [Ca2+]i handling is an important cause of contractile dysfunction in dogs with pacing-induced heart failure and suggest that deficient production of cAMP may be an important cause of these changes in excitation-contraction coupling.

  14. Living Without Creatine: Unchanged Exercise Capacity and Response to Chronic Myocardial Infarction in Creatine-Deficient Mice

    PubMed Central

    Lygate, Craig A.; Aksentijevic, Dunja; Dawson, Dana; Hove, Michiel ten; Phillips, Darci; de Bono, Joseph P.; Medway, Debra J.; Sebag-Montefiore, Liam; Hunyor, Imre; Channon, Keith M.; Clarke, Kieran; Zervou, Sevasti; Watkins, Hugh; Balaban, Robert S.; Neubauer, Stefan

    2014-01-01

    Rationale Creatine is thought to be involved in the spatial and temporal buffering of ATP in energetic organs such as heart and skeletal muscle. Creatine depletion affects force generation during maximal stimulation, while reduced levels of myocardial creatine are a hallmark of the failing heart, leading to the widely held view that creatine is important at high workloads and under conditions of pathological stress. Objective We therefore hypothesised that the consequences of creatine-deficiency in mice would be impaired running capacity, and exacerbation of heart failure following myocardial infarction. Methods and Results Surprisingly, mice with whole-body creatine deficiency due to knockout of the biosynthetic enzyme (guanidinoacetate N-methyltransferase – GAMT) voluntarily ran just as fast and as far as controls (>10km/night) and performed the same level of work when tested to exhaustion on a treadmill. Furthermore, survival following myocardial infarction was not altered, nor was subsequent LV remodelling and development of chronic heart failure exacerbated, as measured by 3D-echocardiography and invasive hemodynamics. These findings could not be accounted for by compensatory adaptations, with no differences detected between WT and GAMT−/− proteomes. Alternative phosphotransfer mechanisms were explored; adenylate kinase activity was unaltered, and although GAMT−/− hearts accumulated the creatine pre-cursor guanidinoacetate, this had negligible energy-transfer activity, while mitochondria retained near normal function. Conclusions Creatine-deficient mice show unaltered maximal exercise capacity and response to chronic myocardial infarction, and no obvious metabolic adaptations. Our results question the paradigm that creatine is essential for high workload and chronic stress responses in heart and skeletal muscle. PMID:23325497

  15. Functional Strain-Line Pattern in the Human Left Ventricle

    NASA Astrophysics Data System (ADS)

    Pedrizzetti, Gianni; Kraigher-Krainer, Elisabeth; De Luca, Alessio; Caracciolo, Giuseppe; Mangual, Jan O.; Shah, Amil; Toncelli, Loira; Domenichini, Federico; Tonti, Giovanni; Galanti, Giorgio; Sengupta, Partho P.; Narula, Jagat; Solomon, Scott

    2012-07-01

    Analysis of deformations in terms of principal directions appears well suited for biological tissues that present an underlying anatomical structure of fiber arrangement. We applied this concept here to study deformation of the beating heart in vivo analyzing 30 subjects that underwent accurate three-dimensional echocardiographic recording of the left ventricle. Results show that strain develops predominantly along the principal direction with a much smaller transversal strain, indicating an underlying anisotropic, one-dimensional contractile activity. The strain-line pattern closely resembles the helical anatomical structure of the heart muscle. These findings demonstrate that cardiac contraction occurs along spatially variable paths and suggest a potential clinical significance of the principal strain concept for the assessment of mechanical cardiac function. The same concept can help in characterizing the relation between functional and anatomical properties of biological tissues, as well as fiber-reinforced engineered materials.

  16. Chemotherapy Side Effects: A Cause of Heart Disease?

    MedlinePlus

    ... Can chemotherapy side effects increase the risk of heart disease? Answers from Timothy J. Moynihan, M.D. Chemotherapy side effects may increase the risk of heart disease, including weakening of the heart muscle (cardiomyopathy) and ...

  17. Comparison of transcriptomic responses to pancreas disease (PD) and heart and skeletal muscle inflammation (HSMI) in heart of Atlantic salmon (Salmo salar L).

    PubMed

    Johansen, Lill-Heidi; Thim, Hanna L; Jørgensen, Sven Martin; Afanasyev, Sergey; Strandskog, Guro; Taksdal, Torunn; Fremmerlid, Kjersti; McLoughlin, Marion; Jørgensen, Jorunn B; Krasnov, Aleksei

    2015-10-01

    Pancreas disease (PD) and heart and skeletal muscle inflammation (HSMI) are viral diseases associated with SAV (salmonid alphavirus) and PRV (piscine reovirus), which induce systemic infections and pathologies in cardiac and skeletal muscle tissue of farmed Atlantic salmon (Salmo salar L), resulting in severe morbidity and mortality. While general features of the clinical symptoms and pathogenesis of salmonid viral diseases are relatively well studied, much less is known about molecular mechanisms associated with immunity and disease-specific changes. In this study, transcriptomic analyses of heart tissue from PD and HSMI challenged Atlantic salmon were done, focusing on the mature phases of both diseases at respectively 28-35 and 42-77 days post infection. A large number of immune genes was activated in both trials with prevalence of genes associated with early innate antiviral responses, their expression levels being slightly higher in PD challenged fish. Activation of the IFN axis was in parallel with inflammatory changes that involved diverse humoral and cellular factors. Adaptive immune response genes were more pronounced in fish with HSMI, as suggested by increased expression of a large number of genes associated with differentiation and maturation of B lymphocytes and cytotoxic T cells. A similar down-regulation of non-immune genes such as myofiber and mitochondrial proteins between diseases was most likely reflecting myocardial pathology. A suite of genes important for cardiac function including B-type natriuretic peptide and four neuropeptides displayed differential expression between PD and HSMI. Comparison of results revealed common and distinct features and added to the understanding of both diseases at their mature phases with typical clinical pictures. A number of genes that showed disease-specific changes can be of interest for diagnostics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  19. Propafenone

    MedlinePlus

    ... arrhythmia (irregular heartbeat) and to maintain a normal heart rate. Propafenone is in a class of medications called antiarrhythmics. It works by acting on the heart muscle to improve the heart's rhythm.

  20. Deep phenotyping of human induced pluripotent stem cell-derived atrial and ventricular cardiomyocytes.

    PubMed

    Cyganek, Lukas; Tiburcy, Malte; Sekeres, Karolina; Gerstenberg, Kathleen; Bohnenberger, Hanibal; Lenz, Christof; Henze, Sarah; Stauske, Michael; Salinas, Gabriela; Zimmermann, Wolfram-Hubertus; Hasenfuss, Gerd; Guan, Kaomei

    2018-06-21

    Generation of homogeneous populations of subtype-specific cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) and their comprehensive phenotyping is crucial for a better understanding of the subtype-related disease mechanisms and as tools for the development of chamber-specific drugs. The goals of this study were to apply a simple and efficient method for differentiation of iPSCs into defined functional CM subtypes in feeder-free conditions and to obtain a comprehensive understanding of the molecular, cell biological, and functional properties of atrial and ventricular iPSC-CMs on both the single-cell and engineered heart muscle (EHM) level. By a stage-specific activation of retinoic acid signaling in monolayer-based and well-defined culture, we showed that cardiac progenitors can be directed towards a highly homogeneous population of atrial CMs. By combining the transcriptome and proteome profiling of the iPSC-CM subtypes with functional characterizations via optical action potential and calcium imaging, and with contractile analyses in EHM, we demonstrated that atrial and ventricular iPSC-CMs and -EHM highly correspond to the atrial and ventricular heart muscle, respectively. This study provides a comprehensive understanding of the molecular and functional identities characteristic of atrial and ventricular iPSC-CMs and -EHM and supports their suitability in disease modeling and chamber-specific drug screening.

  1. THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES.

    PubMed

    Delafontaine, Patrice; Yoshida, Tadashi

    2016-01-01

    Sarcopenia and cachexia are muscle-wasting syndromes associated with aging and with many chronic diseases such as congestive heart failure, diabetes, cancer, chronic obstructive pulmonary disease, and renal failure. While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). We found that Ang II infusion in rodents leads to skeletal muscle wasting via alterations in insulin-like growth factor-1 signaling, increased apoptosis, enhanced muscle protein breakdown via the ubiquitin-proteasome system, and decreased appetite resulting from downregulation of hypothalamic orexigenic neuropeptides orexin and neuropeptide Y. Furthermore, Ang II inhibits skeletal muscle stem cell proliferation, leading to lowered muscle regenerative capacity. Distinct stem cell Ang II receptor subtypes are critical for regulation of muscle regeneration. In ischemic mouse congestive heart failure model skeletal muscle wasting and attenuated muscle regeneration are Ang II dependent. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states.

  2. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle.

    PubMed

    Lapidos, Karen A; Chen, Yiyin E; Earley, Judy U; Heydemann, Ahlke; Huber, Jill M; Chien, Marcia; Ma, Averil; McNally, Elizabeth M

    2004-12-01

    Pluripotent bone marrow-derived side population (BM-SP) stem cells have been shown to repopulate the hematopoietic system and to contribute to skeletal and cardiac muscle regeneration after transplantation. We tested BM-SP cells for their ability to regenerate heart and skeletal muscle using a model of cardiomyopathy and muscular dystrophy that lacks delta-sarcoglycan. The absence of delta-sarcoglycan produces microinfarcts in heart and skeletal muscle that should recruit regenerative stem cells. Additionally, sarcoglycan expression after transplantation should mark successful stem cell maturation into cardiac and skeletal muscle lineages. BM-SP cells from normal male mice were transplanted into female delta-sarcoglycan-null mice. We detected engraftment of donor-derived stem cells into skeletal muscle, with the majority of donor-derived cells incorporated within myofibers. In the heart, donor-derived nuclei were detected inside cardiomyocytes. Skeletal muscle myofibers containing donor-derived nuclei generally failed to express sarcoglycan, with only 2 sarcoglycan-positive fibers detected in the quadriceps muscle from all 14 mice analyzed. Moreover, all cardiomyocytes with donor-derived nuclei were sarcoglycan-negative. The absence of sarcoglycan expression in cardiomyocytes and skeletal myofibers after transplantation indicates impaired differentiation and/or maturation of bone marrow-derived stem cells. The inability of BM-SP cells to express this protein severely limits their utility for cardiac and skeletal muscle regeneration.

  3. Long-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse

    PubMed Central

    Acosta, Pedro; Sleeper, Meg M.; Barton, Elisabeth R.; Sweeney, H. Lee

    2013-01-01

    Dystrophin-deficient muscles suffer from free radical injury, mitochondrial dysfunction, apoptosis, and inflammation, among other pathologies that contribute to muscle fiber injury and loss, leading to wheelchair confinement and death in the patient. For some time, it has been appreciated that endurance training has the potential to counter many of these contributing factors. Correspondingly, numerous investigations have shown improvements in limb muscle function following endurance training in mdx mice. However, the effect of long-term volitional wheel running on diaphragm and cardiac function is largely unknown. Our purpose was to determine the extent to which long-term endurance exercise affected dystrophic limb, diaphragm, and cardiac function. Diaphragm specific tension was reduced by 60% (P < 0.05) in mice that performed 1 yr of volitional wheel running compared with sedentary mdx mice. Dorsiflexor mass (extensor digitorum longus and tibialis anterior) and function (extensor digitorum longus) were not altered by endurance training. In mice that performed 1 yr of volitional wheel running, plantarflexor mass (soleus and gastrocnemius) was increased and soleus tetanic force was increased 36%, while specific tension was similar in wheel-running and sedentary groups. Cardiac mass was increased 15%, left ventricle chamber size was increased 20% (diastole) and 18% (systole), and stroke volume was increased twofold in wheel-running compared with sedentary mdx mice. These data suggest that the dystrophic heart may undergo positive exercise-induced remodeling and that limb muscle function is largely unaffected. Most importantly, however, as the diaphragm most closely recapitulates the human disease, these data raise the possibility of exercise-mediated injury in dystrophic skeletal muscle. PMID:23823150

  4. Effect of hyper- and hypothyroidism on the alpha-tocopherol concentration in serum and some organs of growing rats.

    PubMed

    Hrubá, F; Neradilová, M; Nováková, V; Blahosová, I

    1976-01-01

    The finding of a raised alpha-tocopherol concentration in the heart muscle, liver, skeletal muscle and serum during experimental hyperthyroidism, lasting 30 days, made the authors assume that this cumulation is a transient phenomenon which would disappear during a prolonged metabolic disorder as a result of energetic breakdown of the organism. The purpose of the paper was to verify this view. The investigation with experimental hyper- and hypothyroidism was made in 120 rats with a mean weight of 160 g. To 60 animals daily 100 mug thyroxin were administered by the i.p. route, 48 animals were given 2.5 Carbimazol daily by mouth to induce hypothyroidism and 12 animals served as controls. The animals were fed the same diet. The effect of the administered preparations was examined after 20, 30, 40, 50 and 60 days. In hypothyroid animals the 50th day was omitted. The results revealed: 1. In hyperthyroid animals the body weight was almost constant to the end of the experiment. However these animals had a significantly raised weight of the heart muscle and liver, as compared with the remaining two groups. 2. In hyperthyroid animals the highest alpha-tocopherol concentration in the heart muscle and skeletal muscle was recorded after 20 days. During subsequent time intervals the alpha-tocopherol concentration in the heart muscle declined gradually. In the skeletal muscle a dramatic decline occurred after 40 days and proceeded to the end of the investigation when the recorded values were at the borderline of detectability. This finding confirmed the authors view that the alpha-tocopherol cumulation in muscle exposed to an increased work load is a transient phenomenon and disappears during prolonged hyperthyroidism before the breakdown of the organism. 3. In hyperthyroidism no correlation was found between the alpha-tocopherol concentration and the lipid content of organs and skeletal muscle. This correlation was found in hypothyroidism. 4. The alpha-tocopherol serum level in hyperthyroidism was significantly higher than in hypothyroidism. 5. In hyperthyroidism the alpha-tocopherol cumulation in liver increased gradually, and reached its maximum after 50 days. At a time when the alpha-tocopherol concentration in the heart muscle and skeletal muscle declined already, its liver concentration increased. This phenomenon may be associated with the increasing protein synthesis in the liver during hyperthyroidism, or with other phenomena which call for further investigation.

  5. NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation.

    PubMed

    Ryu, Dongryeol; Zhang, Hongbo; Ropelle, Eduardo R; Sorrentino, Vincenzo; Mázala, Davi A G; Mouchiroud, Laurent; Marshall, Philip L; Campbell, Matthew D; Ali, Amir Safi; Knowels, Gary M; Bellemin, Stéphanie; Iyer, Shama R; Wang, Xu; Gariani, Karim; Sauve, Anthony A; Cantó, Carles; Conley, Kevin E; Walter, Ludivine; Lovering, Richard M; Chin, Eva R; Jasmin, Bernard J; Marcinek, David J; Menzies, Keir J; Auwerx, Johan

    2016-10-19

    Neuromuscular diseases are often caused by inherited mutations that lead to progressive skeletal muscle weakness and degeneration. In diverse populations of normal healthy mice, we observed correlations between the abundance of mRNA transcripts related to mitochondrial biogenesis, the dystrophin-sarcoglycan complex, and nicotinamide adenine dinucleotide (NAD + ) synthesis, consistent with a potential role for the essential cofactor NAD + in protecting muscle from metabolic and structural degeneration. Furthermore, the skeletal muscle transcriptomes of patients with Duchene's muscular dystrophy (DMD) and other muscle diseases were enriched for various poly[adenosine 5'-diphosphate (ADP)-ribose] polymerases (PARPs) and for nicotinamide N-methyltransferase (NNMT), enzymes that are major consumers of NAD + and are involved in pleiotropic events, including inflammation. In the mdx mouse model of DMD, we observed significant reductions in muscle NAD + levels, concurrent increases in PARP activity, and reduced expression of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD + biosynthesis. Replenishing NAD + stores with dietary nicotinamide riboside supplementation improved muscle function and heart pathology in mdx and mdx/Utr -/- mice and reversed pathology in Caenorhabditis elegans models of DMD. The effects of NAD + repletion in mdx mice relied on the improvement in mitochondrial function and structural protein expression (α-dystrobrevin and δ-sarcoglycan) and on the reductions in general poly(ADP)-ribosylation, inflammation, and fibrosis. In combination, these studies suggest that the replenishment of NAD + may benefit patients with muscular dystrophies or other neuromuscular degenerative conditions characterized by the PARP/NNMT gene expression signatures. Copyright © 2016, American Association for the Advancement of Science.

  6. [Influence of detomidine on echocardiographic function parameters and cardiac hemodynamics in horses with and without heart murmur].

    PubMed

    Gehlen, H; Kroker, K; Deegen, E; Stadler, P

    2004-03-01

    30 warmblood horses were examined before and after sedation with 20 micrograms/kg BW detomidine, to determine changes of cardiac function parameters, using B-mode, M-mode and Doppler echocardiography. 15 horses showed a heart murmur, but no clinical signs of cardiac heart failure, 15 horses had neither a heart murmur nor other signs of cardiac disease. After sedation with detomidine we could recognise a significant increase of end-diastolic left atrium diameter, an increase of end-systolic left ventricular diameter and aortic root diameter. The end-systolic thickness of papillary muscle and interventricular septum showed a decrease. Fractional shortening and amplitude of left ventricular wall motion was decreased after sedation. The mitral valve echogram revealed a presystolic valve closure and an inflection in the Ac slope (B-notch) in xy horses before sedation. Both increased after sedation with detomidine. Doppler echocardiography showed a decrease of blood flow velocity and velocity time integral (VTI) in the left and right ventricular outflow tract after sedation. Regurgitant flow signals were intensified following sedation in xy horses, especially at the mitral valve.

  7. Heart Anatomy

    MedlinePlus

    ... aorta, your body’s largest artery. The Conduction System Electrical impulses from your heart muscle (the myocardium) cause your heart to contract. This electrical signal begins in the sinoatrial (SA) node, located ...

  8. CPK isoenzymes test

    MedlinePlus

    Creatine phosphokinase - isoenzymes; Creatine kinase - isoenzymes; CK - isoenzymes; Heart attack - CPK; Crush - CPK ... levels rise 3 to 6 hours after a heart attack . If there is no further heart muscle damage, ...

  9. Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell-Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine.

    PubMed

    Gao, Ling; Gregorich, Zachery R; Zhu, Wuqiang; Mattapally, Saidulu; Oduk, Yasin; Lou, Xi; Kannappan, Ramaswamy; Borovjagin, Anton V; Walcott, Gregory P; Pollard, Andrew E; Fast, Vladimir G; Hu, Xinyang; Lloyd, Steven G; Ge, Ying; Zhang, Jianyi

    2018-04-17

    Here, we generated human cardiac muscle patches (hCMPs) of clinically relevant dimensions (4 cm × 2 cm × 1.25 mm) by suspending cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human induced-pluripotent stem cells in a fibrin scaffold and then culturing the construct on a dynamic (rocking) platform. In vitro assessments of hCMPs suggest maturation in response to dynamic culture stimulation. In vivo assessments were conducted in a porcine model of myocardial infarction (MI). Animal groups included: MI hearts treated with 2 hCMPs (MI+hCMP, n=13), MI hearts treated with 2 cell-free open fibrin patches (n=14), or MI hearts with neither experimental patch (n=15); a fourth group of animals underwent sham surgery (Sham, n=8). Cardiac function and infarct size were evaluated by MRI, arrhythmia incidence by implanted loop recorders, and the engraftment rate by calculation of quantitative polymerase chain reaction measurements of expression of the human Y chromosome. Additional studies examined the myocardial protein expression profile changes and potential mechanisms of action that related to exosomes from the cell patch. The hCMPs began to beat synchronously within 1 day of fabrication, and after 7 days of dynamic culture stimulation, in vitro assessments indicated the mechanisms related to the improvements in electronic mechanical coupling, calcium-handling, and force generation, suggesting a maturation process during the dynamic culture. The engraftment rate was 10.9±1.8% at 4 weeks after the transplantation. The hCMP transplantation was associated with significant improvements in left ventricular function, infarct size, myocardial wall stress, myocardial hypertrophy, and reduced apoptosis in the periscar boarder zone myocardium. hCMP transplantation also reversed some MI-associated changes in sarcomeric regulatory protein phosphorylation. The exosomes released from the hCMP appeared to have cytoprotective properties that improved cardiomyocyte survival. We have fabricated a clinically relevant size of hCMP with trilineage cardiac cells derived from human induced-pluripotent stem cells. The hCMP matures in vitro during 7 days of dynamic culture. Transplantation of this type of hCMP results in significantly reduced infarct size and improvements in cardiac function that are associated with reduction in left ventricular wall stress. The hCMP treatment is not associated with significant changes in arrhythmogenicity. © 2017 American Heart Association, Inc.

  10. Endothelial Progenitor Cells as a Sole Source for Ex Vivo Seeding of Tissue-Engineered Heart Valves

    PubMed Central

    Mettler, Bret A.; Engelmayr, George C.; Aikawa, Elena; Bischoff, Joyce; Martin, David P.; Exarhopoulos, Alexis; Moses, Marsha A.; Schoen, Frederick J.; Sacks, Michael S.

    2010-01-01

    Purposes: We investigated whether circulating endothelial progenitor cells (EPCs) can be used as a cell source for the creation of a tissue-engineered heart valve (TEHV). Methods: Trileaflet valved conduits were fabricated using nonwoven polyglycolic acid/poly-4-hydroxybutyrate polymer. Ovine peripheral blood EPCs were dynamically seeded onto a valved conduit and incubated for 7, 14, and 21 days. Results: Before seeding, EPCs were shown to express CD31+, eNOS+, and VE-Cadherin+ but not α-smooth muscle actin. Histological analysis demonstrated relatively homogenous cellular ingrowth throughout the valved conduit. TEHV constructs revealed the presence of endothelial cell (EC) markers and α-smooth muscle actin+ cells comparable with native valves. Protein levels were comparable with native valves and exceeded those in unseeded controls. EPC-TEHV demonstrated a temporal pattern of matrix metalloproteinases-2/9 expression and tissue inhibitors of metalloproteinase activities comparable to that of native valves. Mechanical properties of EPC-TEHV demonstrated significantly greater stiffness than that of the unseeded scaffolds and native valves. Conclusions: Circulating EPC appears to have the potential to provide both interstitial and endothelial functions and could potentially serve as a single-cell source for construction of autologous heart valves. PMID:19698056

  11. Exo-organoplasty interventions: A brief review of past, present and future directions for advance heart failure management.

    PubMed

    Nawaz, Waqas; Khan, Farhan Ullah; Khan, Muhammad Zahid; Gang, Wang; Yang, Mengqi; Liao, Xiaoqian; Zhang, Li; Ihsan, Awais Ullah; Khan, Amjad; Han, Lei; Zhou, Xiaohui

    2017-04-01

    Heart failure (HF) is a debilitating disease in which abnormal function of the heart leads to imbalance of blood demand to tissues and organs. The pathogenesis of HF is very complex and various factors can contribute including myocardial infarction, ischemia, hypertension and genetic cardiomyopathies. HF is the leading cause of death and its prevalence is expected to increase in parallel with the population age. Different kind of therapeutic approaches including lifestyle modification, medication and pacemakers are used for HF patients in NYHA I-III functional class. However, for advance stage HF patient's (NYHA IV), ventricle assist devices are clinically use and stem cells are under active investigation. Most of these therapies leads to modest symptoms relief and have no significant role in long-term survival rate. Currently there is no effective treatment for advance HF except heart transplantation, which is still remain clinically insignificant because of donor pool limitation. As HF is a result of multiple etiologies therefore multi-functional therapeutic platform is needed. Exo-organoplasty interventions are studied from almost one century. The major goals of these interventions are to treat various kind of heart disease from outside the heart muscle without having direct contact with blood. Various kind of interventions (devices and techniques) are developed in this arena with the passage of time. The purpose of this review is to describe the theory behind intervention devices, the devices themselves, their clinical results, advantages and limitations. Furthermore, to present a future multi-functional therapeutic platform (ASD) for advance stage HF management. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Store-operated Ca2+ entry in muscle physiology and diseases

    PubMed Central

    Pan, Zui; Brotto, Marco; Ma, Jianjie

    2014-01-01

    Ca2+ release from intracellular stores and influx from extracellular reservoir regulate a wide range of physiological functions including muscle contraction and rhythmic heartbeat. One of the most ubiquitous pathways involved in controlled Ca2+ influx into cells is store-operated Ca2+ entry (SOCE), which is activated by the reduction of Ca2+ concentration in the lumen of endoplasmic or sarcoplasmic reticulum (ER/SR). Although SOCE is pronounced in non-excitable cells, accumulating evidences highlight its presence and important roles in skeletal muscle and heart. Recent discovery of STIM proteins as ER/SR Ca2+ sensors and Orai proteins as Ca2+ channel pore forming unit expedited the mechanistic understanding of this pathway. This review focuses on current advances of SOCE components, regulation and physiologic and pathophysiologic roles in muscles. The specific property and the dysfunction of this pathway in muscle diseases, and new directions for future research in this rapidly growing field are discussed. [BMB Reports 2014; 47(2): 69-79] PMID:24411466

  13. Task-induced activation and hemispheric dominance in cerebral circulation during gum chewing.

    PubMed

    Ono, T; Hasegawa, Y; Hori, K; Nokubi, T; Hamasaki, T

    2007-10-01

    In elderly persons, it is thought that maintenance of masticatory function may have a beneficial effect on maintenance of cerebral function. However, few studies on cerebral circulation during mastication exist. This study aimed to verify a possible increase in cerebral circulation and the presence of cerebral hemispheric dominance during gum chewing. Twelve healthy, young right-handed subjects with normal dentition were enrolled. Bilateral middle cerebral arterial blood flow velocities (MCAV), heart rate, and arterial carbon dioxide levels were measured during a handgrip exercise and gum chewing. During gum chewing, electromyography of the bilateral masseter muscle was recorded.MCAV and heart rate significantly increased during exercise compared to values at rest. During gum chewing, there were no differences in the rate of increase in MCAV between the working and non-working sides, but during the handgrip exercise, the rate of increase in MCAV was significantly greater for the non-working side than for the working side. During gum chewing,muscle activity on the working side was significantly greater than that on the non-working side. These results suggest that during gum chewing, cerebral circulation increases bilaterally and does not show contralateral dominance, as it does during the handgrip exercise.

  14. The cardiac regenerative potential of myoblasts remains limited despite improving their survival via antioxidant treatment.

    PubMed

    Beckman, Sarah A; Sekiya, Naosumi; Chen, William C W; Mlakar, Logan; Tobita, Kimimassa; Huard, Johnny

    2014-01-01

    Since myoblasts have been limited by poor cell survival after cellular myoplasty, the major goal of the current study was to determine whether improving myoblast survival with an antioxidant could improve cardiac function after the transplantation of the myoblasts into an acute myocardial infarction. We previously demonstrated that early myogenic progenitors such as muscle-derived stem cells (MDSCs) exhibited superior cell survival and improved cardiac repair after transplantation into infarcted hearts compared to myoblasts, which we partially attributed to MDSC's higher antioxidant levels. To determine if antioxidant treatment could increase myoblast survival, subsequently improving cardiac function after myoblast transplantation into infarcted hearts. Myoblasts were pre-treated with the antioxidant N-acetylcysteine (NAC) or the glutathione depleter, diethyl maleate (DEM), and injected into infarcted murine hearts. Regenerative potential was monitored by cell survival and cardiac function. At early time points, hearts injected with NAC-treated myoblasts exhibited increased donor cell survival, greater cell proliferation, and decreased cellular apoptosis, compared to untreated myoblasts. NAC-treated myoblasts significantly improved cardiac contractility, reduced fibrosis, and increased vascular density compared to DEM-treated myoblasts, but compared to untreated myoblasts, no difference was noted. While early survival of myoblasts transplanted into infarcted hearts was augmented by NAC pre-treatment, cardiac function remained unchanged compared to non-treated myoblasts. Despite improving cell survival with NAC treated myoblast transplantation in a MI heart, cardiac function remained similar to untreated myoblasts. These results suggest that the reduced cardiac regenerative potential of myoblasts, when compared to MDSCs, is not only attributable to cell survival but is probably also related to the secretion of paracrine factors by the MDSCs.

