Science.gov

Sample records for heat integrated heat

  1. Heat Pipe Integrated Microsystems

    SciTech Connect

    Gass, K.; Robertson, P.J.; Shul, R.; Tigges, C.

    1999-03-30

    The trend in commercial electronics packaging to deliver ever smaller component packaging has enabled the development of new highly integrated modules meeting the demands of the next generation nano satellites. At under ten kilograms, these nano satellites will require both a greater density electronics and a melding of satellite structure and function. Better techniques must be developed to remove the subsequent heat generated by the active components required to-meet future computing requirements. Integration of commercially available electronics must be achieved without the increased costs normally associated with current generation multi chip modules. In this paper we present a method of component integration that uses silicon heat pipe technology and advanced flexible laminate circuit board technology to achieve thermal control and satellite structure. The' electronics/heat pipe stack then becomes an integral component of the spacecraft structure. Thermal management on satellites has always been a problem. The shrinking size of electronics and voltage requirements and the accompanying reduction in power dissipation has helped the situation somewhat. Nevertheless, the demands for increased onboard processing power have resulted in an ever increasing power density within the satellite body. With the introduction of nano satellites, small satellites under ten kilograms and under 1000 cubic inches, the area available on which to place hot components for proper heat dissipation has dwindled dramatically. The resulting satellite has become nearly a solid mass of electronics with nowhere to dissipate heat to space. The silicon heat pipe is attached to an aluminum frame using a thermally conductive epoxy or solder preform. The frame serves three purposes. First, the aluminum frame provides a heat conduction path from the edge of the heat pipe to radiators on the surface of the satellite. Secondly, it serves as an attachment point for extended structures attached to

  2. Integrating preconcentrator heat controller

    DOEpatents

    Bouchier, Francis A.; Arakaki, Lester H.; Varley, Eric S.

    2007-10-16

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  3. Integration of heat pumps into industrial processes

    SciTech Connect

    Chappell, R.N. ); Priebe, S.J. )

    1989-01-01

    The Department of Energy and others have funded studies to assess the potential for energy savings using industrial heat pumps. The studies included classifications of heat pumps, economic evaluations, and placement of heat pumps in industrial processes. Pinch technology was used in the placement studies to determine the placement, size, and type of heat pumps for a given applications. There appears to be considerable scope for heat pumping in several industries, but, where maximum process energy savings are desired, it is important to consider heat pumping in the context of overall process integration. 19 refs., 15 figs.

  4. Energy Integrated Lighting-Heating-Cooling System.

    ERIC Educational Resources Information Center

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  5. Integrated Heat Switch/Oxide Sorption Compressor

    NASA Technical Reports Server (NTRS)

    Bard, Steven

    1989-01-01

    Thermally-driven, nonmechanical compressor uses container filled with compressed praseodymium cerium oxide powder (PrCeOx) to provide high-pressure flow of oxygen gas for driving closed-cycle Joule-Thomson-expansion refrigeration unit. Integrated heat switch/oxide sorption compressor has no moving parts except check valves, which control flow of oxygen gas between compressor and closed-cycle Joule-Thomson refrigeration system. Oxygen expelled from sorbent at high pressure by evacuating heat-switch gap and turning on heater.

  6. Heat Integration in Batch Distillation Column

    NASA Astrophysics Data System (ADS)

    Maiti, Debadrita; Jana, Amiya K.; Samanta, Amar Nath

    2010-10-01

    A new heat integrated batch distillation column has been configured in this paper. Here the column and reboiler are connected in an annular arrangement and a compressor is positioned between them to maintain the pressure difference. The heat integration is between the rectifying batch column and one concentric reboiler. Ethanol-Water binary system is chosen as an example for the design and analysis of this heat integrated batch distillation column (HIBDiC). In this work, a sensitivity test for selecting the optimal value of the total number of trays and reboiler duty and a thermodynamic feasibility test for its design acceptability has been accomplished. The principal objective of this study is to investigate the influence of compression ratio (CR) on the energy consumption of distillation and to find out the optimal value of CR. Also a comparative analysis of HIBiDC on energy consumption in steady state as well as in dynamic state has been carried out on the basis of its conventional model. The proposed scheme is capable to save the energy up to 50.52% compared to its conventional one by selecting the CR of 1.4 as an optimal value.

  7. Performance of Integrated Hydronic Heating Systems.

    SciTech Connect

    BUTCHER,T.A.

    2007-12-20

    A variety of system configurations are used in North America to meet the heating and domestic hot water needs of single-family homes. This includes, for example: warm air furnaces with electric water heaters; boilers with integrated hot water coils; and boilers with 'indirect' hot water storage tanks. Integrated hydronic systems which provide both heat and hot water are more popular only in the Northeast and mid-Atlantic regions. For those making decisions about configurations of these integrated hydronic systems, including control options, little information is available concerning the annual energy cost implications of these decisions. This report presents results of a project to use a direct load emulation approach to measure the performance of hydronic systems, develop performance curves, and to provide decision tools to consumers. This is a laboratory measurement system involving direct energy input and output measurements under different load patterns. These results are then used to develop performance correlations for specific systems that can be used to predict energy use in specific applications. A wide range of system types have been tested under this project including conventional boilers with 'tankless' internal coils for domestic hot water production, boilers with indirect external storage tanks, tank type water heaters which may also be used for space heating, condensing oil- and gas-fired systems, and systems with custom control features. It is shown that low load and idle energy losses can have a very large impact on the total annual energy use and that the potential energy savings associated with replacing old equipment with newer, high efficiency equipment with low losses at idle or low load can be in the 25% range. These savings are larger than simple combustion efficiency measurements would indicate.

  8. Process Integration Study [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1992-06-01

    This work was carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  9. Integrated Bulding Heating, Cooling and Ventilation Control

    NASA Astrophysics Data System (ADS)

    Dong, Bing

    Current research studies show that building heating, cooling and ventilation energy consumption account for nearly 40% of the total building energy use in the U.S. The potential for saving energy through building control systems varies from 5% to 20% based on recent market surveys. In addition, building control affects environmental performances such as thermal, visual, air quality, etc., and occupancy such as working productivity and comfort. Building control has been proven to be important both in design and operation stages. Building control design and operation need consistent and reliable static and dynamic information from multiple resources. Static information includes building geometry, construction and HVAC equipment. Dynamic information includes zone environmental performance, occupancy and outside weather information during operation. At the same time, model-based predicted control can help to optimize energy use while maintaining indoor set-point temperature when occupied. Unfortunately, several issues in the current approach of building control design and operation impede achieving this goal. These issues include: a) dynamic information data such as real-time on-site weather (e.g., temperature, wind speed and solar radiation) and occupancy (number of occupants and occupancy duration in the space) are not readily available; b) a comprehensive building energy model is not fully integrated into advanced control for accuracy and robustness; c) real-time implementation of indoor air temperature control are rare. This dissertation aims to investigate and solve these issues based on an integrated building control approach. This dissertation introduces and illustrates a method for integrated building heating, cooling and ventilation control to reduce energy consumption and maintain indoor temperature set-point, based on the prediction of occupant behavior patterns and weather conditions. Advanced machine learning methods including Adaptive Gaussian Process

  10. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2011-09-01

    This report discusses how a significant opportunity for energy savings is domestic hot water heating, where an emerging technology has recently arrived in the U.S. market: the residential integrated heat pump water heater. A laboratory evaluation is presented of the five integrated HPWHs available in the U.S. today.

  11. Horizontally integrated atmospheric heat flux from an Arctic lead

    NASA Astrophysics Data System (ADS)

    Glendening, John W.

    1995-03-01

    Vertical distribution of the horizontally integrated heat injected into the atmosphere by an Arctic lead is investigated, based upon large-eddy simulations of its convective plume. The horizontally integrated heat flux varies exponentially with height except under conditions of relatively weak cross flow, when vertical advective transport becomes significant. Its vertical scale, which depends upon the lead size, surface heat flux, atmospheric stratification, and cross-lead wind component, is approximately one fourth of the maximum plume height, indicating that the depth of largest heat transfer is significantly shallower than the depth of the plume. A parameterization is developed to incorporate this small-scale heat injection into large-scale models which cannot resolve individual leads. The amount of heat recaptured by the ice downwind of a lead is significant when cross-lead flow is relatively strong and when the plume depth is shallow.

  12. Integrated heat pipe-thermal storage system performance evaluation

    SciTech Connect

    Keddy, E.; Sena, J.T.; Merrigan, M.

    1987-01-01

    Performance verification tests of an integrated heat pipe-thermal energy storage system have been conducted. This system is being developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System (ORC-SDPS) receiver for future space stations. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage (TES) canisters within the vapor space along with an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the surface of the heat pipe elements of the ORC-SDPS receiver and is internally transferred by the potassium vapor for use and storage. Part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was fabricated that employs axial arteries and a distribution wick connecting the wicked TES units and the heater to the solar insolation surface of the heat pipe. Tests were conducted to verify the heat pipe operation and to evaluate the heat pipe/TES units/heater tube operation by interfacing the heater unit to a heat exchanger.

  13. Efficiency improvements by geothermal heat integration in a lignocellulosic biorefinery.

    PubMed

    Sohel, M Imroz; Jack, Michael

    2010-12-01

    In an integrated geothermal biorefinery, low-grade geothermal heat is used as process heat to allow the co-products of biofuel production to become available for higher-value uses. In this paper we consider integrating geothermal heat into a biochemical lignocellulosic biorefinery so that the lignin-enriched residue can be used either as a feedstock for chemicals and materials or for on-site electricity generation. Depending on the relative economic value of these two uses, we can maximize revenue of a biorefinery by judicious distribution of the lignin-enriched residue between these two options. We quantify the performance improvement from integrating geothermal energy for an optimized system. We then use a thermodynamic argument to show that integrating geothermal heat into a biorefinery represents an improvement in overall resource utilization efficiency in all cases considered. Finally, possible future technologies for electricity generation are considered which could improve this efficiency further.

  14. Heat Integrated Distillation through Use of Microchannel Technology

    SciTech Connect

    2004-09-01

    This factsheet describes a research project whose goal is to develop a breakthrough distillation process using Microchannel Process Technology (MPT) to integrate heat transfer and separation into a single unit operation.

  15. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    SciTech Connect

    Rice, C Keith; Uselton, Robert B.; Shen, Bo; Baxter, Van D; Shrestha, Som S

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  16. Nodal integral method for transient heat conduction in a cylinder

    SciTech Connect

    Esser, P.D. )

    1993-01-01

    The accuracy and efficiency of nodal solution methods are well established for neutron diffusion in a variety of geometries, as well as for heat transfer and fluid flow in rectangular coordinates. This paper describes the development of a nodal integral method to solve the transient heat conduction equation in cylindrical geometry. Results for a test problem with an analytical solution indicate that the nodal solution provides higher accuracy than a conventional implicit finite difference scheme, while maintaining similar stability characteristics.

  17. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  18. Performance of a Thermoelectric Device with Integrated Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Barry, Matthew M.; Agbim, Kenechi A.; Chyu, Minking K.

    2015-06-01

    Thermoelectric devices (TEDs) convert heat directly into electrical energy, making them well suited for waste heat recovery applications. An integrated thermoelectric device (iTED) is a restructured TED that allows more heat to enter the p-n junctions, thus producing a greater power output . An iTED has heat exchangers incorporated into the hot-side interconnectors with flow channels directing the working fluid through the heat exchangers. The iTED was constructed of p- and n-type bismuth-telluride semiconductors and copper interconnectors and rectangular heat exchangers. The performance of the iTED in terms of , produced voltage and current , heat input and conversion efficiency for various flow rates (), inlet temperatures (C) ) and load resistances () with a constant cold-side temperature ( = 0C) was conducted experimentally. An increase in had a greater effect on the performance than did an increase in . A 3-fold increase in resulted in a 3.2-, 3.1-, 9.7-, 3.5- and 2.8-fold increase in and respectively. For a constant of 50C, a 3-fold increase in from 3300 to 9920 resulted in 1.6-, 1.6-, 2.6-, 1.5- and 1.9-fold increases in , , , and respectively.

  19. Heat Transfer Study of Heat-Integrated Distillation Column (HIDiC) Using Simulation Techniques

    NASA Astrophysics Data System (ADS)

    Pulido, Jeffrey León; Martínez, Edgar Leonardo; Wolf, Maria Regina; Filho, Rubens Maciel

    2011-08-01

    Separation processes is largely used in petroleum refining and alcohol industries. Distillation columns consume a huge amount of energy in industrial process. Therefore, the concept of Heat-Integrated Distillation Column (HIDiC) was studied using simulation techniques in order to overcome this drawback. In this configuration the column is composed for two concentric sections called rectifying and stripping. The heat transfer is conducted from the rectifying section (which works at higher pressure and temperature) to the stripping section (which works at lower pressure and temperature) using the heat present in the process and decreasing the energy charge required by the reboiler. The HIDiC column offers great potential to reduce energy consumption compared to conventional columns. However, the complexity of the internal configuration requires the development of rigorous works that enable a better understanding of the column operation. For this reason, techniques of simulation were used through of computational software. The current work presents a heat transfer study in a concentric stage of a HIDiC column. The results obtained by Aspen Plus and CFD simulation showed the internal heat transfer in a concentric tray as a promissory configuration in order to decrease energy consumption in distillation processes.

  20. Heating with waste heat

    SciTech Connect

    Beabout, R.W.

    1986-09-02

    Most of the power consumed in the gaseous diffusion process is converted into heat of compression, which is removed from the process gas and rejected into the atmosphere by recirculating cooling water over cooling towers. The water being handled through the X-333 and X-330 Process Buildings can be heated to 140 to 150/sup 0/F for heating use. The Gas Centrifuge Enrichment Plant is provided with a recirculating heating water (RHW) system which uses X-330 water and wasted heat. The RHW flow is diagrammed. (DLC)

  1. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    SciTech Connect

    Skupinski, R.C.; Tower, L.K.; Madi, F.J.; Brusk, K.D.

    1993-04-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  2. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    NASA Technical Reports Server (NTRS)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  3. Integral Plug-Type Heat-Flux Gauge

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Koch, John, Jr.

    1991-01-01

    Integral thermoplug gauge measures flux of heat across specimen of material. New gauge not screwed or welded into place, but instead thermoplug and annulus electrical-discharge-machined (EDM) into specimen material. EDM process leaves no interface between material and thermoplug, thus inherently increasing gauge accuracy by eliminating interface and associated temperature discontinuity. Process also conducive to accurate fabrication of minute gauges.

  4. The design and fabrication of a Stirling engine heat exchanger module with an integral heat pipe

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    1988-01-01

    The conceptual design of a free-piston Stirling Space Engine (SSE) intended for space power applications has been generated. The engine was designed to produce 25 kW of electric power with heat supplied by a nuclear reactor. A novel heat exchanger module was designed to reduce the number of critical joints in the heat exchanger assembly while also incorporating a heat pipe as the link between the engine and the heat source. Two inexpensive verification tests are proposed. The SSE heat exchanger module is described and the operating conditions for the module are outlined. The design process of the heat exchanger modules, including the sodium heat pipe, is briefly described. Similarities between the proposed SSE heat exchanger modules and the LeRC test modules for two test engines are presented. The benefits and weaknesses of using a sodium heat pipe to transport heat to a Stirling engine are discussed. Similarly, the problems encountered when using a true heat pipe, as opposed to a more simple reflux boiler, are described. The instruments incorporated into the modules and the test program are also outlined.

  5. Integral collector storage system with heat exchange apparatus

    DOEpatents

    Rhodes, Richard O.

    2004-04-20

    The present invention relates to an integral solar energy collector storage systems. Generally, an integral collector storage system includes a tank system, a plurality of heat exchange tubes with at least some of the heat exchange tubes arranged within the tank system, a first glazing layer positioned over the tank system and a base plate positioned under the tank system. In one aspect of the invention, the tank system, the first glazing layer an the base plate each include protrusions and a clip is provided to hold the layers together. In another aspect of the invention, the first glazing layer and the base plate are ribbed to provide structural support. This arrangement is particularly useful when these components are formed from plastic. In yet another aspect of the invention, the tank system has a plurality of interconnected tank chambers formed from tubes. In this aspect, a supply header pipe and a fluid return header pipe are provided at a first end of the tank system. The heat exchange tubes have inlets coupled to the supply header pipe and outlets coupled to the return header pipe. With this arrangement, the heat exchange tubes may be inserted into the tank chambers from the first end of the tank system.

  6. Integrated modeling and heat treatment simulation of austempered ductile iron

    NASA Astrophysics Data System (ADS)

    Hepp, E.; Hurevich, V.; Schäfer, W.

    2012-07-01

    The integrated modeling and simulation of the casting and heat treatment processes for producing austempered ductile iron (ADI) castings is presented. The focus is on describing different models to simulate the austenitization, quenching and austempering steps during ADI heat treatment. The starting point for the heat treatment simulation is the simulated microstructure after solidification and cooling. The austenitization model considers the transformation of the initial ferrite-pearlite matrix into austenite as well as the dissolution of graphite in austenite to attain a uniform carbon distribution. The quenching model is based on measured CCT diagrams. Measurements have been carried out to obtain these diagrams for different alloys with varying Cu, Ni and Mo contents. The austempering model includes nucleation and growth kinetics of the ADI matrix. The model of ADI nucleation is based on experimental measurements made for varied Cu, Ni, Mo contents and austempering temperatures. The ADI kinetic model uses a diffusion controlled approach to model the growth. The models have been integrated in a tool for casting process simulation. Results are shown for the optimization of the heat treatment process of a planetary carrier casting.

  7. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation

    SciTech Connect

    Thuc Bui; Michael Read; Lawrence ives

    2012-05-17

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  8. Experimental Evaluation of High Performance Integrated Heat Pump

    SciTech Connect

    Miller, William A; Berry, Robert; Durfee, Neal; Baxter, Van D

    2016-01-01

    Integrated heat pump (IHP) technology provides significant potential for energy savings and comfort improvement for residential buildings. In this study, we evaluate the performance of a high performance IHP that provides space heating, cooling, and water heating services. Experiments were conducted according to the ASHRAE Standard 206-2013 where 24 test conditions were identified in order to evaluate the IHP performance indices based on the airside performance. Empirical curve fits of the unit s compressor maps are used in conjunction with saturated condensing and evaporating refrigerant conditions to deduce the refrigerant mass flowrate, which, in turn was used to evaluate the refrigerant side performance as a check on the airside performance. Heat pump (compressor, fans, and controls) and water pump power were measured separately per requirements of Standard 206. The system was charged per the system manufacturer s specifications. System test results are presented for each operating mode. The overall IHP performance metrics are determined from the test results per the Standard 206 calculation procedures.

  9. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  10. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    SciTech Connect

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  11. Heat accumulator

    SciTech Connect

    Bracht, A.

    1981-09-29

    A heat accumulator comprises a thermally-insulated reservoir full of paraffin wax mixture or other flowable or meltable heat storage mass, heat-exchangers immersed in the mass, a heat-trap connected to one of the heat-exchangers, and a heat user connected to the other heat-exchanger. Pumps circulate fluids through the heat-trap and the heat-using means and the respective heat-exchangers, and a stirrer agitates and circulates the mass, and the pumps and the stirrer and electric motors driving these devices are all immersed in the mass.

  12. Heat Without Heat

    NASA Astrophysics Data System (ADS)

    Lubkin, Elihu

    1997-04-01

    Logic of the Second Law of Thermodynamics demands acquisition of naked entropy. Accordingly, the leanest liaison between systems is not a diathermic membrane, it is a purely informational tickler, leaking no appreciable energy. The subsystem here is a thermodynamic universe, which gets `heated' entropically, yet without gaining calories. Quantum Mechanics graciously supports that(Lubkin, E. and Lubkin, T., International Journal of Theoretical Physics,32), 933-943 (1993) (at a cost of about 1 bit) through entanglement---across this least permeable of membranes---with what is beyond that universe. Heat without heat(Also v. forthcoming Proceedings of the 4th Drexel University Conference of September 1994) is the aspirin for Boltzmann's headache, conserving entropy in mechanical isolation, even while increasing entropy in thermodynamic isolation.

  13. Microwave dielectric heating of fluids in an integrated microfluidic device

    NASA Astrophysics Data System (ADS)

    Shah, Jayna J.; Sundaresan, Siddarth G.; Geist, Jon; Reyes, Darwin R.; Booth, James C.; Rao, Mulpuri V.; Gaitan, Michael

    2007-11-01

    The ability to selectively and precisely control the temperature of fluid volumes ranging from a few microliters to sub-nanoliters in microfluidic networks is vital for a wide range of applications in micro total analysis systems (μTAS). In this work, we characterize and model the performance of a thin film microwave transmission line integrated with a microfluidic channel to heat fluids with relevant buffer salt concentrations over a wide range of frequencies. A microchannel fabricated in poly(dimethylsiloxane) (PDMS) is aligned with a thin film microwave transmission line in a coplanar waveguide (CPW) configuration. The electromagnetic fields localized in the gap between the signal and ground lines of the transmission line dielectrically heat the fluid in the selected region of the microchannel. Microwave S-parameter measurements and optical fluorescence-based temperature measurements are used with a theoretical model developed based on classical microwave absorption theory to fully characterize the temperature rise of the fluid. We observe a 0.95 °C mW-1 temperature rise at 15 GHz and confirm that the temperature rise of the fluid is predominantly due to microwave dielectric heating.

  14. An examination of heat rate improvements due to waste heat integration in an oxycombustion pulverized coal power plant

    NASA Astrophysics Data System (ADS)

    Charles, Joshua M.

    Oxyfuel, or oxycombustion, technology has been proposed as one carbon capture technology for coal-fired power plants. An oxycombustion plant would fire coal in an oxidizer consisting primarily of CO2, oxygen, and water vapor. Flue gas with high CO2 concentrations is produced and can be compressed for sequestration. Since this compression generates large amounts of heat, it was theorized that this heat could be utilized elsewhere in the plant. Process models of the oxycombustion boiler, steam cycle, and compressors were created in ASPEN Plus and Excel to test this hypothesis. Using these models, heat from compression stages was integrated to the flue gas recirculation heater, feedwater heaters, and to a fluidized bed coal dryer. All possible combinations of these heat sinks were examined, with improvements in coal flow rate, Qcoal, net power, and unit heat rate being noted. These improvements would help offset the large efficiency impacts inherent to oxycombustion technology.

  15. Process Integration Study of Cache Valley Cheese Plant [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1991-10-01

    This work has carried out in two phases: Phase 1; identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  16. Integrated heat exchanger design for a cryogenic storage tank

    SciTech Connect

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U.; Tomsik, T. M.; Conyers, H. J.

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  17. Integrated heat exchanger design for a cryogenic storage tank

    NASA Astrophysics Data System (ADS)

    Fesmire, J. E.; Tomsik, T. M.; Bonner, T.; Oliveira, J. M.; Conyers, H. J.; Johnson, W. L.; Notardonato, W. U.

    2014-01-01

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  18. A heat & mass integration approach to reduce capital and operating costs of a distillation configuration

    SciTech Connect

    Madenoor Ramapriya, Gautham; Jiang, Zheyu; Tawarmalani, Mohit; Agrawal, Rakesh

    2015-11-11

    We propose a general method to consolidate distillation columns of a distillation configuration using heat and mass integration. The proposed method encompasses all heat and mass integrations known till date, and includes many more. Each heat and mass integration eliminates a distillation column, a condenser, a reboiler and the heat duty associated with a reboiler. Thus, heat and mass integration can potentially offer significant capital and operating cost benefits. In this talk, we will study the various possible heat and mass integrations in detail, and demonstrate their benefits using case studies. This work will lay out a framework to synthesize an entire new class of useful configurations based on heat and mass integration of distillation columns.

  19. Ground Source Integrated Heat Pump (GS-IHP) Development

    SciTech Connect

    Baxter, V. D.; Rice, K.; Murphy, R.; Munk, J.; Ally, Moonis; Shen, Bo; Craddick, William; Hearn, Shawn A.

    2013-05-24

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test

  20. Initial characterization of a modular heat exchanger with an integral heat pipe. [for Stirling space engine

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    1989-01-01

    As part of the Civil Space Technology Initiative (CSTI) Advanced Technology program, a conceptual design of the Stirling space engibe (SSE) was generated to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The free-piston Stirling engine (FPSE) was chosen as the growth option in the CSTI program. An existing FPSE was modified as a test bed for a modular heat exchanger evaluation. Evaluation of the individual heat pipes before installation in the engine is described.

  1. Integrated Thermal Protection Systems and Heat Resistant Structures

    NASA Technical Reports Server (NTRS)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  2. Activated-Carbon Sorbent With Integral Heat-Transfer Device

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Yavrouian, Andre

    1996-01-01

    Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.

  3. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... COMMISSION Certain Integrated Circuit Packages Provided With Multiple Heat- Conducting Paths and Products... With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting... multiple heat-conducting paths and products containing same. The complaint names as respondents...

  4. Energy Integrated Design of Lighting, Heating, and Cooling Systems, and Its Effect on Building Energy Requirements.

    ERIC Educational Resources Information Center

    Meckler, Gershon

    Comments on the need for integrated design of lighting, heating, and cooling systems. In order to eliminate the penalty of refrigerating the lighting heat, minimize the building non-usable space, and optimize the total energy input, a "systems approach" is recommended. This system would employ heat-recovery techniques based on the ability of the…

  5. Internal-integral sodium return line for sodium heat engine

    DOEpatents

    Hunt, Thomas K.

    1985-01-01

    A thermoelectric generator device which converts heat energy to electrical energy. An alkali metal is used with a solid electrolyte and a portion of the return line for the alkali metal is located within the generator vacuum space.

  6. Heat release in the cryogenic system of a superconducting integrated detector and the influence of heat on its operation

    NASA Astrophysics Data System (ADS)

    Kinev, N. V.; Koshelets, V. P.

    2013-03-01

    Heat release in the cryogenic system of a subterahertz-range superconducting integrated detector at ≈4.2 K is studied, and the influence of the released heat on its main characteristics is estimated. The detector chip mounted on a silicon lens is connected to a bias board by aluminum wires 25 μm in diameter, which are fixed by ultrasonic bonding. They are necessary for setting a bias current through the working components of the detector and represent an integral part of the system. The contact resistance between the wires and contact pads of the microchip is measured. The contact resistance is found to considerably exceed the resistance of the aluminum wire and, hence, makes a major contribution to heat release in the system. A "multipoint contact with one wire" technique is suggested. Tests show its efficiency: the contact resistance decreases considerably compared with the standard approach.

  7. Heat Illness

    MedlinePlus

    ... breathing and a fast, weak pulse Heat cramps - muscle pains or spasms that happen during heavy exercise Heat rash - skin irritation from excessive sweating Centers for Disease Control and Prevention

  8. Heat Stress

    MedlinePlus

    ... Stress Learn some tips to protect workers including: acclimatization, rest breaks, and fluid recommendations. NIOSH Workplace Solution: ... Blog: Adjusting to Work in the Heat: Why Acclimatization Matters The natural adaptation to the heat takes ...

  9. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  10. Solar heating of integrated greenhouse-animal shelter systems

    SciTech Connect

    Ben-Abdallah, N.

    1983-01-01

    An analytical procedure to determine the effectiveness of greenhouses as solar collectors was presented. This procedure was used to predict the effect of several construction parameters on solar radiation input to greenhouses. The orientation of the greenhouse was found to be the most effective construction parameter controlling solar radiation input to greenhouses. The effective albedo of the plant canopy was also found to be a significant factor. A new solar greenhouse design, suitable for high latitude regions was developed. The results showed that an internal solar collector could be incorporated as an integral part of the greenhouse design. The concept developed could be used as a free-standing greenhouse or in a combination with livestock building. The efficiency of the solar input was investigated for the conventional and the shed greenhouses, both as a free-standing unit and a greenhouse-animal shelter system, using computer simulation analyses. The results indicated that the efficiency of solar input is highly dependent on location; the effect of location on the shed type design is more profound. A typical case of a greenhouse-hog barn production system was investigated using computer simulation analyses. The results showed that such a food production system achieves a significant reduction in conventional fuel consumption due to both animal waste heat recovery and solar energy utilization.

  11. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  12. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  13. Integrated Compartment Method appication to the transient heat transfer in gas-cooled reactor

    SciTech Connect

    Chen, N.C.J.; Yeh, G.T.

    1983-01-01

    Integrated Compartment Method (ICM), an effective numerical integration algorithm, was developed to solve the transient heat conduction coupled with convection. Application of the ICM to the mathematical model simulating a graphite test structure heated in an annular flow stream of hot helium has been successfully demonstrated. However, the model validation can not be performed until experimental data become available.

  14. Integrated Fast-Ignition Core-Heating Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Theobald, W.

    2010-11-01

    Integrated fast-ignition core-heating experiments are carried out at the Omega Laser Facility. Plastic (CD) shell targets with a re-entrant gold cone are compressed with a ˜20-kJ, UV low-adiabat laser pulse. A 1-kJ, 10-ps pulse from OMEGA EP generates fast electrons in the hollow cone that are transported into the compressed core. The experiments demonstrate a significant enhancement of the neutron yield. The neutron-yield enhancement caused by the high-intensity pulse is 1.5 x 10^7, which is more than 150% of the implosion yield. For the first time, measurements of the breakout time of the compression-induced shock wave through the cone were performed for the same targets as used in the integrated experiments. The shock breakout was measured to be ˜100 ps after peak neutron production. The experiments demonstrate that the cone tip is intact at the time when the short-pulse laser interacts with the cone. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement Nos. DE-FC52-08NA28302, DE-FC02-04ER54789, and DE-FG02-05ER54839. [4pt] In collaboration with A. A. Solodov, K. S. Anderson, R. Betti (LLE/FSC); C. Stoeckl, T.R. Boehly, R.S. Craxton, J.A. Delettrez, V.Yu. Glebov, J.P. Knauer, F.J. Marshall, K.L. Marshall, D.D. Meyerhofer,^ P.M. Nilson, T.C. Sangster, W. Seka (LLE); F.N. Beg (UCSD), H. Habara (ILE), P.K. Patel (LLNL), R.B. Stephens (GA); J.A. Frenje, N. Sinenian (PSFC/MIT).

  15. Building with integral solar-heat storage--Starkville, Mississippi

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Column supporting roof also houses rock-storage bin of solar-energy system supplying more than half building space heating load. Conventional heaters supply hot water. Since bin is deeper and narrower than normal, individual pebble size was increased to keep airflow resistance at minimum.

