DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Prithwish; Scarcelli, Riccardo; Som, Sibendu
Heat loss through wall boundaries play a dominant role in the overall performance and efficiency of internal combustion engines. Typical engine simulations use constant temperature wall boundary conditions. These boundary conditions cannot be estimated accurately from experiments due to the complexities involved with engine combustion. As a result they introduce a large uncertainty in engine simulations and serve as a tuning parameter. Modeling the process of heat transfer through the solid walls in an unsteady engine computational fluid dynamics (CFD) simulation can lead to the development of higher fidelity engine calculations. These models can be used to study the impactmore » of heat loss on engine efficiency and explore new design methodologies that can reduce heat losses. In this work, a single cylinder diesel engine is modeled along with the solid piston coupled to the fluid domain. Conjugate heat transfer (CHT) modeling techniques were implemented to model heat losses for a full cycle of a Navistar diesel engine. This CFD model is then validated against experimental data available from thermocouples embedded inside the piston surface. The overall predictions from the model match closely with the experimental observations. The validated model is further used to explore the benefits of thermal barrier coatings (TBC) on piston bowls. The effect of TBC coatings were modeled as a thermal resistance in the heat transfer models. Full cycle 3D engine simulations provide quantitative insights into heat loss and thus calculate the efficiency gain by the use of TBC coatings. The work establishes a validated modeling framework for CHT modeling in reciprocating engine simulations.« less
Novikov Engine with Fluctuating Heat Bath Temperature
NASA Astrophysics Data System (ADS)
Schwalbe, Karsten; Hoffmann, Karl Heinz
2018-04-01
The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon-Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath's temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon-Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.; Penny, M. M.; Greenwood, T. F.; Fossler, I. H.
1972-01-01
An experimental study of the plume impingement heating on the space shuttle booster afterbody resulting from the space shuttle orbiter engine plumes was conducted. The 1/100-scale model tests consisted of one and two orbiter engine firings on a flat plate, a flat plate with a fin, and a cylinder model. The plume impingement heating rates on these surfaces were measured using thin film heat transfer gages. Results indicate the engine simulation is a reasonable approximation to the two engine configuration, but more tests are needed to verify the plume model of the main engine configuration. For impingment, results show models experienced laminar boundary layer convective heating. Therefore, tests at higher Reynolds numbers are needed to determine impingment heating.
A global model for steady state and transient S.I. engine heat transfer studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohac, S.V.; Assanis, D.N.; Baker, D.M.
1996-09-01
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The successmore » of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper. Simulation sub-models and overall system predictions are validated with data from two spark ignition engines. Several sensitivity studies are performed to determine the most significant heat transfer paths within the engine and exhaust system. Overall, it has been shown that the model is a powerful tool in predicting steady-state heat rejection and component temperatures, as well as transient component temperatures.« less
Mechanical equivalent of quantum heat engines.
Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice
2008-06-01
Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered.
Assessment of total efficiency in adiabatic engines
NASA Astrophysics Data System (ADS)
Mitianiec, W.
2016-09-01
The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.
CFD modelling wall heat transfer inside a combustion chamber using ANSYS forte
NASA Astrophysics Data System (ADS)
Plengsa-ard, C.; Kaewbumrung, M.
2018-01-01
A computational model has been performed to analyze a wall heat transfer in a single cylinder, direct injection and four-stroke diesel engine. A direct integration using detailed chemistry CHEMKIN is employed in a combustion model and the Reynolds Averaged Navier Stokes (RANS) turbulence model is used to simulate the flow in the cylinder. To obtain heat flux results, a modified classical variable-density wall heat transfer model is also performed. The model is validated using experimental data from a CUMMINs engine operated with a conventional diesel combustion. One operating engine condition is simulated. Comparisons of simulated in-cylinder pressure and heat release rates with experimental data shows that the model predicts the cylinder pressure and heat release rates reasonably well. The contour plot of instantaneous temperature are presented. Also, the contours of predicted heat flux results are shown. The magnitude of peak heat fluxes as predicted by the wall heat transfer model is in the range of the typical measure values in diesel combustion.
A numerical model on thermodynamic analysis of free piston Stirling engines
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.
Thermodynamic feature of a Brownian heat engine operating between two heat baths.
Asfaw, Mesfin
2014-01-01
A generalized theory of nonequilibrium thermodynamics for a Brownian motor operating between two different heat baths is presented. Via a simple paradigmatic model, we not only explore the thermodynamic feature of the engine in the regime of the nonequilibrium steady state but also study the short time behavior of the system for either the isothermal case with load or, in general, the nonisothermal case with or without load. Many elegant thermodynamic theories can be checked via the present model. Furthermore the dependence of the velocity, the efficiency, and the performance of the refrigerator on time t is examined. Our study reveals a current reversal due to time t. In the early system relaxation period, the model works neither as a heat engine nor as a refrigerator and only after a certain period of time does the model start functioning as a heat engine or as a refrigerator. The performance of the engine also improves with time and at steady state the engine manifests a higher efficiency or performance as a refrigerator. Furthermore the effect of energy exchange via the kinetic energy on the performance of the heat engine is explored.
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
An analytical study of hybrid ejector/internal combustion engine-driven heat pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, R.W.
1988-01-01
Because ejectors can combine high reliability with low maintenance cost in a package requiring little capital investment, they may provide attractive heat pumping capability in situations where the importance of their inefficiencies is minimized. One such concept, a hybrid system in which an ejector driven by engine reject heat is used to increase the performance of an internal combustion engine-driven heat pump, was analyzed by modifying an existing ejector heat pump model and combining it with generic compressor and internal combustion engine models. Under the model assumptions for nominal cooling mode conditions, the results showed that hybrid systems could providemore » substantial performance augmentation/emdash/up to 17/percent/ increase in system coefficient of performance for a parallel arrangement of an enhanced ejector with the engine-driven compressor. 4 refs., 4 figs., 4 tabs.« less
Han, Rui; Geng, Chengkui; Wang, Yongnian; Wei, Lei
2008-01-01
The objective of this research was to induce a new animal model of osteonecrosis of the femoral head (ONFH) by microwave heating and then repair with tissue engineered bone. The bilateral femoral heads of 84 rabbits were heated by microwave at various temperatures. Tissue engineered bone was used to repair the osteonecrosis of femoral heads induced by microwave heating. The roentgenographic and histological examinations were used to evaluate the results. The femoral heads heated at 55°C for ten minutes showed low density and cystic changes in X-ray photographs, osteonecrosis and repair occurred simultaneously in histology at four and eight weeks, and 69% femoral heads collapsed at 12 weeks. The ability of tissue engineered bone to repair the osteonecrosis was close to that of cancellous bone autograft. The new animal model of ONFH could be induced by microwave heating, and the tissue engineering technique will provide an effective treatment. PMID:18956184
Modeling of a resonant heat engine
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Anderson, M.; Richards, C.
2012-12-01
A resonant heat engine in which the piston assembly is replaced by a sealed elastic cavity is modeled and analyzed. A nondimensional lumped-parameter model is derived and used to investigate the factors that control the performance of the engine. The thermal efficiency predicted by the model agrees with that predicted from the relation for the Otto cycle based on compression ratio. The predictions show that for a fixed mechanical load, increasing the heat input results in increased efficiency. The output power and power density are shown to depend on the loading for a given heat input. The loading condition for maximum output power is different from that required for maximum power density.
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described. The ultimate goal is to model an entire engine working space. Parallel plate and tubular heat exchanger models are described, with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects). The model assumes laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations describing the model have been solved using the Crack-Nicloson finite-difference scheme. Model predictions are compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement is obtained for flow both in circular tubes and between parallel plates. The computational heat transfer results are in good agreement with the analytical heat transfer results for parallel plates.
Two simple models of classical heat pumps.
Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek
2007-03-01
Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.
Two-dimensional numerical simulation of a Stirling engine heat exchanger
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir B.; Tew, Roy C.; Dudenhoefer, James E.
1989-01-01
The first phase of an effort to develop multidimensional models of Stirling engine components is described; the ultimate goal is to model an entire engine working space. More specifically, parallel plate and tubular heat exchanger models with emphasis on the central part of the channel (i.e., ignoring hydrodynamic and thermal end effects) are described. The model assumes: laminar, incompressible flow with constant thermophysical properties. In addition, a constant axial temperature gradient is imposed. The governing equations, describing the model, were solved using Crank-Nicloson finite-difference scheme. Model predictions were compared with analytical solutions for oscillating/reversing flow and heat transfer in order to check numerical accuracy. Excellent agreement was obtained for the model predictions with analytical solutions available for both flow in circular tubes and between parallel plates. Also the heat transfer computational results are in good agreement with the heat transfer analytical results for parallel plates.
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Addy, H. E.; Bond, T. H.; Lee, C. M.; Chun, K. S.
1987-01-01
A computer simulation which models engine performance of the Direct Injection Stratified Charge (DISC) rotary engines was used to study the effect of variations in engine design and operating parameters on engine performance and efficiency of an Outboard Marine Corporation (OMC) experimental rotary combustion engine. Engine pressure data were used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine data were compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the rotary engine using advanced heat engine concepts such as faster combustion, reduced leakage, and turbocharging is also presented.
Holographic heat engine within the framework of massive gravity
NASA Astrophysics Data System (ADS)
Mo, Jie-Xiong; Li, Gu-Qiang
2018-05-01
Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes since the constant which corresponds to the third massive potential also contributes to the efficiency. It is also shown that the existence of graviton mass can improve the heat engine efficiency. Moreover, we probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.
Mathematical modeling of a four-stroke resonant engine for micro and mesoscale applications
NASA Astrophysics Data System (ADS)
Preetham, B. S.; Anderson, M.; Richards, C.
2014-12-01
In order to mitigate frictional and leakage losses in small scale engines, a compliant engine design is proposed in which the piston in cylinder arrangement is replaced by a flexible cavity. A physics-based nonlinear lumped-parameter model is derived to predict the performance of a prototype engine. The model showed that the engine performance depends on input parameters, such as heat input, heat loss, and load on the engine. A sample simulation for a reference engine with octane fuel/air ratio of 0.043 resulted in an indicated thermal efficiency of 41.2%. For a fixed fuel/air ratio, higher output power is obtained for smaller loads and vice-versa. The heat loss from the engine and the work done on the engine during the intake stroke are found to decrease the indicated thermal efficiency. The ratio of friction work to indicated work in the prototype engine is about 8%, which is smaller in comparison to the traditional reciprocating engines.
NASA Technical Reports Server (NTRS)
Guy, R. W.; Mueller, J. N.; Pinckney, S. Z.; Lee, L. P.
1976-01-01
An aerodynamic model of a hydrogen burning, airframe integrated scramjet engine has been designed, fabricated, and instrumented. This model is to be tested in an electric arc heated wind tunnel at an altitude of 35.39 km (116,094 ft.) but with an inlet Mach number of 6 simulating precompression on an aircraft undersurface. The scramjet model is constructed from oxygen free, high conductivity copper and is a heat sink design except for water cooling in some critical locations. The model is instrumented for pressure, surface temperature, heat transfer rate, and thrust measurements. Calculated flow properties, heat transfer rates, and surface temperature distributions along the various engine components are included for the conditions stated above. For some components, estimates of thermal strain are presented which indicate significant reductions in plastic strain by selective cooling of the model. These results show that the 100 thermal cycle life of the engine was met with minimum distortion while staying within the 2669 N (600 lbf) engine weight limitation and while cooling the engine only in critical locations.
Jet impingement heat transfer enhancement for the GPU-3 Stirling engine
NASA Technical Reports Server (NTRS)
Johnson, D. C.; Congdon, C. W.; Begg, L. L.; Britt, E. J.; Thieme, L. G.
1981-01-01
A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.
Heat transfer to throat tubes in a square-chambered rocket engine at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Nesbitt, James A.; Brindley, William J.
1989-01-01
A gaseous H2/O2 rocket engine was constructed at the NASA-Lewis to provide a high heat flux source representative of the heat flux to the blades in the high pressure fuel turbopump (HPFTP) during startup of the space shuttle main engines. The high heat flux source was required to evaluate the durability of thermal barrier coatings being investigated for use on these blades. The heat transfer, and specifically, the heat flux to tubes located at the throat of the test rocket engine was evaluated and compared to the heat flux to the blades in the HPFTP during engine startup. Gas temperatures, pressures and heat transfer coefficients in the test rocket engine were measured. Near surface metal temperatures below thin thermal barrier coatings were also measured at various angular orientations around the throat tube to indicate the angular dependence of the heat transfer coefficients. A finite difference model for a throat tube was developed and a thermal analysis was performed using the measured gas temperatures and the derived heat transfer coefficients to predict metal temperatures in the tube. Near surface metal temperatures of an uncoated throat tube were measured at the stagnation point and showed good agreement with temperatures predicted by the thermal model. The maximum heat flux to the throat tube was calculated and compared to that predicted for the leading edge of an HPFTP blade. It is shown that the heat flux to an uncooled throat tube is slightly greater than the heat flux to an HPFTP blade during engine startup.
Endoreversible quantum heat engines in the linear response regime.
Wang, Honghui; He, Jizhou; Wang, Jianhui
2017-07-01
We analyze general models of quantum heat engines operating a cycle of two adiabatic and two isothermal processes. We use the quantum master equation for a system to describe heat transfer current during a thermodynamic process in contact with a heat reservoir, with no use of phenomenological thermal conduction. We apply the endoreversibility description to such engine models working in the linear response regime and derive expressions of the efficiency and the power. By analyzing the entropy production rate along a single cycle, we identify the thermodynamic flux and force that a linear relation connects. From maximizing the power output, we find that such heat engines satisfy the tight-coupling condition and the efficiency at maximum power agrees with the Curzon-Ahlborn efficiency known as the upper bound in the linear response regime.
An assessment of CFD-based wall heat transfer models in piston engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sircar, Arpan; Paul, Chandan; Ferreyro-Fernandez, Sebastian
The lack of accurate submodels for in-cylinder heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Only recently have experimental methods become available that enable accurate near-wall measurements to enhance simulation capability via advancing models. Initial results show crank-angle dependent discrepancies with respect to previously used boundary-layer models of up to 100%. However, available experimental data is quite sparse (only few data points on engine walls) and limited (available measurements are those of heat flux only). Predictivemore » submodels are needed for medium-resolution ("engineering") LES and for unsteady Reynolds-averaged simulations (URANS). Recently, some research groups have performed DNS studies on engine-relevant conditions using simple geometries. These provide very useful data for benchmarking wall heat transfer models under such conditions. Further, a number of new and more sophisticated models have also become available in the literature which account for these engine-like conditions. Some of these have been incorporated while others of a more complex nature, which include solving additional partial differential equations (PDEs) within the thin boundary layer near the wall, are underway. These models will then be tested against the available DNS/experimental data in both SI (spark-ignition) and CI (compression-ignition) engines.« less
Sheng, Shiqi; Tu, Z C
2014-01-01
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.
NASA Astrophysics Data System (ADS)
Mehdipour, R.; Baniamerian, Z.; Delauré, Y.
2016-05-01
An accurate knowledge of heat transfer and temperature distribution in vehicle engines is essential to have a good management of heat transfer performance in combustion engines. This may be achieved by numerical simulation of flow through the engine cooling passages; but the task becomes particularly challenging when boiling occurs. Neglecting two phase flow processes in the simulation would however result in significant inaccuracy in the predictions. In this study a three dimensional numerical model is proposed using Fluent 6.3 to simulate heat transfer of fluid flowing through channels of conventional size. Results of the present theoretical and numerical model are then compared with some empirical results. For high fluid flow velocities, departure between experimental and numerical results is about 9 %, while for lower velocity conditions, the model inaccuracy increases to 18 %. One of the outstanding capabilities of the present model, beside its ability to simulate two phase fluid flow and heat transfer in three dimensions, is the prediction of the location of bubble formation and condensation which can be a key issue in the evaluation of the engine performance and thermal stresses.
Study of Periodical Flow Heat Transfer in an Internal Combustion Engine
NASA Astrophysics Data System (ADS)
Luo, Xi
In-cylinder heat transfer is one of the most critical physical behaviors which has a direct influence on engine out emission and thermal efficiency for IC engine. In-cylinder wall temperature has to be precisely controlled to achieve high efficiency and low emission. However, this cannot be done without knowing gas-to-wall heat flux. This study reports on the development of a technique suitable for engine in-cylinder surface temperature measurement, as the traditional method is "hard to reach." A laser induced phosphorescence technique was used to study in-cylinder wall temperature effects on engine out unburned hydrocarbons during the engine transitional period (warm up). A linear correlation was found between the cylinder wall surface temperature and the unburned hydrocarbons at mediate and high charge densities. At low charge density, no clear correlation was observed because of miss-fire events. A new auto background correction infrared (IR) diagnostic was developed to measure the instantaneous in-cylinder surface temperature at 0.1 CAD resolution. A numerical mechanism was designed to suppress relatively low-frequency background noise and provide an accurate in-cylinder surface temperature measurements with an error of less than 1.4% inside the IC engine. In addition, a proposed optical coating reduced time delay errors by 50% compared to more conventional thermocouple techniques. A new cycle-averaged Res number was developed for an IC engine to capture the characteristics of engine flow. Comparison and scaling between different engine flow parameters are available by matching the averaged Res number. From experimental results, the engine flow motion was classified as intermittently turbulent, and it is different from the original fully developed turbulent assumption, which has previously been used in almost all engine simulations. The intermittent turbulence could have a great impact on engine heat transfer because of the transitional turbulence effect. Engine 3D CFD model further proves the existence of transitional turbulence flow. A new multi zone heat transfer model is proposed for IC engines only. The model includes pressure work effects and improved heat transfer prediction compared to the standard Law of the wall model.
Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
Yan, H; Guo, Hao
2012-01-01
We study a thermal engine model for which Newton's cooling law is obeyed during heat transfer processes. The thermal efficiency and its bounds at maximum output power are derived and discussed. This model, though quite simple, can be applied not only to Carnot engines but also to four other types of engines. For the long thermal contact time limit, new bounds, tighter than what were known before, are obtained. In this case, this model can simulate Otto, Joule-Brayton, Diesel, and Atkinson engines. While in the short contact time limit, which corresponds to the Carnot cycle, the same efficiency bounds as that from Esposito et al. [Phys. Rev. Lett. 105, 150603 (2010)] are derived. In both cases, the thermal efficiency decreases as the ratio between the heat capacities of the working medium during heating and cooling stages increases. This might provide instructions for designing real engines. © 2012 American Physical Society
Comparison of liquid rocket engine base region heat flux computations using three turbulence models
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.
1993-01-01
The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.
Haseli, Y
2016-05-01
The objective of this study is to investigate the thermal efficiency and power production of typical models of endoreversible heat engines at the regime of minimum entropy generation rate. The study considers the Curzon-Ahlborn engine, the Novikov's engine, and the Carnot vapor cycle. The operational regimes at maximum thermal efficiency, maximum power output and minimum entropy production rate are compared for each of these engines. The results reveal that in an endoreversible heat engine, a reduction in entropy production corresponds to an increase in thermal efficiency. The three criteria of minimum entropy production, the maximum thermal efficiency, and the maximum power may become equivalent at the condition of fixed heat input.
The second law of thermodynamics and quantum heat engines: Is the law strictly enforced?
NASA Astrophysics Data System (ADS)
Keefe, Peter D.
2010-01-01
A quantum heat engine is a construct having a working medium which is cyclically processed through a pair of control variables of state involving a Bose-Einstein condensation (BEC) in which a heat input is converted into a work output. Of interest is a first species of quantum heat engine in which the working medium is macroscopic in the sense the size scale is sufficiently large that the BEC is not volumetrically coherent. In this first species of quantum heat engine, near Carnot efficiencies may be possible. Of particular interest is a second species of quantum heat engine in which the working medium is mesoscopic in the sense that the size scale is sufficiently small that the BEC is volumetrically coherent. In this second species of quantum heat engine, the resulting in-process non-equilibrium condition affects the finally arrived at control variables of state such that Carnot efficiencies and beyond may be possible. A Type I superconductor is used to model the first and second species of quantum heat engine.
NASA Astrophysics Data System (ADS)
Lejsek, David; Kulzer, André; Hammer, Jürgen
2010-11-01
The introduction of CO2-reduction technologies like Start-Stop or the Hybrid-Powertrain and the worldwide stringent emission legislation require a detailed optimization of the engine start-up. The combustion concept development as well as the calibration of the engine control unit makes an explicit thermodynamic analysis of the combustion process during the start-up necessary. Initially, the well-known thermodynamic analysis of in-cylinder pressure at stationary condition was transmitted to the highly non-stationary engine start-up. For this running mode of the engine the current models for calculation of the transient wall heat fluxes were found to be misleading. With a fraction of nearly 45% of the burned fuel energy, the wall heat is very important for the calculation of energy balance and for the combustion process analysis. Based on the measurements of transient wall heat transfer densities during the start-up presented in a former work (Lejsek and Kulzer in Investigations on the transient wall heat transfer at start-up for SI engines with gasoline direct injection. SAE Paper), the paper describes the development of adaptations to the known correlations by Woschni (MTZ 31:491, 1970), Hohenberg (Experimentelle Erfassung der Wandwärme von Kolbenmotoren. TU Graz, Habil., 1980) and Bargende (Ein Gleichungsansatz zur Berechnung der instationären Wandwärmeverluste im Hochdruckteil von Ottomotoren. TH Darmstadt, PhD-Thesis, 1991) for the application during engine start-up. To demonstrate the high accuracy of the model, the results of the cyclic resolved thermodynamic analysis using the presented novel approaches were compared with the results of the measurements. It is shown, that the novel heat flux models for the engine start-up process gives a cyclic resolved thermodynamic analysis to optimize the engine start-up pretty efficient.
Efficiency of some heat engines at maximum-power conditions
NASA Astrophysics Data System (ADS)
De Vos, Alexis
1985-06-01
In the present paper a simple model is presented for a heat engine, where the power output is limited by the rate of heat supply (and/or heat release). The model leads to a variety of results. Some of them are established laws such as the Carnot law, the Curzon-Ahlborn efficiency, and the Castañs efficiency. Other results are new, and are related to phenomena as different as geothermal energy conversion and the Penfield paradox of electric circuits.
Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat
NASA Astrophysics Data System (ADS)
Cherednichenko, Oleksandr; Serbin, Serhiy
2018-03-01
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4-5%.
NASA Astrophysics Data System (ADS)
Gonzalez-Ayala, Julian; Calvo Hernández, A.; Roco, J. M. M.
2016-07-01
The main unified energetic properties of low dissipation heat engines and refrigerator engines allow for both endoreversible or irreversible configurations. This is accomplished by means of the constraints imposed on the characteristic global operation time or the contact times between the working system with the external heat baths and modulated by the dissipation symmetries. A suited unified figure of merit (which becomes power output for heat engines) is analyzed and the influence of the symmetries on the optimum performance discussed. The obtained results, independent on any heat transfer law, are faced with those obtained from Carnot-like heat models where specific heat transfer laws are needed. Thus, it is shown that only the inverse phenomenological law, often used in linear irreversible thermodynamics, correctly reproduces all optimized values for both the efficiency and coefficient of performance values.
Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles
NASA Technical Reports Server (NTRS)
1993-01-01
A conjugate heat transfer computational fluid dynamics (CFD) model to describe regenerative cooling in the main combustion chamber and nozzle and in the injector faceplate region for a launch vehicle class liquid rocket engine was developed. An injector model for sprays which treats the fluid as a variable density, single-phase media was formulated, incorporated into a version of the FDNS code, and used to simulate the injector flow typical of that in the Space Shuttle Main Engine (SSME). Various chamber related heat transfer analyses were made to verify the predictive capability of the conjugate heat transfer analysis provided by the FDNS code. The density based version of the FDNS code with the real fluid property models developed was successful in predicting the streamtube combustion of individual injector elements.
Theoretical modeling of the subject: Western and Eastern types of human reflexion.
Lefebvre, Vladimir A
2017-12-01
The author puts forth the hypothesis that mental phenomena are connected with thermodynamic properties of large neural network. A model of the subject with reflexion and capable for meditation is constructed. The processes of reflexion and meditation are presented as the sequence of heat engines. Each subsequent engine compensates for the imperfectness of the preceding engine by performing work equal to the lost available work of the preceding one. The sequence of heat engines is regarded as a chain of the subject's mental images of the self. Each engine can be interpreted as an image of the self that the engine next to it has, and the work performed by engines as the emotions that the subject and his images are experiencing. Two types of meditation are analyzed: The dissolution in nothingness and union with the Absolute. In the first type, the initial engine is the one that yields heat to the coldest reservoir, and in the second type, the initial engine is the one that takes heat from the hottest reservoir. The main concepts of thermodynamics are reviewed in relation to the process of human reflexion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimal power and efficiency of quantum Stirling heat engines
NASA Astrophysics Data System (ADS)
Yin, Yong; Chen, Lingen; Wu, Feng
2017-01-01
A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.
Minimal universal quantum heat machine.
Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G
2013-01-01
In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally separated heat baths at different temperatures. The equation of motion allows us to compute the stationary power and heat currents in the machine consistent with the second law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation, the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.
An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles
NASA Technical Reports Server (NTRS)
Bossard, J. A.; Peck, R. E.; Schmidt, D. K.
1993-01-01
The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.
Phase-exchange thermoacoustic engine
NASA Astrophysics Data System (ADS)
Offner, Avshalom; Meir, Avishai; Ramon, Guy Z.; WET Lab Team
2017-11-01
Phase-exchange thermoacoustic engines are reliable machines holding great promise in converting heat from low grade heat sources to mechanical or electrical power. In these engines the working fluid is a gas mixture containing one condensable component, decreasing the temperature difference required for ignition and steady state operation. Our experimental setup consists of a vertical acoustic resonator containing a mixture of air-water vapor. Water evaporates near the heat source, condenses at the heat sink and is drawn back down by gravity and capillary forces where it re-evaporates, sustaining a steady state closed thermodynamic cycle. We investigated the stability limit, namely the critical point at which temperature difference in the engine enables onset of self-excited oscillations, and the steady state of the engine. A simple theoretical model was derived, describing mechanisms of irreversible entropy generation and production of acoustic power in such engines. This model captures the essence in the differences between regular and phase-exchange thermoacoustic engines, and shows good agreement with experimental results of stability limit. Steady state results reveal not only a dramatic decrease in temperature difference, but also an increase in engine performances. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).
Cycle Analysis of a New Air Engine Design
NASA Astrophysics Data System (ADS)
Attar, Wiam Fadi
This thesis investigates a new externally heated engine design being developed by Soony Systems Inc. to serve as the prime mover in a residential-scale combined heat and power system. This is accomplished by developing a thermodynamic model for the engine and sweeping through the design parameter space in order to identify designs that maximize power output, efficiency, and brake mean effective pressure (BMEP). It was discovered that the original engine design was flawed so a new design was proposed and analyzed. The thermodynamic model was developed in four stages. The first model was quasi-static while the other three were time-dependent and used increasingly realistic models of the heat exchangers. For the range of design parameters investigated here, the peak power output is 6.8 kW, the peak efficiency is approximately 60%, and the peak BMEP is 389 kPa. These performance levels are compared to those of other closed-cycle engines. The results suggest that the Soony engine has the potential to be more efficient than Stirlings because it more closely approximates the Carnot cycle, but this comes at the cost of significantly lower BMEP (389 kPa vs. 2,760 kPa for the SOLO Stirling engine).
Allahverdyan, A E; Babajanyan, S G; Martirosyan, N H; Melkikh, A V
2016-07-15
A major limitation of many heat engines is that their functioning demands on-line control and/or an external fitting between the environmental parameters (e.g., temperatures of thermal baths) and internal parameters of the engine. We study a model for an adaptive heat engine, where-due to feedback from the functional part-the engine's structure adapts to given thermal baths. Hence, no on-line control and no external fitting are needed. The engine can employ unknown resources; it can also adapt to results of its own functioning that make the bath temperatures closer. We determine resources of adaptation and relate them to the prior information available about the environment.
Geometric Heat Engines Featuring Power that Grows with Efficiency.
Raz, O; Subaşı, Y; Pugatch, R
2016-04-22
Thermodynamics places a limit on the efficiency of heat engines, but not on their output power or on how the power and efficiency change with the engine's cycle time. In this Letter, we develop a geometrical description of the power and efficiency as a function of the cycle time, applicable to an important class of heat engine models. This geometrical description is used to design engine protocols that attain both the maximal power and maximal efficiency at the fast driving limit. Furthermore, using this method, we also prove that no protocol can exactly attain the Carnot efficiency at nonzero power.
Space Shuttle Model in the 10- by 10-Foot Supersonic Wind Tunnel
1975-07-21
Ken Baskin, an engineer from the Facilities and Engineering Branch at the National Aeronautics and Space Administration’s (NASA) Lewis Research Center checks a complete 2.25-scale model of the shuttle in the 10- by 10-Foot Supersonic Wind Tunnel. Baskin’s space shuttle project began in July 1976 during the run-up to the shuttle’s first lift-off scheduled for 1979. The space shuttle was expected to experience multifaceted heating and pressure distributions during the first and second stages of its launch. Rockwell International engineers needed to understand these issues in order to design proper thermal protection. The 10- by 10 tests evaluated the base heating and pressure. The test’s specific objectives were to measure heat transfer and pressure distributions around the orbiter’s external tank and solid rocket booster afterbody caused by rocket exhaust recirculation and impingement, to measure the heat transfer and pressure distributions due to rocket exhaust-induced flow separation, and determine gas recovery temperatures using gas temperature probes and heated model base components. The shuttle model’s main engines and solid rockets were fired during the tests, then just the main engines in an effort to simulate a launch. The researchers conducted 163 runs in the 10- by 10 during the test program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehl, M; Kukkadapu, G; Kumar, K
The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history duringmore » ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.« less
NASA Technical Reports Server (NTRS)
Zoby, E. V.
1981-01-01
An engineering method has been developed for computing the windward-symmetry plane convective heat-transfer rates on Shuttle-like vehicles at large angles of attack. The engineering code includes an approximate inviscid flowfield technique, laminar and turbulent heating-rate expressions, an approximation to account for the variable-entropy effects on the surface heating and the concept of an equivalent axisymmetric body to model the windward-ray flowfields of Shuttle-like vehicles at angles of attack from 25 to 45 degrees. The engineering method is validated by comparing computed heating results with corresponding experimental data measured on Shuttle and advanced transportation models over a wide range of flow conditions and angles of attack from 25 to 40 degrees and also with results of existing prediction techniques. The comparisons are in good agreement.
Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.
Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli
2012-08-01
We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).
Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence
NASA Astrophysics Data System (ADS)
Dorfman, Konstantin E.; Xu, Dazhi; Cao, Jianshu
2018-04-01
Quantum coherence has been demonstrated in various systems including organic solar cells and solid state devices. In this article, we report the lower and upper bounds for the performance of quantum heat engines determined by the efficiency at maximum power. Our prediction based on the canonical three-level Scovil and Schulz-Dubois maser model strongly depends on the ratio of system-bath couplings for the hot and cold baths and recovers the theoretical bounds established previously for the Carnot engine. Further, introducing a fourth level to the maser model can enhance the maximal power and its efficiency, thus demonstrating the importance of quantum coherence in the thermodynamics and operation of the heat engines beyond the classical limit.
NASA Astrophysics Data System (ADS)
Zhao, Yingru; Chen, Jincan
A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell-heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell-heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Nemeth, Noel N.
2017-01-01
Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.
Space vehicle engine and heat shield environment review. Volume 1: Engineering analysis
NASA Technical Reports Server (NTRS)
Mcanelly, W. B.; Young, C. T. K.
1973-01-01
Methods for predicting the base heating characteristics of a multiple rocket engine installation are discussed. The environmental data is applied to the design of adequate protection system for the engine components. The methods for predicting the base region thermal environment are categorized as: (1) scale model testing, (2) extrapolation of previous and related flight test results, and (3) semiempirical analytical techniques.
Vehicle Exhaust Waste Heat Recovery Model with Integrated Thermal Load Leveling
2015-08-01
recovery from automobile engine. Energy. 2010;35:1447–1454. 14 12. Ceraianu MO, Gontean A. Parasitic elements modelling in thermoelectric...JP, Sampath S. Heat transfer modeling and geometry optimization of TEG for automobile applications. Proceedings of the ASME Summer Heat Transfer
Numerical modelling of flow and heat transfer in the rotating disc cavities of a turboprop engine.
Faragher, J; Ooi, A
2001-05-01
A numerical analysis of the flow and heat transfer in the cavity between two co-rotating discs with axial inlet and radial outflow of fluid, a configuration common in gas turbine engines, is described. The results are compared with the experimental data of Northrop and Owen. The effectiveness of the k-epsilon turbulence model with the two-layer zonal model for near-wall treatment of Chen and Patel is tested for this type of flow. Using three-dimensional models it is shown that modelling discrete holes at the outlet as opposed to a continuous slot, which is the approximation inherent in the two-dimensional axisymmetric model, has little effect on the predicted Nusselt number distribution along the disc surface. Results of a conjugate heat transfer analysis of a spacer in the turbine section of a turboprop engine are then presented.
NASA Technical Reports Server (NTRS)
Dezelick, R. A.
1976-01-01
Space shuttle base heating tests were conducted using a 0.040-scale model in the Plum Brook Space Power Facility of The NASA Lewis Research Center. The tests measured heat transfer rates, pressure distributions, and gas recovery temperatures on the orbiter vehicle 2A base configuration resulting from engine plume impingement. One hundred and sixty-eight hydrogen-oxygen engine firings were made at simulated flight altitudes ranging from 120,000 to 360,000 feet.
Quantum Otto heat engine with three-qubit XXZ model as working substance
NASA Astrophysics Data System (ADS)
Huang, X. L.; Sun, Qi; Guo, D. Y.; Yu, Qian
2018-02-01
A quantum Otto heat engine is established with a three-qubit Heisenberg XXZ model with Dzyaloshinskii-Moriya (DM) interaction under a homogeneous magnetic field as the working substance. The quantum Otto engine is composed of two quantum isochoric processes and two quantum adiabatic processes. Here we have restricted Bc /Bh =Jc /Jh = r in the two adiabatic processes, where r is the adiabatic compression ratio. The work output and efficiency are calculated for our cycle. The possible adiabatic compression ratios and the ratios of work output between our working substance and a single spin under the same external conditions in the Otto cycle are analyzed with different DM interaction parameters and anisotropic parameters. The effects of pairwise entanglements on the heat engine efficiency are discussed.
NASA Astrophysics Data System (ADS)
Chen, H.; Hu, C.; Chen, G.; Zhang, Q.
2017-12-01
Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.
Waste Heat Recovery from a High Temperature Diesel Engine
NASA Astrophysics Data System (ADS)
Adler, Jonas E.
Government-mandated improvements in fuel economy and emissions from internal combustion engines (ICEs) are driving innovation in engine efficiency. Though incremental efficiency gains have been achieved, most combustion engines are still only 30-40% efficient at best, with most of the remaining fuel energy being rejected to the environment as waste heat through engine coolant and exhaust gases. Attempts have been made to harness this waste heat and use it to drive a Rankine cycle and produce additional work to improve efficiency. Research on waste heat recovery (WHR) demonstrates that it is possible to improve overall efficiency by converting wasted heat into usable work, but relative gains in overall efficiency are typically minimal ( 5-8%) and often do not justify the cost and space requirements of a WHR system. The primary limitation of the current state-of-the-art in WHR is the low temperature of the engine coolant ( 90 °C), which minimizes the WHR from a heat source that represents between 20% and 30% of the fuel energy. The current research proposes increasing the engine coolant temperature to improve the utilization of coolant waste heat as one possible path to achieving greater WHR system effectiveness. An experiment was performed to evaluate the effects of running a diesel engine at elevated coolant temperatures and to estimate the efficiency benefits. An energy balance was performed on a modified 3-cylinder diesel engine at six different coolant temperatures (90 °C, 100 °C, 125 °C, 150 °C, 175 °C, and 200 °C) to determine the change in quantity and quality of waste heat as the coolant temperature increased. The waste heat was measured using the flow rates and temperature differences of the coolant, engine oil, and exhaust flow streams into and out of the engine. Custom cooling and engine oil systems were fabricated to provide adequate adjustment to achieve target coolant and oil temperatures and large enough temperature differences across the engine to reduce uncertainty. Changes to exhaust emissions were recorded using a 5-gas analyzer. The engine condition was also monitored throughout the tests by engine compression testing, oil analysis, and a complete teardown and inspection after testing was completed. The integrity of the head gasket seal proved to be a significant problem and leakage of engine coolant into the combustion chamber was detected when testing ended. The post-test teardown revealed problems with oil breakdown at locations where temperatures were highest, with accompanying component wear. The results from the experiment were then used as inputs for a WHR system model using ethanol as the working fluid, which provided estimates of system output and improvement in efficiency. Thermodynamic models were created for eight different WHR systems with coolant temperatures of 90 °C, 150 °C, 175 °C, and 200 °C and condenser temperatures of 60 °C and 90 °C at a single operating point of 3100 rpm and 24 N-m of torque. The models estimated that WHR output for both condenser temperatures would increase by over 100% when the coolant temperature was increased from 90 °C to 200 °C. This increased WHR output translated to relative efficiency gains as high as 31.0% for the 60 °C condenser temperature and 24.2% for the 90 °C condenser temperature over the baseline engine efficiency at 90 °C. Individual heat exchanger models were created to estimate the footprint for a WHR system for each of the eight systems. When the coolant temperature increased from 90 °C to 200 °C, the total heat exchanger volume increased from 16.6 x 103 cm3 to 17.1 x 10 3 cm3 with a 60 °C condenser temperature, but decreased from 15.1 x 103 cm3 to 14.2 x 10 3 cm3 with a 90 °C condenser temperature. For all cases, increasing the coolant temperature resulted in an improvement in the efficiency gain for each cubic meter of heat exchanger volume required. Additionally, the engine oil coolers represented a significant portion of the required heat exchanger volume due to abnormally low engine oil temperatures during the experiment ( 80 °C). Future studies should focus on allowing the engine oil to reach higher operating temperatures which would decrease the heat rejected to the engine oil and reduce the heat duty for the oil coolers resulting in reduced oil cooler volume.
Overview of heat transfer and fluid flow problem areas encountered in Stirling engine modeling
NASA Technical Reports Server (NTRS)
Tew, Roy C., Jr.