  15. The cardiac regenerative potential of myoblasts remains limited despite improving their survival via antioxidant treatment

    PubMed Central

    Beckman, Sarah A.; Sekiya, Naosumi; Chen, William C.W.; Mlakar, Logan; Tobita, Kimimassa; Huard, Johnny

    2017-01-01

    Introduction Since myoblasts have been limited by poor cell survival after cellular myoplasty, the major goal of the current study was to determine whether improving myoblast survival with an antioxidant could improve cardiac function after the transplantation of the myoblasts into an acute myocardial infarction. Background We previously demonstrated that early myogenic progenitors such as muscle-derived stem cells (MDSCs) exhibited superior cell survival and improved cardiac repair after transplantation into infarcted hearts compared to myoblasts, which we partially attributed to MDSC’s higher antioxidant levels. Aim To determine if antioxidant treatment could increase myoblast survival, subsequently improving cardiac function after myoblast transplantation into infarcted hearts. Materials and Methods Myoblasts were pre-treated with the antioxidant N-acetylcysteine (NAC) or the glutathione depleter, diethyl maleate (DEM), and injected into infarcted murine hearts. Regenerative potential was monitored by cell survival and cardiac function. Results At early time points, hearts injected with NAC-treated myoblasts exhibited increased donor cell survival, greater cell proliferation, and decreased cellular apoptosis, compared to untreated myoblasts. NAC-treated myoblasts significantly improved cardiac contractility, reduced fibrosis, and increased vascular density compared to DEM-treated myoblasts, but compared to untreated myoblasts, no difference was noted. Discussion While early survival of myoblasts transplanted into infarcted hearts was augmented by NAC pre-treatment, cardiac function remained unchanged compared to non-treated myoblasts. Conclusion Despite improving cell survival with NAC treated myoblast transplantation in a MI heart, cardiac function remained similar to untreated myoblasts. These results suggest that the reduced cardiac regenerative potential of myoblasts, when compared to MDSCs, is not only attributable to cell survival but is probably also related to the secretion of paracrine factors by the MDSCs. PMID:28989945

  16. Peripheral muscle ergoreceptors and ventilatory response during exercise recovery in heart failure.

    PubMed

    Francis, N; Cohen-Solal, A; Logeart, D

    1999-03-01

    Recent studies have suggested that the increased ventilatory response during exercise in patients with chronic heart failure was related to the activation of muscle metaboreceptors. To address this issue, 23 patients with heart failure and 7 normal subjects performed arm and leg bicycle exercises with and without cuff inflation around the arms or the thighs during recovery. Obstruction slightly reduced ventilation and gas exchange variables at recovery but did not change the kinetics of recovery of these parameters compared with nonobstructed recovery: half-time of ventilation recovery was 175 +/- 54 to 176 +/- 40 s in patients and 155 +/- 66 to 127 +/- 13 s in controls (P < 0.05, patients vs. controls, not significant within each group from baseline to obstructed recovery). We conclude that muscle metaboreceptor activation does not seem to play a role in the exertion hyperventilation of patients with heart failure.

  17. Myoarchitecture and connective tissue in hearts with tricuspid atresia

    PubMed Central

    Sanchez-Quintana, D; Climent, V; Ho, S; Anderson, R

    1999-01-01

    Objective—To compare the atrial and ventricular myoarchitecture in the normal heart and the heart with tricuspid atresia, and to investigate changes in the three dimensional arrangement of collagen fibrils.
Methods—Blunt dissection and cell maceration with scanning electron microscopy were used to study the architecture of the atrial and ventricular musculature and the arrangement of collagen fibrils in three specimens with tricuspid atresia and six normal human hearts.
Results—There were significant modifications in the myoarchitecture of the right atrium and the left ventricle, both being noticeably hypertrophied. The middle layer of the ventricle in the abnormal hearts was thicker than in the normal hearts. The orientation of the superficial layer in the left ventricle in hearts with tricuspid atresia was irregular compared with the normal hearts. Scanning electron microscopy showed coarser endomysial sheaths and denser perimysial septa in hearts with tricuspid atresia than in normal hearts.
Conclusions—The overall architecture of the muscle fibres and its connective tissue matrix in hearts with tricuspid atresia differed from normal, probably reflecting modelling of the myocardium that is inherent to the malformation. This is in concordance with clinical observations showing deterioration in pump function of the dominant left ventricle from very early in life.

 Keywords: tricuspid atresia; congenital heart defects; connective tissue; fibrosis PMID:9922357

  18. A vector-free ECG interpretation with P, QRS & T waves as unbalanced transitions between stable configurations of the heart electric field during P-R, S-T & T-P segments

    PubMed Central

    2014-01-01

    Since cell membranes are weak sources of electrostatic fields, this ECG interpretation relies on the analogy between cells and electrets. It is here assumed that cell-bound electric fields unite, reach the body surface and the surrounding space and form the thoracic electric field that consists from two concentric structures: the thoracic wall and the heart. If ECG leads measure differences in electric potentials between skin electrodes, they give scalar values that define position of the electric field center along each lead. Repolarised heart muscle acts as a stable positive electric source, while depolarized heart muscle produces much weaker negative electric field. During T-P, P-R and S-T segments electric field is stable, only subtle changes are detectable by skin electrodes. Diastolic electric field forms after ventricular depolarization (T-P segments in the ECG recording). Telediastolic electric field forms after the atria have been depolarized (P-Q segments in the ECG recording). Systolic electric field forms after the ventricular depolarization (S-T segments in the ECG recording). The three ECG waves (P, QRS and T) can then be described as unbalanced transitions of the heart electric field from one stable configuration to the next and in that process the electric field center is temporarily displaced. In the initial phase of QRS, the rapidly diminishing septal electric field makes measured potentials dependent only on positive charges of the corresponding parts of the left and the right heart that lie within the lead axes. If more positive charges are near the "DOWN" electrode than near the "UP" electrode, a Q wave will be seen, otherwise an R wave is expected. Repolarization of the ventricular muscle is dampened by the early septal muscle repolarization that reduces deflection of T waves. Since the "UP" electrode of most leads is near the usually larger left ventricle muscle, T waves are in these leads positive, although of smaller amplitude and longer duration than the QRS wave in the same lead. The proposed interpretation is applied to bundle branch blocks, fascicular (hemi-) blocks and changes during heart muscle ischemia. PMID:24506945

  19. Being active when you have heart disease

    MedlinePlus

    Heart disease - activity; CAD - activity; Coronary artery disease - activity; Angina - activity ... Getting regular exercise when you have heart disease is important. Exercise can make your heart muscle stronger. It may also help you be more active without chest pain or ...

  20. Acute Responses of a Physical Training Session with a Nintendo Wii on Hemodynamic Variables of an Individual with Multiple Sclerosis.

    PubMed

    Monteiro Junior, Renato Sobral; Dantas, Aretha; de Souza, Cíntia Pereira; da Silva, Elirez Bezerra

    2012-12-01

    Multiple sclerosis is a neurological illness that decreases motor functions. This disease can cause weakness of cardiorespiratory muscles and impaired functional capacity and quality of life. Therefore it requires preventive treatments. This study investigated the acute responses of a virtual physical training session with the Nintendo(®) (Kyoto, Japan) Wii™ on hemodynamic variables of an individual with multiple sclerosis (relapsing-remitting). A 34-year-old man with multiple sclerosis with previous experience in aerobic, strength, and functional training (2 years) was tested. His Expanded Disability Status Scale was 2.5. We compared the heart rate, blood pressure, and double product obtained at rest and during (heart rate) and after the Nintendo Wii games "Boxing" and "Sword Play." In rest, the variables were measured in the supine position. Our results showed positive hemodynamic alterations after execution of both games. The peak of heart rate was 121 beats per minute (65% of maximal heart rate) and 104 beats per minute (56% of maximal heart rate) for "Boxing" and "Sword Play," respectively. The training session with "Boxing" was able to stimulate the heart rate to achieve the recommended values for the maintenance of physical fitness in accordance with the American College of Sports Medicine guidelines. We conclude that an exercise training program with the Nintendo Wii may improve physical fitness in people with multiple sclerosis. Moreover, these activities could improve affective status and perhaps maintain the individual engaged at treatment program.

  1. Magnesium and the Athlete.

    PubMed

    Volpe, Stella Lucia

    2015-01-01

    Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation in the body. It is a required mineral that is involved in more than 300 metabolic reactions in the body. Magnesium helps maintain normal nerve and muscle function, heart rhythm (cardiac excitability), vasomotor tone, blood pressure, immune system, bone integrity, and blood glucose levels and promotes calcium absorption. Because of magnesium's role in energy production and storage, normal muscle function, and maintenance of blood glucose levels, it has been studied as an ergogenic aid for athletes. This article will cover the general roles of magnesium, magnesium requirements, and assessment of magnesium status as well as the dietary intake of magnesium and its effects on exercise performance. The research articles cited were limited from those published in 2003 through 2014.

  2. Alterations in Skeletal Muscle Indicators of Mitochondrial Structure and Biogenesis in Patients with Type 2 Diabetes and Heart Failure: Effects of Epicatechin Rich Cocoa

    PubMed Central

    Taub, Pam R.; Ramirez‐Sanchez, Israel; Ciaraldi, Theodore P.; Perkins, Guy; Murphy, Anne N.; Naviaux, Robert; Hogan, Michael; Maisel, Alan S.; Henry, Robert R.; Ceballos, Guillermo

    2012-01-01

    Abstract (‐)‐Epicatechin (Epi), a flavanol in cacao stimulates mitochondrial volume and cristae density and protein markers of skeletal muscle (SkM) mitochondrial biogenesis in mice. Type 2 diabetes mellitus (DM2) and heart failure (HF) are diseases associated with defects in SkM mitochondrial structure/function. A study was implemented to assess perturbations and to determine the effects of Epi‐rich cocoa in SkM mitochondrial structure and mediators of biogenesis. Five patients with DM2 and stage II/III HF consumed dark chocolate and a beverage containing approximately 100 mg of Epi per day for 3 months. We assessed changes in protein and/or activity levels of oxidative phosphorylation proteins, porin, mitofilin, nNOS, nitric oxide, cGMP, SIRT1, PGC1α, Tfam, and mitochondria volume and cristae abundance by electron microscopy from SkM. Apparent major losses in normal mitochondria structure were observed before treatment. Epi‐rich cocoa increased protein and/or activity of mediators of biogenesis and cristae abundance while not changing mitochondrial volume density. Epi‐rich cocoa treatment improves SkM mitochondrial structure and in an orchestrated manner, increases molecular markers of mitochondrial biogenesis resulting in enhanced cristae density. Future controlled studies are warranted using Epi‐rich cocoa (or pure Epi) to translate improved mitochondrial structure into enhanced cardiac and/or SkM muscle function. Clin Trans Sci 2012; Volume 5: 43–47 PMID:22376256

  3. Effects of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle as measured by [14C]tyrosine infusion.

    PubMed Central

    Carter, W J; Benjamin, W S; Faas, F H

    1982-01-01

    The effect of T3 (3,3',5-tri-iodothyronine) on protein turnover in skeletal and cardiac muscle was measured in intact rats by means of a 6 h [14C]tyrosine-infusion technique. Treatment with 25-30 micrograms of T3/100 g body wt. daily for 4-7 days increased the fractional rate of protein synthesis in skeletal muscle. Since the fractional growth rate of the muscle was decreased or unchanged, T3 treatment increased the rate of muscle protein breakdown. These findings suggest that increased protein degradation is an important factor in decreasing skeletal-muscle mass in hyperthyroidism. In contrast with skeletal muscle, T3 treatment for 7 days caused an equivalent increase in the rate of cardiac muscle growth and protein synthesis. This suggests that hyperthyroidism does not increase protein breakdown in heart muscle as it does in skeletal muscle. The failure of T3 to increase proteolysis in heart muscle may be due to a different action on the cardiac myocyte or to systemic effects of T3 which increase cardiac work. PMID:7115332

  4. Effects of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle as measured by [14C]tyrosine infusion.

    PubMed

    Carter, W J; Benjamin, W S; Faas, F H

    1982-04-15

    The effect of T3 (3,3',5-tri-iodothyronine) on protein turnover in skeletal and cardiac muscle was measured in intact rats by means of a 6 h [14C]tyrosine-infusion technique. Treatment with 25-30 micrograms of T3/100 g body wt. daily for 4-7 days increased the fractional rate of protein synthesis in skeletal muscle. Since the fractional growth rate of the muscle was decreased or unchanged, T3 treatment increased the rate of muscle protein breakdown. These findings suggest that increased protein degradation is an important factor in decreasing skeletal-muscle mass in hyperthyroidism. In contrast with skeletal muscle, T3 treatment for 7 days caused an equivalent increase in the rate of cardiac muscle growth and protein synthesis. This suggests that hyperthyroidism does not increase protein breakdown in heart muscle as it does in skeletal muscle. The failure of T3 to increase proteolysis in heart muscle may be due to a different action on the cardiac myocyte or to systemic effects of T3 which increase cardiac work.

  5. Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association.

    PubMed

    Feingold, Brian; Mahle, William T; Auerbach, Scott; Clemens, Paula; Domenighetti, Andrea A; Jefferies, John L; Judge, Daniel P; Lal, Ashwin K; Markham, Larry W; Parks, W James; Tsuda, Takeshi; Wang, Paul J; Yoo, Shi-Joon

    2017-09-26

    For many neuromuscular diseases (NMDs), cardiac disease represents a major cause of morbidity and mortality. The management of cardiac disease in NMDs is made challenging by the broad clinical heterogeneity that exists among many NMDs and by limited knowledge about disease-specific cardiovascular pathogenesis and course-modifying interventions. The overlay of compromise in peripheral muscle function and other organ systems, such as the lungs, also makes the simple application of endorsed adult or pediatric heart failure guidelines to the NMD population problematic. In this statement, we provide background on several NMDs in which there is cardiac involvement, highlighting unique features of NMD-associated myocardial disease that require clinicians to tailor their approach to prevention and treatment of heart failure. Undoubtedly, further investigations are required to best inform future guidelines on NMD-specific cardiovascular health risks, treatments, and outcomes. © 2017 American Heart Association, Inc.

  6. Trapezius Muscle Load, Heart Rate and Time Pressure during Day and Night Shift in Swiss and Japanese Nurses

    PubMed Central

    NICOLETTI, Corinne; MÜLLER, Christian; TOBITA, Itoko; NAKASEKO, Masaru; LÄUBLI, Thomas

    2014-01-01

    The aim of the present study was to analyze the activity of the trapezius muscle, the heart rate and the time pressure of Swiss and Japanese nurses during day and night shifts. The parameters were measured during a day and a night shift of 17 Swiss and 22 Japanese nurses. The observed rest time of the trapezius muscle was longer for Swiss than for Japanese nurses during both shifts. The 10th and the 50th percentile of the trapezius muscle activity showed a different effect for Swiss than for Japanese nurses. It was higher during the day shift of Swiss nurses and higher during the night shift of Japanese nurses. Heart rate was higher for both Swiss and Japanese nurses during the day. The time pressure was significantly higher for Japanese than for Swiss nurses. Over the duration of the shifts, time pressure increased for Japanese nurses and slightly decreased for those from Switzerland. Considering trapezius muscle activity and time pressure, the nursing profession was more burdening for the examined Japanese nurses than for Swiss nurses. In particular, the night shift for Japanese nurses was characterized by a high trapezius muscle activity and only few rest times for the trapezius muscle. PMID:24633074

  7. Differential Effects of 7 and 16 Groups of Muscle Relaxation Training Following Repeated Submaximal Intensity Exercise in Young Football Players.

    PubMed

    Sharifah Maimunah, S M P; Hashim, H A

    2016-02-01

    This study compares two versions of progressive muscle relaxation (PMR) training (7 and 16 muscle groups) on oxygen consumption (VO2), heart rates, rating of perceived exertion and choice reaction time. Football (soccer) players (N = 26; M age = 13.4 yr., SD = 0.5) were randomly assigned to either 7 muscle groups PMR, 16 muscle groups PMR, or a control group. PMR training requires the participants to tense a muscle, hold the muscle contraction, and then relax it. Measurement was conducted prior to and after the completion of 12 sessions of PMR. The dependent variables were measured following four bouts of intermittent exercise consisting of 12 min. of running at 60% VO2max for 10 min. followed by running at 90% VO2max for 2 min. with a 3-min. rest for each bout. Lower VO2, heart rate, perceived exertion, and quicker reaction time were expected in both relaxation groups compared to the control group. The results revealed a significant reduction in heart rates and choice reaction time for both relaxation groups, but the longer version produced significantly quicker choice reaction time. © The Author(s) 2016.

  8. Trapezius muscle load, heart rate and time pressure during day and night shift in Swiss and Japanese nurses.

    PubMed

    Nicoletti, Corinne; Müller, Christian; Tobita, Itoko; Nakaseko, Masaru; Läubli, Thomas

    2014-01-01

    The aim of the present study was to analyze the activity of the trapezius muscle, the heart rate and the time pressure of Swiss and Japanese nurses during day and night shifts. The parameters were measured during a day and a night shift of 17 Swiss and 22 Japanese nurses. The observed rest time of the trapezius muscle was longer for Swiss than for Japanese nurses during both shifts. The 10th and the 50th percentile of the trapezius muscle activity showed a different effect for Swiss than for Japanese nurses. It was higher during the day shift of Swiss nurses and higher during the night shift of Japanese nurses. Heart rate was higher for both Swiss and Japanese nurses during the day. The time pressure was significantly higher for Japanese than for Swiss nurses. Over the duration of the shifts, time pressure increased for Japanese nurses and slightly decreased for those from Switzerland. Considering trapezius muscle activity and time pressure, the nursing profession was more burdening for the examined Japanese nurses than for Swiss nurses. In particular, the night shift for Japanese nurses was characterized by a high trapezius muscle activity and only few rest times for the trapezius muscle.

  9. The changes in beta-adrenoceptor-mediated cardiac function in experimental hypothyroidism: the possible contribution of cardiac beta3-adrenoceptors.

    PubMed

    Arioglu, E; Guner, S; Ozakca, I; Altan, V M; Ozcelikay, A T

    2010-02-01

    Thyroid hormone deficiency has been reported to decrease expression and function of both beta(1)- and beta(2)-adrenoceptor in different tissues including heart. The purpose of this study was to examine the possible contribution of beta(3)-adrenoceptors to cardiac dysfunction in hypothyroidism. In addition, effect of this pathology on beta(1)- and beta(2)-adrenoceptor was investigated. Hypothyroidism was induced by adding methimazole (300 mg/l) to drinking water of rats for 8 weeks. Cardiac hemodynamic parameters were measured in anesthetised rats in vivo. Responses to beta-adrenoceptor agonists were examined in rat papillary muscle in vitro. We also studied the effect of hypotyroidism on mRNA expression of beta-adrenoceptors, Gialpha, GRK, and eNOS in rat heart. All of the hemodynamic parameters (systolic, diastolic and mean arterial pressure, left ventricular pressure, heart rate, +dp/dt, and -dp/dt) were significantly reduced by the methimazole treatment. The negative inotropic effect elicited by BRL 37344 (a beta(3)-adrenoceptor preferential agonist) and positive inotropic effects produced by isoprenaline and noradrenaline, respectively, were significantly decreased in papillary muscle of hypothyroid rats as compared to those of controls. On the other hand, hypothyroidism resulted in increased cardiac beta(2)- and beta(3)-adrenoceptor, Gialpha(2), Gialpha(3), GRK3, and eNOS mRNA expressions. However, beta(1)-adrenoceptor and GRK2 mRNA expressions were not changed significantly in this pathology. These results show that mRNA expression of beta(3)-adrenoceptors as well as the signalling pathway components mediated through beta(3)-adrenoceptors are significantly increased in hypothyroid rat heart. Since we could not correlate these alternates with the decreased negative inotropic response mediated by this receptor subtype, it is not clear whether these changes are important for hypothyroid induced reduction in cardiac function.

  10. Magnetic resonance spectroscopy in congenital heart disease.

    PubMed Central

    Miall-Allen, V. M.; Kemp, G. J.; Rajagopalan, B.; Taylor, D. J.; Radda, G. K.; Haworth, S. G.

    1996-01-01

    OBJECTIVE: To determine the feasibility of studying myocardial and skeletal muscle bioenergetics using 31P magnetic resonance spectroscopy (MRS) in babies and young children with congenital heart disease. SUBJECTS: 16 control subjects aged 5 months to 24 years and 18 patients with CHD, aged 7 months to 23 years, of whom 11 had cyanotic CHD, five had cardiac failure, and two had had a Senning procedure. DESIGN: 31P MRS was carried out using a 1.9 Tesla horizontal 65 cm bore whole body magnet to study the myocardium in 10 patients and skeletal muscle (gastrocnemius) in 14 patients, eight of whom were exercised, together with appropriate controls. RESULTS: In hypoxaemic patients, in skeletal muscle at rest intracellular pH (pHi) was abnormally high [7.06 (SEM 0.04) v 7.04 (0.05), P < 0.01] and showed a positive correlation with haemoglobin (P < 0.03). On exercise, hypoxaemic patients fatigued more quickly but end-exercise pHi and phosphocreatine recovery were normal, implying that an equivalent but smaller amount of work had been performed. End-exercise ADP concentration was lower. On recovery, the initial rate of phosphocreatine resynthesis was low. Skeletal muscle bioenergetics were within normal limits in those in heart failure. In the myocardium, the phosphocreatine/ATP ratio was similar in controls and hypoxaemic subjects, but low in those in heart failure. CONCLUSIONS: In heart failure, the myocardial phosphocreatine/ATP ratio was reduced, as in adults, while resting skeletal muscle studies were normal. By contrast, hypoxaemic children had normal myocardial bioenergetics, but showed skeletal muscle alkalinity, and energy reserves were more readily depleted on exercise. On recovery, the initially slow phosphocreatine resynthesis rate reflects a low rate of mitochondrial ATP synthesis, probably due to an inadequate oxygen supply. 31P MRS offers a safe, non-invasive method of studying myocardial and skeletal muscle bioenergetics in children as young as 5 months. PMID:8697167

  11. The contractile adaption to preload depends on the amount of afterload

    PubMed Central

    Schotola, Hanna; Sossalla, Samuel T.; Renner, André; Gummert, Jan; Danner, Bernhard C.; Schott, Peter

    2017-01-01

    Abstract Aims The Frank–Starling mechanism (rapid response (RR)) and the secondary slow response (SR) are known to contribute to increases contractile performance. The contractility of the heart muscle is influenced by pre‐load and after‐load. Because of the effect of pre‐load vs. after‐load on these mechanisms in not completely understood, we studied the effect in isolated muscle strips. Methods and results Progressive stretch lead to an increase in shortening/force development under isotonic (only pre‐load) and isometric conditions (pre‐ and after‐load). Muscle length with maximal function was reached earlier under isotonic (L max‐isotonic) compared with isometric conditions (L max‐isometric) in nonfailing rabbit, in human atrial and in failing ventricular muscles. Also, SR after stretch from slack to L max‐isotonic was comparable under isotonic and isometric conditions (human: isotonic 10 ± 4%, isometric 10 ± 4%). Moreover, a switch from isotonic to isometric conditions at L max‐isometric showed no SR proving independence of after‐load. To further analyse the degree of SR on the total contractile performance at higher pre‐load muscles were stretched from slack to 98% L max‐isometric under isotonic conditions. Thereby, the SR was 60 ± 9% in rabbit and 51 ± 14% in human muscle strips. Conclusions This work shows that the acute contractile response largely depends on the degree and type of mechanical load. Increased filling of the heart elevates pre‐load and prolongs the isotonic part of contraction. The reduction in shortening at higher levels of pre‐load is thereby partially compensated by the pre‐load‐induced SR. After‐load shifts the contractile curve to a better ‘myofilament function’ by probably influencing thin fibers and calcium sensitivity, but has no effect on the SR. PMID:29154423

  12. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...

  13. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...

  14. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...

  15. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...

  16. 21 CFR 884.2600 - Fetal cardiac monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ascertain fetal heart activity during pregnancy and labor. The device is designed to separate fetal heart signals from maternal heart signals by analyzing electrocardiographic signals (electrical potentials generated during contraction and relaxation of heart muscle) obtained from the maternal abdomen with...

  17. What Is Cardiogenic Shock?

    MedlinePlus

    ... tis). This is inflammation of the heart muscle. Endocarditis (EN-do-kar-DI-tis). This is an ... Bypass Grafting Coronary Heart Disease Heart Attack Hypotension Endocarditis Percutaneous Coronary Intervention Other Resources NHLBI Resources Emergency ...

  18. Getting a New Heart

    MedlinePlus

    ... may be able to replace it with an artificial (man-made) valve. Cardiac size reduction . During this procedure, your doctor removes a piece of the heart muscle from an enlarged heart. This makes your ...

  19. Myocardial Bridge

    MedlinePlus

    ... Center > Myocardial Bridge Menu Topics Topics FAQs Myocardial Bridge En español Your heart is made of muscle, ... surface of the heart. What is a myocardial bridge? A myocardial bridge is a band of heart ...

  20. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish.

    PubMed

    González-Rosa, Juan Manuel; Sharpe, Michka; Field, Dorothy; Soonpaa, Mark H; Field, Loren J; Burns, Caroline E; Burns, C Geoffrey

    2018-02-26

    Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Managing therapeutic competition in patients with heart failure, lower urinary tract symptoms and incontinence.

    PubMed

    Tannenbaum, Cara; Johnell, Kristina

    2014-02-01

    Up to 50% of heart failure patients suffer from lower urinary tract symptoms. Urinary incontinence has been associated with worse functional status in patients with heart failure, occurring three times more frequently in patients with New York Heart Association Class III and IV symptoms compared with those with milder disease. The association between heart failure and urinary symptoms may be directly attributable to worsening heart failure pathophysiology; however, medications used to treat heart failure may also indirectly provoke or exacerbate urinary symptoms. This type of drug-disease interaction, in which the treatment for heart failure precipitates incontinence, and removal of medications to relieve incontinence worsens heart failure, can be termed therapeutic competition. The mechanisms by which heart failure medication such as diuretics, angiotensin-converting enzyme (ACE) inhibitors and β-blockers aggravate lower urinary tract symptoms are discussed. Initiation of a prescribing cascade, whereby antimuscarinic agents or β3-agonists are added to treat symptoms of urinary urgency and incontinence, is best avoided. Recommendations and practical tips are provided that outline more judicious management of heart failure patients with lower urinary tract symptoms. Compelling strategies to improve urinary outcomes include titrating diuretics, switching ACE inhibitors, treating lower urinary tract infections, appropriate fluid management, daily weighing, and uptake of pelvic floor muscle exercises.

  2. Immunohistochemical localization of D-aspartate oxidase in porcine peripheral tissues.

    PubMed

    Yamamoto, Atsushi; Tanaka, Hiroyuki; Ishida, Tetsuo; Horiike, Kihachiro

    2011-07-01

    D-Aspartate (D-Asp) is an endogenous substance in mammals. Degradation of D-Asp is carried out only by D-aspartate oxidase (DDO). We measured DDO activity in porcine tissues, and produced an anti-porcine DDO antibody to examine the cellular localization of DDO. All the tissues examined showed DDO activities, whereas the substrate D-Asp was not detected in kidney cortex, liver, heart, and gastric mucosa. In the kidney, intensive immunohistochemical staining for DDO was found in the epithelial cells of the proximal tubules. In the liver, the epithelial cells of interlobular bile ducts, liver sinusoid-lining cells with cytoplasmic processes, and the smooth muscle cells of arterioles were strongly stained for DDO. In the heart, cardiomyocytes and the smooth muscle cells of arterioles showed DDO-immunoreactivity. In the gastric mucosa, only the chief cells were DDO-positive. These newly identified DDO-positive cells seem to actively degrade D-Asp to prevent an excess of D-Asp from exerting harmful effects on the respective functions of porcine tissues.

  3. Methylene Blue Partially Rescues Heart Defects in a Drosophila Model of Huntington's Disease.

    PubMed

    Heidari, Raheleh; Monnier, Véronique; Martin, Elodie; Tricoire, Hervé

    2015-01-01

    Huntington's disease (HD) is a Polyglutamine disease caused by the presence of CAG repeats in the first exon of Huntingtin (Htt), a large protein with multiple functions. In addition to neurodegeneration of specific brain regions, notably the striatum, HD also shows alterations in peripheral tissues, such as the heart, skeletal muscles or peripheral endocrine glands. Mutant Huntingtin (mHtt)-driven mitochondrial impairment may underlie some of the CNS and peripheral tissues dysfunctions, especially in tissues with high energy demand such as the heart. The aim of this study is to characterize two new inducible Drosophila HD heart models and to assay the therapeutic potential of methylene blue in these HD models. We report the construction of inducible Drosophila HD heart models, expressing two Nter fragments of the protein encompassing either exon 1 or the first 171 amino acids and the characterization of heart phenotypes in vivo. We show that both mHtt fragments are able to impair fly cardiac function with different characteristics. Additionally, expression of mHtt, which was limited to adulthood only, leads to mild heart impairment, as opposed to a strong and age-dependent phenotype observed when mHtt expression was driven during both developmental and adult stages. We report that treatment with methylene blue (MB), a protective compound in mitochondria-related diseases, partially protects the fly's heart against mHtt-induced toxicity, but does not rescue neuronal or glial phenotypes in other fly models of HD. This may be linked to its low penetration through the fly's blood-brain barrier. Our data suggest that improvement of mitochondrial function by MB, or related compounds, could be an efficient therapeutic strategy to prevent cardiac failure in HD patients.

  4. Heavy metals in laughing gulls: Gender, age and tissue differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gochfeld, M.; Belant, J.L.; Shukla, T.

    1996-12-01

    The authors examined concentrations of lead, cadmium, mercury, manganese, selenium, and chromium in feathers, liver, kidney, heart, and muscle of known-aged laughing gulls (Larus atricilla) that hatched in Barnegat Bay, New Jersey and were collected at John F. Kennedy International Airport, New York 1 to 7 years later. Concentrations differed significantly among tissues, and tissue entered all the regression models explaining the greatest variation in metal levels. Age of bird contributed significantly to the models for lead, cadmium, selenium, and chromium. Although there were significant gender differences in all body measurements except wing length, there were few differences in metalmore » levels. Males had significantly higher lead levels in feathers, and females had significantly higher selenium levels in heart and muscle tissue. For lead, 3-year olds had the highest levels in the heart, liver, and kidney, and levels were lower thereafter. Mercury levels in feathers and heart decreased significantly with age. Cadmium levels increased significantly with age for feathers, heart, liver, and muscle, although there was a slight decrease in the 7-year olds. Selenium levels decreased significantly with age for all tissues. Chromium levels increased with age for liver and heart.« less

  5. Ventricular myoarchitecture in tetralogy of Fallot.

    PubMed Central

    Sanchez-Quintana, D.; Anderson, R. H.; Ho, S. Y.