  16. Possibilities of Heat Pump Integration for the Renovation of Dwelling Houses

    NASA Astrophysics Data System (ADS)

    Martinaitis, Vytautas; Siupsinskas, Giedrius

    2011-01-01

    The technical solutions for the installation of heat pumps in individual houses are well known, but its integration in the existing systems in dwelling houses is not common. Heat pump technology is referred to as renewable but would have technical, economic and environmental impact on the whole existing heat supply system in a dwelling house. The aim of this article is to investigate the possibility of using heat pumps for supplying heat to the existing residential buildings. This article examines the possibilities to supplement the engineering systems with additional heat pumps. The smallest heat pump end-user group is the dwelling stairwell. The possibility to use heat pumps in a separate apartment has not been analysed. This article analyses the integration of heat pumps for residential heat supply in the building. The primary heat source is the exhaust air or wastewater. All calculations have been made for several real existing dwelling houses in Birštonas town (Lithuania) within the framework of the CONCERTO Eco-Life project. The analysis also provides economic and environmental assessment of the alternatives. This research was supported by EC FP7 CONCERTO program ("Sustainable Zero Carbon ECO-Town Developments Improving Quality of Life across EU - ECO-Life" (ECO-Life Project) Contract No. TREN/FP7EN/239497/"ECOLIFE").

  17. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect

    Qu, Ming; Abdelaziz, Omar; Yin, Hongxi

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  18. Modular, thermal bus-to-radiator integral heat exchanger design for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Ewert, Michael

    1990-01-01

    The baseline concept is introduced for the 'integral heat exchanger' (IHX) which is the interface of the two-phase thermal bus with the heat-rejecting radiator panels. A direct bus-to-radiator heat-pipe integral connection replaces the present interface hardware to reduce the weight and complexity of the heat-exchange mechanism. The IHX is presented in detail and compared to the baseline system assuming certain values for heat rejection, mass per unit width, condenser capacity, contact conductance, and assembly mass. The spreadsheet comparison can be used to examine a variety of parameters such as radiator length and configuration. The IHX is shown to permit the reduction of panel size and system mass in response to better conductance and packaging efficiency. The IHX is found to be a suitable heat-rejection system for the Space Station Freedom because it uses present technology and eliminates the interface mechanisms.

  19. Integrated exhaust and electrically heated particulate filter regeneration systems

    SciTech Connect

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  20. High pressure ratio cryocooler with integral expander and heat exchanger

    NASA Astrophysics Data System (ADS)

    Crunkleton, J. A.; Smith, J. L., Jr.; Iwasa, Y.

    A new 1 W, 4.2 K cryocooler is under development that is intended to miniaturize helium temperature refrigeration systems using a high-pressure-ratio Collins-type cycle. The configuration resulted from optimization studies of a saturated vapor compression (SCV) cycle that employs miniature parallel-plate heat exchangers. The basic configuration is a long displacer in a close-fitting, thin-walled cylinder. The displacer-to-cylinder gap is the high-pressure passage of the heat exchanger, and the low-pressure passage is formed by a thin tube over the OD of the cylinder. A solenoid-operated inlet valve admits 40 atm helium to the displacer-to-cylinder gap at room temperature, while the solenoid-operated exhaust valve operates at 4 atm. The single-stage cryocooler produces 1 W of refrigeration at 40 K without precooling and at 20 K with liquid nitrogen precooling.

  1. Counter flow cooling drier with integrated heat recovery

    DOEpatents

    Shivvers, Steve D.

    2009-08-18

    A drier apparatus for removing water or other liquids from various materials includes a mixer, drying chamber, separator and regenerator and a method for use of the apparatus. The material to be dried is mixed with a heated media to form a mixture which then passes through the chamber. While passing through the chamber, a comparatively cool fluid is passed counter current through the mixture so that the mixture becomes cooler and drier and the fluid becomes hotter and more saturated with moisture. The mixture is then separated into drier material and media. The media is transferred to the regenerator and heated therein by the hot fluid from the chamber and supplemental heat is supplied to bring the media to a preselected temperature for mixing with the incoming material to be dried. In a closed loop embodiment of the apparatus, the fluid is also recycled from the regenerator to the chamber and a chiller is utilized to reduce the temperature of the fluid to a preselected temperature and dew point temperature.

  2. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. Tom; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    An integrated heat pipe-thermal storage system was developed as part of the Organic Rankine Cycle Solar Dynamic Power System solar receiver for space station application. The solar receiver incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain thermal energy storage (TES) canisters within the vapor space with a toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe. Part of this thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of earth orbit, the stored energy in the TES units is transferred by the potassium vapor to the toluene heater tube. A developmental heat pipe element was constructed that contains axial arteries and a distribution wick connecting the toluene heater and the TES units to the solar insolation surface of the heat pipe. Tests were conducted to demonstrate the heat pipe, TES units, and the heater tube operation. The heat pipe element was operated at design input power of 4.8 kW. Thermal cycle tests were conducted to demonstrate the successful charge and discharge of the TES units. Axial power flux levels up to 15 watts/sq cm were demonstrated and transient tests were conducted on the heat pipe element. Details of the heat pipe development and test procedures are presented.

  3. Multicriteria aided design of integrated heating-cooling energy systems in buildings.

    PubMed

    Mróz, Tomasz M

    2010-08-01

    This paper presents an analysis of the possible application of integrated heating-cooling systems in buildings. The general algorithm of integrated heating-cooling system design aid was formulated. The evaluation criteria of technically acceptable variants were defined. Fossil fuel energy consumption, carbon dioxide emission, investment, and total exploitation cost were identified as the most important factors describing the considered decision problem. The multicriteria decision aid method ELECTRE III was proposed as the decision tool for the choice of the most compromised variant. The proposed method was used for a case study calculation-the choice of an integrated heating-cooling system for an office building.

  4. Aluminum heat sink enables power transistors to be mounted integrally with printed circuit board

    NASA Technical Reports Server (NTRS)

    Seaward, R. C.

    1967-01-01

    Power transistor is provided with an integral flat plate aluminum heat sink which mounts directly on a printed circuit board containing associated circuitry. Standoff spacers are used to attach the heat sink to the printed circuit board containing the remainder of the circuitry.

  5. Heat Problems.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Heat problems and heat cramps related to jogging can be caused by fluid imbalances, medications, dietary insufficiency, vomiting or diarrhea, among other factors. If the condition keeps reoccurring, the advice of a physician should be sought. Some preventive measures that can be taken include: (1) running during the cooler hours of the day; (2)…

  6. Heat pipes. [technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.

  7. Heat-pump-centered integrated community energy systems: system development summary

    SciTech Connect

    Calm, J.M.

    1980-02-01

    An introduction to district heating systems employing heat pumps to enable use of low-temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service-water heating, and other thermal services. Otherwise-wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. These sources are abundant, and their use would conserve scarce resources and reduce adverse environmental impacts. More than one-quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less-scarce resources not practical in smaller, individual-building systems. Seven studies performed for the system development phase of the Department of Energy's Heat-Pump-Centered Integrated Community Energy Systems Project and to related studies are summarized. A concluding chapter tabulates data from these separately published studies.

  8. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    NASA Astrophysics Data System (ADS)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  9. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    NASA Astrophysics Data System (ADS)

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.

    2015-05-01

    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  10. Process for producing an activated carbon adsorbent with integral heat transfer apparatus

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Yavrouian, Andre H. (Inventor)

    1996-01-01

    A process for producing an integral adsorbent-heat exchanger apparatus useful in ammonia refrigerant heat pump systems. In one embodiment, the process wets an activated carbon particles-solvent mixture with a binder-solvent mixture, presses the binder wetted activated carbon mixture on a metal tube surface and thereafter pyrolyzes the mixture to form a bonded activated carbon matrix adjoined to the tube surface. The integral apparatus can be easily and inexpensively produced by the process in large quantities.

  11. Heat collector

    DOEpatents

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  12. Heat collector

    DOEpatents

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  13. Heat intolerance

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003094.htm Heat intolerance To use the sharing features on this ... must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map FAQs Contact Us Get ...

  14. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  15. Heating stove

    SciTech Connect

    Johnson, V.

    1982-03-23

    This stove invention relates to wood and coal burning stoves employed for heating. More effective draft control and heat transfer is achieved by a stove employing straight and serpentine flues, a control rod to coordinate movement of a baffle and damper for defining passageways to the flues, and a channel for apportioning air above and below the fuel and into first and second combustion chambers.

  16. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  17. HEAT2

    SciTech Connect

    Charman, C. )

    1993-08-01

    HEAT2 is a finite element program for the transient and steady-state, thermal analysis of two-dimensional solids. Calculates detailed temperature distributions in MHTGR prismatic fuel elements side reflector and core support blocks. Non-linear effects of time and temperature dependent boundary conditions, and heat source generation and material properties are included with user supplied subroutines NPBC, QAREA, SOURCE, and MPROP.

  18. An artificial intelligence method for the synthesis of heat-integrated distillation flowsheets

    SciTech Connect

    Fang-Yu Han; Ben-Guang Rong

    1996-12-31

    In this paper, a concept of Heat-Integrated Distillation Flowsheet (HIDF) is proposed. It refers to the multicomponent separation flowsheet which is composed of simple and complex columns and in which heat integration is considered so as to achieve minimum energy consumption. The HIDF is very different from the Heat-Integrated Distillation Sequences (HIDS) in the literature which only consists of simple columns. In this paper, an artificial intelligence method is proposed for the synthesis of HIDF. It is based on the Database, Simulator, Heat Exchanger Network, and four Knowledge Bases which are all developed by the authors and their coworkers. A strategy of eight steps which combines the knowledge-based and rigorous algorithms is adopted for the synthesis of HIDF. The illustrated examples for the conventional distillation and extractive distillation show that the practical minimum energy consumption distillation flowsheets; can be generated with this method.

  19. Eddy Current Analysis of Thin Metal Container in Induction Heating by Line Integral Equations

    NASA Astrophysics Data System (ADS)

    Fujita, Hagino; Ishibashi, Kazuhisa

    In recent years, induction-heating cookers have been disseminated explosively. It is wished to commercialize flexible and disposable food containers that are available for induction heating. In order to develop a good quality food container that is heated moderately, it is necessary to analyze accurately eddy currents induced in a thin metal plate. The integral equation method is widely used for solving induction-heating problems. If the plate thickness approaches zero, the surface integral equations on the upper and lower plate surfaces tend to become the same and the equations become ill conditioned. In this paper, firstly, we derive line integral equations from the boundary integral equations on the assumption that the electromagnetic fields in metal are attenuated rapidly compared with those along the metal surface. Next, so as to test validity of the line integral equations, we solve the eddy current induced in a thin metal container in induction heating and obtain power density given to the container and impedance characteristics of the heating coil. We compare computed results with those by FEM.

  20. The DOE Heat-Pump-Centered Integrated Community Energy Systems Project

    NASA Astrophysics Data System (ADS)

    Calm, J. M.

    1982-03-01

    The Heat-Pump-Centered Integrated Community Energy Systems Project seeks to conserve energy by developing heat pump systems for district heating and cooling. Seven contractor teams were involved in concept development and subsequent application feasibility studies. A technical and economic assessment of the systems developed was performed based on the results of these and two related studies. The assessment concludes that district heating and cooling with heat pumps can conserve energy resources, and particularly nonrenewable fuels, in an environmentally and economically attractive way. The application potential is believed to be broad, and the energy savings of widespread implementation would be substantial. No one system is universally applicable, but many options exists. Market forces are already promoting many of the required technologies, but further research, development, and demonstration could accelerate implementation.

  1. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    PubMed

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization. PMID:16190250

  2. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.

    PubMed

    Gadalla, Mamdouh A; Olujic, Zarko; Jansens, Peter J; Jobson, Megan; Smith, Robin

    2005-09-01

    Distillation systems are energy and power intensive processes and contribute significantly to the greenhouse gases emissions (e.g. carbon dioxide). Reducing CO2 emissions is an absolute necessity and expensive challenge to the chemical process industries in orderto meetthe environmental targets as agreed in the Kyoto Protocol. A simple model for the calculation of CO2 emissions from heat-integrated distillation systems is introduced, considering typical process industry utility devices such as boilers, furnaces, and turbines. Furnaces and turbines consume large quantities of fuels to provide electricity and process heats. As a result, they produce considerable amounts of CO2 gas to the atmosphere. Boilers are necessary to supply steam for heating purposes; besides, they are also significant emissions contributors. The model is used in an optimization-based approach to optimize the process conditions of an existing crude oil atmospheric tower in order to reduce its CO2 emissions and energy demands. It is also applied to generate design options to reduce the emissions from a novel internally heat-integrated distillation column (HIDiC). A gas turbine can be integrated with these distillation systems for larger emissions reduction and further energy savings. Results show that existing crude oil installations can save up to 21% in energy and 22% in emissions, when the process conditions are optimized. Additionally, by integrating a gas turbine, the total emissions can be reduced further by 48%. Internal heat-integrated columns can be a good alternative to conventional heat pump and other energy intensive close boiling mixtures separations. Energy savings can reach up to 100% with respect to reboiler heat requirements. Emissions of these configurations are cut down by up to 83%, compared to conventional units, and by 36%, with respect to heat pump alternatives. Importantly, cost savings and more profit are gained in parallel to emissions minimization.

  3. Integrated Thermal Protection Systems and Heat Resistant Structures

    NASA Technical Reports Server (NTRS)

    Pichon, Thierry; Lacoste, Marc; Barreteau, R.; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop a CMC heatshield, a deployable decelerator, and an ablative heat shield for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled in early FY06. This paper will give an overview of the work that was accomplished prior to cancellation. The Snecma team consisted of MT Aerospace, Germany, and Materials Research & Design (MR&D), NASA Langley, NASA Dryden, and NASA Ames in the United States. An Apollo-type capsule was chosen as the reference vehicle for the work. NASA Langley generated the trajectory and aerothermal loads. Snecma and MT Aerospace began the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield. MR&D led the design of a C/SiC deployable decelerator, NASA Ames led the characterization of several ablators, NASA Dryden led the development of a heath management system and the high temperature structures testing, and NASA Langley led the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  4. Improvement of heat pipe performance through integration of a coral biomaterial wick structure into the heat pipe of a CPU cooling system

    NASA Astrophysics Data System (ADS)

    Putra, Nandy; Septiadi, Wayan Nata

    2016-08-01

    The very high heat flux dissipated by a Central Processing Unit (CPU) can no longer be handled by a conventional, single-phased cooling system. Thermal management of a CPU is now moving towards two-phase systems to maintain CPUs below their maximum temperature. A heat pipe is one of the emerging cooling systems to address this issue because of its superior efficiency and energy input independence. The goal of this research is to improve the performance of a heat pipe by integrating a biomaterial as the wick structure. In this work, the heat pipe was made from copper pipe and the biomaterial wick structure was made from tabulate coral with a mean pore diameter of 52.95 μm. For comparison purposes, the wick structure was fabricated from sintered Cu-powder with a mean pore diameter of 58.57 µm. The working fluid for this experiment was water. The experiment was conducted using a processor as the heat source and a plate simulator to measure the heat flux. The utilization of coral as the wick structure can improve the performance of a heat pipe and can decrease the temperature of a simulator plate by as much as 38.6 % at the maximum heat load compared to a conventional copper heat sink. This method also decreased the temperature of the simulator plate by as much as 44.25 °C compared to a heat pipe composed of a sintered Cu-powder wick.

  5. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Technical Reports Server (NTRS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  6. Development of an integrated heat pipe-thermal storage system for a solar receiver

    NASA Astrophysics Data System (ADS)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  7. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  8. Biodiesel production process from microalgae oil by waste heat recovery and process integration.

    PubMed

    Song, Chunfeng; Chen, Guanyi; Ji, Na; Liu, Qingling; Kansha, Yasuki; Tsutsumi, Atsushi

    2015-10-01

    In this work, the optimization of microalgae oil (MO) based biodiesel production process is carried out by waste heat recovery and process integration. The exergy analysis of each heat exchanger presented an efficient heat coupling between hot and cold streams, thus minimizing the total exergy destruction. Simulation results showed that the unit production cost of optimized process is 0.592$/L biodiesel, and approximately 0.172$/L biodiesel can be avoided by heat integration. Although the capital cost of the optimized biodiesel production process increased 32.5% and 23.5% compared to the reference cases, the operational cost can be reduced by approximately 22.5% and 41.6%.

  9. Development of Superconducting Magnetic Heat Switches for an Ideal Integrating Bolometer

    NASA Astrophysics Data System (ADS)

    Nagler, P. C.; Canavan, E.; De Alba, R.; Stevenson, T. R.

    2016-07-01

    We are developing an ideal integrating bolometer (IIB), a novel detector for far-infrared applications. An IIB consists of a dissipationless temperature sensor weakly coupled to a thermal bath through a heat switch. If the heat switch's thermal conductance in the "off" state is much smaller than its conductance in the "on" state, the thermometer temperature will depend linearly on integrated incident power, until the bolometer temperature is reset by changing the conductance to the "on" state. A key component of an IIB is the heat switch, the subject of this paper. We have fabricated and tested prototype IIB devices designed to demonstrate a superconducting magnetic heat switch on both solid substrates and membranes. In this work, we will present details on the design, fabrication, and experimental performance of our prototype IIB devices.

  10. Application of fuel cells with heat recovery for integrated utility systems

    NASA Technical Reports Server (NTRS)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  11. Transient performance evaluation of an integrated heat pipe-thermal storage system

    NASA Technical Reports Server (NTRS)

    Keddy, E.; Sena, J. T.; Merrigan, M.; Heidenreich, Gary; Johnson, Steve

    1988-01-01

    Transient performance tests of an integrated heat pipe-thermal storage system have been conducted. This system was developed as a part of an Organic Rankine Cycle-Solar Dynamic Power System receiver for future power systems. The integrated system consists of potassium heat pipe elements that incorporate thermal energy storage canisters within the vapor space and an organic fluid (toluene) heater tube used as the condenser region of the heat pipe. The transient performance tests determined the operating characteristics and power input limits of the integrated heat pipe-thermal storage unit under conditions corresponding to re-acquisition of the sun during emergence from eclipse conditions and to the initial start-up of the solar dynamic power system. The tests demonstrated that the heat pipe-thermal storage element is not limited under conditions corresponding to emergence from eclipse during normal orbital operations and the heat pipe will successfully start-up from the frozen condition with full input power at the onset. Details of the test procedures and results of the tests are presented in this paper.

  12. HEAT GENERATION

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1963-12-01

    Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

  13. Heat exchanger

    SciTech Connect

    Drury, C.R.

    1988-02-02

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections.

  14. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  15. Infrared heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...

  16. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  17. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  18. Integration of Radioisotope Heat Source with Stirling Engine and Cooler for Venus Internal-Structure Mission

    SciTech Connect

    Schock, Alfred

    1993-10-01

    The primary mission goal is to perform long-term seismic measurements on Venus, to study its largely unknown internal structure. The principal problem is that most payload components cannot long survive Venus's harsh environment, 90 bars at 500 degrees C. To meet the mission life goal, such components must be protected by a refrigerated payload bay. JPL Investigators have proposed a mission concept employing a lander with a spherical payload bay cooled to 25 degrees C by a Stirling cooler powered by a radioisotope-heated Sitrling engine. To support JPL's mission study, NASA/Lewis and MTI have proposed a conceptual design for a hydraulically coupled Stirling engine and cooler, and Fairchild Space - with support of the Department of Energy - has proposed a design and integration scheme for a suitable radioisotope heat source. The key integration problem is to devise a simple, light-weight, and reliable scheme for forcing the radioisotope decay heat to flow through the Stirling engine during operation on Venus, but to reject that heat to the external environment when the Stirling engine and cooler are not operating (e.g., during the cruise phase, when the landers are surrounded by heat shields needed for protection during subsequent entry into the Venusian atmosphere.) A design and integration scheme for achieving these goals, together with results of detailed thermal analyses, are described in this paper. There are 7 copies in the file.

  19. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1991-10-01

    Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

  20. Dynamic Complexity Study of Nuclear Reactor and Process Heat Application Integration

    SciTech Connect

    J'Tia Patrice Taylor; David E. Shropshire

    2009-09-01

    Abstract This paper describes the key obstacles and challenges facing the integration of nuclear reactors with process heat applications as they relate to dynamic issues. The paper also presents capabilities of current modeling and analysis tools available to investigate these issues. A pragmatic approach to an analysis is developed with the ultimate objective of improving the viability of nuclear energy as a heat source for process industries. The extension of nuclear energy to process heat industries would improve energy security and aid in reduction of carbon emissions by reducing demands for foreign derived fossil fuels. The paper begins with an overview of nuclear reactors and process application for potential use in an integrated system. Reactors are evaluated against specific characteristics that determine their compatibility with process applications such as heat outlet temperature. The reactor system categories include light water, heavy water, small to medium, near term high-temperature, and far term high temperature reactors. Low temperature process systems include desalination, district heating, and tar sands and shale oil recovery. High temperature processes that support hydrogen production include steam reforming, steam cracking, hydrogen production by electrolysis, and far-term applications such as the sulfur iodine chemical process and high-temperature electrolysis. A simple static matching between complementary systems is performed; however, to gain a true appreciation for system integration complexity, time dependent dynamic analysis is required. The paper identifies critical issues arising from dynamic complexity associated with integration of systems. Operational issues include scheduling conflicts and resource allocation for heat and electricity. Additionally, economic and safety considerations that could impact the successful integration of these systems are considered. Economic issues include the cost differential arising due to an integrated

  1. Geothermal heating

    SciTech Connect

    Aureille, M.

    1982-01-01

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  2. Geothermal district heating systems

    SciTech Connect

    Budney, G.S.; Childs, F.

    1982-01-01

    Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

  3. MODELING THE LINE-OF-SIGHT INTEGRATED EMISSION IN THE CORONA: IMPLICATIONS FOR CORONAL HEATING

    SciTech Connect

    Viall, Nicholeen M.; Klimchuk, James A.

    2013-07-10

    One of the outstanding problems in all of space science is uncovering how the solar corona is heated to temperatures greater than 1 MK. Though studied for decades, one of the major difficulties in solving this problem has been unraveling the line-of-sight (LOS) effects in the observations. The corona is optically thin, so a single pixel measures counts from an indeterminate number (perhaps tens of thousands) of independently heated flux tubes, all along that pixel's LOS. In this paper we model the emission in individual pixels imaging the active region corona in the extreme ultraviolet. If LOS effects are not properly taken into account, erroneous conclusions regarding both coronal heating and coronal dynamics may be reached. We model the corona as an LOS integration of many thousands of completely independently heated flux tubes. We demonstrate that despite the superposition of randomly heated flux tubes, nanoflares leave distinct signatures in light curves observed with multi-wavelength and high time cadence data, such as those data taken with the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. These signatures are readily detected with the time-lag analysis technique of Viall and Klimchuk in 2012. Steady coronal heating leaves a different and equally distinct signature that is also revealed by the technique.

  4. Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance.

    PubMed

    Nguyen, Cam Chau; Nakaminami, Kentaro; Matsui, Akihiro; Kobayashi, Shuhei; Kurihara, Yukio; Toyooka, Kiminori; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Stress granules (SGs), which are formed in the plant cytoplasm under stress conditions, are transient dynamic sites (particles) for mRNA storage. SGs are actively involved in protecting mRNAs from degradation. Oligouridylate binding protein 1b (UBP1b) is a component of SGs. The formation of microscopically visible cytoplasmic foci, referred to as UBP1b SG, was induced by heat treatment in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox). A detailed understanding of the function of UBP1b, however, is still not clear. UBP1b-ox plants displayed increased heat tolerance, relative to control plants, while ubp1b mutants were more sensitive to heat stress than control plants. Microarray analysis identified 117 genes whose expression was heat-inducible and higher in the UBP1b-ox plants. RNA decay analysis was performed using cordycepin, a transcriptional inhibitor. In order to determine if those genes serve as targets of UBP1b, the rate of RNA degradation of a DnaJ heat shock protein and a stress-associated protein (AtSAP3) in UBP1b-ox plants was slower than in control plants; indicating that the mRNAs of these genes were protected within the UBP1b SG granule. Collectively, these data demonstrate that UBP1b plays an integral role in heat stress tolerance in plants. PMID:27379136

  5. Oligouridylate Binding Protein 1b Plays an Integral Role in Plant Heat Stress Tolerance

    PubMed Central

    Nguyen, Cam Chau; Nakaminami, Kentaro; Matsui, Akihiro; Kobayashi, Shuhei; Kurihara, Yukio; Toyooka, Kiminori; Tanaka, Maho; Seki, Motoaki

    2016-01-01

    Stress granules (SGs), which are formed in the plant cytoplasm under stress conditions, are transient dynamic sites (particles) for mRNA storage. SGs are actively involved in protecting mRNAs from degradation. Oligouridylate binding protein 1b (UBP1b) is a component of SGs. The formation of microscopically visible cytoplasmic foci, referred to as UBP1b SG, was induced by heat treatment in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox). A detailed understanding of the function of UBP1b, however, is still not clear. UBP1b-ox plants displayed increased heat tolerance, relative to control plants, while ubp1b mutants were more sensitive to heat stress than control plants. Microarray analysis identified 117 genes whose expression was heat-inducible and higher in the UBP1b-ox plants. RNA decay analysis was performed using cordycepin, a transcriptional inhibitor. In order to determine if those genes serve as targets of UBP1b, the rate of RNA degradation of a DnaJ heat shock protein and a stress-associated protein (AtSAP3) in UBP1b-ox plants was slower than in control plants; indicating that the mRNAs of these genes were protected within the UBP1b SG granule. Collectively, these data demonstrate that UBP1b plays an integral role in heat stress tolerance in plants. PMID:27379136

  6. Development of an integrated heat pipe-thermal storage system for a solar receiver

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Merrigan, M.A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. Sundstrand Corporation is developing a ORC-SDPS candidate for the Space Station that uses toluene as the organic fluid and LiOH as the TES material. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube. 3 refs., 8 figs.

  7. Zero-G Condensing Heat Exchanger with Integral Disinfection

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A. (Inventor)

    2012-01-01

    The system that operates in a zero gravity environment and has an integral ozone generating capability is disclosed. The system contributes to the control of metabolic water vapors in the air, and also provided disinfection of any resulting condensate within the system, as well as disinfection of the air stream that flows throughout the disclosed system.

  8. Combined Heat and Power Integrated with Burners for Packaged Boilers

    SciTech Connect

    2010-10-01

    This factsheet describes a project that will seamlessly integrate a gas-fired simple-cycle 100 kWe microturbine with a new ultra-low NOx gas-fired burner to develop a CHP assembly called the Boiler Burner Energy System Technology.

  9. 'Heat Dome' Heats Up United States

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_160028.html 'Heat Dome' Heats Up United States Much of the country to ... July 22, 2016 (HealthDay News) -- As a massive "heat dome" stretches across the United States this week, ...

  10. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  11. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  12. Heat, Energy, and Order, Part Two of an Integrated Science Sequence, Student Guide, 1970 Edition.

    ERIC Educational Resources Information Center

    Portland Project Committee, OR.

    Part two of the first year in the Portland Project, a three-year high school integrated science curriculum, is contained in this student guide. This volume, one of four parts in the year course, involves activities relating to what is considered the most powerful unifying concept in science: energy. The macroscopic aspects of heat as embodied in…

  13. Installation package for integrated programmable electronic controller and hydronic subsystem - solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A description is given of the Installation, Operation, and Maintenance Manual and information on the power panel and programmable microprocessor, a hydronic solar pump system and a hydronic heating hot water pumping system. These systems are integrated into various configurations for usages in solar energy management, control and monitoring, lighting control, data logging and other solar related applications.

  14. Hydride heat pump with heat regenerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  15. Heating systems for heating subsurface formations

    SciTech Connect

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  16. Heat pipe waste heat recovery boilers

    NASA Astrophysics Data System (ADS)

    Littwin, D. A.; McCurley, J.

    The use of heat pipes as transport devices in waste heat recovery boilers is examined. Test results show that heat pipes can efficiently extract heat from the hot gas stream and transfer it inside the pressure vessel for the steam generation process. The benefits of incorporating heat pipes into the design of waste heat recovery boilers include a highly compact package, a significant reduction in thermally induced stresses, double isolation of the steam from the heat source, an extended surface for improved efficiency in heat extraction, improved circulation and stability in the boiling regime, easy cleaning, individually replaceable tubes, and low flue gas pressure drop.

  17. Finite element methods for integrated aerodynamic heating analysis

    NASA Technical Reports Server (NTRS)

    Morgan, K.; Peraire, J.

    1991-01-01

    This report gives a description of the work which has been undertaken during the second year of a three year research program. The objectives of the program are to produce finite element based procedures for the solution of the large scale practical problems which are of interest to the Aerothermal Loads Branch (ALB) at NASA Langley Research Establishment. The problems of interest range from Euler simulations of full three dimensional vehicle configurations to local analyses of three dimensional viscous laminar flow. Adaptive meshes produced for both steady state and transient problems are to be considered. An important feature of the work is the provision of specialized techniques which can be used at ALB for the development of an integrated fluid/thermal/structural modeling capability.

  18. A superconducting fault current limiter integrated in the cold heat exchanger of a thermoacoustic refrigerator

    NASA Astrophysics Data System (ADS)

    Osorio, M. R.; Bétrancourt, A.; François, M. X.; Veira, J. A.; Vidal, F.

    2008-09-01

    In this work we probe a compact superconducting fault current limiter (SFCL) integrated in the cold heat exchanger of a thermoacoustic refrigerator. A design for an SFCL device with a power of about 2.2 kW is presented and described in detail. A thermoacoustic refrigerator is also proposed which, under fault conditions, must be able to remove around 50 W at 80 K. A simulation routine is run to test the performance of the SFCL, based on YBCO films, in terms of both the limiting capacity and the energy to be dissipated and removed inside the heat exchanger.

  19. An Integrated Approach on Groundwater Flow and Heat/Solute Transport for Sustainable Groundwater Source Heat Pump (GWHP) System Operation

    NASA Astrophysics Data System (ADS)

    Park, D. K.; Bae, G. O.; Joun, W.; Park, B. H.; Park, J.; Park, I.; Lee, K. K.