1988-01-01
NASA Lewis Research Center has been managing Stirling engine development programs for over a decade. In addition to contractual programs, this work has included in-house engine testing and development of engine computer models. Attempts to validate Stirling engine computer models with test data have demonstrated that engine thermodynamic losses need better characterization. Various Stirling engine thermodynamic losses and efforts that are underway to characterize these losses are discussed.
NASA Technical Reports Server (NTRS)
Morel, T.; Kerlbar, R.; Fort, E. F.; Blumberg, P. N.
1985-01-01
This report describes work done during Phase 2 of a 3 year program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. During Phase 2, radiation heat transfer model was developed, which accounts for soot formation and burn up. A methodology was developed for carrying out the multi-dimensional finite-element heat conduction calculations within the framework of thermodynamic cycle codes. Studies were carried out using the integrated methodology to address key issues in low heat rejection engines. A wide ranging design analysis matrix was covered, including a variety of insulation strategies, recovery devices and base engine configurations. A single cylinder Cummins engine was installed at Purdue University, and it was brought to a full operational status. The development of instrumentation was continued, concentrating on radiation heat flux detector, total heat flux probe, and accurate pressure-crank angle data acquisition.
Further two-dimensional code development for Stirling space engine components
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.
1990-01-01
The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.
Summary of Research 1998, Department of Mechanical Engineering.
1999-08-01
thermoacoustic behavior in strong zero-mean oscillatory flows with potential application to the design of heat exchangers in thermoacoustic engines...important feature in the thermal characterization of microtubes , which are to be used in microheat exchangers . DoD KEY TECHNOLOGY AREA: Modeling and...Simulation KEYWORDS: Laminar Duct Flows, Convection and Conduction Heat Transfer, Axial Conduction, Micro- heat Exchang - ers DEVELOPMENT AND CALIBRATION
NASA Astrophysics Data System (ADS)
Offner, Avshalom; Ramon, Guy Z.
2016-11-01
Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).
Nonlinear dynamics analysis of a low-temperature-differential kinematic Stirling heat engine
NASA Astrophysics Data System (ADS)
Izumida, Yuki
2018-03-01
The low-temperature-differential (LTD) Stirling heat engine technology constitutes one of the important sustainable energy technologies. The basic question of how the rotational motion of the LTD Stirling heat engine is maintained or lost based on the temperature difference is thus a practically and physically important problem that needs to be clearly understood. Here, we approach this problem by proposing and investigating a minimal nonlinear dynamic model of an LTD kinematic Stirling heat engine. Our model is described as a driven nonlinear pendulum where the motive force is the temperature difference. The rotational state and the stationary state of the engine are described as a stable limit cycle and a stable fixed point of the dynamical equations, respectively. These two states coexist under a sufficient temperature difference, whereas the stable limit cycle does not exist under a temperature difference that is too small. Using a nonlinear bifurcation analysis, we show that the disappearance of the stable limit cycle occurs via a homoclinic bifurcation, with the temperature difference being the bifurcation parameter.
Analysis of heat recovery of diesel engine using intermediate working fluid
NASA Astrophysics Data System (ADS)
Jin, Lei; Zhang, Jiang; Tan, Gangfeng; Liu, Huaming
2017-07-01
The organic Rankine cycle (ORC) is an effective way to recovery the engine exhaust heat. The thermal stability of the evaporation system is significant for the stable operation of the ORC system. In this paper, the performance of the designed evaporation system which combines with the intermediate fluid for recovering the exhaust waste heat from a diesel engine is evaluated. The thermal characteristics of the target diesel engine exhaust gas are evaluated based on the experimental data firstly. Then, the mathematical model of the evaporation system is built based on the geometrical parameters and the specific working conditions of ORC. Finally, the heat transfer characteristics of the evaporation system are estimated corresponding to three typical operating conditions of the diesel engine. The result shows that the exhaust temperature at the evaporator outlet increases slightly with the engine speed and load. In the evaporator, the heat transfer coefficient of the Rankine working fluid is slightly larger than the intermediate fluid. However, the heat transfer coefficient of the intermediate fluid in the heat exchanger is larger than the exhaust side. The heat transfer areas of the evaporator in both the two-phase zone and the preheated zone change slightly along with the engine working condition while the heat transfer areas of the overheated zone has changed obviously. The maximum heat transfer rate occurs in the preheating zone while the minimum value occurs in the overheating zone. In addition, the Rankine working fluid temperature at the evaporator outlet is not sensitively affected by the torque and speed of the engine and the organic fluid flow is relatively stable. It is concluded that the intermediate fluid could effectively reduce the physical changes of Rankine working fluid in the evaporator outlet due to changes in engine operating conditions.
USDA-ARS?s Scientific Manuscript database
A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...
Methods for heat transfer and temperature field analysis of the insulated diesel, phase 3
NASA Technical Reports Server (NTRS)
Morel, Thomas; Wahiduzzaman, Syed; Fort, Edward F.; Keribar, Rifat; Blumberg, Paul N.
1988-01-01
Work during Phase 3 of a program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines is described. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. These are all accounted for in a coupled way together with cycle thermodynamics. This methodology was developed during Phases 1 and 2. During Phase 3, an experimental program was carried out to obtain data on heat transfer under cooled and insulated engine conditions and also to generate a database to validate the developed methodology. A single cylinder Cummins diesel engine was instrumented for instantaneous total heat flux and heat radiation measurements. Data were acquired over a wide range of operating conditions in two engine configurations. One was a cooled baseline. The other included ceramic coated components (0.050 inches plasma sprayed zirconia)-piston, head and valves. The experiments showed that the insulated engine has a smaller heat flux than the cooled one. The model predictions were found to be in very good agreement with the data.
Three-dimensional modeling of diesel engine intake flow, combustion and emissions
NASA Technical Reports Server (NTRS)
Reitz, R. D.; Rutland, C. J.
1992-01-01
A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.
Proceedings of the NITINOL Heat Engine Conference, 26-27 September 1978, Silver Spring, Maryland
1978-09-27
allowed us to design, build, and test various engine designs, while exploring advanced concepts with computer modeling of motor dynamics and heat exchange ...exclude the effects of element geometi y and other material parameters which affect the heat exchange rate and kinetics of the SRP. 5-3...is in Rference 8. 13. In the present work we exclude the effects of element geometry and other material parameters which affect the heat exchange
NASA Astrophysics Data System (ADS)
Modlin, James Michael
An investigation was conducted to study the feasibility of cooling hypersonic vehicle leading edge structures exposed to severe aerodynamic surface heat fluxes using a combination of liquid metal heat pipes and surface mass transfer cooling techniques. A generalized, transient, finite difference based hypersonic leading edge cooling model was developed that incorporated these effects and was demonstrated on an assumed aerospace plane-type wing leading edge section and a SCRAMJET engine inlet leading edge section. The hypersonic leading edge cooling model was developed using an existing, experimentally verified heat pipe model. Two applications of the hypersonic leading edge cooling model were examined. An assumed aerospace plane-type wing leading edge section exposed to a severe laminar, hypersonic aerodynamic surface heat flux was studied. A second application of the hypersonic leading edge cooling model was conducted on an assumed one-quarter inch nose diameter SCRAMJET engine inlet leading edge section exposed to both a transient laminar, hypersonic aerodynamic surface heat flux and a type 4 shock interference surface heat flux. The investigation led to the conclusion that cooling leading edge structures exposed to severe hypersonic flight environments using a combination of liquid metal heat pipe, surface transpiration, and film cooling methods appeared feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The model is designed to enable decision makers to compare the economics of geothermal projects with the economics of alternative energy systems at an early stage in the decision process. The geothermal engineering and economic feasibility computer model (GEEF) is written in FORTRAN IV language and can be run on a mainframe or a mini-computer system. An abbreviated version of the model is being developed for usage in conjunction with a programmable desk calculator. The GEEF model has two main segments, namely (i) the engineering design/cost segment and (ii) the economic analysis segment. In the engineering segment, the model determinesmore » the numbers of production and injection wells, heat exchanger design, operating parameters for the system, requirement of supplementary system (to augment the working fluid temperature if the resource temperature is not sufficiently high), and the fluid flow rates. The model can handle single stage systems as well as two stage cascaded systems in which the second stage may involve a space heating application after a process heat application in the first stage.« less
Single-particle stochastic heat engine.
Rana, Shubhashis; Pal, P S; Saha, Arnab; Jayannavar, A M
2014-10-01
We have performed an extensive analysis of a single-particle stochastic heat engine constructed by manipulating a Brownian particle in a time-dependent harmonic potential. The cycle consists of two isothermal steps at different temperatures and two adiabatic steps similar to that of a Carnot engine. The engine shows qualitative differences in inertial and overdamped regimes. All the thermodynamic quantities, including efficiency, exhibit strong fluctuations in a time periodic steady state. The fluctuations of stochastic efficiency dominate over the mean values even in the quasistatic regime. Interestingly, our system acts as an engine provided the temperature difference between the two reservoirs is greater than a finite critical value which in turn depends on the cycle time and other system parameters. This is supported by our analytical results carried out in the quasistatic regime. Our system works more reliably as an engine for large cycle times. By studying various model systems, we observe that the operational characteristics are model dependent. Our results clearly rule out any universal relation between efficiency at maximum power and temperature of the baths. We have also verified fluctuation relations for heat engines in time periodic steady state.
NASA Astrophysics Data System (ADS)
Roulet, Alexandre; Nimmrichter, Stefan; Arrazola, Juan Miguel; Seah, Stella; Scarani, Valerio
2017-06-01
The triumph of heat engines is their ability to convert the disordered energy of thermal sources into useful mechanical motion. In recent years, much effort has been devoted to generalizing thermodynamic notions to the quantum regime, partly motivated by the promise of surpassing classical heat engines. Here, we instead adopt a bottom-up approach: we propose a realistic autonomous heat engine that can serve as a test bed for quantum effects in the context of thermodynamics. Our model draws inspiration from actual piston engines and is built from closed-system Hamiltonians and weak bath coupling terms. We analytically derive the performance of the engine in the classical regime via a set of nonlinear Langevin equations. In the quantum case, we perform numerical simulations of the master equation. Finally, we perform a dynamic and thermodynamic analysis of the engine's behavior for several parameter regimes in both the classical and quantum case and find that the latter exhibits a consistently lower efficiency due to additional noise.
A Study of Al-Mn Transition Edge Sensor Engineering for Stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, E. M.; et al.
2013-11-10
The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.
NASA Astrophysics Data System (ADS)
Gustof, P.; Hornik, A.
2016-09-01
In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.
Universal Trade-Off between Power, Efficiency, and Constancy in Steady-State Heat Engines
NASA Astrophysics Data System (ADS)
Pietzonka, Patrick; Seifert, Udo
2018-05-01
Heat engines should ideally have large power output, operate close to Carnot efficiency and show constancy, i.e., exhibit only small fluctuations in this output. For steady-state heat engines, driven by a constant temperature difference between the two heat baths, we prove that out of these three requirements only two are compatible. Constancy enters quantitatively the conventional trade-off between power and efficiency. Thus, we rationalize and unify recent suggestions for overcoming this simple trade-off. Our universal bound is illustrated for a paradigmatic model of a quantum dot solar cell and for a Brownian gyrator delivering mechanical work against an external force.
Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle
NASA Astrophysics Data System (ADS)
Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.
2015-12-01
This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.
-3167 Chuck joined NREL in 2010. His research is focused on heat transfer modeling, heating, ventilating background is in experimental heat transfer and fluid mechanics. Education Ph.D. Mechanical Engineering
Quantum Otto engine using a single ion and a single thermal bath
NASA Astrophysics Data System (ADS)
Biswas, Asoka; Chand, Suman
2016-05-01
Quantum heat engines employ a quantum system as the working fluid, that gives rise to large work efficiency, beyond the limit for classical heat engines. Existing proposals for implementing quantum heat engines require that the system interacts with the hot bath and the cold bath (both modelled as a classical system) in an alternative fashion and therefore assumes ability to switch off the interaction with the bath during a certain stage of the heat-cycle. However, it is not possible to decouple a quantum system from its always-on interaction with the bath without use of complex pulse sequences. It is also hard to identify two different baths at two different temperatures in quantum domain, that sequentially interact with the system. Here, we show how to implement a quantum Otto engine without requiring to decouple the bath in a sequential manner. This is done by considering a single thermal bath, coupled to a single trapped ion. The electronic degree of freedom of the ion is chosen as a two-level working fluid while the vibrational degree of freedom plays the role of the cold bath. Measuring the electronic state mimics the release of heat into the cold bath. Thus, our model is fully quantum and exhibits very large work efficiency, asymptotically close to unity.
NASA Astrophysics Data System (ADS)
Erickson, Robert R.
Wave engines are a class of unsteady, air-breathing propulsion devices that use an intermittent combustion process to generate thrust. The inherently simple mechanical design of the wave engine allows for a relatively low cost per unit propulsion system, yet unsatisfactory overall performance has severely limited the development of commercially successful wave engines. The primary objective of this investigation was to develop a more detailed physical understanding of the influence of gas dynamic nonlinearities, unsteady combustion processes, and engine shape on overall wave engine performance. Within this study, several numerical models were developed and applied to wave engines and related applications. The first portion of this investigation examined the influence of duct shape on driven oscillations in acoustic compression devices, which represent a simplified physical system closely related in several ways to the wave engine. A numerical model based on an application of the Galerkin method was developed to simulate large amplitude, one-dimensional acoustic waves driven in closed ducts. Results from this portion of the investigation showed that gas-dynamic nonlinearities significantly influence the properties of driven oscillations by transferring acoustic energy from the fundamental driven mode into higher harmonic modes. The second portion of this investigation presented and analyzed results from a numerical model of wave engine dynamics based on the quasi one-dimensional conservation equations in addition to separate sub-models for mixing and heat release. This model was then used to perform parametric studies of the characteristics of mixing and engine shape. The objectives of these studies were to determine the influence of mixing characteristics and engine shape on overall wave engine performance and to develop insight into the physical processes controlling overall performance trends. Results from this model showed that wave engine performance was strongly dependent on the coupling between the unsteady heat release that drives oscillations in the engine and the characteristics that determine the acoustic properties of the engine such as engine shape and mean property gradients. Simulation results showed that average thrust generation decreased dramatically when the natural acoustic mode frequencies of the engine and the frequency content of the unsteady heat release were not aligned.
Catalog of selected heavy duty transport energy management models
NASA Technical Reports Server (NTRS)
Colello, R. G.; Boghani, A. B.; Gardella, N. C.; Gott, P. G.; Lee, W. D.; Pollak, E. C.; Teagan, W. P.; Thomas, R. G.; Snyder, C. M.; Wilson, R. P., Jr.
1983-01-01
A catalog of energy management models for heavy duty transport systems powered by diesel engines is presented. The catalog results from a literature survey, supplemented by telephone interviews and mailed questionnaires to discover the major computer models currently used in the transportation industry in the following categories: heavy duty transport systems, which consist of highway (vehicle simulation), marine (ship simulation), rail (locomotive simulation), and pipeline (pumping station simulation); and heavy duty diesel engines, which involve models that match the intake/exhaust system to the engine, fuel efficiency, emissions, combustion chamber shape, fuel injection system, heat transfer, intake/exhaust system, operating performance, and waste heat utilization devices, i.e., turbocharger, bottoming cycle.
Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Evan; Bourassa, Norm; Rainer, Leo
A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.
Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Evan; Bourassa, Norm; Rainer, Leo
2016-04-22
A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.
1985-01-01
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.
Experimental studies of thermal preparation of internal combustion engine
NASA Astrophysics Data System (ADS)
Karnaukhov, N. N.; Merdanov, Sh M.; V, Konev V.; Borodin, D. M.
2018-05-01
In conditions of autonomous functioning of road construction machines, it becomes necessary to use its internal sources. This can be done by using a heat recovery system of an internal combustion engine (ICE). For this purpose, it is proposed to use heat accumulators that accumulate heat of the internal combustion engine during the operation of the machine. Experimental studies have been carried out to evaluate the efficiency of using the proposed pre-start thermal preparation system, which combines a regular system based on liquid diesel fuel heaters and an ICE heat recovery system. As a result, the stages of operation of the preheating thermal preparation system, mathematical models and the dependence of the temperature change of the antifreeze at the exit from the internal combustion engine on the warm-up time are determined.
Gas engine heat pump cycle analysis. Volume 1: Model description and generic analysis
NASA Astrophysics Data System (ADS)
Fischer, R. D.
1986-10-01
The task has prepared performance and cost information to assist in evaluating the selection of high voltage alternating current components, values for component design variables, and system configurations and operating strategy. A steady-state computer model for performance simulation of engine-driven and electrically driven heat pumps was prepared and effectively used for parametric and seasonal performance analyses. Parametric analysis showed the effect of variables associated with design of recuperators, brine coils, domestic hot water heat exchanger, compressor size, engine efficiency, insulation on exhaust and brine piping. Seasonal performance data were prepared for residential and commercial units in six cities with system configurations closely related to existing or contemplated hardware of the five GRI engine contractors. Similar data were prepared for an advanced variable-speed electric unit for comparison purposes. The effect of domestic hot water production on operating costs was determined. Four fan-operating strategies and two brine loop configurations were explored.
A Stirling engine for use with lower quality fuels
NASA Astrophysics Data System (ADS)
Paul, Christopher J.
There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.
DOT National Transportation Integrated Search
2014-02-01
A mathematical model was developed for the purpose of providing students with data : acquisition and engine modeling experience at the University of Idaho. In developing the : model, multiple heat transfer and emissions models were researched and com...
Quantum dynamical framework for Brownian heat engines
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Chaturvedi, S.
2013-07-01
We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well.
Cryogenic thermal diode heat pipes
NASA Technical Reports Server (NTRS)
Alario, J.
1979-01-01
The development of spiral artery cryogenic thermal diode heat pipes was continued. Ethane was the working fluid and stainless steel the heat pipe material in all cases. The major tasks included: (1) building a liquid blockage (blocking orifice) thermal diode suitable for the HEPP space flight experiment; (2) building a liquid trap thermal diode engineering model; (3) retesting the original liquid blockage engineering model, and (4) investigating the startup dynamics of artery cryogenic thermal diodes. An experimental investigation was also conducted into the wetting characteristics of ethane/stainless steel systems using a specially constructed chamber that permitted in situ observations.
Thermal stratification in LH2 tank of cryogenic propulsion stage tested in ISRO facility
NASA Astrophysics Data System (ADS)
Xavier, M.; Raj, R. Edwin; Narayanan, V.
2017-02-01
Liquid oxygen and hydrogen are used as oxidizer and fuel respectively in cryogenic propulsion system. These liquids are stored in foam insulated tanks of cryogenic propulsion system and are pressurized using warm pressurant gas supplied for tank pressure maintenance during cryogenic engine operation. Heat leak to cryogenic propellant tank causes buoyancy driven liquid stratification resulting in formation of warm liquid stratum at liquid free surface. This warm stratum is further heated by the admission of warm pressurant gas for tank pressurization during engine operation. Since stratified layer temperature has direct bearing on the cavitation free operation of turbo pumps integrated in cryogenic engine, it is necessary to model the thermal stratification for predicting stratified layer temperature and mass of stratified liquid in tank at the end of engine operation. These inputs are required for estimating the minimum pressure to be maintained by tank pressurization system. This paper describes configuration of cryogenic stage for ground qualification test, stage hot test sequence, a thermal model and its results for a foam insulated LH2 tank subjected to heat leak and pressurization with hydrogen gas at 200 K during liquid outflow at 38 lps for engine operation. The above model considers buoyancy flow in free convection boundary layer caused by heat flux from tank wall and energy transfer from warm pressurant gas etc. to predict temperature of liquid stratum and mass of stratified liquid in tank at the end of engine operation in stage qualification tests carried out in ISRO facility.
Can the Ocean's Heat Engine Control Horizontal Circulation? Insights From the Caspian Sea
NASA Astrophysics Data System (ADS)
Bruneau, Nicolas; Zika, Jan; Toumi, Ralf
2017-10-01
We investigate the role of the ocean's heat engine in setting horizontal circulation using a numerical model of the Caspian Sea. The Caspian Sea can be seen as a virtual laboratory—a compromise between realistic global models that are hampered by long equilibration times and idealized basin geometry models, which are not constrained by observations. We find that increases in vertical mixing drive stronger thermally direct overturning and consequent conversion of available potential to kinetic energy. Numerical solutions with water mass structures closest to observations overturn 0.02-0.04 × 106 m3/s (sverdrup) representing the first estimate of Caspian Sea overturning. Our results also suggest that the overturning is thermally forced increasing in intensity with increasing vertical diffusivity. Finally, stronger thermally direct overturning is associated with a stronger horizontal circulation in the Caspian Sea. This suggests that the ocean's heat engine can strongly impact broader horizontal circulations in the ocean.
A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine
NASA Astrophysics Data System (ADS)
Ji, Dongxu; Tseng, King Jet; Wei, Zhongbao; Zheng, Yun; Romagnoli, Alessandro
2017-05-01
In this study, a marine engine has been evaluated for waste heat recovery (WHR) using thermoelectric generators (TEG). The feasibility of Mg2Sn0.75Ge0.25, Cu2Se, and Cu1.98Se as potential thermoelectric (TE) material were investigated. A straight fin heat exchanger is used to enhance the heat transfer between the hot exhaust gas and TE modules. To facility the analysis, a system level thermal resistance model is built and validated with experiments. After the model is validated, a small marine engine with rated power of 1.7-3 MW is taken as baseline model and it is found that around 2-4 KW electrical power can be extracted from exhaust gas by the TEG at varying design and operating parameters. The back pressure effect induced by the heat exchanger is also considered in this study. Finally, a parameter study is conducted regarding the impact of the TE module height on the output power. It is shown that the height of the TE leg could play a significant role in the module geometry design, and that the optimal height varies between 1 mm and 2 mm under different heat exchangers and exhaust gas flow rates.
Role of quantum correlations in light-matter quantum heat engines
NASA Astrophysics Data System (ADS)
Barrios, G. Alvarado; Albarrán-Arriagada, F.; Cárdenas-López, F. A.; Romero, G.; Retamal, J. C.
2017-11-01
We study a quantum Otto engine embedding a working substance composed of a two-level system interacting with a harmonic mode. The physical properties of the substance are described by a generalized quantum Rabi model arising in superconducting circuit realizations. We show that light-matter quantum correlation reduction during the hot bath stage and adiabatic stages act as an indicator for enhanced work extraction and efficiency, respectively. Also, we demonstrate that the anharmonic spectrum of the working substance has a direct impact on the transition from heat engine into refrigerator as the light-matter coupling is increased. These results shed light on the search for optimal conditions in the performance of quantum heat engines.
75 FR 24389 - Airworthiness Directives; Bombardier, Inc. Model DHC-8-400 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
... concern. * * * * * Loss of both AC generators could lead to unannunciated loss of heat to both engine... protruding stems which chafed through the wire insulation leading to arcing damage. In addition, the wire... shroud. Loss of both AC generators could lead to unannunciated loss of heat to both engine inlets, which...
Cooling system operation efficiency of locomotive diesel engine
NASA Astrophysics Data System (ADS)
Ovcharenko, Sergey; Balagin, Oleg; Balagin, Dmitry
2017-10-01
A theoretical model for the calculation of the heat parameters of locomotive diesel engine cooling system in case of using heating agent bypass between the circuits is represented. The influence of the cooling fluid on the bypass from “hot” circuit to the “cold” circuit at different ambient air temperature is studied.
Combustion and operating characteristics of spark-ignition engines
NASA Technical Reports Server (NTRS)
Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.
1980-01-01
The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.
Measurement-induced operation of two-ion quantum heat machines
NASA Astrophysics Data System (ADS)
Chand, Suman; Biswas, Asoka
2017-03-01
We show how one can implement a quantum heat machine by using two interacting trapped ions, in presence of a thermal bath. The electronic states of the ions act like a working substance, while the vibrational mode is modelled as the cold bath. The heat exchange with the cold bath is mimicked by the projective measurement of the electronic states. We show how such measurement in a suitable basis can lead to either a quantum heat engine or a refrigerator, which undergoes a quantum Otto cycle. The local magnetic field is adiabatically changed during the heat cycle. The performance of the heat machine depends upon the interaction strength between the ions, the magnetic fields, and the measurement cost. In our model, the coupling to the hot and the cold baths is never switched off in an alternative fashion during the heat cycle, unlike other existing proposals of quantum heat engines. This makes our proposal experimentally realizable using current tapped-ion technology.
Measurement-induced operation of two-ion quantum heat machines.
Chand, Suman; Biswas, Asoka
2017-03-01
We show how one can implement a quantum heat machine by using two interacting trapped ions, in presence of a thermal bath. The electronic states of the ions act like a working substance, while the vibrational mode is modelled as the cold bath. The heat exchange with the cold bath is mimicked by the projective measurement of the electronic states. We show how such measurement in a suitable basis can lead to either a quantum heat engine or a refrigerator, which undergoes a quantum Otto cycle. The local magnetic field is adiabatically changed during the heat cycle. The performance of the heat machine depends upon the interaction strength between the ions, the magnetic fields, and the measurement cost. In our model, the coupling to the hot and the cold baths is never switched off in an alternative fashion during the heat cycle, unlike other existing proposals of quantum heat engines. This makes our proposal experimentally realizable using current tapped-ion technology.
Unified trade-off optimization for general heat devices with nonisothermal processes.
Long, Rui; Liu, Wei
2015-04-01
An analysis of the efficiency and coefficient of performance (COP) for general heat engines and refrigerators with nonisothermal processes is conducted under the trade-off criterion. The specific heat of the working medium has significant impacts on the optimal configurations of heat devices. For cycles with constant specific heat, the bounds of the efficiency and COP are found to be the same as those obtained through the endoreversible Carnot ones. However, they are independent of the cycle time durations. For cycles with nonconstant specific heat, whose dimensionless contact time approaches infinity, the general alternative upper and lower bounds of the efficiency and COP under the trade-off criteria have been proposed under the asymmetric limits. Furthermore, when the dimensionless contact time approaches zero, the endoreversible Carnot model is recovered. In addition, the efficiency and COP bounds of different kinds of actual heat engines and refrigerators have also been analyzed. This paper may provide practical insight for designing and operating actual heat engines and refrigerators.
Study on the high speed scramjet characteristics at Mach 10 to 15 flight condition
NASA Astrophysics Data System (ADS)
Takahashi, M.; Itoh, K.; Tanno, H.; Komuro, T.; Sunami, T.; Sato, K.; Ueda, S.
A scramjet engine model, designed to establish steady and strong combustion at free-stream conditions corresponding to Mach 12 flight, was tested in a large free-piston driven shock tunnel. Combustion tests of a previous engine model showed that combustion heat release obtained in the combustor was not sufficient to maintain strong combustion. For a new scramjet engine model, the inlet compression ratio was increased to raise the static temperature and density of the flow at the combustor entrance. As a result of the aerodynamic design change, the pressure rise due to combustion increased and the duration of strong combustion conditions in the combustor was extended. A hyper-mixer injector designed to enhance mixing and combustion by introducing streamwise vortices was applied to the new engine model. The results showed that the hyper mixer injector was very effective in promoting combustion heat release and establishing steady and strong combustion in the combustor.
Turbulence radiation coupling in boundary layers of heavy-duty diesel engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sircar, Arpan; Paul, Chandan; Ferreyro-Fernandez, Sebastian
The lack of accurate submodels for in-cylinder radiation and heat transfer has been identified as a key shortcoming in developing truly predictive, physics-based computational fluid dynamics (CFD) models that can be used to develop combustion systems for advanced high-efficiency, low-emissions engines. Recent measurements of wall layers in engines show discrepancies of up to 100% with respect to standard CFD boundary-layer models. And recent analysis of in-cylinder radiation based on the most recent spectral property databases and high-fidelity radiative transfer equation (RTE) solvers has shown that at operating pressures and exhaust-gas recirculation levels typical of modern heavy-duty compression-ignition engines, radiative emissionmore » can be as high as 40% of the wall heat losses, that molecular gas radiation (mainly CO2 and H2O) can be more important than soot radiation, and that a significant fraction of the emitted radiation can be reabsorbed before reaching the walls. That is, radiation not only contributes to heat losses, but also changes the in-cylinder temperature distribution, which in turn affects combustion and emissions. The goal of this research is to develop models that explicitly account for the potentially strong coupling between radiative and turbulent boundary layer heat transfer. For example, for optically thick conditions, a simple diffusion model might be formulated in terms of an absorption-coefficient-dependent turbulent Prandtl number.« less
Engineers' Non-Scientific Models in Technology Education
ERIC Educational Resources Information Center
Norstrom, Per
2013-01-01
Engineers commonly use rules, theories and models that lack scientific justification. Examples include rules of thumb based on experience, but also models based on obsolete science or folk theories. Centrifugal forces, heat and cold as substances, and sucking vacuum all belong to the latter group. These models contradict scientific knowledge, but…
Effect of Adding a Regenerator to Kornhauser's MIT "Two-Space" (Gas-Spring+Heat Exchanger) Test Rig
NASA Technical Reports Server (NTRS)
Ebiana, Asuquo B.; Gidugu, Praveen
2008-01-01
This study employed entropy-based second law post-processing analysis to characterize the various thermodynamic losses inside a 3-space solution domain (gas spring+heat exchanger+regenerator) operating under conditions of oscillating pressure and oscillating flow. The 3- space solution domain is adapted from the 2-space solution domain (gas spring+heat exchanger) in Kornhauser's MIT test rig by modifying the heat exchanger space to include a porous regenerator system. A thermal nonequilibrium model which assumes that the regenerator porous matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle is employed. An important and primary objective of this study is the development and application of a thermodynamic loss post-processor to characterize the major thermodynamic losses inside the 3-space model. It is anticipated that the experience gained from thermodynamic loss analysis of the simple 3-space model can be extrapolated to more complex systems like the Stirling engine. It is hoped that successful development of loss post-processors will facilitate the improvement of the optimization capability of Stirling engine analysis codes through better understanding of the heat transfer and power losses. It is also anticipated that the incorporation of a successful thermal nonequilibrium model of the regenerator in Stirling engine CFD analysis codes, will improve our ability to accurately model Stirling regenerators relative to current multidimensional thermal-equilibrium porous media models.
Technician Works on a Shuttle Model in the 10- by 10-Foot Supersonic Wind Tunnel
1977-02-21
A technician prepares a 2.25 percent scale model of the space shuttle for a base heat study in the 10- by 10-Foot Supersonic Wind Tunnel at the National Aeronautics and Space Administration (NASA) Lewis Research Center. This space shuttle project, begun here in July 1976, was aimed at evaluating base heating and pressure prior to the Shuttle’s first lift-off scheduled for 1979. The space shuttle was expected to experience multifaceted heating and pressure distributions during the first and second stages of its launch. Engineers needed to understand these issues in order to design proper thermal protection. The test’s specific objectives were to measure the heat transfer and pressure distributions around the orbiter’s external tank and solid rocket afterbody caused by rocket exhaust recirculation and impingement, to measure the heat transfer and pressure distributions caused by rocket exhaust-induced separation, and determine gas recovery temperatures using gas temperature probes and heated base components. The shuttle model’s main engines and solid rockets were first fired and then just the main engines to simulate a launch during the testing. Lewis researchers conducted 163 runs in the 10- by 10 during the test program.
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Van, Luong
1992-01-01
The objective of this paper are to develop a multidisciplinary computational methodology to predict the hot-gas-side and coolant-side heat transfer and to use it in parametric studies to recommend optimized design of the coolant channels for a regeneratively cooled liquid rocket engine combustor. An integrated numerical model which incorporates CFD for the hot-gas thermal environment, and thermal analysis for the liner and coolant channels, was developed. This integrated CFD/thermal model was validated by comparing predicted heat fluxes with those of hot-firing test and industrial design methods for a 40 k calorimeter thrust chamber and the Space Shuttle Main Engine Main Combustion Chamber. Parametric studies were performed for the Advanced Main Combustion Chamber to find a strategy for a proposed combustion chamber coolant channel design.
Angle-dependent quantum Otto heat engine based on coherent dipole-dipole coupling
NASA Astrophysics Data System (ADS)
Su, Shan-He; Luo, Xiao-Qing; Chen, Jin-Can; Sun, Chang-Pu
2016-08-01
Electromagnetic interactions between molecules or within a molecule have been widely observed in biological systems and exhibit broad application for molecular structural studies. Quantum delocalization of molecular dipole moments has inspired researchers to explore new avenues to utilize this physical effect for energy harvesting devices. Herein, we propose a simple model of the angle-dependent quantum Otto heat engine which seeks to facilitate the conversion of heat to work. Unlike previous studies, the adiabatic processes are accomplished by varying only the directions of the magnetic field. We show that the heat engine continues to generate power when the angle relative to the vector r joining the centres of coupled dipoles departs from the magic angle θm where the static coupling vanishes. A significant improvement in the device performance has to be attributed to the presence of the quantum delocalized levels associated with the coherent dipole-dipole coupling. These results obtained may provide a promising model for the biomimetic design and fabrication of quantum energy generators.
Review and assessment of the HOST turbine heat transfer program
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena occurring in high-performance gas turbine engines and to assess and improve the analytical methods used to predict the fluid dynamics and heat transfer phenomena. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. Therefore, a building-block approach was utilized, with research ranging from the study of fundamental phenomena and analytical modeling to experiments in simulated real-engine environments. Experimental research accounted for 75 percent of the project, and analytical efforts accounted for approximately 25 percent. Extensive experimental datasets were created depicting the three-dimensional flow field, high free-stream turbulence, boundary-layer transition, blade tip region heat transfer, film cooling effects in a simulated engine environment, rough-wall cooling enhancement in a rotating passage, and rotor-stator interaction effects. In addition, analytical modeling of these phenomena was initiated using boundary-layer assumptions as well as Navier-Stokes solutions.
Heat flux measurement in SSME turbine blade tester
NASA Astrophysics Data System (ADS)
Liebert, Curt H.
1990-11-01
Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.
Heat flux measurement in SSME turbine blade tester
NASA Astrophysics Data System (ADS)
Liebert, Curt H.
Surface heat flux values were measured in the turbine blade thermal cycling tester located at NASA-Marshall. This is the first time heat flux has been measured in a space shuttle main engine turbopump environment. Plots of transient and quasi-steady state heat flux data over a range of about 0 to 15 MW/sq m are presented. Data were obtained with a miniature heat flux gage device developed at NASA-Lewis. The results from these tests are being incorporated into turbine design models. Also, these gages are being considered for airfoil surface heat flux measurement on turbine vanes mounted in SSME turbopump test bed engine nozzles at Marshall. Heat flux effects that might be observed on degraded vanes are discussed.
Quantum optomechanical piston engines powered by heat
NASA Astrophysics Data System (ADS)
Mari, A.; Farace, A.; Giovannetti, V.
2015-09-01
We study two different models of optomechanical systems where a temperature gradient between two radiation baths is exploited for inducing self-sustained coherent oscillations of a mechanical resonator. From a thermodynamic perspective, such systems represent quantum instances of self-contained thermal machines converting heat into a periodic mechanical motion and thus they can be interpreted as nano-scale analogues of macroscopic piston engines. Our models are potentially suitable for testing fundamental aspects of quantum thermodynamics in the laboratory and for applications in energy efficient nanotechnology.
Atmospheric Circulations of Rocky Planets as Heat Engines
NASA Astrophysics Data System (ADS)
Koll, D. D. B.
2017-12-01
Rocky planets are extremely common in the galaxy and include Earth, Mars, Venus, and hundreds of exoplanets. To understand and compare the climates of these planets, we need theories that are general enough to accommodate drastically different atmospheric and planetary properties. Unfortunately, few such theories currently exist.For Earth, there is a well-known principle that its atmosphere resembles a heat engine - the atmosphere absorbs heat near the surface, at a hot temperature, and emits heat to space in the upper troposphere, at a cold temperature, which allows it to perform work and balance dissipative processes such as friction. However, previous studies also showed that Earth's hydrological cycle uses up a large fraction of the heat engine's work output, which makes it difficult to view other atmospheres as heat engines.In this work I extend the heat engine principle from Earth towards other rocky planets. I explore both dry and moist atmospheres in an idealized general circulation model (GCM), and quantify their work output using entropy budgets. First, I show that convection and turbulent heat diffusion are important entropy sources in dry atmospheres. I develop a scaling that accounts for its effects, which allows me to predict the strength of frictional dissipation in dry atmospheres. There are strong parallels between my scaling and so-called potential intensity theory, which is a seminal theory for understanding tropical cyclones on Earth. Second, I address how moisture affects atmospheric heat engines. Moisture modifies both the thermodynamic properties of air and releases latent heat when water vapor condenses. I explore the impact of both effects, and use numerical simulations to explore the difference between dry and moist atmospheric circulations across a wide range of climates.
Continuous fiber ceramic matrix composites for heat engine components
NASA Technical Reports Server (NTRS)
Tripp, David E.
1988-01-01
High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.
Swenson, Paul F.; Moore, Paul B.
1979-01-01
An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.
Swenson, Paul F.; Moore, Paul B.
1982-01-01
An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.
Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Ronald D.
2014-08-31
The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed andmore » new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.« less
An assessment of thermodynamic merits for current and potential future engine operating strategies
Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.; ...
2017-02-01
The present work compares the fundamental thermodynamic underpinnings (i.e., working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including HCCI,more » SA-HCCI, RCCI, GCI, and CDC. Within each combustion regime, effects such as engine load, combustion duration, combustion phasing, combustion chamber geometry, fuel properties, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that in order to create a roadmap for future directions in ICE technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy, but to also examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy.« less
An assessment of thermodynamic merits for current and potential future engine operating strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissink, Martin L.; Splitter, Derek A.; Dempsey, Adam B.
The present work compares the fundamental thermodynamic underpinnings (i.e., working fluid properties and heat release profile) of various combustion strategies with engine measurements. The approach employs a model that separately tracks the impacts on efficiency due to differences in rate of heat addition, volume change, mass addition, and molecular weight change for a given combination of working fluid, heat release profile, and engine geometry. Comparative analysis between measured and modeled efficiencies illustrates fundamental sources of efficiency reductions or opportunities inherent to various combustion regimes. Engine operating regimes chosen for analysis include stoichiometric spark-ignited combustion and lean compression-ignited combustion including HCCI,more » SA-HCCI, RCCI, GCI, and CDC. Within each combustion regime, effects such as engine load, combustion duration, combustion phasing, combustion chamber geometry, fuel properties, and charge dilution are explored. Model findings illustrate that even in the absence of losses such as heat transfer or incomplete combustion, the maximum possible thermal efficiency inherent to each operating strategy varies to a significant degree. Additionally, the experimentally measured losses are observed to be unique within a given operating strategy. The findings highlight the fact that in order to create a roadmap for future directions in ICE technologies, it is important to not only compare the absolute real-world efficiency of a given combustion strategy, but to also examine the measured efficiency in context of what is thermodynamically possible with the working fluid and boundary conditions prescribed by a strategy.« less
Life cycle cost assessment of future low heat rejection engines
NASA Technical Reports Server (NTRS)
Petersen, D. R.