    1996-01-01

    BACKGROUND: Little attention has been paid to the architecture of the muscle fibres of the ventricular walls in congenitally malformed hearts. In this study the gross pattern of myocardial fibres in normal hearts was compared with that in cases of tetralogy of Fallot. METHODS AND RESULTS: After morphological examination nine specimens with tetralogy were dissected to study the ventricular myoarchitecture. Changes were found in the shape of the malformed ventricles. The ventricular walls were arranged in layers in all hearts. Superficial and deep layers were present in both ventricles, with the superficial layer showing a more oblique orientation in the specimens with tetralogy than in normal hearts. Modifications of muscle fibre that were related to the type of malformation were seen in the deep layer. A middle layer was present in the left ventricles of normal hearts and specimens with tetralogy: this showed a horizontal orientation in both groups. In contrast, a middle layer was found in the right ventricle only in specimens showing tetralogy. CONCLUSIONS: The malformed hearts showed modifications in ventricular shape, in the arrangement of muscle in the right ventricle, and in the overall myoarchitecture. These changes could well be the consequence of the same agent (or agents) that caused the structural defect. Images PMID:8868990

  6. Comparison of the Effects of Benson Muscle Relaxation and Nature Sounds on the Fatigue in Patients With Heart Failure: A Randomized Controlled Clinical Trial.

    PubMed

    Seifi, Leila; Najafi Ghezeljeh, Tahereh; Haghani, Hamid

    This study was conducted with the aim of comparing the effects of Benson muscle relaxation and nature sounds on fatigue in patients with heart failure. Fatigue and exercise intolerance as prevalent symptoms experienced by patients with heart failure can cause the loss of independence in the activities of daily living. It can also damage self-care and increase dependence to others, which subsequently can reduce the quality of life. This randomized controlled clinical trial was conducted in an urban area of Iran in 2016. Samples were consisted of 105 hospitalized patients with heart failure chosen using a convenience sampling method. They were assigned to relaxation, nature sounds, and control groups using a randomized block design. In addition to routine care, the Benson muscle relaxation and nature sounds groups received interventions in mornings and evenings twice a day for 20 minutes within 3 consecutive days. A 9-item questionnaire was used to collect data regarding fatigue before and after the interventions. Relaxation and nature sounds reduced fatigue in patients with heart failure in comparison to the control group. However, no statistically significant difference was observed between the interventions. Benson muscle relaxation and nature sounds are alternative methods for the reduction of fatigue in patients with heart failure. They are inexpensive and easy to be administered and upon patients' preferences can be used by nurses along with routine nursing interventions.

  7. Pay attention to cardiac remodeling in cancer cachexia.

    PubMed

    Zheng, Yawen; Chen, Han; Li, Xiaoqing; Sun, Yuping

    2016-07-01

    Cancer cachexia is a complex and multifaceted disease state characterized by fatigue, weakness, and loss of skeletal muscle and adipose tissue. Recently, the profound negative effects of cancer cachexia on cardiac tissue draw much attention, which is likely to contribute to mortality in tumor-bearing animals. The mechanism of cardiac remodeling is not so clear and involved with a series of molecular alterations. In cancer cachexia model, progressive loss of left ventricular mass and decrease in myocardial function is observed and cardiac autonomic functions are altered. Levels of several emerging cardiovascular neurohormones are found elevating in patients with cancer, but it is still controversial whether the changes could reflect the heart injury accurately. The remedy for cardiac remodeling has been explored. It is showed that exercise can modulate signaling pathways activated by wasting cytokines and impact on the resulting outcomes on heart adaptation. Some drugs, such as bisoprolol, spironolactone, perindopril, tandospirone, and simvastatin, can mitigate adverse effects of the tumor on the heart and prolong survival.

  8. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    PubMed

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  9. Proangiogenic scaffolds as functional templates for cardiac tissue engineering

    PubMed Central

    Madden, Lauran R.; Mortisen, Derek J.; Sussman, Eric M.; Dupras, Sarah K.; Fugate, James A.; Cuy, Janet L.; Hauch, Kip D.; Laflamme, Michael A.; Murry, Charles E.; Ratner, Buddy D.

    2010-01-01

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30–40 μm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response. PMID:20696917

  10. Treatment with L-citrulline and metformin in Duchenne muscular dystrophy: study protocol for a single-centre, randomised, placebo-controlled trial.

    PubMed

    Hafner, Patricia; Bonati, Ulrike; Rubino, Daniela; Gocheva, Vanya; Zumbrunn, Thomas; Gueven, Nuri; Fischer, Dirk

    2016-08-03

    Duchenne muscular dystrophy (DMD) is an X-linked recessive disease that affects 1 in 3500-6000 male births. Despite broad research aiming to improve muscle function as well as heart and brain function, sufficient therapeutic efficacy has not yet been achieved and current therapeutic management is still supportive. In a recent pilot trial, oral treatment with L-arginine and metformin showed consistent changes of muscular metabolism both in vitro and in vivo by raising NO levels and expression of mitochondrial proteins in the skeletal muscle tissue of patients with DMD. This randomised, double-blind, placebo-controlled trial aims to demonstrate the superiority of L-citrulline and metformin therapy over placebo in DMD patients with regard to the Motor Function Measure (MFM) D1 subscore (primary endpoint) as well as additional clinical and subclinical tests. A total of 40-50 ambulant patients with DMD will be recruited at the outpatient department of the University of Basel Children's Hospital (Switzerland), as well as from the DMD patient registries of Switzerland, Germany and Austria. Patients will be randomly allocated to one of the two arms of the study and will receive either a combination of L-citrulline and metformin or placebo for 26 weeks. Co-medication with glucocorticoids is allowed. The primary endpoint is the change of the MFM D1 subscore from baseline to week 26 under L-citrulline and metformin therapy. Secondary endpoints will include the motor function measure (MFM) and its items and subscores, the 6-minute walking test, timed function tests and quantitative muscle testing. Furthermore, quantitative muscle MRI assessment to evaluate the muscle fat fraction as well as safety and biomarker laboratory analyses from blood will be included. For comparison, muscle metabolism and mitochondrial function will be analysed in 10-20 healthy age-matched male children. The aim of this study is to test if a 6-month treatment of a combination of L-citrulline and metformin is more effective than placebo in preventing loss of motor function and muscle degeneration in DMD. The MFM D1 subscore is used as a clinical outcome measure and a quantitative muscle MRI assessment as the surrogate outcome measure of fatty muscle degeneration. ClinicalTrials.gov: NCT01995032 . Registered on 20 November 2013.

  11. Cardiovascular Responses to Skeletal Muscle Stretching: "Stretching" the Truth or a New Exercise Paradigm for Cardiovascular Medicine?

    PubMed

    Kruse, Nicholas T; Scheuermann, Barry W

    2017-12-01

    Stretching is commonly prescribed with the intended purpose of increasing range of motion, enhancing muscular coordination, and preventing prolonged immobilization induced by aging or a sedentary lifestyle. Emerging evidence suggests that acute or long-term stretching exercise may modulate a variety of cardiovascular responses. Specifically, at the onset of stretch, the mechanical deformation of the vascular bed coupled with stimulation of group III muscle afferent fibers initiates a cascade of events resulting in both peripheral vasodilation and a heart rate-driven increase in cardiac output, blood pressure, and muscle blood flow. This potential to increase shear stress and blood flow without the use of excessive muscle energy expenditure may hold important implications for future therapeutic vascular medicine and cardiac health. However, the idea that a cardiovascular component may be involved in human skeletal muscle stretching is relatively new. Therefore, the primary intent of this review is to highlight topics related to skeletal muscle stretching and cardiovascular regulation and function. The current evidence suggests that acute stretching causes a significant macro- and microcirculatory event that alters blood flow and the relationship between oxygen availability and oxygen utilization. These acute vascular changes if performed chronically may result in improved endothelial function, improved arterial blood vessel stiffness, and/or reduced blood pressure. Although several mechanisms have been postulated, an increased nitric oxide bioavailability has been highlighted as one promising candidate for the improvement in vessel function with stretching. Collectively, the evidence provided in this review suggests that stretching acutely or long term may serve as a novel and alternative low intensity therapeutic intervention capable of improving several parameters of vascular function.

  12. Homozygous EEF1A2 mutation causes dilated cardiomyopathy, failure to thrive, global developmental delay, epilepsy and early death.

    PubMed

    Cao, Siqi; Smith, Laura L; Padilla-Lopez, Sergio R; Guida, Brandon S; Blume, Elizabeth; Shi, Jiahai; Morton, Sarah U; Brownstein, Catherine A; Beggs, Alan H; Kruer, Michael C; Agrawal, Pankaj B

    2017-09-15

    Eukaryotic elongation factor 1A (EEF1A), is encoded by two distinct isoforms, EEF1A1 and EEF1A2; whereas EEF1A1 is expressed almost ubiquitously, EEF1A2 expression is limited such that it is only detectable in skeletal muscle, heart, brain and spinal cord. Currently, the role of EEF1A2 in normal cardiac development and function is unclear. There have been several reports linking de novo dominant EEF1A2 mutations to neurological issues in humans. We report a pair of siblings carrying a homozygous missense mutation p.P333L in EEF1A2 who exhibited global developmental delay, failure to thrive, dilated cardiomyopathy and epilepsy, ultimately leading to death in early childhood. A third sibling also died of a similar presentation, but DNA was unavailable to confirm the mutation. Functional genomic analysis was performed in S. cerevisiae and zebrafish. In S. cerevisiae, there was no evidence for a dominant-negative effect. Previously identified putative de novo mutations failed to complement yeast strains lacking the EEF1A ortholog showing a major growth defect. In contrast, the introduction of the mutation seen in our family led to a milder growth defect. To evaluate its function in zebrafish, we knocked down eef1a2 expression using translation blocking and splice-site interfering morpholinos. EEF1A2-deficient zebrafish had skeletal muscle weakness, cardiac failure and small heads. Human EEF1A2 wild-type mRNA successfully rescued the morphant phenotype, but mutant RNA did not. Overall, EEF1A2 appears to be critical for normal heart function in humans, and its deficiency results in clinical abnormalities in neurologic function as well as in skeletal and cardiac muscle defects. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Panic Attack or Heart Attack?

    MedlinePlus

    ... disease affects your heart's muscle, blood vessels, and electrical system and is the leading cause of death ... An electrocardiogram (EKG or ECG) measures your heart's electrical activity by placing small electrodes on your chest, ...

  14. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    PubMed

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  15. Differential responsiveness in VEGF receptor subtypes to hypoxic stress in various tissues of plateau animals.

    PubMed

    Xie, Hui-Chun; Li, Jin-Gang; He, Jian-Ping

    2017-05-04

    With hypoxic stress, hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) are elevated and their responses are altered in skeletal muscles of plateau animals [China Qinghai-Tibetan plateau pikas (Ochotona curzoniae)] as compared with control animals [normal lowland Sprague-Dawley (SD) rats]. The results indicate that HIF-1alpha and VEGF are engaged in physiological functions under hypoxic environment. The purpose of the current study was to examine the protein levels of VEGF receptor subtypes (VEGFRs: VEGFR-1, VEGFR-2 and VEGFR-3) in the end organs, namely skeletal muscle, heart and lung in response to hypoxic stress. ELISA and Western blot analysis were employed to determine HIF-1alpha and the protein expression of VEGFRs in control animals and plateau pikas. We further blocked HIF-1alpha signal to determine if HIF-1alpha regulates alternations in VEGFRs in those tissues. We hypothesized that responsiveness of VEGFRs in the major end organs of plateau animals is differential with insult of hypoxic stress and is modulated by low oxygen sensitive HIF-1alpha. Our results show that hypoxic stress induced by exposure of lower O(2) for 6 h significantly increased the levels of VEGFR-2 in skeletal muscle, heart and lung and the increases were amplified in plateau pikas. Our results also demonstrate that hypoxic stress enhanced VEGFR-3 in lungs of plateau animals. Nonetheless, no significant alternations in VEGFR-1 were observed in those tissues with hypoxic stress. Moreover, we observed decreases of VEGFR-2 in skeletal muscle, heart and lung; and decreases of VEGFR-3 in lung following HIF-1alpha inhibition. Overall, our findings suggest that in plateau animals 1) responsiveness of VEGFRs is different under hypoxic environment; 2) amplified VEGFR-2 response appears in skeletal muscle, heart and lung, and enhanced VEGFR-3 response is mainly observed in lung; 3) HIF-1alpha plays a regulatory role in the levels of VEGFRs. Our results provide the underlying cellular and molecular mechanisms responsible for hypoxic environment in plateau animals, having an impact on research of physiological and ecological adaptive responses to acute or chronic hypoxic stress in humans who living at high attitude and who live at a normal sea level but suffer from hypoxic disorders.

  16. Skeletal muscle mechanics: questions, problems and possible solutions.

    PubMed

    Herzog, Walter

    2017-09-16

    Skeletal muscle mechanics have been studied ever since people have shown an interest in human movement. However, our understanding of muscle contraction and muscle mechanical properties has changed fundamentally with the discovery of the sliding filament theory in 1954 and associated cross-bridge theory in 1957. Nevertheless, experimental evidence suggests that our knowledge of the mechanisms of contraction is far from complete, and muscle properties and muscle function in human movement remain largely unknown.In this manuscript, I am trying to identify some of the crucial challenges we are faced with in muscle mechanics, offer possible solutions to questions, and identify problems that might be worthwhile exploring in the future. Since it is impossible to tackle all (worthwhile) problems in a single manuscript, I identified three problems that are controversial, important, and close to my heart. They may be identified as follows: (i) mechanisms of muscle contraction, (ii) in vivo whole muscle mechanics and properties, and (iii) force-sharing among synergistic muscles. These topics are fundamental to our understanding of human movement and movement control, and they contain a series of unknowns and challenges to be explored in the future.It is my hope that this paper may serve as an inspiration for some, may challenge current beliefs in selected areas, tackle important problems in the area of muscle mechanics, physiology and movement control, and may guide and focus some of the thinking of future muscle mechanics research.

  17. Lack of UCP3 does not affect skeletal muscle mitochondrial function under lipid-challenged conditions, but leads to sudden cardiac death.

    PubMed

    Nabben, Miranda; van Bree, Bianca W J; Lenaers, Ellen; Hoeks, Joris; Hesselink, Matthijs K C; Schaart, Gert; Gijbels, Marion J J; Glatz, Jan F C; da Silva, Gustavo J J; de Windt, Leon J; Tian, Rong; Mike, Elise; Skapura, Darlene G; Wehrens, Xander H T; Schrauwen, Patrick

    2014-01-01

    UCP3's exact physiological function in lipid handling in skeletal and cardiac muscle remains unknown. Interestingly, etomoxir, a fat oxidation inhibitor and strong inducer of UCP3, is proposed for treating both diabetes and heart failure. We hypothesize that the upregulation of UCP3 upon etomoxir serves to protect mitochondria against lipotoxicity. To evaluate UCP3's role in skeletal muscle (skm) and heart under lipid-challenged conditions, the effect of UCP3 ablation was examined in a state of dysbalance between fat availability and oxidative capacity. Wild type (WT) and UCP3(-/-) mice were subjected to high-fat feeding for 14 days. From day 6 onwards, they were given either saline or etomoxir. Etomoxir treatment induced an increase in markers of lipotoxicity in skm compared to saline. This increase upon etomoxir was similar for both, WT and UCP3(-/-) mice, suggesting that UCP3 does not play a role in protection against lipotoxicity. Interestingly, we observed 25 % mortality in UCP3(-/-)s upon etomoxir administration vs. 11 % in WTs. This increased mortality in UCP3(-/-) compared to WT mice could not be explained by differences in cardiac lipotoxicity, apoptosis, fibrosis (histology, immunohistochemistry), oxidative capacity (respirometry) or function (echocardiography). Electrophysiology demonstrated, however, prolonged QRS and QTc intervals and greater susceptibility to ventricular tachycardia upon programmed electrical stimulation in etomoxir-treated UCP3(-/-)s versus WTs. Isoproterenol administration after pacing resulted in 75 % mortality in UCP3(-/-)s vs. 14 % in WTs. Our results argue against a protective role for UCP3 on skm metabolism under lipid overload, but suggest UCP3 to be crucial in prevention of arrhythmias upon lipid-challenged conditions.

  18. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure.

    PubMed

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J; Rau, Christoph D; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2016-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload-induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease.

  19. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure

    PubMed Central

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J.; Rau, Christoph D.; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M.; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2015-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload–induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease. PMID:26619120

  20. Reactive Oxygen Species/Nitric Oxide Mediated Inter-Organ Communication in Skeletal Muscle Wasting Diseases

    PubMed Central

    Leitner, Lucia M.; Wilson, Rebecca J.; Yan, Zhen

    2017-01-01

    Abstract Significance: Cachexia is defined as a complex metabolic syndrome that is associated with underlying illness and a loss of muscle with or without loss of fat mass. This disease is associated with a high incidence with chronic diseases such as heart failure, cancer, chronic obstructive pulmonary disease (COPD), and acquired immunodeficiency syndrome (AIDS), among others. Since there is currently no effective treatment available, cachectic patients have a poor prognosis. Elucidation of the underlying mechanisms is, therefore, an important medical task. Recent Advances: There is accumulating evidence that the diseased organs such as heart, lung, kidney, or cancer tissue secrete soluble factors, including Angiotensin II, myostatin (growth differentiation factor 8 [GDF8]), GDF11, tumor growth factor beta (TGFβ), which act on skeletal muscle. There, they induce a set of genes called atrogenes, which, among others, induce the ubiquitin-proteasome system, leading to protein degradation. Moreover, elevated reactive oxygen species (ROS) levels due to modulation of NADPH oxidases (Nox) and mitochondrial function contribute to disease progression, which is characterized by loss of muscle mass, exercise resistance, and frailty. Critical issues: Although substantial progress was achieved to elucidate the pathophysiology of cachexia, effectice therapeutic strategies are urgently needed. Future Directions: With the identification of key components of the aberrant inter-organ communication leading to cachexia, studies in mice and men to inhibit ROS formation, induction of anti-oxidative superoxide dismutases, and upregulation of muscular nitric oxide (NO) formation either by pharmacological tools or by exercise are promising approaches to reduce the extent of skeletal muscle wasting. Antioxid. Redox Signal. 26, 700–717. PMID:27835923

  1. Lessons from the Heart: Individualizing Physical Education with Heart Rate Monitors.

    ERIC Educational Resources Information Center

    Kirkpatrick, Beth; Birnbaum, Burton H.

    Learning about the relationship between heart rate and physical activity is an important aspect of fitness education. Use of a heart rate monitor (HRM) helps a student to understand how stretching and large muscle movements gradually increase the heart rate and blood flow, and enables students to measure their exercise heart rates and set goals…

  2. Mesenchymal Stem Cells from Fetal Heart Attenuate Myocardial Injury after Infarction: An In Vivo Serial Pinhole Gated SPECT-CT Study in Rats

    PubMed Central

    Garikipati, Venkata Naga Srikanth; Jadhav, Sachin; Pal, Lily; Prakash, Prem; Dikshit, Madhu; Nityanand, Soniya

    2014-01-01

    Mesenchymal stem cells (MSC) have emerged as a potential stem cell type for cardiac regeneration after myocardial infarction (MI). Recently, we isolated and characterized mesenchymal stem cells derived from rat fetal heart (fC-MSC), which exhibited potential to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro. In the present study, we investigated the therapeutic efficacy of intravenously injected fC-MSC in a rat model of MI using multi-pinhole gated SPECT-CT system. fC-MSC were isolated from the hearts of Sprague Dawley (SD) rat fetuses at gestation day 16 and expanded ex vivo. One week after induction of MI, 2×106 fC-MSC labeled with PKH26 dye (n = 6) or saline alone (n = 6) were injected through the tail vein of the rats. Initial in vivo tracking of 99mTc-labeled fC-MSC revealed a focal uptake of cells in the anterior mid-ventricular region of the heart. At 4 weeks of fC-MSC administration, the cells labeled with PKH26 were located in abundance in infarct/peri-infarct region and the fC-MSC treated hearts showed a significant increase in left ventricular ejection fraction and a significant decrease in the end diastolic volume, end systolic volume and left ventricular myo-mass in comparison to the saline treated group. In addition, fC-MSC treated hearts had a significantly better myocardial perfusion and attenuation in the infarct size, in comparison to the saline treated hearts. The engrafted PKH26-fC-MSC expressed cardiac troponin T, endothelial CD31 and smooth muscle sm-MHC, suggesting their differentiation into all major cells of cardiovascular lineage. The fC-MSC treated hearts demonstrated an up-regulation of cardio-protective growth factors, anti-fibrotic and anti-apoptotic molecules, highlighting that the observed left ventricular functional recovery may be due to secretion of paracrine factors by fC-MSC. Taken together, our results suggest that fC-MSC therapy may be a new therapeutic strategy for MI and multi-pinhole gated SPECT-CT system may be a useful tool to evaluate cardiac perfusion, function and cell tracking after stem cell therapy in acute myocardial injury setting. PMID:24971627

  3. Lamina-associated polypeptide 2alpha loss impairs heart function and stress response in mice.

    PubMed

    Gotic, Ivana; Leschnik, Michael; Kolm, Ursula; Markovic, Mato; Haubner, Bernhard J; Biadasiewicz, Katarzyna; Metzler, Bernhard; Stewart, Colin L; Foisner, Roland

    2010-02-05

    Lamina-associated polypeptide (LAP)2alpha is a mammalian chromatin-binding protein that interacts with a fraction of A-type lamins in the nuclear interior. Because mutations in lamins and LAP2alpha lead to cardiac disorders in humans, we hypothesized that these factors may play important roles in heart development and adult tissue homeostasis. We asked whether the presence of LAP2alpha was required for normal cardiac function. To study the molecular mechanisms of the disease, we analyzed heart structure and function in complete and conditional Lap2alpha(-/-) mice as well as Lap2alpha(-/-)/Mdx mutants. Unlike conditional deletion of LAP2alpha in late embryonic striated muscle, its complete knockout caused systolic dysfunction in young mice, accompanied by sporadic fibrosis in old animals, as well as deregulation of major cardiac transcription factors GATA4 and myocyte enhancer factor 2c. Activation of compensatory pathways, including downregulation of beta-adrenergic receptor signaling, resulted in reduced responsiveness of the myocardium to chronic beta-adrenergic stimulation and stalled the progression of LAP2alpha-deficient hearts from hypertrophy toward cardiac failure. Dystrophin deficiency in an Mdx background resulted in a transient rescue of the Lap2alpha(-/-) phenotype. Our data suggest a novel role of LAP2alpha in the maintenance of cardiac function under normal and stress conditions.

  4. NADPH Oxidase 5 Is a Pro-Contractile Nox Isoform and a Point of Cross-Talk for Calcium and Redox Signaling-Implications in Vascular Function.

    PubMed

    Montezano, Augusto C; De Lucca Camargo, Livia; Persson, Patrik; Rios, Francisco J; Harvey, Adam P; Anagnostopoulou, Aikaterini; Palacios, Roberto; Gandara, Ana Caroline P; Alves-Lopes, Rheure; Neves, Karla B; Dulak-Lis, Maria; Holterman, Chet E; de Oliveira, Pedro Lagerblad; Graham, Delyth; Kennedy, Christopher; Touyz, Rhian M

    2018-06-15

    NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus , an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N -acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca 2+ ] i , increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus , gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  5. Physical frailty in older adults is associated with metabolic and atherosclerotic risk factors and cognitive impairment independent of muscle mass.

    PubMed

    Lee, J S W; Auyeung, T-W; Leung, J; Kwok, T; Leung, P-C; Woo, J

    2011-12-01

    Metabolic and atherosclerotic diseases are known risk factors for disability in old age, and can result in sarcopenia as well as cognitive impairment, which are both components of frailty syndrome. As muscle loss increases with ageing, it is unclear whether muscle loss per se, or the diseases themselves, are the underlying cause of physical frailty in those suffering from these diseases. We tested the hypothesis that metabolic and atherosclerotic diseases and cognitive impairment are associated with physical frailty independent of muscle loss in old age, and further examined their impact on the relationship between physical frailty and mortality. Prospective. Community. 4000 community dwelling Chinese elderly ≥65 years. Diabetes, hypertension, stroke, heart disease, cognitive impairment, smoking, physical activity, waist hip ratio (WHR) and ankle-brachial index (ABI)) were recorded. Physical frailty measurements (grip-strength, chair-stands, stride length and 6-metre walks) were summarized into a composite frailty score (0-20), 0 being the most frail) according to quartiles of performance. Appendicular muscle mass (ASM) was measured using dual X-ray absorptiometry. Relationships between the score and covariates were analyzed. Cox regression was used to study the impact of metabolic and atnerosclerotic risk factors on the relationship between physical frailty and 6-year mortality. After adjustment for ASM, all metabolic diseases and indexes, and cognitive impairment were significantly associated with the composite physical frailty score in univariate analysis. In multivariate analysis, cognitive impairment, high WHR, diabetes, stroke and heart disease were all independently associated with higher physical frailty with adjustment for age, physical activity level and ASM. Hypertension was associated with physical frailty in men but not in women. In Cox regression, increased physical frailty was associated with higher 6-year mortality. The impact of metabolic and atherosclerotic risk factors was however only modest after adjustment for age and cognitive function. Metabolic and atherosclerotic diseases and high WHR, was associated with physical frailty, independent of their adverse effect on cognitive function and muscle mass.

  6. Identification of Novel Tissue-Specific Genes by Analysis of Microarray Databases: A Human and Mouse Model

    PubMed Central

    Suh, Yeunsu; Davis, Michael E.; Lee, Kichoon

    2013-01-01

    Understanding the tissue-specific pattern of gene expression is critical in elucidating the molecular mechanisms of tissue development, gene function, and transcriptional regulations of biological processes. Although tissue-specific gene expression information is available in several databases, follow-up strategies to integrate and use these data are limited. The objective of the current study was to identify and evaluate novel tissue-specific genes in human and mouse tissues by performing comparative microarray database analysis and semi-quantitative PCR analysis. We developed a powerful approach to predict tissue-specific genes by analyzing existing microarray data from the NCBI′s Gene Expression Omnibus (GEO) public repository. We investigated and confirmed tissue-specific gene expression in the human and mouse kidney, liver, lung, heart, muscle, and adipose tissue. Applying our novel comparative microarray approach, we confirmed 10 kidney, 11 liver, 11 lung, 11 heart, 8 muscle, and 8 adipose specific genes. The accuracy of this approach was further verified by employing semi-quantitative PCR reaction and by searching for gene function information in existing publications. Three novel tissue-specific genes were discovered by this approach including AMDHD1 (amidohydrolase domain containing 1) in the liver, PRUNE2 (prune homolog 2) in the heart, and ACVR1C (activin A receptor, type IC) in adipose tissue. We further confirmed the tissue-specific expression of these 3 novel genes by real-time PCR. Among them, ACVR1C is adipose tissue-specific and adipocyte-specific in adipose tissue, and can be used as an adipocyte developmental marker. From GEO profiles, we predicted the processes in which AMDHD1 and PRUNE2 may participate. Our approach provides a novel way to identify new sets of tissue-specific genes and to predict functions in which they may be involved. PMID:23741331

  7. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction

    PubMed Central

    Zizola, Cynthia; Kennel, Peter J.; Akashi, Hirokazu; Ji, Ruiping; Castillero, Estibaliz; George, Isaac; Homma, Shunichi

    2015-01-01

    Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF. PMID:25713305

  8. Activation of PPARδ signaling improves skeletal muscle oxidative metabolism and endurance function in an animal model of ischemic left ventricular dysfunction.

    PubMed

    Zizola, Cynthia; Kennel, Peter J; Akashi, Hirokazu; Ji, Ruiping; Castillero, Estibaliz; George, Isaac; Homma, Shunichi; Schulze, P Christian

    2015-05-01

    Exercise intolerance in heart failure has been linked to impaired skeletal muscle oxidative capacity. Oxidative metabolism and exercise capacity are regulated by PPARδ signaling. We hypothesized that PPARδ stimulation reverts skeletal muscle oxidative dysfunction. Myocardial infarction (MI) was induced in C57BL/6 mice and the development of ventricular dysfunction was monitored over 8 wk. Mice were randomized to the PPARδ agonist GW501516 (5 mg/kg body wt per day for 4 wk) or placebo 8 wk post-MI. Muscle function was assessed through running tests and grip strength measurements. In muscle, we analyzed muscle fiber cross-sectional area and fiber types, metabolic gene expression, fatty acid (FA) oxidation and ATP content. Signaling pathways were studied in C2C12 myotubes. FA oxidation and ATP levels decreased in muscle from MI mice compared with sham- operated mice. GW501516 administration increased oleic acid oxidation levels in skeletal muscle of the treated MI group compared with placebo treatment. This was accompanied by transcriptional changes including increased CPT1 expression. Further, the PPARδ-agonist improved running endurance compared with placebo. Cell culture experiments revealed protective effects of GW501516 against the cytokine-induced decrease of FA oxidation and changes in metabolic gene expression. Skeletal muscle dysfunction in HF is associated with impaired PPARδ signaling and treatment with the PPARδ agonist GW501516 corrects oxidative capacity and FA metabolism and improves exercise capacity in mice with LV dysfunction. Pharmacological activation of PPARδ signaling could be an attractive therapeutic intervention to counteract the progressive skeletal muscle dysfunction in HF. Copyright © 2015 the American Physiological Society.