    2015-12-01

    The GWHP system uses a stable temperature of groundwater for cooling and heating in buildings and thus has been known as one of the most energy-saving and cost-efficient renewable energy techniques. A GWHP facility was installed at an island located at the confluence of North Han and South Han rivers, Korea. Because of well-developed alluvium, the aquifer is suitable for application of this system, extracting and injecting a large amount of groundwater. However, the numerical experiments under various operational conditions showed that it could be vulnerable to thermal interference due to the highly permeable gravel layer, as a preferential path of thermal plume migration, and limited space for well installation. Thus, regional groundwater flow must be an important factor of consideration for the efficient operation under these conditions but was found to be not simple in this site. While the groundwater level in this site totally depends on the river stage control of Paldang dam, the direction and velocity of the regional groundwater flow, observed using the colloidal borescope, have been changed hour by hour with the combined flows of both the rivers. During the pumping and injection tests, the water discharges in Cheongpyeong dam affected their respective results. Moreover, the measured NO3-N concentrations might imply the effect of agricultural activities around the facility on the groundwater quality along the regional flow. It is obvious that the extraction and injection of groundwater during the facility operation will affect the fate of the agricultural contaminants. Particularly, the gravel layer must also be a main path for contaminant migration. The simulations for contaminant transport during the facility operation showed that the operation strategy for only thermal efficiency could be unsafe and unstable in respect of groundwater quality. All these results concluded that the integrated approach on groundwater flow and heat/solute transport is necessary

  20. Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration.

    PubMed

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Kitamura, Yutaka

    2016-05-01

    Reducing energy penalty caused by drying and oil extraction is the most critical challenge in microalgae biodiesel production. In this study, vapor recompression and heat integration are utilized to optimize the performance of wet microalgae drying and oil extraction. In the microalgae drying stage, the hot exhaust stream is recompressed and coupled with wet microalgae to recover the condensate heat. In the oil extraction stage, the exergy rate of recovered solvent is also elevated by compressor and then exchanged heat with feed and bottom stream in the distillation column. Energy and mass balance of the intensified process is investigated and compared with the conventional microalgae drying-extraction process. The simulation results indicated that the total energy consumption of the intensified process can be saved by 52.4% of the conventional route.

  1. Heat-pump-centered integrated community energy systems: Systems development, Consolidated Natural Gas Service Company

    NASA Astrophysics Data System (ADS)

    Baker, N. R.; Donakowski, T. D.; Foster, R. B.; Sala, D. L.; Tison, R. R.; Whaley, T. P.; Yudow, B. D.; Swenson, P. F.

    1980-01-01

    The heat actuated heat pump centered integrated community energy system (HAHP-ICES) is described. The system utilizes a gas fired, engine-driven, heat pump and commercial buildings, and offers several advantages over the more conventional equipment it is intended to supplant. The general nonsite specific application assumes a hypothetical community of one 59,000 cu ft office building and five 24 unit, low rise apartment buildings located in a region with a climate similar to Chicago. Various sensitivity analyses are performed and through which the performance characteristics of the HAHP are explored. The results provided the selection criteria for the site specific application of the HAHP-ICES concept to a real world community. The site-specific community consists of: 42 town houses; five 120 unit, low rise apartment buildings; five 104 unit high rise apartment buildings; one 124,000 cu ft office building; and a single 135,000 cu ft retail building.

  2. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  3. Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata.

    PubMed

    Escandón, Mónica; Cañal, María Jesús; Pascual, Jesús; Pinto, Glória; Correia, Barbara; Amaral, Joana; Meijón, Mónica

    2016-01-01

    Despite great interest, not only from the economic point of view but also in terms of basic science, research on heat stress tolerance in conifers remains scarce. To fill this gap, a time-course experiment using expected temperature increase was performed aiming to identify physiological and biochemical traits that allow the characterization of heat-induced thermotolerance and recovery in Pinus radiata D. Don plants. Several physiological parameters were assessed during heat exposure and after recovery, and multiple phytohormones-abscisic acid (ABA), indole-3-acetic acid (IAA), cytokinins (CKs), gibberellins, jasmonic acid, salicylic acid (SA) and brassinosteroids-were quantified by ultra-performance liquid chromatography-mass spectrometry from unique sample. Furthermore, tissue specific stress-signaling was monitored by IAA and ABA immunolocalization. Multivariate statistical analysis of the data enabled clustering of the shorter- and longer-term effects of heat stress exposure. Two sequential physiological responses were identified: an immediate and a delayed response, essentially determined by specific phytohormones, proline, malondialdehyde and total soluble sugar patterns. Results showed that ABA and SA play a crucial role in the first stage of response to heat stress, probably due to the plant's urgent need to regulate stomatal closure and counteract the increase in oxidative membrane damage demonstrated in shorter-term exposures. However, in longer exposures and recovery, proline, total sugars, IAA and CKs seem to be more relevant. This integrated approach pinpointed some basic mechanisms of P. radiata physiological responses underlying thermotolerance processes and after recovery.

  4. Heat Pipes Cool Power Magnetics

    NASA Technical Reports Server (NTRS)

    Hansen, I.; Chester, M.; Luedke, E.

    1983-01-01

    Configurations originally developed for space use are effective in any orientation. Heat pipes integrated into high-power, high-frequency, highvoltage spaceflight magnetics reduce weight and improve reliability by lowering internal tempertures. Two heat pipes integrated in design of power transformer cool unit in any orientation. Electrostatic shield conducts heat from windings to heat pipe evaporator. Technology allows dramatic reductions in size and weight, while significantly improving reliability. In addition, all attitude design of heat pipes allows operation of heat pipes independent of local gravity forces.

  5. Heat treatment of nuclear reactor pump part in integrated furnace facility

    SciTech Connect

    Not Available

    1983-08-01

    A flexible heat treating system is meeting strict work specifications while accommodating the production flow pattern requirements and floor space needs of Advanced Metal Treating, Inc., Butler, Wis. Modular design and appropriate furnace configurations allow realization of the most efficient heat treat processing and energy use in a relatively small production area. The totally-integrated system (Pacemaker--manufactured by Lindberg, A Unit of General Signal, Chicago) consists of an electric integral-quench furnace with companion draw furnaces, washer unit and a material transfer car. With its one-side, inout configuration, the furnace operates with a minimum of drawing and washing equipment. The integral-quench furnace has a work chamber dimension of 30 by 48 by 30 inches (76.2 x 122 x 76.2 cm). The firm has two of these units, plus three in-out draw furnaces, one washer, one transfer car and two endothermic gas generators.

  6. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  7. Latent Heat in Soil Heat Flux Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  8. Integration and flight demonstration of a high-capacity monogroove heat-pipe radiator

    NASA Astrophysics Data System (ADS)

    Rankin, J. G.

    1984-06-01

    The cancellation of the TDRS-B satellite as the payload for the eighth Space Shuttle mission provided a unique opportunity to demonstrate on-orbit operation of the high-capacity monogroove heat pipe used in the space constructible radiator subsystem. In less than 4 months, a flight experiment was conceived, designed, fabricated, tested, integrated with a payload carrier, installed in the Orbiter Challenger payload bay, and successfully operated in flight. Still color photographs and direct crew visual observation of color changes in a pattern of temperature-sensitive liquid-crystal tapes provided the temperature data necessary to verify successful on-orbit startup and orbital transient response of the heat pipe when subjected to a heat load from its attached electrical heaters. This successful on-orbit demonstration verified analytical design tools and provided confidence in the use of high-capacity heat pipes for future space applications. The flight experiment hardware and the integration and test activities that led to the flight are described, and the actual flight results are compared to analytical performance predictions.

  9. Integration and flight demonstration of a high-capacity monogroove heat-pipe radiator

    NASA Technical Reports Server (NTRS)

    Rankin, J. G.

    1984-01-01

    The cancellation of the TDRS-B satellite as the payload for the eighth Space Shuttle mission provided a unique opportunity to demonstrate on-orbit operation of the high-capacity monogroove heat pipe used in the space constructible radiator subsystem. In less than 4 months, a flight experiment was conceived, designed, fabricated, tested, integrated with a payload carrier, installed in the Orbiter Challenger payload bay, and successfully operated in flight. Still color photographs and direct crew visual observation of color changes in a pattern of temperature-sensitive liquid-crystal tapes provided the temperature data necessary to verify successful on-orbit startup and orbital transient response of the heat pipe when subjected to a heat load from its attached electrical heaters. This successful on-orbit demonstration verified analytical design tools and provided confidence in the use of high-capacity heat pipes for future space applications. The flight experiment hardware and the integration and test activities that led to the flight are described, and the actual flight results are compared to analytical performance predictions.

  10. Molecular signals that shape the integrative responses of the heat-acclimated phenotype.

    PubMed

    Horowitz, Michal; Kodesh, Einat

    2010-12-01

    The introduction of molecular biology to thermoregulation was delayed compared with its application in other research fields pertinent to human health and disease. Using principles from molecular biology, we revisited fundamental problems in integrative and environmental physiology and were able to explore new research horizons. Global genomic responses in tandem with an appropriate physiological experimental model are a good experimental design strategy that can unravel the molecular mechanisms underlying integrative thermoregulatory responses. In this way, dynamic adaptation models, with accentuated or diminished regulatory circuits, triggered by superimposition of novel stressors sharing similar protective pathways, have significant benefits. On the basis of this approach, we will discuss the molecular physiological linkage of heat acclimation alone or combined with exercise training and decipher stress-specific genes in the thermoregulatory circuits in the heart and skeletal muscles. Opposing/competing adaptive features are required for each of the above-mentioned physiological conditions. Aerobic training increases the capacity to store/use ATP. In contrast, the acclimated phenotype attempts to counteract excessive heat production. Nevertheless, both treatments augment muscle force generation. These changes are tissue-specific; in the exercise-trained rat heart, there is up-regulation of Ca2+-induced Ca2+ release mechanism genes, whereas in the skeletal muscle (soleus), the enrichment is found in genes involved in metabolism. The final issue discussed in this review is the possibility that heat shock proteins serve as consensus markers of heat stress. The role of the autonomic nervous system in their induction during heat stress and how they affect integrative body systems are described.

  11. Molecular signals that shape the integrative responses of the heat-acclimated phenotype.

    PubMed

    Horowitz, Michal; Kodesh, Einat

    2010-12-01

    The introduction of molecular biology to thermoregulation was delayed compared with its application in other research fields pertinent to human health and disease. Using principles from molecular biology, we revisited fundamental problems in integrative and environmental physiology and were able to explore new research horizons. Global genomic responses in tandem with an appropriate physiological experimental model are a good experimental design strategy that can unravel the molecular mechanisms underlying integrative thermoregulatory responses. In this way, dynamic adaptation models, with accentuated or diminished regulatory circuits, triggered by superimposition of novel stressors sharing similar protective pathways, have significant benefits. On the basis of this approach, we will discuss the molecular physiological linkage of heat acclimation alone or combined with exercise training and decipher stress-specific genes in the thermoregulatory circuits in the heart and skeletal muscles. Opposing/competing adaptive features are required for each of the above-mentioned physiological conditions. Aerobic training increases the capacity to store/use ATP. In contrast, the acclimated phenotype attempts to counteract excessive heat production. Nevertheless, both treatments augment muscle force generation. These changes are tissue-specific; in the exercise-trained rat heart, there is up-regulation of Ca2+-induced Ca2+ release mechanism genes, whereas in the skeletal muscle (soleus), the enrichment is found in genes involved in metabolism. The final issue discussed in this review is the possibility that heat shock proteins serve as consensus markers of heat stress. The role of the autonomic nervous system in their induction during heat stress and how they affect integrative body systems are described. PMID:20404766

  12. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  13. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  14. Heat recovery method

    SciTech Connect

    Richarts, F.

    1985-04-16

    Heat is recovered by combining a heat transfer system including heat exchangers interconnected in a circulatory system, with a heat pump system. The heat pump system is preferably operated in accordance with the Lorenz-Principle. It is not necessary to divide the heat carrier circuit of the heat pump into two or three separate circulatory circuits. The heat carrier circuit of the heat pump can thus continue to operate unchanged even if the heat pump is switched off. For this purpose the warm heat carrier coming from a discharge fluid cooler, is heated further in a condenser of the heat pump and the cold heat carrier coming from a preheater or cooler group, is cooled further in an evaporator of the heat pump.

  15. Microchannel heat sink assembly

    DOEpatents

    Bonde, Wayne L.; Contolini, Robert J.

    1992-01-01

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watetight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures.

  16. Microchannel heat sink assembly

    DOEpatents

    Bonde, W.L.; Contolini, R.J.

    1992-03-24

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  17. NREL's Building-Integrated Supercomputer Provides Heating and Efficient Computing (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    NREL's Energy Systems Integration Facility (ESIF) is meant to investigate new ways to integrate energy sources so they work together efficiently, and one of the key tools to that investigation, a new supercomputer, is itself a prime example of energy systems integration. NREL teamed with Hewlett-Packard (HP) and Intel to develop the innovative warm-water, liquid-cooled Peregrine supercomputer, which not only operates efficiently but also serves as the primary source of building heat for ESIF offices and laboratories. This innovative high-performance computer (HPC) can perform more than a quadrillion calculations per second as part of the world's most energy-efficient HPC data center.

  18. Multiple Integration of the Heat-Conduction Equation for a Space Bounded From the Inside

    NASA Astrophysics Data System (ADS)

    Kot, V. A.

    2016-03-01

    An N-fold integration of the heat-conduction equation for a space bounded from the inside has been performed using a system of identical equalities with definition of the temperature function by a power polynomial with an exponential factor. It is shown that, in a number of cases, the approximate solutions obtained can be considered as exact because their errors comprise hundredths and thousandths of a percent. The method proposed for N-fold integration represents an alternative to classical integral transformations.

  19. Power generation plant integrating concentrated solar power receiver and pressurized heat exchanger

    DOEpatents

    Sakadjian, Bartev B; Flynn, Thomas J; Hu, Shengteng; Velazquez-Vargas, Luis G; Maryamchik, Mikhail

    2016-10-04

    A power plant includes a solar receiver heating solid particles, a standpipe receiving solid particles from the solar receiver, a pressurized heat exchanger heating working fluid by heat transfer through direct contact with heated solid particles flowing out of the bottom of the standpipe, and a flow path for solid particles from the bottom of the standpipe into the pressurized heat exchanger that is sealed by a pressure P produced at the bottom of the standpipe by a column of heated solid particles of height H. The flow path may include a silo or surge tank comprising a pressure vessel connected to the bottom of the standpipe, and a non-mechanical valve. The power plant may further include a turbine driven by heated working fluid discharged from the pressurized heat exchanger, and a compressor driven by the turbine.

  20. Electrophoretic Behavior in Relation to the Structural Integrity of Codfish Parvalbumin upon Heat Treatment.

    PubMed

    de Jongh, Harmen H J; de los Reyes Jimenez, Marta; Baumert, Joseph L; Taylor, Steve L; Koppelman, Stef J

    2015-05-13

    This work evaluates the impact of heat processing of parvalbumin, a major fish allergen, on the consequences for quantitative analysis of this protein embedded in different matrices during heating (either isolated, in an aqueous extract, or in whole fillets) to assess potential health risks. It is shown that oligomerization of parvalbumin does occur, but only upon heat treatment above 80 °C. This coincides with the ability of the isolated protein to refold up to this temperature in a fully reversible way, as demonstrated by circular dichroism analysis. In autoclaved samples a disintegration of the protein structure is observed. The situation becomes different when parvalbumin is embedded in a matrix with other constituents, as in fish extracts or whole fillets. The electrophoretic analysis of parvalbumin (SDS-PAGE and immunoblotting) is largely determined by complexation with other proteins resulting in insoluble materials caused by the partial unfolding of the parvalbumin at elevated temperatures. This effect is more strongly observed for cod fish extract, compared to whole cod fillets, as in the latter situation the integrity of the tissue hampers this interprotein complexation. Moreover, it is shown by ELISA analysis of heat-treated samples that using blotting procedures where disintegration of complexes may be promoted, restoring some of the IgG-binding propensity, may provide false outcomes. It was concluded that antibody binding to parvalbumin is dominated by the potential to form heat-induced complexes with other proteins. The possibly less-soluble or extractable character of these complexes may provide confusing information regarding potential health risks of fish and fish protein-containing food composites when such heat-treated samples are analyzed by immunochemical assays.

  1. Solar heating system

    SciTech Connect

    Larkin, W.J.

    1984-01-31

    A solar heating system is provided incorporating the flat plate collector and storage tanks substantially in the same unit and avoiding the usual reverse-siphon problems that are inherent in the nature of a passive integral system of this type by a piping system wherein heating and elevation of certain vertical components of connecting piping reverses, or almost reverses, the usual net pressure head which is responsible for creating the reverse siphon.

  2. Heat Treatment With Beam Integrators Device For CO2 High Power Laser

    NASA Astrophysics Data System (ADS)

    Botticelli, A.; Caneve, L.; Conserva, Dannille; Cruciani, Diego; Garifo, Luciano

    1989-03-01

    Reflective metallic optics for high power CO2 laser are very important in industrial application of laser surface modification processes (cladding, heat treatment, etc.). Copper wirrors fabricated by diamond turning method offer a very high reflectance in the IR spectral region. Usually, metallic mirrors are coated with protective films to preserve the surface from any kind of degradation. In the development of these optics, we have produced a system for heat treatment. Such a system uses a beam integrator convex mirror that divides the CO2 beam laser in several beams with a predetermined spot size. By a concave mirror all spots are overlapped on the surface which must be treated. In this way, it is possible to obtain a uniform intensity, distribution of radiation on the irradiated surface. Using different beam integrator convex mirrors, various spot sizes at the same focal distance can be achieved.

  3. Technology Case Studies: Retrofit Integrated Space and Water Heating - Field Assessment

    SciTech Connect

    2014-05-01

    Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  4. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  5. Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-07-01

    This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

  6. Nonazeotropic Heat Pump

    NASA Technical Reports Server (NTRS)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  7. Thulium-170 heat source

    SciTech Connect

    Walter, C.E.; Van Konynenburg, R.; Van Sant, J.H.

    1992-01-21

    This patent describes an isotopic heat source. It comprises; at least one isotopic fuel stack, comprising alternating layers of: thulium oxide; and a low atomic weight diluent for thulium oxide; a heat block defining holes into which the fuel stacks can be placed; at least one heat pipe for heat removal, with the heat pipe being positioned in the heat block in thermal connection with the fuel stack; and a structural container surrounding the heat block.

  8. Solar heating

    SciTech Connect

    Resnick, M.; Startevant, R.C.

    1985-01-22

    A solar heater has an outlet conduit above an inlet conduit intercoupling a solar heating chamber with the inside of a building through a window opening. In one form the solar collecting chamber is outside the building below the window and the outlet conduit and inlet conduit are contiguous and pass through the window opening between the windowsill and the lower sash. In another form of the invention the solar collecting chambers are located beside each side of the window and joined at the top by the outlet conduit that passes through an opening between the upper window sash and the top of the window frame and at the bottom by an inlet conduit that passes through an opening between the lower sash and the windowsill. The outlet conduit carries photoelectric cells that provide electrical energy for driving a squirrel-cage fan in the outlet conduit through a mercury switch seated on a damper actuated by a bimetallic coil that closes the damper when the temperature in the outlet conduit goes below a predetermined temperature.

  9. Heating stove

    SciTech Connect

    Darnell, E.

    1980-10-28

    A heating stove has a fire box composed of first and second pluralities of parallel aligned connected vertically oriented curved open-ended conduits. The lower extremities of the conduits of said first and second pluralities being aligned for contacting a common planar surface to support the stove, with the fire box further being formed by generally planar front and back plates, of substantially the same size and shape, with the front plate having an inlet port therethrough and the back plate having an exhaust port therein. The conduit central portions are largely within the stove fire box. A baffle within the fire box promotes three-pass flow of hot air across the conduit surfaces within the fire box. The first and second pluralities of curved conduits are opposed and in interdigitated engagement. Curved strips separate the curved conduits and thus facilitate stove construction with the conduits in interdigitated engagement. A closing mechanism for the stove door operates with caming action to assure that the door, when closed, is tightly fastened so that the hot coals cannot escape. In another embodiment, the fire box is cylindrical , formed by two curved side plates and two generally planar end plates, and the curved conduits pass through the fire box.

  10. The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Schliesing, J.S.

    1990-09-01

    Commercial buildings often have extensive periods where one space needs cooling and another heating. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If a building's heating and cooling system could be integrated with the building's structural mass such that the mass can be used to collect, store, and deliver energy, significant energy might be saved. Computer models were developed to simulate this interaction for an existing office building in Seattle, Washington that has a decentralized water-source heat pump system. Metered data available for the building was used to calibrate a base'' building model (i.e., nonintegrated) prior to simulation of the integrated system. In the simulated integration strategy a secondary water loop was manifolded to the main HVAC hydronic loop. tubing in this loop was embedded in the building's concrete floor slabs. Water was routed to this loop by a controller to charge or discharge thermal energy to and from the slabs. The slabs were also in thermal communication with the conditioned spaces. Parametric studies of the building model, using weather data for five other cities in addition to Seattle, predicted that energy can be saved on cooling dominated days. On hot, dry days and during the night the cooling tower can beneficially be used as a free cooling'' source for thermally charging'' the floor slabs using cooled water. Through the development of an adaptive/predictive control strategy, annual HVAC energy savings as large as 30% appear to be possible in certain climates. 8 refs., 13 figs.

  11. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  12. Design of Isotope Heat Source for Automatic Modular Dispersal During Reentry, and Its Integration with Heat Exchangers of 6-kWe Dynamic Isotope Power System

    SciTech Connect

    Schock, Alfred

    1989-01-01

    In late 1986 the Air Force Space Division (AF / SD) had expressed an interest in using a Dynamic Isotope Power System (DIPS) of approximately 6-kWe to power the Boost Surveillance and Tacking System (BSTS) satellites. In support of that objective, the U.S. Department of Energy (DOE) requested Fairchild Space Company to perform a conceptual design study of the DIPS heat source and of its integration with the dynamic power conversion system, with particular emphasis on system safety. This paper describes the results of that study. The study resulted in a design for a single heat source of ~30-kWt, employing the standard 250-W General Purpose Heat Source (GPHS) modules which DOE had previously developed and safety-tested for Radioisotope Thermoelectric Generators (RTS's)

  13. Characteristics of energy savings in an ideal heat-integrated distillation column (HIDiC)

    SciTech Connect

    Nakaiwa, Masaru; Huang, Kejin; Owa, Masaru; Akiya, Takaji; Nakane, Takashi; Sato, Masahito; Takamatsu, Takeichiro

    1997-12-31

    Distillation columns are major energy consumers in the chemical and petrochemical industries. In order to reduce energy consumption, considerable studies have been carried out and many distillation columns have been proposed. A Heat-Integrated Distillation Column (HIDiC) is constructed in such a manner that its rectifying and stripping sections are separated, while connected through a compressor and a throttling valve. Separation is benefited by heat integration between the two sections. To provide the driving forces for heat transfers from the rectifying to the stripping sections, the former must be operated at higher pressure than the latter. The HIDiC is expected to be more energy efficient than conventional columns, while at the expenses of some energy to raise up the pressure of the rectifying section. In this paper, it is shown by thermodynamical consideration that the HIDiC has high potential of exergy loss reduction compared with conventional columns. The effects of pressure difference on energy saving are analyzed, and possibility of energy saving is found in some case studies.

  14. Study of heat sources interacting in integrated circuits by laser mirage effect

    NASA Astrophysics Data System (ADS)

    Perpiñà, X.; Jordà, X.; Vellvehi, M.; Altet, J.

    2014-08-01

    This work exploits the mirage effect to analyze multiple heat sources thermally interacting in an integrated circuit (IC) by means of a probe IR laser beam, which strikes on the die lateral walls and passes through the die substrate. Under such conditions, the criteria for locating such hot spots, as well as their relative power dissipation, are discussed on the basis of a theoretical model inferred in this work. Finally, the technique feasibility is shown in a real application scenario, obtaining 5-μm spatial lateral resolution and an error in power dissipation measurements below 5%. This method may become a practical alternative to usual off-chip techniques for inspecting hot spots in ICs and to experimentally characterize heat flow in the semiconductor substrate.

  15. a Conceptual Model of Integrating Sensor Network and Radiative Heat Transfer Equation for Ethylene Furnace

    NASA Astrophysics Data System (ADS)

    Abas, Z. Abal; Salleh, S.; Basari, A. S. Hassan; Ibrahim, Nuzulha Khilwani

    2010-11-01

    A conceptual model of integrating the sensor network and the radiative heat transfer equation is developed and presented in this paper. The idea is to present possible deployment of sensor networks in the Ethylene furnace so that valuable input in the form of boundary value can be generated in order to produce intensity distribution and heat flux distribution. Once the location of sensor deployment has been recommended, the mesh at the physical space between the furnace wall and the reactor tube is constructed. The paper concentrates only at 2D model with only 1 U-bend reactor tube in the ethylene furnace as an initial phase of constructing a complete simulation in real furnace design.

  16. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently. PMID:26172803

  17. Study of heat sources interacting in integrated circuits by laser mirage effect

    SciTech Connect

    Perpiñà, X.; Jordà, X.; Vellvehi, M.; Altet, J.

    2014-08-25

    This work exploits the mirage effect to analyze multiple heat sources thermally interacting in an integrated circuit (IC) by means of a probe IR laser beam, which strikes on the die lateral walls and passes through the die substrate. Under such conditions, the criteria for locating such hot spots, as well as their relative power dissipation, are discussed on the basis of a theoretical model inferred in this work. Finally, the technique feasibility is shown in a real application scenario, obtaining 5-μm spatial lateral resolution and an error in power dissipation measurements below 5%. This method may become a practical alternative to usual off-chip techniques for inspecting hot spots in ICs and to experimentally characterize heat flow in the semiconductor substrate.

  18. Fabrication and development of several heat pipe honeycomb sandwich panel concepts. [airframe integrated scramjet engine

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1982-01-01

    The feasibility of fabricating and processing liquid metal heat pipes in a low mass honeycomb sandwich panel configuration for application on the NASA Langley airframe-integrated Scramjet engine was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts was evaluated within constraints dictated by existing manufacturing technology and equipment. The chosen design consists of an all-stainless steel structure, sintered screen facesheets, and two types of core-ribbon; a diffusion bonded wire mesh and a foil-screen composite. Cleaning, fluid charging, processing, and process port sealing techniques were established. The liquid metals potassium, sodium and cesium were used as working fluids. Eleven honeycomb panels 15.24 cm X 15.24 cm X 2.94 cm were delivered to NASA Langley for extensive performance testing and evaluation; nine panels were processed as heat pipes, and two panels were left unprocessed.

  19. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1997-04-22

    A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.

  20. Liquid over-feeding refrigeration system and method with integrated accumulator-expander-heat exchanger

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1997-01-01

    A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.

  1. Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment.

    PubMed

    Fujioka, Shinsuke; Johzaki, Tomoyuki; Arikawa, Yasunobu; Zhang, Zhe; Morace, Alessio; Ikenouchi, Takahito; Ozaki, Tetsuo; Nagai, Takahiro; Abe, Yuki; Kojima, Sadaoki; Sakata, Shohei; Inoue, Hiroaki; Utsugi, Masaru; Hattori, Shoji; Hosoda, Tatsuya; Lee, Seung Ho; Shigemori, Keisuke; Hironaka, Youichiro; Sunahara, Atsushi; Sakagami, Hitoshi; Mima, Kunioki; Fujimoto, Yasushi; Yamanoi, Kohei; Norimatsu, Takayoshi; Tokita, Shigeki; Nakata, Yoshiki; Kawanaka, Junji; Jitsuno, Takahisa; Miyanaga, Noriaki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Nagatomo, Hideo; Azechi, Hiroshi

    2015-06-01

    A series of experiments were carried out to evaluate the energy-coupling efficiency from heating laser to a fuel core in the fast-ignition scheme of laser-driven inertial confinement fusion. Although the efficiency is determined by a wide variety of complex physics, from intense laser plasma interactions to the properties of high-energy density plasmas and the transport of relativistic electron beams (REB), here we simplify the physics by breaking down the efficiency into three measurable parameters: (i) energy conversion ratio from laser to REB, (ii) probability of collision between the REB and the fusion fuel core, and (iii) fraction of energy deposited in the fuel core from the REB. These three parameters were measured with the newly developed experimental platform designed for mimicking the plasma conditions of a realistic integrated fast-ignition experiment. The experimental results indicate that the high-energy tail of REB must be suppressed to heat the fuel core efficiently.

  2. Energy Corner: Heat Reclamation Rescues Wasted Heat.

    ERIC Educational Resources Information Center

    Daugherty, Thomas

    1982-01-01

    Heat reclamation systems added to pre-existing central heating systems provide maximum savings at minimum cost. The benefits of a particular appliance marketed under the brand name "Energizer" are discussed. (Author/MLF)

  3. Integrated bioenergy complex for the production of power, heat and bio-ethanol

    SciTech Connect

    Taviani, M.; Chiaramonti, D.; Tondi, G.; Grassi, G.

    1998-07-01

    In this paper an integrated bioenergy complex for the production of power, heat and bio-ethanol is presented. Ethanol, in fact, has been recognized as a high-quality transportation fuel. The reduction of petroleum consumption, especially for transport, is a strategic goal especially for those countries that already have or will experience an intensive industrial development in the next future. For these motivations, the production of bio-ethanol from Sweet Sorghum (which is now one of the most promising crop for this application in term of productivity, inputs demand, and flexibility) is of great interest in most of countries. The proposed integrated complex produces power, heat and bio-ethanol: the produced power and heat are partly used for bio-ethanol processing and biomass pre-treatment, partly to be sold to the market. This system has important innovations allowing a decentralized energy and ethanol production and creating new local jobs. The small power plant is based upon a steam cycle with an advanced low emission combustor, capable of burning different biomass resources with a modest decrease in the efficiency value. The Bioenergy Complex, suitable to satisfy the needs of a 3,000 inhabitants village, is composed by the following sub-systems: (1) Sweet Sorghum plantation (250 ha); the main products are: dry bagasse (approximately 3,900 Ton/year), grains (1,300 Ton/y) and sugar (1,850 Ton/y); (2) Cane crushing--sugar juice extraction system; (3) Sugar juice fermentation and distillation ethanol production (approx. 835 Ton/y); (4) Biomass pre-treatment components (grinding, drying, briquetting, storage, etc.); and (5) Cogeneration unit--the expansion unit is constituted by a last generation reciprocating steam engine, coupled with a 500 kWe alternator; the heat of the expanded flow is removed in the condenser, with an available thermal power of approximately 2,000 kWt.

  4. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs.