1986-01-01
The Adiabatic Diesel Engine Component Development (ADECD) represents a project which has the objective to accelerate the development of highway truck engines with advanced technology aimed at reduced fuel consumption. The project comprises three steps, including the synthesis of a number of engine candidate designs, the coupling of each with a number of systems for utilizing exhaust gas energy, and the evaluation of each combination in terms of desirability. Particular attention is given to the employed evaluation method and the development of this method. The objective of Life Cycle Cost (LCC) evaluation in the ADECD program was to select the best from among 42 different low heat rejection engine (LHRE)/exhaust energy recovery system configurations. The LCC model is discussed along with a maintenance cost model, the evaluation strategy, the selection of parameter ranges, and a full factorial analysis.
10 CFR 431.173 - Requirements applicable to all manufacturers.
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMERCIAL AND INDUSTRIAL EQUIPMENT Provisions for Commercial Heating, Ventilating, Air-Conditioning and... is based on engineering or statistical analysis, computer simulation or modeling, or other analytic... method or methods used; (B) The mathematical model, the engineering or statistical analysis, computer...
Two-dimensional model of a Space Station Freedom thermal energy storage canister
NASA Astrophysics Data System (ADS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
1990-08-01
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.
Two-dimensional model of a Space Station Freedom thermal energy storage canister
NASA Astrophysics Data System (ADS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase-change salt containment canister. A 2-D, axisymmetric finite-difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, and growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between groundbased canister performance (in 1-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.
Two-dimensional model of a Space Station Freedom thermal energy storage canister
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
1990-01-01
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase-change salt containment canister. A 2-D, axisymmetric finite-difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, and growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between groundbased canister performance (in 1-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.
Two-dimensional model of a Space Station Freedom thermal energy storage canister
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
1990-01-01
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change salt contained in toroidal canisters for thermal energy storage. Results are presented from heat transfer analyses of the phase change salt containment canister. A 2-D, axisymmetric finite difference computer program which models the canister walls, salt, void, and heat engine working fluid coolant was developed. Analyses included effects of conduction in canister walls and solid salt, conduction and free convection in liquid salt, conduction and radiation across salt vapor filled void regions and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid salt phases) were prescribed based on engineering judgement. The salt phase change process was modeled using the enthalpy method. Discussion of results focuses on the role of free-convection in the liquid salt on canister heat transfer performance. This role is shown to be important for interpreting the relationship between ground based canister performance (in l-g) and expected on-orbit performance (in micro-g). Attention is also focused on the influence of void heat transfer on canister wall temperature distributions. The large thermal resistance of void regions is shown to accentuate canister hot spots and temperature gradients.
Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine
NASA Technical Reports Server (NTRS)
Nguyen, Dalton
2002-01-01
As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, an C-SiC composites heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and thermal models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.
Thermal/Fluid Analysis of a Composite Heat Exchanger for Use on the RLV Rocket Engine
NASA Technical Reports Server (NTRS)
Nguyen, Dalton; Turner, Larry D. (Technical Monitor)
2001-01-01
As part of efforts to design a regeneratively cooled composite nozzle ramp for use on the reusable vehicle (RLV) rocket engine, a C-SiC composite heat exchanger concept was proposed for thermal performance evaluation. To test the feasibility of the concept, sample heat exchanger panels were made to fit the Glenn Research Center's cell 22 for testing. Operation of the heat exchanger was demonstrated in a combustion environment with high heat fluxes similar to the RLV Aerospike Ramp. Test measurements were reviewed and found to be valuable for the on-going fluid and thermal analysis of the actual RLV composite ramp. Since the cooling fluid for the heat exchanger is water while the RLV Ramp cooling fluid is LH2, fluid and therma models were constructed to correlate to the specific test set-up. The knowledge gained from this work will be helpful for analyzing the thermal response of the actual RLV Composite Ramp. The coolant thermal properties for the models are taken from test data. The heat exchanger's cooling performance was analyzed using the Generalized Fluid System Simulation Program (GFSSP). Temperatures of the heat exchanger's structure were predicted in finite element models using Patran and Sinda. Results from the analytical models and the tests show that RSC's heat exchanger satisfied the combustion environments in a series of 16 tests.
NASA Astrophysics Data System (ADS)
Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew
2012-06-01
The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1.06 kW for package volume of 16.5 L and exhaust flow enthalpy flux of 122 kW.
Thermodynamic and themoeconomic optimization of isothermal endoreversible chemical engine models
NASA Astrophysics Data System (ADS)
Ocampo-García, A.; Barranco-Jiménez, M. A.; Angulo-Brown, F.
2017-12-01
A branch of finite-time thermodynamics (FTT) is the thermoeconomical analysis of simplified power plant models. The most studied models are those of the Curzon-Ahlborn (CA) and Novikov-Chambadal types. In the decade of 90's of the past century, the FTT analysis of thermal engines was extended to chemical engines. In the present paper we made a thermoeconomical analysis of heat engines and chemical engines of the CA and Novikov types. This study is carried out for isothermal endoreversible chemical engine models with a linear mass transfer law and under three different modes of thermodynamic performance (maximum power, maximum ecological function and maximum efficient power).
NASA Astrophysics Data System (ADS)
Lianhua, Yin
The heat shield of aircraft is made of the major thrusts structure with multilayer thermal insulation part. For protecting against thermo-radiation from larger thrusting force engine,the heat shield is installed around this engine nearby.The multilayer thermal insulation part with multilayer radiation/reflection structure is made of reflection layer and interval layer.At vacuum condition,these materials is higher heat insulation capability than other material,is applied for lots of pats on aircraft extensively.But because of these material is made of metal and nonmetal,it is impossible to receive it's mechanical properties of materials from mechanical tests.These paper describes a new measure of mechanical properties of materials in the heat shield based on model analysis test.At the requirement for the first order lateral frequency,these measure provide for the FEM analysis foundation on the optimization structure of the heat shield.
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth J.; Hoffman, Joe D.
1994-01-01
An advanced engineering computational model has been developed to aid in the analysis of chemical rocket engines. The complete multispecies, chemically reacting and diffusing Navier-Stokes equations are modelled, including the Soret thermal diffusion and Dufour energy transfer terms. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film-cooled nozzle, and a transpiration-cooled plug-and-spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 nozzle and the film-cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. It is demonstrated that thermal diffusion has a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle and was shown to represent a significant fraction of the diffusion fluxes occurring in the transpiration-cooled rocket engine.
Modelling and simulation of heat pipes with TAIThermIR (Conference Presentation)
NASA Astrophysics Data System (ADS)
Winkelmann, Max E.
2016-10-01
Regarding thermal camouflage usually one has to reduce the surface temperature of an object. All vehicles and installations having a combustion engine usually produce a lot of heat with results on hot spots on the surface which are highly conspicuous. Using heat pipes to transfer this heat to another place on the surface more efficiently might be a way to reduce those hotspots and the overall conspicuity. In a first approach, a model for the Software TAIThermIR was developed to test which parameters of the heat pipes are relevant and what effects can be achieved. It will be shown, that the thermal resistivity of contact zones are quite relevant and the thermal coupling of the engine (source of heat) defines if the alteration of the thermal signature is large or not. Furthermore the impact of the use of heat pipes in relation to surface material is discussed. The influence of different weather scenarios on the change of signatures due to the use of heat pipes is of minor relevance and depends on the choice of the surface material. Finally application issues for real systems are discussed.
Radiative Heat Transfer modelling in a Heavy-Duty Diesel Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Chandan; Sircar, Arpan; Ferreyro-Fernandez, Sebastian
Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for amore » heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.« less
Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil
2015-01-01
Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669
Wells, Gary G; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil
2015-03-03
Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid-vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation.
Transient Approximation of SAFE-100 Heat Pipe Operation
NASA Technical Reports Server (NTRS)
Bragg-Sitton, Shannon M.; Reid, Robert S.
2005-01-01
Engineers at Los Alamos National Laboratory (LANL) have designed several heat pipe cooled reactor concepts, ranging in power from 15 kWt to 800 kWt, for both surface power systems and nuclear electric propulsion systems. The Safe, Affordable Fission Engine (SAFE) is now being developed in a collaborative effort between LANL and NASA Marshall Space Flight Center (NASA/MSFC). NASA is responsible for fabrication and testing of non-nuclear, electrically heated modules in the Early Flight Fission Test Facility (EFF-TF) at MSFC. In-core heat pipes must be properly thawed as the reactor power starts. Computational models have been developed to assess the expected operation of a specific heat pipe design during start-up, steady state operation, and shutdown. While computationally intensive codes provide complete, detailed analyses of heat pipe thaw, a relatively simple. concise routine can also be applied to approximate the response of a heat pipe to changes in the evaporator heat transfer rate during start-up and power transients (e.g., modification of reactor power level) with reasonably accurate results. This paper describes a simplified model of heat pipe start-up that extends previous work and compares the results to experimental measurements for a SAFE-100 type heat pipe design.
NASA Astrophysics Data System (ADS)
Saadon, S.; Abu Talib, A. R.
2016-10-01
Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.
Contributions Regarding the Aircraft Nuclear Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrica, Bogdan; Petre, Marian; Dima, Mihai Octavian
2010-01-21
The possibility to use a nuclear reactor for airplanes propulsion was investigated taking in to account 2 possible solutions: the direct cycle (where the fluid pass through the reactor's core) and the indirect cycle (where the fluid is passing through a heat exchanger). Taking in to account the radioprotection problems, the only realistic solution seems to be the indirect cycle, where the energy transfer should be performed by a heat exchanger that must work at very high speed of the fluid. The heat exchanger will replace the classical burning room. We had performed a more precise theoretical study for themore » nuclear jet engine regarding the performances of the nuclear reactor, of the heat exchanger and of the jet engine. It was taken in to account that in the moment when the burning room is replaced by a heat exchanger, a new model for gasodynamic process from the engine must be performed. Studies regarding the high flow speed heat transfer were performed.« less
Modelling of diesel engine fuelled with biodiesel using engine simulation software
NASA Astrophysics Data System (ADS)
Said, Mohd Farid Muhamad; Said, Mazlan; Aziz, Azhar Abdul
2012-06-01
This paper is about modelling of a diesel engine that operates using biodiesel fuels. The model is used to simulate or predict the performance and combustion of the engine by simplified the geometry of engine component in the software. The model is produced using one-dimensional (1D) engine simulation software called GT-Power. The fuel properties library in the software is expanded to include palm oil based biodiesel fuels. Experimental works are performed to investigate the effect of biodiesel fuels on the heat release profiles and the engine performance curves. The model is validated with experimental data and good agreement is observed. The simulation results show that combustion characteristics and engine performances differ when biodiesel fuels are used instead of no. 2 diesel fuel.
Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2
NASA Technical Reports Server (NTRS)
Reitz, R. D.; Rutland, C. J.
1993-01-01
A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.
Efficiency and large deviations in time-asymmetric stochastic heat engines
Gingrich, Todd R.; Rotskoff, Grant M.; Vaikuntanathan, Suriyanarayanan; ...
2014-10-24
In a stochastic heat engine driven by a cyclic non-equilibrium protocol, fluctuations in work and heat give rise to a fluctuating efficiency. Using computer simulations and tools from large deviation theory, we have examined these fluctuations in detail for a model two-state engine. We find in general that the form of efficiency probability distributions is similar to those described by Verley et al (2014 Nat. Commun. 5 4721), in particular featuring a local minimum in the long-time limit. In contrast to the time-symmetric engine protocols studied previously, however, this minimum need not occur at the value characteristic of a reversible Carnot engine. Furthermore, while the local minimum may reside at the global minimum of a large deviation rate function, it does not generally correspond to the least likely efficiency measured over finite time. Lastly, we introduce a general approximation for the finite-time efficiency distribution,more » $$P(\\eta )$$, based on large deviation statistics of work and heat, that remains very accurate even when $$P(\\eta )$$ deviates significantly from its large deviation form.« less
Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
Xu, Y Y; Chen, B; Liu, J
2018-02-01
Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model-a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.
CELCAP: A Computer Model for Cogeneration System Analysis
NASA Technical Reports Server (NTRS)
1985-01-01
A description of the CELCAP cogeneration analysis program is presented. A detailed description of the methodology used by the Naval Civil Engineering Laboratory in developing the CELCAP code and the procedures for analyzing cogeneration systems for a given user are given. The four engines modeled in CELCAP are: gas turbine with exhaust heat boiler, diesel engine with waste heat boiler, single automatic-extraction steam turbine, and back-pressure steam turbine. Both the design point and part-load performances are taken into account in the engine models. The load model describes how the hourly electric and steam demand of the user is represented by 24 hourly profiles. The economic model describes how the annual and life-cycle operating costs that include the costs of fuel, purchased electricity, and operation and maintenance of engines and boilers are calculated. The CELCAP code structure and principal functions of the code are described to how the various components of the code are related to each other. Three examples of the application of the CELCAP code are given to illustrate the versatility of the code. The examples shown represent cases of system selection, system modification, and system optimization.
Fast Whole-Engine Stirling Analysis
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako
2006-01-01
This presentation discusses the simulation approach to whole-engine for physical consistency, REV regenerator modeling, grid layering for smoothness, and quality, conjugate heat transfer method adjustment, high-speed low cost parallel cluster, and debugging.
Gas Engine-Driven Heat Pump with Desiccant Dehumidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Abu-Heiba, Ahmad
About 40% of total U.S. energy consumption was consumed in residential and commercial buildings. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. This paper describes the development of an innovative natural gas, propane, LNG or bio-gas IC engine-driven heat pump (GHP) with desiccant dehumidification (GHP/DD). This integrated system has higher overall efficiencies than conventional equipment for space cooling, addresses both new and existing commercial buildings, and more effectively controls humidity in humid areas. Waste heat is recovered from the GHP to provide energy for regenerating themore » desiccant wheel and to augment heating capacity and efficiency. By combining the two technologies, an overall source COP of greater that 1.5 (hot, humid case) can be achieved by utilizing waste heat from the engine to reduce the overall energy required to regenerate the desiccant. Moreover, system modeling results show that the sensible heat ratio (SHR- sensible heat ratio) can be lowered to less 60% in a dedicated outdoor air system application with hot, humid cases.« less
Calculation of the Thermal Loading of the Cylinder-Piston Group of the Automobile Engine
NASA Astrophysics Data System (ADS)
Barchenko, F. B.; Bakulin, V. N.
2017-05-01
We propose a mathematical model for calculating thermal loods of parts of the cylinder-piston group of the automobile engine operating under unstable conditions in its complete life cycle. Methods have been described for calculating the boundary conditions to determine the thermal state of the parts of the cylinder-piston group of such an engine with the use of theoretical formulas, empirical and semiempirical relations, and tabulated data. In modeling, we calculated the work of all systems of the engine (pumps, pipelines, heat exchangers) influencing directly or indirectly the thermal state of its cylinder-piston group. The nonstationary thermal state was calculated once in the operating cycle of the engine with the use of the cycle-averaged values of the local heat transfer coefficients and the resulting temperature of the medium. The personal computer counting time for one time step of a transport diesel engine of typical design with a number of units of the order of 500 was 5 s.
NASA Technical Reports Server (NTRS)
Lee, Chi M.; Schock, Harold J.
1988-01-01
Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.
Open cycle traveling wave thermoacoustics: mean temperature difference at the regenerator interface.
Weiland, Nathan T; Zinn, Ben T
2003-11-01
In an open cycle traveling wave thermoacoustic engine, the hot heat exchanger is replaced by a steady flow of hot gas into the regenerator to provide the thermal energy input to the engine. The steady-state operation of such a device requires that a potentially large mean temperature difference exist between the incoming gas and the solid material at the regenerator's hot side, due in part to isentropic gas oscillations in the open space adjacent to the regenerator. The magnitude of this temperature difference will have a significant effect on the efficiencies of these open cycle devices. To help assess the feasibility of such thermoacoustic engines, a numerical model is developed that predicts the dependence of the mean temperature difference upon the important design and operating parameters of the open cycle thermoacoustic engine, including the acoustic pressure, mean mass flow rate, acoustic phase angles, and conductive heat loss. Using this model, it is also shown that the temperature difference at the regenerator interface is approximately proportional to the sum of the acoustic power output and the conductive heat loss at this location.
NASA Astrophysics Data System (ADS)
Vasil'ev, E. N.
2017-09-01
A mathematical model has been proposed for analyzing and optimizing thermoelectric cooling regimes for heat-loaded elements of engineering and electronic devices. The model based on analytic relations employs the working characteristics of thermoelectric modules as the initial data and makes it possible to determine the temperature regime and the optimal values of the feed current for the modules taking into account the thermal resistance of the heat-spreading system.
A First Step towards Variational Methods in Engineering
ERIC Educational Resources Information Center
Periago, Francisco
2003-01-01
In this paper, a didactical proposal is presented to introduce the variational methods for solving boundary value problems to engineering students. Starting from a couple of simple models arising in linear elasticity and heat diffusion, the concept of weak solution for these models is motivated and the existence, uniqueness and continuous…
Orbital transfer rocket engine technology program: Soft wear ring seal technology
NASA Technical Reports Server (NTRS)
Lariviere, Brian W.
1992-01-01
Liquid oxygen (LOX) compatibility tests, including autogenous ignition, promoted ignition, LOX impact tests, and friction and wear tests on different PV products were conducted for several polymer materials as verification for the implementation of soft wear ring seals in advanced rocket engine turbopumps. Thermoplastics, polyimide based materials, and polyimide-imide base materials were compared for oxygen compatibility, specific wear coefficient, wear debris production, and heat dissipation mechanisms. A thermal model was generated that simulated the frictional heating input and calculated the surface temperature and temperature distribution within the seal. The predictions were compared against measured values. Heat loads in the model were varied to better match the test data and determine the difference between the measured and the calculated coefficients of friction.
Modeling Self-Heating Effects in Nanoscale Devices
NASA Astrophysics Data System (ADS)
Raleva, K.; Shaik, A. R.; Vasileska, D.; Goodnick, S. M.
2017-08-01
Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modeling methods that must be employed in order to determine a device's temperature profile.
NASA Technical Reports Server (NTRS)
Bauer, Christopher
1993-01-01
Stirling engine heat exchangers are shell-and-tube type with oscillatory flow (zero-mean velocity) for the inner fluid. This heat transfer process involves laminar-transition turbulent flow motions under oscillatory flow conditions. A low Reynolds number kappa-epsilon model, (Lam-Bremhorst form), was utilized in the present study to simulate fluid flow and heat transfer in a circular tube. An empirical transition model was used to activate the low Reynolds number k-e model at the appropriate time within the cycle for a given axial location within the tube. The computational results were compared with experimental flow and heat transfer data for: (1) velocity profiles, (2) kinetic energy of turbulence, (3) skin friction factor, (4) temperature profiles, and (5) wall heat flux. The experimental data were obtained for flow in a tube (38 mm diameter and 60 diameter long), with the maximum Reynolds number based on velocity being Re(sub max) = 11840, a dimensionless frequency (Valensi number) of Va = 80.2, at three axial locations X/D = 16, 30 and 44. The agreement between the computations and the experiment is excellent in the laminar portion of the cycle and good in the turbulent portion. Moreover, the location of transition was predicted accurately. The Low Reynolds Number kappa-epsilon model, together with an empirical transition model, is proposed herein to generate the wall heat flux values at different operating parameters than the experimental conditions. Those computational data can be used for testing the much simpler and less accurate one dimensional models utilized in 1-D Stirling Engine design codes.
From quantum heat engines to laser cooling: Floquet theory beyond the Born–Markov approximation
NASA Astrophysics Data System (ADS)
Restrepo, Sebastian; Cerrillo, Javier; Strasberg, Philipp; Schaller, Gernot
2018-05-01
We combine the formalisms of Floquet theory and full counting statistics with a Markovian embedding strategy to access the dynamics and thermodynamics of a periodically driven thermal machine beyond the conventional Born–Markov approximation. The working medium is a two-level system and we drive the tunneling as well as the coupling to one bath with the same period. We identify four different operating regimes of our machine which include a heat engine and a refrigerator. As the coupling strength with one bath is increased, the refrigerator regime disappears, the heat engine regime narrows and their efficiency and coefficient of performance decrease. Furthermore, our model can reproduce the setup of laser cooling of trapped ions in a specific parameter limit.
NASA Astrophysics Data System (ADS)
Greiner, Nathan J.
Modern turbine engines require high turbine inlet temperatures and pressures to maximize thermal efficiency. Increasing the turbine inlet temperature drives higher heat loads on the turbine surfaces. In addition, increasing pressure ratio increases the turbine coolant temperature such that the ability to remove heat decreases. As a result, highly effective external film cooling is required to reduce the heat transfer to turbine surfaces. Testing of film cooling on engine hardware at engine temperatures and pressures can be exceedingly difficult and expensive. Thus, modern studies of film cooling are often performed at near ambient conditions. However, these studies are missing an important aspect in their characterization of film cooling effectiveness. Namely, they do not model effect of thermal property variations that occur within the boundary and film cooling layers at engine conditions. Also, turbine surfaces can experience significant radiative heat transfer that is not trivial to estimate analytically. The present research first computationally examines the effect of large temperature variations on a turbulent boundary layer. Subsequently, a method to model the effect of large temperature variations within a turbulent boundary layer in an environment coupled with significant radiative heat transfer is proposed and experimentally validated. Next, a method to scale turbine cooling from ambient to engine conditions via non-dimensional matching is developed computationally and the experimentally validated at combustion temperatures. Increasing engine efficiency and thrust to weight ratio demands have driven increased combustor fuel-air ratios. Increased fuel-air ratios increase the possibility of unburned fuel species entering the turbine. Alternatively, advanced ultra-compact combustor designs have been proposed to decrease combustor length, increase thrust, or generate power for directed energy weapons. However, the ultra-compact combustor design requires a film cooled vane within the combustor. In both these environments, the unburned fuel in the core flow encounters the oxidizer rich film cooling stream, combusts, and can locally heat the turbine surface rather than the intended cooling of the surface. Accordingly, a method to quantify film cooling performance in a fuel rich environment is prescribed. Finally, a method to film cool in a fuel rich environment is experimentally demonstrated.
NASA Astrophysics Data System (ADS)
Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze
2017-09-01
Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.
NASA Technical Reports Server (NTRS)
Tucker, Stephen; Salvail, Pat; Haynes, Davy (Technical Monitor)
2001-01-01
A solar-thermal engine serves as a high-temperature solar-radiation absorber, heat exchanger, and rocket nozzle. collecting concentrated solar radiation into an absorber cavity and transferring this energy to a propellant as heat. Propellant gas can be heated to temperatures approaching 4,500 F and expanded in a rocket nozzle, creating low thrust with a high specific impulse (I(sub sp)). The Shooting Star Experiment (SSE) solar-thermal engine is made of 100 percent chemical vapor deposited (CVD) rhenium. The engine 'module' consists of an engine assembly, propellant feedline, engine support structure, thermal insulation, and instrumentation. Engine thermal performance tests consist of a series of high-temperature thermal cycles intended to characterize the propulsive performance of the engines and the thermal effectiveness of the engine support structure and insulation system. A silicone-carbide electrical resistance heater, placed inside the inner shell, substitutes for solar radiation and heats the engine. Although the preferred propellant is hydrogen, the propellant used in these tests is gaseous nitrogen. Because rhenium oxidizes at elevated temperatures, the tests are performed in a vacuum chamber. Test data will include transient and steady state temperatures on selected engine surfaces, propellant pressures and flow rates, and engine thrust levels. The engine propellant-feed system is designed to Supply GN2 to the engine at a constant inlet pressure of 60 psia, producing a near-constant thrust of 1.0 lb. Gaseous hydrogen will be used in subsequent tests. The propellant flow rate decreases with increasing propellant temperature, while maintaining constant thrust, increasing engine I(sub sp). In conjunction with analytical models of the heat exchanger, the temperature data will provide insight into the effectiveness of the insulation system, the structural support system, and the overall engine performance. These tests also provide experience on operational aspects of the engine and associated subsystems, and will include independent variation of both steady slate heat-exchanger temperature prior to thrust operation and nitrogen inlet pressure (flow rate) during thrust operation. Although the Shooting Star engines were designed as thermal-storage engines to accommodate mission parameters, they are fully capable of operating as scalable, direct-gain engines. Tests are conducted in both operational modes. Engine thrust and propellant flow rate will be measured and thereby I(sub sp). The objective of these tests is to investigate the effectiveness of the solar engine as a heat exchanger and a rocket. Of particular interest is the effectiveness of the support structure as a thermal insulator, the integrity of both the insulation system and the insulation containment system, the overall temperature distribution throughout the engine module, and the thermal power required to sustain steady state fluid temperatures at various flow rates.
Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2008-01-01
A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.
NASA Astrophysics Data System (ADS)
Dhara, Chirag; Renner, Maik; Kleidon, Axel
2015-04-01
The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.
2009-07-01
presented a summary of recent research on boiling in microchannels . He addressed the topics of macro scale versus micro scale heat transfer , two phase...flow regime, flow boiling 14 heat transfer results for microchannels , heat transfer mechanisms in microchannels , and flow boiling models for... Heat Transfer Boiling In Minichannel And Microchannel Flow Passages Of Compact Evaporators, Keynote Lecture Presented at the Engineering Foundation
Modeling Radiative Heat Transfer and Turbulence-Radiation Interactions in Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Chandan; Sircar, Arpan; Ferreyro-Fernandez, Sebastian
Detailed radiation modelling in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for amore » full-load (peak pressure ~200 bar) heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method.« less
Stirling engine external heat system design with heat pipe heater
NASA Technical Reports Server (NTRS)
Godett, Ted M.; Ziph, Benjamin
1986-01-01
This final report presents the conceptual design of a liquid fueled external heating system (EHS) and the preliminary design of a heat pipe heater for the STM-4120 Stirling cycle engine, to meet the Air Force mobile electric power (MEP) requirement for units in the range of 20 to 60 kW. The EHS design had the following constraints: (1) Packaging requirements limited the overall system dimensions to about 330 mm x 250 mm x 100 mm; (2) Heat flux to the sodium heat pipe evaporator was limited to an average of 100 kW/m and a maximum of 550 kW/m based on previous experience; and (3) The heat pipe operating temperature was specified to be 800 C based on heat input requirements of the STM4-120. An analysis code was developed to optimize the EHS performance parameters and an analytical development of the sodium heat pipe heater was performed; both are presented and discussed. In addition, construction techniques were evaluated and scale model heat pipe testing performed.
Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe
NASA Astrophysics Data System (ADS)
Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.
1993-04-01
The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.
Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe
NASA Technical Reports Server (NTRS)
Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.
1993-01-01
The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.
NASA Astrophysics Data System (ADS)
Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei
2018-03-01
We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.
NASA Astrophysics Data System (ADS)
Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei
2018-06-01
We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.
NASA Technical Reports Server (NTRS)
Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan
2014-01-01
ATA-002 Technical Team has successfully designed, developed, tested and assessed the SLS Pathfinder propulsion systems for the Main Base Heating Test Program. Major Outcomes of the Pathfinder Test Program: Reach 90% of full-scale chamber pressure Achieved all engine/motor design parameter requirements Reach steady plume flow behavior in less than 35 msec Steady chamber pressure for 60 to 100 msec during engine/motor operation Similar model engine/motor performance to full-scale SLS system Mitigated nozzle throat and combustor thermal erosion Test data shows good agreement with numerical prediction codes Next phase of the ATA-002 Test Program Design & development of the SLS OML for the Main Base Heating Test Tweak BSRM design to optimize performance Tweak CS-REM design to increase robustness MSFC Aerosciences and CUBRC have the capability to develop sub-scale propulsion systems to meet desired performance requirements for short-duration testing.
NASA Astrophysics Data System (ADS)
Powell, M. A.; Rawlinson, K. S.
A kinetic Stirling cycle engine, the Stirling Thermal Motors (STM) STM4-120, was tested at the Sandia National Laboratories Engine Test Facility (ETF) from March 1989-August 1992. Sandia is interested in determining this engine's potential for solar-thermal-electric applications. The last round of testing was conducted from July-August 1992 using Sandia-designed gas-fired heat pipe evaporators as the heat input system to the engine. The STM4-120 was performance mapped over a range of sodium vapor temperatures, cooling water temperatures, and cycle pressures. The resulting shaft power output levels ranged from 5-9 kW. The engine demonstrated high conversion efficiency (24-31%) even though the power output level was less than 40% of the rated output of 25 kW. The engine had been previously derated from 25 kW to 10 kW shaft power due to mechanical limitations that were identified by STM during parallel testing at their facility in Ann Arbor, MI. A statistical method was used to design the experiment, to choose the experimental points, and to generate correlation equations describing the engine performance given the operating parameters. The testing was truncated due to a failure of the heat pipe system caused by entrainment of liquid sodium in the condenser section of the heat pipes. Enough data was gathered to generate the correlations and to demonstrate the experimental technique. The correlation is accurate in the experimental space and is simple enough for use in hand calculations and spreadsheet-based system models. Use of this method can simplify the construction of accurate performance and economic models of systems in which the engine is a component. The purpose of this paper is to present the method used to design the experiments and to analyze the performance data.
Computer model of catalytic combustion/Stirling engine heater head
NASA Technical Reports Server (NTRS)
Chu, E. K.; Chang, R. L.; Tong, H.
1981-01-01
The basic Acurex HET code was modified to analyze specific problems for Stirling engine heater head applications. Specifically, the code can model: an adiabatic catalytic monolith reactor, an externally cooled catalytic cylindrical reactor/flat plate reactor, a coannular tube radiatively cooled reactor, and a monolithic reactor radiating to upstream and downstream heat exchangers.
Aqueous Ethanol Ignition and Engine Studies, Phase I
DOT National Transportation Integrated Search
2010-09-01
Our objectives were to design a micro-dilution tunnel for monitoring engine emissions, measure ignition temperature and heat release from ethanol-water-air mixtures on platinum, and initiate a computational fluid dynamics model of a catalytic igniter...
Modeling of Thermoelectric Generator Power Characteristics for Motorcycle-Type Engines
NASA Astrophysics Data System (ADS)
Osipkov, Alexey; Poshekhonov, Roman; Arutyunyan, Georgy; Basov, Andrey; Safonov, Roman
2017-10-01
Thermoelectric generation in vehicles such as motorcycles, all-terrain vehicles, and snowmobiles opens the possibility of additional electrical energy generation by means of exhaust heat utilization. This is beneficial because replacing the mechanical generator used in such vehicles with a more powerful one in cases of electrical power deficiency is impossible. This paper proposes a calculation model for the thermoelectric generator (TEG) operational characteristics of the low-capacity internal combustion engines used in these vehicles. Two TEG structures are considered: (1) TEG with air cooling and (2) TEG with water cooling. Modeling consists of two calculation stages. In the first stage, the heat exchange coefficients of the hot and cold exchangers are determined using computational fluid dynamics. In the second stage, the TEG operational characteristics are modeled based on the nonlinear equations of the heat transfer and power balance. On the basis of the modeling results, the dependence of the TEG's major operating characteristics (such as the electrical power generated by the TEG and its efficiency and mass) on operating conditions or design parameters is determined. For example, the electrical power generated by a TEG for a Yamaha WR450F motorcycle engine with a volume of 0.449 × 10-3 m3 was calculated to be as much as 100 W. Use of the TEG arrangements proposed is justified by the additional electrical power generation for small capacity vehicles, without the need for internal combustion engine redesign.
CFD Analysis of Spray Combustion and Radiation in OMV Thrust Chamber
NASA Technical Reports Server (NTRS)
Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.; Gross, K.
1993-01-01
The Variable Thrust Engine (VTE), developed by TRW, for the Orbit Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The propellants are pressure fed into the combustion chamber through a single pintle injection element. The performance of this engine is dependent on the pintle geometry and a number of complex physical phenomena and their mutual interactions. The most important among these are (1) atomization of the liquid jets into fine droplets; (2) the motion of these droplets in the gas field; (3) vaporization of the droplets (4) turbulent mixing of the fuel and oxidizer; and (5) hypergolic reaction between MMH and NTO. Each of the above phenomena by itself poses a considerable challenge to the technical community. In a reactive flow field of the kind occurring inside the VTE, the mutual interactions between these physical processes tend to further complicate the analysis. The objective of this work is to develop a comprehensive mathematical modeling methodology to analyze the flow field within the VTE. Using this model, the effect of flow parameters on various physical processes such as atomization, spray dynamics, combustion, and radiation is studied. This information can then be used to optimize design parameters and thus improve the performance of the engine. The REFLEQS CFD Code is used for solving the fluid dynamic equations. The spray dynamics is modeled using the Eulerian-Lagrangian approach. The discrete ordinate method with 12 ordinate directions is used to predict the radiative heat transfer in the OMV combustion chamber, nozzle, and the heat shield. The hypergolic reaction between MMH and NTO is predicted using an equilibrium chemistry model with 13 species. The results indicate that mixing and combustion is very sensitive to the droplet size. Smaller droplets evaporate faster than bigger droplets, leading to a well mixed zone in the combustion chamber. The radiative heat flux at combustion chamber and nozzle walls are an order of negligible less than the conductive heat flux. Simulations performed with the heat shield show that a negligible amount of fluid is entrained into the heat shield region. However, the heat shield is shown to be effective in protecting the OMV structure surrounding the engine from the radiated heat.
Real-Time Simulation of the X-33 Aerospace Engine
NASA Technical Reports Server (NTRS)
Aguilar, Robert
1999-01-01
This paper discusses the development and performance of the X-33 Aerospike Engine RealTime Model. This model was developed for the purposes of control law development, six degree-of-freedom trajectory analysis, vehicle system integration testing, and hardware-in-the loop controller verification. The Real-Time Model uses time-step marching solution of non-linear differential equations representing the physical processes involved in the operation of a liquid propellant rocket engine, albeit in a simplified form. These processes include heat transfer, fluid dynamics, combustion, and turbomachine performance. Two engine models are typically employed in order to accurately model maneuvering and the powerpack-out condition where the power section of one engine is used to supply propellants to both engines if one engine malfunctions. The X-33 Real-Time Model is compared to actual hot fire test data and is been found to be in good agreement.
NASA Technical Reports Server (NTRS)
Russell, Louis M.; Hippensteele, Steven A.
1991-01-01
Increased attention to fuel economy and increased thrust requirements have increased the demand for higher aircraft gas turbine engine efficiency through the use of higher turbine inlet temperatures. These higher temperatures increase the importance of understanding the heat transfer patterns which occur throughout the turbine passages. It is often necessary to use a special coating or some form of cooling to maintain metal temperatures at a level which the metal can withstand for long periods of time. Effective cooling schemes can result in significant fuel savings through higher allowable turbine inlet temperatures and can increase engine life. Before proceeding with the development of any new turbine it is economically desirable to create both mathematical and experimental models to study and predict flow characteristics and temperature distributions. Some of the methods are described used to physically model heat transfer patterns, cooling schemes, and other complex flow patterns associated with turbine and aircraft passages.
Ares I-X First Stage Internal Aft Skirt Re-Entry Heating Data and Modeling
NASA Technical Reports Server (NTRS)
Schmitz, Craig P.; Tashakkor, Scott B.
2011-01-01
The CLVSTATE engineering code is being used to predict Ares-I launch vehicle first stage reentry aerodynamic heating. An engineering analysis is developed which yields reasonable predictions for the timing of the first stage aft skirt thermal curtain failure and the resulting internal gas temperatures. The analysis is based on correlations of the Ares I-X internal aft skirt gas temperatures and has been implemented into CLVSTATE. Validation of the thermal curtain opening models has been accomplished using additional Ares I-X thermocouple, calorimeter and pressure flight data. In addition, a technique which accounts for radiation losses at high altitudes has been developed which improves the gas temperature measurements obtained by the gas temperature probes (GTP). Updates to the CLVSTATE models are shown to improve the accuracy of the internal aft skirt heating predictions which will result in increased confidence in future vehicle designs
Two coupled, driven Ising spin systems working as an engine.
Basu, Debarshi; Nandi, Joydip; Jayannavar, A M; Marathe, Rahul
2017-05-01
Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.
Two coupled, driven Ising spin systems working as an engine
NASA Astrophysics Data System (ADS)
Basu, Debarshi; Nandi, Joydip; Jayannavar, A. M.; Marathe, Rahul
2017-05-01
Miniaturized heat engines constitute a fascinating field of current research. Many theoretical and experimental studies are being conducted that involve colloidal particles in harmonic traps as well as bacterial baths acting like thermal baths. These systems are micron-sized and are subjected to large thermal fluctuations. Hence, for these systems average thermodynamic quantities, such as work done, heat exchanged, and efficiency, lose meaning unless otherwise supported by their full probability distributions. Earlier studies on microengines are concerned with applying Carnot or Stirling engine protocols to miniaturized systems, where system undergoes typical two isothermal and two adiabatic changes. Unlike these models we study a prototype system of two classical Ising spins driven by time-dependent, phase-different, external magnetic fields. These spins are simultaneously in contact with two heat reservoirs at different temperatures for the full duration of the driving protocol. Performance of the model as an engine or a refrigerator depends only on a single parameter, namely the phase between two external drivings. We study this system in terms of fluctuations in efficiency and coefficient of performance (COP). We find full distributions of these quantities numerically and study the tails of these distributions. We also study reliability of the engine. We find the fluctuations dominate mean values of efficiency and COP, and their probability distributions are broad with power law tails.
A multipurpose information engine that can go beyond the Carnot limit
NASA Astrophysics Data System (ADS)
Rana, Shubhashis; Jayannavar, A. M.
2016-10-01
Motivated by the recent work of Mandal and Jarzynski on an autonomous Maxwell demon information engine, we have extended their model by introducing two different heat baths. The system (demon) is coupled to a memory register (tape) and a work source. The performance of the system depends on the interplay between the two sources along with the heat baths. We have found that the system can act as an engine, refrigerator or an eraser. Even the combination of any two is possible in some parameter space. We have achieved an efficiency of the engine greater than the Carnot limit. The coefficient of performance of the refrigerator is also larger than the Carnot limit.
Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine
NASA Astrophysics Data System (ADS)
Fajar, D. M.; Khotimah, S. N.; Khairurrijal
2016-08-01
A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.
Space Shuttle Main Engine (SSME) LOX turbopump pump-end bearing analysis
NASA Technical Reports Server (NTRS)
1986-01-01
A simulation of the shaft/bearing system of the Space Shuttle Main Engine Liquid Oxygen turbopump was developed. The simulation model allows the thermal and mechanical characteristics to interact as a realistic simulation of the bearing operating characteristics. The model accounts for single and two phase coolant conditions, and includes the heat generation from bearing friction and fluid stirring. Using the simulation model, parametric analyses were performed on the 45 mm pump-end bearings to investigate the sensitivity of bearing characteristics to contact friction, axial preload, coolant flow rate, coolant inlet temperature and quality, heat transfer coefficients, outer race clearance and misalignment, and the effects of thermally isolating the outer race from the isolator.
Complete modeling for systems of a marine diesel engine
NASA Astrophysics Data System (ADS)
Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha
2015-03-01
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).
M60 Tank Personnel Heater Comparison Test, Fort Carson, Colorado
1983-05-01
A study should be made considering the logisites and cost implications of developing a kit to upgrade the Model "C" heater to include self ...l f L Summary of Questionnaire Respose -for BLU (Model "A" with Engine Filter/Heat Tape) System Driver Loader Gunner TC’* " # % # % * % # 9 12. Heat
NASA Technical Reports Server (NTRS)
Melcher, John C.; Morehead, Robert L.; Atwell, Matthew J.; Hurlbert, Eric A.
2015-01-01
A liquid oxygen / liquid methane 2,000 lbf thruster was designed and tested in conjuction with a nozzle heat exchanger for cold helium pressurization. Cold helium pressurization systems offer significant spacecraft vehicle dry mass savings since the pressurant tank size can be reduced as the pressurant density is increased. A heat exchanger can be incorporated into the main engine design to provide expansion of the pressurant supply to the propellant tanks. In order to study the systems integration of a cold-helium pressurization system, a 2,000 lbf thruster with a nozzle heat exchanger was designed for integration into the Project Morpheus vehicle at NASA Johnson Space Center. The testing goals were to demonstrate helium loading and initial conditioning to low temperatures, high-pressure/low temperature storage, expansion through the main engine heat exchanger, and propellant tank injection/pressurization. The helium pressurant tank was an existing 19 inch diameter composite-overwrap tank, and the targert conditions were 4500 psi and -250 F, providing a 2:1 density advantage compared to room tempatrue storage. The thruster design uses like-on-like doublets in the injector pattern largely based on Project Morpheus main engine hertiage data, and the combustion chamber was designed for an ablative chamber. The heat exchanger was installed at the ablative nozzle exit plane. Stand-alone engine testing was conducted at NASA Stennis Space Center, including copper heat-sink chambers and highly-instrumented spoolpieces in order to study engine performance, stability, and wall heat flux. A one-dimensional thermal model of the integrated system was completed. System integration into the Project Morpheus vehicle is complete, and systems demonstrations will follow.
Implementation of Service-Learning in Engineering and Its Impact on Students' Attitudes and Identity
ERIC Educational Resources Information Center
Dukhan, N.; Schumack, M. R.; Daniels, J. J.
2008-01-01
The current paper outlines a concise engineering service-learning model and describes its implementation and logistics in the context of a typical heat transfer course for undergraduate engineering students. The project was executed in collaboration with a not-for-profit organisation. Summative reflections were conducted by the students by…
A heat receiver design for solar dynamic space power systems
NASA Technical Reports Server (NTRS)
Baker, Karl W.; Dustin, Miles O.; Crane, Roger
1990-01-01
An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.
Role of interference in the photosynthetic heat engine
NASA Astrophysics Data System (ADS)
Xu, Y. Y.; Liu, J.
2014-11-01
The observation of quantum coherence in pigment-protein complexes has attracted considerable interest. One such endeavor entails applying a quantum heat engine to model the photosynthetic reaction center, but the definition of work used is inconsistent with that defined in quantum thermodynamics. Using the definition of work proposed in Weimer et al. [Europhys. Lett. 83, 30008 (2008), 10.1209/0295-5075/83/30008], we investigated two proposals for enhancing the performance of the photosynthetic reaction center. In proposal A, which is similar to that in Dorfman et al. [Proc. Natl. Acad. Sci. USA 110, 2746 (2013), 10.1073/pnas.1212666110], we found that the power and current-voltage characteristic of the heat engine can be increased by Fano interference but the efficiency cannot. In proposal B, which is similar to that in Creatore et al. [Phys. Rev. Lett. 111, 253601 (2013), 10.1103/PhysRevLett.111.253601], we found that the mechanism of strengthening the performance of the heat engine is invalid; i.e., the dipole-dipole interaction between two electron donors could not increase the power, efficiency, or current-voltage characteristic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-03-01
This volume presents the following appendices: ceramic test specimen drawings and schematics, mixed-mode and biaxial stress fracture of structural ceramics for advanced vehicular heat engines (U. Utah), mode I/mode II fracture toughness and tension/torsion fracture strength of NT154 Si nitride (Brown U.), summary of strength test results and fractography, fractography photographs, derivations of statistical models, Weibull strength plots for fast fracture test specimens, and size functions.
NASA Astrophysics Data System (ADS)
Kuzenov, V. V.; Ryzhkov, S. V.
2017-02-01
The paper formulated engineering and physical mathematical model for aerothermodynamics hypersonic flight vehicle (HFV) in laminar and turbulent boundary layers (model designed for an approximate estimate of the convective heat flow in the range of speeds M = 6-28, and height H = 20-80 km). 2D versions of calculations of convective heat flows for bodies of simple geometric forms (individual elements of the design HFV) are presented.
A micrometre-sized heat engine operating between bacterial reservoirs
NASA Astrophysics Data System (ADS)
Krishnamurthy, Sudeesh; Ghosh, Subho; Chatterji, Dipankar; Ganapathy, Rajesh; Sood, A. K.
2016-12-01
Artificial microscale heat engines are prototypical models to explore the mechanisms of energy transduction in a fluctuation-dominated regime. The heat engines realized so far on this scale have operated between thermal reservoirs, such that stochastic thermodynamics provides a precise framework for quantifying their performance. It remains to be seen whether these concepts readily carry over to situations where the reservoirs are out of equilibrium, a scenario of particular importance to the functioning of synthetic and biological microscale engines and motors. Here, we experimentally realize a micrometre-sized active Stirling engine by periodically cycling a colloidal particle in a time-varying optical potential across bacterial baths characterized by different degrees of activity. We find that the displacement statistics of the trapped particle becomes increasingly non-Gaussian with activity and contributes substantially to the overall power output and the efficiency. Remarkably, even for engines with the same energy input, differences in non-Gaussianity of reservoir noise results in distinct performances. At high activities, the efficiency of our engines surpasses the equilibrium saturation limit of Stirling efficiency, the maximum efficiency of a Stirling engine where the ratio of cold to hot reservoir temperatures is vanishingly small. Our experiments provide fundamental insights into the functioning of micromotors and engines operating out of equilibrium.
NASA Technical Reports Server (NTRS)
Cheng, Gary
2003-01-01
In the past, the design of rocket engines has primarily relied on the cold flow/hot fire test, and the empirical correlations developed based on the database from previous designs. However, it is very costly to fabricate and test various hardware designs during the design cycle, whereas the empirical model becomes unreliable in designing the advanced rocket engine where its operating conditions exceed the range of the database. The main goal of the 2nd Generation Reusable Launching Vehicle (GEN-II RLV) is to reduce the cost per payload and to extend the life of the hardware, which poses a great challenge to the rocket engine design. Hence, understanding the flow characteristics in each engine components is thus critical to the engine design. In the last few decades, the methodology of computational fluid dynamics (CFD) has been advanced to be a mature tool of analyzing various engine components. Therefore, it is important for the CFD design tool to be able to properly simulate the hot flow environment near the liquid injector, and thus to accurately predict the heat load to the injector faceplate. However, to date it is still not feasible to conduct CFD simulations of the detailed flowfield with very complicated geometries such as fluid flow and heat transfer in an injector assembly and through a porous plate, which requires gigantic computer memories and power to resolve the detailed geometry. The rigimesh (a sintered metal material), utilized to reduce the heat load to the faceplate, is one of the design concepts for the injector faceplate of the GEN-II RLV. In addition, the injector assembly is designed to distribute propellants into the combustion chamber of the liquid rocket engine. A porosity mode thus becomes a necessity for the CFD code in order to efficiently simulate the flow and heat transfer in these porous media, and maintain good accuracy in describing the flow fields. Currently, the FDNS (Finite Difference Navier-Stakes) code is one of the CFD codes which are most widely used by research engineers at NASA Marshall Space Flight Center (MSFC) to simulate various flow problems related to rocket engines. The objective of this research work during the 10-week summer faculty fellowship program was to 1) debug the framework of the porosity model in the current FDNS code, and 2) validate the porosity model by simulating flows through various porous media such as tube banks and porous plate.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Choi, Sung R.; Ghosn, Louis J.; Miller, rober A.
2005-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. A fundamental understanding of the sintering and thermal cycling induced delamination of thermal barrier coating systems under engine-like heat flux conditions will potentially help to improve the coating temperature capability. In this study, a test approach is established to emphasize the real-time monitoring and assessment of the coating thermal conductivity, which can initially increase under the steady-state high temperature thermal gradient test due to coating sintering, and later decrease under the thermal gradient cyclic test due to coating cracking and delamination. Thermal conductivity prediction models have been established for a ZrO2-(7- 8wt%)Y2O3 model coating system in terms of heat flux, time, and testing temperatures. The coating delamination accumulation is then assessed based on the observed thermal conductivity response under the combined steady-state and cyclic thermal gradient tests. The coating thermal gradient cycling associated delaminations and failure mechanisms under simulated engine heat-flux conditions will be discussed in conjunction with the coating sintering and fracture testing results.
Irreversible Brownian Heat Engine
NASA Astrophysics Data System (ADS)
Taye, Mesfin Asfaw
2017-10-01
We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.
NASA Astrophysics Data System (ADS)
Yu, Zhitao; Miller, Franklin; Pfotenhauer, John M.
2017-12-01
Both a numerical and analytical model of the heat and mass transfer processes in a CO2, N2 mixture gas de-sublimating cross-flow finned duct heat exchanger system is developed to predict the heat transferred from a mixture gas to liquid nitrogen and the de-sublimating rate of CO2 in the mixture gas. The mixture gas outlet temperature, liquid nitrogen outlet temperature, CO2 mole fraction, temperature distribution and de-sublimating rate of CO2 through the whole heat exchanger was computed using both the numerical and analytic model. The numerical model is built using EES [1] (engineering equation solver). According to the simulation, a cross-flow finned duct heat exchanger can be designed and fabricated to validate the models. The performance of the heat exchanger is evaluated as functions of dimensionless variables, such as the ratio of the mass flow rate of liquid nitrogen to the mass flow rate of inlet flue gas.
Asymmetric Base-Bleed Effect on Aerospike Plume-Induced Base-Heating Environment
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Droege, Alan; DAgostino, Mark; Lee, Young-Ching; Williams, Robert
2004-01-01
A computational heat transfer design methodology was developed to study the dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The source of its impact comes from the asymmetric and reduced base bleed.
Heat transfer in damaged material
NASA Astrophysics Data System (ADS)
Kruis, J.
2013-10-01
Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.
Heat transfer correlations for multilayer insulation systems
NASA Astrophysics Data System (ADS)
Krishnaprakas, C. K.; Badari Narayana, K.; Dutta, Pradip
2000-01-01
Multilayer insulation (MLI) blankets are extensively used in spacecrafts as lightweight thermal protection systems. Heat transfer analysis of MLI is sometimes too complex to use in practical design applications. Hence, for practical engineering design purposes, it is necessary to have simpler procedures to evaluate the heat transfer rate through MLI. In this paper, four different empirical models for heat transfer are evaluated by fitting against experimentally observed heat flux through MLI blankets of various configurations, and the results are discussed.
Method for controlling exhaust gas heat recovery systems in vehicles
Spohn, Brian L.; Claypole, George M.; Starr, Richard D
2013-06-11
A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.
ERIC Educational Resources Information Center
Sundberg, Donald C.; Someshwar, Arun V.
1989-01-01
Describes the structure of an in-depth laboratory project chemical engineering. Provides modeling work to guide experimentation and experimental work on heat transfer analysis. Discusses the experimental results and evaluation of the project. (YP)
Progress of Stirling cycle analysis and loss mechanism characterization
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.
1986-01-01
An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.
Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine
NASA Astrophysics Data System (ADS)
Xu, Y. Y.; Chen, B.; Liu, J.
2018-02-01
Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.
Dual nozzle aerodynamic and cooling analysis study. [dual throat and dual expander nozzles
NASA Technical Reports Server (NTRS)
Meagher, G. M.
1980-01-01
Geometric, aerodynamic flow field, performance prediction, and heat transfer analyses are considered for two advanced chamber nozzle concepts applicable to Earth-to-orbit engine systems. Topics covered include improvements to the dual throat aerodynamic and performance prediction program; geometric and flow field analyses of the dual expander concept; heat transfer analysis of both concepts, and engineering analysis of data from the NASA/MSFC hot-fire testing of a dual throat thruster model thrust chamber assembly. Preliminary results obtained are presented in graphs.
NASA Technical Reports Server (NTRS)
Kacynski, Kenneth J.; Hoffman, Joe D.
1993-01-01
An advanced engineering computational model has been developed to aid in the analysis and design of hydrogen/oxygen chemical rocket engines. The complete multi-species, chemically reacting and diffusing Navier-Stokes equations are modelled, finite difference approach that is tailored to be conservative in an axisymmetric coordinate system for both the inviscid and viscous terms. Demonstration cases are presented for a 1030:1 area ratio nozzle, a 25 lbf film cooled nozzle, and transpiration cooled plug-and-spool rocket engine. The results indicate that the thrust coefficient predictions of the 1030:1 nozzle and the film cooled nozzle are within 0.2 to 0.5 percent, respectively, of experimental measurements when all of the chemical reaction and diffusion terms are considered. Further, the model's predictions agree very well with the heat transfer measurements made in all of the nozzle test cases. The Soret thermal diffusion term is demonstrated to have a significant effect on the predicted mass fraction of hydrogen along the wall of the nozzle in both the laminar flow 1030:1 nozzle and the turbulent plug-and-spool rocket engine analysis cases performed. Further, the Soret term was shown to represent a significant fraction of the diffusion fluxes occurring in the transpiration cooled rocket engine.
Supersonic combustion engine testbed, heat lightning
NASA Technical Reports Server (NTRS)
Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.
1990-01-01
The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.
Development of an engineering model for ferromagnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato
This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature.
NASA Technical Reports Server (NTRS)
Simon, Frederick F.
1993-01-01
A program sponsored by NASA for the investigation of the heat transfer in the transition region of turbine vanes and blades with the objective of improving the capability for predicting heat transfer is described. The accurate prediction of gas-side heat transfer is important to the determination of turbine longevity, engine performance, and developmental costs. The need for accurate predictions will become greater as the operating temperatures and stage loading levels of advanced turbine engines increase. The present methods for predicting transition shear stress and heat transfer on turbine blades are based on incomplete knowledge and are largely empirical. To meet the objective of the NASA program, a team approach consisting of researchers from government, universities, a research institute, and a small business is presented. The research is divided into the areas of experiments, direct numerical simulations (DNS), and turbulence modeling. A summary of the results to date is given for the above research areas in a high-disturbance environment (bypass transition) with a discussion of the model development necessary for use in numerical codes.
The design and fabrication of a Stirling engine heat exchanger module with an integral heat pipe
NASA Technical Reports Server (NTRS)
Schreiber, Jeffrey G.
1988-01-01
The conceptual design of a free-piston Stirling Space Engine (SSE) intended for space power applications has been generated. The engine was designed to produce 25 kW of electric power with heat supplied by a nuclear reactor. A novel heat exchanger module was designed to reduce the number of critical joints in the heat exchanger assembly while also incorporating a heat pipe as the link between the engine and the heat source. Two inexpensive verification tests are proposed. The SSE heat exchanger module is described and the operating conditions for the module are outlined. The design process of the heat exchanger modules, including the sodium heat pipe, is briefly described. Similarities between the proposed SSE heat exchanger modules and the LeRC test modules for two test engines are presented. The benefits and weaknesses of using a sodium heat pipe to transport heat to a Stirling engine are discussed. Similarly, the problems encountered when using a true heat pipe, as opposed to a more simple reflux boiler, are described. The instruments incorporated into the modules and the test program are also outlined.
Mars boundary layer simulations - Comparison with Viking lander and entry observations
NASA Technical Reports Server (NTRS)
Haberle, R. M.; Houben, H. C.
1991-01-01
Diurnal variations of wind and temperature in the lower Martian atmosphere are simulated with a boundary layer model that includes radiative heating in a dusty CO2 atmosphere, turbulence generated by convection and/or shear stresses, a surface heat budget, and time varying pressure forces due to sloping terrain. Model results for early northern summer are compared with Viking lander observations to determine the model's strengths and weaknesses, and suitability as an engineering model.
Optimization Of Engine Heat Transfer Mechanisms For Ground Combat Vehicle Signature Models
NASA Astrophysics Data System (ADS)
Gonda, T.; Rogers, P.; Gerhart, G.; Reynolds, W. R.
1988-08-01
A thermodynamic model for predicting the behavior of selected internal thermal sources of an M2 Bradley Infantry Fighting Vehicle is described. The modeling methodology is expressed in terms of first principle heat transfer equations along with a brief history of TACOM's experience with thermal signature modeling techniques. The dynamic operation of the internal thermal sources is presented along with limited test data and an examination of their effect on the vehicle signature.
Condensation of binary mixtures on horizontal tubes
NASA Astrophysics Data System (ADS)
Büchner, A.; Reif, A.; Rehfeldt, S.; Klein, H.
2017-12-01
The two most common models to describe the condensation of binary mixtures are the equilibrium model by Silver (Trans Inst Chem Eng 25:30-42, 1947) and the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937), which is stated by Webb et al. (Int J Heat Mass Transf 39:3147-3156, 1996) as more accurate. The film model describes the outer heat transfer coefficient by subdividing it into two separate resistances against the heat transfer. The resistance of the liquid condensate film on the tube can be calculated with equations for the condensation of pure substances for the analogous flow pattern and geometry using the property data of the mixture. The resistance in the gas phase can be described by a thermodynamic parameter Z and the single phase heat transfer coefficient α G . In this work measurements for condensation of the binary mixtures n-pentane/iso-octane and iso-propanol/water on horizontal tubes for free convection are carried out. The obtained results are compared with the film model by Colburn and Drew (Transactions of the American Institute of Chemical Engineers 33:197-215, 1937). The comparison shows a rather big deviation between the theoretical model and the experimental results. To improve the prediction quality an own model based on dimensionless numbers is proposed, which describes the experimental results of this work significantly better than the film model.
Efficiency and its bounds for a quantum Einstein engine at maximum power.
Yan, H; Guo, Hao
2012-11-01
We study a quantum thermal engine model for which the heat transfer law is determined by Einstein's theory of radiation. The working substance of the quantum engine is assumed to be a two-level quantum system of which the constituent particles obey Maxwell-Boltzmann (MB), Fermi-Dirac (FD), or Bose-Einstein (BE) distributions, respectively, at equilibrium. The thermal efficiency and its bounds at maximum power of these models are derived and discussed in the long and short thermal contact time limits. The similarity and difference between these models are discussed. We also compare the efficiency bounds of this quantum thermal engine to those of its classical counterpart.
Laminar and turbulent heating predictions for mars entry vehicles
NASA Astrophysics Data System (ADS)
Wang, Xiaoyong; Yan, Chao; Zheng, Weilin; Zhong, Kang; Geng, Yunfei
2016-11-01
Laminar and turbulent heating rates play an important role in the design of Mars entry vehicles. Two distinct gas models, thermochemical non-equilibrium (real gas) model and perfect gas model with specified effective specific heat ratio, are utilized to investigate the aerothermodynamics of Mars entry vehicle named Mars Science Laboratory (MSL). Menter shear stress transport (SST) turbulent model with compressible correction is implemented to take account of the turbulent effect. The laminar and turbulent heating rates of the two gas models are compared and analyzed in detail. The laminar heating rates predicted by the two gas models are nearly the same at forebody of the vehicle, while the turbulent heating environments predicted by the real gas model are severer than the perfect gas model. The difference of specific heat ratio between the two gas models not only induces the flow structure's discrepancy but also increases the heating rates at afterbody of the vehicle obviously. Simple correlations for turbulent heating augmentation in terms of laminar momentum thickness Reynolds number, which can be employed as engineering level design and analysis tools, are also developed from numerical results. At the time of peak heat flux on the +3σ heat load trajectory, the maximum value of momentum thickness Reynolds number at the MSL's forebody is about 500, and the maximum value of turbulent augmentation factor (turbulent heating rates divided by laminar heating rates) is 5 for perfect gas model and 8 for real gas model.
NASA Astrophysics Data System (ADS)
Feidt, Michel; Costea, Monica
2018-04-01
Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.
Combination solar photovoltaic heat engine energy converter
NASA Technical Reports Server (NTRS)
Chubb, Donald L.
1987-01-01
A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.
NASA Astrophysics Data System (ADS)
Mou, Jian; Hong, Guotong
2017-02-01
In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.
NASA Astrophysics Data System (ADS)
Matsumoto, Jun; Okaya, Shunichi; Igoh, Hiroshi; Kawaguchi, Junichiro
2017-04-01
A new propellant feed system referred to as a self-pressurized feed system is proposed for liquid rocket engines. The self-pressurized feed system is a type of gas-pressure feed system; however, the pressurization source is retained in the liquid state to reduce tank volume. The liquid pressurization source is heated and gasified using heat exchange from the hot propellant using a regenerative cooling strategy. The liquid pressurization source is raised to critical pressure by a pressure booster referred to as a charger in order to avoid boiling and improve the heat exchange efficiency. The charger is driven by a part of the generated pressurization gas using a closed-loop self-pressurized feed system. The purpose of this study is to propose a propellant feed system that is lighter and simpler than traditional gas pressure feed systems. The proposed system can be applied to all liquid rocket engines that use the regenerative cooling strategy. The concept and mathematical models of the self-pressurized feed system are presented first. Experiment results for verification are then shown and compared with the mathematical models.
Radiant heat exchange calculations in radiantly heated and cooled enclosures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, K.S.; Zhang, P.
1995-08-01
This paper presents the development of a three-dimensional mathematical model to compute the radiant heat exchange between surfaces separated by a transparent and/or opaque medium. The model formulation accommodates arbitrary arrangements of the interior surfaces, as well as arbitrary placement of obstacles within the enclosure. The discrete ordinates radiation model is applied and has the capability to analyze the effect of irregular geometries and diverse surface temperatures and radiative properties. The model is verified by comparing calculated heat transfer rates to heat transfer rates determined from the exact radiosity method for four different enclosures. The four enclosures were selected tomore » provide a wide range of verification. This three-dimensional model based on the discrete ordinates method can be applied to a building to assist the design engineer in sizing a radiant heating system. By coupling this model with a convective and conductive heat transfer model and a thermal comfort model, the comfort levels throughout the room can be easily and efficiently mapped for a given radiant heater location. In addition, objects such as airplanes, trucks, furniture, and partitions can be easily incorporated to determine their effect on the performance of the radiant heating system.« less
Rankine cycle waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2015-09-22
A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.
Black holes in massive gravity as heat engines
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Liu, H.; Meng, X.-H.
2018-06-01
The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters modify the efficiency of engine on a significant level. Furthermore, it will be pointed out that it is possible to have a heat engine for non-spherical black holes in massive gravity, and therefore, we will study the effects of horizon topology on the properties of heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with the hyperbolic horizon, while the lowest one belongs to the spherical black holes.
Radiative Heat Transfer and Turbulence-Radiation Interactions in a Heavy-Duty Diesel Engine
NASA Astrophysics Data System (ADS)
Paul, C.; Sircar, A.; Ferreyro, S.; Imren, A.; Haworth, D. C.; Roy, S.; Ge, W.; Modest, M. F.
2016-11-01
Radiation in piston engines has received relatively little attention to date. Recently, it is being revisited in light of current trends towards higher operating pressures and higher levels of exhaust-gas recirculation, both of which enhance molecular gas radiation. Advanced high-efficiency engines also are expected to function closer to the limits of stable operation, where even small perturbations to the energy balance can have a large influence on system behavior. Here several different spectral radiation property models and radiative transfer equation (RTE) solvers have been implemented in an OpenFOAM-based engine CFD code, and simulations have been performed for a heavy-duty diesel engine. Differences in computed temperature fields, NO and soot levels, and wall heat transfer rates are shown for different combinations of spectral models and RTE solvers. The relative importance of molecular gas radiation versus soot radiation is examined. And the influence of turbulence-radiation interactions is determined by comparing results obtained using local mean values of composition and temperature to compute radiative emission and absorption with those obtained using a particle-based transported probability density function method. DOE, NSF.
NASA Astrophysics Data System (ADS)
Olivier, Come; Penelet, Guillaume; Poignand, Gaelle; Lotton, Pierrick
2015-10-01
A simplified model of a Stirling-type thermoacoustic engine coupled to a resonant mechanical system is presented. The acoustic network is presented as its temperature-dependent lumped element equivalent, and the nonlinear effects involved in such engines are accounted for in a nonlinear heat equation governing the temperature distribution through the thermoacoustic core. The low-order model is sufficient to capture the behavior of the engine, both in terms of stability and dynamic behavior.
A non-local model of fractional heat conduction in rigid bodies
NASA Astrophysics Data System (ADS)
Borino, G.; di Paola, M.; Zingales, M.
2011-03-01
In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.
Study, optimization, and design of a laser heat engine. [for satellite applications
NASA Technical Reports Server (NTRS)
Taussig, R. T.; Cassady, P. E.; Zumdieck, J. F.
1978-01-01
Laser heat engine concepts, proposed for satellite applications, are analyzed to determine which engine concept best meets the requirements of high efficiency (50 percent or better), continuous operation in space using near-term technology. The analysis of laser heat engines includes the thermodynamic cycles, engine design, laser power sources, collector/concentrator optics, receiving windows, absorbers, working fluids, electricity generation, and heat rejection. Specific engine concepts, optimized according to thermal efficiency, are rated by their technological availability and scaling to higher powers. A near-term experimental demonstration of the laser heat engine concept appears feasible utilizing an Otto cycle powered by CO2 laser radiation coupled into the engine through a diamond window. Higher cycle temperatures, higher efficiencies, and scalability to larger sizes appear to be achievable from a laser heat engine design based on the Brayton cycle and powered by a CO laser.
Documentation of the Benson Diesel Engine Simulation Program
NASA Technical Reports Server (NTRS)
Vangerpen, Jon
1988-01-01
This report documents the Benson Diesel Engine Simulation Program and explains how it can be used to predict the performance of diesel engines. The program was obtained from the Garrett Turbine Engine Company but has been extensively modified since. The program is a thermodynamic simulation of the diesel engine cycle which uses a single zone combustion model. It can be used to predict the effect of changes in engine design and operating parameters such as valve timing, speed and boost pressure. The most significan change made to this program is the addition of a more detailed heat transfer model to predict metal part temperatures. This report contains a description of the sub-models used in the Benson program, a description of the input parameters and sample program runs.
Comparison of software models for energy savings from cool roofs
New, Joshua; Miller, William A.; Huang, Yu; ...
2015-06-07
For this study, a web-based Roof Savings Calculator (RSC) has been deployed for the United States Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. RSC simulates multiple roof and attic technologies for side-by-side comparison including reflective roofs, different roof slopes, above sheathing ventilation, radiant barriers, low-emittance roof surfaces, duct location, duct leakage rates, multiple substrate types, and insulation levels. Annual simulations of hour-by-hour, whole-building performance are used to provide estimated annual energy and cost savings from reduced HVAC use. While RSC reported similar cooling savingsmore » to other simulation engines, heating penalty varied significantly. RSC results show reduced cool roofing cost-effectiveness, thus mitigating expected economic incentives for this countermeasure to the urban heat island effect. This paper consolidates comparison of RSC's projected energy savings to other simulation engines including DOE-2.1E, AtticSim, Micropas, and EnergyPlus. Also included are comparisons to previous simulation-based studies, analysis of RSC cooling savings and heating penalties, the role of radiative heat exchange in an attic assembly, and changes made for increased accuracy of the duct model. Finally, radiant heat transfer and duct interaction not previously modeled is considered a major contributor to heating penalties.« less
NASA Astrophysics Data System (ADS)
Vanheyden, L.; Evertz, E.
1980-12-01
Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...
Performance characteristics of a combination solar photovoltaic heat engine energy converter
NASA Technical Reports Server (NTRS)
Chubb, Donald L.
1987-01-01
A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.
Advanced radioisotope heat source for Stirling Engines
NASA Astrophysics Data System (ADS)
Dobry, T. J.; Walberg, G.
2001-02-01
The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .
Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade
NASA Astrophysics Data System (ADS)
Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz
2016-08-01
This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.
Miniature high temperature plug-type heat flux gauges
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1992-01-01
The objective is to describe continuing efforts to develop methods for measuring surface heat flux, gauge active surface temperature, and heat transfer coefficient quantities. The methodology involves inventing a procedure for fabricating improved plug-type heat flux gauges and also for formulating inverse heat conduction models and calculation procedures. These models and procedures are required for making indirect measurements of these quantities from direct temperature measurements at gauge interior locations. Measurements of these quantities were made in a turbine blade thermal cycling tester (TBT) located at MSFC. The TBT partially simulates the turbopump turbine environment in the Space Shuttle Main Engine. After the TBT test, experiments were performed in an arc lamp to analyze gauge quality.
Quasi-passive heat sink for high-power laser diodes
NASA Astrophysics Data System (ADS)
Vetrovec, John
2009-02-01
We report on a novel heat sink for high-power laser diodes offering unparalleled capacity in high-heat flux handling and temperature control. The heat sink uses a liquid coolant flowing at high speed in a miniature closed and sealed loop. Diode waste heat is received at high flux and transferred to environment, coolant fluid, heat pipe, or structure at a reduced flux. When pumping solid-state or alkali vapor lasers, diode wavelength can be electronically tuned to the absorption features of the laser gain medium. This paper presents the heat sink physics, engineering design, performance modeling, and configurations.
NASA Astrophysics Data System (ADS)
Zerkle, Ronald D.; Prakash, Chander
1995-03-01
This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.
NASA Technical Reports Server (NTRS)
Zerkle, Ronald D.; Prakash, Chander
1995-01-01
This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.
Effects Of Heat Sinks On VPPA Welds
NASA Technical Reports Server (NTRS)
Nunes, Arthur C.; Steranka, Paul O., Jr.
1991-01-01
Report describes theoretical and experimental study of absorption of heat by metal blocks in contact with metal plate while plate subjected to variable-polarity plasma-arc (VPPA) welding. Purpose of study to contribute to development of comprehensive mathematical model of temperature in weld region. Also relevant to welding of thin sheets of metal to thick blocks of metal, heat treatment of metals, and hotspots in engines.
Overview of aerothermodynamic loads definition study
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
1991-01-01
The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.
NASA Technical Reports Server (NTRS)
Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.
2014-01-01
The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.
RTE: A computer code for Rocket Thermal Evaluation
NASA Technical Reports Server (NTRS)
Naraghi, Mohammad H. N.
1995-01-01
The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket engines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates, chamber pressure, coolant temperature and pressure. dimensions of the engine, materials and the number of nodes in different parts of the engine. The code allows for temperature variation in axial, radial and circumferential directions. By implementing an iterative scheme, it provides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the user to incorporate a non-equilibrium model or an energy release model for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer module for the hot-gas-side heat flux calculations.
ISGV Self-rectifying Turbine Design For Thermoacoustic Application
NASA Astrophysics Data System (ADS)
Sammak, Shervin; Asghary, Maryam; Ghorbanian, Kaveh
2014-11-01
Thermoacoustic engines produce the acoustic power from wasted heat and then electricity can be generated from acoustic power. Utilizing self-rectifying turbine after a thermoacoustic engine allows for deploying standard generators with high enough rotational speed that remarkably reduce abrasion, size and cost and significantly increase efficiency and controllability in comparison with linear alternators. In this paper, by evaluating all different type of self-rectifying turbine, impulse turbine with self-piched controlled (ISGV) is chosen as the most appropriate type for this application. This kind of turbine is designed in detail for a popular engine, thermoacoustic stirling heat engine (TASHE). In order to validate the design, a full scale size of designed turbine is modeled in ANSYS CFX. As a result, optimum power and efficiency gained based on numerical data.
The transformation of heat in an engine
NASA Technical Reports Server (NTRS)
Neumann, Kurt
1929-01-01
This report presents a thermodynamic basis for rating heat engines. The production of work by a heat engine rests on the operation of supplying heat, under favorable conditions, to a working fluid and then taking it away.
NASA Technical Reports Server (NTRS)
Chato, J. C.; Hertig, B. A.
1972-01-01
Investigations of thermal control for extravehicular space suits are reported. The characteristics of independent cooling of temperature and removal of excess heat from separate regions of the body, and the applications of heat pipes in protective suits are discussed along with modeling of the human thermal system.
Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields
NASA Technical Reports Server (NTRS)
Daines, Russell L.; Merkle, Charles L.
1994-01-01
Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.
Computational analysis of Variable Thrust Engine (VTE) performance
NASA Technical Reports Server (NTRS)
Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.
1993-01-01
The Variable Thrust Engine (VTE) of the Orbital Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The performance of the VTE depends on a number of complex interacting phenomena such as atomization, spray dynamics, vaporization, turbulent mixing, convective/radiative heat transfer, and hypergolic combustion. This study involved the development of a comprehensive numerical methodology to facilitate detailed analysis of the VTE. An existing Computational Fluid Dynamics (CFD) code was extensively modified to include the following models: a two-liquid, two-phase Eulerian-Lagrangian spray model; a chemical equilibrium model; and a discrete ordinate radiation heat transfer model. The modified code was used to conduct a series of simulations to assess the effects of various physical phenomena and boundary conditions on the VTE performance. The details of the models and the results of the simulations are presented.
NASA Astrophysics Data System (ADS)
Chen, Jiliang; Jiang, Fangming
2016-02-01
With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.
Improved Stirling engine performance using jet impingement
NASA Technical Reports Server (NTRS)
Johnson, D. C.; Britt, E. J.; Thieme, L. G.
1982-01-01
Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.
Thermal conductivity model for powdered materials under vacuum based on experimental studies
NASA Astrophysics Data System (ADS)
Sakatani, N.; Ogawa, K.; Iijima, Y.; Arakawa, M.; Honda, R.; Tanaka, S.
2017-01-01
The thermal conductivity of powdered media is characteristically very low in vacuum, and is effectively dependent on many parameters of their constituent particles and packing structure. Understanding of the heat transfer mechanism within powder layers in vacuum and theoretical modeling of their thermal conductivity are of great importance for several scientific and engineering problems. In this paper, we report the results of systematic thermal conductivity measurements of powdered media of varied particle size, porosity, and temperature under vacuum using glass beads as a model material. Based on the obtained experimental data, we investigated the heat transfer mechanism in powdered media in detail, and constructed a new theoretical thermal conductivity model for the vacuum condition. This model enables an absolute thermal conductivity to be calculated for a powder with the input of a set of powder parameters including particle size, porosity, temperature, and compressional stress or gravity, and vice versa. Our model is expected to be a competent tool for several scientific and engineering fields of study related to powders, such as the thermal infrared observation of air-less planetary bodies, thermal evolution of planetesimals, and performance of thermal insulators and heat storage powders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, E.; Gonder, J.; Lopp, S.
It is widely understood that cold-temperature engine operation negatively impacts vehicle fuel use due to a combination of increased friction (high-viscosity engine oil) and temporary enrichment (accelerated catalyst heating). However, relatively little effort has been dedicated to thoroughly quantifying these impacts across a large number of driving cycles and ambient conditions. This work leverages high-quality dynamometer data collected at various ambient conditions to develop a modeling framework for quantifying engine cold-start fuel penalties over a wide array of real-world usage profiles. Additionally, mitigation strategies including energy retention and exhaust heat recovery are explored with benefits quantified for each approach.
Toward improved durability in advanced aircraft engine hot sections
NASA Technical Reports Server (NTRS)
Sokolowski, Daniel E. (Editor)
1989-01-01
The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.
High-fidelity simulations of a standing-wave thermoacoustic-piezoelectric engine
NASA Astrophysics Data System (ADS)
Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus
2014-11-01
We have carried out time-domain three-dimensional and one-dimensional numerical simulations of a thermoacoustic Stirling heat engine (TASHE). The TASHE model adopted for our study is that of a standing-wave engine: a thermal gradient is imposed in a resonator tube and is capped with a piezoelectric diaphragm in a Helmholtz resonator cavity for acoustic energy extraction. The 0.51 m engine sustains 500 Pa pressure oscillations with atmospheric air and pressure. Such an engine is interesting in practice as an external heat engine with no mechanically-moving parts. Our numerical setup allows for both the evaluation of the nonlinear effects of scaling and the effect of a fully electromechanically-coupled impedance boundary condition, representative of a piezoelectric element. The thermoacoustic stack is fully resolved. Previous modeling efforts have focused on steady-state solvers with impedances or nonlinear effects without energy extraction. Optimization of scaling and the impedance for power output can now be simultaneously applied; engines of smaller sizes and higher frequencies suitable for piezoelectric energy extraction can be studied with three-dimensional solvers without restriction. Results at a low-amplitude regime were validated against results obtained from the steady-state solver DeltaEC and from experimental results in literature. Pressure and velocity amplitudes within the cavities match within 2% difference.
Heat Pipes Reduce Engine-Exhaust Emissions
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1986-01-01
Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.
Space Launch System Base Heating Test: Experimental Operations & Results
NASA Technical Reports Server (NTRS)
Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael
2016-01-01
NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.
NASA Technical Reports Server (NTRS)
Sibille, Laurent; Dominques, Jesus A.
2012-01-01
The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.
Study of advanced fuel system concepts for commercial aircraft
NASA Technical Reports Server (NTRS)
Coffinberry, G. A.
1985-01-01
An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.
NASA Technical Reports Server (NTRS)
Ku, Jentung
2015-01-01
This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.