  9. Actin genes and their expression in pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Zhang, Xiaoxi; Zhang, Xiaojun; Yuan, Jianbo; Du, Jiangli; Li, Fuhua; Xiang, Jianhai

    2018-04-01

    Actin is a multi-functional gene family that can be divided into muscle-type actins and non-muscle-type actins. In this study, 37 unigenes encoding actins were identified from RNA-Seq data of Pacific white shrimp, Litopenaeus vannamei. According to phylogenetic analysis, four and three cDNAs belong to cytoplasmic- and heart-type actins and were named LvActinCT and LvActinHT, respectively. 10 cDNAs belong to the slow-type skeletal muscle actins, and 18 belong to the fast-type skeletal muscle actins; they were designated LvActinSSK and LvActinFSK, respectively. Some muscle actin genes formed gene clusters in the genome. Multiple alternative transcription starts sites (ATSSs) were found for LvActinCT1. Based on the early developmental expression profile, almost all LvActins were highly expressed between the early limb bud and post-larval stages. Using LvActinSSK5 as probes, slow-type muscle was localized in pleopod muscle and superficial ventral muscle. We also found three actin genes that were down-regulated in the hemocytes of white spot syndrome virus (WSSV)- and Vibrio parahaemolyticus-infected L. vannamei. This study provides valuable information on the actin gene structure of shrimp, furthers our understanding of the shrimp muscle system and helps us develop strategies for disease control and sustainable shrimp farming.

  10. Is serial determination of inspiratory muscle strength a useful prognostic marker in chronic heart failure?

    PubMed

    Frankenstein, Lutz; Meyer, Franz Joachim; Sigg, Caroline; Nelles, Manfred; Schellberg, Dieter; Remppis, Andrew; Katus, Hugo A; Zugck, Christian

    2008-04-01

    Little data exists on the prognostic role of inspiratory muscle strength (PImax) in chronic heart failure (CHF). Training studies, however, frequently use it as a therapeutic target and surrogate marker for prognosis. The prognostic value of changes of PImax that allow this extrapolation is unknown. Patients with stable CHF were prospectively included and 1-year and all-time event rates recorded for endpoint analysis. In 158 patients (85% men; New York Heart Association functional class: 2.4+/-0.6), PImax was measured along with clinical evaluations at two visits, the initial visit and the second visit, 6.4+/-1.4 months apart. The mean follow-up was 59+/-34 months. Overall, 59 patients (37%) reached the primary endpoint of death or hospitalization (endpoint positive), and overall mortality rate (secondary endpoint) was 26% (42 patients). PImax did not differ between endpoint-negative and endpoint-positive patients, both at the initial and at the second visit (8.3+/-5.6 vs. 7.3+/-3.4 kPa and 8.8+/-6.0 vs. 7.9+/-3.6 kPa, respectively; P=NS), and both groups showed increased PImax (0.6+/-2.6 vs. 0.6+/-2.8 kPa; P=NS). Cox analyses found neither the absolute nor the relative change of PImax to be significant predictors for the primary and secondary endpoints (P=NS for both), both for the 1-year and for the all-time event rates. Endpoint rates did not differ between patients showing increasing or decreasing PImax (P=NS; relative risk (RR): 0.77; 95% confidence interval: 0.47-1.27). Trials focusing on inspiratory muscle function should use the actual levels of PImax as a surrogate marker to represent prognostic information, rather than relative or absolute changes. This is the first study to investigate the prognostic information of the changes of PImax over time, regarding both short-term and long-term morbidity and mortality in patients with stable CHF.

  11. Effect of physical exercise training in patients with Chagas heart disease: study protocol for a randomized controlled trial (PEACH study).

    PubMed

    Mendes, Fernanda de Souza Nogueira Sardinha; Sousa, Andréa Silvestre; Souza, Fernando Cesar de Castro Cesar; Pinto, Vivian Liane Mattos; Silva, Paula Simplicio; Saraiva, Roberto Magalhães; Xavier, Sergio Salles; Veloso, Henrique Horta; Holanda, Marcelo Teixeira; Costa, Andréa Rodrigues; Carneiro, Fernanda Martins; Silva, Gilberto Marcelo Sperandio; Borges, Juliana Pereira; Tibirica, Eduardo; Pinheiro, Roberta Olmo; Lara, Flávio Alves; Hasslocher-Moreno, Alejandro Marcel; Brasil, Pedro Emmanuel Alvarenga Americano; Mediano, Mauro Felippe Felix

    2016-09-02

    The effects of exercise training on Chagas heart disease are still unclear. This study aimed to evaluate the effect of exercise training over functional capacity, cardiac function, quality of life, and biomarkers in Chagas heart disease. The PEACH study is a superiority randomized clinical trial which will include subjects who meet the following criteria: Chagas heart disease with a left ventricular ejection fraction below 45 % with or without heart failure symptoms; clinical stability in the last 3 months; adherence to clinical treatment; and age above 18 years. The exclusion criteria are: pregnancy; neuromuscular limitations; smoking; evidence of non-chagasic heart disease; systemic conditions that limit exercise practice or cardiopulmonary exercise test; unavailability to attend the center three times a week during the intervention period; and practitioners of regular exercise. The intervention group will perform an exercise training intervention three times per week during 6 months and will be compared to the control group without exercise. Both groups will undergo the same monthly pharmaceutical and nutritional counseling as well as standard medical treatment according to the Brazilian consensus on Chagas disease. The primary outcome is functional capacity based on peak exercise oxygen consumption during cardiopulmonary exercise testing. Secondary outcomes are: cardiac function; body composition; muscle respiratory strength; microvascular reactivity; cardiac rhythm abnormalities; autonomic function; biochemical; oxidative stress and inflammatory biomarkers; and quality of life. Subjects will be evaluated at baseline, and at 3 and 6 months after randomization. Thirty patients will be randomly assigned into exercise or control groups at a ratio of 1:1. Findings of the present study will be useful to determine if physical exercise programs should be included as an important additional therapy in the treatment of patients with Chagas heart disease. ClinicalTrials.gov ID: NCT02517632 (registered on 6 August 2015).

  12. Sleep-Disordered Breathing Exacerbates Muscle Vasoconstriction and Sympathetic Neural Activation in Patients with Systolic Heart Failure.

    PubMed

    Lobo, Denise M L; Trevizan, Patricia F; Toschi-Dias, Edgar; Oliveira, Patricia A; Piveta, Rafael B; Almeida, Dirceu R; Mady, Charles; Bocchi, Edimar A; Lorenzi-Filho, Geraldo; Middlekauff, Holly R; Negrão, Carlos E

    2016-11-01

    Sleep-disordered breathing (SDB) is common in patients with heart failure (HF), and hypoxia and hypercapnia episodes activate chemoreceptors stimulating autonomic reflex responses. We tested the hypothesis that muscle vasoconstriction and muscle sympathetic nerve activity (MSNA) in response to hypoxia and hypercapnia would be more pronounced in patients with HF and SDB than in patients with HF without SDB (NoSBD). Ninety consecutive patients with HF, New York Heart Association functional class II-III, and left ventricular ejection fraction ≤40% were screened for the study. Forty-one patients were enrolled: NoSDB (n=13, 46 [39-53] years) and SDB (n=28, 57 [54-61] years). SDB was characterized by apnea-hypopnea index ≥15 events per hour (polysomnography). Peripheral (10% O 2 and 90% N 2 , with CO 2 titrated) and central (7% CO 2 and 93% O 2 ) chemoreceptors were stimulated for 3 minutes. Forearm and calf blood flow were evaluated by venous occlusion plethysmography, MSNA by microneurography, and blood pressure by beat-to-beat noninvasive technique. Baseline forearm blood flow, forearm vascular conductance, calf blood flow, and calf vascular conductance were similar between groups. MSNA was higher in the SDB group. During hypoxia, the vascular responses (forearm blood flow, forearm vascular conductance, calf blood flow, and calf vascular conductance) were significantly lower in the SDB group compared with the NoSDB group (P<0.01 to all comparisons). Similarly, during hypercapnia, the vascular responses (forearm blood flow, forearm vascular conductance, calf blood flow, and calf vascular conductance) were significantly lower in the SDB group compared with the NoSDB group (P<0.001 to all comparisons). MSNA were higher in response to hypoxia (P=0.024) and tended to be higher to hypercapnia (P=0.066) in the SDB group. Patients with HF and SDB have more severe muscle vasoconstriction during hypoxia and hypercapnia than HF patients without SDB, which seems to be associated with endothelial dysfunction and, in part, increased MSNA response. © 2016 American Heart Association, Inc.

  13. Early Detection of Myocardial Bioenergetic Deficits: A 9.4 Tesla Complete Non Invasive 31P MR Spectroscopy Study in Mice with Muscular Dystrophy.

    PubMed

    Cui, Weina; Jang, Albert; Zhang, Pengyuan; Thompson, Brian; Townsend, DeWayne; Metzger, Joseph M; Zhang, Jianyi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is the most common fatal form of muscular dystrophy characterized by striated muscle wasting and dysfunction. Patients with DMD have a very high incidence of heart failure, which is increasingly the cause of death in DMD patients. We hypothesize that in the in vivo system, the dystrophic cardiac muscle displays bioenergetic deficits prior to any functional or structural deficits. To address this we developed a complete non invasive 31P magnetic resonance spectroscopy (31P MRS) approach to measure myocardial bioenergetics in the heart in vivo. Six control and nine mdx mice at 5 months of age were used for the study. A standard 3D -Image Selected In vivo Spectroscopy (3D-ISIS) sequence was used to provide complete gradient controlled three-dimensional localization for heart 31P MRS. These studies demonstrated dystrophic hearts have a significant reduction in PCr/ATP ratio compare to normal (1.59±0.13 vs 2.37±0.25, p<0.05). Our present study provides the direct evidence of significant cardiac bioenergetic deficits in the in vivo dystrophic mouse. These data suggest that energetic defects precede the development of significant hemodynamic or structural changes. The methods provide a clinically relevant approach to use myocardial energetics as an early marker of disease in the dystrophic heart. The new method in detecting the in vivo bioenergetics abnormality as an early non-invasive marker of emerging dystrophic cardiomyopathy is critical in management of patients with DMD, and optimized therapies aimed at slowing or reversing the cardiomyopathy.

  14. Stomach distension increases efferent muscle sympathetic nerve activity and blood pressure in healthy humans.

    PubMed

    Rossi, P; Andriesse, G I; Oey, P L; Wieneke, G H; Roelofs, J M; Akkermans, L M

    1998-12-11

    Although the enteric nervous system is usually described as a separate and independent entity, animal studies show that gastric distension causes a reflex increase in arterial pressure and a sympathetically mediated increase in heart rate and peripheral vascular resistance. To assess the influence of gastric distension on sympathetic outflow and blood pressure, we recorded muscle sympathetic nerve activity (MSNA) from the peroneal nerve by microneurography in eight healthy volunteers. The stomach was distended by means of a barostat, using a single staircase protocol by which pressure was increased by 2 mmHg every 3 min. Gastric sensory function was assessed at each distension step by using a visual analog scale (VAS) for sensations of fullness, nausea and pain. For comparison, we also performed a cold pressor test. The MSNA increased on barostat-induced gastric distension with an almost concomitant elevation of blood pressure. The increase in both was proportional to the intragastric pressure and both decreased towards initial values after the end of distension. Heart rate increased inconsistently and only at higher distension pressures that were associated with high VAS scores. The opposite was found for the cold pressor test. The results of this study confirm the existence of a functional relationship between gastrointestinal distension and cardiovascular function. Decrease in this gastrovascular response may play a role in postprandial hypotension in the elderly, since the MSNA responses to simulated microgravity decrease with age.

  15. Cardiac Expression of ms1/STARS, a Novel Gene Involved in Cardiac Development and Disease, Is Regulated by GATA4

    PubMed Central

    Kobayashi, Satoru; Peterson, Richard E.; He, Aibin; Motterle, Anna; Samani, Nilesh J.; Menick, Donald R.; Pu, William T.; Liang, Qiangrong

    2012-01-01

    Ms1/STARS is a novel muscle-specific actin-binding protein that specifically modulates the myocardin-related transcription factor (MRTF)-serum response factor (SRF) regulatory axis within striated muscle. This ms1/STARS-dependent regulatory axis is of central importance within the cardiac gene regulatory network and has been implicated in cardiac development and postnatal cardiac function/homeostasis. The dysregulation of ms1/STARS is associated with and causative of pathological cardiac phenotypes, including cardiac hypertrophy and cardiomyopathy. In order to gain an understanding of the mechanisms governing ms1/STARS expression in the heart, we have coupled a comparative genomic in silico analysis with reporter, gain-of-function, and loss-of-function approaches. Through this integrated analysis, we have identified three evolutionarily conserved regions (ECRs), α, SINA, and DINA, that act as cis-regulatory modules and confer differential cardiac cell-specific activity. Two of these ECRs, α and DINA, displayed distinct regulatory sensitivity to the core cardiac transcription factor GATA4. Overall, our results demonstrate that within embryonic, neonatal, and adult hearts, GATA4 represses ms1/STARS expression with the pathologically associated depletion of GATA4 (type 1/type 2 diabetic models), resulting in ms1/STARS upregulation. This GATA4-dependent repression of ms1/STARS expression has major implications for MRTF-SRF signaling in the context of cardiac development and disease. PMID:22431517

  16. Cardiac troponin T and fast skeletal muscle denervation in ageing

    PubMed Central

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong‐Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M.; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian‐Ping; Delbono, Osvaldo

    2017-01-01

    Abstract Background Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast‐twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow‐twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre‐type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle‐specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Methods Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real‐time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Results Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region—but mainly in the fast‐twitch, not the slow‐twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ—again, preferentially in fast‐twitch but not slow‐twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. Conclusions Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast‐twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age‐related decline in muscle function. PMID:28419739

  17. Patient-specific models of cardiac biomechanics

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  18. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis.

    PubMed

    Harel, Itamar; Maezawa, Yoshiro; Avraham, Roi; Rinon, Ariel; Ma, Hsiao-Yen; Cross, Joe W; Leviatan, Noam; Hegesh, Julius; Roy, Achira; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Carvajal, Jaime; Tole, Shubha; Kioussi, Chrissa; Quaggin, Susan; Tzahor, Eldad

    2012-11-13

    The search for developmental mechanisms driving vertebrate organogenesis has paved the way toward a deeper understanding of birth defects. During embryogenesis, parts of the heart and craniofacial muscles arise from pharyngeal mesoderm (PM) progenitors. Here, we reveal a hierarchical regulatory network of a set of transcription factors expressed in the PM that initiates heart and craniofacial organogenesis. Genetic perturbation of this network in mice resulted in heart and craniofacial muscle defects, revealing robust cross-regulation between its members. We identified Lhx2 as a previously undescribed player during cardiac and pharyngeal muscle development. Lhx2 and Tcf21 genetically interact with Tbx1, the major determinant in the etiology of DiGeorge/velo-cardio-facial/22q11.2 deletion syndrome. Furthermore, knockout of these genes in the mouse recapitulates specific cardiac features of this syndrome. We suggest that PM-derived cardiogenesis and myogenesis are network properties rather than properties specific to individual PM members. These findings shed new light on the developmental underpinnings of congenital defects.

  19. Prominent mitochondrial DNA recombination intermediates in human heart muscle.

    PubMed

    Kajander, O A; Karhunen, P J; Holt, I J; Jacobs, H T

    2001-11-01

    Recombination intermediates containing four-way (Holliday) junctions are generated during DNA repair and replication in many systems, including yeast mitochondrial DNA (mtDNA). In contrast, convincing evidence for recombination in mammalian mtDNA is lacking. We have used two-dimensional agarose-gel electrophoresis to analyse non-linear forms of mtDNA in human heart muscle. Replication intermediates from both the coupled and strand-asynchronous mtDNA replication pathways were detected. An additional class of non-linear molecules, with the electrophoretic properties of four-way junctions, was also prominent. These molecules were insensitive to topoisomerase I or RNase H, but were diminished by branch migration or RuvC treatment. Junctional molecules were detected in all regions of the mitochondrial genome, were found in myocardial DNA from young and old adults, but were present at lower levels in skeletal muscle and placenta. We suggest that they could represent intermediates of mtDNA repair, given their prevalence in the oxyradical-rich environment of heart muscle mitochondria.

  20. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance.

    PubMed

    Dempsey, Jerome A

    2012-09-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward 'central command' mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal 'tonic' activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O(2) transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes - probably acting in concert with feedforward central command - contribute significantly to preserving O(2) transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development.

  1. Myocardial, smooth muscle, nephron, and collecting duct gene targeting reveals the organ sites of endothelin A receptor antagonist fluid retention.

    PubMed

    Stuart, Deborah; Chapman, Mark; Rees, Sara; Woodward, Stephanie; Kohan, Donald E

    2013-08-01

    Endothelin-1 binding to endothelin A receptors (ETA) elicits profibrogenic, proinflammatory, and proliferative effects that can promote a wide variety of diseases. Although ETA antagonists are approved for the treatment of pulmonary hypertension, their clinical utility in several other diseases has been limited by fluid retention. ETA blocker-induced fluid retention could be due to inhibition of ETA activation in the heart, vasculature, and/or kidney; consequently, the current study was designed to define which of these sites are involved. Mice were generated with absence of ETA specifically in cardiomyocytes (heart), smooth muscle, the nephron, the collecting duct, or no deletion (control). Administration of the ETA antagonist ambrisentan or atrasentan for 2 weeks caused fluid retention in control mice on a high-salt diet as assessed by increases in body weight, total body water, and extracellular fluid volume (using impedance plethysmography), as well as decreases in hematocrit (hemodilution). Mice with heart ETA knockout retained fluid in a similar manner as controls when treated with ambrisentan or atrasentan. Mice with smooth muscle ETA knockout had substantially reduced fluid retention in response to either ETA antagonist. Mice with nephron or collecting duct ETA disruption were completely prevented from ETA blocker-induced fluid retention. Taken together, these findings suggest that ETA antagonist-induced fluid retention is due to a direct effect of this class of drug on the collecting duct, is partially related to the vascular action of the drugs, and is not due to alterations in cardiac function.

  2. The skeletal and heart muscle triacylglycerol lipolysis revisited.

    PubMed

    Knapp, M; Gorski, J

    2017-02-01

    For 40 years, the enzyme hormone sensitive lipase was considered to hydrolyze the first ester bond of the triacylglycerol moiety and thus initiate hydrolysis. However, 12 years ago a new lipolytic enzyme, termed adipose triglyceride lipase was discovered. It was further shown that the process of lipolysis of triacylglycerol to diacylglycerol and fatty acid is initiated by adipose triglyceride lipase and not by hormone sensitive lipase, responsible for hydrolysis of diacylglycerol to monoacyglycerol and fatty acid. Adipose triglyceride lipase is present in all types of cells containing neutral fat. The enzyme is activated by a protein called comparative gene identification-58 and inhibited by a protein called G0/G1 switch protein 2. It has also been discovered that perilipins, the main proteins coating lipid droplets in the cells, are involved in the process of triacylglycerol lipolysis. Five perilipins (1-5) were identified, however, up to now their role has been poorly assessed. In skeletal muscles, exercise and training affect the mRNA expression and protein content of adipose triglyceride lipase, comparative gene identification-58, G0/G1 switch protein 2, perilipin 2 and 5. The effect of exercise/training depends on exercise intensity and type of muscle fiber. An interaction between comparative gene identification-58 and adipose triglyceride lipase seems to be responsible for the enzyme activation during contractile activity. Adipose triglyceride lipase is also responsible for the activation of the first step of triacylglycerol lipolysis in the heart. There is substantial evidence that cardiac triacylglycerol metabolism affects the function of the heart. ATGL gene mutations leads to the development of neutral lipid storage diseases.

  3. Heart Truth for Women: If You Have Heart Disease

    MedlinePlus

    ... failure and a damaged heart muscle. My experience with heart disease started with typical symptoms. It took me some time to get my strength back, but now I exercise regularly and eat healthy foods. To ... counseling, and training. This part of rehab helps you understand your ...

  4. Undernutrition during pregnancy in mice leads to dysfunctional cardiac muscle respiration in adult offspring.

    PubMed

    Beauchamp, Brittany; Thrush, A Brianne; Quizi, Jessica; Antoun, Ghadi; McIntosh, Nathan; Al-Dirbashi, Osama Y; Patti, Mary-Elizabeth; Harper, Mary-Ellen

    2015-04-10

    Intrauterine growth restriction (IUGR) is associated with an increased risk of developing obesity, insulin resistance and cardiovascular disease. However, its effect on energetics in heart remains unknown. In the present study, we examined respiration in cardiac muscle and liver from adult mice that were undernourished in utero. We report that in utero undernutrition is associated with impaired cardiac muscle energetics, including decreased fatty acid oxidative capacity, decreased maximum oxidative phosphorylation rate and decreased proton leak respiration. No differences in oxidative characteristics were detected in liver. We also measured plasma acylcarnitine levels and found that short-chain acylcarnitines are increased with in utero undernutrition. Results reveal the negative impact of suboptimal maternal nutrition on adult offspring cardiac energy metabolism, which may have life-long implications for cardiovascular function and disease risk. © 2015 Authors.

  5. Effect of functional electrical stimulation on cardiovascular outcomes in patients with chronic heart failure.

    PubMed

    Kadoglou, Nikolaos Pe; Mandila, Christina; Karavidas, Apostolos; Farmakis, Dimitrios; Matzaraki, Vasiliki; Varounis, Christos; Arapi, Sofia; Perpinia, Anastasia; Parissis, John

    2017-05-01

    Background/design Functional electrical stimulation of lower limb muscles is an alternative method of training in patients with chronic heart failure (CHF). Although it improves exercise capacity in CHF, we performed a randomised, placebo-controlled study to investigate its effects on long-term clinical outcomes. Methods We randomly assigned 120 patients, aged 71 ± 8 years, with stable CHF (New York Heart Association (NYHA) class II/III (63%/37%), mean left ventricular ejection fraction 28 ± 5%), to either a 6-week functional electrical stimulation training programme or placebo. Patients were followed for up to 19 months for death and/or hospitalisation due to CHF decompensation. Results At baseline, there were no significant differences in demographic parameters, CHF severity and medications between groups. During a median follow-up of 383 days, 14 patients died (11 cardiac, three non-cardiac deaths), while 40 patients were hospitalised for CHF decompensation. Mortality did not differ between groups (log rank test P = 0.680), while the heart failure-related hospitalisation rate was significantly lower in the functional electrical stimulation group (hazard ratio (HR) 0.40, 95% confidence interval (CI) 0.21-0.78, P = 0.007). The latter difference remained significant after adjustment for prognostic factors: age, gender, baseline NYHA class and left ventricular ejection fraction (HR 0.22, 95% CI 0.10-0.46, P < 0.001). Compared to placebo, functional electrical stimulation training was associated with a lower occurrence of the composite endpoint (death or heart failure-related hospitalisation) after adjustment for the above-mentioned prognostic factors (HR 0.21, 95% CI 0.103-0.435, P < 0.001). However, that effect was mostly driven by the favourable change in hospitalisation rates. Conclusions In CHF patients, 6 weeks functional electrical stimulation training reduced the risk of heart failure-related hospitalisations, without affecting the mortality rate. The beneficial long-term effects of this alternative method of training require further investigation.

  6. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents.

    PubMed

    Manfredi, L H; Paula-Gomes, S; Zanon, N M; Kettelhut, I C

    2017-10-19

    Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  7. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents

    PubMed Central

    Manfredi, L.H.; Paula-Gomes, S.; Zanon, N.M.; Kettelhut, I.C.

    2017-01-01

    Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle. PMID:29069231

  8. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart.

    PubMed

    Wang, Zhong; Zhu, Tong; Qiao, Chunping; Zhou, Liqiao; Wang, Bing; Zhang, Jian; Chen, Chunlian; Li, Juan; Xiao, Xiao

    2005-03-01

    Systemic gene delivery into muscle has been a major challenge for muscular dystrophy gene therapy, with capillary blood vessels posing the principle barrier and limiting vector dissemination. Previous efforts to deliver genes into multiple muscles have relied on isolated vessel perfusion or pharmacological interventions to enforce broad vector distribution. We compared the efficiency of multiple adeno-associated virus (AAV) vectors after a single injection via intraperitoneal or intravenous routes without additional intervention. We show that AAV8 is the most efficient vector for crossing the blood vessel barrier to attain systemic gene transfer in both skeletal and cardiac muscles of mice and hamsters. Serotypes such as AAV1 and AAV6, which demonstrate robust infection in skeletal muscle cells, were less effective in crossing the blood vessel barrier. Gene expression persisted in muscle and heart, but diminished in tissues undergoing rapid cell division, such as neonatal liver. This technology should prove useful for muscle-directed systemic gene therapy.

  9. Strains

    MedlinePlus

    ... the first 3 days. After 3 days, either heat or ice may be helpful if you still have pain. Rest the pulled muscle for at least a day. If possible, keep the pulled muscle raised above your heart. Try not to use a strained muscle while ...

  10. Isolated Human Pulmonary Artery Structure and Function Pre- and Post-Cardiopulmonary Bypass Surgery.

    PubMed

    Dora, Kim A; Stanley, Christopher P; Al Jaaly, Emad; Fiorentino, Francesca; Ascione, Raimondo; Reeves, Barnaby C; Angelini, Gianni D

    2016-02-23

    Pulmonary dysfunction is a known complication after cardiac surgery using cardiopulmonary bypass, ranging from subclinical functional changes to prolonged postoperative ventilation, acute lung injury, and acute respiratory distress syndrome. Whether human pulmonary arterial function is compromised is unknown. The aim of the present study was to compare the structure and function of isolated and cannulated human pulmonary arteries obtained from lung biopsies after the chest was opened (pre-cardiopulmonary bypass) to those obtained at the end of cardiopulmonary bypass (post-cardiopulmonary bypass) from patients undergoing coronary artery bypass graft surgery. Pre- and post-cardiopulmonary bypass lung biopsies were received from 12 patients undergoing elective surgery. Intralobular small arteries were dissected, cannulated, pressurized, and imaged using confocal microscopy. Functionally, the thromboxane mimetic U46619 produced concentration-dependent vasoconstriction in 100% and 75% of pre- and post-cardiopulmonary bypass arteries, respectively. The endothelium-dependent agonist bradykinin stimulated vasodilation in 45% and 33% of arteries pre- and post-cardiopulmonary bypass, respectively. Structurally, in most arteries smooth muscle cells aligned circumferentially; live cell viability revealed that although 100% of smooth muscle and 90% of endothelial cells from pre-cardiopulmonary bypass biopsies had intact membranes and were considered viable, only 60% and 58%, respectively, were viable from post-cardiopulmonary bypass biopsies. We successfully investigated isolated pulmonary artery structure and function in fresh lung biopsies from patients undergoing heart surgery. Pulmonary artery contractile tone and endothelium-dependent dilation were significantly reduced in post-cardiopulmonary bypass biopsies. The decreased functional responses were associated with reduced cell viability. URL: http://www.isrctn.com/ISRCTN34428459. Unique identifier: ISRCTN 34428459. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  11. Impaired Muscle Oxygenation and Elevated Exercise Blood Pressure in Hypertensive Patients: Links With Vascular Stiffness.

    PubMed

    Dipla, Konstantina; Triantafyllou, Areti; Koletsos, Nikolaos; Papadopoulos, Stavros; Sachpekidis, Vasileios; Vrabas, Ioannis S; Gkaliagkousi, Eugenia; Zafeiridis, Andreas; Douma, Stella

    2017-08-01

    This study examined in vivo (1) skeletal muscle oxygenation and microvascular function, at rest and during handgrip exercise, and (2) their association with macrovascular function and exercise blood pressure (BP), in newly diagnosed, never-treated patients with hypertension and normotensive individuals. Ninety-one individuals (51 hypertensives and 40 normotensives) underwent office and 24-hour ambulatory BP, arterial stiffness, and central aortic BP assessment, followed by a 5-minute arterial occlusion and a 3-minute submaximal handgrip exercise. Changes in muscle oxygenated and deoxygenated hemoglobin and tissue oxygen saturation were continuously monitored by near-infrared spectroscopy and beat-by-beat BP by Finapres. Hypertensives had higher ( P <0.001) central aortic BP and pulse wave velocity versus normotensives and exhibited (1) a blunted tissue oxygen saturation response during occlusion, with slower ( P =0.006) deoxygenation rate, suggesting reduced muscle oxidative capacity, and (2) a slower reoxygenation rate and blunted hyperemic response ( P <0.05), showing reduced microvascular reactivity. Muscle oxygenation responses were correlated with aortic systolic and pulse pressure and augmentation index ( P <0.05; age and body mass index (BMI) adjusted). When exercising at the same submaximal intensity, hypertensives required a significantly greater ( P <0.001) increase in BP for achieving similar muscle oxygenation levels as normotensives. This response was correlated with the magnitude of microvascular hyperemia and aortic BP. In conclusion, nontreated patients with hypertension exhibit prominent reductions in in vivo indices of skeletal muscle oxidative capacity, suggestive of mitochondrial dysfunction, and blunted muscle microvascular reactivity. These dysfunctions were associated with higher aortic systolic BP and arterial stiffness. Dysregulations in muscle oxygen delivery/utilization and microvascular stiffness, in hypertensive patients, partially contribute to their exaggerated BP during exercise. © 2017 American Heart Association, Inc.

  12. Effects of minocycline on parameters of cardiovascular recovery after cardioplegic arrest in a rabbit Langendorff heart model.