    PubMed

    Pearce, S C; Sanz-Fernandez, M V; Hollis, J H; Baumgard, L H; Gabler, N K

    2014-12-01

    Acute heat stress (HS) and heat stroke can be detrimental to the health, well-being, and performance of mammals such as swine. Therefore, our objective was to chronologically characterize how a growing pig perceives and initially copes with a severe heat load. Crossbred gilts (n=32; 63.8±2.9 kg) were subjected to HS conditions (37°C and 40% humidity) with ad libitum intake for 0, 2, 4, or 6 h (n=8/time point). Rectal temperature (Tr), respiration rates (RR), and feed intake were determined every 2 h. Pigs were euthanized at each time point and fresh ileum and colon samples were mounted into modified Ussing chambers to assess ex vivo intestinal integrity and function. Transepithelial electrical resistance (TER) and fluorescein isothiocyanate-labeled dextran (FD4) permeability were assessed. As expected, Tr increased linearly over time (P<0.001) with the highest temperature observed at 6 h of HS. Compared to the 0-h thermal-neutral (TN) pigs, RR increased (230%; P<0.001) in the first 2 h and remained elevated over the 6 h of HS (P<0.05). Feed intake was dramatically reduced due to HS and this corresponded with significant changes in plasma glucose, ghrelin, and glucose-dependent insulinotropic peptide (P<0.050). At as early as 2 h of HS, ileum TER linearly decreased (P<0.01), while FD4 linearly increased with time (P<0.05). Colon TER and FD4 changed due to HS in quadratic responses over time (P=0.050) similar to the ileum but were less pronounced. In response to HS, ileum and colon heat shock protein (HSP) 70 mRNA and protein abundance increased linearly over time (P<0.050). Altogether, these data indicated that a short duration of HS (2-6 h) compromised feed intake and intestinal integrity in growing pigs.

  5. Heat pipe radiator. [for spacecraft waste heat rejection

    NASA Technical Reports Server (NTRS)

    Swerdling, B.; Alario, J.

    1973-01-01

    A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.

  6. Structural, Thermal, and Safety Analysis of Isotope Heat Source and Integrated Heat Exchangers for 6-kWe Dynamic Isotope Power System (DIPS)

    SciTech Connect

    Schock, Alfred

    1989-01-01

    The design of the 30-kWt isotope heat source integrated with a Rankine boiler and a Brayton gas heater, which was described in the preceding paper in these proceedings, was subjected to structural, thermal, and safety analyses. The present paper describes and discusses the results of these analyses. Detailed structural analyses of the heat source integrated with the boiler and gas heater showed positive safety margins at all locations during the launch. Detailed thermal analyses showed acceptable temperatures at all locations, during assembly, transfer and orbital operations. Reentry thermal analyses showed that the clads have acceptable peak and impact temperatures. Loss-of-cooling analyses indicated the feasibility of a passive safety concept for preventing over temperatures. Static structural analysis showed positive safety margins at all locations, and dynamic analysis showed that there were no low-frequency resources. Continuum-mechanics code analyses of the effects of the impact of Solid Rocket Booster (SRB) fragments on the heat source and of the very unlikely impact of the full heat source on concrete indicated relatively modest fuel clad deformations and little or no fuel release.

  7. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  8. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  9. Babies and heat rashes

    MedlinePlus

    Heat rashes and babies; Prickly heat rash; Red miliaria ... To avoid heat rash , keep your baby cool and dry during warm weather. Some helpful suggestions: During the hot season, dress your baby in lightweight, soft, cotton clothing. Cotton ...

  10. Heat Wave Safety Checklist

    MedlinePlus

    ... heat has caused more deaths than all other weather events, including floods. A heat wave is a ... care for heat- related emergencies … ❏ Listen to local weather forecasts and stay aware of upcoming temperature changes. ❏ ...

  11. Heat Exhaustion, First Aid

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Heat Exhaustion, First Aid A A A Heat exhaustion signs and symptoms ... specific to the other stages of heat illness. First Aid Guide Use a combination of the following measures ...

  12. Heat Cramps, First Aid

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Heat Cramps, First Aid A A A Heat cramp signs and symptoms ... if later stages of heat illness are suspected. First Aid Guide Use a combination of the following measures, ...

  13. Heat Stress Reduces Intestinal Barrier Integrity and Favors Intestinal Glucose Transport in Growing Pigs

    PubMed Central

    Pearce, Sarah C.; Mani, Venkatesh; Boddicker, Rebecca L.; Johnson, Jay S.; Weber, Thomas E.; Ross, Jason W.; Rhoads, Robert P.; Baumgard, Lance H.; Gabler, Nicholas K.

    2013-01-01

    Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35–50% humidity; n = 8) or HS conditions (35°C; 24–43% humidity; n = 8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (P<0.05). As expected, HS decreased feed intake by 53% (P<0.05) and body weight (P<0.05) compared to TN pigs. Ileum heat shock protein 70 expression increased (P<0.05), while intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; P<0.05). Furthermore, HS increased serum endotoxin concentrations (P = 0.05). Intestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (P<0.05) and casein kinase II-α (P = 0.06). Protein expression of tight junction (TJ) proteins in the ileum revealed claudin 3 and occludin expression to be increased overall due to HS (P<0.05), while there were no differences in claudin 1 expression. Intestinal glucose transport and blood glucose were elevated due to HS (P<0.05). This was supported by increased ileum Na+/K+ ATPase activity in HS pigs. SGLT-1 protein expression was unaltered; however, HS increased ileal GLUT-2 protein expression (P = 0.06). Altogether, these data indicate that HS reduce intestinal integrity and increase intestinal stress and glucose transport. PMID:23936392

  14. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs.

    PubMed

    Pearce, Sarah C; Mani, Venkatesh; Boddicker, Rebecca L; Johnson, Jay S; Weber, Thomas E; Ross, Jason W; Rhoads, Robert P; Baumgard, Lance H; Gabler, Nicholas K

    2013-01-01

    Excessive heat exposure reduces intestinal integrity and post-absorptive energetics that can inhibit wellbeing and be fatal. Therefore, our objectives were to examine how acute heat stress (HS) alters intestinal integrity and metabolism in growing pigs. Animals were exposed to either thermal neutral (TN, 21°C; 35-50% humidity; n=8) or HS conditions (35°C; 24-43% humidity; n=8) for 24 h. Compared to TN, rectal temperatures in HS pigs increased by 1.6°C and respiration rates by 2-fold (P<0.05). As expected, HS decreased feed intake by 53% (P<0.05) and body weight (P<0.05) compared to TN pigs. Ileum heat shock protein 70 expression increased (P<0.05), while intestinal integrity was compromised in the HS pigs (ileum and colon TER decreased; P<0.05). Furthermore, HS increased serum endotoxin concentrations (P=0.05). Intestinal permeability was accompanied by an increase in protein expression of myosin light chain kinase (P<0.05) and casein kinase II-α (P=0.06). Protein expression of tight junction (TJ) proteins in the ileum revealed claudin 3 and occludin expression to be increased overall due to HS (P<0.05), while there were no differences in claudin 1 expression. Intestinal glucose transport and blood glucose were elevated due to HS (P<0.05). This was supported by increased ileum Na(+)/K(+) ATPase activity in HS pigs. SGLT-1 protein expression was unaltered; however, HS increased ileal GLUT-2 protein expression (P=0.06). Altogether, these data indicate that HS reduce intestinal integrity and increase intestinal stress and glucose transport.

  15. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1999-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  16. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1998-06-23

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.

  17. Heat pipe with embedded wick structure

    SciTech Connect

    Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.

    1999-09-07

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  18. Heat pipe with embedded wick structure

    DOEpatents

    Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald

    1998-01-01

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  19. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  20. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  1. Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report

    SciTech Connect

    Murphy, Richard W; Rice, C Keith; Baxter, Van D; Craddick, William G

    2007-09-01

    The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating

  2. Disposal of High-Temperature Slags: A Review of Integration of Heat Recovery and Material Recycling

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Zhang, Zuotai

    2016-09-01

    Nowadays with the continuous urbanization in China, the carbon emission and resource shortage have been serious issues, for which the disposal of blast furnace slags (BFS) and steel slags (SS) discharged from the metallurgical industry make up a significant strategy. The output of crude steel reached 823 Mt in China in 2014 and the thermal heat in these slags was equivalent to ~18 Mt of standard coal. Herein, the recent advances were systemically reviewed and analyzed, mainly from two respects, i.e., integration of heat recovery and material recycling and crystallization control of the slags. It was first found that for the heat recovery from BFS, the most intensively investigated physical method and chemical method were centrifugal granulation and gasification reaction, respectively. Furthermore, a two-step approach could contribute to a promising strategy for the treatment of slags, i.e., the liquid slags were first granulated into small particles, and then other further treatment was performed such as gasification reaction. With regard to SS, the effective disposal could be achieved using a selective crystallization and phase separation (SCPS) method, and moreover, the solid solution of 2CaO·SiO2 and the target phases could act as a promising enriched phase to extract the valuable elements.

  3. Experimental study on high-power LEDs integrated with micro heat pipe

    NASA Astrophysics Data System (ADS)

    LI, Cong-ming; Zhou, Chuan-peng; Luo, Yi; Hamidnia, Mohammad; Wang, Xiao-dong; You, Bo

    2016-01-01

    Micro heat pipe (MHP) is applied to implement the efficient heat transfer of light emitting diode (LED) device. The fabrication of MHP is based on micro-electro-mechanical-system (MEMS) technique, 15 micro grooves were etched on one side of silicon (Si) substrate, which was then packaged with aluminum heat sink to form an MHP. On the other side of Si substrate, three LED chips were fixed by die bonding. Then experiments were performed to study the thermal performance of this LED device. The results show that the LED device with higher filling ratio is better when the input power is 1.0 W; with the increase of input power, the optimum filling ratio changes from 30% to 48%, and the time reaching stable state is reduced; when the input power is equal to 2.5 W, only the LED device with filling ratio of 48% can work normally. So integrating MHP into high-power LED device can implement the effective control of junction temperature.

  4. Disposal of High-Temperature Slags: A Review of Integration of Heat Recovery and Material Recycling

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Zhang, Zuotai

    2016-05-01

    Nowadays with the continuous urbanization in China, the carbon emission and resource shortage have been serious issues, for which the disposal of blast furnace slags (BFS) and steel slags (SS) discharged from the metallurgical industry make up a significant strategy. The output of crude steel reached 823 Mt in China in 2014 and the thermal heat in these slags was equivalent to ~18 Mt of standard coal. Herein, the recent advances were systemically reviewed and analyzed, mainly from two respects, i.e., integration of heat recovery and material recycling and crystallization control of the slags. It was first found that for the heat recovery from BFS, the most intensively investigated physical method and chemical method were centrifugal granulation and gasification reaction, respectively. Furthermore, a two-step approach could contribute to a promising strategy for the treatment of slags, i.e., the liquid slags were first granulated into small particles, and then other further treatment was performed such as gasification reaction. With regard to SS, the effective disposal could be achieved using a selective crystallization and phase separation (SCPS) method, and moreover, the solid solution of 2CaO·SiO2 and the target phases could act as a promising enriched phase to extract the valuable elements.

  5. The heat rate index indicator

    SciTech Connect

    Lasasso, M.; Runyan, B.; Napoli, J.

    1995-06-01

    This paper describes a method of tracking unit performance through the use of a reference number called the Heat Rate Index Indicator. The ABB Power Plant Controls OTIS performance monitor is used to determine when steady load conditions exist and then to collect controllable and equipment loss data which significantly impact thermal efficiency. By comparing these loss parameters to those found during the previous heat balance, it is possible to develop a new adjusted heat rate curve. These impacts on heat rate are used to changes the shape of the tested heat rate curve by the appropriate percentages over a specified load range. Mathcad is used to determine the Heat Rate Index by integrating for the areas beneath the adjusted heat rate curve and a heat rate curve that represents the unit`s ideal heat rate curve is the Heat Rate Index. An index of 1.0 indicates that the unit is operating at an ideal efficiency, while an index of less than 1.0 indicates that the unit is operating at less than ideal conditions. A one per cent change in the Heat Rate Index is equivalent to a one percent change in heat rate. The new shape of the adjusted heat rate curve and the individual curves generated from the controllable and equipment loss parameters are useful for determining performance problems in specific load ranges.

  6. Heating apparatus comprising a heat recovery apparatus

    SciTech Connect

    Pibernat, T.

    1983-08-09

    A heating apparatus includes at least one combustion air inlet, a reverse-draft hearth having a grill positioned within a hearth plate, an ash receptacle for recovering combustion wastes, a fume outlet combustion chamber positoned under the reverse-draft hearth, and a heat recovery device. A heat transport and exchange fluid is adapted to be fed through the heat recovery device, and it circulates through the device in order to recover heat generated in the hearth. The heat recovery device also includes at least one casing positioned beneath the hearth, over the ash receptacle, and which is spaced from the walls of the heating apparatus. The rear portion of the casing is connected to the hearth plate so as to block combustion gases so that the combustion gases will pass over and thereafter under the casing prior to leaving the apparatus via the fume outlet.

  7. Integrated modelling of transitions in mechanical conditions during casting and heat treatment

    NASA Astrophysics Data System (ADS)

    Thorborg, J.; Klinkhammer, J.; Heitzer, M.

    2015-06-01

    The mechanical material behaviour of a cast component changes significantly during casting and heat treatment. The big difference in temperature levels during the different process steps causes different deformation mechanisms to be active. The thermal gradients promote transient stresses that can lead to inelastic deformations, residual stresses and in some cases to defects in the final part. It is a big challenge to make a reasonable transition in the mechanical model, and hence material data, when modelling several different coupled process steps. It is important to use an integrated approach where the transition is included in the full load history of the part. When industrial examples are considered, the sequence of process steps typically also changes the thermal and mechanical boundary conditions significantly e.g. going from being mechanically constrained during casting to being supported point-wise during the heat treatment process. This change includes mapping of results and obtaining equilibrium in a new global system, where the further reaction forces from the supports must be handled with contact conditions to e.g. predict deformations due to gravity during solution heat treatment. The work presented in this paper is focused on modelling the mechanical fields, taking into account the changes in the mechanical material model at different temperature levels, and the transition in mechanical behaviour when the microstructure is changing during the different steps of the heat treatment process. The approach used is based on a unified model where creep effects are considered at high temperature and rate effects are included in general during cooling. Proposals are made to include cooling rate sensitivity, annealing and precipitation hardening via modification of mechanical properties in the different process steps.

  8. New integrated gas turbine CHP (combined heat and power) and incinerator plant.

    PubMed

    Briggs, R A; Yates, B

    1990-12-01

    Despite the complex nature of the project, the clients brief of a 14 month design and installation period was achieved within the approved budget of 2.5 million pounds. Early performance figures indicate that the scheme is on target to achieve the original payback of under four years. Queen Elizabeth Hospital: installation of integrated combined heat and power plant. Client: Central Birmingham Health Authority. Consulting Engineers/Project Managers: Yates, Edge and Partners. Architects: Temple Cox and Nichols. Structural Engineers: Peel and Fowler. Quantity Surveyor: West Midlands Regional Health Authority.

  9. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect

    2010-09-01

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  10. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  11. An integrated heat pipe-thermal storage design for a solar receiver

    NASA Astrophysics Data System (ADS)

    Keddy, E.; Sena, J. T.; Woloshun, K.; Merrigan, M. A.; Heidenreich, G.

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power System (ORC-SDPS) receiver for the Space Station application. The operating temperature of the heat pipe elements is in the 770 to 810 K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability.

  12. Process Integration Study of the Decatur HFCS Plant for American Fructose Company, Decatur, AL [Advanced Industrial Heat Pump Applications and Evaluations

    SciTech Connect

    Eastwood, A.

    1989-11-10

    This work has carried out in two phases: Phase 1, identification of opportunities for heat pumps in industrial applications and Phase 2; evaluation of heat pumps in industrial applications. In Phase 1, pinch analysis was applied to several industrial sites to identify the best opportunities for heat pumping and other forms of heat integration. In Phase 2, more detailed analyses were undertaken, including the evaluation of a heat pump installed as a recommendation of Phase 1.

  13. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA. PMID:23733692

  14. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress.

    PubMed

    Sawka, Michael N; Leon, Lisa R; Montain, Scott J; Sonna, Larry A

    2011-10-01

    This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  15. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    PubMed

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-01

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments.

  16. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  17. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  18. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  19. A heat flow calorimeter

    NASA Technical Reports Server (NTRS)

    Johnston, W. V.

    1973-01-01

    Reaction mechanism for nickel-cadmium cell is not known well enough to allow calculation of heat effects. Calorimeter can measure heat absorbed or evolved in cell, by determining amount of external heat that must be supplied to calorimeter to maintain constant flow isothermal heat sink.

  20. Heat-Related Illnesses

    MedlinePlus

    ... that involves extreme heat. Young children and the elderly are most at risk, but anyone can be affected. Here you will find information about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the legs and stomach area. To ...

  1. Nature's Heat Exchangers.

    ERIC Educational Resources Information Center

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  2. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  3. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  4. Advanced variable speed air source integrated heat pump (AS-IHP) development - CRADA final report

    SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.; Ally, Moonis Raza; Shen, Bo

    2015-09-30

    Between August 2011 and September 2015, Oak Ridge National Laboratory (ORNL) and Nordyne, LLC (now Nortek Global HVAC LLC, NGHVAC) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. Two generations of laboratory prototype systems were designed, fabricated, and lab-tested during 2011-2013. Performance maps for the system were developed using the latest research version of the DOE/ORNL Heat Pump Design Model, or HPDM, (Rice 1991; Rice and Jackson 2005; Shen et al 2012) as calibrated against the lab test data. These maps were the input to the TRNSYS (SOLAR Energy Laboratory, et al, 2010) system to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of 13 SEER air-source heat pump (ASHP) and resistance water heater with Energy Factor (EF) of 0.9). Predicted total annual energy savings, while providing space conditioning and water heating for a tight, well insulated 2600 ft2 (242 m2) house at 5 U.S. locations, ranged from 46 to 61%, averaging 52%, relative to the baseline system (lowest savings at the cold-climate Chicago location). Predicted energy use for water heating was reduced 62 to 76% relative to resistance WH. Based on these lab prototype test and analyses results a field test prototype was designed and fabricated by NGHVAC. The unit was installed in a 2400 ft2 (223 m2) research house in Knoxville, TN and field tested from May 2014 to April 2015. Based on the demonstrated field performance of the AS-IHP prototype and estimated performance of a baseline system operating under the same loads and weather conditions, it was estimated that the prototype would achieve ~40% energy savings relative to the minimum efficiency suite. The estimated WH savings were >60% and SC mode savings were >50%. But estimated SH savings were only about 20%. It is believed that had the test

  5. Measurements of the heat release rate integral in turbulent premixed stagnation flames with particle image velocimetry

    SciTech Connect

    Chen, Yung-Cheng; Kim, Munki; Han, Jeongjae; Yun, Sangwook; Yoon, Youngbin

    2008-08-15

    A new definition of turbulent consumption speed is proposed in this work that is based on the heat release rate integral, rather than the mass burning rate integral. Its detailed derivation and the assumptions involved are discussed in a general context that applies to all properly defined reaction progress variables. The major advantage of the proposed definition is that it does not require the thin-flame assumption, in contrast to previous definitions. Experimental determination of the local turbulent displacement speed, S{sub D}, and the local turbulent consumption speed, S{sub C}, is also demonstrated with the particle image velocimetry technique in three turbulent premixed stagnation flames. The turbulence intensity of these flames is of the same order of the laminar burning velocity. Based on the current data, a model equation for the local mean heat release rate is proposed. The relationship between S{sub D} and S{sub C} is discussed along with a possible modeling approach for the turbulent displacement speed. (author)

  6. Fuel processing in integrated micro-structured heat-exchanger reactors

    NASA Astrophysics Data System (ADS)

    Kolb, G.; Schürer, J.; Tiemann, D.; Wichert, M.; Zapf, R.; Hessel, V.; Löwe, H.

    Micro-structured fuel processors are under development at IMM for different fuels such as methanol, ethanol, propane/butane (LPG), gasoline and diesel. The target application are mobile, portable and small scale stationary auxiliary power units (APU) based upon fuel cell technology. The key feature of the systems is an integrated plate heat-exchanger technology which allows for the thermal integration of several functions in a single device. Steam reforming may be coupled with catalytic combustion in separate flow paths of a heat-exchanger. Reactors and complete fuel processors are tested up to the size range of 5 kW power output of a corresponding fuel cell. On top of reactor and system prototyping and testing, catalyst coatings are under development at IMM for numerous reactions such as steam reforming of LPG, ethanol and methanol, catalytic combustion of LPG and methanol, and for CO clean-up reactions, namely water-gas shift, methanation and the preferential oxidation of carbon monoxide. These catalysts are investigated in specially developed testing reactors. In selected cases 1000 h stability testing is performed on catalyst coatings at weight hourly space velocities, which are sufficiently high to meet the demands of future fuel processing reactors.

  7. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  8. Thulium-170 heat source

    DOEpatents

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  9. Heat Treating Apparatus

    DOEpatents

    De Saro, Robert; Bateman, Willis

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  10. Thulium-170 heat source

    SciTech Connect

    Walter, C.E.; Van Konynenburg, R.; VanSant, J.H.

    1990-09-06

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  11. Thermostructural applications of heat pipes

    NASA Technical Reports Server (NTRS)

    Peeples, M. E.; Reeder, J. C.; Sontag, K. E.

    1979-01-01

    The feasibility of integrating heat pipes in high temperature structure to reduce local hot spot temperature was evaluated for a variety of hypersonic aerospace vehicles. From an initial list of twenty-two potential applications, the single stage to orbit wing leading edge showed the greatest promise and was selected for preliminary design of an integrated heat pipe thermostructural system. The design consisted of a Hastelloy X assembly with sodium heat pipe passages aligned normal to the wing leading edge. A d-shaped heat pipe cross section was determined to be optimum from the standpoint of structural weight.

  12. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  13. [Heat waves: health impacts].

    PubMed

    Marto, Natália

    2005-01-01

    During the summer of 2003, record high temperatures were reported across Europe, causing thousands of casualties. Heat waves are sporadic recurrent events, characterised by intense and prolonged heat, associated with excess mortality and morbidity. The most frequent cause of death directly attributable to heat is heat stroke but heat waves are known to cause increases in all-cause mortality, specially circulatory and respiratory mortality. Epidemiological studies demonstrate excess casualties cluster in specific risk groups. The elderly, those with chronic medical conditions and the socially isolated are particularly vulnerable. Air conditioning is the strongest protective factor against heat-related disorders. Heat waves cause disease indirectly, by aggravating chronic disorders, and directly, by causing heat-related illnesses (HRI). Classic HRI include skin eruptions, heat cramps, heat syncope, heat exhaustion and heat stroke. Heat stroke is a medical emergency characterised by hyperthermia and central nervous system dysfunction. Treatment includes immediate cooling and support of organ-system function. Despite aggressive treatment, heat stroke is often fatal and permanent neurological damage is frequent in those who survive. Heat related illness and death are preventable through behavioural adaptations, such as use of air conditioning and increased fluid intake. Other adaptation measures include heat emergency warning systems and intervention plans and environmental heat stress reduction. Heat related mortality is expected to rise as a consequence of the increasing proportion of elderly persons, the growing urban population, and the anticipated increase in number and intensity of heat waves associated with global warming. Improvements in surveillance and response capability may limit the adverse health conditions of future heat waves. It is crucial that health professionals are prepared to recognise, prevent and treat HRI and learn to cooperate with local health

  14. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  15. Heat cascading regenerative sorption heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  16. From Modules to a Generator: An Integrated Heat Exchanger Concept for Car Applications of a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Bosch, Henry

    2016-03-01

    A heat exchanger concept for a thermoelectric generator with integrated planar modules for passenger car applications is introduced. The module housings, made of deep drawn stainless steel sheet metal, are brazed onto the exhaust gas channel to achieve an optimal heat transfer on the hot side of the modules. The cooling side consists of winding fluid channels, which are mounted directly onto the cold side of the modules. Only a thin foil separates the cooling media from the modules for an almost direct heat contact on the cooling side. Thermoelectric generators with up to 20 modules made of PbTe and Bi2Te3, respectively, are manufactured and tested on a hot gas generator to investigate electrical power output and performance of the thermoelectric generator. The proof of concept of the light weight heat exchanger design made of sheet metal with integrated modules is positively accomplished.

  17. Heat transfer from internally heated hemispherical pools

    SciTech Connect

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO/sub 4/-H/sub 2/O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere.

  18. New industrial heat pump applications to an integrated thermomechanical pulp and paper mill

    SciTech Connect

    1991-01-01

    Application of pinch technology US industries in an early screening study done by TENSA Services (DOE/ID/12583-1) identified potential for heat pumps in several industrial sectors. Among these, processes with large evaporation units were found to be some of the most promising sectors for advanced heat pump placement. This report summarizes the results of a study for Bowater Incorporated, Carolina Division. The units selected for this study are the thermo-mechanical pulper (TMP), kraft digester, evaporators, boiler feed water (BFW) train and pulp dryer. Based on the present level of operation, the following recommendations are made: 1. Install a mechanical vapor compression (MVR) heat pump between the TMP mill and {number sign}3 evaporator. This heat pump will compress the 22 psig steam from the TMP heat recovery system and use it to replace about 70% of the 60 psig steam required in {number sign} evaporator. The boiler feed water heat losses (in the low pressure deaerator) will be supplied by heat available in the TMR's zero psig vent steam. 2. Study the digester to verify the practicality of installing an MVR heat pump which will compress the dirty weapons from the cyclone separator. The compressed vapors can be directly injected into the digester and thus reduce the 135 psig steam consumption. 31 figs., 9 tabs.

  19. Using MathCad to Evaluate Exact Integral Formulations of Spacecraft Orbital Heats for Primitive Surfaces at Any Orientation

    NASA Technical Reports Server (NTRS)

    Pinckney, John

    2010-01-01

    With the advent of high speed computing Monte Carlo ray tracing techniques has become the preferred method for evaluating spacecraft orbital heats. Monte Carlo has its greatest advantage where there are many interacting surfaces. However Monte Carlo programs are specialized programs that suffer from some inaccuracy, long calculation times and high purchase cost. A general orbital heating integral is presented here that is accurate, fast and runs on MathCad, a generally available engineering mathematics program. The integral is easy to read, understand and alter. The integral can be applied to unshaded primitive surfaces at any orientation. The method is limited to direct heating calculations. This integral formulation can be used for quick orbit evaluations and spot checking Monte Carlo results.

  20. Protecting Yourself from Heat Stress

    MedlinePlus

    ... Contact NIOSH NIOSH Fast Facts: Protecting Yourself from Heat Stress Language: English Español (Spanish) Kreyol Haitien (Haitian ... as heat stroke, heat exhaustion, or heat cramps. Heat Stroke A condition that occurs when the body ...

  1. Heat Pipe Technology

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  2. Heat collection system

    SciTech Connect

    Ramlow, B.L.; Steele, R.R.

    1982-04-06

    A heat collection system is disclosed which is capable of collecting heat from an animal husbandry enclosures such as a dairy barn, and transferring the heat into a home. Animal husbandry enclosures, such as dairy barns, tend to have excess heat, even in winter, the excess heat normally being wasted. The heat is collected by a pair of evaporators located in the dairy barn, with the evaporators being oversized to limit the amount of cooling taking place in the barn. Fluid from the evaporators is compressed by compressors after which it passes through a condenser from which heat may be extracted into the home. Pressure regulating valves are provided to insure that the compressors are not overloaded and to insure that a maximum heating effect is achieved. A thermostatically controlled fan is provided to drive air across the condenser so that heat is introduced into the home.

  3. Heat exchange device

    SciTech Connect

    Callison, G.

    1984-01-17

    A heat exchange device is adapted to recover heat from the fire box of a wood burning stove or the like for heating ambient air in a room or other enclosed space. The heat exchange device is adapted to mount in a recess in a stove top in place of a lid which is normally supplied with the stove. The device according to the invention includes heat exchange means which extend into the fire box of the stove below the top surface thereof. The heat from the heat exchange device is transmitted into a main cavity of the device where the heat is transferred to air forced through the main cavity by a blower mounted to an outside surface of the device. Air exit means are provided on a surface opposite to the surface on which the blower is mounted to provide a passage for heated air into the room or other enclosed space to be heated. The device may also include a top mounted isolated handle for ease in handling the device such as for moving from one area to another. In a second embodiment of the device, a high temperature heat exchange glass plate is mounted on the surface of the device which is in contact with the fire box. Heat is transmitted by heat exchange plate to the main cavity of the device where the air is heated and blown into the room as above.

  4. An innovative system for heating and cooling a gymnasium using integrated photovoltaic-thermal solar collectors

    SciTech Connect

    Fanchiotti, A.; Herkel, S.; Laukamp, H.; Priolo, C.

    1996-11-01

    The paper describes a new solar energy based system to heat and cool a gymnasium and to generate electricity in the city of Palermo, Italy. The gymnasium will be built in 1996 as part of the structures that will host the Universiadi Games in 1997. Main objectives of the project are: (a) to grant better environmental conditions in the area occupied by the public, with limited use of fossil energy; (b) to reduce the temperature of the photovoltaic elements, thus increasing their efficiency. The system consists of an array of 203 m{sup 2} integrated photovoltaic-thermal solar air collectors. In the winter mode of operation, the heated air is passed through the concrete benches where the public is seated. In the summer mode of operation outside air is evaporatively cooled, passed through the benches, then exhausted to the outside after passing through the collectors. The paper presents some of the results obtained by simulating the system at the design stage for winter conditions.

  5. Integration of solar process heat into an existing thermal desalination plant in Qatar

    NASA Astrophysics Data System (ADS)

    Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.

    2016-05-01

    The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.

  6. Initial findings: The integration of water loop heat pump and building structural thermal storage systems

    SciTech Connect

    Marseille, T.J.; Johnson, B.K.; Wallin, R.P.; Chiu, S.A.; Crawley, D.B.

    1989-01-01

    This report is one in a series of reports describing research activities in support of the US Department of Energy (DOE) Commercial Building System Integration Research Program. The goal of the program is to develop the scientific and technical basis for improving integrated decision-making during design and construction. Improved decision-making could significantly reduce buildings' energy use by the year 2010. The objectives of the Commercial Building System Integration Research Program are: to identify and quantify the most significant energy-related interactions among building subsystems; to develop the scientific and technical basis for improving energy related interactions in building subsystems; and to provide guidance to designers, owners, and builders for improving the integration of building subsystems for energy efficiency. The lead laboratory for this program is the Pacific Northwest Laboratory. A wide variety of expertise and resources from industry, academia, other government entities, and other DOE laboratories are used in planning, reviewing and conducting research activities. Cooperative and complementary research, development, and technology transfer activities with other interested organizations are actively pursued. In this report, the interactions of a water loop heat pump system and building structural mass and their effect on whole-building energy performance is analyzed. 10 refs., 54 figs., 1 tab.