NASA Technical Reports Server (NTRS)
Simon, Frederick F.
2007-01-01
A program sponsored by the National Aeronautics and Space Administration (NASA) for the investigation of the heat transfer in the transition region of turbine vanes and blades with the object of improving the capability for predicting heat transfer is described,. The accurate prediction of gas-side heat transfer is important to the determination of turbine longevity, engine performance and developmental costs. The need for accurate predictions will become greater as the operating temperatures and stage loading levels of advanced turbine engines increase. The present methods for predicting transition shear stress and heat transfer on turbine blades are based on incomplete knowledge and are largely empirical. To meet the objectives of the NASA program, a team approach consisting of researchers from government, universities, a research institute, and a small business is presented. The research is divided into areas of experimentation, direct numerical simulation (DNS) and turbulence modeling. A summary of the results to date is given for the above research areas in a high-disturbance environment (bypass transition) with a discussion of the model development necessary for use in numerical codes.
Heat pipe solar receiver with thermal energy storage
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.
1981-01-01
An HPSR Stirling engine generator system featuring latent heat thermal energy storge, excellent thermal stability and self regulating, effective thermal transport at low system delta T is described. The system was supported by component technology testing of heat pipes and of thermal storage and energy transport models which define the expected performance of the system. Preliminary and detailed design efforts were completed and manufacturing of HPSR components has begun.
2013-11-01
Flows in Microchannels ," Heat Transfer Engineering, Vol. 27, No. 9, 2006, pp. 4-19. 2Kandlikar, S. G., " Heat Transfer Mechanisms During Flow...Boiling in Microchannels ," Journal of Heat Transfer , Vol. 126, No. 1, 2004, pp. 8-16. 3Kreitzer, P. J., Byrd, L., and Willebrand, B. J., "Initial...an integral aspect of modeling two phase flows as most pressure drop and heat transfer correlations rely on a priori knowledge of the flow regime for
Performance Impact of Deflagration to Detonation Transition Enhancing Obstacles
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Schauer, Frederick; Hopper, David
2012-01-01
A sub-model is developed to account for the drag and heat transfer enhancement resulting from deflagration-to-detonation (DDT) inducing obstacles commonly used in pulse detonation engines (PDE). The sub-model is incorporated as a source term in a time-accurate, quasi-onedimensional, CFD-based PDE simulation. The simulation and sub-model are then validated through comparison with a particular experiment in which limited DDT obstacle parameters were varied. The simulation is then used to examine the relative contributions from drag and heat transfer to the reduced thrust which is observed. It is found that heat transfer is far more significant than aerodynamic drag in this particular experiment.
Study on Heat Transfer Agent Models of Transmission Line and Transformer
NASA Astrophysics Data System (ADS)
Wang, B.; Zhang, P. P.
2018-04-01
When using heat transfer simulation to study the dynamic overload of transmission line and transformer, it needs to establish the mathematical expression of heat transfer. However, the formula is a nonlinear differential equation or equation set and it is not easy to get general solutions. Aiming at this problem, some different temperature change processes caused by different initial conditions are calculated by differential equation and equation set. New agent models are developed according to the characteristics of different temperature change processes. The results show that the agent models have high precision and can solve the problem that the original equation cannot be directly applied in some practical engineers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neymark, J.; Kennedy, M.; Judkoff, R.
This report documents a set of diagnostic analytical verification cases for testing the ability of whole building simulation software to model the air distribution side of typical heating, ventilating and air conditioning (HVAC) equipment. These cases complement the unitary equipment cases included in American National Standards Institute (ANSI)/American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) Standard 140, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs, which test the ability to model the heat-transfer fluid side of HVAC equipment.
NASA Astrophysics Data System (ADS)
Su, Huaizhi; Li, Hao; Kang, Yeyuan; Wen, Zhiping
2018-02-01
Seepage is one of key factors which affect the levee engineering safety. The seepage danger without timely detection and rapid response may likely lead to severe accidents such as seepage failure, slope instability, and even levee break. More than 90 percent of levee break events are caused by the seepage. It is very important for seepage behavior identification to determine accurately saturation line in levee engineering. Furthermore, the location of saturation line has a major impact on slope stability in levee engineering. Considering the structure characteristics and service condition of levee engineering, the distributed optical fiber sensing technology is introduced to implement the real-time observation of saturation line in levee engineering. The distributed optical fiber temperature sensor system (DTS)-based monitoring principle of saturation line in levee engineering is investigated. An experimental platform, which consists of DTS, heating system, water-supply system, auxiliary analysis system and levee model, is designed and constructed. The monitoring experiment of saturation line in levee model is implemented on this platform. According to the experimental results, the numerical relationship between moisture content and thermal conductivity in porous medium is identified. A line heat source-based distributed optical fiber method obtaining the thermal conductivity in porous medium is developed. A DTS-based approach is proposed to monitor the saturation line in levee engineering. The embedment pattern of optical fiber for monitoring saturation line is presented.
Hybrid and conventional hydrogen engine vehicles that meet EZEV emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceves, S.M.; Smith, J.R.
In this paper, a time-dependent engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. A The validated engine model is then used to calculate fuel economy and emissions for three hydrogen-fueled vehicles: a conventional, a parallel hybrid, and a seriesmore » hybrid. All vehicles use liquid hydrogen as a fuel. The hybrid vehicles use a flywheel for energy storage. Comparable ultra capacitor or battery energy storage performance would give similar results. This paper analyzes the engine and flywheel sizing requirements for obtaining a desired level of performance. The results indicate that hydrogen lean-burn spark-ignited engines can provide a high fuel economy and Equivalent Zero Emission Vehicle (EZEV) levels in the three vehicle configurations being analyzed.« less
2012-03-01
Revit object IFCExportType IFCExportAs Radiator Radiator IfcSpaceHeaterType Pump Circulator IfcPumpType Boiler Water IfcBoilerType Fan VaneAxial...modeling is assumed to be a traditional water-based system comprised of boilers and fan coil units (heating) and chillers and air handling units...the properties that a particular engineer would want to specify as part of the BIM model. For instance, the default pump families in Revit do not
Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.
Rapaport, D C
2009-04-01
A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.
Strain measurements in a rotary engine housing
NASA Technical Reports Server (NTRS)
Lee, C. M.; Bond, T. H.; Addy, H. E.; Chun, K. S.; Lu, C. Y.
1989-01-01
The development of structural design tools for Rotary Combustion Engines (RCE) using Finite Element Modeling (FEM) requires knowledge about the response of engine materials to various service conditions. This paper describes experimental work that studied housing deformation as a result of thermal, pressure and mechanical loads. The measurement of thermal loads, clamping pressure, and deformation was accomplished by use of high-temperature strain gauges, thermocouples, and a high speed data acquisition system. FEM models for heat transfer stress analysis of the rotor housing will be verified and refined based on these experimental results.
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery
NASA Astrophysics Data System (ADS)
Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.
2010-09-01
Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.
A Self-Circulating Heat Exchanger for Use in Stirling and Thermoacoustic-Stirling Engines
NASA Astrophysics Data System (ADS)
Backhaus, Scott; Reid, Robert S.
2005-02-01
A major technical hurdle to the implementation of large Stirling engines or thermoacoustic engines is the reliability, performance, and manufacturability of the hot heat exchanger that brings high-temperature heat into the engine. Unlike power conversion devices that utilize steady flow, the oscillatory nature of the flow in Stirling and thermoacoustic engines restricts the length of a traditional hot heat exchanger to a peak-to-peak gas displacement, which is usually around 0.2 meters or less. To overcome this restriction, a new hot heat exchanger has been devised that uses a fluid diode in a looped pipe, which is resonantly driven by the oscillating gas pressure in the engine itself, to circulate the engine's working fluid around the loop. Instead of thousands of short, intricately interwoven passages that must be individually sealed, this new design consists of a few pipes that are typically 10 meters long. This revolutionary approach eliminates thousands of hermetic joints, pumps the engine's working fluid to and from a remote heat source without using moving parts, and does so without compromising on heat transfer surface area. Test data on a prototype loop integrated with a 1-kW thermoacoustic engine will be presented.
Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective
NASA Astrophysics Data System (ADS)
Xu, Dazhi; Wang, Chen; Zhao, Yang; Cao, Jianshu
2016-02-01
We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).
Teaching Computer-Aided Design of Fluid Flow and Heat Transfer Engineering Equipment.
ERIC Educational Resources Information Center
Gosman, A. D.; And Others
1979-01-01
Describes a teaching program for fluid mechanics and heat transfer which contains both computer aided learning (CAL) and computer aided design (CAD) components and argues that the understanding of the physical and numerical modeling taught in the CAL course is essential to the proper implementation of CAD. (Author/CMV)
NASA Astrophysics Data System (ADS)
Park, Sangki; Woo, Seungchul; Kim, Minho; Lee, Kihyung
2017-04-01
The design and evaluation of engine cooling and lubrication systems is generally based on real vehicle tests. Our goal here was to establish an engine heat balance model based on mathematical and interpretive analysis of each element of a passenger diesel engine cooling system using a 1-D numerical model. The purpose of this model is to determine ways of optimizing the cooling and lubrication components of an engine and then to apply these methods to actual cooling and lubrication systems of engines that will be developed in the future. Our model was operated under the New European Driving Cycle (NEDC) mode conditions, which represent the fuel economy evaluation mode in Europe. The flow rate of the cooling system was controlled using a control valve. Our results showed that the fuel efficiency was improved by as much as 1.23 %, cooling loss by 1.35 %, and friction loss by 2.21 % throughout NEDC modes by modification of control conditions.
Integrated Heat Exchange For Recuperation In Gas Turbine Engines
2016-12-01
exchange system within the engine using existing blade surfaces to extract and insert heat. Due to the highly turbulent and transient flow, heat...transfer coefficients in turbomachinery are extremely high, making this possible. Heat transfer between the turbine and compressor blade surfaces could be...exchange system within the engine using existing blade surfaces to extract and insert heat. Due to the highly turbulent and transient flow, heat transfer
Engineering design aspects of the heat-pipe power system
NASA Technical Reports Server (NTRS)
Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.
1997-01-01
The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.
Ben Yaghlene, H; Leguerinel, I; Hamdi, M; Mafart, P
2009-07-31
In this study, predictive microbiology and food engineering were combined in order to develop a new analytical model predicting the bacterial growth under dynamic temperature conditions. The proposed model associates a simplified primary bacterial growth model without lag, the secondary Ratkowsky "square root" model and a simplified two-parameter heat transfer model regarding an infinite slab. The model takes into consideration the product thickness, its thermal properties, the ambient air temperature, the convective heat transfer coefficient and the growth parameters of the micro organism of concern. For the validation of the overall model, five different combinations of ambient air temperature (ranging from 8 degrees C to 12 degrees C), product thickness (ranging from 1 cm to 6 cm) and convective heat transfer coefficient (ranging from 8 W/(m(2) K) to 60 W/(m(2) K)) were tested during a cooling procedure. Moreover, three different ambient air temperature scenarios assuming alternated cooling and heating stages, drawn from real refrigerated food processes, were tested. General agreement between predicted and observed bacterial growth was obtained and less than 5% of the experimental data fell outside the 95% confidence bands estimated by the bootstrap percentile method, at all the tested conditions. Accordingly, the overall model was successfully validated for isothermal and dynamic refrigeration cycles allowing for temperature dynamic changes at the centre and at the surface of the product. The major impact of the convective heat transfer coefficient and the product thickness on bacterial growth during the product cooling was demonstrated. For instance, the time needed for the same level of bacterial growth to be reached at the product's half thickness was estimated to be 5 and 16.5 h at low and high convection level, respectively. Moreover, simulation results demonstrated that the predicted bacterial growth at the air ambient temperature cannot be assumed to be equivalent to the bacterial growth occurring at the product's surface or centre when convection heat transfer is taken into account. Our results indicate that combining food engineering and predictive microbiology models is an interesting approach providing very useful tools for food safety and process optimisation.
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.
Thermal Management Tools for Propulsion System Trade Studies and Analysis
NASA Technical Reports Server (NTRS)
McCarthy, Kevin; Hodge, Ernie
2011-01-01
Energy-related subsystems in modern aircraft are more tightly coupled with less design margin. These subsystems include thermal management subsystems, vehicle electric power generation and distribution, aircraft engines, and flight control. Tighter coupling, lower design margins, and higher system complexity all make preliminary trade studies difficult. A suite of thermal management analysis tools has been developed to facilitate trade studies during preliminary design of air-vehicle propulsion systems. Simulink blocksets (from MathWorks) for developing quasi-steady-state and transient system models of aircraft thermal management systems and related energy systems have been developed. These blocksets extend the Simulink modeling environment in the thermal sciences and aircraft systems disciplines. The blocksets include blocks for modeling aircraft system heat loads, heat exchangers, pumps, reservoirs, fuel tanks, and other components at varying levels of model fidelity. The blocksets have been applied in a first-principles, physics-based modeling and simulation architecture for rapid prototyping of aircraft thermal management and related systems. They have been applied in representative modern aircraft thermal management system studies. The modeling and simulation architecture has also been used to conduct trade studies in a vehicle level model that incorporates coupling effects among the aircraft mission, engine cycle, fuel, and multi-phase heat-transfer materials.
Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers
NASA Technical Reports Server (NTRS)
Patera, Anthony T.; Patera, Anthony
1993-01-01
Although the advent of fast and inexpensive parallel computers has rendered numerous previously intractable calculations feasible, many numerical simulations remain too resource-intensive to be directly inserted in engineering optimization efforts. An attractive alternative to direct insertion considers models for computational systems: the expensive simulation is evoked only to construct and validate a simplified, input-output model; this simplified input-output model then serves as a simulation surrogate in subsequent engineering optimization studies. A simple 'Bayesian-validated' statistical framework for the construction, validation, and purposive application of static computer simulation surrogates is presented. As an example, dissipation-transport optimization of laminar-flow eddy-promoter heat exchangers are considered: parallel spectral element Navier-Stokes calculations serve to construct and validate surrogates for the flowrate and Nusselt number; these surrogates then represent the originating Navier-Stokes equations in the ensuing design process.
Heat pipe cooling for scramjet engines
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1986-01-01
Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.
Numerical modeling of a 2K J-T heat exchanger used in Fermilab Vertical Test Stand VTS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Prabhat Kumar; Rabehl, Roger
2014-07-01
Fermilab Vertical Test Stand-1 (VTS-1) is in operation since 2007 for testing the superconducting RF cavities at 2 K. This test stand has single layer coiled finned tubes heat exchanger before J-T valve. A finite difference based thermal model has been developed in Engineering Equation Solver (EES) to study its thermal performance during filling and refilling to maintain the constant liquid level of test stand. The model is also useful to predict its performance under other various operating conditions and will be useful to design the similar kind of heat exchanger for future needs. Present paper discusses the different operationalmore » modes of this heat exchanger and its thermal characteristics under these operational modes. Results of this model have also been compared with the experimental data gathered from the VTS-1 heat exchanger and they are in good agreement with the present model.« less
Heat Exchanger Design and Testing for a 6-Inch Rotating Detonation Engine
2013-03-01
Engine Research Facility HHV Higher heating value LHV Lower heating value PDE Pulsed detonation engine RDE Rotating detonation engine RTD...the combustion community are pulse detonation engines ( PDEs ) and rotating detonation engines (RDEs). 1.1 Differences between Pulsed and Rotating ...steadier than that of a PDE (2, 3). (2) (3) Figure 1. Unrolled rotating detonation wave from high-speed video (4) Another difference that
Thermal Response Of Composite Insulation
NASA Technical Reports Server (NTRS)
Stewart, David A.; Leiser, Daniel B.; Smith, Marnell; Kolodziej, Paul
1988-01-01
Engineering model gives useful predictions. Pair of reports presents theoretical and experimental analyses of thermal responses of multiple-component, lightweight, porous, ceramic insulators. Particular materials examined destined for use in Space Shuttle thermal protection system, test methods and heat-transfer theory useful to chemical, metallurgical, and ceramic engineers needing to calculate transient thermal responses of refractory composites.
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
1991-01-01
The Solar Dynamic Power Module being developed for Space Station Freedom uses a eutectic mixture of LiF-CaF2 phase change material (PCM) contained in toroidal canisters for thermal energy storage. Presented are the results from heat transfer analyses of a PCM containment canister. One and two dimensional finite difference computer models are developed to analyze heat transfer in the canister walls, PCM, void, and heat engine working fluid coolant. The modes of heat transfer considered include conduction in canister walls and solid PCM, conduction and pseudo-free convection in liquid PCM, conduction and radiation across PCM vapor filled void regions, and forced convection in the heat engine working fluid. Void shape, location, growth or shrinkage (due to density difference between the solid and liquid PCM phases) are prescribed based on engineering judgment. The PCM phase change process is analyzed using the enthalpy method. The discussion of the results focuses on how canister thermal performance is affected by free convection in the liquid PCM and void heat transfer. Characterizing these effects is important for interpreting the relationship between ground-based canister performance (in 1-g) and expected on-orbit performance (in micro-g). Void regions accentuate canister hot spots and temperature gradients due to their large thermal resistance. Free convection reduces the extent of PCM superheating and lowers canister temperatures during a portion of the PCM thermal charge period. Surprisingly small differences in canister thermal performance result from operation on the ground and operation on-orbit. This lack of a strong gravity dependency is attributed to the large contribution of container walls in overall canister energy redistribution by conduction.
Bizarro, João P S; Rodrigues, Paulo
2012-11-01
For work-producing heat engines, or work-consuming refrigerators and heat pumps, the percentage decrease caused by friction in their efficiencies, or coefficients of performance (COP's), is approximately given by the ratio W(fric)/W between the work spent against friction forces and the work performed by, or delivered to, the working fluid. This universal scaling, which applies in the limit of small friction (W(fric)/W ~ 20%) and when the engine's figures of merit (FOM's, either efficiencies or COP's) do not come too close to unity (no higher than, say, 0.5 in the case of heat-engine efficiencies), allows a simple and quick estimate of the impact that friction losses can have on the FOM's of thermal engines and plants, or of the level of those losses from the observed and predicted FOM's. In the case of refrigerators and heat pumps, if W(fric)/W ~ 20% is not ensured (actually a condition that can be largely relaxed for heat engines), the COP percentage decrease due to friction approaches asymptotically (W(fric)/W)/(1+W(fric)/W) instead of W(fric)/W. Estimates for the level of frictional losses using the Carnot (or, for heat engines and power plants only, the Curzon-Ahlborn) predictions and observed FOM's of real power plants, heat engines, refrigerators, and heat pumps show that they usually operate in domains where these behaviors are valid.
MSG test report-steady-state heat transfer. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harty, R.B.
This report documents the results of the Steady-State Heat Transfer Tests conducted on the AI Modular Steam Generator (MSG), at the Sodium Component Test Installation (SCTI) of the Liquid Metal Engineering Center. Heat transfer and pressure drop performance data are given along with current predictions of performance. Departure from nucleate boiling characteristics is given. A dispersed flow film boiling model, employing thermal nonequilibrium, was used to analyze data in the film boiling region.
A new predictive multi-zone model for HCCI engine combustion
Bissoli, Mattia; Frassoldati, Alessio; Cuoci, Alberto; ...
2016-06-30
Here, this work introduces a new predictive multi-zone model for the description of combustion in Homogeneous Charge Compression Ignition (HCCI) engines. The model exploits the existing OpenSMOKE++ computational suite to handle detailed kinetic mechanisms, providing reliable predictions of the in-cylinder auto-ignition processes. All the elements with a significant impact on the combustion performances and emissions, like turbulence, heat and mass exchanges, crevices, residual burned gases, thermal and feed stratification are taken into account. Compared to other computational approaches, this model improves the description of mixture stratification phenomena by coupling a wall heat transfer model derived from CFD application with amore » proper turbulence model. Furthermore, the calibration of this multi-zone model requires only three parameters, which can be derived from a non-reactive CFD simulation: these adaptive variables depend only on the engine geometry and remain fixed across a wide range of operating conditions, allowing the prediction of auto-ignition, pressure traces and pollutants. This computational framework enables the use of detail kinetic mechanisms, as well as Rate of Production Analysis (RoPA) and Sensitivity Analysis (SA) to investigate the complex chemistry involved in the auto-ignition and the pollutants formation processes. In the final sections of the paper, these capabilities are demonstrated through the comparison with experimental data.« less
Heat transfer and instrumentation studies on rotating turbine blades in a transient facility
NASA Astrophysics Data System (ADS)
Allan, William D. E.
1990-08-01
The current demands of modern aviation have encouraged engine manufacturers to develop larger, more powerful, yet quieter and more fuel efficient gas turbine engines. This has promoted particular interest in the heat loads borne by turbines, for efficiency can be improved if turbine entry temperature is increased. Presently, ceilings for this parameter are set by the thermal properties of the blade materials and their internal cooling capabilities. It has been established that flow unsteadiness and secondary flows in the turbine passages greatly influence the heat transfer rate on turbine blades and endwall surfaces. The three-dimensionality of the rotating turbine flowfield, however, complicates the interaction of these unsteady effects and their combined role in heat transfer on turbine blades. To fulfill the need to study this complex fluid environment, a model turbine stage has been installed in the working section of the Isentropic Light Piston Tunnel at Oxford. This transient facility enables the rotor to be operated at engine representative conditions. Novel high density instrumentation has been development for use on the turbine blade. Both the production and calibration of the thin film gauges will be explained and the theory supporting heat transfer measurement using this instrumentation is presented in this thesis. Perhaps the most important feature of this thesis lies in the extensive mean and unsteady heat transfer rates measured on the blade profile. These were determined on a total of 5 streamlines and represent a significant contribution to the total experimental data available on 3-dimensional profiles at engine representative conditions.
Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface
NASA Astrophysics Data System (ADS)
Ul Haq, Rizwan; Khan, Zafar Hayat; Khan, Waqar Ahmed
2014-09-01
This article is intended for investigating the effects of magnetohydrodynamics (MHD) and volume fraction of carbon nanotubes (CNTs) on the flow and heat transfer in two lateral directions over a stretching sheet. For this purpose, three types of base fluids specifically water, ethylene glycol and engine oil with single and multi-walled carbon nanotubes are used in the analysis. The convective boundary condition in the presence of CNTs is presented first time and not been explored so far. The transformed nonlinear differential equations are solved by the Runge-Kutta-Fehlberg method with a shooting technique. The dimensionless velocity and shear stress are obtained in both directions. The dimensionless heat transfer is determined on the surface. Three different models of thermal conductivity are comparable for both CNTs and it is found that the Xue [1] model gives the best approach to guess the superb thermal conductivity in comparison with the Maxwell [2] and Hamilton and Crosser [3] models. And finally, another finding suggests the engine oil provides the highest skin friction and heat transfer rates.
NASA Technical Reports Server (NTRS)
Schreiber, Will
1986-01-01
Two sets of ball bearings support the main shaft within the High Pressure Oxygen Turbopump (HPOTP) in the Space Shuttle Main Engine (SSME). In operation, these bearings are cooled and lubricated with high pressure liquid oxygen (LOX) flowing axially through the bearing assembly. Currently, modifications in the assembly design are being contemplated in order to enhance the lifetime of the bearings and to allow the HPOTP to operate under larger loads. An understanding of the fluid dynamics and heat transfer characteristics of the flowing LOX is necessary for the implementation of these design changes. The proposed computational model of the LOX fluid dynamics, in addition to dealing with a turbulent flow in a complex geometry, must address the complication associated with boiling and two-phase flow. The feasibility of and possible methods for modeling boiling heat transfer are considered. The theory of boiling as pertains to this particular problem is reviewed. Recommendations are given for experiments which would be necessary to establish validity for correlations needed to model boiling.
MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A. (Inventor)
2005-01-01
A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
1997-01-01
A set of analyses was conducted to determine the heat transfer characteristics of metallized gelled liquid propellants in a rocket engine. The analyses used the data from experiments conducted with a small 30- to 40-lbf thrust engine composed of a modular injector, igniter, chamber and nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-wt %, 5-wt%, and 55-wt% loadings of aluminum with silicon dioxide gellant, and gaseous oxygen as the oxidizer. Heat transfer was computed based on measurements using calorimeter rocket chamber and nozzle hardware with a total of 31 cooling channels. A gelled fuel coating formed in the 0-, 5- and 55-wt% engines, and the coating was composed of unburned gelled fuel and partially combusted RP-1. The coating caused a large decrease in calorimeter engine heat flux in the last half of the chamber for the 0- and 5-wt% RP-1/Al. This heat flux reduction effect was analyzed by comparing engine runs and the changes in the heat flux during a run as well as from run to run. Heat transfer and time-dependent heat flux analyses and interpretations are provided. The 5- and 55-wt% RP-1/Al fueled engines had the highest chamber heat fluxes, with the 5-wt% fuel having the highest throat flux. This result is counter to the predicted result, where the 55 wt% fuel has the highest combustion and throat temperature, and therefore implies that it would deliver the highest throat heat flux. The 5-wt% RP-1/Al produced the most influence on the engine heat transfer and the heat flux reduction was caused by the formation of a gelled propellant layer in the chamber and nozzle.
Scaled Rocket Testing in Hypersonic Flow
NASA Technical Reports Server (NTRS)
Dufrene, Aaron; MacLean, Matthew; Carr, Zakary; Parker, Ron; Holden, Michael; Mehta, Manish
2015-01-01
NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was strongly based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Detailed base heating results are outside of the scope of the current work, rather test methodology and techniques are presented along with broader applicability toward scaled rocket testing in supersonic and hypersonic flow.
NASA Astrophysics Data System (ADS)
Creswick, F. A.
Incentives for the development of gas heat pumps are discussed. Technical progress made on several promising technologies was reviewed. The status of development of gas-engine-driven heat pumps, the absorption cycle for the near- and long-term gas heat pump systems, the Stirling engine, the small Rankine-cycle engines, and gas-turbine-driven heat pump systems were briefly reviewed. Progress in the US, Japan, and Europe is noted.
Stirling heat pump external heat systems - An appliance perspective
NASA Astrophysics Data System (ADS)
Vasilakis, Andrew D.; Thomas, John F.
A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.
Stirling heat pump external heat systems: An appliance perspective
NASA Astrophysics Data System (ADS)
Vasilakis, A. D.; Thomas, J. F.
1992-08-01
A major issue facing the Stirling Engine Heat Pump is system cost, and, in particular, the cost of the External Heat System (EHS). The need for high temperature at the heater head (600 C to 700 C) results in low combustion system efficiencies unless efficient heat recovery is employed. The balance between energy efficiency and use of costly high temperature materials is critical to design and cost optimization. Blower power consumption and NO(x) emissions are also important. A new approach to the design and cost optimization of the EHS system was taken by viewing the system from a natural gas-fired appliance perspective. To develop a design acceptable to gas industry requirements, American National Standards Institute (ANSI) code considerations were incorporated into the design process and material selections. A parametric engineering design and cost model was developed to perform the analysis, including the impact of design on NO(x) emissions. Analysis results and recommended EHS design and material choices are given.
Uncertainty Propagation in Hypersonic Vehicle Aerothermoelastic Analysis
NASA Astrophysics Data System (ADS)
Lamorte, Nicolas Etienne
Hypersonic vehicles face a challenging flight environment. The aerothermoelastic analysis of its components requires numerous simplifying approximations. Identifying and quantifying the effect of uncertainties pushes the limits of the existing deterministic models, and is pursued in this work. An uncertainty quantification framework is used to propagate the effects of identified uncertainties on the stability margins and performance of the different systems considered. First, the aeroelastic stability of a typical section representative of a control surface on a hypersonic vehicle is examined. Variability in the uncoupled natural frequencies of the system is modeled to mimic the effect of aerodynamic heating. Next, the stability of an aerodynamically heated panel representing a component of the skin of a generic hypersonic vehicle is considered. Uncertainty in the location of transition from laminar to turbulent flow and the heat flux prediction is quantified using CFD. In both cases significant reductions of the stability margins are observed. A loosely coupled airframe--integrated scramjet engine is considered next. The elongated body and cowl of the engine flow path are subject to harsh aerothermodynamic loading which causes it to deform. Uncertainty associated with deformation prediction is propagated to the engine performance analysis. The cowl deformation is the main contributor to the sensitivity of the propulsion system performance. Finally, a framework for aerothermoelastic stability boundary calculation for hypersonic vehicles using CFD is developed. The usage of CFD enables one to consider different turbulence conditions, laminar or turbulent, and different models of the air mixture, in particular real gas model which accounts for dissociation of molecules at high temperature. The system is found to be sensitive to turbulence modeling as well as the location of the transition from laminar to turbulent flow. Real gas effects play a minor role in the flight conditions considered. These studies demonstrate the advantages of accounting for uncertainty at an early stage of the analysis. They emphasize the important relation between heat flux modeling, thermal stresses and stability margins of hypersonic vehicles.
Heat exchanger design for hot air ericsson-brayton piston engine
NASA Astrophysics Data System (ADS)
Ďurčanský, P.; Lenhard, R.; Jandačka, J.
2014-03-01
One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-air engines, their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element. In the article is hot air engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-air engine. Then are compared suitable heat exchangers for use with hot air Ericsson-Brayton engine. In the final part is proposal of heat exchanger for use in closed Ericsson-Brayton cycle.
Rate of Heat Release in Diesel Engines
DOT National Transportation Integrated Search
1977-10-01
In this report, the concept of heat release in diesel engines is compared with reaction rates in petrol engines as a means of describing combustion. The intimate relationships between heat release, cylinder pressure development and cylinder pressure ...
Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer
NASA Astrophysics Data System (ADS)
Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr
2017-12-01
This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.
Advanced Human Factors Engineering Tool Technologies.
1988-03-01
charger/ AC adapter immersible probe air temperature probe surface temperature probe . * Sling psychrometer , MSA or Taylor 1328A * Aspirating... psychrometer , Model PP-100 or CP-147, Psychro-Dyne * Wet-bulb-heat-stress monitor, Model B&K 1219, Briel & Kjaer Transducer, Model B&K MM 0030 (3 each), Brijel
NASA Technical Reports Server (NTRS)
Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.
2003-01-01
High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.
NASA Technical Reports Server (NTRS)
Mueller, D. C.; Turns, S. R.
1994-01-01
A one-dimensional model of a gel-fueled rocket combustion chamber has been developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization. aluminum ignition, and aluminum combustion. Also included is a model of radiative heat transfer from the solid combustion products to the chamber walls. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size and radiation heat wall losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two-phase flow effects on overall engine performance. Radiation losses yielded a 1 percent decrease in engine I(sub sp). Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine I(sub sp) was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass loading was varied from 0-70 wt percent. Engine I(sub sp) efficiencies, accounting for radiation and two-phase flow effects, on the order of 0.946 were calculated for a 60 wt percent gel, assuming a fragmentation ratio of 5.
Putranto, Aditya; Chen, Xiao Dong
2017-05-01
During composting, self-heating may occur due to the exothermicities of the chemical and biological reactions. An accurate model for predicting maximum temperature is useful in predicting whether the phenomena would occur and to what extent it would have undergone. Elevated temperatures would lead to undesirable situations such as the release of large amount of toxic gases or sometimes would even lead to spontaneous combustion. In this paper, we report a new model for predicting the profiles of temperature, concentration of oxygen, moisture content and concentration of water vapor during composting. The model, which consists of a set of equations of conservation of heat and mass transfer as well as biological heating term, employs the reaction engineering approach (REA) framework to describe the local evaporation/condensation rate quantitatively. A good agreement between the predicted and experimental data of temperature during composting of sewage sludge is observed. The modeling indicates that the maximum temperature is achieved after some 46weeks of composting. Following this period, the temperature decreases in line with a significant decrease in moisture content and a tremendous increase in concentration of water vapor, indicating the massive cooling effect due to water evaporation. The spatial profiles indicate that the maximum temperature is approximately located at the middle-bottom of the compost piles. Towards the upper surface of the piles, the moisture content and concentration of water vapor decreases due to the moisture transfer to the surrounding. The newly proposed model can be used as reliable simulation tool to explore several geometry configurations and operating conditions for avoiding elevated temperature build-up and self-heating during industrial composting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Unsteady pressure loads in a generic high speed engine model
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Jones, Michael G.; Thurlow, Ernie M.
1992-01-01
Unsteady pressure loads were measured along the top interior wall of a generic high-speed engine (GHSE) model undergoing performance tests in the combustion-Heated Scramjet Test Facility at the Langley Research Center. Flow to the model inlet was simulated at 72000 ft and a flight Mach number of 4. The inlet Mach number was 3.5 with a total temperature and pressure of 1640 R and 92 psia. The unsteady pressure loads were measured with 5 piezoresistive gages, recessed into the wall 4 to 12 gage diameters to reduce incident heat flux to the diaphragms, and distributed from the inlet to the combustor. Contributors to the unsteady pressure loads included boundary layer turbulence, combustion noise, and transients generated by unstart loads. Typical turbulent boundary layer rms pressures in the inlet ranged from 133 dB in the inlet to 181 dB in the combustor over the frequency range from 0 to 5 kHz. Downstream of the inlet exist, combustion noise was shown to dominate boundary layer turbulence noise at increased heat release rates. Noise levels in the isolator section increased by 15 dB when the fuel-air ratio was increased from 0.37 to 0.57 of the stoichiometric ratio. Transient pressure disturbances associated with engine unstarts were measured in the inlet and have an upstream propagation speed of about 7 ft/sec and pressure jumps of at least 3 psia.
Validation of a program for supercritical power plant calculations
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Łukowicz, Henryk; Bartela, Łukasz; Michalski, Sebastian
2011-12-01
This article describes the validation of a supercritical steam cycle. The cycle model was created with the commercial program GateCycle and validated using in-house code of the Institute of Power Engineering and Turbomachinery. The Institute's in-house code has been used extensively for industrial power plants calculations with good results. In the first step of the validation process, assumptions were made about the live steam temperature and pressure, net power, characteristic quantities for high- and low-pressure regenerative heat exchangers and pressure losses in heat exchangers. These assumptions were then used to develop a steam cycle model in Gate-Cycle and a model based on the code developed in-house at the Institute of Power Engineering and Turbomachinery. Properties, such as thermodynamic parameters at characteristic points of the steam cycle, net power values and efficiencies, heat provided to the steam cycle and heat taken from the steam cycle, were compared. The last step of the analysis was calculation of relative errors of compared values. The method used for relative error calculations is presented in the paper. The assigned relative errors are very slight, generally not exceeding 0.1%. Based on our analysis, it can be concluded that using the GateCycle software for calculations of supercritical power plants is possible.
Work production of quantum rotor engines
NASA Astrophysics Data System (ADS)
Seah, Stella; Nimmrichter, Stefan; Scarani, Valerio
2018-04-01
We study the mechanical performance of quantum rotor heat engines in terms of common notions of work using two prototypical models: a mill driven by the heat flow from a hot to a cold mode, and a piston driven by the alternate heating and cooling of a single working mode. We evaluate the extractable work in terms of ergotropy, the kinetic energy associated to net directed rotation, as well as the intrinsic work based on the exerted torque under autonomous operation, and we compare them to the energy output for the case of an external dissipative load and for externally driven engine cycles. Our results connect work definitions from both physical and information-theoretical perspectives. In particular, we find that apart from signatures of angular momentum quantization, the ergotropy is consistent with the intuitive notion of work in the form of net directed motion. It also agrees with the energy output to an external load or agent under optimal conditions. This sets forth a consistent thermodynamical description of rotating quantum motors, flywheels, and clocks.
FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer
NASA Astrophysics Data System (ADS)
Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica
2015-11-01
The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.
Theory and Design of Flight-Vehicle Engines
NASA Technical Reports Server (NTRS)
Zhdanov, V. T. (Editor); Kurziner, R. I. (Editor)
1987-01-01
Papers are presented on such topics as the testing of aircraft engines, errors in the experimental determination of the parameters of scramjet engines, the effect of the nonuniformity of supersonic flow with shocks on friction and heat transfer in the channel of a hypersonic ramjet engine, and the selection of the basic parameters of cooled GTE turbines. Consideration is also given to the choice of optimal total wedge angle for the acceleration of aerospace vehicles, the theory of an electromagnetic-resonator engine, the dynamic characteristics of the pumps and turbines of liquid propellant rocket engines in transition regimes, and a hierarchy of mathematical models for spacecraft control engines.
The Base Engine for Solar Stirling Power
NASA Technical Reports Server (NTRS)
Meijer, R. J.; Godett, T. M.
1984-01-01
A new concept in Stirling engine technology is embodied in the base engine now being developed at Stirling Thermal Motors, Inc. This is a versatile energy conversion unit suitable for many different applications and heat sources. The base engine, rated 40 kW at 2800 RPM, is a four-cylinder, double-acting variable displacement Stirling engine with pressurized crankcase and rotating shaft seal. Remote-heating technology is incorporated with a stacked-heat-exchanger configuration and a liquid metal heat pipe connected to a distinctly separate combustor or other heat source. High efficiency over a wide range of operating conditions, long life, low manufacturing cost and low material cost are specifically emphasized. The base engine, its design philosophy and approach, its projected performance, and some of its more attractive applications are described.
Small-scale heat detection using catalytic microengines irradiated by laser
NASA Astrophysics Data System (ADS)
Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng
2013-01-01
We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f
2009-09-01
capable of surviving the high-temperature, high- vibration environment of a jet engine. Active control spans active surge/stall control and three...other closely related areas, viz., active combustion control (references 21-22), active noise control, and active vibration control. All of these are...self-powered sensors that harvest energy from engine heat or vibrations replace sensors that require power. The long-term vision is one of a
Colloidal heat engines: a review.
Martínez, Ignacio A; Roldán, Édgar; Dinis, Luis; Rica, Raúl A
2016-12-21
Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.
Validation of Supersonic Film Cooling Modeling for Liquid Rocket Engine Applications
NASA Technical Reports Server (NTRS)
Morris, Christopher I.; Ruf, Joseph H.