    PubMed

    Salameh, Aida; Halling, Michelle; Seidel, Thomas; Dhein, Stefan

    2015-12-01

    Pharmacological cardiac organ protection during cardiopulmonary bypass presents an opportunity for improvement. A number of different strategies have been established to minimize ischemia/reperfusion-induced damage to the heart. Among these, cardioplegia with histidine-tryptophan-ketoglutarate solution and hypothermia are the most frequently used regimens. The antibiotic minocycline has been used in this context for neuroprotection. The aim of the current study was to evaluate whether the application of minocycline prior to cardioplegia exerts a protective effect on cardiac muscle. For this purpose, this study investigated six rabbit hearts with minocycline treatment (1 μmol/L) and six without in a Langendorff model of 90 min cold cardioplegic arrest using Custodiol followed by a 30 min recovery phase. Histological analysis of cardiac muscle revealed that markers of apoptosis, oxidative and nitrosative stress were significantly lower in the minocycline group, whereas adenosine triphosphate (ATP)- and malondialdehyde (MDA)-levels and O2-consumption were not affected by minocycline. Functionally, recovery of dP/dt (max) and dP/dt (min) was significantly faster in the minocycline group than in control. This leads to the conclusion that adding minocycline to the cardioplegic solution may improve left ventricular recovery after cardioplegic arrest involving reduced pro-apoptotic effects. © 2015 Wiley Publishing Asia Pty Ltd.

  13. Zebrafish Mef2ca and Mef2cb are essential for both first and second heart field cardiomyocyte differentiation

    PubMed Central

    Hinits, Yaniv; Pan, Luyuan; Walker, Charline; Dowd, John; Moens, Cecilia B.; Hughes, Simon M.

    2013-01-01

    Summary Mef2 transcription factors have been strongly linked with early heart development. D-mef2 is required for heart formation in Drosophila, but whether Mef2 is essential for vertebrate cardiomyocyte (CM) differentiation is unclear. In mice, although Mef2c is expressed in all CMs, targeted deletion of Mef2c causes lethal loss of second heart field (SHF) derivatives and failure of cardiac looping, but first heart field CMs can differentiate. Here we examine Mef2 function in early heart development in zebrafish. Two Mef2c genes exist in zebrafish, mef2ca and mef2cb. Both are expressed similarly in the bilateral heart fields but mef2cb is strongly expressed in the heart poles at the primitive heart tube stage. By using fish mutants for mef2ca and mef2cb and antisense morpholinos to knock down either or both Mef2cs, we show that Mef2ca and Mef2cb have essential but redundant roles in myocardial differentiation. Loss of both Mef2ca and Mef2cb function does not interfere with early cardiogenic markers such as nkx2.5, gata4 and hand2 but results in a dramatic loss of expression of sarcomeric genes and myocardial markers such as bmp4, nppa, smyd1b and late nkx2.5 mRNA. Rare residual CMs observed in mef2ca;mef2cb double mutants are ablated by a morpholino capable of knocking down other Mef2s. Mef2cb over-expression activates bmp4 within the cardiogenic region, but no ectopic CMs are formed. Surprisingly, anterior mesoderm and other tissues become skeletal muscle. Mef2ca single mutants have delayed heart development, but form an apparently normal heart. Mef2cb single mutants have a functional heart and are viable adults. Our results show that the key role of Mef2c in myocardial differentiation is conserved throughout the vertebrate heart. PMID:22750409

  14. Relationships of mercury concentrations across tissue types, muscle regions and fins for two shark species.

    PubMed

    O'Bryhim, Jason R; Adams, Douglas H; Spaet, Julia L Y; Mills, Gary; Lance, Stacey L

    2017-04-01

    Mercury (Hg) exposure poses a threat to both fish and human health. Sharks are known to bioaccumulate Hg, however, little is known regarding how Hg is distributed between different tissue groups (e.g. muscle regions, organs). Here we evaluated total mercury (THg) concentrations from eight muscle regions, four fins (first dorsal, left and right pectorals, caudal-from both the inner core and trailing margin of each fin), and five internal organs (liver, kidney, spleen, heart, epigonal organ) from two different shark species, bonnethead (Sphyrna tiburo) and silky shark (Carcharhinus falciformis) to determine the relationships of THg concentrations between and within tissue groups. Total Hg concentrations were highest in the eight muscle regions with no significant differences in THg concentrations between the different muscle regions and muscle types (red and white). Results from tissue collected from any muscle region would be representative of all muscle sample locations. Total Hg concentrations were lowest in samples taken from the fin inner core of the first dorsal, pectoral, and caudal (lower lobe) fins. Mercury concentrations for samples taken from the trailing margin of the dorsal, pectoral, and caudal fins (upper and lower lobe) were also not significantly different from each other for both species. Significant relationships were found between THg concentrations in dorsal axial muscle tissue and the fin inner core, liver, kidney, spleen and heart for both species as well as the THg concentrations between the dorsal fin trailing margin and the heart for the silky shark and all other sampled tissue types for the bonnethead shark. Our results suggest that biopsy sampling of dorsal muscle can provide data that can effectively estimate THg concentrations in specific organs without using more invasive, or lethal methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Pressure overload differentially affects respiratory capacity in interfibrillar and subsarcolemmal mitochondria.

    PubMed

    Schwarzer, Michael; Schrepper, Andrea; Amorim, Paulo A; Osterholt, Moritz; Doenst, Torsten

    2013-02-15

    Years ago a debate arose as to whether two functionally different mitochondrial subpopulations, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), exist in heart muscle. Nowadays potential differences are often ignored. Presumably, SSM are providing ATP for basic cell function, whereas IFM provide energy for the contractile apparatus. We speculated that two distinguishable subpopulations exist that are differentially affected by pressure overload. Male Sprague-Dawley rats were subjected to transverse aortic constriction for 20 wk or sham operation. Contractile function was assessed by echocardiography. Heart tissue was analyzed by electron microscopy. Mitochondria were isolated by differential centrifugation, and respiratory capacity was analyzed using a Clark electrode. Pressure overload induced left ventricular hypertrophy with increased posterior wall diameter and impaired contractile function. Mitochondrial state 3 respiration in control was 50% higher in IFM than in SSM. Pressure overload significantly impaired respiratory rates in both IFM and SSM, but in SSM to a lower extent. As a result, there were no differences between SSM and IFM after 20 wk of pressure overload. Pressure overload reduced total citrate synthase activity, suggesting reduced total mitochondrial content. Electron microscopy revealed normal morphology of mitochondria but reduced total mitochondrial volume density. In conclusion, IFM show greater respiratory capacity in the healthy rat heart and a greater depression of respiratory capacity by pressure overload than SSM. The differences in respiratory capacity of cardiac IFM and SSM in healthy hearts are eliminated with pressure overload-induced heart failure. The strong effect of pressure overload on IFM together with the simultaneous appearance of mitochondrial and contractile dysfunction may support the notion of IFM primarily producing ATP for contractile function.

  16. Shikonin ameliorates isoproterenol (ISO)-induced myocardial damage through suppressing fibrosis, inflammation, apoptosis and ER stress.

    PubMed

    Yang, Jun; Wang, Zhao; Chen, Dong-Lin

    2017-09-01

    Shikonin, isolated from the roots of herbal plant Lithospermum erythrorhizon, is a naphthoquinone. It has been reported to exert beneficial anti-inflammatory effects and anti-oxidant properties in various diseases. Isoproterenol (ISO) has been widely used to establish cardiac injury in vivo and in vitro. However, shikonin function in ISO-induced cardiac injury remains uncertain. In our study, we attempted to investigate the efficiency and possible molecular mechanism of shikonin in cardiac injury treatment induced by ISO. In vivo, C57BL6 mice were subcutaneously injected with 5mg/kg ISO to induce heart failure. And mice were given a gavage of shikonin (2 or 4mg/kg/d, for four weeks). Cardiac function, fibrosis indices, inflammation response, apoptosis and endoplasmic reticulum (ER) stress were calculated. Pathological alterations, fibrosis-, inflammation-, apoptosis- and ER stress-related molecules were examined. In ISO-induced cardiac injury, shikonin significantly ameliorated heart function, decreased myocardial fibrosis, suppressed inflammation, attenuated apoptosis and ER stress through impeding collagen accumulation, Toll like receptor 4/nuclear transcription factor κB (TLR4/NF-κB), Caspase-3 and glucose-regulated protein 78 (GRP78) signaling pathways activity, relieving heart failure in vivo. Also, in vitro, shikonin attenuated ISO-induced cardiac muscle cells by reducing fibrosis, inflammation, apoptosis and ER stress. Our findings indicated that shikonin treatment attenuated ISO-induced heart injury, providing an effective therapeutic strategy for heart failure treatment for future. Copyright © 2017. Published by Elsevier Masson SAS.

  17. Prediction of Cardiorespiratory Fitness by the Six-Minute Step Test and Its Association with Muscle Strength and Power in Sedentary Obese and Lean Young Women: A Cross-Sectional Study

    PubMed Central

    Bonjorno Junior, José Carlos; de Oliveira, Cláudio Ricardo; Luporini, Rafael Luís; Mendes, Renata Gonçalves; Zangrando, Katiany Thais Lopes; Trimer, Renata; Arena, Ross

    2015-01-01

    Impaired cardiorespiratory fitness (CRF) is a hallmark characteristic in obese and lean sedentary young women. Peak oxygen consumption (VO2peak) prediction from the six-minute step test (6MST) has not been established for sedentary females. It is recognized that lower-limb muscle strength and power play a key role during functional activities. The aim of this study was to investigate cardiorespiratory responses during the 6MST and CPX and to develop a predictive equation to estimate VO2peak in both lean and obese subjects. Additionally we aim to investigate how muscle function impacts functional performance. Lean (LN = 13) and obese (OB = 18) women, aged 20–45, underwent a CPX, two 6MSTs, and isokinetic and isometric knee extensor strength and power evaluations. Regression analysis assessed the ability to predict VO2peak from the 6MST, age and body mass index (BMI). CPX and 6MST main outcomes were compared between LN and OB and correlated with strength and power variables. CRF, functional capacity, and muscle strength and power were lower in the OB compared to LN (<0.05). During the 6MST, LN and OB reached ~90% of predicted maximal heart rate and ~80% of the VO2peak obtained during CPX. BMI, age and number of step cycles (NSC) explained 83% of the total variance in VO2peak. Moderate to strong correlations between VO2peak at CPX and VO2peak at 6MST (r = 0.86), VO2peak at CPX and NSC (r = 0.80), as well as between VO2peak, NSC and muscle strength and power variables were found (p<0.05). These findings indicate the 6MST, BMI and age accurately predict VO2peak in both lean and obese young sedentary women. Muscle strength and power were related to measures of aerobic and functional performance. PMID:26717568

  18. Effect of oral nitrate supplementation on pulmonary hemodynamics during exercise and time trial performance in normoxia and hypoxia: a randomized controlled trial

    PubMed Central

    Bourdillon, Nicolas; Fan, Jui-Lin; Uva, Barbara; Müller, Hajo; Meyer, Philippe; Kayser, Bengt

    2015-01-01

    Background: Hypoxia-induced pulmonary vasoconstriction increases pulmonary arterial pressure (PAP) and may impede right heart function and exercise performance. This study examined the effects of oral nitrate supplementation on right heart function and performance during exercise in normoxia and hypoxia. We tested the hypothesis that nitrate supplementation would attenuate the increase in PAP at rest and during exercise in hypoxia, thereby improving exercise performance. Methods: Twelve trained male cyclists [age: 31 ± 7 year (mean ± SD)] performed 15 km time-trial cycling (TT) and steady-state submaximal cycling (50, 100, and 150 W) in normoxia and hypoxia (11% inspired O2) following 3-day oral supplementation with either placebo or sodium nitrate (0.1 mmol/kg/day). We measured TT time-to-completion, muscle tissue oxygenation during TT and systolic right ventricle to right atrium pressure gradient (RV-RA gradient: index of PAP) during steady state cycling. Results: During steady state exercise, hypoxia elevated RV-RA gradient (p > 0.05), while oral nitrate supplementation did not alter RV-RA gradient (p > 0.05). During 15 km TT, hypoxia lowered muscle tissue oxygenation (p < 0.05). Nitrate supplementation further decreased muscle tissue oxygenation during 15 km TT in hypoxia (p < 0.05). Hypoxia impaired time-to-completion during TT (p < 0.05), while no improvements were observed with nitrate supplementation in normoxia or hypoxia (p > 0.05). Conclusion: Our findings indicate that oral nitrate supplementation does not attenuate acute hypoxic pulmonary vasoconstriction nor improve performance during time trial cycling in normoxia and hypoxia. PMID:26528189

  19. Deletion of Galgt2 (B4Galnt2) Reduces Muscle Growth in Response to Acute Injury and Increases Muscle Inflammation and Pathology in Dystrophin-Deficient Mice

    PubMed Central

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A.; Janssen, Paulus M.L.; Martin, Paul T.

    2016-01-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2−/−mdx). Galgt2−/− mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. PMID:26435413

  20. Relationship between lower limb muscle strength and 6-minute walk test performance in stroke patients.

    PubMed

    Pradon, Didier; Roche, Nicolas; Enette, Lievyn; Zory, Raphaël

    2013-01-01

    The aim of this study was to determine if lower limb muscle strength and/or spasticity are related to performance in the 6-min walk test (6MWT) in stroke patients. A total of 24 patients (12 males and 12 females) participated in the study. Muscle strength (Medical Research Council (MRC) scale) and spasticity (modified Ashworth scale) were assessed prior to the 6MWT. Heart rate was recorded at rest and during the 6MWT. Subjects were divided into two groups: (i) those with a high MRC sum score, and (ii) those with a low MRC sum score. The relationship between the 6MWT distance and the other parameters was analysed using a Spearman's rank correlation coefficient. There was a significant and positive relationship between 6MWT distance and lower limb muscle strength (p = 0.001), whereas no significant correlations were found between the 6MWT distance and spasticity, resting heart rate and heart rate during the 6MWT. The 6MWT distance may be a good indicator of lower limb muscle strength, and lower limb strengthening may improve gait capacity in stroke patients.

  1. American Heart Association

    MedlinePlus

    ... reconsider sleeping in this weekend? Scientists try first gene editing in the body E-cig flavorings may damage heart muscle cells Pregnancy complication tied to heart failure risk Shakopee ... to make MRIs safer One gene may be why some people are fat Is ...

  2. The effect of bedding system selected by manual muscle testing on sleep-related cardiovascular functions.

    PubMed

    Kuo, Terry B J; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C H

    2013-01-01

    Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT.

  3. The Effect of Bedding System Selected by Manual Muscle Testing on Sleep-Related Cardiovascular Functions

    PubMed Central

    Kuo, Terry B. J.; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C. H.

    2013-01-01

    Background. Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. Methods. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Results and Conclusion. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT. PMID:24371836

  4. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology.

    PubMed

    Lopez-Crisosto, Camila; Pennanen, Christian; Vasquez-Trincado, Cesar; Morales, Pablo E; Bravo-Sagua, Roberto; Quest, Andrew F G; Chiong, Mario; Lavandero, Sergio

    2017-06-01

    Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.

  5. Muscle cooling delays activation of the muscle metaboreflex in humans.

    PubMed

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  6. Clinical and prognostic value of spot urinary creatinine in chronic heart failure-An analysis from GISSI-HF.

    PubMed

    Ter Maaten, Jozine M; Maggioni, Aldo Pietro; Latini, Roberto; Masson, Serge; Tognoni, Gianni; Tavazzi, Luigi; Signorini, Stefano; Voors, Adriaan A; Damman, Kevin

    2017-06-01

    This study aimed to identify patient characteristics associated with low urinary creatinine in morning spot urine and investigate its association with clinical outcome. Twenty-four-hour creatinine excretion is an established marker of muscle mass in heart failure and other populations. Spot urine creatinine might be an easy obtainable, cheap marker of muscle wasting and prognosis in heart failure (HF) patients. Spot urine creatinine concentration was measured in 2130 patients included in the GISSI-HF trial. We evaluated the prognostic value of urinary creatinine and its relation with clinical variables. Median spot urinary creatinine was 0.80 (IQR 0.50-1.10) g/L. Lower spot urinary creatinine was associated with older age, smaller height and weight, higher NYHA class, worse renal function and more frequent spironolactone and diuretic use (all P<.02). During a median follow-up of 2.8 years, 655 patients (31%) experienced the combined endpoint of all-cause mortality or HF hospitalization. Lower urinary creatinine was independently associated with an increased risk of all-cause mortality or HF hospitalization (HR, 1.59 [1.21-2.08] per log decrease, P=.001), and all-cause mortality (HR, 1.75 [1.25-2.45] per log decrease, P=.001). Lower urinary creatinine, measured in morning spot urine in patients with chronic HF, is associated with worse renal function, smaller body size, more severe HF and is independently associated with an increased risk of all-cause death and HF hospitalization. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanck, Oliver, E-mail: oliver.blanck@uksh.de; CyberKnife Center Northern Germany, Guestrow; Bode, Frank

    Purpose: To perform a proof-of-principle dose-escalation study to radiosurgically induce scarring in cardiac muscle tissue to block veno-atrial electrical connections at the pulmonary vein antrum, similar to catheter ablation. Methods and Materials: Nine mini-pigs underwent pretreatment magnetic resonance imaging (MRI) evaluation of heart function and electrophysiology assessment by catheter measurements in the right superior pulmonary vein (RSPV). Immediately after examination, radiosurgery with randomized single-fraction doses of 0 and 17.5-35 Gy in 2.5-Gy steps were delivered to the RSPV antrum (target volume 5-8 cm{sup 3}). MRI and electrophysiology were repeated 6 months after therapy, followed by histopathologic examination. Results: Transmural scarringmore » of cardiac muscle tissue was noted with doses ≥32.5 Gy. However, complete circumferential scarring of the RSPV was not achieved. Logistic regressions showed that extent and intensity of fibrosis significantly increased with dose. The 50% effective dose for intense fibrosis was 31.3 Gy (odds ratio 2.47/Gy, P<.01). Heart function was not affected, as verified by MRI and electrocardiogram evaluation. Adjacent critical structures were not damaged, as verified by pathology, demonstrating the short-term safety of small-volume cardiac radiosurgery with doses up to 35 Gy. Conclusions: Radiosurgery with doses >32.5 Gy in the healthy pig heart can induce circumscribed scars at the RSPV antrum noninvasively, mimicking the effect of catheter ablation. In our study we established a significant dose-response relationship for cardiac radiosurgery. The long-term effects and toxicity of such high radiation doses need further investigation in the pursuit of cardiac radiosurgery for noninvasive treatment of atrial fibrillation.« less

  8. Molecular Genetic and Functional Characterization Implicate Muscle-Restricted Coiled-Coil Gene (MURC) as a Causal Gene for Familial Dilated Cardiomyopathy

    PubMed Central

    Rodriguez, Gabriela; Ueyama, Tomomi; Ogata, Takehiro; Czernuszewicz', Grazyna; Tan, Yanli; Dorn, Gerald W.; Bogaev, Roberta; Amano, Katsuya; Oh, Hidemasa; Matsubara, Hiroaki; Willerson, James T.; Marian, Ali J.

    2011-01-01

    Background Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) are classic forms of systolic and diastolic heart failure, respectively. Mutations in genes encoding sarcomere and cytoskeletal proteins are major causes of HCM and DCM. MURC, encoding muscle-restricted coiled-coil, a Z line protein, regulates cardiac function in mice. We investigated potential causal role of MURC in human cardiomyopathies. Methods and Results We sequenced MURC in 1,199 individuals including 383 probands with DCM, 307 with HCM and 509 healthy controls. We found six heterozygous DCM-specific missense variants (p.N128K, p.R140W, p.L153P, p.S307T, p.P324L and p.S364L) in eight unrelated probands. Variants p.N128K and p.S307T segregated with inheritance of DCM in small families (χ2=8.5, p=0.003). Variants p.N128K, p.R140W, p.L153P and p.S364L were considered probably or possibly damaging. Variant p.P324L recurred in three independent probands, including one proband with a TPM1 mutation (p.M245T). A deletion variant (p.L232-R238del) was present in three unrelated HCM probands but it did not segregate with HCM in a family who also had a MYH7 mutation (p.L970V). The phenotype in mutation carriers was notable for progressive heart failure leading to heart transplantation in four patients, conduction defects and atrial arrhythmias. Expression of mutant MURC proteins in neonatal rat cardiac myocytes transduced with recombinant adenoviruses was associated with reduced RhoA activity, lower mRNA levels of hypertrophic markers and smaller myocyte size as compared to wild type MURC. Conclusions MURC mutations impart loss-of-function effects on MURC functions and are likely causal variants in human DCM. The causal role of a deletion mutation in HCM is uncertain. PMID:21642240

  9. Molecular genetic and functional characterization implicate muscle-restricted coiled-coil gene (MURC) as a causal gene for familial dilated cardiomyopathy.

    PubMed

    Rodriguez, Gabriela; Ueyama, Tomomi; Ogata, Takehiro; Czernuszewicz, Grazyna; Tan, Yanli; Dorn, Gerald W; Bogaev, Roberta; Amano, Katsuya; Oh, Hidemasa; Matsubara, Hiroaki; Willerson, James T; Marian, Ali J

    2011-08-01

    Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) are classic forms of systolic and diastolic heart failure, respectively. Mutations in genes encoding sarcomere and cytoskeletal proteins are major causes of HCM and DCM. MURC, encoding muscle-restricted coiled-coil, a Z-line protein, regulates cardiac function in mice. We investigated potential causal role of MURC in human cardiomyopathies. We sequenced MURC in 1199 individuals, including 383 probands with DCM, 307 with HCM, and 509 healthy control subjects. We found 6 heterozygous DCM-specific missense variants (p.N128K, p.R140W, p.L153P, p.S307T, p.P324L, and p.S364L) in 8 unrelated probands. Variants p.N128K and p.S307T segregated with inheritance of DCM in small families (χ(2)=8.5, P=0.003). Variants p.N128K, p.R140W, p.L153P, and p.S364L were considered probably or possibly damaging. Variant p.P324L recurred in 3 independent probands, including 1 proband with a TPM1 mutation (p.M245T). A deletion variant (p.L232-R238del) was present in 3 unrelated HCM probands, but it did not segregate with HCM in a family who also had a MYH7 mutation (p.L907V). The phenotype in mutation carriers was notable for progressive heart failure leading to heart transplantation in 4 patients, conduction defects, and atrial arrhythmias. Expression of mutant MURC proteins in neonatal rat cardiac myocytes transduced with recombinant adenoviruses was associated with reduced RhoA activity, lower mRNA levels of hypertrophic markers and smaller myocyte size as compared with wild-type MURC. MURC mutations impart loss-of-function effects on MURC functions and probably are causal variants in human DCM. The causal role of a deletion mutation in HCM is uncertain.

  10. Body size and chronic acceleration

    NASA Technical Reports Server (NTRS)

    Pitts, G. C.

    1976-01-01

    Experiments were conducted to study body composition as a function of acceleration (1-4.7 G) in mice and rats. It is shown that fat-free body mass is a predictable function of acceleration, and that of nine components of the fat-free body mass only skeletal muscle, liver and heart contributed to observed changes induced by delta G. Fat-free body mass was found to pass through a maximum at 1 G when it was plotted vs G for mice, rats and monkeys (1-4.7 G) and men (0-1 G).

  11. Nanomaterials for Cardiac Myocyte Tissue Engineering.

    PubMed

    Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A

    2016-07-19

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.

  12. A fetal human heart cardiac-inducing RNA (CIR) promotes the differentiation of stem cells into cardiomyocytes.

    PubMed

    Kochegarov, Andrei; Moses-Arms, Ashley; Lemanski, Larry F

    2015-08-01

    A specific human fetal heart RNA has been discovered, which has the ability to induce myocardial cell formation from mouse embryonic and human-induced pluripotent stem cells in culture. In this study, commercially obtained RNA from human fetal heart was cloned, sequenced, and synthesized using standard laboratory approaches. Molecular analyses of the specific fetal cardiac-inducing RNA (CIR), revealed that it is a fragment of N-sulfoglucosaminesulfohydrolase and the caspase recruitment domain family member 14 precursor. Stem cells transfected with CIRs often form into spindle-shaped cells characteristic of cardiomyocytes,and express the cardiac-specific contractile protein marker, troponin-T, in addition to tropomyosin and α-actinin as detected by immunohistochemical staining. Expression of these contractile proteins showed organization into sarcomeric myofibrils characteristic of striated cardiac muscle cells. Computer analyses of the RNA secondary structures of the active CIR show significant similarities to a RNA from salamander or myofibril-inducing RNA (MIR), which also promotes non-muscle cells to differentiate into cardiac muscle. Thus, these two RNAs, salamander MIR and the newly discovered human-cloned CIR reported here, appear to have evolutionarily conserved secondary structures suggesting that both play major roles in vertebrate heart development and, particularly, in the differentiation of cardiomyocytes from non-muscle cells during development.

  13. Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans.

    PubMed

    Wallin, B G; Esler, M; Dorward, P; Eisenhofer, G; Ferrier, C; Westerman, R; Jennings, G

    1992-01-01

    1. Muscle sympathetic nerve activity (MSA) was recorded in the peroneal nerve at the knee by microneurography in ten healthy subjects and determinations were made simultaneously of intra-arterial blood pressure, and whole-body and cardiac noradrenaline spillover to plasma. Measurements were made at rest, during isometric handgrip at 30% of maximum power and during stress induced by forced mental arithmetic. 2. At rest there were significant positive correlations between spontaneous MSA (expressed as number of sympathetic bursts min-1) and both spillover of noradrenaline from the heart and concentration of noradrenaline in coronary sinus venous plasma. 3. Both isometric handgrip and mental arithmetic led to sustained increases of blood pressure, heart rate and MSA. Plasma concentrations of noradrenaline and spillover of noradrenaline (total body and cardiac) increased. In general the effects were more pronounced during handgrip than during stress. 4. When comparing effects during handgrip and stress the ratio between the fractional increases of MSA and cardiac noradrenaline spillover were significantly greater during handgrip. 5. The data suggest (a) that there are proportional interindividual differences in the strength of resting sympathetic activity to heart and skeletal muscle which are determined by a common mechanism and (b) that handgrip and mental stress are associated with differences in balance between sympathetic outflows to heart and skeletal muscle.

  14. Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ‘mitohormesis’ mechanism involving reactive oxygen species and PGC-1

    PubMed Central

    Bouitbir, Jamal; Charles, Anne-Laure; Echaniz-Laguna, Andoni; Kindo, Michel; Daussin, Frédéric; Auwerx, Johan; Piquard, François; Geny, Bernard; Zoll, Joffrey

    2012-01-01

    Aims Statins protect against cardiovascular-related mortality but induce skeletal muscle toxicity. To investigate mechanisms of statins, we tested the hypothesis that statins optimized cardiac mitochondrial function but impaired vulnerable skeletal muscle by inducing different level of reactive oxygen species (ROS). Methods and results In atrium of patients treated with statins, ROS production was decreased and oxidative capacities were enhanced together with an extensive augmentation of mRNAs expression of peroxisome proliferator-activated receptor gamma co-activator (PGC-1) family. However, in deltoid biopsies from patients with statin-induced muscular myopathy, oxidative capacities were decreased together with ROS increase and a collapse of PGC-1 mRNA expression. Several animal and cell culture experiments were conducted and showed by using ROS scavengers that ROS production was the triggering factor responsible of atorvastatin-induced activation of mitochondrial biogenesis pathway and improvement of antioxidant capacities in heart. Conversely, in skeletal muscle, the large augmentation of ROS production following treatment induced mitochondrial impairments, and reduced mitochondrial biogenesis mechanisms. Quercetin, an antioxidant molecule, was able to counteract skeletal muscle deleterious effects of atorvastatin in rat. Conclusion Our findings identify statins as a new activating factor of cardiac mitochondrial biogenesis and antioxidant capacities, and suggest the importance of ROS/PGC-1 signalling pathway as a key element in regulation of mitochondrial function in cardiac as well as skeletal muscles. PMID:21775390

  15. Targeting DMPK with Antisense Oligonucleotide Improves Muscle Strength in Myotonic Dystrophy Type 1 Mice.

    PubMed

    Jauvin, Dominic; Chrétien, Jessina; Pandey, Sanjay K; Martineau, Laurie; Revillod, Lucille; Bassez, Guillaume; Lachon, Aline; MacLeod, A Robert; Gourdon, Geneviève; Wheeler, Thurman M; Thornton, Charles A; Bennett, C Frank; Puymirat, Jack

    2017-06-16

    Myotonic dystrophy type 1 (DM1), a dominant hereditary muscular dystrophy, is caused by an abnormal expansion of a (CTG) n trinucleotide repeat in the 3' UTR of the human dystrophia myotonica protein kinase (DMPK) gene. As a consequence, mutant transcripts containing expanded CUG repeats are retained in nuclear foci and alter the function of splicing regulatory factors members of the MBNL and CELF families, resulting in alternative splicing misregulation of specific transcripts in affected DM1 tissues. In the present study, we treated DMSXL mice systemically with a 2'-4'-constrained, ethyl-modified (ISIS 486178) antisense oligonucleotide (ASO) targeted to the 3' UTR of the DMPK gene, which led to a 70% reduction in CUG exp RNA abundance and foci in different skeletal muscles and a 30% reduction in the heart. Furthermore, treatment with ISIS 486178 ASO improved body weight, muscle strength, and muscle histology, whereas no overt toxicity was detected. This is evidence that the reduction of CUG exp RNA improves muscle strength in DM1, suggesting that muscle weakness in DM1 patients may be improved following elimination of toxic RNAs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Increased Cardiac Arrhythmogenesis Associated With Gap Junction Remodeling With Upregulation of RNA-Binding Protein FXR1.