  7. On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity

    NASA Astrophysics Data System (ADS)

    Fabre, Antoine; Hristov, Jordan

    2016-04-01

    Closed form approximate solutions to nonlinear transient heat conduction with linearly temperature-dependent thermal diffusivity have been developed by the integral-balance integral method under transient conditions. The solutions uses improved direct approaches of the integral method and avoid the commonly used linearization by the Kirchhoff transformation. The main steps in the new solutions are improvements in the integration technique of the double-integration technique and the optimization of the exponent of the approximate parabolic profile with unspecified exponent. Solutions to Dirichlet and Neumann boundary condition problems have been developed as examples by the classical Heat-balance integral method (HBIM) and the Double-integration method (DIM). Additional examples with HBIM and DIM solutions to cases when the Kirchhoff transform is initially applied have been developed.

  8. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  9. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  10. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  11. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  12. Heating and cooling system

    SciTech Connect

    Imig, L.A.; Gardner, M.R.

    1982-08-01

    A heating and cooling apparatus capable of cyclic heating and cooling of a test specimen undergoing fatigue testing is discussed. Cryogenic fluid is passed through a block clamped to the speciment to cool the block and the specimen. Heating cartridges penetrate the block to heat the block and the specimen to very hot temperaures. Control apparatus is provided to alternatively activate the cooling and heating modes to effect cyclic heating and cooling between very hot and very cold temperatures. The block is constructed of minimal mass to facilitate the rapid temperature changes. Official Gazette of the U.S. Patent and Trademark Office.

  13. High heat flux loop heat pipes

    NASA Astrophysics Data System (ADS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m2. This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m2. This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m2.K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser.

  14. Development of photovoltaic modules integrated with roofing materials (heat insulated roof panel)

    SciTech Connect

    Nitta, Y.; Hatukaiwa, T.; Yamawaki, T.; Matumura, Y.; Mizukami, S.

    1994-12-31

    The authors have started to develop low cost photovoltaic modules integrated with roofing materials for wooden houses. They made a concept of the design for the modules using amorphous silicon solar cells and produced test modules that consist of untempered surface glass, solar cells, waterproof sheet, heat insulating materials and base frames. They have primarily tested the distributed pressure resistance as a building component. When applying a load from the front surface side of the modules, a 3.6 mm deflection at the center of the specimen under 300 kg/m{sup 2} load was observed, which is equivalent to a snowfall of 1.2 meters. As a result, they have finally confirmed that modules have enough structural strength to be used as a roof panel. They also tested the impact resistance of untempered surface glass by the testing method in JIS3212. In this test, cracks could not be seen from a height of 75 cm.

  15. Geothermal District Heating Economics

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  16. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  17. Extended fusion yield integral using pathway idea in case of Shock-compressed heated plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Dilip; Haubold, Hans

    The extended non-resonant thermonuclear reaction rate probability integral obtained in Haubold and Kumar [Haubold, H.J. and Kumar, D.: 2008, Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions, Astroparticle Physics, 29, 70-76] is used to evaluate the fusion energy by itegrating it over temperature. The closed form representation of the extended reaction rate integral via Meijer's G-function is expressed as a solution of a homogeneous differential equation. A physical model of Guderley[Guderley G. :1942, Starke kugelige und zylindrische Verdichtungsstsse in der Nhe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302] has been considered for the laser driven hydrodynamical process in a compressed fusion plasma and heated strong spherical shock wave. The fusion yield integral obtained in the paper is compared with the standard fusion yield ob-tained by Haubold and John [Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 5, 399-411]. The pathway parameter used in this paper is given an interpretation in terms of moments.

  18. Proportional and Integral Thermal Control System for Large Scale Heating Tests

    NASA Technical Reports Server (NTRS)

    Fleischer, Van Tran

    2015-01-01

    The National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) Flight Loads Laboratory is a unique national laboratory that supports thermal, mechanical, thermal/mechanical, and structural dynamics research and testing. A Proportional Integral thermal control system was designed and implemented to support thermal tests. A thermal control algorithm supporting a quartz lamp heater was developed based on the Proportional Integral control concept and a linearized heating process. The thermal control equations were derived and expressed in terms of power levels, integral gain, proportional gain, and differences between thermal setpoints and skin temperatures. Besides the derived equations, user's predefined thermal test information generated in the form of thermal maps was used to implement the thermal control system capabilities. Graphite heater closed-loop thermal control and graphite heater open-loop power level were added later to fulfill the demand for higher temperature tests. Verification and validation tests were performed to ensure that the thermal control system requirements were achieved. This thermal control system has successfully supported many milestone thermal and thermal/mechanical tests for almost a decade with temperatures ranging from 50 F to 3000 F and temperature rise rates from -10 F/s to 70 F/s for a variety of test articles having unique thermal profiles and test setups.

  19. Design of isotope heat source for automatic modular dispersal during reentry, and its integration with heat exchangers of 6-kWe dynamic isotope power system

    NASA Astrophysics Data System (ADS)

    Schock, Alfred

    An account is given of the results of a design study for a single heat source dynamic isotope power system (DIPS) of about 30 kW(t), using the standard 250 W general purpose heat source modules previously devised for radioisotope thermoelectric generators. Attention is given to the scheme devised for holding the individual heat source modules together during launch, which automatically releases them during reentry to minimize their impact velocity. The heat source design also contains passive provisions against overheating, in case active cooling is lost.

  20. Integrated Combined Heat and Power/Advanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications

    SciTech Connect

    2009-02-01

    Gas Technology Institute will collaborate with Integrated CHP Systems Corporation, West Virginia University, Vronay Engineering Services, KAR Engineering Associates, Pioneer Air Systems, and Energy Concepts Company to recover waste heat from reciprocating engines. The project will integrate waste heat recovery along with gas clean-up technology system improvements. This will address fuel quality issues that have hampered expanded use of opportunity fuels such as landfill gas, digester biogas, and coal mine methane. This will enable increased application of CHP using renewable and domestically derived opportunity fuels.

  1. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  2. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  3. Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    Bartera, R. E.

    1978-01-01

    To emphasize energy conservation and low cost energy, the systems of solar heating and cooling are analyzed and compared with fossil fuel systems. The application of solar heating and cooling systems for industrial and domestic use are discussed. Topics of discussion include: solar collectors; space heating; pools and spas; domestic hot water; industrial heat less than 200 F; space cooling; industrial steam; and initial systems cost. A question and answer period is generated which closes out the discussion.

  4. Solar heat receiver

    DOEpatents

    Hunt, Arlon J.; Hansen, Leif J.; Evans, David B.

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  5. Solar heat receiver

    DOEpatents

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  6. Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs.

    PubMed

    Sanz Fernandez, M V; Pearce, S C; Gabler, N K; Patience, J F; Wilson, M E; Socha, M T; Torrison, J L; Rhoads, R P; Baumgard, L H

    2014-01-01

    Heat stress (HS) jeopardizes livestock health and productivity and both may in part be mediated by reduced intestinal integrity. Dietary zinc improves a variety of bowel diseases, which are characterized by increased intestinal permeability. Study objectives were to evaluate the effects of supplemental zinc amino acid complex (ZnAA) on intestinal integrity in heat-stressed growing pigs. Crossbred gilts (43±6 kg BW) were ad libitum fed one of three diets: (1) control (ZnC; 120 ppm Zn as ZnSO4; n=13), (2) control+100 ppm Zn as ZnAA (Zn220; containing a total of 220 ppm Zn; n=14), and (3) control+200 ppm Zn as ZnAA (Zn320; containing a total of 320 ppm Zn; n=16). After 25 days on their respective diets, all pigs were exposed to constant HS conditions (36°C, ∼50% humidity) for either 1 or 7 days. At the end of the environmental exposure, pigs were euthanized and blood and intestinal tissues were harvested immediately after sacrifice. As expected, HS increased rectal temperature (P⩽0.01; 40.23°C v. 38.93°C) and respiratory rate (P⩽0.01; 113 v. 36 bpm). Pigs receiving ZnAA tended to have increased rectal temperature (P=0.07; +0.27°C) compared with ZnC-fed pigs. HS markedly reduced feed intake (FI; P⩽0.01; 59%) and caused BW loss (2.10 kg), but neither variable was affected by dietary treatment. Fresh intestinal segments were assessed ex vivo for intestinal integrity. As HS progressed from days 1 to 7, both ileal and colonic transepithelial electrical resistance (TER) decreased (P⩽0.05; 34% and 22%, respectively). This was mirrored by an increase in ileal and colonic permeability to the macromolecule dextran (P⩽0.01; 13- and 56-fold, respectively), and increased colonic lipopolysaccharide permeability (P⩽0.05; threefold) with time. There was a quadratic response (P⩽0.05) to increasing ZnAA on ileal TER, as it was improved (P⩽0.05; 56%) in Zn220-fed pigs compared with ZnC. This study demonstrates that HS progressively compromises the intestinal

  7. Geothermal heat in a heat pump use

    NASA Astrophysics Data System (ADS)

    Pavlova, A.; Hansen, J.; Obermeyer, H.; Pavlova, I.

    2016-09-01

    The considered innovative technology proposes to use alternative energy sources for the process efficiency in low-height construction. The world economy depends on price rises for energy sources and the danger of environmental pollution increases. Geothermal energy is the basic resource saving and environmentally safe renewable heat source that is characterized by inexhaustibility, permanent all the-year-round use, universal prevalence of resources and the ability to replace considerable volumes of traditional energy carriers. The expediency and power efficiency to apply a heat pump with the use of geothermal heat is proved for low-height construction.

  8. High heat flux loop heat pipes

    NASA Technical Reports Server (NTRS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  9. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  10. HEAT TRANSFER MEANS

    DOEpatents

    Fraas, A.P.; Wislicenus, G.F.

    1961-07-11

    A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

  11. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  12. Multi-lead heat sink

    DOEpatents

    Roose, L.D.

    1982-08-25

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  13. Multi-lead heat sink

    DOEpatents

    Roose, Lars D.

    1984-01-01

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  14. Multi-lead heat sink

    DOEpatents

    Roose, L.D.

    1984-07-03

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again. 4 figs.

  15. How Humans Adapt To Heat

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Kaciuba-Uscilko, Hanna

    1992-01-01

    Report discusses adaptive responses of humans to hot environment. Describes thermoregulation by integrated responses of nervous system, vascular/fluid/electrolyte system, and endocrine system. Considers disorders resulting from failure of thermoregulation and less serious heat stress.

  16. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  17. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  18. Urban heat island

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.

    1991-01-01

    The phenomenon of urban heat island was investigated by the use of LANDSAT Thematic Mapper data sets collected over the metropolitan area of Washington DC (U.S.). By combining the retrieved spectral albedos and temperatures, urban modification on radiation budgets of five surface categories were analyzed. The surface radiation budget imagery of the area show that urban heating is attributable to a large heat flux from the rapidly heating surfaces of asphalt, bare soil and short grass. In summer, symptoms of diurnal heating begin to appear by mid morning and can be about 10 degrees warmer than nearby woodlands in summer.

  19. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  20. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1972-01-01

    The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  1. Practical heat treating

    SciTech Connect

    Boyer, H.E.

    1984-01-01

    This book presents the heat treating technology. Fundamental information is provided by first explaining briefly the principles of the heat treatment of steel and the concepts of hardness and hardenability. Next, consideration is given to furnaces and related equipment. The major portion of the book, however, is devoted to a discussion of the commonly used heat treatments for carbon and alloy steels, tool steels, stainless steels and cast irons. Sample treatments are given in detail for many of the commercially important and commonly specified grades. Chapters on case hardening procedures, flame and induction heating and the heat treating of non-ferrous alloys complete the book.

  2. Flexible heating head for induction heating

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor)

    1993-01-01

    An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  3. Composite heat pipe development status: Development of lightweight prototype carbon-carbon heat pipe with integral fins and metal foil liner

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rovang, Richard D.

    1995-01-01

    This report discusses development and proof-of-concept testing of a new lightweight carbon-carbon (C-C) space radiator heat pipe, carried out under the NASA Civil Space Technology Initiative (CSTI) High Capacity Power Program. The prototype heat pipe, equipped with a niobium-zirconium foil liner, was filled with potassium working fluid and tested for 11 hours, including startup from ambient temperature with the working fluid initially in the frozen state to near 700 K condenser temperature. Steady-state heat pipe input power during testing was facility limited to about 300 watts. Post test inspection showed the heat pipe to be in excellent condition after eight thermal cycles from ambient to steady-state operating temperature. Utilization of other liner materials and working fluids would greatly extend the spectrum of service temperatures for this technology, with potential applications ranging from small spacecraft heat rejection to aircraft and terrestrial uses.

  4. Heat pump apparatus

    DOEpatents

    Nelson, Paul A.; Horowitz, Jeffrey S.

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  5. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  6. Ceramic heat pipe development

    NASA Astrophysics Data System (ADS)

    Merrigan, M.

    1980-09-01

    Ceramic materials used in conventional brickwork heat exchanger configurations increase allowable temperatures; however, joint leakage problems limit use of these designs. Ceramic tube heat exchanger designs reduce these problems but still require sliding joints and compliant tube end seals. Ceramic heat pipe based recuperator designs eliminate the sealing problems that limited the high temperature heat recovery installations. Heat pipe recuperators offer high corrosion and abrasion resistance, high temperature capability, reduced leakage, element redundancy, and simplified replacement and cleaning. The development of ceramic heat pipe recuperator elements involves the selection and test of materials and fabrication techniques having production potential, evaluation of technology in subscale tests, design and test of components for full scale recuperator applications, and demonstration of heat pipes in subscale and full scale recuperator installation.

  7. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  8. Heat pipe cooling system with sensible heat sink

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  9. Integrated Heat Pump HVAC Systems for Near-Zero-Energy Homes - Business Case Assessment

    SciTech Connect

    Baxter, Van D

    2007-05-01

    . Eleven system concepts with central air distribution ducting and nine multi-zone systems were selected and their annual and peak demand performance estimated for five locations: Atlanta (mixed-humid), Houston (hot-humid), Phoenix (hot-dry), San Francisco (marine), and Chicago (cold). Performance was estimated by simulating the systems using the TRNSYS simulation engine (Solar Energy Laboratory et al. 2006) in two 1800-ft{sup 2} houses--a Building America (BA) benchmark house and a prototype NZEH taken from BEopt results at the take-off (or crossover) point (i.e., a house incorporating those design features such that further progress towards ZEH is through the addition of photovoltaic power sources, as determined by current BEopt analyses conducted by NREL). Results were summarized in a project report, 'HVAC Equipment Design options for Near-Zero-Energy Homes--A Stage 2 Scoping Assessment', ORNL/TM-2005/194 (Baxter 2005). The 2005 study report describes the HVAC options considered, the ranking criteria used, and the system rankings by priority. Table 1 summarizes the energy savings potential of the highest scoring options from the 2005 study for all five locations. All system options were scored by the ORNL building equipment research team and by William Goetzler of Navigant Consulting. These scores were reviewed by DOE/BT's Residential Integration program leaders and Building America team members. Based on these results, the two centrally ducted integrated heat pump (IHP) systems (air source and ground source versions) were selected for advancement to Stage 2 (Exploratory Development) business case assessments in FY06. This report describes results of these business case assessments. It is a compilation of three separate reports describing the initial business case study (Baxter 2006a), an update to evaluate the impact of an economizer cooling option (Baxter 2006b), and a second update to evaluate the impact of a winter humidification option (Baxter 2007). In addition it

  10. Absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  11. Design Optimization of Loop Heat Pipes with Cylindrical Evaporator and Integral Reservoir for Space Application

    NASA Astrophysics Data System (ADS)

    Vlassov, Valeri V.; de Sousa, Fabiano L.; Riehl, Roger R.

    2008-01-01

    Design optimization of a LHP system for a space application is considered. The system is composed of the LHP itself, an interface with the heat source (saddle) and a radiator. The criterion is minimal system mass while meeting the operational requirements. The optimization is performed with simultaneous consideration of hot and cold conditions with respect to imposed heat loads to the evaporator and external heat fluxes over the radiator panel. The design parameters of the system optimized are the active length of the evaporator, internal and external diameters of the primary wick, volume and size of the reservoir, thickness and width of the saddle, diameters and tube thickness of the transport lines and condenser, length of the condenser, dimensions of the radiator panel and the amount of the LHP working fluid charged. The LHP mass and optimal design parameters are obtained for three working fluids: ammonia, propylene and acetone; a comparative study of the optimal mass characteristics is performed. Fixed parameters are the required values of transferred heat loads, incident external heat fluxes for the hot and cold cases, length of the transport lines, material and fluid properties. Constraints include temperature limits for the attached equipment and the capillary limits of the LHP. A special steady state mathematical model was developed for the calculation of the LHP performance parameters and a global search metaheuristic, called Generalized Extremal Optimization (GEO), is used as the optimization tool.

  12. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    NASA Astrophysics Data System (ADS)

    Moreau, P.; César de Sá, J.; Grégoire, S.; Lochegnies, D.

    2007-05-01

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication…). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  13. Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element

    SciTech Connect

    Moreau, P.; Gregoire, S.; Lochegnies, D.; Cesar de Sa, J.

    2007-05-17

    Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication...). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.

  14. THE INTEGRATION OF PROCESS HEAT APPLICATIONS TO HIGH TEMPERATURE GAS REACTORS

    SciTech Connect

    Michael G. McKellar

    2011-11-01

    A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 C produce no additional advantage for the production of steam.

  15. Experimental study of an integral catalytic combustor: Heat exchanger for Stirling engines

    NASA Technical Reports Server (NTRS)

    Bulzan, D. L.

    1982-01-01

    The feasibility of using catalytic combustion with heat removal for the Stirling engine to reduce exhaust emissions and also improve heat transfer to the working fluid was studied using spaced parallel plates. An internally air-cooled heat exchanger was placed between two noble metal catalytic plates. A preheated fuel-air mixture passed between the plates and reacted on the surface of the catalyzed plates. Heat was removed from the catalytic surface by radiation and convection to the aircooled heat exchangers to control temperature and minimize thermal nitrogen oxide emissions. Test conditions were inlet combustion air temperatures from 850 to 900 K, inlet velocities of about 10 m/s, equivalence ratios from 0.5 to 0.9, and pressures from 1.3x10 to the 5th power to 2.0x10 to the 5th power Pa. Propane fuel was used for all testing. Combustion efficiencies greater than 99.5 percent were measured. Nitrogen oxide emissions ranged from 1.7 to 3.3 g NO2/kg fuel. The results demonstrate the feasibility of the concept and indicate that further investigation of the concept is warranted.

  16. 24 CFR 3280.506 - Heat loss/heat gain.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined...

  17. 24 CFR 3280.506 - Heat loss/heat gain.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined...

  18. 24 CFR 3280.506 - Heat loss/heat gain.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined...

  19. Heat Waves Are Health Threats

    MedlinePlus

    ... heat syncope (fainting), heat exhaustion, as well as heat stroke," he said in a hospital news release. "Various classes of medications including beta blockers, as well as diuretics, can ... to heat-related illnesses," Glatter said. But young, healthy people ...

  20. Integration of Thermal Indoor Conditions into Operational Heat Health Warning Systems

    NASA Astrophysics Data System (ADS)

    Koppe, C.; Becker, P.; Pfafferott, J.

    2009-09-01

    The 2003 heat wave in Western Europe with altogether 35,000 to 50,000 deaths in Europe, several thousands of which occurred in Germany, has clearly pointed out the danger arising from long periods with high heat load. As a consequence, Germany, as many other European countries, has started to implement a Heat Health Warning System (HHWS). The German HHWS is based on the ‘Perceived Temperature'. The 'Perceived Temperature' is determined through a heat budget model of the human organism which includes the main thermophysiologically relevant mechanisms of heat exchange with the atmosphere. The most important meteorological ambience parameters included in the model are air temperature, humidity, wind speed and radiation fluxes in the short-wave and long-wave ranges. In addition to using a heat budget model for the assessment of the thermal load, the German HHWS also takes into account that the human body reacts in different ways to its thermal environment due to physiological adaptation (short-term acclimatisation) and short-term behavioural adaptation. The restriction of such an approach, like the majority of approaches used to issue heat warnings, is that the threshold for a warning is generally derived from meteorological observations and that warnings are issued on the basis of weather forecasts. Both, the observed data and the weather forecasts are only available for outside conditions. The group of people who are most at risk of suffering from a heat wave, however, are the elderly and frail who mainly stay inside. The indoor situation, which varies largely from the conditions outside, is not taken into account by most of the warning systems. To overcome this limitation the DWD, in co-operation with the Fraunhofer Institute for Solar Energy Systems, has developed a model which simulates the thermal conditions in the indoor environment. As air-conditioning in private housing in Germany is not very common, the thermal indoor conditions depend on the outside

  1. Development of an Integrated Residential Heating, Ventilation, Cooling, and Dehumidification System for Residences

    SciTech Connect

    Hoeschele, M.A.; D.A. Springer

    2008-06-18

    The Need and the Opportunity Codes such as ASHRAE 90.2 and IECC, and programs such as Energy Star and Builders Challenge, are causing new homes to be built to higher performance standards. As a result sensible cooling loads in new homes are going down, but indoor air quality prerogatives are causing ventilation rates and moisture loads to increase in humid climates. Conventional air conditioners are unable to provide the low sensible heat ratios that are needed to efficiently cool and dehumidify homes since dehumidification potential is strongly correlated with cooling system operating hours. The project team saw an opportunity to develop a system that is at least as effective as a conventional air conditioner plus dehumidifier, removes moisture without increasing the sensible load, reduces equipment cost by integrating components, and simplifies installation. Project Overview Prime contractor Davis Energy Group led a team in developing an Integrated Heating, Ventilation, Cooling, and Dehumidification (I-HVCD) system under the DOE SBIR program. Phase I and II SBIR project activities ran from July 2003 through December 2007. Tasks included: (1) Mechanical Design and Prototyping; (2) Controls Development; (3) Laboratory and Field Testing; and (4) Commercialization Activities Technology Description. Key components of the prototype I-HVCD system include an evaporator coil assembly, return and outdoor air damper, and controls. These are used in conjunction with conventional components that include a variable speed air handler or furnace, and a two-stage condensing unit. I-HVCD controls enable the system to operate in three distinct cooling modes to respond to indoor temperature and relative humidity (RH) levels. When sensible cooling loads are high, the system operates similar to a conventional system but varies supply airflow in response to indoor RH. In the second mode airflow is further reduced, and the reheat coil adds heat to the supply air. In the third mode, the

  2. Passive solar heating and natural cooling of an earth-integrated design

    SciTech Connect

    Barnes, P. R.; Shapira, H. B.

    1980-01-01

    The Joint Institute for Heavy Ion Research is being designed with innovative features that will greatly reduce its energy consumption for heating, cooling, and lighting. A reference design has been studied and the effects of extending the overhang during summer and fall, varying glazing area, employing RIB, and reducing internal heat by natural lighting have been considered. The use of RIB and the extendable overhang increases the optimum window glazing area and the solar heating fraction. A mass-storage wall which will likely be included in the final design has also been considered. A figure of merit for commercial buildings is the total annual energy consumption per unit area of floor space. A highly efficient office building in the Oak Ridge area typically uses 120 to 160 kWhr/m/sup 2/. The Joint Institute reference design with natural lighting, an annual average heat pump coefficient of performance (COP) equal to 1.8, RIB, and the extendable overhang uses 71 kWhr/m/sup 2/. This figure was determined from NBSLD simulations corrected for the saving from RIB. The internal heat energy from lighting and equipment used in the simulation was 1653 kWhrs/month (high natural lighting case) which is much lower than conventional office buildings. This value was adopted because only a portion of the building will be used as office space and efforts will be made to keep internal heat generation low. The mass-storage wall and ambient air cooling will reduce energy consumption still further. The combined savings of the innovative features in the Joint Institute building are expected to result in a very energy efficient design. The building will be instrumented to monitor its performance and the measured data will provide a means of evaluating the energy-saving features. The efficiency of the design will be experimentally verified over the next several years.

  3. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  4. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  5. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  6. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  7. Laser heated thermoluminescence dosimetry

    SciTech Connect

    Justus, B.L.; Huston, A.L.

    1996-06-01

    We report a novel laser-heated thermoluminescence dosimeter that is radically different from previous laser-heated dosimeters. The dosimeter is a semiconductor and metal ion doped silica glass that has excellent optical transparency. The high optical quality of the glass essentially eliminates laser power loss due to light scattering. This efficient utilization of the laser power permits operation of the dosimeter without strong absorption of the laser, as is required in traditional laser-heated dosimetry. Our laser-heated dosimeter does not rely on the diffusion of heat from a separate, highly absorbing substrate, but operates via intimate, localized heating within the glass dosimeter due to the absorption of the laser light by rare earth ion dopants in the glass. Following absorption of the laser light, the rare earth ions transfer energy to the surrounding glass via nonradiative relaxation processes, resulting in rapid, localized temperature increases sufficient to release all the filled traps near the ions. As the heat diffuses radially away from the rare earth ions the temperature plummets dramatically on a manometer distance scale and the release of additional filled traps subsides. A key distinguishing feature of this laser-heated dosimeter is the ability to read the dose information more than once. While laser-heating provides complete information about the radiation exposure experienced by the glass due to the release of locally heated traps, the process leaves the remaining filled bulk traps undisturbed. The bulk traps can be read using traditional bulk heating methods and can provide a direct determination of an accumulated dose, measured following any number of laser-heated readouts. Laser-heated dosimetry measurements have been performed using a solid state diode laser for the readout following radiation exposure with a {sup 60}Co source.

  8. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  9. Exact triple integrals of beam functions. [in application of Galerkin method to heat and mass transfer problems

    NASA Technical Reports Server (NTRS)

    Jhaveri, B. S.; Rosenberger, F.

    1982-01-01

    Definite triple integrals encountered in applying the Galerkin method to the problem of heat and mass transfer across rectangular enclosures are discussed. Rather than evaluating them numerically, the technique described by Reid and Harris (1958) was extended to obtain the exact solution of the integrals. In the process, four linear simultaneous equations with triple integrals as unknowns were obtained. These equations were then solved exactly to obtain the closed form solution. Since closed form representations of this type have been shown to be useful in solving nonlinear hydrodynamic problems by series expansion, the integrals are presented here in general form.

  10. Plasma heat pump and heat engine

    SciTech Connect

    Avinash, K.

    2010-08-15

    A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}<heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

  11. Heat transfer from oriented heat exchange areas

    NASA Astrophysics Data System (ADS)

    Vantuch, Martin; Huzvar, Jozef; Kapjor, Andrej

    2014-03-01

    This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for "n" horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified. At presence a sum of criterion equations exists for simple geometrical shapes of individual oriented geometrical areas but the criterion equation which would consider interaction of fluxional field generated by free convection from multiple oriented areas is not mentioned in standardly accessible technical literature and other magazine publications.

  12. Analysis of Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing over a Rotating Disk by Integral Method

    NASA Technical Reports Server (NTRS)

    Basu, S.; Cetegen, B. M.

    2005-01-01

    An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.

  13. Performance characteristic of thermosyphon heat pipe at radiant heat source

    NASA Astrophysics Data System (ADS)

    Hrabovský, Peter; Papučík, Štefan; Kaduchová, Katarína

    2016-06-01

    This article discusses about device, which is called heat pipe. This device is with heat source with radiant heat source. Heat pipe is device with high efficiency of heat transfer. The heat pipe, which is describe in this article is termosyphon heat pipe. The experiment with termosyphon heat pipe get a result. On the base of result, it will be in future to create mathematical model in Ansys. Thermosyphon heat pipe is made of copper and distilled water is working fluid. The significance of this experiment consists in getting of the heat transfer and performance characteristic. On the basis of measured and calculated data can be constructed the plots.

  14. Water-heating dehumidifier

    DOEpatents

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  15. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics. PMID:24067709

  16. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  17. Method of blast heating

    SciTech Connect

    Voges, B.

    1984-06-05

    A method of and a device for blast heating is described, employing separate indirect heat exchangers for combustion air and fuel gas fed to a regenerator and flue gases discharged from the regenerator. The indirect heat exchangers share heat-transfer liquid recirculating in a circuit in which an auxiliary heat exchanger is connected. In the latter exchanger, the temperature of transfer liquid is increased by combustion of partial streams of combustion air and fuel gas branched off downstream of the indirect heat exchangers. The temperature is increased to such a value which preheats the fuel gas to a temperature at which a substitution of fuel gas of a low calorific value, such as waste gas from a blast furnace, for fuel gas of high calorific value, is made possible.

  18. Fluidized bed heat treating system

    SciTech Connect

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  19. Saturn base heating handbook

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Bender, R. L.; Bevill, R. L.; Reardon, J.; Hartley, L.

    1972-01-01

    A handbook containing a summary of model and flight test base heating data from the S-1, S-1B, S-4, S-1C, and S-2 stages is presented. A review of the available prediction methods is included. Experimental data are provided to make the handbook a single source of Saturn base heating data which can be used for preliminary base heating design predictions of launch vehicles.

  20. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  1. Radioisotopic heat source

    DOEpatents

    Sayell, E.H.

    1973-10-23

    A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)

  2. NCSX Plasma Heating Methods

    SciTech Connect

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  3. NCSX Plasma Heating Methods

    SciTech Connect

    H.W. Kugel; D. Spong; R. Majeski; M. Zarnstorff

    2003-02-28

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows.

  4. Heat Loss Imagery

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Infrared scanning devices are being used to produce images that show, by color or black-and-white shading differences, which buildings and homes are losing heat to the outdoors, and how much. Heat loss surveys done by Texas Instruments, Daedalus Enterprises, Inc. and other companies have growing acceptance of their services among industrial firms, utilities, local governments, and state and federal agencies interested in promoting heat loss awareness and inspiring corrective actions.

  5. Improvement of proton exchange membrane fuel cell overall efficiency by integrating heat-to-electricity conversion

    NASA Astrophysics Data System (ADS)

    Xie, Chungang; Wang, Shuxin; Zhang, Lianhong; Hu, S. Jack

    Proton exchange membrane fuel cells (PEMFCs) have shown to be well suited for distributed power generation due to their excellent performance. However, a PEMFC produces a considerable amount of heat in the process of electrochemical reaction. It is desirable to use thermal energy for electricity generation in addition to heating applications. Based on the operating characteristics of a PEMFC, an advanced thermal energy conversion system using "ocean thermal energy conversion" (OTEC) technology is applied to exploit the thermal energy of the PEMFC for electricity generation. Through this combination of technology, this unique PEMFC power plant not only achieves the combined heat and power efficiency, but also adequately utilizes heat to generate more valuable electricity. Exergy analysis illustrates the improvement of overall efficiency and energy flow distribution in the power plant. Analytical results show that the overall efficiency of the PEMFC is increased by 0.4-2.3% due to the thermal energy conversion (TEC) system. It is also evident that the PEMFC should operate within the optimal load range by balancing the design parameters of the PEMFC and of the TEC system.