2010-01-01
Topics include: upper stage engine key requirements and design drivers; Calspan "stage 1" results, He slot injection into hypersonic flow (air); test articles for shock generator diagram, slot injector details, and instrumentation positions; test conditions; modeling approach; 2-d grid used for film cooling simulations of test article; heat flux profiles from 2-d flat plate simulations (run #4); heat flux profiles from 2-d backward facing step simulations (run #43); isometric sketch of single coolant nozzle, and x-z grid of half-nozzle domain; comparison of 2-d and 3-d simulations of coolant nozzles (run #45); flowfield properties along coolant nozzle centerline (run #45); comparison of 3-d CFD nozzle flow calculations with experimental data; nozzle exit plane reduced to linear profile for use in 2-d film-cooling simulations (run #45); synthetic Schlieren image of coolant injection region (run #45); axial velocity profiles from 2-d film-cooling simulation (run #45); coolant mass fraction profiles from 2-d film-cooling simulation (run #45); heat flux profiles from 2-d film cooling simulations (run #45); heat flux profiles from 2-d film cooling simulations (runs #47, #45, and #47); 3-d grid used for film cooling simulations of test article; heat flux contours from 3-d film-cooling simulation (run #45); and heat flux profiles from 3-d and 2-d film cooling simulations (runs #44, #46, and #47).
The Scaling of Performance and Losses in Miniature Internal Combustion Engines
2010-01-01
reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat transfer...making reliable measurements of engine performance and losses in these small engines. Methodologies are also developed for measuring volumetric, heat ...the most important challenge as it accounts for 60-70% of total energy losses. Combustion losses are followed in order of importance by heat transfer
Mechanical Engineering Department engineering research: Annual report, FY 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, R.M.; Essary, K.L.; Genin, M.S.
1986-12-01
This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstractsmore » were prepared for each of the 13 reports in this publication. (JDH)« less
Start up system for hydrogen generator used with an internal combustion engine
NASA Technical Reports Server (NTRS)
Houseman, J.; Cerini, D. J. (Inventor)
1977-01-01
A hydrogen generator provides hydrogen rich product gases which are mixed with the fuel being supplied to an internal combustion engine for the purpose of enabling a very lean mixture of that fuel to be used, whereby nitrous oxides emitted by the engine are minimized. The hydrogen generator contains a catalyst which must be heated to a pre-determined temperature before it can react properly. To simplify the process of heating up the catalyst at start-up time, either some of the energy produced by the engine such as engine exhaust gas, or electrical energy produced by the engine, or the engine exhaust gas may be used to heat up air which is then used to heat the catalyst.
The second law, Maxwell's demon, and work derivable from quantum heat engines.
Kieu, Tien D
2004-10-01
With a class of quantum heat engines which consists of two-energy-eigenstate systems undergoing, respectively, quantum adiabatic processes and energy exchanges with heat baths at different stages of a cycle, we are able to clarify some important aspects of the second law of thermodynamics. The quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realize Maxwell's demon. While respecting the second law on the average, they are also capable of extracting more work from the heat baths than is otherwise possible in thermal equilibrium.
In-line stirling energy system
Backhaus, Scott N [Espanola, NM; Keolian, Robert [State College, PA
2011-03-22
A high efficiency generator is provided using a Stirling engine to amplify an acoustic wave by heating the gas in the engine in a forward mode. The engine is coupled to an alternator to convert heat input to the engine into electricity. A plurality of the engines and respective alternators can be coupled to operate in a timed sequence to produce multi-phase electricity without the need for conversion. The engine system may be operated in a reverse mode as a refrigerator/heat pump.
Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime.
Yamamoto, Kaoru; Hatano, Naomichi
2015-10-01
Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011)]. These results demonstrate how quantum mechanics constrains thermodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conklin, Jim; Szybist, James P
2010-01-01
A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion wasmore » used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy while not resulting in a decrease in power density.« less
Monitoring and Control Interface Based on Virtual Sensors
Escobar, Ricardo F.; Adam-Medina, Manuel; García-Beltrán, Carlos D.; Olivares-Peregrino, Víctor H.; Juárez-Romero, David; Guerrero-Ramírez, Gerardo V.
2014-01-01
In this article, a toolbox based on a monitoring and control interface (MCI) is presented and applied in a heat exchanger. The MCI was programed in order to realize sensor fault detection and isolation and fault tolerance using virtual sensors. The virtual sensors were designed from model-based high-gain observers. To develop the control task, different kinds of control laws were included in the monitoring and control interface. These control laws are PID, MPC and a non-linear model-based control law. The MCI helps to maintain the heat exchanger under operation, even if a temperature outlet sensor fault occurs; in the case of outlet temperature sensor failure, the MCI will display an alarm. The monitoring and control interface is used as a practical tool to support electronic engineering students with heat transfer and control concepts to be applied in a double-pipe heat exchanger pilot plant. The method aims to teach the students through the observation and manipulation of the main variables of the process and by the interaction with the monitoring and control interface (MCI) developed in LabVIEW©. The MCI provides the electronic engineering students with the knowledge of heat exchanger behavior, since the interface is provided with a thermodynamic model that approximates the temperatures and the physical properties of the fluid (density and heat capacity). An advantage of the interface is the easy manipulation of the actuator for an automatic or manual operation. Another advantage of the monitoring and control interface is that all algorithms can be manipulated and modified by the users. PMID:25365462
Performance of a supercharged direct-injection stratified-charge rotary combustion engine
NASA Technical Reports Server (NTRS)
Bartrand, Timothy A.; Willis, Edward A.
1990-01-01
A zero-dimensional thermodynamic performance computer model for direct-injection stratified-charge rotary combustion engines was modified and run for a single rotor supercharged engine. Operating conditions for the computer runs were a single boost pressure and a matrix of speeds, loads and engine materials. A representative engine map is presented showing the predicted range of efficient operation. After discussion of the engine map, a number of engine features are analyzed individually. These features are: heat transfer and the influence insulating materials have on engine performance and exhaust energy; intake manifold pressure oscillations and interactions with the combustion chamber; and performance losses and seal friction. Finally, code running times and convergence data are presented.
Object-Oriented Modeling of an Energy Harvesting System Based on Thermoelectric Generators
NASA Astrophysics Data System (ADS)
Nesarajah, Marco; Frey, Georg
This paper deals with the modeling of an energy harvesting system based on thermoelectric generators (TEG), and the validation of the model by means of a test bench. TEGs are capable to improve the overall energy efficiency of energy systems, e.g. combustion engines or heating systems, by using the remaining waste heat to generate electrical power. Previously, a component-oriented model of the TEG itself was developed in Modelica® language. With this model any TEG can be described and simulated given the material properties and the physical dimension. Now, this model was extended by the surrounding components to a complete model of a thermoelectric energy harvesting system. In addition to the TEG, the model contains the cooling system, the heat source, and the power electronics. To validate the simulation model, a test bench was built and installed on an oil-fired household heating system. The paper reports results of the measurements and discusses the validity of the developed simulation models. Furthermore, the efficiency of the proposed energy harvesting system is derived and possible improvements based on design variations tested in the simulation model are proposed.
2009-06-09
ER D C/ CE R L TR -0 9 -1 0 Natural Gas Engine-Driven Heat Pump Demonstration at DoD Installations Performance and Reliability Summary...L ab or at or y Approved for public release; distribution is unlimited. ERDC/CERL TR-09-10 June 2009 Natural Gas Engine-Driven Heat Pump ...CERL TR-09-10 ii Abstract: Results of field testing natural gas engine-driven heat pumps (GHP) at six southwestern U.S. Department of Defense (DoD
A thermodynamically general theory for convective vortices
NASA Astrophysics Data System (ADS)
Renno, Nilton O.
2008-08-01
Convective vortices are common features of atmospheres that absorb lower-entropy-energy at higher temperatures than they reject higher-entropy-energy to space. These vortices range from small to large-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective vortices is important to our understanding of some of the basic features of planetary atmospheres. The heat engine framework is a useful tool for studying convective vortices. However, current theories assume that convective vortices are reversible heat engines. Since there are questions about how reversible real atmospheric heat engines are, their usefulness for studying real atmospheric vortices is somewhat controversial. In order to reduce this problem, a theory for convective vortices that includes irreversible processes is proposed. The paper's main result is that the proposed theory provides an expression for the pressure drop along streamlines that includes the effects of irreversible processes. It is shown that a simplified version of this expression is a generalization of Bernoulli's equation to convective circulations. It is speculated that the proposed theory not only explains the intensity, but also sheds light on other basic features of convective vortices such as their physical appearance.
Space Software for Automotive Design
NASA Technical Reports Server (NTRS)
1988-01-01
John Thousand of Wolverine Western Corp. put his aerospace group to work on an unfamiliar job, designing a brake drum using computer design techniques. Computer design involves creation of a mathematical model of a product and analyzing its effectiveness in simulated operation. Technique enables study of performance and structural behavior of a number of different designs before settling on a final configuration. Wolverine employees attacked a traditional brake drum problem, the sudden buildup of heat during fast and repeated braking. Part of brake drum not confined tends to change its shape under combination of heat, physical pressure and rotational forces, a condition known as bellmouthing. Since bellmouthing is a major factor in braking effectiveness, a solution of problem would be a major advance in automotive engineering. A former NASA employee, now a Wolverine employee, knew of a series of NASA computer programs ideally suited to confronting bellmouthing. Originally developed as aids to rocket engine nozzle design, it's capable of analyzing problems generated in a rocket engine or automotive brake drum by heat, expansion, pressure and rotational forces. Use of these computer programs led to new brake drum concept featuring a more durable axle, and heat transfer ribs, or fins, on hub of drum.
Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics
NASA Technical Reports Server (NTRS)
Kratz, Jonathan L.; Culley, Dennis E.; Chapman, Jeffryes W.
2017-01-01
The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.
Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics
NASA Technical Reports Server (NTRS)
Kratz, Jonathan; Culley, Dennis; Chapman, Jeffryes
2016-01-01
The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.
Development of a numerical model to predict physiological strain of firefighter in fire hazard.
Su, Yun; Yang, Jie; Song, Guowen; Li, Rui; Xiang, Chunhui; Li, Jun
2018-02-26
This paper aims to develop a numerical model to predict heat stress of firefighter under low-level thermal radiation. The model integrated a modified multi-layer clothing model with a human thermoregulation model. We took the coupled radiative and conductive heat transfer in the clothing, the size-dependent heat transfer in the air gaps, and the controlling active and controlled passive thermal regulation in human body into consideration. The predicted core temperature and mean skin temperature from the model showed a good agreement with the experimental results. Parametric study was conducted and the result demonstrated that the radiative intensity had a significant influence on the physiological heat strain. The existence of air gap showed positive effect on the physiological heat strain when air gap size is small. However, when the size of air gap exceeds 6 mm, a different trend was observed due to the occurrence of natural convection. Additionally, the time length for the existence of the physiological heat strain was greater than the existence of the skin burn under various heat exposures. The findings obtained in this study provide a better understanding of the physiological strain of firefighter and shed light on textile material engineering for achieving higher protective performance.
NASA Technical Reports Server (NTRS)
Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.
1999-01-01
In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.
Modeling and Simulations on the Intramural Thermoelectric Generator of Lower-Re-fluid
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Zheng, Ding; Chen, Yushan
The thermoelectric conversion with lower Renault number (Re) fluid, such as waste heat from industry boiler, and engine's circled cooling water, which can be designed as intramural generator structure. In this research, a thermoelectric project analysis model and the description of an intensified system are presented, its generator with the aligned or staggered platoon structure has strengthened heat-transfer property, and the heat convection coefficient ratio has increased times than plain tube; For the fluid kinetic energy's loss is influenced by the whirlpool, the pressure difference is several hundred Pa level which changes along with geometric parameters of transform components; what's more, heat transfer area increase distinctly under the same generator volume, which has built the foundation for the enhancement output electric power.
Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine
NASA Technical Reports Server (NTRS)
Jiang, Nan; Simon, Terrence W.
2006-01-01
The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.
Controlling the Internal Heat Transfer Coefficient by the Characteristics of External Flows
NASA Astrophysics Data System (ADS)
Zhuromskii, V. M.
2018-01-01
The engineering-physical fundamentals of substance synthesis in a boiling apparatus are presented. We have modeled a system of automatic stabilization of the maximum internal heat transfer coefficient in such an apparatus by the characteristics of external flows on the basis of adaptive seeking algorithms. The results of operation of the system in the shop are presented.
On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas
NASA Astrophysics Data System (ADS)
Meisner, G. P.
2013-03-01
The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
This patent describes a solar energy system. It comprises: a water pond which is heated by solar energy; a cover above the pond which transmits solar energy; an air space between the pond and the cover through which warm air and vaporized water move; a chimney which induces the rapid flow of warm humid air into its lower end and delivers such air at its upper end; a fresh water heat sink which receives condensed vapor from the chimney-induced flow; a heat energy driven engine, the power output of which is a function of the temperature difference between higher andmore » lower temperature levels; a first heat exchanger in the engine connected to the top of the chimney, and arranged to convert the vapor condensation energy into the higher temperature level of th engine; a second heat exchanger in the engine arranged to provide the lower temperature of the engine by connection to the heat sink; and power transfer means driven by the temperature differential energy of the engine.« less
Mechanical Autonomous Stochastic Heat Engine
NASA Astrophysics Data System (ADS)
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Mechanical Autonomous Stochastic Heat Engine.
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Quantum heat engine operating between thermal and spin reservoirs
NASA Astrophysics Data System (ADS)
Wright, Jackson S. S. T.; Gould, Tim; Carvalho, André R. R.; Bedkihal, Salil; Vaccaro, Joan A.
2018-05-01
Landauer's erasure principle is a cornerstone of thermodynamics and information theory [R. Landauer, IBM J. Res. Dev. 5, 183 (1961), 10.1147/rd.53.0183]. According to this principle, erasing information incurs a minimum energy cost. Recently, Vaccaro and Barnett [J. A. Vaccaro and S. M. Barnett, Proc. R. Soc. A 467, 1770 (2011), 10.1098/rspa.2010.0577] explored information erasure in the context of multiple conserved quantities and showed that the erasure cost can be solely in terms of spin angular momentum. As Landauer's erasure principle plays a fundamental role in heat engines, their result considerably widens the possible configurations that heat engines can have. Motivated by this, we propose here an optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir coupled to a three-level system with two energy degenerate ground states. The proposed heat engine operates without producing waste heat and goes beyond the traditional Carnot engine where the working fluid is subjected to two thermal baths at different temperatures.
NASA Astrophysics Data System (ADS)
Cavanagh, A. P.; South, P. F.; Ort, D. R.; Bernacchi, C.
2017-12-01
In C3 plants grown under ambient [CO2] at 25°C, 23% of the fixed carbon dioxide is lost to photorespiration, the energy expensive metabolic pathway that recycles toxic compounds produced by Rubisco oxygenation reactions. Furthermore, rates of photorespiration increase with rising temperature, as higher temperatures favor increased Rubisco oxygenation. Modelling suggests that the absence of photorespiration could improve gross photosynthesis by 12-55% under projected climate conditions; however, this is difficult to measure empirically, as photorespiration interacts with several metabolic pathways and is an essential process for all C3 plants grown at ambient [O2]. Introduced biochemical bypasses to the native photorespiration pathway hold promise as a strategy to mitigate the impact of temperature on photorespiratory losses. We grew tobacco containing engineered pathways to bypass photorespiration under ambient and elevated temperatures (+5°C) in the field to determine if bypassing photorespiration could mitigate high temperature induced losses in growth and physiology. Our preliminary results show that engineered plants have a higher quantum efficiency under heated conditions than do non-engineered plants, resulting in up to 20% lower yield losses under heated conditions compared to non-engineered plants. These results support the theoretical modelling of temperature impacts on photorespiratory losses, and suggest the bypassing photorespiration could be an important strategy to increase crop yields.
Commissioning and Performance Analysis of WhisperGen Stirling Engine
NASA Astrophysics Data System (ADS)
Pradip, Prashant Kaliram
Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Ekchian, J. A.; Heywood, J. B.; Replogle, K. K.
1984-01-01
Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described.
Heat balance and thermal management of the TMT Observatory
NASA Astrophysics Data System (ADS)
Thompson, Hugh; Vogiatzis, Konstantinos
2014-08-01
An extensive campaign of aero-thermal modeling of the Thirty Meter Telescope (TMT) has been carried out and presented in other papers. This paper presents a summary view of overall heat balance of the TMT observatory. A key component of this heat balance that can be managed is the internal sources of heat dissipation to the ambient air inside the enclosure. An engineering budget for both daytime and nighttime sources is presented. This budget is used to ensure that the overall effects on daytime cooling and nighttime seeing are tracked and fall within the modeled results that demonstrate that the observatory meets its performance requirements. In the daytime heat fluxes from air-conditioning, solar loading, infiltration, and deliberate venting through the enclosure top vent are included along with equipment heat sources. In the nighttime convective heat fluxes through the open aperture and vent doors, as well as radiation to the sky are tracked along with the nighttime residual heat dissipations after cooling from equipment in the observatory. The diurnal variation of thermal inertia of large masses, such as the telescope structure, is also included. Model results as well as the overall heat balance and thermal management strategy of the observatory are presented.
NASA Astrophysics Data System (ADS)
Pond, Ian; Edabi, Alireza; Dubief, Yves; White, Christopher
2015-11-01
Reynolds Average Navier Stokes (RANS) modeling has established itself as a critical design tool in many engineering applications, thanks to its superior computational efficiency. The drawbacks of RANS models are well known, but not necessarily well understood: poor prediction of transition, non equilibrium flows, mixing and heat transfer, to name the ones relevant to our study. In the present study, we use a DNS of a reciprocating channel flow driven by an oscillating pressure gradient to test several low- and high-Reynolds RANS models. Temperature is introduced as a passive scalar to study heat transfer modeling. Low-Reynolds models manage to capture the overall physics of wall shear and heat flux well, yet with some phase discrepancies, whereas high Reynolds models fail. Under the microscope of the integral method for wall shear and wall heat flux, the qualitative agreement appears more serendipitous than driven by the ability of the models to capture the correct physics. The integral method is shown to be more insightful in the benchmarking of RANS models than the typical comparisons of statistical quantities. The authors acknowledges the support of NSF and DOE under grant NSF/DOE 1258697 (VT) and 1258702 (NH).
Thermodynamic universality of quantum Carnot engines
Gardas, Bartłomiej; Deffner, Sebastian
2015-10-12
The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamic —independent of the model. We will show that rather the definition of heat has to be modified to account for the thermodynamic cost of maintaining non-Gibbsian equilibrium states. As a result, our theoretical findings are illustrated for two experimentallymore » relevant examples.« less
Space electric power design study. [laser energy conversion
NASA Technical Reports Server (NTRS)
Martini, W. R.
1976-01-01
The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.
Laser engines operating by resonance absorption. [thermodynamic feasibility study
NASA Technical Reports Server (NTRS)
Garbuny, M.; Pechersky, M. J.
1976-01-01
Basic tutorial article on the thermodynamic feasibility of laser engines at the present state of the art. Three main options are considered: (1) laser power applied externally to a heat reservoir (boiler approach); (2) internal heating of working fluid by resonance absorption; and (3) direct conversion of selective excitation into work. Only (2) is considered practically feasible at present. Basic concepts and variants, efficiency relations, upper temperature limits of laser engines, selection of absorbing gases, engine walls, bleaching, thermodynamic cycles of optimized laser engines, laser-powered turbines, laser heat pumps are discussed. Photon engines and laser dissociation engines are also considered.
Performance and combustion characteristics of direct-injection stratified-charge rotary engines
NASA Technical Reports Server (NTRS)
Nguyen, Hung Lee
1987-01-01
Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.
Sodium heat engine system: Space application
NASA Astrophysics Data System (ADS)
Betz, Bryan H.; Sungu, Sabri; Vu, Hung V.
1994-08-01
This paper explores the possibility of utilizing the Sodium Heat Engine (SHE) or known as AMTEC (Alkali Metal Thermoelectric Converter), for electrical power generation in ``near earth'' geosynchronous orbit. The Sodium Heat Engine principle is very flexible and adapts well to a variety of physical geometries. The proposed system can be easily folded and then deployed into orbit without the need for on site assembly in space. Electric power generated from SHE engine can be used in communication satellites, in space station, and other applications such as electrical recharging of vehicles in space is one of the applications the Sodium Heat Engine could be adapted to serve.
Waste heat recovery on multiple low-speed reciprocating engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, R.E.
1982-09-01
With rising fuel costs, energy conservation has taken on added significance. Installation of Waste Heat Recovery Units (WHRU) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines has also been identified as having energy conservation potential. This paper reviews the development and implementation of a Waste Heat Recovery Unit (WHRU) for multiple low speed engines at the Katy Gas Plant. WHRU's for these engines should be differentiated from high speed engines and gas turbines in that low speed engines produce low frequency, highmore » amplitude pulsating exhaust. The design of a waste heat system must take this potentially destructive pulsation into account. At Katy, the pulsation forces were measured at high amplitude frequencies and then used to design structural stiffness into the various components of the WHRU to minimize vibration and improve system reliability.« less
Quantum Stirling heat engine and refrigerator with single and coupled spin systems
NASA Astrophysics Data System (ADS)
Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi
2014-02-01
We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.
Progress toward an optimized hydrogen series hybrid engine
NASA Astrophysics Data System (ADS)
Smith, J. Ray; Aceves, Salvador M.; Johnson, Norman L.; Amsden, Anthony A.
1995-06-01
The design considerations and computational fluid dynamics (CFD) modeling of a high efficiency, low emissions, hydrogen-fueled engine for use as the prime mover of a series hybrid automobile is described. The series hybrid automobile uses the engine to generate electrical energy via a lightweight generator, the electrical energy is stored in a power peaking device (like a flywheel or ultracapacitor) and used as required to meet the tractive drive requirements (plus accessory loads) through an electrical motor. The engine/generator is stopped whenever the energy storage device is fully charged. Engine power output required was determined with a vehicle simulation code to be 15 to 20 kW steady state with peak output of 40 to 45 kW for hill climb. Combustion chamber and engine geometry were determined from a critical review of the hydrogen engine experiments in the literature combined with a simplified global engine model. Two different engine models are employed to guide engine design. The models are a simplified global engine performance model that relies strongly on correlations with literature data for heat transfer and friction losses, and a state-of-the-art CFD combustion model, KIVA-3, to elucidate fluid mechanics and combustion details through full three-dimensional modeling. Both intake and exhaust processes as well as hydrogen combustion chemistry and thermal NO(sub x) production are simulated. Ultimately, a comparison between the simulation and experimental results will lead to improved modeling and will give guidance to changes required in the next generation engine to achieve the goal of 45% brake thermal efficiency.
Performance of discrete heat engines and heat pumps in finite time
Feldmann; Kosloff
2000-05-01
The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.
NASA Astrophysics Data System (ADS)
Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.
2016-08-01
Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.
Reversible Quantum Brownian Heat Engines for Electrons
NASA Astrophysics Data System (ADS)
Humphrey, T. E.; Newbury, R.; Taylor, R. P.; Linke, H.
2002-08-01
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on mesoscopic semiconductor ratchets, which can quasistatically operate arbitrarily close to Carnot efficiency.
Reversible quantum heat engines for electrons
NASA Astrophysics Data System (ADS)
Linke, Heiner; Humphrey, Tammy E.; Newbury, Richard; Taylor, Richard P.
2002-03-01
Brownian heat engines use local temperature gradients in asymmetric potentials to move particles against an external force. The energy efficiency of such machines is generally limited by irreversible heat flow carried by particles that make contact with different heat baths. Here we show that, by using a suitably chosen energy filter, electrons can be transferred reversibly between reservoirs that have different temperatures and electrochemical potentials. We apply this result to propose heat engines based on quantum ratchets, which can quasistatically operate at Carnot efficiency.
Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines
NASA Technical Reports Server (NTRS)
Radil, Kevin C.
1997-01-01
Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.
Fourier heat conduction as a phenomenon described within the scope of the second law
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jesudason, Christopher G.
The historical development of the Carnot cycle necessitated the construction of isothermal and adiabatic pathways within the cycle that were also mechanically 'reversible' which lead eventually to the Kelvin-Clausius development of the entropy function S where for any reversible closed path C, ∮{sub C} dS = 0 based on an infinite number of concatenated Carnot engines that approximated the said path and where for each engine ΔQ{sub 1}/T{sub 1}+ΔQ{sub 2}/T{sub 2} = 0 where the Q's and T's are the heat absorption increments and temperature respectively with the subscripts indicating the isothermal paths (1;2) where for the Carnot engine, the heat absorptionmore » is for the diathermal (isothermal) paths of the cycle only. Since 'heat' has been defined as that form of energy that is transferred as a result of a temperature difference and a corollary of the Clausius statement of the Second law is that it is impossible for heat to be transferred from a cold to a hot reservoir with no other effect on the environment, these statements suggested that the local mode of transfer of 'heat' in the isothermal segments of the pathway does imply a Fourier heat conduction mechanism (to conform to the definition of 'heat') albeit of a 'reversible' kind, but on the other hand, the Fourier mechanism is apparently irreversible, leading to an increase in entropy of the combined reservoirs at either end of the material involved in the conveyance of the heat energy. These and several other considerations lead Benofy and Quay (BQ) to postulate the Fourier heat conduction phenomenon to be an ancillary principle in thermodynamics, with this principle being strictly local in nature, where the global Second law statements could not be applied to this local process. Here we present equations that model heat conduction as a thermodynamically reversible but mechanically irreversible process where due to the belief in mechanical time reversible symmetry, thermodynamical reversibility has been unfortunately linked to mechanical reversibility, that has discouraged such an association. The modeling is based on an application of a 'recoverable transition', defined and developed earlier on ideas derived from thermal desorption of particles from a surface where the Fourier heat conduction process is approximated as a series of such desorption processes. We recall that the original Carnot engine required both adiabatic and isothermal steps to complete the zero entropy cycle, and this construct lead to the consequent deduction that any Second law statement that refers to heat-work conversion processes are only globally relevant. Here, on the other hand, we examine Fourier heat conduction from MD simulation and model this process as a zero-entropy forward scattering process relative to each of the atoms in the lattice chain being treated as a system where the Carnot cycle can be applied individually. The equations developed predicts the 'work' done to be equal to the energy transfer rate. The MD simulations conducted shows excellent agreement with the theory. Such views and results as these, if developed to a successful conclusion could imply that the Carnot cycle be viewed as describing a local process of energy-work conversion and that irreversible local processes might be brought within the scope of this cycle, implying a unified treatment of thermodynamically (i) irreversible, (ii) reversible, (iii) isothermal and (iv) adiabatic processes.« less
Thermodynamics of the mesoscopic thermoelectric heat engine beyond the linear-response regime
NASA Astrophysics Data System (ADS)
Yamamoto, Kaoru; Hatano, Naomichi
2015-10-01
Mesoscopic thermoelectric heat engine is much anticipated as a device that allows us to utilize with high efficiency wasted heat inaccessible by conventional heat engines. However, the derivation of the heat current in this engine seems to be either not general or described too briefly, even inappropriately in some cases. In this paper, we give a clear-cut derivation of the heat current of the engine with suitable assumptions beyond the linear-response regime. It resolves the confusion in the definition of the heat current in the linear-response regime. After verifying that we can construct the same formalism as that of the cyclic engine, we find the following two interesting results within the Landauer-Büttiker formalism: the efficiency of the mesoscopic thermoelectric engine reaches the Carnot efficiency if and only if the transmission probability is finite at a specific energy and zero otherwise; the unitarity of the transmission probability guarantees the second law of thermodynamics, invalidating Benenti et al.'s argument in the linear-response regime that one could obtain a finite power with the Carnot efficiency under a broken time-reversal symmetry [Phys. Rev. Lett. 106, 230602 (2011), 10.1103/PhysRevLett.106.230602]. These results demonstrate how quantum mechanics constrains thermodynamics.
Combustion instability and active control: Alternative fuels, augmentors, and modeling heat release
NASA Astrophysics Data System (ADS)
Park, Sammy Ace
Experimental and analytical studies were conducted to explore thermo-acoustic coupling during the onset of combustion instability in various air-breathing combustor configurations. These include a laboratory-scale 200-kW dump combustor and a 100-kW augmentor featuring a v-gutter flame holder. They were used to simulate main combustion chambers and afterburners in aero engines, respectively. The three primary themes of this work includes: 1) modeling heat release fluctuations for stability analysis, 2) conducting active combustion control with alternative fuels, and 3) demonstrating practical active control for augmentor instability suppression. The phenomenon of combustion instabilities remains an unsolved problem in propulsion engines, mainly because of the difficulty in predicting the fluctuating component of heat release without extensive testing. A hybrid model was developed to describe both the temporal and spatial variations in dynamic heat release, using a separation of variables approach that requires only a limited amount of experimental data. The use of sinusoidal basis functions further reduced the amount of data required. When the mean heat release behavior is known, the only experimental data needed for detailed stability analysis is one instantaneous picture of heat release at the peak pressure phase. This model was successfully tested in the dump combustor experiments, reproducing the correct sign of the overall Rayleigh index as well as the remarkably accurate spatial distribution pattern of fluctuating heat release. Active combustion control was explored for fuel-flexible combustor operation using twelve different jet fuels including bio-synthetic and Fischer-Tropsch types. Analysis done using an actuated spray combustion model revealed that the combustion response times of these fuels were similar. Combined with experimental spray characterizations, this suggested that controller performance should remain effective with various alternative fuels. Active control experiments validated this analysis while demonstrating 50-70% reduction in the peak spectral amplitude. A new model augmentor was built and tested for combustion dynamics using schlieren and chemiluminescence techniques. Novel active control techniques including pulsed air injection were implemented and the results were compared with the pulsed fuel injection approach. The pulsed injection of secondary air worked just as effectively for suppressing the augmentor instability, setting up the possibility of more efficient actuation strategy.
Vance, Jonathan Blake; Singh, Atmika; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A
2007-07-01
Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10%-25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine.
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
2017-02-21
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, Moonis R.; Sharma, Vishaldeep; Abdelaziz, Omar
The choice of driving a heat pump with an electrically$-$or a thermally-driven engine is a vexing question complicated by the carbon footprint and environmental impact of using electricity versus natural gas (or waste heat) as the main driver for the respective engines. The amount of useful work generated by these two distinct engines is the focal point of this paper, which addresses a key question: which engine presents a better choice for a given heat pumping application within the constraints of energy and environmental stewardship? Extensive use of energy, exergy, and availability analysis is necessary to quantify the useful workmore » and to examine the issue holistically for both types of engines. The methodology explains why the output of work from these two distinct engines to satisfy a given load is vastly different, a direct consequence of their inherent Irreversibility. Thermodynamic consistency is guaranteed by satisfaction of the First and Second Laws applied to closed systems and their subsystems. The general conclusion is that thermally-driven engines are not industrious converters of heat to mechanical work.« less
Local Heat Flux Measurements with Single and Small Multi-element Coaxial Element-Injectors
NASA Technical Reports Server (NTRS)
Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James
2006-01-01
To support NASA's Vision for Space Exploration mission, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines with regeneratively cooled chamber walls, as well as in small thrust chambers with few elements in the injector. In this program, single and three-element injectors were hot-fire tested with liquid oxygen and gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges, Injector configurations were tested with both shear coaxial elements and swirl coaxial elements. Both a straight and a scarfed single element swirl injector were tested. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three coaxial shear and swirl elements. Detailed geometry and test results the for shear coax elements has already been published. Detailed test result for the remaining 6 swirl coax element for the will be published in a future JANNAF presentation to provide well-defined data sets for development and model validation.
Local Heat Flux Measurements with Single Element Coaxial Injectors
NASA Technical Reports Server (NTRS)
Jones, Gregg; Protz, Christopher; Bullard, Brad; Hulka, James
2006-01-01
To support the mission for the NASA Vision for Space Exploration, the NASA Marshall Space Flight Center conducted a program in 2005 to improve the capability to predict local thermal compatibility and heat transfer in liquid propellant rocket engine combustion devices. The ultimate objective was to predict and hence reduce the local peak heat flux due to injector design, resulting in a significant improvement in overall engine reliability and durability. Such analyses are applicable to combustion devices in booster, upper stage, and in-space engines, as well as for small thrusters with few elements in the injector. In this program, single element and three-element injectors were hot-fire tested with liquid oxygen and ambient temperature gaseous hydrogen propellants at The Pennsylvania State University Cryogenic Combustor Laboratory from May to August 2005. Local heat fluxes were measured in a 1-inch internal diameter heat sink combustion chamber using Medtherm coaxial thermocouples and Gardon heat flux gauges. Injectors were tested with shear coaxial and swirl coaxial elements, including recessed, flush and scarfed oxidizer post configurations, and concentric and non-concentric fuel annuli. This paper includes general descriptions of the experimental hardware, instrumentation, and results of the hot-fire testing for three of the single element injectors - recessed-post shear coaxial with concentric fuel, flush-post swirl coaxial with concentric fuel, and scarfed-post swirl coaxial with concentric fuel. Detailed geometry and test results will be published elsewhere to provide well-defined data sets for injector development and model validatation.
Full-scale simulation and reduced-order modeling of a thermoacoustic engine
NASA Astrophysics Data System (ADS)
Scalo, Carlo; Lin, Jeff; Lele, Sanjiva; Hesselink, Lambertus
2013-11-01
We have carried out the first three-dimensional numerical simulation of a thermoacoustic Stirling heat-engine. The goal is to lay the groundwork for full-scale Navier-Stokes simulations to advance the state-of-the-art low-order modeling and design of such devices. The model adopted is a long resonator with a heat-exchanger/regenerator (HX/REG) unit on one end - the only component not directly resolved. A temperature difference across the HX/REG unit of 200 K is sufficient to initiate the thermoacoustic instability. The latter is a Lagrangian process that only intensifies acoustic waves traveling in the direction of the imposed temperature gradient. An acoustic network of traveling waves is thus obtained and compared against low-order prediction tools such as DeltaEC. Non-linear effects such as system-wide streaming flow patterns are rapidly established. These are responsible for the mean advection of hot fluid away from the HX/REG (i.e. thermal leakage). This unwanted effect is contained by the introduction of a second ambient heat-exchanger allowing for the establishment of a dynamical thermal equilibrium in the system. A limit cycle is obtained at +178 dB.
Turbulent heat transfer prediction method for application to scramjet engines
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.
1974-01-01
An integral method for predicting boundary layer development in turbulent flow regions on two-dimensional or axisymmetric bodies was developed. The method has the capability of approximating nonequilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was developed for the problem of predicting the heat transfer in a turbulent boundary layer in the presence of a high pressure gradient. The solution was derived with particular emphasis on its applicability to supersonic combustion; thus, the effects of real gas flows were included. The resulting integrodifferential boundary layer method permits the estimation of cooling reguirements for scramjet engines. Theoretical heat transfer results are compared with experimental combustor and noncombustor heat transfer data. The heat transfer method was used in the development of engine design concepts which will produce an engine with reduced cooling requirements. The Langley scramjet engine module was designed by utilizing these design concepts and this engine design is discussed along with its corresponding cooling requirements. The heat transfer method was also used to develop a combustor cooling correlation for a combustor whose local properties are computed one dimensionally by assuming a linear area variation and a given heat release schedule.
Exhaust heated hydrogen and oxygen producing catalytic converter for combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, E.T.
1977-07-26
A steam generator is provided in operative association with a source of water and the exhaust system of a combustion engine including an air induction system provided with primary fuel inlet structure and supplemental fuel inlet structure. The steam generator derives its heat for converting water into steam from the exhaust system of the combustion engine and the steam generator includes a steam outlet communicated with and opening into one end of an elongated tubular housing disposed in good heat transfer relation with the exhaust system of the combustion engine and having a gas outlet at its other end communicatedmore » with the supplemental fuel inlet of the induction system. The tubular housing has iron filings disposed therein and is in such heat transfer relation with the exhaust system of the combustion engine so as to elevate the temperature of steam passing therethrough and to heat the iron filings to the extent that passage of the heated steam over the heated filings will result in hydrogen and oxygen gas being produced in the tubular housing for subsequent passage to the supplemental fuel inlet of the combustion engine induction system.« less
Application of solar energy to air conditioning systems
NASA Technical Reports Server (NTRS)
Nash, J. M.; Harstad, A. J.
1976-01-01
The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.
An experimental procedure to determine heat transfer properties of turbochargers
NASA Astrophysics Data System (ADS)
Serrano, J. R.; Olmeda, P.; Páez, A.; Vidal, F.
2010-03-01
Heat transfer phenomena in turbochargers have been a subject of investigation due to their importance for the correct determination of compressor real work when modelling. The commonly stated condition of adiabaticity for turbochargers during normal operation of an engine has been revaluated because important deviations from adiabatic behaviour have been stated in many studies in this issue especially when the turbocharger is running at low rotational speeds/loads. The deviations mentioned do not permit us to assess properly the turbine and compressor efficiencies since the pure aerodynamic effects cannot be separated from the non-desired heat transfer due to the presence of both phenomena during turbocharger operation. The correction of the aforesaid facts is necessary to properly feed engine models with reliable information and in this way increase the quality of the results in any modelling process. The present work proposes a thermal characterization methodology successfully applied in a turbocharger for a passenger car which is based on the physics of the turbocharger. Its application helps to understand the thermal behaviour of the turbocharger, and the results obtained constitute vital information for future modelling efforts which involve the use of the information obtained from the proposed methodology. The conductance values obtained from the proposed methodology have been applied to correct a procedure for measuring the mechanical efficiency of the tested turbocharger.
NASA Technical Reports Server (NTRS)
1980-01-01
Detailed computer models of the engine were developed to predict both the steady state and transient operation of the engine system. Mechanical design layout drawings were prepared for the following components: thrust chamber and nozzle; extendible nozzle actuating mechanism and seal; LOX turbopump and boost pump; hydrogen turbopump and boost pump; and the propellant control valves. The necessary heat transfer, stress, fluid flow, dynamic, and performance analyses were performed to support the mechanical design.
Evaluation of fuel equipment operability of diesel locomotive engine with use of infrared receivers
NASA Astrophysics Data System (ADS)
Ovcharenko, S. M.; Balagin, O. V.; Balagin, D. V.
2018-03-01
This paper provides results of modelling the heat liberation in high-pressure pipeline of fuel equipment of diesel locomotive engines. Functional relationships between the technical state of fuel equipment and temperature of the outer surface of the high-pressure fuel pipeline are presented using the example of diesel locomotive engine 1-PD4D. The paper shows results of operational tests of the developed method for control of fuel equipment operability of diesel locomotive.
Control system development for an organic Ranking cycle engine
NASA Technical Reports Server (NTRS)
Bergthold, F. M., Jr.; Fulton, D. G.; Haskins, H. J.
1981-01-01
An organic Rankine cycle engine is used as part of a solar thermal power conversion assembly (PCA). The PCA, including a direct-heated cavity receiver and a shaft-mounted alternator, is mounted at the focal point of a parabolic dish concentrator. The engine controls are required to maintain approximately constant values of turbine inlet temperature and shaft speed, despite variation in the concentrated solar power input to the receiver. The controls design approach, system models, and initial stability and performance analysis results are presented herein.
Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.; Gati, Frank; Yuko, James R.; Motil, Brian J.; Lumpkin, Forrest E.
2009-01-01
The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module showed that thermal protection is necessary because of significant heating from the plume.
CFD analysis of heat transfer performance of graphene based hybrid nanofluid in radiators
NASA Astrophysics Data System (ADS)
Bharadwaj, Bharath R.; Sanketh Mogeraya, K.; Manjunath, D. M.; Rao Ponangi, Babu; Rajendra Prasad, K. S.; Krishna, V.
2018-04-01
For Improved performance of an automobile engine, Cooling systems are one of the critical systems that need attention. With increased capacity to carry away large amounts of wasted heat, performance of an engine is increased. Current research on Nano-fluids suggests that they offer higher heat transfer rate compared to that of conventional coolants. Hence this project seeks to investigate the use of hybrid-nanofluids in radiators so as to increase its heat transfer performance. Carboxyl Graphene and Graphene Oxide based nanoparticles were selected due to the very high thermal conductivity of Graphene. System Analysis of the radiator was performed by considering a small part of the whole automobile radiator modelled using SEIMENS NX. CFD analysis was conducted using ANSYS FLUENT® for the nanofluid defined and the increase in effectiveness was compared to that of conventional coolants. Usage of such nanofluids for a fixed cooling requirement in the future can lead to significant downsizing of the radiator.
Geothermal systems: Principles and case histories
NASA Astrophysics Data System (ADS)
Rybach, L.; Muffler, L. J. P.
The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.
Efficiency of Brownian heat engines.
Derényi, I; Astumian, R D
1999-06-01
We study the efficiency of one-dimensional thermally driven Brownian ratchets or heat engines. We identify and compare the three basic setups characterized by the type of the connection between the Brownian particle and the two heat reservoirs: (i) simultaneous, (ii) alternating in time, and (iii) position dependent. We make a clear distinction between the heat flow via the kinetic and the potential energy of the particle, and show that the former is always irreversible and it is only the third setup where the latter is reversible when the engine works quasistatically. We also show that in the third setup the heat flow via the kinetic energy can be reduced arbitrarily, proving that even for microscopic heat engines there is no fundamental limit of the efficiency lower than that of a Carnot cycle.
Heat engine development for solar thermal power systems
NASA Astrophysics Data System (ADS)
Pham, H. Q.; Jaffe, L. D.
The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.
Heat Exchanger Lab for Chemical Engineering Undergraduates
ERIC Educational Resources Information Center
Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.
2015-01-01
Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…
Principles of liquids working in heat engines
Allen, P. C.; Knight, W. R.; Paulson, D. N.; Wheatley, J. C.
1980-01-01
The thermodynamic and thermophysical properties of liquids suggest that they should be powerful working fluids in heat engines. Their use requires heat engines based conceptually on the Stirling and Malone principles. The principles are explained, and then experiments on propylene are presented that demonstrate the principles and confirm the thermodynamic analysis. PMID:16592756
Review and assessment of the database and numerical modeling for turbine heat transfer
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Simoneau, R. J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
A wind tunnel test program to determine aerodynamic heat transfer distributions on the McDonnell-Douglas configurations is reported. The tests were conducted at the Arnold Engineering Development Center (AEDC) in Tunnel B of the von Karman Gas Dynamics Facility (VKF). Heat-transfer rates were determined by the phase-change paint technique on 0.011-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, freestream unit Reynolds numbers of 0.8 x one million, 2.5 x one million, and 3.7 x one million, and angles of attack of -5 deg, 0 deg, +5deg. Model details, test conditions, phase-change paint photographs and reduced heat-transfer coefficients are presented.
Superconductor Particles As The Working Media Of A Heat Engine
NASA Astrophysics Data System (ADS)
Keefe, Peter D.
2011-12-01
A heat engine is presented in which the working media comprises a multiplicity of mutually isolated particles of Type I superconductor which are selectively processed through H-T phase space so as to convert a heat influx from a high temperature heat reservoir into a useful work output, wherein no heat is rejected to a low temperature heat reservoir.
ETR HEAT EXCHANGER BUILDING, TRA644. WORKERS ARE INSTALLING HEAT EXCHANGER ...
ETR HEAT EXCHANGER BUILDING, TRA-644. WORKERS ARE INSTALLING HEAT EXCHANGER PIPING. INL NEGATIVE NO. 56-3122. Jack L. Anderson, Photographer, 9/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Control system for, and a method of, heating an operator station of a work machine
Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad
2005-04-05
There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.
Analysis of a Temperature-Controlled Exhaust Thermoelectric Generator During a Driving Cycle
NASA Astrophysics Data System (ADS)
Brito, F. P.; Alves, A.; Pires, J. M.; Martins, L. B.; Martins, J.; Oliveira, J.; Teixeira, J.; Goncalves, L. M.; Hall, M. J.
2016-03-01
Thermoelectric generators can be used in automotive exhaust energy recovery. As car engines operate under wide variable loads, it is a challenge to design a system for operating efficiently under these variable conditions. This means being able to avoid excessive thermal dilution under low engine loads and being able to operate under high load, high temperature events without the need to deflect the exhaust gases with bypass systems. The authors have previously proposed a thermoelectric generator (TEG) concept with temperature control based on the operating principle of the variable conductance heat pipe/thermosiphon. This strategy allows the TEG modules’ hot face to work under constant, optimized temperature. The variable engine load will only affect the number of modules exposed to the heat source, not the heat transfer temperature. This prevents module overheating under high engine loads and avoids thermal dilution under low engine loads. The present work assesses the merit of the aforementioned approach by analysing the generator output during driving cycles simulated with an energy model of a light vehicle. For the baseline evaporator and condenser configuration, the driving cycle averaged electrical power outputs were approximately 320 W and 550 W for the type-approval Worldwide harmonized light vehicles test procedure Class 3 driving cycle and for a real-world highway driving cycle, respectively.
NASA Technical Reports Server (NTRS)
Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)
1988-01-01
The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.
NASA Astrophysics Data System (ADS)
Elovic, E.; O'Brien, J. E.; Pepper, D. W.
The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.
Thin film heat flux sensor for Space Shuttle Main Engine turbine environment
NASA Technical Reports Server (NTRS)
Will, Herbert
1991-01-01
The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.
Insoluble coatings for Stirling engine heat pipe condenser surfaces
NASA Astrophysics Data System (ADS)
Dussinger, Peter M.
1993-09-01
The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly comparable to liquid metal pumped loop data, that nickel aluminide is still a leading candidate for solubility corrosion protection, and that longer duration tests are required to reach a definitive conclusion whether coatings are required at all. Should further testing be required, the test vehicle and analytical tools were developed.
Insoluble coatings for Stirling engine heat pipe condenser surfaces
NASA Technical Reports Server (NTRS)
Dussinger, Peter M.
1993-01-01
The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly comparable to liquid metal pumped loop data, that nickel aluminide is still a leading candidate for solubility corrosion protection, and that longer duration tests are required to reach a definitive conclusion whether coatings are required at all. Should further testing be required, the test vehicle and analytical tools were developed.
ERIC Educational Resources Information Center
Foss, Alan S.; Geurts, Kevin R.; Goodeve, Peter J.; Dahm, Kevin D.; Stephanopoulos, George; Bieszczad, Jerry; Koulouris, Alexandros
1999-01-01
Discusses a program that offers students a phenomenon-oriented environment expressed in the fundamental concepts and language of chemical engineering such as mass and energy balancing, phase equilibria, reaction stoichiometry and rate, modes of heat, and species transport. (CCM)
Rotary engine performance computer program (RCEMAP and RCEMAPPC): User's guide
NASA Technical Reports Server (NTRS)
Bartrand, Timothy A.; Willis, Edward A.
1993-01-01
This report is a user's guide for a computer code that simulates the performance of several rotary combustion engine configurations. It is intended to assist prospective users in getting started with RCEMAP and/or RCEMAPPC. RCEMAP (Rotary Combustion Engine performance MAP generating code) is the mainframe version, while RCEMAPPC is a simplified subset designed for the personal computer, or PC, environment. Both versions are based on an open, zero-dimensional combustion system model for the prediction of instantaneous pressures, temperature, chemical composition and other in-chamber thermodynamic properties. Both versions predict overall engine performance and thermal characteristics, including bmep, bsfc, exhaust gas temperature, average material temperatures, and turbocharger operating conditions. Required inputs include engine geometry, materials, constants for use in the combustion heat release model, and turbomachinery maps. Illustrative examples and sample input files for both versions are included.
Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem
2015-05-05
We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaulsky, E; Boo, C; Lin, SH
We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that ofmore » an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.« less
Organic Rankine cycle - review and research directions in engine applications
NASA Astrophysics Data System (ADS)
Panesar, Angad
2017-11-01
Waste heat to power conversion using Organic Rankine Cycles (ORC) is expected to play an important role in CO2 reductions from diesel engines. Firstly, a review of automotive ORCs is presented focusing on the pure working fluids, thermal architectures and expanders. The discussion includes, but is not limited to: R245fa, ethanol and water as fluids; series, parallel and cascade as architectures; dry saturated, superheated and supercritical as expansion conditions; and scroll, radial turbine and piston as expansion machines. Secondly, research direction in versatile expander and holistic architecture (NOx + CO2) are proposed. Benefits of using the proposed unconventional approaches are quantified using Ricardo Wave and Aspen HYSYS for diesel engine and ORC modelling. Results indicate that, the implementation of versatile piston expander tolerant to two-phase and using cyclopentane can potentially increase the highway drive cycle power by 8%. Furthermore, holistic architecture offering complete utilisation of charge air and exhaust recirculation heat increased the performance noticeably to 5% of engine power at the design point condition.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1984-01-01
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.
Intrinsically irreversible heat engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-12-25
A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.
Diaphragm Stirling engine heat-actuated heat pump development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, R.A.; Swenson, P.
1981-01-01
The objective of this program is to develop and demonstrate the performance of a diaphragm Stirling engine heat-actuated heat pump power module. The power module, consisting of a free displacer, resonant Stirling engine, hydraulic transmission, and resonant Rankine refrigerant (F-22) compressor, embodies several innovative concepts in free-piston Stirling engine heat pump design that will advance the state of the art of this technology. Progress is reported in three areas of the program. First, a compressor/engine matching analysis and a stability analysis have shown that the power module, which is representative of a two-degree-of-freedom resonant system, will operate stably over themore » full range of heat pump conditions. Second, a compressor design has evolved that has met criteria for performance and cost; and third, tests employing a hydraulic simulator test rig has shown that the transmission losses are less than had been predicted, and that properly designed and fabricated diaphragms can attain long life.« less
High-temperature self-circulating thermoacoustic heat exchanger
NASA Astrophysics Data System (ADS)
Backhaus, S.; Swift, G. W.; Reid, R. S.
2005-07-01
Thermoacoustic and Stirling engines and refrigerators use heat exchangers to transfer heat between the oscillating flow of their thermodynamic working fluids and external heat sources and sinks. An acoustically driven heat-exchange loop uses an engine's own pressure oscillations to steadily circulate its own thermodynamic working fluid through a physically remote high-temperature heat source without using moving parts, allowing for a significant reduction in the cost and complexity of thermoacoustic and Stirling heat exchangers. The simplicity and flexibility of such heat-exchanger loops will allow thermoacoustic and Stirling machines to access diverse heat sources and sinks. Measurements of the temperatures at the interface between such a heat-exchange loop and the hot end of a thermoacoustic-Stirling engine are presented. When the steady flow is too small to flush out the mixing chamber in one acoustic cycle, the heat transfer to the regenerator is excellent, with important implications for practical use.
General Properties for an Agrawal Thermal Engine
NASA Astrophysics Data System (ADS)
Paéz-Hernández, Ricardo T.; Chimal-Eguía, Juan Carlos; Sánchez-Salas, Norma; Ladino-Luna, Delfino
2018-04-01
This paper presents a general property of endoreversible thermal engines known as the Semisum property previously studied in a finite-time thermodynamics context for a Curzon-Ahlborn (CA) engine but now extended to a simplified version of the CA engine studied by Agrawal in 2009 (A simplified version of the Curzon-Ahlborn engine, European Journal of Physics 30 (2009), 1173). By building the Ecological function, proposed by Angulo-Brown (An ecological optimization criterion for finite-time heat engines, Journal of Applied Physics 69 (1991), 7465-7469) in 1991, and considering two heat transfer laws an analytical expression is obtained for efficiency and power output which depends only on the heat reservoirs' temperature. When comparing the existing efficiency values of real power plants and the theoretical efficiencies obtained in this work, it is observed that the Semisum property is satisfied. Moreover, for the Newton and the Dulong-Petit heat transfer laws the existence of the g function is demonstrated and we confirm that in a Carnot-type thermal engine there is a general property independent of the heat transfer law used between the thermal reservoirs and the working substance.
9 CFR 91.22 - Protection from heat of boilers and engines.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Protection from heat of boilers and engines. 91.22 Section 91.22 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Protection from heat of boilers and engines. No animals shall be stowed along the alleyways leading to the...
9 CFR 91.22 - Protection from heat of boilers and engines.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Protection from heat of boilers and engines. 91.22 Section 91.22 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Protection from heat of boilers and engines. No animals shall be stowed along the alleyways leading to the...
Making Work: Demonstrating Thermodynamic Concepts with Solar-Powered Wax and Rubber Heat Engines
ERIC Educational Resources Information Center
Appleyard, S. J.
2007-01-01
Construction details are provided for simple heat engines that use candle wax and elastomers as working substances. The engines are constructed using common household materials and can be easily constructed in a school classroom or at home. They work reliably and are useful tools for demonstrating the conversion of heat to mechanical work. They…
9 CFR 91.22 - Protection from heat of boilers and engines.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Protection from heat of boilers and engines. 91.22 Section 91.22 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Protection from heat of boilers and engines. No animals shall be stowed along the alleyways leading to the...
9 CFR 91.22 - Protection from heat of boilers and engines.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Protection from heat of boilers and engines. 91.22 Section 91.22 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Protection from heat of boilers and engines. No animals shall be stowed along the alleyways leading to the...
9 CFR 91.22 - Protection from heat of boilers and engines.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Protection from heat of boilers and engines. 91.22 Section 91.22 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... Protection from heat of boilers and engines. No animals shall be stowed along the alleyways leading to the...
Development of an engineering model traveling wave tube amplifier for space communication systems
NASA Technical Reports Server (NTRS)
Eallonardo, C. M.; Songli, J.; Basiulis, A.
1972-01-01
A design has been made of a 100 watt traveling-wave tube amplifier for use in space communication applications. The features of very high overall efficiency and heat rejection of waste heat at low thermal densities were predominant in the design concept. The design concept was proven by building a series of tubes, operating at efficiencies up to 50%. These tubes utilized heat pipe cooling and heat distribution such that 150 watts of waste heat was rejected at a density of less than 1.5 watts per square inch. A power supply to convert a 28 volt primary line of the needs of the TWT was built and operated at 85% efficiency.
A heat transfer model for a hot helium airship
NASA Astrophysics Data System (ADS)
Rapert, R. M.
1987-06-01
Basic heat transfer empirical and analytic equations are applied to a double envelope airship concept which uses heated Helium in the inner envelope to augment and control gross lift. The convective and conductive terms lead to a linear system of five equations for the concept airship, with the nonlinear radiation terms included by an iterative solution process. The graphed results from FORTRAN program solutions are presented for the variables of interest. These indicate that a simple use of airship engine exhaust heat gives more than a 30 percent increase in gross airship lift. Possibly more than 100 percent increase can be achieved if a 'stream injection' heating system, with associated design problems, is used.
Mathematical modeling of moving boundary problems in thermal energy storage
NASA Technical Reports Server (NTRS)
Solomon, A. D.
1980-01-01
The capability for predicting the performance of thermal energy storage (RES) subsystems and components using PCM's based on mathematical and physical models is developed. Mathematical models of the dynamic thermal behavior of (TES) subsystems using PCM's based on solutions of the moving boundary thermal conduction problem and on heat and mass transfer engineering correlations are also discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... Regulatory Research, U.S. Nuclear Regulatory Commission, Washington DC 20555-0001; telephone: 301-251-7445... relevant modeling factors to accompany descriptive material for the one or more models submitted by an..., Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc. 2013-07702 Filed 4-2-13; 8:45 am...
A multi-pathway model for photosynthetic reaction center
NASA Astrophysics Data System (ADS)
Qin, M.; Shen, H. Z.; Yi, X. X.
2016-03-01
Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.
Extreme sensitivity in Thermoacoustics
NASA Astrophysics Data System (ADS)
Juniper, Matthew
2017-11-01
In rocket engines and gas turbines, fluctuations in the heat release rate can lock in to acoustic oscillations and grow catastrophically. Nine decades of engine development have shown that these oscillations are difficult to predict but can usually be eliminated with small ad hoc design changes. The difficulty in prediction arises because the oscillations' growth rate is exceedingly sensitive to parameters that cannot always be measured or simulated reliably, which introduces severe systematic error into thermoacoustic models of engines. Passive control strategies then have to be devised through full scale engine tests, which can be ruinously expensive. For the Apollo F1 engine, for example, 2000 full-scale tests were required. Even today, thermoacoustic oscillations often re-appear unexpectedly at full engine test stage. Although the physics is well known, a novel approach to design is required. In this presentation, the parameters of a thermoacoustic model are inferred from many thousand automated experiments using inverse uncertainty quantification. The adjoint of this model is used to obtain cheaply the gradients of every unstable mode with respect to the model parameters. This gradient information is then used in an optimization algorithm to stabilize every thermoacoustic mode by subtly changing the geometry of the model.
Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine
NASA Astrophysics Data System (ADS)
Plotnikov, S. A.; Kartashevich, A. N.; Buzikov, S. V.
2018-01-01
The article explores the feasibility of diesel fuel pre-heating. The research goal was to obtain and analyze the performance diagrams of a diesel engine fed with pre-heated fuel. The engine was tested in two modes: at rated RPMs and at maximum torque. To process the diagrams the authors used technique developed by the Central Diesel Research Institute (CDRI). The diesel engine’s heat emission curves were obtained. The authors concluded that fuel pre-heating shortened the initial phase of the combustion process and moderated the loads, thus making it possible to boost a diesel engine’s mean effective pressure.
(NESC) NASA Engineering and Safety Center Orion Heat Shield Carr
2014-04-29
(NESC) NASA Engineering and Safety Center Orion Heat Shield Carrier Structure: Titanium Orthogrid heat shield sub-component dynamic test article : person in the photo Jim Jeans (Background: Mike Kirsch, James Ainsworth)
Synthesis of the Multilayer Cryogenic Insulation Modelling and Measurements
NASA Astrophysics Data System (ADS)
Polinski, J.; Chorowski, M.; Choudhury, A.; Datta, T. S.
2008-03-01
A thermodynamic approach towards insulation systems in cryogenic engineering is proposed. A mathematical model of the heat transfer through multilayer insulation (MLI) has been developed and experimentally verified. The model comprises both physical and engineering parameters determining the MLI performance and enables a complex optimization of the insulation system including the choice of the insulation location in a vacuum space. The model takes into account an interstitial (interlayer) gas pressure variation with the MLI number of layers and layers density. The paper presents the discussion of MLI performance in different conditions and provides comparison of computation results with experimental reference and measured data.
Subcontinuum thermal transport in tip-based thermal engineering
NASA Astrophysics Data System (ADS)
Hamian, Sina
For the past two decades, tip-based thermal engineering has made remarkable advances to realize unprecedented nanoscale thermal applications, such as thermomechanical data storage, thermophysical/chemical property characterization of materials in nanometer scale, and scanning thermal imaging and analysis. All these applications involve localized heating with elevated temperature, generally in the order of mean free paths of heat carriers, thus necessitates fundamental understanding of sub-continuum thermal transport across point constrictions and within thin films. Considering the demands, this dissertation is divided into three main scopes providing: (1) a numerical model that provides insight onto nanoscale thermal transport, (2) an electrothermal characterization of a heated microcantilever as a localized heating source, and (3) qualitative measurement of tip-substrate thermal transport using high resolution nanothermometer/heater. This dissertation starts with a literature review on the three aforementioned scopes followed by a numerical model for two-dimensional transient ballistic-diffusive heat transfer combining finite element analysis with discrete ordinate method (DOM-FEA), seeking to provide insight on subcontinuum thermal transport. The phonon Boltzmann transport equation (BTE) under grey relaxation time approximation is solved for different Knudsen numbers. Next, a thermal microcantilever, as one of the main tools in tip-based thermal engineering, is characterized under periodic heating operation in air and vacuum using 3o technique. A three-dimensional FEA simulation of a thermal microcantilever is used to model heat transfer in frequency domain resulting in good agreement with the experiment. Next, quantitative thermal transport is measured by a home-built nanothermometer fabricated using combination of electron-beam lithography and photolithography. An atomic force microscope (AFM) cantilever is used to scan over the sensing probe of the nanothermometer at an elevated temperature causing local cooling. The experiment is done in air resulting in a tip-substrate effective thermal conductance of 32.5 nW/K followed by theoretical calculations predicting contribution of solid-solid thermal conduction to be 48%. Finally, the same experiment is conducted in vacuum with similar operating condition, showing 50% contribution of solid-solid conductance, which is in good agreement with the theory, assuming no water meniscus in vacuum condition. The outcomes of these studies provide a strong platform to fundamentally understand thermal transport at the micro/nanometer scale.
Self-pressurizing Stirling engine
Bennett, Charles L.
2010-10-12
A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.
Oxidizer heat exchanger component testing
NASA Technical Reports Server (NTRS)
Kmiec, T.; Kanic, P.
1986-01-01
As part of the RL10 Rocket Engine Product Improvement Program, Oxidizer Heat Exchanger (OHE) stages 1, 2, and 3 were designed and fabricated during late 1983 and early 1984. The purpose of the OHE is to provide gaseous oxygen to the propellant injector for stable engine operation at tank head idle and pumped idle operating modes. This report summarizes the OHE stages 1 and 3 rig testing, and includes the separation of the stage 1-and-2 assembly and the remanifolding of stage 1. The OHE performance analysis and analytical model modifications for both stages are also presented. The flow tests were accomplished during the time period from 9 October 1984 to 12 November 1984.
Multiphysics Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen
2006-01-01
The objective of this effort is to develop an efficient and accurate thermo-fluid computational methodology to predict environments for a hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics methodology. Formulations for heat transfer in solids and porous media were implemented and anchored. A two-pronged approach was employed in this effort: A detailed thermo-fluid analysis on a multi-channel flow element for mid-section corrosion investigation; and a global modeling of the thrust chamber to understand the effect of hydrogen dissociation and recombination on heat transfer and thrust performance. The formulations and preliminary results on both aspects are presented.
Energy recovery during expansion of compressed gas using power plant low-quality heat sources
Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR
2006-03-07
A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.
Modeling of hybrid vehicle fuel economy and fuel engine efficiency
NASA Astrophysics Data System (ADS)
Wu, Wei
"Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.
High Temperature Concentrated Solar Power Using Liquid Metal
NASA Astrophysics Data System (ADS)
Henry, Asegun
One of the most attractive ways to try and reduce the cost of concentrated solar power (CSP) is to increase the system efficiency and the biggest loss in the system occurs in the conversion of heat to electricity via heat engine. Heat engines that utilize turbomachinery currently operate near their thermodynamic limitations and thus one of the only ways to improve heat engine efficiency is to increase the turbine inlet temperature. Significant effort is being devoted to the development of supercritical CO2 heat engines, but the most efficient heat engines are combined cycles, which reach efficiencies as high as 60%. However, such heat engines require turbine inlet temperatures ~1300-1500C, which is far beyond what is currently feasible with the state of the art molten salt infrastructure. In working towards the development of a system that can operate in the 1300-1500C temperature range, the most significant challenges lie in the materials and forming functional and reliable components out of new materials. One of the most attractive options from a cost and heat transfer perspective is to use liquid metals, such as tin and aluminum-silicon alloys along with a ceramic based infrastructure. This talk will overview ongoing efforts in the Atomistic Simulation and Energy (ASE) research group at Georgia Tech to develop prototype components such as an efficient high temperature cavity receiver, pumps and valves that can make a liquid metal based CSP infrastructure realizable.
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer.
Faal, Saeed; Tavakoli, Teymor; Ghobadian, Barat
2015-05-01
In this study thermal energy of an engine was used to dry apricot. For this purpose, experiments were conducted on thin layer drying apricot with combined heat and power dryer, in a laboratory dryer. The drying experiments were carried out for four levels of engine output power (25 %, 50 %, 75 % and full load), producing temperatures of 50, 60, 70, and 80 ° C in drying chamber respectively. The air velocity in drying chamber was about 0.5 ± 0.05 m/s. Different mathematical models were evaluated to predict the behavior of apricot drying in a combined heat and power dryer. Conventional statistical equations namely modeling efficiency (EF), Root mean square error (RMSE) and chi-square (χ2) were also used to determine the most suitable model. Assessments indicated that the Logarithmic model considering the values of EF = 0.998746, χ 2 = 0.000120 and RMSE = 0.004772, shows the best treatment of drying apricot with combined heat and power dryer among eleven models were used in this study. The average values of effective diffusivity ranged 1.6260 × 10(-9) to 4.3612 × 10(-9) m2/s for drying apricot at air temperatures between 50 and 80 °C and at the air flow rate of 0.5 ± 0.05 m/s; the values of Deff increased with the increase of drying temperature the effective diffusivities in the second falling rate period were about eight times greater than that in the first falling rate period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belles, F.E.
1993-01-01
Uncontrolled NOx emissions from a variety of pulse combustors were measured. The implementation of flue-gas recirculation to reduce NOx was studied. A flexible workstation for parametric testing was built and used to study the phasing between pressure and heat release, and effects of fuel/air mixing on performance. Exhaust-pipe heat transfer was analyzed. An acoustic model of pulse combustion was developed. Technical support was provided to manufacturers on noise, ignition and condensation. A computerized bibliographic database on pulse combustion was created.
Prototype thin-film thermocouple/heat-flux sensor for a ceramic-insulated diesel engine
NASA Technical Reports Server (NTRS)
Kim, Walter S.; Barrows, Richard F.
1988-01-01
A platinum versus platinum-13 percent rhodium thin-film thermocouple/heat-flux sensor was devised and tested in the harsh, high-temperature environment of a ceramic-insulated, low-heat-rejection diesel engine. The sensor probe assembly was developed to provide experimental validation of heat transfer and thermal analysis methodologies applicable to the insulated diesel engine concept. The thin-film thermocouple configuration was chosen to approximate an uninterrupted chamber surface and provide a 1-D heat-flux path through the probe body. The engine test was conducted by Purdue University for Integral Technologies, Inc., under a DOE-funded contract managed by NASA Lewis Research Center. The thin-film sensor performed reliably during 6 to 10 hr of repeated engine runs at indicated mean surface temperatures up to 950 K. However, the sensor suffered partial loss of adhesion in the thin-film thermocouple junction area following maximum cyclic temperature excursions to greater than 1150 K.
Experimentally-determined external heat loss of automotive gas turbine engine
NASA Technical Reports Server (NTRS)
Meng, P. R.; Wulf, R. F.
1975-01-01
An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.
Experimental Study of Fuel Heating at Low Temperatures in a Wing Tank Model, Volume 1
NASA Technical Reports Server (NTRS)
Stockemer, F. J.
1981-01-01
Scale model fuel heating systems for use with aviation hydrocarbon fuel at low temperatures were investigated. The effectiveness of the heating systems in providing flowability and pumpability at extreme low temperature when some freezing of the fuel would otherwise occur is evaluated. The test tank simulated a section of an outer wing tank, and was chilled on the upper and lower surfaces. Turbine engine lubricating oil was heated, and recirculating fuel transferred the heat. Fuels included: a commercial Jet A; an intermediate freeze point distillate; a higher freeze point distillate blended according to Experimental Referee Broadened Specification guidelines; and a higher freeze point paraffinic distillate used in a preceding investigation. Each fuel was chilled to selected temperature to evaluate unpumpable solid formation (holdup). Tests simulating extreme cold weather flight, without heating, provided baseline fuel holdup data. Heating and recirculating fuel increased bulk temperature significantly; it had a relatively small effect on temperature near the bottom of the tank. Methods which increased penetration of heated fuel into the lower boundary layer improved the capability for reducing holdup.
SeaFrame: Building an Affordable Future Fleet. Volume 6, Issue 1, 2010
2010-01-01
metal alloy combinations, but are up against a long design cycle in getting to know how the complex interplay between new...the heat treatment process. Magnesium silicide nanoparticles come out during heat treatment to strengthen the alloy, and engineers found it...already had valid data we could work with.” To help accurately model the magnesium silicide particles, called a precipitate, in the AA6082
A Preliminary Study of the Prevention of Ice on Aircraft by the Use of Engine-exhaust Heat
NASA Technical Reports Server (NTRS)
Rodert, Lewis A
1939-01-01
An investigation was made in the N.A.C.A. ice tunnel at air temperatures from 20 degrees to 28 degrees Fahrenheit and at a velocity of 80 miles per hour to determine whether ice formations on a model wing could be prevented by the use of the heat from the engine-exhaust gas. Various spanwise duct systems were tested in a 6-foot-chord N.A.C.A. 23012 wing model. The formation of ice over the entire wing chord was prevented by the direct heating of the forward 10 percent of the wing by hot air, which was passed through leading-edge ducts. Under dry conditions, enough heat to maintain the temperature of the forward 10 percent of the wing at about 200 degrees Fahrenheit above that of the ambient air was required for the prevention of ice formation. The air temperature in the ducts that was necessary to produce these skin temperatures varied from 360 degrees to 834 degrees Fahrenheit; the corresponding air velocities in the duct were 152 and 45 feet per second. Ice formations at the leading edge were locally prevented by air that passed over the interior of the wing surface at a velocity of 30 feet per second and a temperature of 122 degrees Fahrenheit.
Performance of high mach number scramjets - Tunnel vs flight
NASA Astrophysics Data System (ADS)
Landsberg, Will O.; Wheatley, Vincent; Smart, Michael K.; Veeraragavan, Ananthanarayanan
2018-05-01
While typically analysed through ground-based impulse facilities, scramjets experience significant heating loads in flight, raising engine wall temperatures and the fuel used to cool them beyond standard laboratory conditions. Hence, the present work numerically compares an access-to-space scramjet's performance at both these conditions. The Mach 12 Rectangular-to-Elliptical Shape-Transitioning scramjet flow path is examined via three-dimensional and chemically reacting Reynolds-averaged Navier-Stokes solutions. Flight operation is modelled through 800 K and 1800 K inlet and combustor walls respectively, while fuel is injected at both inlet- and combustor-based stations at 1000 K stagnation temperature. Room temperature walls and fuel plena model shock tunnel conditions. Mixing and combustion performance indicates that while flight conditions promote rapid mixing, high combustor temperatures inhibit the completion of reaction pathways, with reactant dissociation reducing chemical heat release by 16%. However, the heated walls in flight ensured 28% less energy was absorbed by the walls. While inlet fuel injection promotes robust burning of combustor-injected fuel, premature ignition upon the inlet in flight suggests these injectors should be moved further downstream. Coupled with counteracting differences in heat release and loss to the walls, the optimal engine design for flight may differ considerably from that which gives the best performance in the tunnel.
Dual-throat thruster thermal model
NASA Technical Reports Server (NTRS)
Ewen, R. L.; Obrien, C. J.; Matthews, L. W.
1986-01-01
The dual-throat engine is one of the dual nozzle engine concepts studied for advanced space transportation applications. It provides a thrust change and an in-flight area ratio change through the use of two concentric combustors with their throats arranged in series. Test results are presented for a dual throat thruster burning gaseous oxygen and hydrogen at primary (inner) chamber pressures from 380 to 680 psia. Heat flux profiles were obtained from calorimetric cooling channels in the inner nozzle, outer or secondary chamber and the tip of the inner nozzle. Data were obtained for two nozzle spacings over a chamber pressure ratio (secondary/primary) range of 0.45 to 0.83 with both chambers firing (Mode I). Fluxes near the end of the inner nozzle were significantly higher than in Mode II when only the inner chamber was fired, due to the flow separation and recirculation caused by the back pressure imposed by the secondary chamber. As the pressure ratio increased, these heat fluxes increased and the region of high heat flux relative to Mode II extended farther upstream. The use of the gaseous hydrogen bleed flow in the secondary chamber to control heat fluxes in the primary plume attachment region was investigated in Mode II testing. A thermal model of a dual throat thruster was developed and upgraded using the experimental data.
Heat Transfer Principles in Thermal Calculation of Structures in Fire
Zhang, Chao; Usmani, Asif
2016-01-01
Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379
NASA Astrophysics Data System (ADS)
Ouerdane, H.; Apertet, Y.; Goupil, C.; Lecoeur, Ph.
2015-07-01
Classical equilibrium thermodynamics is a theory of principles, which was built from empirical knowledge and debates on the nature and the use of heat as a means to produce motive power. By the beginning of the 20th century, the principles of thermodynamics were summarized into the so-called four laws, which were, as it turns out, definitive negative answers to the doomed quests for perpetual motion machines. As a matter of fact, one result of Sadi Carnot's work was precisely that the heat-to-work conversion process is fundamentally limited; as such, it is considered as a first version of the second law of thermodynamics. Although it was derived from Carnot's unrealistic model, the upper bound on the thermodynamic conversion efficiency, known as the Carnot efficiency, became a paradigm as the next target after the failure of the perpetual motion ideal. In the 1950's, Jacques Yvon published a conference paper containing the necessary ingredients for a new class of models, and even a formula, not so different from that of Carnot's efficiency, which later would become the new efficiency reference. Yvon's first analysis of a model of engine producing power, connected to heat source and sink through heat exchangers, went fairly unnoticed for twenty years, until Frank Curzon and Boye Ahlborn published their pedagogical paper about the effect of finite heat transfer on output power limitation and their derivation of the efficiency at maximum power, now mostly known as the Curzon-Ahlborn (CA) efficiency. The notion of finite rate explicitly introduced time in thermodynamics, and its significance cannot be overlooked as shown by the wealth of works devoted to what is now known as finite-time thermodynamics since the end of the 1970's. The favorable comparison of the CA efficiency to actual values led many to consider it as a universal upper bound for real heat engines, but things are not so straightforward that a simple formula may account for a variety of situations. The object of the article is thus to cover some of the milestones of thermodynamics, and show through the illustrative case of thermoelectric generators, our model heat engine, that the shift from Carnot's efficiency to efficienc ies at maximum power explains itself naturally as one considers continuity and boundary conditions carefully; indeed, as an adaptation of Friedrich Nietzche's quote, we may say that the thermodynamic demon is in the details. This article is supplemented with comments by J.M.R. Parrondo and a final reply by the authors.
NASA Astrophysics Data System (ADS)
Vuilleumier, David Malcolm
The detailed study of chemical kinetics in engines has become required to further advance engine efficiency while simultaneously lowering engine emissions. This push for higher efficiency engines is not caused by a lack of oil, but by efforts to reduce anthropogenic carbon dioxide emissions, that cause global warming. To operate in more efficient manners while reducing traditional pollutant emissions, modern internal combustion piston engines are forced to operate in regimes in which combustion is no longer fully transport limited, and instead is at least partially governed by chemical kinetics of combusting mixtures. Kinetically-controlled combustion allows the operation of piston engines at high compression ratios, with partially-premixed dilute charges; these operating conditions simultaneously provide high thermodynamic efficiency and low pollutant formation. The investigations presented in this dissertation study the effect of ethanol addition on the low-temperature chemistry of gasoline type fuels in engines. These investigations are carried out both in a simplified, fundamental engine experiment, named Homogeneous Charge Compression Ignition, as well as in more applied engine systems, named Gasoline Compression Ignition engines and Partial Fuel Stratification engines. These experimental investigations, and the accompanying modeling work, show that ethanol is an effective scavenger of radicals at low temperatures, and this inhibits the low temperature pathways of gasoline oxidation. Further, the investigations measure the sensitivity of gasoline auto-ignition to system pressure at conditions that are relevant to modern engines. It is shown that at pressures above 40 bar and temperatures below 850 Kelvin, gasoline begins to exhibit Low-Temperature Heat Release. However, the addition of 20% ethanol raises the pressure requirement to 60 bar, while the temperature requirement remains unchanged. These findings have major implications for a range of modern engines. Low-Temperature Heat Release significantly enhances the auto-ignition process, which limits the conditions under which advanced combustion strategies may operate. As these advanced combustion strategies are required to meet emissions and fuel-economy regulations, the findings of this dissertation may benefit and be incorporated into future engine design toolkits, such as detailed chemical kinetic mechanisms.
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chyu, Ming-King
1993-01-01
Forced flow through channels connected by sharp bends is frequently encountered in various rocket and gas turbine engines. For example, the transfer ducts, the coolant channels surround the combustion chamber, the internal cooling passage in a blade or vane, the flow path in the fuel element of a nuclear rocket engine, the flow around a pressure relieve valve piston, and the recirculated base flow of multiple engine clustered nozzles. Transport phenomena involved in such a flow passage are complex and considered to be very different from those of conventional turning flow with relatively mild radii of curvature. While previous research pertaining to this subject has been focused primarily on the experimental heat transfer, very little analytical work is directed to understanding the flowfield and energy transport in the passage. Therefore, the primary goal of this paper is to benchmark the predicted wall heat fluxes using a state-of-the-art computational fluid dynamics (CFD) formulation against those of measurement for a rectangular turn duct. Other secondary goals include studying the effects of turning configurations, e.g., the semi-circular turn, and the rounded-corner turn, and the effect of system rotation. The computed heat fluxes for the rectangular turn duct compared favorably with those of the experimental data. The results show that the flow pattern, pressure drop, and heat transfer characteristics are different among the three turning configurations, and are substantially different with system rotation. Also demonstrated in this work is that the present computational approach is quite effective and efficient and will be suitable for flow and thermal modeling in rocket and turbine engine applications.
Zone radiometer measurements on a model rocket exhaust plume
NASA Technical Reports Server (NTRS)
1972-01-01
Radiometer for analytical prediction of rocket plume-to-booster thermal radiation and convective heating is described. Applications for engine combustion analysis, incineration, and pollution control by high temperature processing are discussed. Illustrations of equipment are included.
An engineering analysis of a closed cycle plant growth module
NASA Technical Reports Server (NTRS)
Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.
1986-01-01
The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.