    PubMed

    Chu, Miensheng; Novak, Stefanie Mares; Cover, Cathleen; Wang, Anne A; Chinyere, Ikeotunye Royal; Juneman, Elizabeth B; Zarnescu, Daniela C; Wong, Pak Kin; Gregorio, Carol C

    2018-02-06

    Gap junction remodeling is well established as a consistent feature of human heart disease involving spontaneous ventricular arrhythmia. The mechanisms responsible for gap junction remodeling that include alterations in the distribution of, and protein expression within, gap junctions are still debated. Studies reveal that multiple transcriptional and posttranscriptional regulatory pathways are triggered in response to cardiac disease, such as those involving RNA-binding proteins. The expression levels of FXR1 (fragile X mental retardation autosomal homolog 1), an RNA-binding protein, are critical to maintain proper cardiac muscle function; however, the connection between FXR1 and disease is not clear. To identify the mechanisms regulating gap junction remodeling in cardiac disease, we sought to identify the functional properties of FXR1 expression, direct targets of FXR1 in human left ventricle dilated cardiomyopathy (DCM) biopsy samples and mouse models of DCM through BioID proximity assay and RNA immunoprecipitation, how FXR1 regulates its targets through RNA stability and luciferase assays, and functional consequences of altering the levels of this important RNA-binding protein through the analysis of cardiac-specific FXR1 knockout mice and mice injected with 3xMyc-FXR1 adeno-associated virus. FXR1 expression is significantly increased in tissue samples from human and mouse models of DCM via Western blot analysis. FXR1 associates with intercalated discs, and integral gap junction proteins Cx43 (connexin 43), Cx45 (connexin 45), and ZO-1 (zonula occludens-1) were identified as novel mRNA targets of FXR1 by using a BioID proximity assay and RNA immunoprecipitation. Our findings show that FXR1 is a multifunctional protein involved in translational regulation and stabilization of its mRNA targets in heart muscle. In addition, introduction of 3xMyc-FXR1 via adeno-associated virus into mice leads to the redistribution of gap junctions and promotes ventricular tachycardia, showing the functional significance of FXR1 upregulation observed in DCM. In DCM, increased FXR1 expression appears to play an important role in disease progression by regulating gap junction remodeling. Together this study provides a novel function of FXR1, namely, that it directly regulates major gap junction components, contributing to proper cell-cell communication in the heart. © 2017 American Heart Association, Inc.

  17. Cardiac troponin T and fast skeletal muscle denervation in ageing.

    PubMed

    Xu, Zherong; Feng, Xin; Dong, Juan; Wang, Zhong-Min; Lee, Jingyun; Furdui, Cristina; Files, Daniel Clark; Beavers, Kristen M; Kritchevsky, Stephen; Milligan, Carolanne; Jin, Jian-Ping; Delbono, Osvaldo; Zhang, Tan

    2017-10-01

    Ageing skeletal muscle undergoes chronic denervation, and the neuromuscular junction (NMJ), the key structure that connects motor neuron nerves with muscle cells, shows increased defects with ageing. Previous studies in various species have shown that with ageing, type II fast-twitch skeletal muscle fibres show more atrophy and NMJ deterioration than type I slow-twitch fibres. However, how this process is regulated is largely unknown. A better understanding of the mechanisms regulating skeletal muscle fibre-type specific denervation at the NMJ could be critical to identifying novel treatments for sarcopenia. Cardiac troponin T (cTnT), the heart muscle-specific isoform of TnT, is a key component of the mechanisms of muscle contraction. It is expressed in skeletal muscle during early development, after acute sciatic nerve denervation, in various neuromuscular diseases and possibly in ageing muscle. Yet the subcellular localization and function of cTnT in skeletal muscle is largely unknown. Studies were carried out on isolated skeletal muscles from mice, vervet monkeys, and humans. Immunoblotting, immunoprecipitation, and mass spectrometry were used to analyse protein expression, real-time reverse transcription polymerase chain reaction was used to measure gene expression, immunofluorescence staining was performed for subcellular distribution assay of proteins, and electromyographic recording was used to analyse neurotransmission at the NMJ. Levels of cTnT expression in skeletal muscle increased with ageing in mice. In addition, cTnT was highly enriched at the NMJ region-but mainly in the fast-twitch, not the slow-twitch, muscle of old mice. We further found that the protein kinase A (PKA) RIα subunit was largely removed from, while PKA RIIα and RIIβ are enriched at, the NMJ-again, preferentially in fast-twitch but not slow-twitch muscle in old mice. Knocking down cTnT in fast skeletal muscle of old mice: (i) increased PKA RIα and reduced PKA RIIα at the NMJ; (ii) decreased the levels of gene expression of muscle denervation markers; and (iii) enhanced neurotransmission efficiency at NMJ. Cardiac troponin T at the NMJ region contributes to NMJ functional decline with ageing mainly in the fast-twitch skeletal muscle through interfering with PKA signalling. This knowledge could inform useful targets for prevention and therapy of age-related decline in muscle function. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  18. Reduced levels of skeletal muscle Na+K+ -ATPase in McArdle disease

    NASA Technical Reports Server (NTRS)

    Haller, R. G.; Clausen, T.; Vissing, J.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    We evaluated the hypothesis that impaired sarcolemmal function associated with exaggerated potassium release, impaired potassium uptake, or both may contribute to exertional fatigue and abnormal circulatory responses to exercise in McArdle disease (MD). The cellular mechanism of exertional fatigue and muscle injury in MD is unknown but likely involves impaired function of the ATPases that couple ATP hydrolysis to cellular work, including the muscle sodium potassium pump (Na+K+-ATPase). However, the concentration of muscle Na+K+ pumps in MD is not known, and no studies have related exercise increases in blood potassium concentrations to muscle Na+K+ pump levels. We measured muscle Na+K+ pumps (3H-ouabain binding) and plasma K+ in response to 20 minutes of cycle exercise in six patients with MD and in six sex-, age-, and weight-matched sedentary individuals. MD patients had lower levels of 3H-ouabain binding (231 +/- 18 pmol/g w.w., mean +/- SD, range, 210 to 251) than control subjects (317 +/- 37, range, 266 to 371, p < 0.0004), higher peak increases in plasma potassium in response to 45 +/- 7 W cycle exercise (MD, 1.00 +/- 0.15 mmol/L; control subjects, 0.48 +/- 0.09; p < 0.0001), and mean exercise heart rate responses to exercise that were 45 +/- 12 bpm greater than control subjects. Our results indicate that Na+K+ pump levels are low in MD patients compared with healthy subjects and identify a limitation of potassium reuptake that could result in sarcolemmal failure during peak rates of membrane activation and may promote exaggerated potassium-activated circulatory responses to submaximal exercise. The mechanism of the low Na+K+ pump concentrations in MD is unknown but may relate to deconditioning or to disruption of a close functional relationship between membrane ion transport and glycolysis.

  19. The alteration of interelemental ratios in myocardium under the congenital heart disease (SRXRF)

    NASA Astrophysics Data System (ADS)

    Trunova, V. A.; Zvereva, V. V.; Okuneva, G. N.; Levicheva, E. N.

    2007-05-01

    It is the myocardium that bears the basic functional loading during heart working, including muscle contractility and enzyme activity. The elemental concentrations in myocardium tissue of heart were determined by SRXRF technique. Our investigation is systematical: the elemental content in each compartment (left and right ventricles, left and right auricles) of hearts of healthy and diseased children (congenital heart diseases, transposition of main vessels (TMV)) was analyzed. The elemental distribution in myocardium of four heart chambers of human fetuses was also analyzed. Following elements were determined: S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr. It was revealed that the elemental concentrations in myocardium of both ventricles are almost constant in heart of fetuses and healthy children. The transition from pre-natal study (fetus) to post-natal study is accompanied by the redistribution of chemical elements in myocardium. The higher concentrations of S, Fe, Ca, Sr and Cu in myocardium of children are observed, the content of K, Br, Rb and especially Se is lower than in heart of fetuses. The elemental distribution in myocardium of children TMV is considerably different in comparison with the healthy children: the higher levels of Cu are observed. The content of Se is lower.

  20. New perspectives concerning feedback influences on cardiorespiratory control during rhythmic exercise and on exercise performance

    PubMed Central

    Dempsey, Jerome A

    2012-01-01

    The cardioaccelerator and ventilatory responses to rhythmic exercise in the human are commonly viewed as being mediated predominantly via feedforward ‘central command’ mechanisms, with contributions from locomotor muscle afferents to the sympathetically mediated pressor response. We have assessed the relative contributions of three types of feedback afferents on the cardiorespiratory response to voluntary, rhythmic exercise by inhibiting their normal ‘tonic’ activity in healthy animals and humans and in chronic heart failure. Transient inhibition of the carotid chemoreceptors during moderate intensity exercise reduced muscle sympathetic nerve activity (MSNA) and increased limb vascular conductance and blood flow; and reducing the normal level of respiratory muscle work during heavier intensity exercise increased limb vascular conductance and blood flow. These cardiorespiratory effects were prevented via ganglionic blockade and were enhanced in chronic heart failure and in hypoxia. Blockade of μ opioid sensitive locomotor muscle afferents, with preservation of central motor output via intrathecal fentanyl: (a) reduced the mean arterial blood pressure (MAP), heart rate and ventilatory responses to all steady state exercise intensities; and (b) during sustained high intensity exercise, reduced O2 transport, increased central motor output and end-exercise muscle fatigue and reduced endurance performance. We propose that these three afferent reflexes – probably acting in concert with feedforward central command – contribute significantly to preserving O2 transport to locomotor and to respiratory muscles during exercise. Locomotor muscle afferents also appear to provide feedback concerning the metabolic state of the muscle to influence central motor output, thereby limiting peripheral fatigue development. PMID:22826128

  1. Molecular Mechanisms Underlying Cardiac Adaptation to Exercise

    PubMed Central

    Vega, Rick B.; Konhilas, John P.; Kelly, Daniel P.; Leinwand, Leslie A.

    2017-01-01

    Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations. PMID:28467921

  2. Sexual Dimorphism in the Alterations of Cardiac Muscle Mitochondrial Bioenergetics Associated to the Ageing Process.

    PubMed

    Colom, Bartomeu; Oliver, Jordi; Garcia-Palmer, Francisco J

    2015-11-01

    The incidence of cardiac disease is age and sex dependent, but the mechanisms governing these associations remain poorly understood. Mitochondria are the organelles in charge of producing energy for the cells, and their malfunction has been linked to cardiovascular disease and heart failure. Interestingly, heart mitochondrial content and functionality are also age and sex dependent. Here we investigated the combinatory effects of age and sex in mitochondrial bioenergetics that could help to understand their role on cardiac disease. Cardiac mitochondria from 6- and 24-month-old male and female Wistar rats were isolated, and the enzymatic activities of the oxidative-phosphorylative complexes I, III, and IV and ATPase, as well as the protein levels of complex IV, β-ATPase, and mitochondrial transcription factor A (TFAM), were measured. Furthermore, heart DNA content, citrate synthase activity, mitochondrial protein content, oxygen consumption, and H2O2 generation were also determined. Results showed a reduction in heart mitochondrial mass and functionality with age that correlated with increased H2O2 generation. Moreover, sex-dependent differences were found in several of these parameters. In particular, old females exhibited a significant loss of mitochondrial function and increased relative H2O2 production compared with their male counterparts. The results demonstrate a sex dimorphism in the age-associated defects on cardiac mitochondrial function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Serum myostatin levels are independently associated with skeletal muscle wasting in patients with heart failure.

    PubMed

    Furihata, Takaaki; Kinugawa, Shintaro; Fukushima, Arata; Takada, Shingo; Homma, Tsuneaki; Masaki, Yoshihiro; Abe, Takahiro; Yokota, Takashi; Oba, Koji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-10-01

    It has been reported that skeletal muscle mass and strength are decreased in patients with heart failure (HF), and HF is associated with both reduced exercise capacity and adverse clinical outcomes. Myostatin has been known as a negative regulator of muscle growth, follistatin as the myostatin antagonist, maintaining tissue homeostasis. We thus determined serum myostatin levels in HF patients and whether they are associated with skeletal muscle wasting. Forty one consecutive HF patients (58±15years old, New York Heart Association class I-III) and 30 age-matched healthy subjects as controls (53±8years old) were studied. Serum myostatin levels were significantly lower in HF patients than controls (18.7±7.4 vs. 23.6±5.2ng/mL, P<0.001). Circumference of the thickest part of the right thigh was significantly small (468±72 vs. 559±37mm, P=0.001) and lower extremity muscular strength was lower in patients with HF (129±55 vs. 219±52N×m, P<0.001). Fourteen HF patients (34%) had muscle wasting. By univariate analysis, higher age, higher serum follistatin, and lower serum myostatin were significantly associated with the presence of muscle wasting. By multivariate analysis, serum myostatin levels were independently associated with muscle wasting (OR=0.77, 95% CI [0.58, 0.93], P=0.02). Serum myostatin levels were significantly decreased in HF patients and associated with lower extremity muscle wasting, suggesting that myostatin may be an important factor for maintaining skeletal muscle mass and strength in HF. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Cardiorespiratory fitness and muscle strength in late adolescence and long-term risk of early heart failure in Swedish men.

    PubMed

    Lindgren, Martin; Åberg, Maria; Schaufelberger, Maria; Åberg, David; Schiöler, Linus; Torén, Kjell; Rosengren, Annika

    2017-05-01

    Aims To investigate the association between cardiorespiratory fitness (CRF) and muscle strength in late adolescence and the long-term risk of heart failure (HF). Methods A cohort was created of Swedish men enrolled in compulsory military service between 1968 and 2005 with measurements for CRF and muscle strength ( n = 1,226,623; mean age 18.3 years). They were followed until 31 December 2014 for HF hospitalization as recorded in the Swedish national inpatient registry. Results During the follow-up period (median (interquartile range) 28.4 (22.0-37.0) years), 7656 cases of first HF hospitalization were observed (mean ± SD age at diagnosis 50.1 ± 7.9 years). CRF and muscle strength were estimated by maximum capacity cycle ergometer testing and strength exercises (knee extension, elbow flexion and hand grip). Inverse dose-response relationships were found between CRF and muscle strength with HF as a primary or contributory diagnosis with an adjusted hazards ratio (95% confidence interval) of 1.60 (1.44-1.77) for low CRF and 1.45 (1.32-1.58) for low muscle strength categories. The associations of incident HF with CRF and muscle strength persisted, regardless of adjustments for the other potential confounders. The highest risk was observed for HF associated with coronary heart disease, diabetes or hypertension. Conclusions In this longitudinal study of young men, we found inverse and mutually independent associations between CRF and muscle strength with risk of hospitalization for HF. If causal, these results may emphasize the importance of the promotion of CRF and muscle strength in younger populations.

  5. Automatic segmentation of 4D cardiac MR images for extraction of ventricular chambers using a spatio-temporal approach

    NASA Astrophysics Data System (ADS)

    Atehortúa, Angélica; Zuluaga, Maria A.; Ourselin, Sébastien; Giraldo, Diana; Romero, Eduardo

    2016-03-01

    An accurate ventricular function quantification is important to support evaluation, diagnosis and prognosis of several cardiac pathologies. However, expert heart delineation, specifically for the right ventricle, is a time consuming task with high inter-and-intra observer variability. A fully automatic 3D+time heart segmentation framework is herein proposed for short-axis-cardiac MRI sequences. This approach estimates the heart using exclusively information from the sequence itself without tuning any parameters. The proposed framework uses a coarse-to-fine approach, which starts by localizing the heart via spatio-temporal analysis, followed by a segmentation of the basal heart that is then propagated to the apex by using a non-rigid-registration strategy. The obtained volume is then refined by estimating the ventricular muscle by locally searching a prior endocardium- pericardium intensity pattern. The proposed framework was applied to 48 patients datasets supplied by the organizers of the MICCAI 2012 Right Ventricle segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.

  6. AN EXPERIMENTAL INVESTIGATION OF THE TREATMENT OF WOUNDS OF THE HEART BY MEANS OF SUTURE OF THE HEART MUSCLE

    PubMed Central

    Elsberg, Charles A.

    1899-01-01

    It would, of course, be incorrect to attempt to draw conclusions as to the dangers and the chances of success of suture of cardiac wounds in man from the results obtained by animal experimentation. Animals are placed in very unfavorable conditions after the operation. They are very restless and cannot be kept quiet. Ideal cleanliness is impossible and the animals may infect their wound by rubbing the external wound against the dirt on the floor of their cage. From the animal mortality in these investigations no rigid inferences applicable to human beings can therefore be made. Some conclusions of importance can, however, be drawn. Above all, my experiments seem to show that the mammalian heart will bear a much greater amount of manipulation than has hitherto been suspected. Very large wounds of the heart can heal and the healing process occurs in a manner entirely analogous to that in other muscular tissues. Even an extensive suture of the heart-wall of rabbits and dogs, although we know that thereby a large number of muscle fibres are destroyed and replaced by connective tissue, does not interfere with the function of the cardiac muscle as a whole. Can some of the results in the above recorded experiments be, with some restrictions of course, applied to the human heart? I think that this question must be answered in the affirmative. If we compare the knowledge we possess of wounds of the heart in man, with that obtained from animal experiments, and find that they agree in all essential particulars, then we are justified in reasoning by analogy that suture of wounds of the heart in man will give results similar to those obtained in the animal. In the last few decades, the advances made in all the branches of medicine—especially in pathology, bacteriology and surgery—have been due to a great extent to the generalization of the results of animal experimentation. To the careful and critical investigator, the results obtained in the animal experiment have always been of the greatest value in indicating to him the possibility of results to be obtained by similar procedures in the human body. From the study of wounds of the heart in man, and from the results obtained in my experiments, this conclusion seems therefore justified: wounds of the heart in man, when all other means have been tried and found wanting, can and ought to be closed by suture. The application itself of the suture is devoid of the one great danger that was feared in the past, i. e. of sudden arrest of the heart during the manipulations incident upon the application of the sutures. The number of sutures should be as small as possible so as to limit the amount of connective tissue which will be formed; for all the muscle fibres that are compressed by the sutures eventually atrophy and are replaced by new-formed connective tissue. It is probable that this connective tissue will not lead to degenerative changes in the heart-muscle. On the post-mortem table, fibrous plaques are often found in the otherwise normal human heart. In a number of the muscles of the body fibrous bands—tendinous intersections as they are called—are normally found. In the large number of microscopic sections of the heart-muscle that I have examined, I could find no evidence of pathological changes in the muscle fibres some distance from the scar. For similar reasons the suture should always be an interrupted one. We have shown that there are dangers and disadvantages in the continuous suture both on theoretical grounds and in practical use. The sutures should be passed through as little of the heart substance as possible; if they penetrate the epicardium and a small part of the thickness of the heart-muscle it will generally be sufficient. When the heart's action is not too rapid, each suture should be tied during a diastolic relaxation of the part under treatment. On this point we have not yet any experience in man. Cappelen, in his patient, tied the sutures during systole. Rehn tied them in his case during diastole. Only time and further experience will show how much importance is to be attached to this point. All that can be said, in the present state of our knowledge, is, that on theoretical grounds and from animal experimentation, it must be considered safest to tie the sutures during diastole. On first sight, it might appear difficult to apply sutures to an organ in such constant motion as is the heart. In practice, however, the difficulties have been proven not to be so great as might appear. The heart may be grasped with a forceps and the needle and suture easily passed. It is no more difficult to pass and tie a suture in a large dog than in a small rabbit. Hence we should infer that the difficulties of this procedure in the human heart, are not so great, a fact that has been borne out by the experience of those surgeons who have reported cases of heart-suture in man. The cases will always be few in which this extreme method of treatment—for so we must style it—is necessary. Indeed, of the patients that come under the care of the surgeon, there are some who will recover from even large heart wounds without any local treatment at all. Cases have been recently reported by Conner, Brugnoli, Hamilton and others, where after wounds as large as three centimetres, the hæmorrhage ceased spontaneously and the patients recovered. One cannot say, therefore, that wounds larger than a certain size must always be sutured. Each case must be carefully considered by itself. When we examine the nine cases of suture of the human heart in man (see pages 487 to 490) we cannot but hope for considerable success from this new method of surgical procedure. Of the nine cases, four recovered entirely, and four died of complications referable to other organs—quite an encouraging record in a few cases. Finally, I may be permitted to summarize these conclusions as follows: 1. Suture of a wound of the heart as a final resort is an operation worthy of consideration in some cases and often justifiable. 2. Suture of wounds of the heart in animals, and also in man, is devoid of the danger of sudden arrest of the heart, due to the manipulation of the heart incident to the procedure, unless Kronecker's coördination centre be injured. 3. The suture should be an interrupted one of silk, applied in most cases so that the epicardium and superficial layers of the myocardium should be the only ones penetrated, and tied, when possible, during diastole. 4. No stated indications can be given as to the cases that are operable or the time when the operation should be done. Each case must be considered by itself for symptoms which would justify operative interference. PMID:19866920

  7. Effects of functional feeds on the lipid composition, transcriptomic responses and pathology in heart of Atlantic salmon (Salmo salar L.) before and after experimental challenge with Piscine Myocarditis Virus (PMCV).

    PubMed

    Martinez-Rubio, Laura; Evensen, Øystein; Krasnov, Aleksei; Jørgensen, Sven Martin; Wadsworth, Simon; Ruohonen, Kari; Vecino, Jose L G; Tocher, Douglas R

    2014-06-11

    Cardiomyopathy syndrome (CMS) is a severe cardiac disease of Atlantic salmon (Salmo salar) recently associated with a double-stranded RNA virus, Piscine Myocarditis Virus (PMCV). The disease has been diagnosed in 75-85 farms in Norway each year over the last decade resulting in annual economic losses estimated at up to €9 million. Recently, we demonstrated that functional feeds led to a milder inflammatory response and reduced severity of heart lesions in salmon experimentally infected with Atlantic salmon reovirus, the causal agent of heart and skeletal muscle inflammation (HSMI). In the present study we employed a similar strategy to investigate the effects of functional feeds, with reduced lipid content and increased eicosapentaenoic acid levels, in controlling CMS in salmon after experimental infection with PMCV. Hepatic steatosis associated with CMS was significantly reduced over the time course of the infection in fish fed the functional feeds. Significant differences in immune and inflammatory responses and pathology in heart tissue were found in fish fed the different dietary treatments over the course of the infection. Specifically, fish fed the functional feeds showed a milder and delayed inflammatory response and, consequently, less severity of heart lesions at earlier and later stages after infection with PMCV. Decreasing levels of phosphatidylinositol in cell membranes combined with the increased expression of genes related with T-cell signalling pathways revealed new interactions between dietary lipid composition and the immune response in fish during viral infection. Dietary histidine supplementation did not significantly affect immune responses or levels of heart lesions. Combined with the previous findings on HSMI, the results of the present study highlight the potential role of clinical nutrition in controlling inflammatory diseases in Atlantic salmon. In particular, dietary lipid content and fatty acid composition may have important immune-modulatory effects in Atlantic salmon that could be potentially beneficial in fish balancing the immune and tissue responses to viral infections.

  8. Baroreflex modulation of muscle sympathetic nerve activity during posthandgrip muscle ischemia in humans

    NASA Technical Reports Server (NTRS)

    Cui, J.; Wilson, T. E.; Shibasaki, M.; Hodges, N. A.; Crandall, C. G.

    2001-01-01

    To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip muscle ischemia. During muscle ischemia, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.001) during posthandgrip muscle ischemia (-201.9 +/- 20.4 units. beat(-1). mmHg(-1)) when compared with control conditions (-142.7 +/- 17.3 units. beat(-1). mmHg(-1)). No significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. However, both curves shifted during postexercise ischemia to accommodate the elevation in blood pressure and MSNA that occurs with this condition. These data suggest that the sensitivity of baroreflex modulation of MSNA is elevated by muscle metaboreceptor stimulation, whereas the sensitivity of baroreflex of modulate heart rate is unchanged during posthandgrip muscle ischemia.

  9. An exploratory study on the efficacy and safety of a BCAA preparation used in combination with cardiac rehabilitation for patients with chronic heart failure.

    PubMed

    Takata, Munenori; Amiya, Eisuke; Watanabe, Masafumi; Hosoya, Yumiko; Nakayama, Atsuko; Fujiwara, Takayuki; Taya, Masanobu; Oguri, Gaku; Hyodo, Kanako; Takayama, Naoko; Takano, Nami; Mashiko, Tomoe; Uemura, Yukari; Komuro, Issei

    2017-07-27

    Sarcopenia is generally complicated with patients with chronic heart failure (CHF) and its presence negatively affects the course of heart failure, however effective nutritional intervention had not been elucidated yet. The primary objective of this study is to explore whether the addition of a branched-chain amino acid (BCAA) preparation for cardiac rehabilitation (CR) of patients with CHF further improves cardiopulmonary functions, skeletal muscle functions, and metabolism in comparison with conventional CR. This is a randomized, parallel-group comparative study. The elderly patients that were participated in CR and complicated with left ventricular systolic or diastolic dysfunction are randomized into two groups, CR + BCAA and CR. 20 weeks later, the second randomization is performed, which divide subjects into two groups with and without BCAA intervention without CR. Primary outcome measure is the rate of change of the anaerobic threshold workload from baseline to post-intervention. Secondary outcome include parameters of exercise capacity, cardiac function and psychological status. In the current study the effect of a promising new intervention, BCAA, will be assessed to determine whether its addition to CR improve exercise capacity in patients with heart failure, who are generally complicated with sarcopenia. This clinical trial was registered with the University Hospital Medical Information Network-Clinical Trials Registry (UMIN-CTR; JPRN-UMIN R000022440 ).

  10. Muscle carnitine availability plays a central role in regulating fuel metabolism in the rodent.

    PubMed

    Porter, Craig; Constantin-Teodosiu, Dumitru; Constantin, Despina; Leighton, Brendan; Poucher, Simon M; Greenhaff, Paul L

    2017-09-01

    Meldonium inhibits endogenous carnitine synthesis and tissue uptake, and accelerates urinary carnitine excretion, although the impact of meldonium-mediated muscle carnitine depletion on whole-body fuel selection, and muscle fuel metabolism and its molecular regulation is under-investigated. Ten days of oral meldonium administration did not impact on food or fluid intake, physical activity levels or body weight gain in the rat, whereas it depleted muscle carnitine content (all moieties), increased whole-body carbohydrate oxidation and muscle and liver glycogen utilization, and reduced whole-body fat oxidation. Meldonium reduced carnitine transporter protein expression across muscles of different contractile and metabolic phenotypes. A TaqMan PCR low-density array card approach revealed the abundance of 189 mRNAs regulating fuel selection was altered in soleus muscle by meldonium, highlighting the modulation of discrete cellular functions and metabolic pathways. These novel findings strongly support the premise that muscle carnitine availability is a primary regulator of fuel selection in vivo. The body carnitine pool is primarily confined to skeletal muscle, where it regulates carbohydrate (CHO) and fat usage. Meldonium (3-(2,2,2-trimethylhydrazinium)-propionate) inhibits carnitine synthesis and tissue uptake, although the impact of carnitine depletion on whole-body fuel selection, muscle fuel metabolism and its molecular regulation is under-investigated. Male lean Zucker rats received water (control, n = 8) or meldonium-supplemented water (meldonium, n = 8) for 10 days [1.6 g kg -1 body mass (BM) day -1 days 1-2, 0.8 g kg -1  BM day -1 thereafter]. From days 7-10, animals were housed in indirect calorimetry chambers after which soleus muscle and liver were harvested. Food and fluid intake, weight gain and physical activity levels were similar between groups from days 7 to 10. Compared to control, meldonium depleted muscle total carnitine (P < 0.001) and all carnitine esters. Furthermore, whole-body fat oxidation was less (P < 0.001) and CHO oxidation was greater (P < 0.05) compared to the control, whereas soleus and liver glycogen contents were less (P < 0.01 and P < 0.01, respectively). In a second study, male Wistar rats received water (n = 8) or meldonium-supplemented water (n = 8) as above, and kidney, heart and extensor digitorum longus muscle (EDL) and soleus muscles were collected. Compared to control, meldonium depleted total carnitine content (all P < 0.001), reduced carnitine transporter protein and glycogen content, and increased pyruvate dehydrogenase kinase 4 mRNA abundance in the heart, EDL and soleus. In total, 189 mRNAs regulating fuel selection were differentially expressed in soleus in meldonium vs. control, and a number of cellular functions and pathways strongly associated with carnitine depletion were identified. Collectively, these data firmly support the premise that muscle carnitine availability is a primary regulator of fuel selection in vivo. © 2017 The University of Nottingham. The Journal of Physiology © 2017 The Physiological Society.

  11. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    NASA Technical Reports Server (NTRS)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; hide

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  12. High-resolution respirometry of fine-needle muscle biopsies in pre-manifest Huntington's disease expansion mutation carriers shows normal mitochondrial respiratory function.