  6. Integrated three-dimensional module heat exchanger for power electronics cooling

    DOEpatents

    Bennion, Kevin; Lustbader, Jason

    2013-09-24

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  7. Process Integrated Heat Treatment of a Microalloyed Medium Carbon Steel: Microstructure and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Herbst, Sebastian; Schledorn, Mareike; Maier, Hans Jürgen; Milenin, Andrij; Nürnberger, Florian

    2016-04-01

    Air-water spray cooling was employed during a heat treatment to enhance the mechanical properties of microalloyed medium carbon steel test cylinders (38MnVS6, 88 mm diameter). Using appropriate cooling times and intensities, the test cylinders' surfaces could be quenched and subsequently self-tempered by the residual heat of the core. Simultaneously, it was possible to keep the core regions of the cylinders in the bainitic regime and carry out a quasi-isothermal holding. The resulting microstructures consisted of tempered martensite (near-surface) and bainite with pearlite and ferrite (core). Compared to the standard heat treatment (controlled air cooling), the tensile properties (proof stress and ultimate tensile strength) could be improved for both near-surface and core regions with the adapted spray cooling. A hardness profile with 450 HV10 surface hardness and a hardening depth of more than 11 mm could be realized. In addition, an increase of the impact toughness for the core was achieved, resulting in approximately 25 J charpy impact energy. This is a substantial improvement compared to standard heat treatment procedure and values reported in the literature and can be attributed to the reduced pearlite volume fraction and the increased amount of fine bainite.

  8. Heat flux measurements

    NASA Technical Reports Server (NTRS)

    Liebert, Curt H.; Weikle, Donald H.

    1989-01-01

    A new automated, computer controlled heat flux measurement facility is described. Continuous transient and steady-state surface heat flux values varying from about 0.3 to 6 MW/sq m over a temperature range of 100 to 1200 K can be obtained in the facility. An application of this facility is the development of heat flux gauges for continuous fast transient surface heat flux measurement on turbine blades operating in space shuttle main engine turbopumps. The facility is useful for durability testing at fast temperature transients.

  9. External artery heat pipe

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J. (Inventor); Ernst, Donald M. (Inventor); Shaubach, Robert M. (Inventor)

    1989-01-01

    An improved heat pipe with an external artery. The longitudinal slot in the heat pipe wall which interconnects the heat pipe vapor space with the external artery is completely filled with sintered wick material and the wall of the external artery is also covered with sintered wick material. This added wick structure assures that the external artery will continue to feed liquid to the heat pipe evaporator even if a vapor bubble forms within and would otherwise block the liquid transport function of the external artery.

  10. Introduction to Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  11. An electrohydrodynamic heat pipe.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1972-01-01

    A heat pipe of new design, using an electrode structure to orient and guide the dielectric liquid phase flow, is proposed. Analysis indicates that the operation of the electrohydrodynamic heat pipe is in direct analogy to capillary devices, with the polarization force acting in place of capillarity. Advantages of these new heat pipes include greatly reduced liquid friction, electrohydrodynamically enhanced evaporation and condensation heat transfer, and a possible voltage-controlled on/off feature. Preliminary calculations indicate that relatively high performance devices are possible.

  12. Heat transfer equipment design

    NASA Astrophysics Data System (ADS)

    Shah, R. K.; Subbarao, Eleswarapu Chinna; Mashelkar, R. A.

    A comprehensive presentation is made of state-of-the-art configurations and design methodologies for heat transfer devices applicable to industrial processes, automotive systems, air conditioning/refrigeration, cryogenics, and petrochemicals refining. Attention is given to topics in heat exchanger mechanical design, single-phase convection processes, thermal design, two-phase exchanger thermal design, heat-transfer augmentation, and rheological effects. Computerized analysis and design methodologies are presented for the range of heat transfer systems, as well as advanced methods for optimization and performance projection.

  13. Heat rejection system

    DOEpatents

    Smith, Gregory C.; Tokarz, Richard D.; Parry, Jr., Harvey L.; Braun, Daniel J.

    1980-01-01

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  14. Reclaiming Waste Heat

    NASA Technical Reports Server (NTRS)

    1976-01-01

    'Air-O-Space' heater, based on spacecraft heat, requires no fuel other than electricity to run fan. Installed in chimney flue, heat pipes transfer heat from waste hot gases (but not the gases themselves) to fresh air blown across the other end of the pipes. It can transport roughly 500 times the heat flux of the best solid conductors with a temperature drop of less than 3 degrees per foot. This instrument has also been used by Kin-Tek Laboratories Inc. to produce an instrument to calibrate gas analyzers for air-pollution monitoring.

  15. Heat Capacity Analysis Report

    SciTech Connect

    A. Findikakis

    2004-11-01

    The purpose of this report is to provide heat capacity values for the host and surrounding rock layers for the waste repository at Yucca Mountain. The heat capacity representations provided by this analysis are used in unsaturated zone (UZ) flow, transport, and coupled processes numerical modeling activities, and in thermal analyses as part of the design of the repository to support the license application. Among the reports that use the heat capacity values estimated in this report are the ''Multiscale Thermohydrologic Model'' report, the ''Drift Degradation Analysis'' report, the ''Ventilation Model and Analysis Report, the Igneous Intrusion Impacts on Waste Packages and Waste Forms'' report, the ''Dike/Drift Interactions report, the Drift-Scale Coupled Processes (DST and TH Seepage) Models'' report, and the ''In-Drift Natural Convection and Condensation'' report. The specific objective of this study is to determine the rock-grain and rock-mass heat capacities for the geologic stratigraphy identified in the ''Mineralogic Model (MM3.0) Report'' (BSC 2004 [DIRS 170031], Table 1-1). This report provides estimates of the heat capacity for all stratigraphic layers except the Paleozoic, for which the mineralogic abundance data required to estimate the heat capacity are not available. The temperature range of interest in this analysis is 25 C to 325 C. This interval is broken into three separate temperature sub-intervals: 25 C to 95 C, 95 C to 114 C, and 114 C to 325 C, which correspond to the preboiling, trans-boiling, and postboiling regimes. Heat capacity is defined as the amount of energy required to raise the temperature of a unit mass of material by one degree (Nimick and Connolly 1991 [DIRS 100690], p. 5). The rock-grain heat capacity is defined as the heat capacity of the rock solids (minerals), and does not include the effect of water that exists in the rock pores. By comparison, the rock-mass heat capacity considers the heat capacity of both solids and pore

  16. Heat Pipe Materials Compatibility

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Fleischman, G. L.; Luedke, E. E.

    1976-01-01

    An experimental program to evaluate noncondensable gas generation in ammonia heat pipes was completed. A total of 37 heat pipes made of aluminum, stainless steel and combinations of these materials were processed by various techniques, operated at different temperatures and tested at low temperature to quantitatively determine gas generation rates. In order of increasing stability are aluminum/stainless combination, all aluminum and all stainless heat pipes. One interesting result is the identification of intentionally introduced water in the ammonia during a reflux step as a means of surface passivation to reduce gas generation in stainless-steel/aluminum heat pipes.

  17. Heat and mass exchanger

    DOEpatents

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  18. Heat pump arrangement

    SciTech Connect

    Abrahamsson, T.; Hansson, K.

    1981-03-03

    The invention concerns a heat pump arrangement for heating of houses. The arrangement comprises a compressor, a condensor and a vaporizer, which is a part of an icing machine. The vaporizer is designed as a heat exchanger and is connected to a circulation system comprising an accumulator, to which the ice slush from the icing machine is delivered. Water from the accumulator is delivered to the icing machine. The water in the accumulator can be heated E.G. By means of a solar energy collector, the outdoor air etc. Surface water or waste water from the household can be delivered to the accumulator and replace the ice slush therein.

  19. Heat Flux Sensor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A heat flux microsensor developed under a NASP Small Business Innovation Research (SBIR) has a wide range of potential commercial applications. Vatell Corporation originally designed microsensors for use in very high temperatures. The company then used the technology to develop heat flux sensors to measure the rate of heat energy flowing in and out of a surface as well as readings on the surface temperature. Additional major advantages include response to heat flux in less than 10 microseconds and the ability to withstand temperatures up to 1,200 degrees centigrade. Commercial applications are used in high speed aerodynamics, supersonic combustion, blade cooling, and mass flow measurements, etc.

  20. Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Astrophysics Data System (ADS)

    McIntosh, Roy

    The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.

  1. Heat pipe thermal conditioning panel

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Loose, J. D.; Mccoy, K. E.

    1974-01-01

    Thermal control of electronic hardware and experiments on future space vehicles is critical to proper functioning and long life. Thermal conditioning panels (cold plates) are a baseline control technique in current conceptual studies. Heat generating components mounted on the panels are typically cooled by fluid flowing through integral channels within the panel. However, replacing the pumped fluid coolant loop within the panel with heat pipes offers attractive advantages in weight, reliability, and installation. This report describes the development and fabrication of two large 0.76 x 0.76 m heat pipe thermal conditioning panels to verify performance and establish the design concept.

  2. Cryogenic Heat Pipe Experiment (CRYOHP)

    NASA Technical Reports Server (NTRS)

    Mcintosh, Roy

    1992-01-01

    The objective of the CRYOHP experiment is to conduct a shuttle experiment that demonstrates the reliable operation of two oxygen heat pipes in microgravity. The experiment will perform the following tasks: (1) demonstrate startup of the pipes from the supercritical state; (2) measure the heat transport capacity of the pipes; (3) measure evaporator and condenser film coefficients; and (4) work shuttle safety issues. The approach for the experiment is as follows: (1) fly two axially grooved oxygen heat pipes attached to mechanical stirling cycle tactical coolers; (2) integrate experiment in hitch-hiker canister; and (3) fly on shuttle and control from ground.

  3. Integrated heat pipe-thermal storage design for a solar receiver. [Constant power source with heat from sun or from storage

    SciTech Connect

    Keddy, E.S.; Sena, J.T.; Woloshun, K.; Merrigan, M.A.; Heidenreich, G.

    1986-01-01

    Light-weight heat pipe wall elements that incorporate a thermal storage subassembly within the vapor space are being developed as part of the Organic Rankine Cycle Solar Dynamic Power Systems (ORC-SDPS) receiver for the space station application. The operating temperature of he heat pipe elements is in the 770 to 810/sup 0/K range with a design power throughput of 4.8 kW per pipe. The total heat pipe length is 1.9 M. The Rankine cycle boiler heat transfer surfaces are positioned within the heat pipe vapor space, providing a relatively constant temperature input to the vaporizer. The heat pipe design employs axial arteries and distribution wicked thermal storage units with potassium as the working fluid. Stainless steel is used as the containment tube and screen material. Performance predictions for this configuration have been conducted and the design characterized as a function of artery geometry, distribution wick thickness, porosity, pore size, and permeability. Details of the analysis and of fabrication and assembly procedures are presented. 2 refs., 8 figs.

  4. Estimating heat capacity and heat content of rocks

    USGS Publications Warehouse

    Robertson, Eugene C.; Hemingway, Bruch S.

    1995-01-01

    Our measured heat-capacity values for rocks and other measurements of heat capacity or heat content of rocks found in the literature have been compared with estimated rock heat capacities calculated from the summation of heat capacities of both minerals and oxide components. The validity of calculating the heat content or heat capacity of rocks to better than about ± 3% from its mineral or chemical composition is well demonstrated by the data presented here.

  5. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    PubMed

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags.

  6. Integral Method for the Assessment of U-RANS Effectiveness in Non-Equilibrium Flows and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Pond, Ian; Edabi, Alireza; Dubief, Yves; White, Christopher

    2015-11-01

    Reynolds Average Navier Stokes (RANS) modeling has established itself as a critical design tool in many engineering applications, thanks to its superior computational efficiency. The drawbacks of RANS models are well known, but not necessarily well understood: poor prediction of transition, non equilibrium flows, mixing and heat transfer, to name the ones relevant to our study. In the present study, we use a DNS of a reciprocating channel flow driven by an oscillating pressure gradient to test several low- and high-Reynolds RANS models. Temperature is introduced as a passive scalar to study heat transfer modeling. Low-Reynolds models manage to capture the overall physics of wall shear and heat flux well, yet with some phase discrepancies, whereas high Reynolds models fail. Under the microscope of the integral method for wall shear and wall heat flux, the qualitative agreement appears more serendipitous than driven by the ability of the models to capture the correct physics. The integral method is shown to be more insightful in the benchmarking of RANS models than the typical comparisons of statistical quantities. The authors acknowledges the support of NSF and DOE under grant NSF/DOE 1258697 (VT) and 1258702 (NH).

  7. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  8. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  9. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments. PMID:16286290

  10. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  11. NREL Tests Integrated Heat Pump Water Heater Performance in Different Climates (Fact Sheet)

    SciTech Connect

    Not Available

    2012-01-01

    This technical highlight describes NREL tests to capture information about heat pump performance across a wide range of ambient conditions for five heat pump water heaters (HPWH). These water heaters have the potential to significantly reduce water heater energy use relative to traditional electric resistance water heaters. These tests have provided detailed performance data for these appliances, which have been used to evaluate the cost of saved energy as a function of climate. The performance of HPWHs is dependent on ambient air temperature and humidity and the logic controlling the heat pump and the backup resistance heaters. The laboratory tests were designed to measure each unit's performance across a range of air conditions and determine the specific logic controlling the two heat sources, which has a large effect on the comfort of the users and the energy efficiency of the system. Unlike other types of water heaters, HPWHs are both influenced by and have an effect on their surroundings. Since these effects are complex and different for virtually every house and climate region, creating an accurate HPWH model from the data gathered during the laboratory tests was a main goal of the project. Using the results from NREL's laboratory tests, such as the Coefficient of Performance (COP) curves for different air conditions as shown in Figure 1, an existing HPWH model is being modified to produce more accurate whole-house simulations. This will allow the interactions between the HPWH and the home's heating and cooling system to be evaluated in detail, for any climate region. Once these modeling capabilities are in place, a realistic cost-benefit analysis can be performed for a HPWH installation anywhere in the country. An accurate HPWH model will help to quantify the savings associated with installing a HPWH in the place of a standard electric water heater. In most locations, HPWHs are not yet a cost-effective alternative to natural gas water heaters. The detailed

  12. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  13. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  14. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  15. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  16. The 2003 heat wave.

    PubMed

    Sardon, J-P

    2007-03-01

    The July-August 2005 issue of Eurosurveillance focused on the impact on mortality of the 2003 heat wave in Europe, with articles that were based on various methods and looked at different time periods [1]. The subject of this letter is to assess, using a unique methodology, the excess mortality related to the 2003 heat wave across the continent. PMID:17439811

  17. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1973-01-01

    Techniques associated with thermal-vacuum and bench testing, along with flight testing of the OAO-C spacecraft heat pipes are outlined, to show that the processes used in heat transfer design and testing are adequate for good performance evaluations.

  18. Radioisotopic heat source

    DOEpatents

    Jones, G.J.; Selle, J.E.; Teaney, P.E.

    1975-09-30

    Disclosed is a radioisotopic heat source and method for a long life electrical generator. The source includes plutonium dioxide shards and yttrium or hafnium in a container of tantalum-tungsten-hafnium alloy, all being in a nickel alloy outer container, and subjected to heat treatment of from about 1570$sup 0$F to about 1720$sup 0$F for about one h. (auth)

  19. Nonequilibrium heat capacity.

    PubMed

    Mandal, Dibyendu

    2013-12-01

    Development of steady state thermodynamics and statistical mechanics depends crucially on our ability to extend the notions of equilibrium thermodynamics to nonequilibrium steady states (NESS). The present paper considers the extension of heat capacity. A modified definition is proposed which continues to maintain the same relation to steady state Shannon entropy as in equilibrium, thus providing a thermodynamically consistent treatment of NESS heat capacity.

  20. Heat Shield in Pieces

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image from NASA's Mars Exploration Rover Opportunity shows the remains of the rover's heat shield, broken into two key pieces, the main piece on the left side and a broken-off flank piece near the middle of the image. The heat shield impact site is identified by the circle of red dust on the right side of the picture. In this view, Opportunity is approximately 20 meters (66 feet) away from the heat shield, which protected it while hurtling through the martian atmosphere.

    In the far left of the image, a meteorite called 'Heat Shield Rock,' sits nearby, The Sun is reflecting off the silver-colored underside of the internal thermal blankets of the heat shield.

    The rover spent 36 sols investigating how the severe heating during entry through the atmosphere affected the heat shield. The most obvious is the fact that the heat shield inverted upon impact.

    This is an approximately true-color rendering of the scene acquired around 1:22 p.m. local solar time on Opportunity sol 324 (Dec. 21, 2004) in an image mosaic using panoramic filters at wavelengths of 750, 530, and 430 nanometers.

  1. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The development and delivery of noncorrosive fluid subsystems are reported that are compatible with closed-loop solar heating or combined heating and hot water systems. They are also compatible with both metallic and non-metallic plumbing systems. The performance testing of a number of fluids is described.

  2. Vacuum powered heat exchanger

    SciTech Connect

    Ruffolo, R.F.

    1986-06-24

    In an internal combustion engine including an oil lubrication system, a liquid cooling system, and an improved air intake system is described. The improved air intake system comprises: a housing including a first opening in one end, which opening is open to the atmosphere and a second opening comprising an air outlet opening in the other end open to the air intake manifold of the engine, a heat exchanger positioned in the first opening. The heat exchanger consists of a series of coils positioned in the flow path of the atmospheric air as it enters the housing, the heat exchanger being fluidly connected to either the engine lubrication system or the cooling system to provide a warm heat source for the incoming air to the housing, acceleration means positioned in the housing downstream of the heat exchanger, the acceleration means comprising a honeycomb structure positioned across the air intake flow path. The honey-comb structure includes a multitude of honey combed mini-venturi cells through which the heated air flows in an accelerated mode, a removable air filter positioned between the heat exchanger and the acceleration means and a single opening provided in the housing through which the air filter can be passed and removed, and additional openings in the housing positioned downstream of the heat exchanger and upstream of the air filter, the additional openings including removable flaps for opening and closing the openings to control the temperature of the air flowing through the housing.

  3. Passive Vaporizing Heat Sink

    NASA Technical Reports Server (NTRS)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  4. Heat and Motion.

    ERIC Educational Resources Information Center

    Pearlman, Norman

    Unlike many elementary presentations on heat, this monograph is not restricted to explaining thermal behavior in only macroscopic terms, but also developes the relationships between thermal properties and atomic behavior. "It relies at the start on intuition about heat at the macroscopic level. Familiarity with the particle model of mechanics,…

  5. Basic Comfort Heating Principles.

    ERIC Educational Resources Information Center

    Dempster, Chalmer T.

    The material in this beginning book for vocational students presents fundamental principles needed to understand the heating aspect of the sheet metal trade and supplies practical experience to the student so that he may become familiar with the process of determining heat loss for average structures. Six areas covered are: (1) Background…

  6. Unstable heat pipes

    SciTech Connect

    McGuinness, M.J.; Pruess, K.

    1987-10-01

    Heat pipes are an important feature of models of vapor-dominated geothermal reservoirs. Numerical experiments reveal that a vapor-dominated heat pipe is unstable if pressure is controlled at shallow levels. This instability is discussed in physical terms, and some implications for geothermal reservoirs are considered. 9 refs., 10 figs.

  7. Introductory heat-transfer

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1992-01-01

    The objective is to introduce some concepts of thermodynamics in existing heat-treating experiments using available items. The specific objectives are to define the thermal properties of materials and to visualize expansivity, conductivity, heat capacity, and the melting point of common metals. The experimental procedures are described.

  8. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made in the development and delivery of noncorrosive fluid subsystems is discussed. These subsystems are to be compatible with closed-loop solar heating or combined heating and hot water systems. They are also to be compatible with both metallic and non-metallic plumbing systems. The performance testing of a number of fluids is described.

  9. Plumbing and Heating Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    Theory and experience in the following areas are included in this plumbing curriculum: (1) plumbing fixtures and heating; (2) city water service; (3) fixture roughing; (4) venting; and (5) solar heating systems. The plumbing program manual includes the following sections: (1) general objectives for grades 10, 11, and 12; (2) a list of 33 major…

  10. Heat pipes and use of heat pipes in furnace exhaust

    DOEpatents

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  11. Experimental investigation of a manifold heat-pipe heat exchanger

    SciTech Connect

    Konev, S.V.; Wang Tszin` Lyan`; D`yakov, I.I.

    1995-12-01

    Results of experimental investigations of a heat exchanger on a manifold water heat pipe are given. An analysis is made of the temperature distribution along the heat-transfer agent path as a function of the transferred heat power. The influence of the degree of filling with the heat transfer agent on the operating characteristics of the construction is considered.

  12. Ammoniated salt heat pump

    NASA Astrophysics Data System (ADS)

    Haas, W. R.; Jaeger, F. J.; Giordano, T. J.

    A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat. Several liquid ammoniates are identified and the critical properties of three of the most promising are presented. Results of small scale (5000 Btu) system tests are discussed and a design concept for a prototype system is given. This system represents a significant improvement over the system using solid ammoniates investigated previously because of the increase in heat transfer rates (5 to 60 Btu/hr sq ft F) and the resulting reduction in heat exchanger size. As a result the concept shows promise of being cost competitive with conventional systems.

  13. Solar heating system

    DOEpatents

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  14. Improved solar heating systems

    DOEpatents

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  15. Heat Pipe Systems

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  16. Knudsen heat capacity

    SciTech Connect

    Babac, Gulru; Reese, Jason M.

    2014-05-15

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  17. Part I, FAB evaluation & application trials AFUE measurements: Part II, Integrated heating system (IHS) development

    SciTech Connect

    Leigh, R.W.; Fisher, L.

    1996-07-01

    An oil burner/boiler efficiency test stand has been set up in the BNL oil heat laboratory which can measure the Annual Fuel Utilization Efficiency (AFUE) of burner/boiler combinations in accordance with ASHRAE and DOE standards. Measurements include both steady state efficiencies and heat-up and cool-down characteristics so that cycling effects can be included in an estimate of seasonal average performance. In addition to AFUE measurements, the direct conversion of fuel energy content to enthalpy increase in the boiler water is monitored. The system is largely automated, with most control functions under computer control and data taken electronically and permanently recorded on disks for future reference. To date, a retention-head burner and a fan atomized burner (FAB) have been tested in a steel boiler, the latter operating at two different fuel flow rates. The results are presented below, and verify that the very tight construction of the FAB`s fan results in a significant decrease in off-cycle sensible heat losses. Tests were also performed on a center-flue water heater fired with a conventional retention-head burner and with an FAB. The tests conformed to DOE standard procedures for hot water heaters, and the results are discussed below.

  18. Design and Assembly of an Integrated Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Bower, Chad E.; Paul, Heather L.

    2012-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Icing Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU and the future flight unit are considered.

  19. Design and Assembly of an Integrated Metabolic Heat Regenerated Temperature Swing Adsorption (MTSA) Subassembly Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian A.; Powers, Aaron; Iacomini, Christie S.; Paul, Heather L.

    2011-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. The core of the MTSA technology is a sorbent bed that removes CO2 from the PLSS ventilation loop gas via a temperature swing. A Condensing Ice Heat eXchanger (CIHX) is used to warm the sorbent while also removing water from the ventilation loop gas. A Sublimation Heat eXchanger (SHX) is used to cool the sorbent. Research was performed to explore an MTSA designed for both lunar and Martian operations. Previously each the sorbent bed, CIHX, and SHX had been built and tested individually on a scale relevant to PLSS operations, but they had not been done so as an integrated subassembly. Design and analysis of an integrated subassembly was performed based on this prior experience and an updated transient system model. Focus was on optimizing the design for Martian operations, but the design can also be used in lunar operations. An Engineering Development Unit (EDU) of an integrated MTSA subassembly was assembled based on the design. Its fabrication is discussed. Some details on the differences between the as-assembled EDU to the future flight unit are considered.

  20. Heat flow in Oklahoma

    NASA Astrophysics Data System (ADS)

    Cranganu, Constantin

    Twenty new heat flow values are incorporated, along with 40 previously published data, into a heat flow map of Oklahoma. The new heat flow data were estimated using previous temperature measurements in boreholes made by American Petroleum Institute researchers and 1,498 thermal conductivity measurements on drill cuttings. The mean of 20 average thermal gradients is 30.50sp°C/km. In general, thermal gradients increase from SW (14.11sp°C/km) to NE (42.24sp°C/km). The range of 1,498 in situ thermal conductivity measurements (after corrections for anisotropy, in situ temperature, and porosity) is 0.90-6.1 W/m-K; the average is 1.68 W/m-K. Estimated near-surface heat flow (±20%) at 20 new sites in Oklahoma varies between 22 ± 4 mW/msp2 and 86 ± 17 mW/msp2; the average is 50 mW/msp2. Twenty-seven new heat-generation estimates, along with 22 previously published data, are used to create a heat generation map of Oklahoma. The range of heat production estimates is 1.1-3.5 muW/msp3, with an average of 2.5 muW/msp3. The heat flow regime in Oklahoma is primarily conductive in nature, except for a zone in northeast. Transient effects due to sedimentary processes and metamorphic/igneous activity, as well as past climatic changes, do not significantly influence the thermal state of the Oklahoma crust. Heat flow near the margins of the Arkoma and Anadarko Basins may be depressed or elevated by 5-13 mW/msp2 by refraction of heat from sedimentary rocks of relatively low thermal conductivity (1-2 W/m-K) into crystalline basement rocks of relatively high thermal conductivity (˜3-4 W/m-K). The heat generation-heat flow relationship shows a modest correlation. The relatively high heat flow (˜70-80 mW/msp2) in part of northeastern Oklahoma suggests that the thermal regime there may be perturbed by regional groundwater flow originating in the fractured outcrops of the Arbuckle-Simpson aquifer in the Arbuckle Mountains.

  1. Experimental research on heat transfer of pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Jia; Yan, Li

    2008-06-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  2. 2. SALEMBROSIUS CONTINUOUS GASFIRED HEAT TREATING LINE AT HEAT TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SALEM-BROSIUS CONTINUOUS GAS-FIRED HEAT TREATING LINE AT HEAT TREATMENT PLANT OF THE DUQUESNE WORKS. - U.S. Steel Duquesne Works, Heat Treatment Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  3. Integrated solar heating, cooling, and hot-water system for University City High School, San Diego, California

    NASA Astrophysics Data System (ADS)

    This active hydronic system for solar heating, absorption cooling, and water heating uses 17,532 square feet of concentrating collectors. The storage capacity is 88,800 gallons. The system schematics and operation and maintenance instructions are included.

  4. Heat-related illness.

    PubMed

    Becker, Jonathan A; Stewart, Lynsey K

    2011-06-01

    Heat-related illness is a set of preventable conditions ranging from mild forms (e.g., heat exhaustion, heat cramps) to potentially fatal heat stroke. Hot and humid conditions challenge cardiovascular compensatory mechanisms. Once core temperature reaches 104°F (40°C), cellular damage occurs, initiating a cascade of events that may lead to organ failure and death. Early recognition of symptoms and accurate measurement of core temperature are crucial to rapid diagnosis. Milder forms of heat-related illness are manifested by symptoms such as headache, weakness, dizziness, and an inability to continue activity. These are managed by supportive measures including hydration and moving the patient to a cool place. Hyperthermia and central nervous system symptoms should prompt an evaluation for heat stroke. Initial treatments should focus on lowering core temperature through cold water immersion. Applying ice packs to the head, neck, axilla, and groin is an alternative. Additional measures include transporting the patient to a cool environment, removing excess clothing, and intravenous hydration. Delayed access to cooling is the leading cause of morbidity and mortality in persons with heat stroke. Identification of at-risk groups can help physicians and community health agencies provide preventive measures. PMID:21661715

  5. Geothermal Heat Transfer

    SciTech Connect

    Basmajian, V.V.

    1986-01-28

    This patent describes a heat transfer apparatus which consists of: heat exchanging means for orientation in the earth below ground substantially vertically, having a hollow conduit of length from top to bottom much greater than the span across the hollow conduit orthogonal to its length with a top, bottom and an intermediate portion contiguous and communicating with the top and bottom portions for allowing thermally conductive fluid to flow freely between the top, intermediate and bottom portions for immersion in thermally conductive fluid in the region around the heat exchanging means for increasing the heat flow between the latter and earth when inserted into a substantially vertical borehole in the earth with the top portion above the bottom portion. The heat exchanger consists of heat exchanging conduit means in the intermediate portion for carrying refrigerant. The heat exchanging conduit consisting of tubes of thermally conductive material for carrying the refrigerant and extending along the length of the hollow conduit for a tube length that is less than the length of the hollow conduit. The hollow conduit is formed with port means between the top and the plurality of tubes for allowing the thermally conductive fluid to pass in a flow path embracing the tubes, the bottom portion, an outer channel around the hollow conduit and the port means.

  6. Heat pipe dynamic behavior

    NASA Technical Reports Server (NTRS)

    Issacci, F.; Roche, G. L.; Klein, D. B.; Catton, I.

    1988-01-01

    The vapor flow in a heat pipe was mathematically modeled and the equations governing the transient behavior of the core were solved numerically. The modeled vapor flow is transient, axisymmetric (or two-dimensional) compressible viscous flow in a closed chamber. The two methods of solution are described. The more promising method failed (a mixed Galerkin finite difference method) whereas a more common finite difference method was successful. Preliminary results are presented showing that multi-dimensional flows need to be treated. A model of the liquid phase of a high temperature heat pipe was developed. The model is intended to be coupled to a vapor phase model for the complete solution of the heat pipe problem. The mathematical equations are formulated consistent with physical processes while allowing a computationally efficient solution. The model simulates time dependent characteristics of concern to the liquid phase including input phase change, output heat fluxes, liquid temperatures, container temperatures, liquid velocities, and liquid pressure. Preliminary results were obtained for two heat pipe startup cases. The heat pipe studied used lithium as the working fluid and an annular wick configuration. Recommendations for implementation based on the results obtained are presented. Experimental studies were initiated using a rectangular heat pipe. Both twin beam laser holography and laser Doppler anemometry were investigated. Preliminary experiments were completed and results are reported.