Analysis of Aerospike Plume Induced Base-Heating Environment
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1998-01-01
Computational analysis is conducted to study the effect of an aerospike engine plume on X-33 base-heating environment during ascent flight. To properly account for the effect of forebody and aftbody flowfield such as shocks and to allow for potential plume-induced flow-separation, thermo-flowfield of trajectory points is computed. The computational methodology is based on a three-dimensional finite-difference, viscous flow, chemically reacting, pressure-base computational fluid dynamics formulation, and a three-dimensional, finite-volume, spectral-line based weighted-sum-of-gray-gases radiation absorption model computational heat transfer formulation. The predicted convective and radiative base-heat fluxes are presented.
New Turbo Compound Systems in Automotive Industry for Internal Combustion Engine to Recover Energy
NASA Astrophysics Data System (ADS)
Chiriac, R.; Chiru, A.; Condrea, O.
2017-10-01
The large amount of heat is scattered in the internal combustion engine through exhaust gas, coolant, convective and radiant heat transfer. Of all these residual heat sources, exhaust gases have the potential to recover using various modern heat recovery techniques. Waste heat recovery from an engine could directly reduce fuel consumption, increase available electrical power and improve overall system efficiency and if it would be used a turbochargers that can also produce energy. This solution is called turbo aggregation and has other ways to develop it in other areas of research like the electrical field. [1-3
Optimization of the SHX Fusion Powered Transatmospheric Propulsion Concept
NASA Technical Reports Server (NTRS)
Adams, Robert B.; Landrum, D. Brian
2001-01-01
Existing propulsion technology has not achieved cost effective payload delivery rates to low earth orbit. A fusion based propulsion system, denoted as the Simultaneous Heating and eXpansion (SHX) engine, has been proposed in earlier papers. The SHX couples energy generated by a fusion reactor to the engine flowpath by use of coherent beam emitters. A quasi-one-dimensional flow model was used to quantify the effects of area expansion and energy input on propulsive efficiency for several beam models. Entropy calculations were included to evaluate the lost work in the system.
Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.
Gelbwaser-Klimovsky, D; Kurizki, G
2014-08-01
We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.
Heat-machine control by quantum-state preparation: From quantum engines to refrigerators
NASA Astrophysics Data System (ADS)
Gelbwaser-Klimovsky, D.; Kurizki, G.
2014-08-01
We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.
2014-05-30
CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
2014-05-30
CAPE CANAVERAL, Fla. -- Lockheed Martin technicians and engineers attach the heat shield to the Orion crew module inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Technicians have installed more than 200 instrumentation sensors on the heat shield for Exploration Flight Test-1, or EFT-1. The flight test will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space. Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of the Orion is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Daniel Casper
10. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...
10. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. To the left of the horizontal (fluted) cylinder is the water pump which moved the boiler feed water through the engine's pre-heat system (the exhaust steam heated the boiler feedwater before it was pumped on to the boiler). The steam-feed port, manual throttle valve, and fly-ball governor and pulley and to the right of the cylinder. The drive shaft with flywheel to the left and pulley to the right are seen behind the piston rod, cross-head, wrist pen, connecting rod and the slide valve and eccentric. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
A Sequential Fluid-mechanic Chemical-kinetic Model of Propane HCCI Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceves, S M; Flowers, D L; Martinez-Frias, J
2000-11-29
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. Thismore » procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers. The success of this procedure is in large part a consequence of the fact that for much of the compression stroke the chemistry is inactive and thus has little influence on fluid mechanics and heat transfer. Then, when chemistry is active, combustion is rather sudden, leaving little time for interaction between chemistry and fluid mixing and heat transfer. This sequential methodology has been capable of explaining the main characteristics of HCCI combustion that have been observed in experiments. In this paper, we use our model to explore an HCCI engine running on propane. The paper compares experimental and numerical pressure traces, heat release rates, and hydrocarbon and carbon monoxide emissions. The results show an excellent agreement, even in parameters that are difficult to predict, such as chemical heat release rates. Carbon monoxide emissions are reasonably well predicted, even though it is intrinsically difficult to make good predictions of CO emissions in HCCI engines. The paper includes a sensitivity study on the effect of the heat transfer correlation on the results of the analysis. Importantly, the paper also shows a numerical study on how parameters such as swirl rate, crevices and ceramic walls could help in reducing HC and CO emissions from HCCI engines.« less
Near-field three-terminal thermoelectric heat engine
NASA Astrophysics Data System (ADS)
Jiang, Jian-Hua; Imry, Yoseph
2018-03-01
We propose a near-field inelastic thermoelectric heat engine where quantum dots are used to effectively rectify the charge flow of photocarriers. The device converts near-field heat radiation into useful electrical power. Heat absorption and inelastic transport can be enhanced by introducing two continuous spectra separated by an energy gap. The thermoelectric transport properties of the heat engine are studied in the linear-response regime. Using a small band-gap semiconductor as the absorption material, we show that the device achieves very large thermopower and thermoelectric figure of merit, as well as considerable power factor. By analyzing thermal-photocarrier generation and conduction, we reveal that the Seebeck coefficient and the figure of merit have oscillatory dependence on the thickness of the vacuum gap. Meanwhile, the power factor, the charge, and thermal conductivity are significantly improved by near-field radiation. Conditions and guiding principles for powerful and efficient thermoelectric heat engines are discussed in details.
Non-Markovian Investigation of an Autonomous Quantum Heat Engine
NASA Astrophysics Data System (ADS)
Goyal, Ketan
A systematic study of a quantum heat engine is presented in this thesis. In particular, we study heat conduction through a two-two level composite system, which is then connected to a photon cavity to extract work, forming an autonomous quantum heat engine. The question as to what extent quantum effects such as quantum coherence and correlations impact thermodynamic properties of such a system is addressed. The investigated heat engine has been previously studied using the popular Born-Markovian quantum master equation under weak internal coupling approximation. However, we show that the used approach is quite limited in addressing such problems as it is incapable of correctly accounting for the quantum effects. By using a non-Markovian approach involving hierarchical equations of motion, we show that quantum coherence and correlations between system and environments play a significant role in energy transfer processes of heat conduction and work.
NASA Technical Reports Server (NTRS)
Povinelli, Louis A.
2001-01-01
A thermodynamic cycle analysis of the effect of sensible heat release on the relative performance of pulse detonation and gas turbine engines is presented. Dissociation losses in the PDE (Pulse Detonation Engine) are found to cause a substantial decrease in engine performance parameters.
78 FR 5126 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-24
... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... turbofan engines. This AD requires replacement of the fuel oil heat exchanger (FOHE). This AD was prompted...-84 turbofan engines with a fuel oil heat exchanger (FOHE), part number 47111-1241, installed. (d...
Multiphysics Modeling of Electric-Swing Adsorption System with In-Vessel Condensation (POSTPRINT)
2007-04-01
Petkovska, Danijela Antov-Bozalo, Ana Markovic Department of Chemical Engineering Faculty of Technology and Metallurgy University of Belgrade Belgrade...Government. M. Petkovska () · D. Antov-Bozalo · A. Markovic Department of Chemical Engineering, Faculty of Technology and Metallurgy , University of...distributions in a resistance-heated gran- ular activated- charcoal bed. Theor. Found. Chem. Eng. 36, 141– 144 (2002) Yu, F.D., Luo, L.A., Grevillot, G
Review and assessment of the database and numerical modeling for turbine heat transfer
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Simoneau, R. J.
1989-01-01
The objectives of the NASA Hot Section Technology (HOST) Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high-temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding while the analytical efforts were approximately 25 percent. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
A wind tunnel test program to determine aerodynamic interference heating on the North American Rockwell orbiter mated with the General Dynamics Convair booster is discussed. The tests were conducted at the Arnold Engineering Development Center (AEDC) in Tunnel B of the von Karman Gas Dynamics Facility (VKF). The test period was June 1971. Heat-transfer rates were determined by the phase-change paint technique on 0.013-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were: Mach 8, free-stream unit length Reynolds numbers of 1.25 x one million and 2.55 x one million angles of attack of -5, 0, +5 deg. Model details, test conditions, phase-change paint photographs and reduced heat-transfer coefficients are presented.
Dynamic study for performance improvements of a thermo-mechanically bistable heat engine
NASA Astrophysics Data System (ADS)
Boughaleb, J.; Arnaud, A.; Monfray, S.; Cottinet, P. J.; Quenard, S.; Pitone, G.; Boeuf, F.; Guyomar, D.; Skotnicki, T.
2015-12-01
This paper focuses on a thermal study of a thermal energy harvester based on the coupling of a bimetallic strip heat engine with a piezoelectric membrane for wasted heat scavenging. Such a harvester is dedicated to power autonomous systems such as wireless sensor nodes. For a better understanding of the working principle of the system, it is compulsory to have a good understanding of the thermal specificities and phenomenon taking place inside the harvester. Attention is consequently focused on the thermal modeling of the harvester in static mode using the equivalence between the electrical and thermal quantities. This first modeling step allowed the improvement of the thermal properties inside the system by increasing the thermal gradient across it. However, the bimetal being the active part of the system has not been taken into account in this model and shadow zones persisted regarding the bimetal operation windows as a function of its snapping temperatures and hysteresis. To overcome this, a dynamic model is proposed in this paper taking into account the bimetal as a switched capacitance alternatively in contact with the hot source and the cold surface. This last model completed the static one by predicting the bimetal's operation windows in function of its intrinsic properties and the operation range evolution in function of the snapping temperature first and then in function of the bimetal thermal hysteresis. Moreover, experimental measurements enable to validate the proposed model and to point out the most powerful bimetals for scavenging higher amounts of power.
Study, optimization, and design of a laser heat engine
NASA Technical Reports Server (NTRS)
1978-01-01
Laser heat engine concepts, proposed for satellite applications, were analyzed to determine which engine concepts best meet the requirements of high efficiency (50 percent or better) continuous operation in space. The best laser heat engine for a near-term experimental demonstration, selected on the basis of high overall operating efficiency, high power-to-weight characteristics, and availability of the required technology, is an Otto/Diesel cycle piston engine using a diamond window to admit CO2 laser radiation. The technology with the greatest promise of scaling to megawatt power levels in the long term is the energy exchanger/gas turbine combination.
Aft Engine shop worker removes a heat shield on Columbia's main engines
NASA Technical Reports Server (NTRS)
2002-01-01
KENNEDY SPACE CENTER, FLA. -- Doug Buford (top), with the Aft Engine shop, along with another worker, removes a heat shield on one of Columbia's engines. After small cracks were discovered on the LH2 Main Propulsion System (MPS) flow liners in two other orbiters, program managers decided to move forward with inspections on Columbia before clearing it for flight on STS-107. After removal of the heat shields, the three main engines will be removed. Inspections of the flow liners will follow. The July 19 launch of Columbia on STS-107 has been delayed a few weeks
Methane heat transfer investigation
NASA Technical Reports Server (NTRS)
1984-01-01
Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.
High heat transfer oxidizer heat exchanger design and analysis. [RL10-2B engine
NASA Technical Reports Server (NTRS)
Kmiec, Thomas D.; Kanic, Paul G.; Peckham, Richard J.
1987-01-01
The RL10-2B engine, a derivative of the RL10, is capable of multimode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2% of full thrust, and pumped idle (PI), which is 10% of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for low-g deployment. Stable combustion of the RL10-2B engine during the low thrust operating modes can be accomplished by using a heat exchanger to supply gaseous oxygen to the propellant injector. The oxidizer heat exchanger (OHE) vaporizes the liquid oxygen using hydrogen as the energy source. The design, concept verification testing and analysis for such a heat exchanger is discussed. The design presented uses a high efficiency compact core to vaporize the oxygen, and in the self-contained unit, attenuates any pressure and flow oscillations which result from unstable boiling in the core. This approach is referred to as the high heat transfer design. An alternative approach which prevents unstable boiling of the oxygen by limiting the heat transfer is referred to as the low heat transfer design and is reported in Pratt & Whitney report FR-19135-2.
Low heat transfer oxidizer heat exchanger design and analysis
NASA Technical Reports Server (NTRS)
Kanic, P. G.; Kmiec, T. D.; Peckham, R. J.
1987-01-01
The RL10-IIB engine, a derivative of the RLIO, is capable of multi-mode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2 percent of full thrust, and pumped idle (PI), which is 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for log-g deployment. Stable combustion of the RL10-IIB engine at THI and PI thrust levels can be accomplished by providing gaseous oxygen at the propellant injector. Using gaseous hydrogen from the thrust chamber jacket as an energy source, a heat exchanger can be used to vaporize liquid oxygen without creating flow instability. This report summarizes the design and analysis of a United Aircraft Products (UAP) low-rate heat transfer heat exchanger concept for the RL10-IIB rocket engine. The design represents a second iteration of the RL10-IIB heat exchanger investigation program. The design and analysis of the first heat exchanger effort is presented in more detail in NASA CR-174857. Testing of the previous design is detailed in NASA CR-179487.
The near-term hybrid vehicle program, phase 1
NASA Technical Reports Server (NTRS)
1979-01-01
Performance specifications were determined for a hybrid vehicle designed to achieve the greatest reduction in fuel consumption. Based on the results of systems level studies, a baseline vehicle was constructed with the following basic paramaters: a heat engine power peak of 53 kW (VW gasoline engine); a traction motor power peak of 30 kW (Siemens 1GV1, separately excited); a heat engine fraction of 0.64; a vehicle curb weight of 2080 kg; a lead acid battery (35 kg weight); and a battery weight fraction of 0.17. The heat engine and the traction motor are coupled together with their combined output driving a 3 speed automatic transmission with lockup torque converter. The heat engine is equipped withe a clutch which allows it to be decoupled from the system.
Oil cooling system for a gas turbine engine
NASA Technical Reports Server (NTRS)
Coffinberry, G. A.; Kast, H. B. (Inventor)
1977-01-01
A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.
GTE blade injection moulding modeling and verification of models during process approbation
NASA Astrophysics Data System (ADS)
Stepanenko, I. S.; Khaimovich, A. I.
2017-02-01
The simulation model for filling the mould was developed using Moldex3D, and it was experimentally verified in order to perform further optimization calculations of the moulding process conditions. The method described in the article allows adjusting the finite-element model by minimizing the airfoil profile difference between the design and experimental melt motion front due to the differentiated change of power supplied to heating elements, which heat the injection mould in simulation. As a result of calibrating the injection mould for the gas-turbine engine blade, the mean difference between the design melt motion profile and the experimental airfoil profile of no more than 4% was achieved.
NASA Technical Reports Server (NTRS)
Esgar, J. B.; Sokolowski, Daniel E.
1989-01-01
The Hot Section Technology (HOST) Project, which was initiated by NASA Lewis Research Center in 1980 and concluded in 1987, was aimed at improving advanced aircraft engine hot section durability through better technical understanding and more accurate design analysis capability. The project was a multidisciplinary, multiorganizational, focused research effort that involved 21 organizations and 70 research and technology activities and generated approximately 250 research reports. No major hardware was developed. To evaluate whether HOST had a significant impact on the overall aircraft engine industry in the development of new engines, interviews were conducted with 41 participants in the project to obtain their views. The summarized results of these interviews are presented. Emphasis is placed on results relative to three-dimensional inelastic structural analysis, thermomechanical fatigue testing, constitutive modeling, combustor aerothermal modeling, turbine heat transfer, protective coatings, computer codes, improved engine design capability, reduced engine development costs, and the impacts on technology transfer and the industry-government partnership.
Scramjet Combustor Characteristics at Hypervelocity Condition over Mach 10 Flight
NASA Astrophysics Data System (ADS)
Takahashi, M.; Komuro, T.; Sato, K.; Kodera, M.; Tanno, H.; Itoh, K.
2009-01-01
To investigate possibility of reduction of a scramjet combustor size without thrust performance loss, a two-dimensional constant-area combustor of a previous engine model was replaced with the one with 23% lower-height. With the application of the lower-height combustor, the pressure in the combustor becomes 50% higher and the combustor length for the optimal performance becomes 43% shorter than the original combustor. The combustion tests of the modified engine model were conducted using a large free-piston driven shock tunnel at flow conditions corresponding to the flight Mach number from 9 to 14. CFD was also applied to the engine internal flows. The results showed that the mixing and combustion heat release progress faster to the distance and the combustor performance similar to that of the previous engine was obtained with the modified engine. The reduction of the combustor size without the thrust performance loss is successfully achieved by applying the lower-height combustor.
Integrated approach for stress analysis of high performance diesel engine cylinder head
NASA Astrophysics Data System (ADS)
Chainov, N. D.; Myagkov, L. L.; Malastowski, N. S.; Blinov, A. S.
2018-03-01
Growing thermal and mechanical loads due to development of engines with high level of a mean effective pressure determine requirements to cylinder head durability. In this paper, computational schemes for thermal and mechanical stress analysis of a high performance diesel engine cylinder head were described. The most important aspects in this approach are the account of temperature fields of conjugated details (valves and saddles), heat transfer modeling in a cooling jacket of a cylinder head and topology optimization of the detail force scheme. Simulation results are shown and analyzed.
1982-03-01
to establish more realistic RAM data. 6. Action Taken. a. The undersigned contacted manufacturers regarding problems with the master link on the lift...Carburetor is updraft type and engine is equipped with a mechanical governor LP gas engine also avail able with same specifcations as above TRANSMISSIONS...torque by the converter Two oil-bathed, double-faced direction selec. tor clutches fully-enclosed gear-type pump. heat exchanger in bottom of radiator. 15
Prediction of in-depth gap heating ratios from wing glove model test data. [space shuttle orbiter
NASA Technical Reports Server (NTRS)
1977-01-01
In-depth gap heating ratios were predicted down RSI tile sidewalls based on temperature measurements obtained from the JSC arc-jet Wing Glove model tests in order to develop gap heating ratios which resulted in the best possible fit of test data and to produce a set of engineering verification heating ratios similar in shape to one another which could be used at various body points on the Orbiter during reentry. The Rockwell TPS Multidimensional heat conduction program was used to perform 3-D thermal analyses using a 3.0 in. thick section of a curved RSI tile with 283 nodal points. Correlation with test data shows that the predicted heating ratios were significantly higher down in the gap than the zero pressure values for T/C stacks 39 and 38 on the Wing Glove model. For stack 37 (in a low pressure region), the baseline heating ratio overpredicted the temperature data. This analysis, which showed that the heating ratios were a strong function of the product of pressure and pressure gradient, will be used to compare with recent Gap/Step and Ames Double Wedge test/analysis results in the effort to identify the Orbiter gap response to high delta P flight environment.
NASA Astrophysics Data System (ADS)
Kagawa, Noboru
Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.
NASA Astrophysics Data System (ADS)
Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng
2018-01-01
Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.
NASA Astrophysics Data System (ADS)
Xiao, Longjie; He, Tianming; Mei, Binyu; Wang, Yiping; Wang, Zongsong; Tan, Gangfeng
2018-06-01
Automobile exhaust energy thermoelectric utilization can promote energy-saving and emission-reduction. Unexpected urban traffic conditions lead to the hot-end temperature instability of the exhaust pipe-mounted thermoelectric generator (TEG), and influence the TEG power generation efficiency. The heat conduction oil circulation located at the hot-end could smooth the temperature fluctuation, at the expense of larger system size and additional energy supply. This research improves the TEG hot-end temperature stability by installing solid heat capacity material (SHCM) to the area between the outer wall of the exhaust pipe and the TEG, which has the merits of simple structure, light weight and no additional energy consumption. The exhaust temperature and flow rate characteristics with various driving conditions are firstly studied for the target engine. Then the convective heat transfer models of SHCM's hot-end and thermoelectric material's cold-end are established. Meanwhile, SHCM thermal properties' effects on the amplitude and response speed of the TEG hot-end temperature are studied. The candidate SHCM with the characteristics of low thermal resistance and high heat capacity is determined. And the heat transfer model going through from TEG's hot-end to the cold-end is established. The results show that the SHCM significantly improves the TEG hot-end temperature stability but slightly reduces the average power output. When the engine working conditions change a lot, the SHCM's improvement on the TEG hot-end temperature stability is more significant, but the reduction of the average power output becomes more remarkable.
Abedin, M J; Masjuki, H H; Kalam, M A; Varman, M; Arbab, M I; Fattah, I M Rizwanul; Masum, B M
2014-01-01
This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ''energy flows" across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper.
Abedin, M. J.; Masjuki, H. H.; Kalam, M. A.; Varman, M.; Arbab, M. I.; Fattah, I. M. Rizwanul; Masum, B. M.
2014-01-01
This paper deals with the performance and emission analysis of a multicylinder diesel engine using biodiesel along with an in-depth analysis of the engine heat losses in different subsystems followed by the energy balance of all the energy flows from the engine. Energy balance analysis allows the designer to appraise the internal energy variations of a thermodynamic system as a function of ‘‘energy flows” across the control volume as work or heat and also the enthalpies associated with the energy flows which are passing through these boundaries. Palm and coconut are the two most potential biodiesel feed stocks in this part of the world. The investigation was conducted in a four-cylinder diesel engine fuelled with 10% and 20% blends of palm and coconut biodiesels and compared with B5 at full load condition and in the speed range of 1000 to 4000 RPM. Among the all tested blends, palm blends seemed more promising in terms of engine performance, emission, and heat losses. The influence of heat losses on engine performance and emission has been discussed thoroughly in this paper. PMID:25162046
A thermoacoustic-Stirling heat engine: detailed study
Backhaus; Swift
2000-06-01
A new type of thermoacoustic engine based on traveling waves and ideally reversible heat transfer is described. Measurements and analysis of its performance are presented. This new engine outperforms previous thermoacoustic engines, which are based on standing waves and intrinsically irreversible heat transfer, by more than 50%. At its most efficient operating point, it delivers 710 W of acoustic power to its resonator with a thermal efficiency of 0.30, corresponding to 41% of the Carnot efficiency. At its most powerful operating point, it delivers 890 W to its resonator with a thermal efficiency of 0.22. The efficiency of this engine can be degraded by two types of acoustic streaming. These are suppressed by appropriate tapering of crucial surfaces in the engine and by using additional nonlinearity to induce an opposing time-averaged pressure difference. Data are presented which show the nearly complete elimination of the streaming convective heat loads. Analysis of these and other irreversibilities show which components of the engine require further research to achieve higher efficiency. Additionally, these data show that the dynamics and acoustic power flows are well understood, but the details of the streaming suppression and associated heat convection are only qualitatively understood.
High-Lift Engine Aeroacoustics Technology (HEAT) Test Program Overview
NASA Technical Reports Server (NTRS)
Zuniga, Fanny A.; Smith, Brian E.
1999-01-01
The NASA High-Speed Research program developed the High-Lift Engine Aeroacoustics Technology (HEAT) program to demonstrate satisfactory interaction between the jet noise suppressor and high-lift system of a High-Speed Civil Transport (HSCT) configuration at takeoff, climb, approach and landing conditions. One scheme for reducing jet exhaust noise generated by an HSCT is the use of a mixer-ejector system which would entrain large quantities of ambient air into the nozzle exhaust flow through secondary inlets in order to cool and slow the jet exhaust before it exits the nozzle. The effectiveness of such a noise suppression device must be evaluated in the presence of an HSCT wing high-lift system before definitive assessments can be made concerning its acoustic performance. In addition, these noise suppressors must provide the required acoustic attenuation while not degrading the thrust efficiency of the propulsion system or the aerodynamic performance of the high-lift devices on the wing. Therefore, the main objective of the HEAT program is to demonstrate these technologies and understand their interactions on a large-scale HSCT model. The HEAT program is a collaborative effort between NASA-Ames, Boeing Commercial Airplane Group, Douglas Aircraft Corp., Lockheed-Georgia, General Electric and NASA - Lewis. The suppressor nozzles used in the tests were Generation 1 2-D mixer-ejector nozzles made by General Electric. The model used was a 13.5%-scale semi-span model of a Boeing Reference H configuration.
Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks
NASA Technical Reports Server (NTRS)
Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.; Heyadat, Ali
2007-01-01
A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in normal gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-31) software. Quantitative model validation is ,provided by engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage_ Technology Demonstrator (STUSTD) program. The engineering checkout tests provide cryogenic tank self-pressurization test data at various heat leaks and tank fill levels. The predicted self-pressurization rates, ullage and liquid temperatures at discrete locations within the STUSTD tank are in good agreement with test data. The work presented here advances current CFD modeling capabilities for cryogenic pressure control and helps develop a low cost CFD-based design process for space hardware.
Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound
NASA Astrophysics Data System (ADS)
Shiraishi, Naoto; Tajima, Hiroyasu
2017-08-01
A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.
Efficiency versus speed in quantum heat engines: Rigorous constraint from Lieb-Robinson bound.
Shiraishi, Naoto; Tajima, Hiroyasu
2017-08-01
A long-standing open problem whether a heat engine with finite power achieves the Carnot efficiency is investgated. We rigorously prove a general trade-off inequality on thermodynamic efficiency and time interval of a cyclic process with quantum heat engines. In a first step, employing the Lieb-Robinson bound we establish an inequality on the change in a local observable caused by an operation far from support of the local observable. This inequality provides a rigorous characterization of the following intuitive picture that most of the energy emitted from the engine to the cold bath remains near the engine when the cyclic process is finished. Using this description, we prove an upper bound on efficiency with the aid of quantum information geometry. Our result generally excludes the possibility of a process with finite speed at the Carnot efficiency in quantum heat engines. In particular, the obtained constraint covers engines evolving with non-Markovian dynamics, which almost all previous studies on this topic fail to address.
Optimal tuning of a confined Brownian information engine.
Park, Jong-Min; Lee, Jae Sung; Noh, Jae Dong
2016-03-01
A Brownian information engine is a device extracting mechanical work from a single heat bath by exploiting the information on the state of a Brownian particle immersed in the bath. As for engines, it is important to find the optimal operating condition that yields the maximum extracted work or power. The optimal condition for a Brownian information engine with a finite cycle time τ has been rarely studied because of the difficulty in finding the nonequilibrium steady state. In this study, we introduce a model for the Brownian information engine and develop an analytic formalism for its steady-state distribution for any τ. We find that the extracted work per engine cycle is maximum when τ approaches infinity, while the power is maximum when τ approaches zero.
Buffer thermal energy storage for an air Brayton solar engine
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Barr, K. P.
1981-01-01
The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.
Radiation effect on rocket engine performance
NASA Technical Reports Server (NTRS)
Chiu, Huei-Huang; Kross, K. W.; Krebsbach, A. N.
1990-01-01
Critical problem areas involving the effect of radiation on the combustion of bipropellants are addressed by formulating a universal scaling law in combination with a radiation-enhanced vaporization combustion model. Numerical algorithms are developed and data pertaining to the Variable Thrust Engine (VTE) and the Space Shuttle Main Engine (SSME) are used to conduct parametric sensitivity studies to predict the principal intercoupling effects of radiation. The analysis reveals that low-enthalpy engines, such as the VTE, are vulnerable to a substantial performance setback due to radiative loss, whereas the performance of high-enthalpy engines such as the SSME are hardly affected over a broad range of engine operation. Combustion enhancement by radiative heating of the propellant has a significant impact on propellants with high absorptivity.
The modeling of a standalone solid-oxide fuel cell auxiliary power unit
NASA Astrophysics Data System (ADS)
Lu, N.; Li, Q.; Sun, X.; Khaleel, M. A.
In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.
The predictive protective control of the heat exchanger
NASA Astrophysics Data System (ADS)
Nevriva, Pavel; Filipova, Blanka; Vilimec, Ladislav
2016-06-01
The paper deals with the predictive control applied to flexible cogeneration energy system FES. FES was designed and developed by the VITKOVICE POWER ENGINEERING joint-stock company and represents a new solution of decentralized cogeneration energy sources. In FES, the heating medium is flue gas generated by combustion of a solid fuel. The heated medium is power gas, which is a gas mixture of air and water steam. Power gas is superheated in the main heat exchanger and led to gas turbines. To protect the main heat exchanger against damage by overheating, the novel predictive protective control based on the mathematical model of exchanger was developed. The paper describes the principle, the design and the simulation of the predictive protective method applied to main heat exchanger of FES.
Utilization of waste heat in trucks for increased fuel economy
NASA Technical Reports Server (NTRS)
Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.
1978-01-01
Improvements in fuel economy for a broad spectrum of truck engines and waste heat utilization concepts are evaluated and compared. The engines considered are the diesel, spark ignition, gas turbine, and Stirling. The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions were based on fuel-air cycle analyses, computer simulation, and engine test data. The results reveal that diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either is approximately doubled if applied to an adiabatic diesel.
NASA Astrophysics Data System (ADS)
Johnson, Clifford V.
2018-02-01
It is shown that aspects of the extended thermodynamic properties of the Taub–Bolt–AdS spacetime in four dimensions are similar to those of the Schwarzschild–AdS black hole. In a high temperature expansion, the equations of state begin to deviate only at next-to-subleading orders. By analogy with what has been done for black holes, Taub–Bolt’s thermodynamic equations are used to define holographic heat engines, the first examples of gravitational heat engines defined using a spacetime that is not a black hole. As a further comparison, the Taub–Bolt engine efficiency is computed for two special kinds of engine cycle and compared to the results for analogous Schwarzschild black hole engine cycles.
Apertet, Y; Ouerdane, H; Goupil, C; Lecoeur, Ph
2012-03-01
Energy conversion efficiency at maximum output power, which embodies the essential characteristics of heat engines, is the main focus of the present work. The so-called Curzon and Ahlborn efficiency η(CA) is commonly believed to be an absolute reference for real heat engines; however, a different but general expression for the case of stochastic heat engines, η(SS), was recently found and then extended to low-dissipation engines. The discrepancy between η(CA) and η(SS) is here analyzed considering different irreversibility sources of heat engines, of both internal and external types. To this end, we choose a thermoelectric generator operating in the strong-coupling regime as a physical system to qualitatively and quantitatively study the impact of the nature of irreversibility on the efficiency at maximum output power. In the limit of pure external dissipation, we obtain η(CA), while η(SS) corresponds to the case of pure internal dissipation. A continuous transition between from one extreme to the other, which may be operated by tuning the different sources of irreversibility, also is evidenced.
A Model for Determining Modular Heat Recovery Incinerator Feasibility on Air Force Installations.
1992-09-01
INCINERATOR FEASIBILITY ON AIR FORCE INSTALLATIONS THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology...commer- cial, (and) institutional discards...not (including] industrial process or manufacturing discards, segre- gated medical waste, or construction...have "... particular 11 value as an additive to an existing steam system, such as a central heating plant for an institution " (46:E-26). Exam- ples
Hot-Air Jets/Ceramic Heat Exchangers/ Materials for Nose Cones and Reentry Vehicles
1957-09-07
L57-5383 Hot-air jets employing ceramic heat exchangers played an important role at Langley in the study of materials for ballistic missile nose cones and re-entry vehicles. Here a model is being tested in one of theses jets at 4000 degrees Fahrenheit in 1957. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 477.
NASA Astrophysics Data System (ADS)
Shchinnikov, P. A.; Tomilov, V. G.; Sinelnikov, D. S.
2017-01-01
The article considers some aspects of the research methodology of micro heat power plants based on internal combustion engines with air cooling and cogeneration based on energy balance equations and the laws of heat transfer. The research is conducted for such a setup based on the Hitachi internal combustion engine with 2.4 kW capacity. It has shown the efficiency of cogeneration use in the form of useful heat flow from air, cooling the cylinder head, with its further heating by utilizing the heat of flue gases in an additional plate heat exchanger. It has been shown that the cogeneration can save fuel costs 3-10 times compared with heat guns, depending on the duration of the setup use.
Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces
NASA Astrophysics Data System (ADS)
Olceroglu, Emre
Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non-condensable gases (NCGs), a novel characterization technique has been developed based on image tracking of droplet growth rates. The full-field dynamic characterization of superhydrophobic surfaces during condensation has been achieved using high-speed microscopy coupled with image-processing algorithms. This method is able to resolve heat fluxes as low as 20 W/m 2 and heat transfer coefficients of up to 1000 kW/m2, across an array of 1000's of microscale droplets simultaneously. Nanostructured surfaces with mixed wettability have been used to demonstrate delayed flooding during superhydrophobic condensation. These surfaces have been optimized and characterized using optical and electron microscopy, leading to the observation of self-organizing microscale droplets. The self-organization of small droplets effectively delays the onset of surface flooding, allowing the superhydrophobic surfaces to operate at higher supersaturations. Additionally, hierarchical surfaces have been fabricated and characterized showing enhanced droplet growth rates as compared to existing models. This enhancement has been shown to be derived from the presence of small feeder droplets nucleating within the microscale unit cells of the hierarchical surfaces. Based on the experimental observations, a mechanistic model for growth rates has been developed for superhydrophobic hierarchical surfaces. While superhydrophobic surfaces exhibit high heat transfer rates they are inherently unstable due to the necessity to maintain a non-wetted state in a condensing environment. As an alternative condensation surface, a novel design is introduced here using ambiphilic structures to promote the formation of a thin continuous liquid film across the surface which can still provide the benefits of superhydrophobic condensation. Preliminary results show that the ambiphilic structures restrain the film thickness, thus maintaining a low thermal resistance while simultaneously maximizing the liquid-vapor interface available for condensation.
Numerical Analysis of a Pulse Detonation Cross Flow Heat Load Experiment
NASA Technical Reports Server (NTRS)
Paxson, Daniel E.; Naples, Andrew .; Hoke, John L.; Schauer, Fred
2011-01-01
A comparison between experimentally measured and numerically simulated, time-averaged, point heat transfer rates in a pulse detonation (PDE) engine is presented. The comparison includes measurements and calculations for heat transfer to a cylinder in crossflow and to the tube wall itself using a novel spool design. Measurements are obtained at several locations and under several operating conditions. The measured and computed results are shown to be in substantial agreement, thereby validating the modeling approach. The model, which is based in computational fluid dynamics (CFD) is then used to interpret the results. A preheating of the incoming fuel charge is predicted, which results in increased volumetric flow and subsequent overfilling. The effect is validated with additional measurements.
Thermoelectric Exhaust Heat Recovery with Heat Pipe-Based Thermal Control
NASA Astrophysics Data System (ADS)
Brito, F. P.; Martins, Jorge; Hançer, Esra; Antunes, Nuno; Gonçalves, L. M.
2015-06-01
Heat pipe (HP)-based heat exchangers can be used for very low resistance heat transfer between a hot and a cold source. Their operating temperature depends solely on the boiling point of their working fluid, so it is possible to control the heat transfer temperature if the pressure of the HP can be adjusted. This is the case of the variable conductance HPs (VCHP). This solution makes VCHPs ideal for the passive control of thermoelectric generator (TEG) temperature levels. The present work assesses, both theoretically and experimentally, the merit of the aforementioned approach. A thermal and electrical model of a TEG with VCHP assist is proposed. Experimental results obtained with a proof of concept prototype attached to a small single-cylinder engine are presented and used to validate the model. It was found that the HP heat exchanger indeed enables the TEG to operate at a constant, optimal temperature in a passive and safe way, and with a minimal overall thermal resistance, under part load, it effectively reduces the active module area without deprecating the temperature level of the active modules.
Thermal modelling of various thermal barrier coatings in a high heat flux rocket engine
NASA Technical Reports Server (NTRS)
Nesbitt, James A.
1989-01-01
Traditional Air Plasma Sprayed (APS) ZrO2-Y2O3 Thermal Barrier Coatings (TBC's) and Low Pressure Plasma Sprayed (LPPS) ZrO2-Y2O3/Ni-Cr-Al-Y cermet coatings were tested in a H2/O2 rocked engine. The traditional ZrO2-Y2O3 (TBC's) showed considerable metal temperature reductions during testing in the hydrogen-rich environment. A thermal model was developed to predict the thermal response of the tubes with the various coatings. Good agreement was observed between predicted temperatures and measured temperatures at the inner wall of the tube and in the metal near the coating/metal interface. The thermal model was also used to examine the effect of the differences in the reported values of the thermal conductivity of plasma sprayed ZrO2-Y2O3 ceramic coatings, the effect of 100 micron (0.004 in.) thick metallic bond coat, the effect of tangential heat transfer around the tube, and the effect or radiation from the surface of the ceramic coating. It was shown that for the short duration testing in the rocket engine, the most important of these considerations was the effect of the uncertainty in the thermal conductivity of temperatures (greater than 100 C) predicted in the tube. The thermal model was also used to predict the thermal response of the coated rod in order to quantify the difference in the metal temperatures between the two substrate geometries and to explain the previously-observed increased life of coatings on rods over that on tubes. A thermal model was also developed to predict heat transfer to the leading edge of High Pressure Fuel Turbopump (HPFTP) blades during start-up of the space shuttle main engines. The ability of various TBC's to reduce metal temperatures during the two thermal excursions occurring on start-up was predicted. Temperature reductions of 150 to 470 C were predicted for 165 micron (0.0065 in.) coatings for the greater of the two thermal excursions.
21. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...
21. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model no. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. Steam-feed pipe at top left of engine. Steam exhaust pipe leaves base of engine on right end and projects upwards. The boiler feed and supply pipe running water through the engine's pre-heat system are seen running to the lower left end of the engine. Pulley in the foreground was not used. The centrifugals were powered by a belt running from the flywheel in the background. Ball-type governor and pulley are on left end of the engine. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Power enhancement of heat engines via correlated thermalization in a three-level "working fluid".
Gelbwaser-Klimovsky, David; Niedenzu, Wolfgang; Brumer, Paul; Kurizki, Gershon
2015-09-23
We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.
A simple method of calculating Stirling engines for engine design optimization
NASA Technical Reports Server (NTRS)
Martini, W. R.
1978-01-01
A calculation method is presented for a rhombic drive Stirling engine with a tubular heater and cooler and a screen type regenerator. Generally the equations presented describe power generation and consumption and heat losses. It is the simplest type of analysis that takes into account the conflicting requirements inherent in Stirling engine design. The method itemizes the power and heat losses for intelligent engine optimization. The results of engine analysis of the GPU-3 Stirling engine are compared with more complicated engine analysis and with engine measurements.
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-05-04
Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering.
Design procedures for heat-straightening repair : an engineering guide.
DOT National Transportation Integrated Search
1992-12-01
This report summarizes over four years of research on heat-straightening repairs and provides a prototype engineering guide for the application of heat-straightening to bridge structures. It is based on the research results detailed in a companion re...
NASA Astrophysics Data System (ADS)
Wang, Shuaijun; Liu, Chentao; Zhou, Yao
2018-01-01
Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.