    PubMed

    Buck, Eva; Zügel, Martina; Schumann, Uwe; Merz, Tamara; Gumpp, Anja M; Witting, Anke; Steinacker, Jürgen M; Landwehrmeyer, G Bernhard; Weydt, Patrick; Calzia, Enrico; Lindenberg, Katrin S

    2017-01-01

    Alterations in mitochondrial respiration are an important hallmark of Huntington's disease (HD), one of the most common monogenetic causes of neurodegeneration. The ubiquitous expression of the disease causing mutant huntingtin gene raises the prospect that mitochondrial respiratory deficits can be detected in skeletal muscle. While this tissue is readily accessible in humans, transgenic animal models offer the opportunity to cross-validate findings and allow for comparisons across organs, including the brain. The integrated respiratory chain function of the human vastus lateralis muscle was measured by high-resolution respirometry (HRR) in freshly taken fine-needle biopsies from seven pre-manifest HD expansion mutation carriers and nine controls. The respiratory parameters were unaffected. For comparison skeletal muscle isolated from HD knock-in mice (HdhQ111) as well as a broader spectrum of tissues including cortex, liver and heart muscle were examined by HRR. Significant changes of mitochondrial respiration in the HdhQ knock-in mouse model were restricted to the liver and the cortex. Mitochondrial mass as quantified by mitochondrial DNA copy number and citrate synthase activity was stable in murine HD-model tissue compared to control. mRNA levels of key enzymes were determined to characterize mitochondrial metabolic pathways in HdhQ mice. We demonstrated the feasibility to perform high-resolution respirometry measurements from small human HD muscle biopsies. Furthermore, we conclude that alterations in respiratory parameters of pre-manifest human muscle biopsies are rather limited and mirrored by a similar absence of marked alterations in HdhQ skeletal muscle. In contrast, the HdhQ111 murine cortex and liver did show respiratory alterations highlighting the tissue specific nature of mutant huntingtin effects on respiration.

  13. High-resolution echocardiography

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1979-01-01

    High resolution computer aided ultrasound system provides two-and three-dimensional images of beating heart from many angles. System provides means for determining whether small blood vessels around the heart are blocked or if heart wall is moving normally without interference of dead and noncontracting muscle tissue.

  14. Mechanism and novel therapeutic approaches to wasting in chronic disease.

    PubMed

    Ebner, Nicole; Springer, Jochen; Kalantar-Zadeh, Kamyar; Lainscak, Mitja; Doehner, Wolfram; Anker, Stefan D; von Haehling, Stephan

    2013-07-01

    Cachexia is a multifactorial syndrome defined by continuous loss of skeletal muscle mass - with or without loss of fat mass - which cannot be fully reversed by conventional nutritional support and which may lead to progressive functional impairment and increased death risk. Its pathophysiology is characterized by negative protein and energy balance driven by a variable combination of reduced food intake and abnormal metabolism. Muscle wasting is encountered in virtually all chronic disease states in particular during advanced stages of the respective illness. Several pre-clinical and clinical studies are ongoing to ameliorate this clinical problem. The mechanisms of muscle wasting and cachexia in chronic diseases such as cancer, chronic heart failure, chronic obstructive pulmonary disease and chronic kidney disease are described. We discuss therapeutic targets and such potential modulators as appetite stimulants, selective androgen receptor modulators, amino acids and naturally occurring peptide hormones. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Automated detection of heart ailments from 12-lead ECG using complex wavelet sub-band bi-spectrum features.

    PubMed

    Tripathy, Rajesh Kumar; Dandapat, Samarendra

    2017-04-01

    The complex wavelet sub-band bi-spectrum (CWSB) features are proposed for detection and classification of myocardial infarction (MI), heart muscle disease (HMD) and bundle branch block (BBB) from 12-lead ECG. The dual tree CW transform of 12-lead ECG produces CW coefficients at different sub-bands. The higher-order CW analysis is used for evaluation of CWSB. The mean of the absolute value of CWSB, and the number of negative phase angle and the number of positive phase angle features from the phase of CWSB of 12-lead ECG are evaluated. Extreme learning machine and support vector machine (SVM) classifiers are used to evaluate the performance of CWSB features. Experimental results show that the proposed CWSB features of 12-lead ECG and the SVM classifier are successful for classification of various heart pathologies. The individual accuracy values for MI, HMD and BBB classes are obtained as 98.37, 97.39 and 96.40%, respectively, using SVM classifier and radial basis function kernel function. A comparison has also been made with existing 12-lead ECG-based cardiac disease detection techniques.

  16. Thymosin β4: multiple functions in protection, repair and regeneration of the mammalian heart.

    PubMed

    Bollini, Sveva; Riley, Paul R; Smart, Nicola

    2015-01-01

    Despite recent improvements in interventional medicine, cardiovascular disease still represents the major cause of morbidity worldwide, with myocardial infarction being the most common cardiac injury. This has sustained the development of several regenerative strategies based on the use of stem cells and tissue engineering approaches in order to achieve cardiac repair and regeneration by enhancing coronary neovascularization, modulating acute inflammation and supporting myocardial regeneration to provide new functional muscle. The actin monomer binding peptide, Thymosin β4 (Tβ4), has recently been described as a powerful regenerative agent with angiogenic, anti-inflammatory and cardioprotective effects on the heart and which specifically acts on its resident cardiac progenitor cells. In this review we will discuss the state of the art regarding the many roles of Tβ4 in preserving and regenerating the mammalian heart, with specific attention to its ability to activate the quiescent adult epicardium and specific subsets of epicardial progenitor cells for repair. The therapeutic potential of Tβ4 for the treatment of cardiac failure is herein evaluated alongside existing, emerging and prospective novel treatments.

  17. Maze Surgery

    MedlinePlus

    ... atrial fibrillation by creating a "maze" of new electrical pathways to let electrical impulses travel easily through the heart. En español Electrical impulses in your heart muscle (the myocardium) cause ...

  18. Replacement of C305 in heart/muscle-type isozyme of human carnitine palmitoyltransferase I with aspartic acid and other amino acids.

    PubMed

    Matsuo, Taisuke; Yamamoto, Atsushi; Yamamoto, Takenori; Otsuki, Kaoru; Yamazaki, Naoshi; Kataoka, Masatoshi; Terada, Hiroshi; Shinohara, Yasuo

    2010-04-01

    Liver- and heart/muscle-type isozymes of human carnitine palmitoyltransferase I (L- and M-CPTI, respectively) show a certain similarity in their amino acid sequences, and mutation studies on the conserved amino acids between these two isozymes often show essentially the same effects on their enzymatic properties. Earlier mutation studies on C305 in human M-CPTI and its counterpart residue, C304, in human L-CPTI showed distinct effects of the mutations, especially in the aspect of enzyme stability; however, simple comparison of these effects on the conserved Cys residue between L- and M-CPTI was difficult, because these studies were carried out using different expression systems and distinct amino acids as replacements. In the present study, we carried out mutation studies on the C305 in human M-CPTI using COS cells for the expression system. Our results showed that C305 was replaceable with aspartic acid but that substitution with other amino acids caused both loss of function and reduced expression.

  19. Analysis of Molecular Movement Reveals Latticelike Obstructions to Diffusion in Heart Muscle Cells

    PubMed Central

    Illaste, Ardo; Laasmaa, Martin; Peterson, Pearu; Vendelin, Marko

    2012-01-01

    Intracellular diffusion in muscle cells is known to be restricted. Although characteristics and localization of these restrictions is yet to be elucidated, it has been established that ischemia-reperfusion injury reduces the overall diffusion restriction. Here we apply an extended version of raster image correlation spectroscopy to determine directional anisotropy and coefficients of diffusion in rat cardiomyocytes. Our experimental results indicate that diffusion of a smaller molecule (1127 MW fluorescently labeled ATTO633-ATP) is restricted more than that of a larger one (10,000 MW Alexa647-dextran), when comparing diffusion in cardiomyocytes to that in solution. We attempt to provide a resolution to this counterintuitive result by applying a quantitative stochastic model of diffusion. Modeling results suggest the presence of periodic intracellular barriers situated ∼1 μm apart having very low permeabilities and a small effect of molecular crowding in volumes between the barriers. Such intracellular structuring could restrict diffusion of molecules of energy metabolism, reactive oxygen species, and apoptotic signals, enacting a significant role in normally functioning cardiomyocytes as well as in pathological conditions of the heart. PMID:22385844

  20. TRPV4 channels: physiological and pathological role in cardiovascular system.

    PubMed

    Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-11-01

    TRPV4 channels are non-selective cation channels permeable to Ca(2+), Na(+), and Mg(2+) ions. Recently, TRPV4 channels have received considerable attention as these channels are widely expressed in the cardiovascular system including endothelial cells, cardiac fibroblasts, vascular smooth muscles, and peri-vascular nerves. Therefore, these channels possibly play a pivotal role in the maintenance of cardiovascular homeostasis. TRPV4 channels critically regulate flow-induced arteriogenesis, TGF-β1-induced differentiation of cardiac fibroblasts into myofibroblasts, and heart failure-induced pulmonary edema. These channels also mediate hypoxia-induced increase in proliferation and migration of pulmonary artery smooth muscle cells and progression of pulmonary hypertension. These channels also maintain flow-induced vasodilation and preserve vascular function by directly activating Ca(2+)-dependent KCa channels. Furthermore, these may also induce vasodilation and maintain blood pressure indirectly by evoking the release of NO, CGRP, and substance P. The present review discusses the evidences and the potential mechanisms implicated in diverse responses including arteriogenesis, cardiac remodeling, congestive heart failure-induced pulmonary edema, pulmonary hypertension, flow-induced dilation, regulation of blood pressure, and hypoxic preconditioning.

  1. Effect of small-sided team sport training and protein intake on muscle mass, physical function and markers of health in older untrained adults: A randomized trial.

    PubMed

    Vorup, Jacob; Pedersen, Mogens Theisen; Brahe, Lena Kirchner; Melcher, Pia Sandfeld; Alstrøm, Joachim Meno; Bangsbo, Jens

    2017-01-01

    The effect of small-sided team sport training and protein intake on muscle mass, physical function, and adaptations important for health in untrained older adults was examined. Forty-eight untrained older (72±6 (±standard deviation, SD) years men and women were divided into either a team sport group ingesting a drink high in protein (18 g) immediately and 3 h after each training session (TS-HP, n = 13), a team sport group ingesting an isocaloric drink with low protein content (3 g; TS-LP, n = 18), or a control group continuing their normal activities (CON, n = 17). The team sport training was performed as ~20 min of small-sided ball games twice a week over 12 weeks. After the intervention period, leg muscle mass was 0.6 kg higher (P = 0.047) in TS-HP, with no effect in TS-LP. In TS-HP, number of sit-to-stand repetitions increased (1.2±0.6, P = 0.054), time to perform 2.45 m up-and-go was lower (0.7±0.3 s, P = 0.03) and number of arm curl repetitions increased (3.5±1.2, P = 0.01), whereas in TS-LP only number of repetitions in sit-to-stand was higher (1.6±0.6, P = 0.01). In TS-LP, reductions were observed in total and abdominal fat mass (1.2±0.5 and 0.4±0.2 kg, P = 0.03 and P = 0.02, respectively), heart rate at rest (9±3 bpm, P = 0.002) and plasma C-reactive protein (1.8±0.8 mmol/L, P = 0.03), with no effects in TS-HP. Thus, team sport training improves functional capacity of untrained older adults and increases leg muscle mass only when ingesting proteins after training. Furthermore, team sport training followed by intake of drink with low protein content does lower fat mass, heart rate at rest and level of systemic inflammation. clinicaltrials.gov NCT03120143.

  2. Effect of small-sided team sport training and protein intake on muscle mass, physical function and markers of health in older untrained adults: A randomized trial

    PubMed Central

    Pedersen, Mogens Theisen; Brahe, Lena Kirchner; Melcher, Pia Sandfeld; Alstrøm, Joachim Meno; Bangsbo, Jens

    2017-01-01

    The effect of small-sided team sport training and protein intake on muscle mass, physical function, and adaptations important for health in untrained older adults was examined. Forty-eight untrained older (72±6 (±standard deviation, SD) years men and women were divided into either a team sport group ingesting a drink high in protein (18 g) immediately and 3 h after each training session (TS-HP, n = 13), a team sport group ingesting an isocaloric drink with low protein content (3 g; TS-LP, n = 18), or a control group continuing their normal activities (CON, n = 17). The team sport training was performed as ~20 min of small-sided ball games twice a week over 12 weeks. After the intervention period, leg muscle mass was 0.6 kg higher (P = 0.047) in TS-HP, with no effect in TS-LP. In TS-HP, number of sit-to-stand repetitions increased (1.2±0.6, P = 0.054), time to perform 2.45 m up-and-go was lower (0.7±0.3 s, P = 0.03) and number of arm curl repetitions increased (3.5±1.2, P = 0.01), whereas in TS-LP only number of repetitions in sit-to-stand was higher (1.6±0.6, P = 0.01). In TS-LP, reductions were observed in total and abdominal fat mass (1.2±0.5 and 0.4±0.2 kg, P = 0.03 and P = 0.02, respectively), heart rate at rest (9±3 bpm, P = 0.002) and plasma C-reactive protein (1.8±0.8 mmol/L, P = 0.03), with no effects in TS-HP. Thus, team sport training improves functional capacity of untrained older adults and increases leg muscle mass only when ingesting proteins after training. Furthermore, team sport training followed by intake of drink with low protein content does lower fat mass, heart rate at rest and level of systemic inflammation. Trial Registration: clinicaltrials.gov NCT03120143 PMID:29016675

  3. Texas Emergency Resource Management. Volume II.

    DTIC Science & Technology

    1979-09-30

    direct all users and distributors of sugar and other natural sweeteners in the State to abide by such regulations as may be issued by the U. S. Department...systemic disorders such a, arthritis, heart disease, diabetes or kidney trouble. May treat bone, muscle and joint disorders limits to feet and be kno...dis- orders such as arthritis, heart disease, diabetes or kidney trouble. May treat bone, muscle and joint disorders limited to feet and be known as

  4. Metastasizing leiomyoma to heart.

    PubMed

    Consamus, Erin N; Reardon, Michael J; Ayala, Alberto G; Schwartz, Mary R; Ro, Jae Y

    2014-01-01

    Cardiac smooth muscle tumors are rare. Three different clinical settings for these tumors have been reported, including benign metastasizing leiomyoma from the uterus, primary cardiac leiomyoma and leiomyosarcoma, and intravenous cardiac extension of pelvic leiomyoma, which is the most common. We present a case of a 55-year-old woman with a benign metastasizing leiomyoma to the heart 17 years after hysterectomy and 16 years after metastasis to the lung. Immunohistochemical stains for smooth muscle actin, desmin, and estrogen and progesterone receptors were positive, indicating a smooth muscle tumor of uterine origin. To our knowledge, this is only the fourth reported case of benign metastasizing leiomyoma to the heart and the first case of long-delayed cardiac metastasis after successful treatment of pulmonary metastasis. It illustrates that benign metastasizing leiomyoma should be included in the differential diagnosis of cardiac tumors in patients with a history of uterine leiomyoma, especially when associated with pulmonary metastasis.

  5. An FGF-driven feed-forward circuit patterns the cardiopharyngeal mesoderm in space and time

    PubMed Central

    Razy-Krajka, Florian; Gravez, Basile; Kaplan, Nicole; Racioppi, Claudia; Wang, Wei

    2018-01-01

    In embryos, multipotent progenitors divide to produce distinct progeny and express their full potential. In vertebrates, multipotent cardiopharyngeal progenitors produce second-heart-field-derived cardiomyocytes, and branchiomeric skeletal head muscles. However, the mechanisms underlying these early fate choices remain largely elusive. The tunicate Ciona emerged as an attractive model to study early cardiopharyngeal development at high resolution: through two asymmetric and oriented divisions, defined cardiopharyngeal progenitors produce distinct first and second heart precursors, and pharyngeal muscle (aka atrial siphon muscle, ASM) precursors. Here, we demonstrate that differential FGF-MAPK signaling distinguishes between heart and ASM precursors. We characterize a feed-forward circuit that promotes the successive activations of essential ASM determinants, Hand-related, Tbx1/10 and Ebf. Finally, we show that coupling FGF-MAPK restriction and cardiopharyngeal network deployment with cell divisions defines the timing of gene expression and permits the emergence of diverse cell types from multipotent progenitors. PMID:29431097

  6. Effects of gonadectomy and hormonal replacement on rat hearts.

    PubMed

    Scheuer, J; Malhotra, A; Schaible, T F; Capasso, J

    1987-07-01

    To evaluate the effects of sex hormones on heart function and biochemistry, gonadectomy (GX) was performed in postpubertal male (M) and female (F) rats and compared with sham-operated controls (SH). The groups were MSH; MGX; MGX replaced with testosterone 3 mg/day s.c. (MGX + T), FSH, and FGX replaced with estrogen 2 mg/day (FGX + E), progesterone 0.4 mg/day (FGX + P), estrogen and progesterone (FGX + EP), or testosterone 2 mg/day (FGX + T). Body weight was decreased in MGX and was decreased further in MGX + T. Heart weight was decreased in both MGX and MGX + T. Body weights were increased in FGX and FTX + P and were increased further in FGX + T but were normal in FGX + E and FGX + EP. Heart weights were unchanged in F groups except in FGX + T, where it was increased. Cardiac performance in perfused hearts, as measured by stroke work, ejection fraction, fractional shortening and mean velocity of circumferential fiber shortening, was decreased in MGX but was slightly increased in MGX + T. Papillary muscle studies showed increases in time to peak tension and one-half relaxation in MGX, but these were decreased in MGX + T. Isotonic shortening studies showed decreased velocity of shortening in MGX and increased velocity in MGX + T. Heart function was significantly decreased in FGX and FGX + P compared with FSH but was similar to FSH in FGX + E and FGX + EP. FGX + T had greater stroke work and ejection fraction than FSH and FGX.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Sarcocystis arieticanis (Apicomplexa: Sarcocystidae) infecting the heart muscles of the domestic sheep, Ovis aries (Artiodactyla: Bovidae), from K. S. A. on the basis of light and electron microscopic data.

    PubMed

    Al Quraishy, Saleh; Morsy, Kareem; Bashtar, Abdel-Rahman; Ghaffar, Fathy Abdel; Mehlhorn, Heinz

    2014-10-01

    In the present study, the heteroxenous life cycle of Sarcocystis species from three strains of the slaughtered sheep at Al-Azizia and Al-Saada abattoirs in Riyadh city, K.S.A., was studied. Muscle samples of the oesophagus, diaphragm, tongue, skeletal and heart muscles were examined. Varied natural infection rates in the muscles of the examined sheep strains were recorded as 83% in Niemy, 81.5% in Najdy and 90% in Sawakny sheep. Muscles of the diaphragm showed the highest infection level above all organs except Najdy sheep in which oesophagus has the highest rate. Also, the heart was the lowest infected organ (40% Niemy, 44% Najdy and 53% Sawakny). Microscopic sarcocysts of Sarcocystis arieticanis are easily identified in sections through the heart muscles of the domestic sheep Ovis aries (Artiodactyla: Bovidae). Cysts measured 38.5-64.4 μm (averaged 42.66 μm) in width and 62.4-173.6 μm (averaged 82.14 μm) in length. The validity of this species was confirmed by means of ultrastructural characteristics of the primary cyst wall (0.1-0.27 μm thick) which revealed the presence of irregularly shaped crowded and hairy-like projections underlined by a thin layer of ground substance. This layer consisted mainly of fine, dense homogenous granules enclosing the developing metrocytes and merozoites that usually contain nearly all the structures of the apical complex and fill the interior cavity of the cyst. Several septa derived from the ground substance divided the cyst into compartments. The merozoites were banana-shaped and measured 12-16 μm in length with centrally or posteriorly located nuclei. Experimental infection of carnivores by feeding heavily infected sheep muscles revealed that the dog, Canis familiaris, is the only final host of the present Sarcocystis species. Gamogony, sporogonic stages and characteristics of sporulated oocysts were also investigated.

  8. Cardiovascular effects of pancuronium bromide in mongrel dogs.

    PubMed

    Reitan, J A; Warpinski, M A

    1975-09-01

    The cardiovascular effects of a new nondepolarizing muscle relaxant, pancuronium bromide, were studied in mongrel dogs. Small, but significant, increases in mean arterial blood pressure were observed after each of 2 intravenous doses (0.01 mg/kg and 0.1 mg/kg) were given. Heart rate increased significantly in dogs administered the larger dosage, and indexes of ventricular functions demonstrated a trend toward positive cardiac inotrophy after either the large or the small dose.

  9. Ablation of PGC-1β Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance

    PubMed Central

    Petrovic, Natasa; Kis, Adrienn; Feldmann, Helena M; Bjursell, Mikael; Parker, Nadeene; Curtis, Keira; Campbell, Mark; Hu, Ping; Zhang, Dongfang; Litwin, Sheldon E; Zaha, Vlad G; Fountain, Kimberly T; Boudina, Sihem; Jimenez-Linan, Mercedes; Blount, Margaret; Lopez, Miguel; Meirhaeghe, Aline; Bohlooly-Y, Mohammad; Storlien, Leonard; Strömstedt, Maria; Snaith, Michael; Orešič, Matej; Abel, E. Dale; Cannon, Barbara; Vidal-Puig, Antonio

    2006-01-01

    The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress. PMID:17090215

  10. AMP-activated protein kinase: Role in metabolism and therapeutic implications.

    PubMed

    Schimmack, Greg; Defronzo, Ralph A; Musi, Nicolas

    2006-11-01

    AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge which becomes activated in situations of energy consumption. AMPK functions to restore cellular ATP levels by modifying diverse metabolic and cellular pathways. In the skeletal muscle, AMPK is activated during exercise and is involved in contraction-stimulated glucose transport and fatty acid oxidation. In the heart, AMPK activity increases during ischaemia and functions to sustain ATP, cardiac function and myocardial viability. In the liver, AMPK inhibits the production of glucose, cholesterol and triglycerides and stimulates fatty acid oxidation. Recent studies have shown that AMPK is involved in the mechanism of action of metformin and thiazolidinediones, and the adipocytokines leptin and adiponectin. These data, along with evidence that pharmacological activation of AMPK in vivo improves blood glucose homeostasis, cholesterol concentrations and blood pressure in insulin-resistant rodents, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes, ischaemic heart disease and other metabolic diseases.

  11. Regulatory light chain mutants linked to heart disease modify the cardiac myosin lever arm.

    PubMed

    Burghardt, Thomas P; Sikkink, Laura A

    2013-02-19

    Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.

  12. The human phospholamban gene: structure and expression.

    PubMed

    McTiernan, C F; Frye, C S; Lemster, B H; Kinder, E A; Ogletree-Hughes, M L; Moravec, C S; Feldman, A M

    1999-03-01

    Phospholamban, through modulation of sarcoplasmic reticulum calcium-ATPase activity, is a key regulator of cardiac diastolic function. Alterations in phospholamban expression may define parameters of muscle relaxation. In experimental animals, phospholamban is differentially expressed in various striated and smooth muscles, and within the four chambers of the heart. Decreased phospholamban expression within the heart during heart failure has also been observed. Furthermore, regulatory elements of mammalian phospholamban genes remain poorly defined. To extend these studies to humans, we (1) characterized phospholamban expression in various human organs, (2) isolated genomic clones encoding the human phospholamban gene, and (3) prepared human phospholamban promoter/luciferase reporter constructs and performed transient transfection assays to begin identification of regulatory elements. We observed that human ventricle and quadriceps displayed high levels of phospholamban transcripts and proteins, with markedly lower expression observed in smooth muscles, while the right atria also expressed low levels of phospholamban. The human phospholamban gene structure closely resembles that reported for chicken, rabbit, rat, and mouse. Comparison of the human to other mammalian phospholamban genes indicates a marked conservation of sequence for at least 217 bp upstream of the transcription start site, which contains conserved motifs for GATA, CP1/NFY, M-CAT-like, and E-box elements. Transient transfection assays with a series of plasmids containing deleted 5' flanking regions (between -2530 and -66 through +85) showed that sequences between -169 and the CP1-box at -93 were required for maximal promoter activity in neonatal rat cardiomyocytes. Activity of these reporters in HeLa cells was markedly lower than that observed in rat cardiomyocytes, suggesting at least a partial tissue selectivity of these reporter constructs.

  13. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells

    PubMed Central

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-01-01

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility. PMID:25512492

  14. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.

    PubMed

    Kampourakis, Thomas; Yan, Ziqian; Gautel, Mathias; Sun, Yin-Biao; Irving, Malcolm

    2014-12-30

    Myosin binding protein-C (MyBP-C) is a key regulatory protein in heart muscle, and mutations in the MYBPC3 gene are frequently associated with cardiomyopathy. However, the mechanism of action of MyBP-C remains poorly understood, and both activating and inhibitory effects of MyBP-C on contractility have been reported. To clarify the function of the regulatory N-terminal domains of MyBP-C, we determined their effects on the structure of thick (myosin-containing) and thin (actin-containing) filaments in intact sarcomeres of heart muscle. We used fluorescent probes on troponin C in the thin filaments and on myosin regulatory light chain in the thick filaments to monitor structural changes associated with activation of demembranated trabeculae from rat ventricle by the C1mC2 region of rat MyBP-C. C1mC2 induced larger structural changes in thin filaments than calcium activation, and these were still present when active force was blocked with blebbistatin, showing that C1mC2 directly activates the thin filaments. In contrast, structural changes in thick filaments induced by C1mC2 were smaller than those associated with calcium activation and were abolished or reversed by blebbistatin. Low concentrations of C1mC2 did not affect resting force but increased calcium sensitivity and reduced cooperativity of force and structural changes in both thin and thick filaments. These results show that the N-terminal region of MyBP-C stabilizes the ON state of thin filaments and the OFF state of thick filaments and lead to a novel hypothesis for the physiological role of MyBP-C in the regulation of cardiac contractility.

  15. 52 Genetic Loci Influencing Myocardial Mass

    PubMed Central

    van der Harst, Pim; van Setten, Jessica; Verweij, Niek; Vogler, Georg; Franke, Lude; Maurano, Matthew T.; Wang, Xinchen; Leach, Irene Mateo; Eijgelsheim, Mark; Sotoodehnia, Nona; Hayward, Caroline; Sorice, Rossella; Meirelles, Osorio; Lyytikäinen, Leo-Pekka; Polašek, Ozren; Tanaka, Toshiko; Arking, Dan E.; Ulivi, Sheila; Trompet, Stella; Müller-Nurasyid, Martina; Smith, Albert V.; Dörr, Marcus; Kerr, Kathleen F.; Magnani, Jared W.; Fabiola Del Greco, M.; Zhang, Weihua; Nolte, Ilja M.; Silva, Claudia T.; Padmanabhan, Sandosh; Tragante, Vinicius; Esko, Tõnu; Abecasis, Gonçalo R.; Adriaens, Michiel E.; Andersen, Karl; Barnett, Phil; Bis, Joshua C.; Bodmer, Rolf; Buckley, Brendan M.; Campbell, Harry; Cannon, Megan V.; Chakravarti, Aravinda; Chen, Lin Y.; Delitala, Alessandro; Devereux, Richard B.; Doevendans, Pieter A.; Dominiczak, Anna F.; Ferrucci, Luigi; Ford, Ian; Gieger, Christian; Harris, Tamara B.; Haugen, Eric; Heinig, Matthias; Hernandez, Dena G.; Hillege, Hans L.; Hirschhorn, Joel N.; Hofman, Albert; Hubner, Norbert; Hwang, Shih-Jen; Iorio, Annamaria; Kähönen, Mika; Kellis, Manolis; Kolcic, Ivana; Kooner, Ishminder K.; Kooner, Jaspal S.; Kors, Jan A.; Lakatta, Edward G.; Lage, Kasper; Launer, Lenore J.; Levy, Daniel; Lundby, Alicia; Macfarlane, Peter W.; May, Dalit; Meitinger, Thomas; Metspalu, Andres; Nappo, Stefania; Naitza, Silvia; Neph, Shane; Nord, Alex S.; Nutile, Teresa; Okin, Peter M.; Olsen, Jesper V.; Oostra, Ben A.; Penninger, Josef M.; Pennacchio, Len A.; Pers, Tune H.; Perz, Siegfried; Peters, Annette; Pinto, Yigal M.; Pfeufer, Arne; Pilia, Maria Grazia; Pramstaller, Peter P.; Prins, Bram P.; Raitakari, Olli T.; Raychaudhuri, Soumya; Rice, Ken M.; Rossin, Elizabeth J.; Rotter, Jerome I.; Schafer, Sebastian; Schlessinger, David; Schmidt, Carsten O.; Sehmi, Jobanpreet; Silljé, Herman H.W.; Sinagra, Gianfranco; Sinner, Moritz F.; Slowikowski, Kamil; Soliman, Elsayed Z.; Spector, Timothy D.; Spiering, Wilko; Stamatoyannopoulos, John A.; Stolk, Ronald P.; Strauch, Konstantin; Tan, Sian-Tsung; Tarasov, Kirill V.; Trinh, Bosco; Uitterlinden, Andre G.; van den Boogaard, Malou; van Duijn, Cornelia M.; van Gilst, Wiek H.; Viikari, Jorma S.; Visscher, Peter M.; Vitart, Veronique; Völker, Uwe; Waldenberger, Melanie; Weichenberger, Christian X.; Westra, Harm-Jan; Wijmenga, Cisca; Wolffenbuttel, Bruce H.; Yang, Jian; Bezzina, Connie R.; Munroe, Patricia B.; Snieder, Harold; Wright, Alan F.; Rudan, Igor; Boyer, Laurie A.; Asselbergs, Folkert W.; van Veldhuisen, Dirk J.; Stricker, Bruno H.; Psaty, Bruce M.; Ciullo, Marina; Sanna, Serena; Lehtimäki, Terho; Wilson, James F.; Bandinelli, Stefania; Alonso, Alvaro; Gasparini, Paolo; Jukema, J. Wouter; Kääb, Stefan; Gudnason, Vilmundur; Felix, Stephan B.; Heckbert, Susan R.; de Boer, Rudolf A.; Newton-Cheh, Christopher; Hicks, Andrew A.; Chambers, John C.; Jamshidi, Yalda; Visel, Axel; Christoffels, Vincent M.; Isaacs, Aaron; Samani, Nilesh J.; de Bakker, Paul I.W.