  7. Micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  8. Fireplace heating unit

    SciTech Connect

    Henderson, L.L.

    1982-10-19

    An efficient heating unit for ready installation in any standard fireplace includes a refractory lined fire box contained within an outer shell to form a heat exchanger between hot gaseous fuel combustion products and living space air entering the jacket space between the walls of the fire box and the outer shell in a continuous convection cycle. Heated air re-enters the living space through a grill above the fire box and fire box flue maze. The flue maze or manifold forms a radiator of great surface area which projects into the living space immediately below the heated air grill and the maze is vented into the chimney by two nonadjustable and one adjustable vents which are sealed from the air passages of the heat exchanger. Lockable and adjustably vented doors at the front of the fire box are provided. A three piece face plate formed of thin metal having thermal contact with both the fire box and heat exchanger shell maximizes heat radiation into the living space.

  9. Heat recovery apparatus

    SciTech Connect

    McFarland, I.

    1987-01-01

    Heat transfer is a living science and technical advances are constantly being made. However, in many cases, progress is limited by the equipment that is available on the market, rather than by knowledge of the heat transfer process. A case in point is the design of economizers: in such equipment a small quantity of water (with a relatively good heat transfer coefficient) is heated by a large quantity of low-pressure gas (with an inherently low heat transfer coefficient). As a first step in design finned tubing is used to lessen the discrepancy in coefficients. From this point, it becomes apparent that the equipment consists of a small number of tubes (to maintain good velocity on the water side) of considerable length (to provide sufficient area). In the process industries the base pressure, though low, may be in the region of 0.5 bar, and there is no convenient flue in which to place the heat recovery coil. It is therefore contained in a flat-sided enclosure, which is ill-fitted to pressure containment and is therefore reinforced with a plethora of structural sections. Such inelegant construction is quite common in North America; in Europe, cylindrical containments of vast size have been supplied for the same purposes. The real shortcoming is a successful marriage of different disciplines to produce reliable and efficient heat transfer equipment suitably contained.

  10. Pioneering Heat Pump Project

    SciTech Connect

    Aschliman, Dave; Lubbehusen, Mike

    2015-06-30

    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of the data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode

  11. Superfluid Helium Heat Pipe

    NASA Astrophysics Data System (ADS)

    Gully, P.

    This paper reports on the development and the thermal tests of three superfluid helium heat pipes. Two of them are designed to provide a large transport capacity (4 mW at 1.7 K). They feature a copper braid located inside a 6 mm outer diameter stainless tube fitted with copper ends for mechanical anchoring. The other heat pipe has no copper braid and is designed to get much smaller heat transport capacity (0.5 mW) and to explore lower temperature (0.7 - 1 K). The copper braid and the tube wall is the support of the Rollin superfluid helium film in which the heat is transferred. The low filling pressure makes the technology very simple with the possibility to easily bend the tube. We present the design and discuss the thermal performance of the heat pipes tested in the 0.7 to 2.0 K temperature range. The long heat pipe (1.2 m with copper braid) and the short one (0.25 m with copper braid) have similar thermal performance in the range 0.7 - 2.0 K. At 1.7 K the long heat pipe, 120 g in weight, reaches a heat transfer capacity of 6.2 mW and a thermal conductance of 600 mW/K for 4 mW transferred power. Due to the pressure drop of the vapor flow and Kapitza thermal resistance, the conductance of the third heat pipe dramatically decreases when the temperature decreases. A 3.8 mW/K is obtained at 0.7 K for 0.5 mW transferred power.

  12. Solar heated portable structure

    SciTech Connect

    Fodor, E.V.; King, F.F.; King, J.M.

    1982-03-23

    A solar heated portable structure comprising a flexible bottom panel, a flexible side assembly and a flexible transmitting panel , all coupled together and supported to form an enclosed chamber. The transmitting panel is capable of transmitting a majority of the radiant energy from the solar radiation spectrum to heat the enclosed chamber like a sauna and has an area at least 0.7 the area of the bottom panel to maximize heating while minimizing material costs. The transmitting panel can be transparent to ultraviolet radiation to allow persons inside the chamber to be tanned.

  13. Heat treatment furnace

    SciTech Connect

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  14. Electrohydrodynamic heat pipes.

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1973-01-01

    An electrohydrodynamic heat pipe of radical design is proposed which substitutes polarization electrohydrodynamic force effects for capillarity in collecting, guiding, and pumping a condensate liquid phase. The discussed device is restricted to the use of dielectric liquids as working fluids. Because of the relatively poor thermal transport properties of these liquids, capillary heat pipes using these liquids have not been high performance devices. The employment of the electrohydrodynamic concept should enhance this performance and help fill the performance gap that exists in the temperature range from 250 F to 750 F for 'conventional' capillary heat pipes.

  15. Heat treatment study 2

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The microstructural variations in nickel based superalloys that result from modifications in processing were examined. These superalloys include MAR-M246(HF) and PWA1480. Alternate heat treatments for equiaxed as-cast specimens were studied and a sample matrix of 42 variations in the heat treatments were processed, as well as different directional solidification parameters. Variation in temperature and times for both solution and aging were performed. Photomicrographs were made of the microstructure and volume fraction analysis of primary gamma-prime and aged gamma-prime precipitates were performed. The results of the heat treatment, cooling rate, and directional solidification experiments are discussed.

  16. Heat pipes - Thermal diodes

    NASA Astrophysics Data System (ADS)

    Aptekar, B. F.; Baum, J. M.; Ivanovskii, M. N.; Kolgotin, F. F.; Serbin, V. I.

    The performance concept and peculiarities of the new type of thermal diode with the trap and with the wick breakage are dealt with in the report. The experimental data were obtained and analysed for the working fluid mass and the volume of the liquid in the wick on the forward-mode limiting heat transfer. The flow rate pulsation of the working fluid in the wick was observed visually on the setup with the transparent wall. The quantitative difference on the data on the investigated thermal diode and on the identical heat pipes without the wick breakage is found experimentally concerning the forward-mode limiting heat transfer.

  17. Episodic coronal heating

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Dixon, W. W.; Klimchuk, J. A.; Antiochos, S. K.

    1990-01-01

    A study is made of the observational consequences of the hypothesis that there is no steady coronal heating, the solar corona instead being heated episodically, such that each short burst of heating is followed by a long period of radiative cooling. The form of the resulting contribution to the differential emission measure (DEM), and to a convenient related function (the differential energy flux, DEF) is calculated. Observational data for the quiet solar atmosphere indicate that the upper branch of the DEM, corresponding to temperatures above 100,000 K, can be interpreted in terms of episodic energy injection at coronal temperatures.

  18. Heat transfer in pipes

    NASA Technical Reports Server (NTRS)

    Burbach, T.

    1985-01-01

    The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

  19. Heated Gas Bubbles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Fluid Physics is study of the motion of fluids and the effects of such motion. When a liquid is heated from the bottom to the boiling point in Earth's microgravity, small bubbles of heated gas form near the bottom of the container and are carried to the top of the liquid by gravity-driven convective flows. In the same setup in microgravity, the lack of convection and buoyancy allows the heated gas bubbles to grow larger and remain attached to the container's bottom for a significantly longer period.

  20. Integral measurements of mass transport and heat content in the Strait of Gibraltar from acoustic transmissions

    NASA Astrophysics Data System (ADS)

    Send, Uwe; Worcester, Peter F.; Cornuelle, Bruce D.; Tiemann, Christopher O.; Baschek, Burkard

    Three 2 kHz acoustic transceivers were deployed on either side of the eastern entrance of the Strait of Gibraltar during April-May 1996 to determine the feasibility of using acoustic methods to make routine, rapidly repeated, horizontally integrated measurements of flow and temperature in straits. Reciprocal transmissions between the transceivers were used to test the feasibility of using traditional ray differential travel times to monitor the component of flow along the acoustic paths. Transmissions directly across the Strait were used to test the feasibility of using horizontal arrival angle fluctuations and acoustic intensity scintillations to monitor the flow perpendicular to the acoustic path. The geometry was selected to provide ray paths that only sample the lower-layer Mediterranean water, so that the feasibility of monitoring the Mediterranean outflow using the various methods could be evaluated. The acoustic scintillation method did not yield useful current estimates, but the experimental parameters were not optimized for this approach. Since the low-frequency variability in log-amplitude was found to be highly correlated at receivers 228 m apart, it is possible that acoustic scintillation measurements using different receiver spacings and more rapid sampling might yield better results. The horizontal deflection method gave encouraging results at the time of neap tides, but less so during spring tides. For this approach, both theoretical estimates and measured phase differences between the horizontally separated receivers suggest that internal-wave-induced horizontal arrival angle fluctuations may fundamentally limit the precision with which arrival angles can be measured. Further work is needed to determine if a smaller horizontal spacing and higher signal-to-noise ratios would yield better results. Reciprocal travel time measurements diagonally across the Strait performed the best of the three methods, giving absolute flow estimates consistent with

  1. Use of the exergy concept for design improvement of heat exchangers and heat exchanger networks

    SciTech Connect

    Ranasinghe, J.

    1989-01-01

    The second law of thermodynamics, through the exergy concept, allows us to quantify and rationally coat the consumption of exergy (irreversibility) used to drive the heat exchange process and the effluent losses of exergy in a heat exchanger. For systems with a network of heat exchangers, the exergy concept recognizes that properly integrated heat pumps reduce the heat transfer irreversibility; this results in reduced utility consumption. Heat engines properly integrated in heat exchanger networks also recover a fraction of the thermodynamic potential destroyed during the heat transfer process and generate power at very high efficiencies. Heat exchanger design conditions are characterized and potential trade-off options discussed. A modification to the irreversibility minimization method is proposed next, and the proposed method gives more realistic guide posts for heat exchangers, compared to the corresponding guide posts obtained from present methods. This thesis also proposes a method to obtain the irreversibility cost coefficients for heat exchangers residing in complex systems. The application of the modified irreversibility method proposed here, and the thermoeconomic method, are illustrated by optimizing an emerging technology ceramic heat exchanger residing in a complex power plant. A method based on the exergy concept is developed to recognize the potential for improvement of processes with process integrated heat pumps and heat engines. Once potential processes have been identified, economically optimum load and level of integration have to be determined. The method of formulating the economic optimization problem is presented, and bounds for some design variables are finally developed.

  2. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Eight prototype solar heating and combined heating and cooling systems are considered. This effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  3. Prototype solar heating and combined heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Eight prototype solar heating and combined heating and cooling systems are being developed. The effort includes development, manufacture, test, installation, maintenance, problem resolution, and performance evaluation.

  4. Heat pumps and heat pipes for applications in cold regions

    NASA Astrophysics Data System (ADS)

    Vasiliev, Leonard L.

    Advanced active carbon fibre/NH3 heat pumps with dual sources of energy (solar/gas) were developed for providing space heating, cooling and sanitary hot water for buildings. The next heat pump generation will include a combination of chemicals with an active carbon fibre to increase the NH3 absorption. Combination of heat pipes and heat pumps solves the problem of heating the ground and air in green houses using the heat of the ground, hot ground waters, solar energy and gas flames with heat storage.

  5. TRMM Validation: Integration of TRMM Satellite and Ground-Validation Data to Determine Tropical Heating

    NASA Technical Reports Server (NTRS)

    Houze, Robert A., Jr.

    2001-01-01

    Steiner and Houze showed from ground validation data that the Tropical Rain Measuring Mission (TRMM) satellite Precipitation Radar's (PR's) twice daily only sampling should lead to an uncertainty of approximately 20% in rain estimates. They further showed that the uncertainties are smallest at the 5-7.5 km level. Schumacher and Houze used Kwajalein ground validation data to show that the TRMM PR misses only 2.3% of the near surface rainfall but does not see 46% of the area where rain occurs, because of the 17 dBZ PR reflectivity threshold. Houze discusses how the TRMM data extend earlier tropical convective studies to global coverage of the vertical profile of latent heating via the TRMM PR''s ability to distinguish and globally map convective and stratiform precipitation. Process studies carried out under this TRMM grant Yuter and Houze and Yuter et al. studied ship-based radar observations in the tropical eastern Pacific ITCZ. The eastern Pacific precipitation process is different from the western Pacific (the COARE area); rain is heavier but the clouds are not as deep. These process differences may affect the ability to remotely sense precipitation accurately in the two regions. Satellite microwave data were able to detect the precipitation as long as the rain areas exceeded 10 km in dimension. However, the microwave algorithms had difficulty distinguishing light and heavy rain. Satellite IR algorithms only partially detected the rain because the tops of the smaller and more short-lived rain clouds were sometimes not cold enough for the IR algorithms to detect them. Houze et al. focused on the west Pacific precipitating mesoscale convective systems and showed how their precipitation and internal dynamics vary in relation to the slowly varying large-scale heating-driven circulation, which has a structure described by a combination of Kelvin and Rossby wave response to the near-equatorial convective heating constituted by the mesoscale convective systems. Ship and

  6. Ultrasonic test application in geothermal heat exchangers and civil works to monitor the grout integrity (TUC)

    NASA Astrophysics Data System (ADS)

    Mandrone, Giuseppe; Comina, Cesare; Giuliani, Andrea

    2013-04-01

    The working of a vertical geothermal probe, realized with a pipe U-tubes of high-density-polyethylene (HDPE) inserted in a grouted boreholes, is linked to the possibility to exchange heat with the surrounding soil. The concrete material useful for the borehole heat exchangers allows to satisfy a double purpose: sealing the polyethylene pipes from groundwater in the event of loss and increasing the thermal properties of the whole probe to provide a greater interaction with the underground. If this operation is not performed properly, the complete system may not satisfy the required heat demand, even with a well dimensioned installation, wasting the value of the entire carried out work. This paper offers to a wide group of professional actors a possible ultrasonic method of a draft and economically sustainable investigation for the identification of defects that could be present in the cementation realized inside a geothermal probe, but also in the realization of sonic piles. The instrument used for this type of test (TUC - Test Ultrasonic Cementation) has been designed and tested by the technicians of AG3, a Spin Off Company of Torino University, in collaboration with 3DM Electric and PASI companies, then subjected to patenting procedure (Patent Pending TO2011A000036). The main innovative feature of this approach has been the miniaturization of the equipment, able to investigate the geothermal probes with U-tubes with standard dimension (the maximum overall dimensions of the instruments detectors is 26 mm), maintaining a sampling rate appropriate to investigate the cementation and the early centimetres of the surrounding soil. The processing of the recorded data was performed by a dedicated Matlab software. In the first part of the article is presented the calibration process, that it was carried out through ad hoc creation of two situations likely to be investigated, while in the second part the paper reports the results obtained by the application of the TUC

  7. Measuring the Heats of Water.

    ERIC Educational Resources Information Center

    Hunt, James L.; Tegart, Tracy L.

    1994-01-01

    Uses common equipment (tea kettle and vacuum bottles) to precisely measure the specific heat, latent heat of fusion, and latent heat of vaporization of water. Provides descriptions for all three experiments. (MVL)

  8. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    SciTech Connect

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  9. Condensation heat transfer

    NASA Astrophysics Data System (ADS)

    Rose, J. W.

    The paper gives a brief description of some of the better understood aspects of condensation heat transfer and includes discussion of the liquid-vapour interface, natural and forced convection laminar film condensation and dropwise condensation.

  10. Turbine heat transfer

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.

    1982-01-01

    Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.

  11. HEATS: Thermal Energy Storage

    SciTech Connect

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  12. Heat pipe manufacturing study

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1974-01-01

    Heat pipe manufacturing methods are examined with the goal of establishing cost effective procedures that will ultimately result in cheaper more reliable heat pipes. Those methods which are commonly used by all heat pipe manufacturers have been considered, including: (1) envelope and wick cleaning, (2) end closure and welding, (3) mechanical verification, (4) evacuation and charging, (5) working fluid purity, and (6) charge tube pinch off. The study is limited to moderate temperature aluminum and stainless steel heat pipes with ammonia, Freon-21 and methanol working fluids. Review and evaluation of available manufacturers techniques and procedures together with the results of specific manufacturing oriented tests have yielded a set of recommended cost-effective specifications which can be used by all manufacturers.

  13. Opportunity's Heat Shield Scene

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image from NASA's Mars Exploration Rover Opportunity reveals the scene of the rover's heat shield impact. In this view, Opportunity is approximately 130 meters (427 feet) away from the device that protected it while hurtling through the martian atmosphere.

    The rover spent 36 sols investigating how the severe heating during entry through the atmosphere affected the heat shield. The most obvious is the fact that the heat shield inverted upon impact.

    This is the panoramic camera team's best current attempt at generating a true-color view of what this scene would look like if viewed by a human on Mars. It was generated from a mathematical combination of six calibrated, left-eye panoramic camera images acquired around 1:50 p.m. local solar time on Opportunity's sol 322 (Dec. 19, 2004) using filters ranging in wavelengths from 430 to 750 nanometers.

  14. HEAT TRANSFER METHOD

    DOEpatents

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  15. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    Cook, R. T.

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper-base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and resuable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper-base alloy material adjacent to the fuel coolant. High-pressure methane cooling and coking characteristics were recently evaluated using stainless-steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper-base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  16. Methane heat transfer investigation

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

  17. Composite heat damage assessment

    SciTech Connect

    Janke, C.J.; Wachter, E.A.; Philpot, H.E.; Powell, G.L.

    1993-12-31

    The effects of heat damage were determined on the residual mechanical, physical, and chemical properties of IM6/3501-6 laminates, and potential nondestructive techniques to detect and assess material heat damage were evaluated. About one thousand preconditioned specimens were exposed to elevated temperatures, then cooled to room temperature and tested in compression, flexure, interlaminar shear, shore-D hardness, weight loss, and change in thickness. Specimens experienced significant and irreversible reduction in their residual properties when exposed to temperatures exceeding the material upper service temperature of this material (350{degrees}F). The Diffuse Reflectance Infrared Fourier Transform and Laser-Pumped Fluorescence techniques were found to be capable of rapid, in-service, nondestructive detection and quantitation of heat damage in IM6/3501- 6. These techniques also have the potential applicability to detect and assess heat damage effects in other polymer matrix composites.

  18. Greywater heat exchanger

    SciTech Connect

    Holmberg, D.

    1983-11-21

    A kilowatt meter and water meter were installed to monitor pregreywater usage. The design considerations, the heat exchanger construction and installation, and the monitoring of usage levels are described.

  19. Solar-Heated Gasifier

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1985-01-01

    Catalytic coal and biomass gasifer system heated by solar energy. Sunlight from solar concentrator focused through quartz window onto ceramic-honeycomb absorber surface, which raises temperature of reactant steam, fluidizing gas, and reactor walls.

  20. Heat Pipe Systems

    NASA Astrophysics Data System (ADS)

    1988-01-01

    Solar Fundamentals, Inc.'s hot water system employs space-derived heat pipe technology. It is used by a meat packing plant to heat water for cleaning processing machinery. Unit is complete system with water heater, hot water storage, electrical controls and auxiliary components. Other than fans and a circulating pump, there are no moving parts. System's unique design eliminates problems of balancing, leaking, corroding, and freezing.

  1. Heat flux limiting sleeves

    DOEpatents

    Harris, William G.

    1985-01-01

    A heat limiting tubular sleeve extending over only a portion of a tube having a generally uniform outside diameter, the sleeve being open on both ends, having one end thereof larger in diameter than the other end thereof and having a wall thickness which decreases in the same direction as the diameter of the sleeve decreases so that the heat transfer through the sleeve and tube is less adjacent the large diameter end of the sleeve than adjacent the other end thereof.

  2. Geo-heat center

    SciTech Connect

    Lienau, P.J.; Fornes, A.O.

    1983-01-01

    A summary is presented of the Geo-Heat Center from its origin in 1974. The GHC has been involved in a number of studies and projects. A few of these are: construction of a greenhouse based on geothermal applications, an aquaculture project raising freshwater Malaysian prawns, an investigation of ground water characteristics and corrosion problems associated with the use of geothermal waters, and the assessment of the potential utilization of direct-heat applications of geothermal energy for an agribusiness.

  3. Dehumidifying Heat Pipe

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K.

    1993-01-01

    U-shaped heat pipe partly dehumidifies air leaving air conditioner. Fits readily in air-handling unit of conditioner. Evaporator and condenser sections of heat pipe consist of finned tubes in comb pattern. Each tube sealed at one end and joined to manifold at other. Sections connected by single pipe carrying vapor to condenser manifold and liquid to evaporator manifold. Simple on/off or proportional valve used to control flow of working fluid. Valve actuated by temperature/humidity sensor.

  4. Heat Switches for ADRs

    NASA Technical Reports Server (NTRS)

    DiPirro, M. J.; Shirron, P. J.

    2014-01-01

    Heat switches are key elements in the cyclic operation of Adiabatic Demagnetization Refrigerators (ADRs). Several of the types of heat switches that have been used for ADRs are described in this paper. Key elements in selection and design of these switches include not only ON/OFF switching ratio, but also method of actuation, size, weight, and structural soundness. Some of the trade-off are detailed in this paper.

  5. Solar heat transport fluid

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The progress made on the development and delivery of noncorrosive fluid subsystems is reported. These subsystems are to be compatible with closed-loop solar heating or combined heating and hot water systems. They are also to be compatible with both metallic and non-metallic plumbing systems. At least 100 gallons of each type of fluid recommended by the contractor will be delivered under the contract. The performance testing of a number of fluids is described.

  6. Freezable heat pipe

    DOEpatents

    Ernst, Donald M.; Sanzi, James L.

    1981-02-03

    A heat pipe whose fluid can be repeatedly frozen and thawed without damage to the casing. An additional part is added to a conventional heat pipe. This addition is a simple porous structure, such as a cylinder, self-supporting and free standing, which is dimensioned with its diameter not spanning the inside transverse dimension of the casing, and with its length surpassing the depth of maximum liquid.

  7. Heat exchange apparatus

    DOEpatents

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  8. Microtube Strip Heat Exchanger

    SciTech Connect

    Doty, F.D.

    1990-12-27

    Doty Scientific (DSI) believes their Microtube-Strip Heat Exchanger will contribute significantly to (a) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (b) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (c) high-efficiency cryogenic gas separation schemes for CO{sub 2} removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98%, and relative pressure drops below 0.1% with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8-10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means. 7 refs., 9 figs. 1 tab. (CK)

  9. Heat pipe cooled power magnetics

    NASA Technical Reports Server (NTRS)

    Chester, M. S.

    1979-01-01

    A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.

  10. Solar dynamic heat receiver technology

    NASA Technical Reports Server (NTRS)

    Sedgwick, Leigh M.

    1991-01-01

    A full-size, solar dynamic heat receiver was designed to meet the requirements specified for electrical power modules on the U.S. Space Station, Freedom. The heat receiver supplies thermal energy to power a heat engine in a closed Brayton cycle using a mixture of helium-xenon gas as the working fluid. The electrical power output of the engine, 25 kW, requires a 100 kW thermal input throughout a 90 minute orbit, including when the spacecraft is eclipsed for up to 36 minutes from the sun. The heat receiver employs an integral thermal energy storage system utilizing the latent heat available through the phase change of a high-temperature salt mixture. A near eutectic mixture of lithium fluoride and calcium difluoride is used as the phase change material. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification. Fabrication of the receiver is complete and it was delivered to NASA for verification testing in a simulated low-Earth-orbit environment. This document reviews the receiver design and describes its fabrication history. The major elements required to operate the receiver during testing are also described.

  11. Improved Thin, Flexible Heat Pipes

    NASA Technical Reports Server (NTRS)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  12. Radial flow heat exchanger

    DOEpatents

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  13. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  14. Conducting the Heat

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Heat conduction plays an important role in the efficiency and life span of electronic components. To keep electronic components running efficiently and at a proper temperature, thermal management systems transfer heat generated from the components to thermal surfaces such as heat sinks, heat pipes, radiators, or heat spreaders. Thermal surfaces absorb the heat from the electrical components and dissipate it into the environment, preventing overheating. To ensure the best contact between electrical components and thermal surfaces, thermal interface materials are applied. In addition to having high conductivity, ideal thermal interface materials should be compliant to conform to the components, increasing the surface contact. While many different types of interface materials exist for varying purposes, Energy Science Laboratories, Inc. (ESLI), of San Diego, California, proposed using carbon velvets as thermal interface materials for general aerospace and electronics applications. NASA s Johnson Space Center granted ESLI a Small Business Innovation Research (SBIR) contract to develop thermal interface materials that are lightweight and compliant, and demonstrate high thermal conductance even for nonflat surfaces. Through Phase II SBIR work, ESLI created Vel-Therm for the commercial market. Vel-Therm is a soft, carbon fiber velvet consisting of numerous high thermal conductivity carbon fibers anchored in a thin layer of adhesive. The velvets are fabricated by precision cutting continuous carbon fiber tows and electrostatically flocking the fibers into uncured adhesive, using proprietary techniques.

  15. Convective heat flow probe

    DOEpatents

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  16. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  17. Intrinsically irreversible heat engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  18. Human heat adaptation.

    PubMed

    Taylor, Nigel A S

    2014-01-01

    In this overview, human morphological and functional adaptations during naturally and artificially induced heat adaptation are explored. Through discussions of adaptation theory and practice, a theoretical basis is constructed for evaluating heat adaptation. It will be argued that some adaptations are specific to the treatment used, while others are generalized. Regarding ethnic differences in heat tolerance, the case is put that reported differences in heat tolerance are not due to natural selection, but can be explained on the basis of variations in adaptation opportunity. These concepts are expanded to illustrate how traditional heat adaptation and acclimatization represent forms of habituation, and thermal clamping (controlled hyperthermia) is proposed as a superior model for mechanistic research. Indeed, this technique has led to questioning the perceived wisdom of body-fluid changes, such as the expansion and subsequent decay of plasma volume, and sudomotor function, including sweat habituation and redistribution. Throughout, this contribution was aimed at taking another step toward understanding the phenomenon of heat adaptation and stimulating future research. In this regard, research questions are posed concerning the influence that variations in morphological configuration may exert upon adaptation, the determinants of postexercise plasma volume recovery, and the physiological mechanisms that modify the cholinergic sensitivity of sweat glands, and changes in basal metabolic rate and body core temperature following adaptation.

  19. Convective heat flow probe

    DOEpatents

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  20. Chimney heat exchanger

    SciTech Connect

    Whiteley, I.C.

    1981-09-01

    A heat exchanger for installation on the top of a chimney of a building includes a housing having a lower end receiving the top of the chimney and an upper end with openings permitting the escape of effluent from the chimney and a heat exchanger assembly disposed in the housing including a central chamber and a spirally arranged duct network defining an effluent spiral path between the top of the chimney and the central chamber and a fresh air spiral path between an inlet disposed at the lower end of the housing and the central chamber, the effluent and fresh air spiral paths being in heat exchange relationship such that air passing through the fresh air spiral path is heated by hot effluent gases passing upward through the chimney and the effluent spiral path for use in heating the building. A pollution trap can be disposed in the central chamber of the heat exchanger assembly for removing pollutants from the effluent, the pollution trap including a rotating cage carrying pumice stones for absorbing pollutants from the effluent with the surface of the pumice gradually ground off to reveal fresh stone as the cage rotates.

  1. Magnetic heat pump design

    NASA Astrophysics Data System (ADS)

    Kirol, L. D.; Dacus, M. W.

    1988-03-01

    Heat pumps utilizing the magnetocaloric effect offer a potentially attractive alternative to conventional heat pumps and refrigerators. Many physical configurations of magnetic heat pumps are possible. Major classes include those requiring electrical energy input and those with mechanical energy input. Mechanical energy is used to move magnets, working material, or magnetic shielding. Each type of mechanical magnetic heat pump can be built in a rotary (recuperative) or reciprocal (regenerative) configuration. Machines with electrical energy input utilize modulation of the magnetic field to cause working material to execute the desired thermodynamic cycle, and can also be recuperative or regenerative. Recuperative rotary heat pumps in which working material is moved past stationary magnets is the preferred configuration. Regenerative devices suffer performance degradation from temperature change of regenerator material and mixing and conduction in the regenerator. Field modulated cycles are not practical due to ac losses in superconducting magnets. Development of methods for recuperator fluid pumping is the major challenge in design of rotary recuperative devices. Several pumping options are presented, and the design of a bench scale heat pump described.

  2. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  3. Performance Analysis of a Thermoelectric Solar Collector Integrated with a Heat Pump

    NASA Astrophysics Data System (ADS)

    Lertsatitthanakorn, C.; Jamradloedluk, J.; Rungsiyopas, M.; Therdyothin, A.; Soponronnarit, S.

    2013-07-01

    A novel heat pump system is proposed. A thermoelectric solar collector was coupled to a solar-assisted heat pump (TESC-HP) to work as an evaporator. The cooling effect of the system's refrigerant allowed the cold side of the system's thermoelectric modules to work at lower temperature, improving the conversion efficiency. The TESC-HP system mainly consisted of transparent glass, an air gap, an absorber plate that acted as a direct expansion-type collector/evaporator, an R-134a piston-type hermetic compressor, a water-cooled plate-type condenser, thermoelectric modules, and a water storage tank. Test results indicated that the TESC-HP has better coefficient of performance (COP) and conversion efficiency than the separate units. For the meteorological conditions in Mahasarakham, the COP of the TESC-HP system can reach 5.48 when the average temperature of 100 L of water is increased from 28°C to 40°C in 60 min with average ambient temperature of 32.5°C and average solar intensity of 815 W/m2, whereas the conversion efficiency of the TE power generator was around 2.03%.

  4. Integration and software for thermal test of heat rate sensors. [space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Shrider, K. R.

    1982-01-01

    A minicomputer controlled radiant test facility is described which was developed and calibrated in an effort to verify analytical thermal models of instrumentation islands installed aboard the space shuttle external tank to measure thermal flight parameters during ascent. Software was provided for the facility as well as for development tests on the SRB actuator tail stock. Additional testing was conducted with the test facility to determine the temperature and heat flux rate and loads required to effect a change of color in the ET tank external paint. This requirement resulted from the review of photographs taken of the ET at separation from the orbiter which showed that 75% of the external tank paint coating had not changed color from its original white color. The paint on the remaining 25% of the tank was either brown or black, indicating that it had degraded due to heating or that the spray on form insulation had receded in these areas. The operational capability of the facility as well as the various tests which were conducted and their results are discussed.

  5. Optimizing Sustainable Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  6. Passive thermosyphon solar heating and cooling module with supplementary heating

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A collection of three quarterly reports from Sigma Research, Inc., covering progress and status from January through September 1977 are presented. Three heat exchangers are developed for use in a solar heating and cooling system for installation into single-family dwellings. Each exchanger consists of one heating and cooling module and one submerged electric water heating element.