    2017-01-01

    BACKGROUND Myocardial mass is a key determinant of cardiac muscle function and hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS amplitude or duration reflect changes in myocardial mass and conduction, and are associated with increased risk of heart failure and death. OBJECTIVES This meta-analysis sought to gain insights into the genetic determinants of myocardial mass. METHODS We carried out a genome-wide association meta-analysis of 4 QRS traits in up to 73,518 individuals of European ancestry, followed by extensive biological and functional assessment. RESULTS We identified 52 genomic loci, of which 32 are novel, that are reliably associated with 1 or more QRS phenotypes at p < 1 × 10−8. These loci are enriched in regions of open chromatin, histone modifications, and transcription factor binding, suggesting that they represent regions of the genome that are actively transcribed in the human heart. Pathway analyses provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 candidate genes at the identified loci that are preferentially expressed in cardiac tissue and associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. CONCLUSIONS Taken together, our findings provide new insights into genes and biological pathways controlling myocardial mass and may help identify novel therapeutic targets. PMID:27659466

  16. Minimally invasive cell-seeded biomaterial systems for injectable/epicardial implantation in ischemic heart disease

    PubMed Central

    Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-01-01

    Myocardial infarction (MI) is characterized by heart-wall thinning, myocyte slippage, and ventricular dilation. The injury to the heart-wall muscle after MI is permanent, as after an abundant cell loss the myocardial tissue lacks the intrinsic capability to regenerate. New therapeutics are required for functional improvement and regeneration of the infarcted myocardium, to overcome harmful diagnosis of patients with heart failure, and to overcome the shortage of heart donors. In the past few years, myocardial tissue engineering has emerged as a new and ambitious approach for treating MI. Several left ventricular assist devices and epicardial patches have been developed for MI. These devices and acellular/cellular cardiac patches are employed surgically and sutured to the epicardial surface of the heart, limiting the region of therapeutic benefit. An injectable system offers the potential benefit of minimally invasive release into the myocardium either to restore the injured extracellular matrix or to act as a scaffold for cell delivery. Furthermore, intramyocardial injection of biomaterials and cells has opened new opportunities to explore and also to augment the potentials of this technique to ease morbidity and mortality rates owing to heart failure. This review summarizes the growing body of literature in the field of myocardial tissue engineering, where biomaterial injection, with or without simultaneous cellular delivery, has been pursued to enhance functional and structural outcomes following MI. Additionally, this review also provides a complete outlook on the tissue-engineering therapies presently being used for myocardial regeneration, as well as some perceptivity into the possible issues that may hinder its progress in the future. PMID:23271906

  17. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction.

    PubMed

    Zamani, Payman; Rawat, Deepa; Shiva-Kumar, Prithvi; Geraci, Salvatore; Bhuva, Rushik; Konda, Prasad; Doulias, Paschalis-Thomas; Ischiropoulos, Harry; Townsend, Raymond R; Margulies, Kenneth B; Cappola, Thomas P; Poole, David C; Chirinos, Julio A

    2015-01-27

    Inorganic nitrate (NO3(-)), abundant in certain vegetables, is converted to nitrite by bacteria in the oral cavity. Nitrite can be converted to nitric oxide in the setting of hypoxia. We tested the hypothesis that NO3(-) supplementation improves exercise capacity in heart failure with preserved ejection fraction via specific adaptations to exercise. Seventeen subjects participated in this randomized, double-blind, crossover study comparing a single dose of NO3-rich beetroot juice (NO3(-), 12.9 mmol) with an identical nitrate-depleted placebo. Subjects performed supine-cycle maximal-effort cardiopulmonary exercise tests, with measurements of cardiac output and skeletal muscle oxygenation. We also assessed skeletal muscle oxidative function. Study end points included exercise efficiency (total work/total oxygen consumed), peak VO2, total work performed, vasodilatory reserve, forearm mitochondrial oxidative function, and augmentation index (a marker of arterial wave reflections, measured via radial arterial tonometry). Supplementation increased plasma nitric oxide metabolites (median, 326 versus 10 μmol/L; P=0.0003), peak VO2 (12.6±3.7 versus 11.6±3.1 mL O2·min(-1)·kg(-1); P=0.005), and total work performed (55.6±35.3 versus 49.2±28.9 kJ; P=0.04). However, efficiency was unchanged. NO3(-) led to greater reductions in systemic vascular resistance (-42.4±16.6% versus -31.8±20.3%; P=0.03) and increases in cardiac output (121.2±59.9% versus 88.7±53.3%; P=0.006) with exercise. NO3(-) reduced aortic augmentation index (132.2±16.7% versus 141.4±21.9%; P=0.03) and tended to improve mitochondrial oxidative function. NO3(-) increased exercise capacity in heart failure with preserved ejection fraction by targeting peripheral abnormalities. Efficiency did not change as a result of parallel increases in total work and VO2. NO3(-) increased exercise vasodilatory and cardiac output reserves. NO3(-) also reduced arterial wave reflections, which are linked to left ventricular diastolic dysfunction and remodeling. www.clinicaltrials.gov. Unique identifier: NCT01919177. © 2014 American Heart Association, Inc.

  18. Tissue engineering therapy for cardiovascular disease.

    PubMed

    Nugent, Helen M; Edelman, Elazer R

    2003-05-30

    The present treatments for the loss or failure of cardiovascular function include organ transplantation, surgical reconstruction, mechanical or synthetic devices, or the administration of metabolic products. Although routinely used, these treatments are not without constraints and complications. The emerging and interdisciplinary field of tissue engineering has evolved to provide solutions to tissue creation and repair. Tissue engineering applies the principles of engineering, material science, and biology toward the development of biological substitutes that restore, maintain, or improve tissue function. Progress has been made in engineering the various components of the cardiovascular system, including blood vessels, heart valves, and cardiac muscle. Many pivotal studies have been performed in recent years that may support the move toward the widespread application of tissue-engineered therapy for cardiovascular diseases. The studies discussed include endothelial cell seeding of vascular grafts, tissue-engineered vascular conduits, generation of heart valve leaflets, cardiomyoplasty, genetic manipulation, and in vitro conditions for optimizing tissue-engineered cardiovascular constructs.

  19. Finite element analysis of left ventricle during cardiac cycles in viscoelasticity.

    PubMed

    Shen, Jing Jin; Xu, Feng Yu; Yang, Wen An

    2016-08-01

    To investigate the effect of myocardial viscoeslasticity on heart function, this paper presents a finite element model based on a hyper-viscoelastic model for the passive myocardium and Hill's three-element model for the active contraction. The hyper-viscoelastic model considers the myocardium microstructure, while the active model is phenomenologically based on the combination of Hill's equation for the steady tetanized contraction and the specific time-length-force property of the myocardial muscle. To validate the finite element model, the end-diastole strains and the end-systole strain predicted by the model are compared with the experimental values in the literature. It is found that the proposed model not only can estimate well the pumping function of the heart, but also predicts the transverse shear strains. The finite element model is also applied to analyze the influence of viscoelasticity on the residual stresses in the myocardium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A feasiblity study of an ultrasonic test phantom arm

    NASA Astrophysics Data System (ADS)

    Schneider, Philip

    This thesis is a feasibility study for the creation of a test phantom that replicates the physiological features, from an acoustic and mechanical standpoint, of that of a human arm. Physiological feature set includes; Heart, Arteries, Veins, Bone, Muscle, Fat, Skin, and Dermotographic Features (finger prints). Mechanical Aspects include, vascular compression and distention, elasticity of tissue layers, mechanics of human heart. The end goal of which to have a working understanding of each component in order to create a controllable, real time, physiologically accurate, test phantom for a wide range of ultrasonic based applications. These applications can range from devices like wearable technologies to medical training, to biometric "Liveness" detection methods. The proposed phantom would allow for a number of natural bodily functions to be measured including but not limited to vascular mapping, blood pressure, heart rate, subdermal imaging, and general ultrasonic imaging.

  1. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization

    PubMed Central

    Hirai, Daniel M.; Musch, Timothy I.

    2015-01-01

    Chronic heart failure (CHF) impairs critical structural and functional components of the O2 transport pathway resulting in exercise intolerance and, consequently, reduced quality of life. In contrast, exercise training is capable of combating many of the CHF-induced impairments and enhancing the matching between skeletal muscle O2 delivery and utilization (Q̇mO2 and V̇mO2, respectively). The Q̇mO2/V̇mO2 ratio determines the microvascular O2 partial pressure (PmvO2), which represents the ultimate force driving blood-myocyte O2 flux (see Fig. 1). Improvements in perfusive and diffusive O2 conductances are essential to support faster rates of oxidative phosphorylation (reflected as faster V̇mO2 kinetics during transitions in metabolic demand) and reduce the reliance on anaerobic glycolysis and utilization of finite energy sources (thus lowering the magnitude of the O2 deficit) in trained CHF muscle. These adaptations contribute to attenuated muscle metabolic perturbations (e.g., changes in [PCr], [Cr], [ADP], and pH) and improved physical capacity (i.e., elevated critical power and maximal V̇mO2). Preservation of such plasticity in response to exercise training is crucial considering the dominant role of skeletal muscle dysfunction in the pathophysiology and increased morbidity/mortality of the CHF patient. This brief review focuses on the mechanistic bases for improved Q̇mO2/V̇mO2 matching (and enhanced PmvO2) with exercise training in CHF with both preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). Specifically, O2 convection within the skeletal muscle microcirculation, O2 diffusion from the red blood cell to the mitochondria, and muscle metabolic control are particularly susceptive to exercise training adaptations in CHF. Alternatives to traditional whole body endurance exercise training programs such as small muscle mass and inspiratory muscle training, pharmacological treatment (e.g., sildenafil and pentoxifylline), and dietary nitrate supplementation are also presented in light of their therapeutic potential. Adaptations within the skeletal muscle O2 transport and utilization system underlie improvements in physical capacity and quality of life in CHF and thus take center stage in the therapeutic management of these patients. PMID:26320036

  2. The Tropomyosin Binding Region of Cardiac Troponin T Modulates Crossbridge Recruitment Dynamics in Rat Cardiac Muscle Fibers

    PubMed Central

    Gollapudi, Sampath K.; Gallon, Clare E.; Chandra, Murali

    2013-01-01

    The cardiac muscle comprises dynamically interacting components that use allosteric/cooperative mechanisms to yield unique heart-specific properties. An essential protein in this allosteric/cooperative mechanism is cardiac muscle troponin T (cTnT), the central region (CR) and the T2 region of which differ significantly from those of fast skeletal muscle troponin T (fsTnT). To understand the biological significance of such sequence heterogeneity, we replaced the T1 or T2 domain of rat cTnT (RcT1 or RcT2) with its counterpart from rat fsTnT (RfsT1or RfsT2) to generate RfsT1-RcT2 and RcT1-RfsT2 recombinant proteins. In addition to contractile function measurements, dynamic features of RfsT1-RcT2 and RcT1-RfsT2 reconstituted rat cardiac muscle fibers were captured by fitting the recruitment-distortion model to force response of small amplitude (0.5%) muscle length changes. RfsT1-RcT2 fibers showed a ~40% decrease in tension and ~44% decrease in ATPase activity, but RcT1-RfsT2 fibers were unaffected. The magnitude of length-mediated increase in crossbridge recruitment (E0) decreased by ~33% and the speed of crossbridge recruitment (b) increased by ~100% in RfsT1-RcT2 fibers. Our data suggest the following: (1) the CR of cTnT modulates crossbridge recruitment dynamics; (2) the N-terminal end region of cTnT has a synergistic effect on the ability of CR to modulate crossbridge recruitment dynamics; (3) the T2 region is important for tuning the Ca2+ regulation of cardiac thin filaments. The combined effects of CR-Tm interactions and the modulating effect of the N-terminal end of cTnT on CR-Tm interactions may lead to the emergence of a unique property that tunes contractile dynamics to heart rates. PMID:23357173

  3. The diving paradox: new insights into the role of the dive response in air-breathing vertebrates.

    PubMed

    Davis, Randall W; Polasek, Lori; Watson, Rebecca; Fuson, Amanda; Williams, Terrie M; Kanatous, Shane B

    2004-07-01

    When aquatic reptiles, birds and mammals submerge, they typically exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues is reduced. The profound dive response that occurs during forced submergence sequesters blood oxygen for the brain and heart while allowing peripheral tissues to become anaerobic, thus protecting the animal from immediate asphyxiation. However, the decrease in peripheral blood flow is in direct conflict with the exercise response necessary for supporting muscle metabolism during submerged swimming. In free diving animals, a dive response still occurs, but it is less intense than during forced submergence, and whole-body metabolism remains aerobic. If blood oxygen is not sequestered for brain and heart metabolism during normal diving, then what is the purpose of the dive response? Here, we show that its primary role may be to regulate the degree of hypoxia in skeletal muscle so that blood and muscle oxygen stores can be efficiently used. Paradoxically, the muscles of diving vertebrates must become hypoxic to maximize aerobic dive duration. At the same time, morphological and enzymatic adaptations enhance intracellular oxygen diffusion at low partial pressures of oxygen. Optimizing the use of blood and muscle oxygen stores allows aquatic, air-breathing vertebrates to exercise for prolonged periods while holding their breath.

  4. Disruption of Canonical TGFβ-signaling in Murine Coronary Progenitor Cells by Low Level Arsenic

    PubMed Central

    Allison, Patrick; Huang, Tianfang; Broka, Derrick; Parker, Patti; Barnett, Joey V.; Camenisch, Todd D.

    2013-01-01

    Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors are essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitrostudy, 18 hour exposure to 1.34 μMarsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μMarsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease invimentinpositive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. PMID:23732083

  5. Changes in extracellular muscle volume affect heart rate and blood pressure responses to static exercise

    NASA Astrophysics Data System (ADS)

    Baum, K.; Essfeld, D.; Stegemann, J.

    To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.

  6. Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence

    PubMed Central

    Mettikolla, Prasad; Calander, Nils; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Borejdo, Julian

    2010-01-01

    Familial hypertrophic cardiomyopathy (FHC) is a serious heart disease that often leads to a sudden cardiac death of young athletes. It is believed that the alteration of the kinetics of interaction between actin and myosin causes FHC by making the heart to pump blood inefficiently. We set out to check this hypothesis ex vivo. During contraction of heart muscle, a myosin cross-bridge imparts periodic force impulses to actin. The impulses are analyzed by fluorescence correlation spectroscopy (FCS) of fluorescently labeled actin. To minimize observation volume and background fluorescence, we carry out FCS measurements in surface plasmon coupled emission mode in a reverse Kretschmann configuration. Fluorescence is a result of near-field coupling of fluorophores excited in the vicinity of the metal-coated surface of a coverslip with the surface plasmons propagating in the metal. Surface plasmons decouple on opposite sides of the metal film and emit in a directional manner as far-field p-polarized radiation. We show that the rate of changes of orientation is significantly faster in contracting cardiac myofibrils of transgenic mice than wild type. These results are consistent with the fact that mutated heart muscle myosin translates actin faster in in vitro motility assays. PMID:20210485

  7. Cloning of a newly identified heart-specific troponin I isoform, which lacks the troponin T binding portion, using the yeast hybrid system.

    PubMed

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2006-01-01

    To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease.

  8. Cloning of a newly identified heart-specific troponin I isoform, which lacks the troponin T binding portion, using the yeast hybrid system

    PubMed Central

    Suzuki, Hideaki; Arakawa, Yasuhiro; Ito, Masaki; Yamada, Hisashi; Horiguchi-Yamada, Junko

    2006-01-01

    OBJECTIVE To elucidate the molecular pathogenesis behind increased levels of laminin in cardiac muscle cells in cardiomyopathy by using a yeast hybrid screen. The present study reports the cloning of a newly identified heart-specific troponin I isoform, which is putatively linked to laminin. Future studies will explore the functional significance of this connection. METHODS Yeast two-hybrid screen analysis was performed using MLF1-interacting protein (amino acids 1 to 318) as bait. The human heart complementary DNA library was screened by using the yeast-mating method for overnight culture. RESULTS Two final positive clones from the heart library were isolated. These two clones encoded the same protein, a short isoform of human cardiac troponin I (TnI) that lacked TnI exons 5 and 6. The TnI isoform has a heart-specific expression pattern and it shares several sequence features with human cardiac TnI; however, it lacks the troponin T binding portion. CONCLUSION The heart-specific segment of the human cardiac TnI isoform shares several sequence features with human cardiac TnI, but it lacks the troponin T binding portion. These results suggest that the heart-specific TnI isoform may be involved in cardiac development and disease. PMID:18651010

  9. Optimizing functional exercise capacity in the elderly surgical population.

    PubMed

    Carli, Franco; Zavorsky, Gerald S

    2005-01-01

    There are several studies on the effect of exercise post surgery (rehabilitation), but few studies have looked at augmenting functional capacity prior to surgical admission (prehabilitation). A programme of prehabilitation is proposed in order to enhance functional exercise capacity in elderly patients with the intent to minimize the postoperative morbidity and accelerate postsurgical recovery. Few studies have looked at exercise prehabilitation to improve functional capacity prior to surgical admission. Prehabilitation prior to orthopaedic surgery does not seem to improve quality of life or recovery. However, prehabilitation prior to abdominal or cardiac surgery, based on 275 elderly patients, results in fewer postoperative complications, shorter postoperative length of stay, improved quality of life, and reduced declines in functional disability compared to sedentary controls. A concentrated 3-month progressive exercise prehabilitation programme consisting of aerobic training at 45-65% of maximal heart rate reserve (%HRR) along with periodic high-intensity interval training ( approximately 90% HRR) four times per week, 30-50 minutes per session, is recommended for improving cardiovascular functioning. A strength training programme of about 10 different exercises focused on large, multi-jointed muscle groups should also be implemented twice per week at a mean training intensity of 80% of one-repetition maximum. Finally, a minimum of 140 g ( approximately 560 kcal) of carbohydrate (CHO) should be taken 3 h before training to increase liver and muscle glycogen stores and a minimum of about 200 kcal of mixed protein-CHO should be ingested within 30 min following training to enhance muscle hypertrophy.

  10. Myocardial architecture and patient variability in clinical patterns of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Manani, Kishan A.; Christensen, Kim; Peters, Nicholas S.

    2016-10-01

    Atrial fibrillation (AF) increases the risk of stroke by a factor of 4-5 and is the most common abnormal heart rhythm. The progression of AF with age, from short self-terminating episodes to persistence, varies between individuals and is poorly understood. An inability to understand and predict variation in AF progression has resulted in less patient-specific therapy. Likewise, it has been a challenge to relate the microstructural features of heart muscle tissue (myocardial architecture) with the emergent temporal clinical patterns of AF. We use a simple model of activation wave-front propagation on an anisotropic structure, mimicking heart muscle tissue, to show how variation in AF behavior arises naturally from microstructural differences between individuals. We show that the stochastic nature of progressive transversal uncoupling of muscle strands (e.g., due to fibrosis or gap junctional remodeling), as occurs with age, results in variability in AF episode onset time, frequency, duration, burden, and progression between individuals. This is consistent with clinical observations. The uncoupling of muscle strands can cause critical architectural patterns in the myocardium. These critical patterns anchor microreentrant wave fronts and thereby trigger AF. It is the number of local critical patterns of uncoupling as opposed to global uncoupling that determines AF progression. This insight may eventually lead to patient-specific therapy when it becomes possible to observe the cellular structure of a patient's heart.

  11. Left ventricular performance in various heart diseases with or without heart failure:--an appraisal by quantitative one-plane cineangiocardiography.

    PubMed

    Lien, W P; Lee, Y S; Chang, F Z; Chen, J J; Shieh, W B

    1978-01-01

    Quantitative one-plane cineangiocardiography in right anterior oblique position for evaluation of LV performance was carried out in 62 patients with various heart diseases and in 13 subjects with normal LV. Parameters for evaluating both pump and muscle performances were derived from volume and pressure measurements. Of 31 patients with either systolic hypertension or LV myocardial diseases (coronary artery disease or idiopathic cardiomyopathy), 14 had clinical evidence of LV failure before the study. It was found that mean VCF and EF were most sensitive indicators of impaired LV performance among the various parameters. There was a close correlation between mean VCF and EF, yet discordant changes of both parameters were noted in some patients. Furthermore, wall motion abnormalities were not infrequently observed in patients with coronary artery disease or primary cardiomyopathy. Therefore, assessment of at least three ejection properties (EF, mean VCF and wall motion abnormalities) are considered to be essential for full understanding of derangement of LV function in heart disease. This is especially true of patients with coronary artery disease. LV behavior in relation to different pathological stresses or lesions, such as chronic pressure or volume load, myocardial disease and mitral stenosis, was also studied and possible cause of impaired LV myocardial function in mitral stenosis was discussed.

  12. Abnormal mitochondrial respiration in failed human myocardium.

    PubMed

    Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N

    2000-12-01

    Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.

  13. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments

    PubMed Central

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-01-01

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358

  14. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.

    PubMed

    Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm

    2016-05-24

    Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.

  15. Physiological effects of wearing graduated compression stockings during running.

    PubMed

    Ali, Ajmol; Creasy, Robert H; Edge, Johann A

    2010-08-01

    This study examined the effect of wearing different grades of graduated compression stockings (GCS) on physiological and perceptual measures during and following treadmill running in competitive runners. Nine males and one female performed three 40-min treadmill runs (80 +/- 5% maximal oxygen uptake) wearing either control (0 mmHg; CON), low (12-15 mmHg; LO-GCS), or high (23-32 mmHg; HI-GCS) grade GCS in a double-blind counterbalanced order. Oxygen uptake, heart rate and blood lactate were measured. Perceptual scales were used pre- and post-run to assess comfort, tightness and any pain associated with wearing GCS. Changes in muscle function, soreness and damage were determined pre-run, immediately after running and 24 and 48 h post-run by measuring creatine kinase and myoglobin, counter-movement jump height, perceived soreness diagrams, and pressure sensitivity. There were no significant differences between trials for oxygen uptake, heart rate or blood lactate during exercise. HI-GCS was perceived as tighter (P < 0.05) and more pain-inducing (P < 0.05) than the other interventions; CON and LO-GCS were rated more comfortable than HI-GCS (P < 0.05). Creatine kinase (P < 0.05), myoglobin (P < 0.05) and jump height (P < 0.05) were higher and pressure sensitivity was more pronounced (P < 0.05) immediately after running but not after 24 and 48 h. Only four participants reported muscle soreness during recovery from running and there were no differences in muscle function between trials. In conclusion, healthy runners wearing GCS did not experience any physiological benefits during or following treadmill running. However, athletes felt more comfortable wearing low-grade GCS whilst running.

  16. Relationship between Autonomic Markers of Heart Rate and Subjective Indicators of Recovery Status in Male, Elite Badminton Players.

    PubMed

    Bisschoff, Christo A; Coetzee, Ben; Esco, Michael R

    2016-12-01

    The primary aim of the study was to determine if heart rate variability (HRV), and heart rate recovery (HRR) are related to several subjective indicators of recovery status (muscle soreness, hydration status, sleep quality and quantity as well as pre-competition mood states) for different match periods in male, elite, African, singles badminton players. HRV and HRR were measured in twenty-two badminton players before (pre-match), during (in-match), after (post-match) and during rest periods (in-match rest) of 46 national and international matches. Muscle soreness, hydration status, and sleep quality and quantity were measured on a daily basis whereas mood states were measured just before each match via questionnaires. Prior to each match warm-up, players were fitted with a Fix Polar Heart Rate Transmitter Belt to record heart rate every second during each match and HRR during service breaks and after matches. Kubios HRV software was used for final HRV analyses from the series of R-R-intervals. A strong, significant canonical correlation (Rc = 0.96, p = 0.014) was found between HRV, HRR and subjective indicators of recovery status for the in-match period, but only strong, non-significant relationships were observed for pre-match (Rc = 0.98, p = 0.626) and post-match periods (Rc = 0.98, p = 0.085) and a low non-significant relationship (Rc = 0.69, p = 0.258) for the in-match rest period. Canonical functions accounted for between 47.89% and 96.43% of the total variation between the two canonical variants. Results further revealed that Ln-HFnu, the energy index and vigour were the most prominent variables in the relationship between the autonomic markers of heart rate and recovery-related variables. In conclusion, this study proved that subjective indicators of recovery status influence HRV and HRR measures obtained in a competitive badminton environment and should therefore be incorporated in protocols that evaluate these ANS-related parameters.

  17. Muscle Dysfunction in Androgen Deprivation: Role of Ryanodine Receptor

    DTIC Science & Technology

    2016-11-01

    undergoing ORX have reduced muscle specific force due to calcium leak through RyR1, which is caused by high levels of TGFβ released from the bone during... leak could be causing long-term effects, such as decreased muscle mass, body weight and forelimb grip strength. 15. SUBJECT TERMS Prostate Cancer...calcium leak and contractile dysfunction in chronic muscle fatigue, heart failure and muscular dystrophy (13-16). RyR1 is the skeletal muscle

  18. Coronary artery disease

    MedlinePlus Videos and Cool Tools

    The coronary arteries supply blood to the heart muscle itself. Damage to or blockage of a coronary artery can result in injury to the heart. Normally, blood flows through a coronary artery unimpeded. However, a ...

  19. Benefits of Synchrotron Microangiography for Dynamic Studies of Smooth Muscle and Endothelial Roles in the Pathophysiology of Vascular Disease

    NASA Astrophysics Data System (ADS)

    Pearson, James T.; Schwenke, Daryl O.; Jenkins, Mathew J.; Edgley, Amanda J.; Sonobe, Takashi; Ishibashi-Ueda, Hatsue; Umetani, Keiji; Eppel, Gabriela A.; Evans, Roger G.; Okura, Yasuhiko; Shirai, Mikiyasu

    2010-07-01

    Changes in endothelial and smooth muscle function compromise organ perfusion in the chronic disease states of diabetes, atherosclerosis and hypertension. Moreover, vascular dysfunction increases the likelihood of lethal acute events such as myocardial infarction and stroke, which are now leading causes of adult mortality. Many circulating and local tissue factors in these disease states contribute to impaired vasomotor regulation of the arterial vessels, leading to spasm, chronic constriction and eventually vessel remodelling. X-ray contrast absorption imaging allows assessment of vessel lumen diameter and the factors contributing to steady-state vessel calibre, however, conventional clinical devices (>200 μm resolution) are not adequate to detect microvessels or accurately assess function in real time. Using synchrotron imaging we are now able to detect small vessel calibres (˜30 μm) and quantify regional differences in calibre even under conditions of high heart rate (>500 bpm). Herein we describe recent experiments that were conducted at the Japanese Synchrotron, SPring-8 using anaesthetised Sprague-Dawley rats and C57Bl/6 mice and a synchrotron radiation contrast angiography (single narrow energy bandwidth) approach based on selective arterial injection of iodine contrast agents. Application of this approach to imaging of the heart and other vasculatures are described. Our studies show that within-animal comparisons of 3-4 branching orders of arterial vessels are possible using small bolus contrast injections and appropriate contrast washout times (15-30 min) in many organ systems. Determination of relative calibre changes before and after any treatment allows us to evaluate the contributions of different endogenous factors and ligand-receptor pathways in the maintenance of vasomotor tone. Finally, we will present our findings relating to novel therapies to prevent endothelial dysfunction in heart failure.

  20. Benefits of Synchrotron Microangiography for Dynamic Studies of Smooth Muscle and Endothelial Roles in the Pathophysiology of Vascular Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, James T.; Department of Physiology, Monash University, 3800 Clayton; Schwenke, Daryl O.

    2010-07-23

    Changes in endothelial and smooth muscle function compromise organ perfusion in the chronic disease states of diabetes, atherosclerosis and hypertension. Moreover, vascular dysfunction increases the likelihood of lethal acute events such as myocardial infarction and stroke, which are now leading causes of adult mortality. Many circulating and local tissue factors in these disease states contribute to impaired vasomotor regulation of the arterial vessels, leading to spasm, chronic constriction and eventually vessel remodelling. X-ray contrast absorption imaging allows assessment of vessel lumen diameter and the factors contributing to steady-state vessel calibre, however, conventional clinical devices (>200 {mu}m resolution) are not adequatemore » to detect microvessels or accurately assess function in real time. Using synchrotron imaging we are now able to detect small vessel calibres ({approx}30 {mu}m) and quantify regional differences in calibre even under conditions of high heart rate (>500 bpm). Herein we describe recent experiments that were conducted at the Japanese Synchrotron, SPring-8 using anaesthetised Sprague-Dawley rats and C57Bl/6 mice and a synchrotron radiation contrast angiography (single narrow energy bandwidth) approach based on selective arterial injection of iodine contrast agents. Application of this approach to imaging of the heart and other vasculatures are described. Our studies show that within-animal comparisons of 3-4 branching orders of arterial vessels are possible using small bolus contrast injections and appropriate contrast washout times (15-30 min) in many organ systems. Determination of relative calibre changes before and after any treatment allows us to evaluate the contributions of different endogenous factors and ligand-receptor pathways in the maintenance of vasomotor tone. Finally, we will present our findings relating to novel therapies to prevent endothelial dysfunction in heart failure.« less

Top