  7. Heat exchanger device and method for heat removal or transfer

    SciTech Connect

    Koplow, Jeffrey P

    2015-03-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  8. Heat exchanger device and method for heat removal or transfer

    SciTech Connect

    Koplow, Jeffrey P.

    2015-12-08

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  9. Heat exchanger device and method for heat removal or transfer

    SciTech Connect

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  10. Latent heat sink in soil heat flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  11. Heat exchanger device and method for heat removal or transfer

    DOEpatents

    Koplow, Jeffrey P.

    2012-07-24

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  12. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, William R.; Cassano, Anthony A.; Dunbobbin, Brian R.; Rao, Pradip; Erickson, Donald C.

    1986-01-01

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange.

  13. Cascade heat recovery with coproduct gas production

    DOEpatents

    Brown, W.R.; Cassano, A.A.; Dunbobbin, B.R.; Rao, P.; Erickson, D.C.

    1986-10-14

    A process for the integration of a chemical absorption separation of oxygen and nitrogen from air with a combustion process is set forth wherein excess temperature availability from the combustion process is more effectively utilized to desorb oxygen product from the absorbent and then the sensible heat and absorption reaction heat is further utilized to produce a high temperature process stream. The oxygen may be utilized to enrich the combustion process wherein the high temperature heat for desorption is conducted in a heat exchange preferably performed with a pressure differential of less than 10 atmospheres which provides considerable flexibility in the heat exchange. 4 figs.

  14. Role of radiogenic heat generation in surface heat flow formation

    NASA Astrophysics Data System (ADS)

    Khutorskoi, M. D.; Polyak, B. G.

    2016-03-01

    Heat generation due to decay of long-lived radioactive isotopes is considered in the Earth's crust of the Archean-Proterozoic and Paleozoic provinces of Eurasia and North America. The heat flow that forms in the mantle is calculated as the difference between the heat flow observed at the boundary of the solid Earth and radiogenic heat flow produced in the crust. The heat regime in regions with anomalously high radiogenic heat generation is discussed. The relationship between various heat flow components in the Precambrian and Phanerozoic provinces has been comparatively analyzed, and the role of erosion of the surfaceheat- generating layer has been estimated.

  15. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  16. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate

    PubMed Central

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558

  17. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction.

    PubMed

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-12

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 (o)C) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  18. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    PubMed Central

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  19. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    NASA Astrophysics Data System (ADS)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-11-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450-1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society.

  20. Full surface local heat transfer coefficient measurements in a model of an integrally cast impingement cooling geometry

    SciTech Connect

    Gillespie, D.R.H.; Wang, Z.; Ireland, P.T.; Kohler, S.T.

    1998-01-01

    Cast impingement cooling geometries offer the gas turbine designer higher structural integrity and improved convective cooling when compared to traditional impingement cooling systems, which rely on plate inserts. In this paper, it is shown that the surface that forms the jets contributes significantly to the total cooling. Local heat transfer coefficient distributions have been measured in a model of an engine wall cooling geometry using the transient heat transfer technique. The method employs temperature-sensitive liquid crystals to measure the surface temperature of large-scale perspex models during transient experiments. Full distributions of local Nusselt number on both surfaces of the impingement plate, and on the impingement target plate, are presented at engine representative Reynolds numbers. The relative effects of the impingement plate thermal boundary condition and the coolant supply temperature on the target plate heat transfer have been determined by maintaining an isothermal boundary condition at the impingement plate during the transient tests. The results are discussed in terms of the interpreted flow field.

  1. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    PubMed

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-04-26

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion.

  2. Efficiently-cooled plasmonic amorphous silicon solar cells integrated with a nano-coated heat-pipe plate.

    PubMed

    Zhang, Yinan; Du, Yanping; Shum, Clifford; Cai, Boyuan; Le, Nam Cao Hoai; Chen, Xi; Duck, Benjamin; Fell, Christopher; Zhu, Yonggang; Gu, Min

    2016-01-01

    Solar photovoltaics (PV) are emerging as a major alternative energy source. The cost of PV electricity depends on the efficiency of conversion of light to electricity. Despite of steady growth in the efficiency for several decades, little has been achieved to reduce the impact of real-world operating temperatures on this efficiency. Here we demonstrate a highly efficient cooling solution to the recently emerging high performance plasmonic solar cell technology by integrating an advanced nano-coated heat-pipe plate. This thermal cooling technology, efficient for both summer and winter time, demonstrates the heat transportation capability up to ten times higher than those of the metal plate and the conventional wickless heat-pipe plates. The reduction in temperature rise of the plasmonic solar cells operating under one sun condition can be as high as 46%, leading to an approximate 56% recovery in efficiency, which dramatically increases the energy yield of the plasmonic solar cells. This newly-developed, thermally-managed plasmonic solar cell device significantly extends the application scope of PV for highly efficient solar energy conversion. PMID:27113558

  3. Integrated use of solar panels and a waste heat scavenger. Progress report

    SciTech Connect

    Jarrell, J.H.; Miller, B.R.; Smathers, W.M. Jr.

    1980-01-01

    The objectives of this project were to: (1) install energy measurement devices on commercially available solar collectors and a heat scavenger attached to the dairy refrigeration system; and (2) make the results of the demonstration available to other dairy farmers. The objectives have been accomplished. Measurement devices have been installed and are currently establishing a data base on system performance. A demonstration for dairy farmers was sponsored by the Agricultural Economics Department and the Agricultural Engineering Extension Department of the University of Georgia. The demonstration and associated program was held in November of 1980 at Monroe, Georgia which is near the demonstration dairy. A tour of the dairy followed presentation of energy related topics. About 60 farmers attended this program. A copy of the program and a summary of experience with the system are attached.

  4. Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress.

    PubMed

    Song, J; Xiao, K; Ke, Y L; Jiao, L F; Hu, C H; Diao, Q Y; Shi, B; Zou, X T

    2014-03-01

    The current study investigated the efficacy of a probiotic mixture on ameliorating heat stress-induced impairment of intestinal microflora, morphology, and barrier integrity in broilers. The probiotic mixture contained Bacillus licheniformis, Bacillus subtilis, and Lactobacillus plantarum. Three hundred sixty 21-d-old Ross 308 male broilers were allocated in 4 experimental treatments, each of which was replicated 6 times with 15 broilers per replicate. A 2 × 2 factorial design was used in the study, and the main factors were composed of diet (basal diet or addition of 1.5 g/kg of probiotic mixture) and temperature (thermoneutral zone or heat stress). From d 22 to 42, birds were either raised in a thermoneutral zone (22°C) or subjected to cyclic heat stress by exposing them to 33°C for 10 h (from 0800 to 1800) and 22°C from 1800 to 0800. Compared with birds kept in the thermoneutral zone, birds subjected to heat stress had reduced ADG and ADFI; lower viable counts of Lactobacillus and Bifidobacterium and increased viable counts of coliforms and Clostridium in small intestinal contents; shorter jejunal villus height, deeper crypt depth, and lower ratio of villus height to crypt depth; decreased jejunal transepithelial electrical resistance and a higher level of jejunal paracellular permeability of fluorescein isothiocyanate dextran 4 kDa; and downregulated protein levels of occludin and zonula occludens-1 (P < 0.05). Supplemental probiotics increased (P < 0.05) small intestinal Lactobacillus and Bifidobacterium, jejunal villus height, protein level of occludin, and decreased (P < 0.05) feed to gain ratio and small intestinal coliforms. These results indicate that dietary addition of probiotic mixture was effective in partially ameliorating intestinal barrier function. But no temperature × diet interaction was observed in the present study, revealing that the supplemented probiotics had the same effect at both temperatures.

  5. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized.

  6. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-02-28

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein.

  7. Heat exchanger restart evaluation

    SciTech Connect

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-03-18

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein.

  8. Downhole heat exchangers

    SciTech Connect

    Culver, G.; Lund, J.W.

    1999-09-01

    The downhole heat exchanger (DHE) eliminates the problem of disposal of geothermal fluid, since only heat is taken from the well. The exchanger consists of a system of pipes or tubes suspended in the well through which clean secondary water is pumped or allowed to circulate by natural convection. These systems offer substantial economic savings over surface heat exchangers where a single-well system is adequate (typically less than 0.8 MWt, with well depths up to about 500 ft) and may be economical under certain conditions at well depths to 1500 ft. Several designs have proven successful; but, the most popular are a simple hairpin loop or multiple loops of iron pipe (similar to the tubes in a U-tube and shell exchanger) extending to near the well bottom. An experimental design consisting of multiple small tubes with headers at each end suspended just below the water surface appears to offer economic and heating capacity advantages. The paper describes design and construction details and New Zealand`s experience with downhole heat exchangers.

  9. Heat exchanger-accumulator

    DOEpatents

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  10. Chemical heat storage

    SciTech Connect

    Langford, C.A.; Jones, J.; Riddell, W.D.

    1984-08-28

    The present invention uses a dessicant and a means of drying out or changing the system by the use of off-peak electric power releasing. The heat is then released as required during periods of peak electric power by the reintroduction of moisture. The system includes a source of air and a fan for circulating the air in a circulation system including an outgoing loop and return loop for the circulating air. Selectively operatable evaporator heat exchanger, air wetting apparatus, and air heating apparatus are disposed in the outgoing loop of the circulating air. A dessicant-containing enclosure used to provide heat storage, and having air inlet means there-into from outgoing loop the circulating and an air outlet means therefrom to the return loop of the circulating air is disposed in the circulation system. The structure within the enclosure is such that there is a flow of air through a direct, unencumbered path out of contact with a major amount of the dessicant and by a secondary permeating flow through is dessicant. Selectively operable condenser heat exchanger apparatus is disposed in the return loop of the circulating air. Finally, selectively operatable air vanes are disposed in the return loop of the circulating air for circulating air through, e.g. the force air furnace; or recirculating air through the circulating system.

  11. Holistic Modeling, Design & Analysis of Integrated Stirling and Auxiliary Clean Energy Systems for Combined Heat and Power Applications

    NASA Astrophysics Data System (ADS)

    Nayak, Amrit Om

    The research revolves around the development of a model to design and analyze Stirling systems. Lack of a standard approach to study Stirling systems and difficulty in generalizing existing approaches pose stiff challenges. A stable mathematical model (integrated second order adiabatic and dynamic model) is devised and validated for general use. The research attempts to design compact combined heat and power (CHP) system to run on multiple biomass fuels and solar energy. Analysis is also carried out regarding the design of suitable auxiliary systems like thermal energy storage system, biomass moisture removal system and Fresnel solar collector for the CHP Stirling system.

  12. Fault-Tolerant Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  13. Experiments Demonstrate Geothermal Heating Process

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  14. Flat-plate heat pipe

    NASA Technical Reports Server (NTRS)

    Marcus, B. D.; Fleischman, G. L. (Inventor)

    1977-01-01

    Flat plate (vapor chamber) heat pipes were made by enclosing metal wicking between two capillary grooved flat panels. These heat pipes provide a unique configuration and have good capacity and conductance capabilities in zero gravity. When these flat plate vapor chamber heat pipes are heated or cooled, the surfaces are essentially isothermal, varying only 3 to 5 C over the panel surface.

  15. Liquid/liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1980-01-01

    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  16. Shuttle reentry aerodynamic heating test

    NASA Technical Reports Server (NTRS)

    Pond, J. E.; Mccormick, P. O.; Smith, S. D.

    1971-01-01

    The research for determining the space shuttle aerothermal environment is reported. Brief summaries of the low Reynolds number windward side heating test, and the base and leeward heating and high Reynolds number heating test are included. Also discussed are streamline divergence and the resulting effect on aerodynamic heating, and a thermal analyzer program that is used in the Thermal Environment Optimization Program.

  17. Heat Pipe Blocks Return Flow

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1982-01-01

    Metal-foil reed valve in conventional slab-wick heat pipe limits heat flow to one direction only. With sink warmer than source, reed is forced closed and fluid returns to source side through annular transfer wick. When this occurs, wick slab on sink side of valve dries out and heat pipe ceases to conduct heat.

  18. Guide to Geothermal Heat Pumps

    SciTech Connect

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  19. Rotary Joint for Heat Transfer

    NASA Technical Reports Server (NTRS)

    Shauback, R.

    1986-01-01

    Rotary joint exchanges heat between two heat pipes - one rotating and one stationary. Joint accommodates varying heat loads with little temperature drop across interface. According to concept, heat pipe enters center of disklike stationary section of joint. There, wicks in central artery of heat pipe separate into multiple strands that lead to concentric channels on rotaryinterface side of stationary disk. Thin layer of liquid sodium/potassium alloy carries heat from one member of rotary joint to other. Liquid conducts heat efficiently while permitting relative motion between members. Polypropylene rings contain liquid without interfering with rotation.

  20. Heat transfer fluids containing nanoparticles

    DOEpatents

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  1. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  2. Electrochemical heat engine

    DOEpatents

    Elliott, Guy R. B.; Holley, Charles E.; Houseman, Barton L.; Sibbitt, Jr., Wilmer L.

    1978-01-01

    Electrochemical heat engines produce electrochemical work, and mechanical motion is limited to valve and switching actions as the heat-to-work cycles are performed. The electrochemical cells of said heat engines use molten or solid electrolytes at high temperatures. One or more reactions in the cycle will generate a gas at high temperature which can be condensed at a lower temperature with later return of the condensate to electrochemical cells. Sodium, potassium, and cesium are used as the working gases for high temperature cells (above 600 K) with halogen gases or volatile halides being used at lower temperature. Carbonates and halides are used as molten electrolytes and the solid electrolyte in these melts can also be used as a cell separator.

  3. Microgravity condensing heat exchanger

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  4. Induction heating coupler

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Copeland, Carl E. (Inventor); Swaim, Robert J. (Inventor); Coultrip, Robert H. (Inventor); Johnston, David F. (Inventor); Phillips, W. Morris (Inventor); Johnson, Samuel D. (Inventor); Dinkins, James R. (Inventor); Buckley, John D. (Inventor)

    1994-01-01

    An induction heating device includes a handle having a hollow interior and two opposite ends, a wrist connected to one end of the handle, a U-shaped pole piece having two spaced apart ends, a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil, a head connected to the wrist and including a housing for receiving the U-shaped pole piece, the two spaced apart ends of the pole piece extending outwardely beyond the housing, and a power source connected to the tank circuit. When the tank circuit is energized and a susceptor is placed in juxtaposition to the ends of the U-shaped pole piece, the susceptor is heated by induction heating due to magnetic flux passing between the two ends of the pole piece.

  5. Direct heating surface combustor

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shire, L. I.; Mroz, T. S. (Inventor)

    1978-01-01

    The combustor utilizes a non-adiabatic flame to provide low-emission combustion for gas turbines. A fuel-air mixture is directed through a porous wall, the other side of which serves as a combustion surface. A radiant heat sink disposed adjacent to and spaced from the combustion surface controls the combustor flame temperature in order to prevent the formation of oxides of nitrogen. A secondary air flow cools the heat sink. Additionally, up to 100% of secondary air flow is mixed with the combustion products at the direct heating surface combustor to dilute such products thereby reducing exit temperature. However, if less than 100% secondary air is mixed to the combustor, the remainder may be added to the combustion products further downstream.

  6. Externally heated thermal battery

    NASA Astrophysics Data System (ADS)

    Pracchia, Louis; Vetter, Ronald F.; Rosenlof, Darwin

    1991-04-01

    A thermal battery activated by external heat comprising an anode (e.g., composed of a lithium-aluminum alloy), a cathode (e.g., composed of iron disulfide), and an electrolyte (e.g., a lithium chloride-potassium chloride eutectic) with the electrolyte inactive at ambient temperature but activated by melting at a predetermined temperature when exposed to external heating is presented. The battery can be used as a sensor or to ignite pyrotechnic and power electronic devices in a system for reducing the hazard of ordnance exposed to detrimental heating. A particular application is the use of the battery to activate a squib to function in conjunction with one or more other components to vent an ordnance case in order to prevent its explosion in a fire.

  7. Modular heat exchanger

    DOEpatents

    Culver, Donald W.

    1978-01-01

    A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

  8. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Krech, R. H.

    1980-01-01

    The development of computer codes for the thrust chamber of a rocket of which the propellant gas is heated by a CW laser beam was investigated. The following results are presented: (1) simplified models of laser heated thrusters for approximate parametric studies and performance mapping; (3) computer programs for thrust chamber design; and (3) shock tube experiment to measure absorption coefficients. Two thrust chamber design programs are outlined: (1) for seeded hydrogen, with both low temperature and high temperature seeds, which absorbs the laser radiation continuously, starting at the inlet gas temperature; and (2) for hydrogen seeded with cesium, in which a laser supported combustion wave stands near the gas inlet, and heats the gas up to a temperature at which the gas can absorb the laser energy.

  9. RF pulsed heating

    NASA Astrophysics Data System (ADS)

    Pritzkau, David Peace

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE011 mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 μs pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE012 mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 × 106 pulses. The second run was executed at a calculated temperature rise of 82 K for 86 × 106 pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  10. RF Pulsed Heating

    NASA Astrophysics Data System (ADS)

    Pritzkau, D. P.

    2002-01-01

    RF pulsed heating is a process by which a metal is heated from magnetic elds on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic eld on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE011 mode at a resonant frequency of 11:424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1:5 s perent surface preparations.he cavity are designed to A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE012 mode to steady-state in the cavity at 18 GHz and measuring the change in re ected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 106 pulses. The second run was executed at a calculated temperature rise of 82 K for 86106 pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  11. Two phase heat exchanger symposium

    SciTech Connect

    Pearson, J.T.; Kitto, J.B.

    1985-01-01

    This book compiles the papers presented at the conference on the subject of heat transfer mechanics and instrumentation. Theoretical and experimental data are provided in each paper. The topics covered are: temperature effects of steel; optimization of design of two-phase heat exchanges; thermosyphon system and low grade waste heat recovery; condensation heat transfer in plate heat exchangers; forced convective boiling; and performance analysis of full bundle submerged boilers.

  12. Heat distribution ceramic processing method

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2001-01-01

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  13. Solar industrial process heat

    SciTech Connect

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  14. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  15. Precision Heating Process

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A heat sealing process was developed by SEBRA based on technology that originated in work with NASA's Jet Propulsion Laboratory. The project involved connecting and transferring blood and fluids between sterile plastic containers while maintaining a closed system. SEBRA markets the PIRF Process to manufacturers of medical catheters. It is a precisely controlled method of heating thermoplastic materials in a mold to form or weld catheters and other products. The process offers advantages in fast, precise welding or shape forming of catheters as well as applications in a variety of other industries.

  16. Tidal heating of Ariel

    NASA Technical Reports Server (NTRS)

    Tittemore, William C.

    1990-01-01

    During evolution through the 4:1 commensurability early in the history of the Uranian system, over 3.8 billion years ago, tidal heating may have raised the internal temperature of Ariel by up to about 20 K; the internal temperature of Ariel may already have been high in virtue of both accretional and radiogenic heating. The additional increase in Ariel's temperature could then have triggered the geological activity that led to a late resurfacing, by decreasing lithospheric thickness and exacerbating thermal stresses on it to the point where observed cracks and faults formed.

  17. Space heating stove

    SciTech Connect

    Murch, C.J.

    1983-06-14

    An efficient space heating stove has a combustion chamber substantially completely enclosed with insulating firebrick whereby the operating temperatures within the combustion chamber can be maintained above the ignition temperature of the fuel being consumed. Combustible gases liberated by the wood fuel are burned as they pass through a perforated, hollow, tubular member located within the combustion chamber and through which the combustible gases must pass before they are exhausted from the stove. Fuel within the combustion chamber is efficiently burned before useful heat energy is extracted.

  18. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  19. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  20. Solar liquid heating system

    SciTech Connect

    Finn, D.J.

    1990-05-08

    This patent describes a solar heater for heating liquids. It comprises: a heatable bag, a support means supporting the heatable bag, a heatable body of liquid in the heatable bag, the heatable bag being disposed in sunlight so as to become heated thereby, a topside gas bag above the heatable bag, the topside gas bag containing a gas for serving as insulation, a topside fluid bag disposed above the topside gas bag and containing a fluid for further insulation. The bags being substantially gasproof and waterproof and also being flexible whereby the gravity pull on the bags and the flexibility thereof causes the upper sides of the bags to seek horizontal levels.

  1. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MaCarthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  2. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator wherein each thermographic layer comprises a plurality of respective thermographic phosphors. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  3. Optical heat flux gauge

    DOEpatents

    Noel, Bruce W.; Borella, Henry M.; Cates, Michael R.; Turley, W. Dale; MacArthur, Charles D.; Cala, Gregory C.

    1991-01-01

    A heat flux gauge comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable.

  4. Heat exchanger panel

    NASA Technical Reports Server (NTRS)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  5. Ceramic heat recuperators for industrial heat recovery

    NASA Astrophysics Data System (ADS)

    Cleveland, J. J.; Gonzalez, J. M.; Kohnken, K. H.; Rebello, W. J.

    1980-08-01

    A cordierite (magnesium aluminum silicate) recuperator was designed for relatively small furnaces with firing rates of 0.3 MM to 0.6 MM Btu/h and with exhaust gas temperatures of 1500 F to 2600 F. Five demonstration programs were performed to determine the heat transfer performance of the device, establish the energy savings by recovery, demonstrate the durability of the ceramic core, determine the operating requirements of the burners and controls with recuperation, and establish the overall system costs and payback period. The recuperator is described and results of tests and measurements, system economics, and cost performance analyses are presented. The methodology is developed and techniques for impact analysis are described. Industrial applications are implied and a process flow diagram for smelting and refining primary copper is shown.

  6. Heat pipe cooling for scramjet engines

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1986-01-01

    Liquid metal heat pipe cooling systems have been investigated for the combustor liner and engine inlet leading edges of scramjet engines for a missile application. The combustor liner is cooled by a lithium-TZM molybdenum annular heat pipe, which incorporates a separate lithium reservoir. Heat is initially absorbed by the sensible thermal capacity of the heat pipe and liner, and subsequently by the vaporization and discharge of lithium to the atmosphere. The combustor liner temperature is maintained at 3400 F or less during steady-state cruise. The engine inlet leading edge is fabricated as a sodium-superalloy heat pipe. Cooling is accomplished by radiation of heat from the aft surface of the leading edge to the atmosphere. The leading edge temperature is limited to 1700 F or less. It is concluded that heat pipe cooling is a viable method for limiting scramjet combustor liner and engine inlet temperatures to levels at which structural integrity is greatly enhanced.

  7. Results of direct containment heating integral experiments at 1/40th scale at Argonne National Laboratory

    SciTech Connect

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-09-01

    A series of integral tests have been completed that investigate the effect of scale and containment atmosphere initial composition on Direct Containment Heating (DCH) phenomena at 1/40 linear scale. A portion of these experiments were performed as counterparts to integral experiments conducted at 1/10th linear scale at Sandia National Laboratories. The tests investigated DCH phenomena in a 1/40th scale mockup of Zion Nuclear Power Plant geometry. The test apparatus was a scaled down version of the SNL apparatus and included models of the reactor vessel lower head, containment cavity, instrument tunnel, lower subcompartment structures and the upper dome. A High Pressure Melt Ejection (HPME) was produced using steam as a blowdown gas and iron-alumina thermite with chromium as a core melt simulant. The results of the counterpart experiments indicated no effect of scale on debris/gas heat transfer and debris metal oxidation with steam. However, the tests indicated a slight effect of scale on hydrogen combustion, the results indicating slightly more efficient combustion with increasing scale. The experiments demonstrated the effectiveness of the subcompartment structures in trapping debris exiting the cavity and preventing it from reaching the upper dome. The test results also indicated that a 50% air -- 50% steam atmosphere prevented hydrogen combustion. However, a 50% air - 50% nitrogen did not prevent hydrogen combustion in a HPME with all other conditions being nominally the same.

  8. Integration of Thermoelectric Generators and Wood Stove to Produce Heat, Hot Water, and Electrical Power

    NASA Astrophysics Data System (ADS)

    Goudarzi, A. M.; Mazandarani, P.; Panahi, R.; Behsaz, H.; Rezania, A.; Rosendahl, L. A.

    2013-07-01

    Traditional fire stoves are characterized by low efficiency. In this experimental study, the combustion chamber of the stove is augmented by two devices. An electric fan can increase the air-to-fuel ratio in order to increase the system's efficiency and decrease air pollution by providing complete combustion of wood. In addition, thermoelectric generators (TEGs) produce power that can be used to satisfy all basic needs. In this study, a water-based cooling system is designed to increase the efficiency of the TEGs and also produce hot water for residential use. Through a range of tests, an average of 7.9 W was achieved by a commercial TEG with substrate area of 56 mm × 56 mm, which can produce 14.7 W output power at the maximum matched load. The total power generated by the stove is 166 W. Also, in this study a reasonable ratio of fuel to time is described for residential use. The presented prototype is designed to fulfill the basic needs of domestic electricity, hot water, and essential heat for warming the room and cooking.

  9. The heat pipe exchanger with controllable heat exchanging area

    NASA Astrophysics Data System (ADS)

    Oshiro, M.; Takasu, S.; Kurihara, M.; Taneda, K.; Nakamoto, T.; Nakayama, H.

    1984-03-01

    The heat transfer rate through the heat exchanger in an industrial boiler that burns heavy oils must be controlled so as not to decrease the exhaust gas temperature below the dew point of sulfuric acid. Two systems of heat pipe exchangers are examined: one controls the heat exchange area of the condenser section of the heat pipes and the other uses the variable conductance heat pipes. The characteristics of these two systems are described. The temperatures at various points and the gas quantity are plotted against the boiler loads. The maintainability and operational reliability of both systems are demonstrated.

  10. Heat management in aluminum/air batteries: Sources of heat

    NASA Astrophysics Data System (ADS)

    Patnaik, R. S. M.; Ganesh, S.; Ashok, G.; Ganesan, M.; Kapali, V.

    1994-07-01

    One of the problems with the aluminum/air battery is the generation of heat, during both idle and discharge periods. The main sources of heat are: (1) corrosion of the aluminum anode during the idle period; (2) inefficient, or less efficient, dissolution of anode during discharge; (3) Joule heat during discharge, and (4) non-uniform mass transfer during both discharge and idle periods. These components of heat act in a cumulative way because they are all interconnected. This paper addresses the basic reasons for the origin of these sources of heat. Suitable and practical remedial measures for the effective removal of such heat in the aluminum/air battery are suggested.

  11. Heat-transfer coefficients in agitated vessels. Latent heat models

    SciTech Connect

    Kumpinsky, E.

    1996-03-01

    Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.

  12. Heating element support clip

    DOEpatents

    Sawyer, William C.

    1995-01-01

    An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum.

  13. Heating element support clip

    DOEpatents

    Sawyer, W.C.

    1995-08-15

    An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum. 6 figs.

  14. High flux heat exchanger

    NASA Astrophysics Data System (ADS)

    Flynn, Edward M.; Mackowski, Michael J.

    1993-01-01

    This interim report documents the results of the first two phases of a four-phase program to develop a high flux heat exchanger for cooling future high performance aircraft electronics. Phase 1 defines future needs for high flux heat removal in advanced military electronics systems. The results are sorted by broad application categories: (1) commercial digital systems, (2) military data processors, (3) power processors, and (4) radar and optical systems. For applications expected to be fielded in five to ten years, the outlook is for steady state flux levels of 30-50 W/sq cm for digital processors and several hundred W/sq cm for power control applications. In Phase 1, a trade study was conducted on emerging cooling technologies which could remove a steady state chip heat flux of 100 W/sq cm while holding chip junction temperature to 90 C. Constraints imposed on heat exchanger design, in order to reflect operation in a fighter aircraft environment, included a practical lower limit on coolant supply temperature, the preference for a nontoxic, nonflammable, and nonfreezing coolant, the need to minimize weight and volume, and operation in an accelerating environment. The trade study recommended the Compact High Intensity Cooler (CHIC) for design, fabrication, and test in the final two phases of this program.

  15. Sudurnes Regional Heating Corp.

    SciTech Connect

    Lienau, P.J.

    1996-11-01

    The Svartsengi geothermal area is close to the town of Grindavik on the Rekjanes peninsula and is part of an active fissure swarm, lined with crater-rows and open fissures and faults. The high-temperature area has an area of 2 sq. km and shows only limited signs of geothermal activity at the surface. The reservoir, however, contains lots of energy and at least 8 wells supply the Svartsengi Power Plant with steam. The steam is not useable for domestic heating purposes so that heat exchangers are used to heat cold groundwater with the steam. Some steam is also used for producing 16.4 MW{sub e} of electrical power. The article shows the distribution system piping hot water to nine towns and the Keflavik International Airport. The effluent brine from the Svartsengi Plant is disposed of into a surface pond, called the Blue Lagoon, popular to tourists and people suffering from psoriasis and other forms of eczema seeking therapeutic effects from the silica rich brine. This combined power plant and regional district heating system (cogeneration) is an interesting and unique design for the application of geothermal energy.

  16. Heat pumps for industry

    NASA Astrophysics Data System (ADS)

    1991-09-01

    Research activities, both in the laboratory and in the field, confirm that heat pumps can improve energy efficiency and productivity for a multitude of process types. By using heat pumps, process industries can save significant amounts of energy and money and successfully control emissions. Those industries with special needs, such as recovering solvents, can meet them more energy efficiently and cost effectively with heat pumps. Through the years, the Office of Industrial Technologies (OIT) has helped industry solve its energy problems by joining in cooperative agreements with companies willing to do the research. The companies involved in these agreements share the costs of the research and benefit directly from the technology developed. OIT then has information from demonstration projects that it can pass on to others within industry. All the projects described in this brochure were joint ventures between DOE and industry participants. OIT will assist in accelerating the use of heat pumps in the industrial marketplace by continuing to work with industry on research and demonstration projects and to transfer research results and project performance information to the rest of industry. Successfully transferring this technology could conserve as much as 1.5 quads of energy annually at a savings of more than $4 billion at today's prices.

  17. Solar Energy: Heat Transfer.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  18. Solar Energy: Heat Storage.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  19. Solar Energy: Home Heating.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on home heating is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  20. Heating Systems Specialist.

    ERIC Educational Resources Information Center

    Air Force Training Command, Sheppard AFB, TX.

    This instructional package is intended for use in training Air Force personnel enrolled in a program for apprentice heating systems specialists. Training includes instruction in fundamentals and pipefitting; basic electricity; controls, troubleshooting, and oil burners; solid and gas fuel burners and warm air distribution systems; hot water…