Science.gov

Sample records for heat of fusion

  1. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  2. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  3. Supplemental heating of conventional Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Thomas, B. R.; Hughes, S. J.; Garbett, W. J.; Sircombe, N. J.

    2016-03-01

    We report a new ICF scheme whereby a capsule is imploded to near ignition conditions and subsequently flooded with hot electrons generated from a short-pulse laser- plasma interaction so as to heat the whole assembly by a few hundred eV. The cold dense shell pressure is increased by a larger factor than that of the hot spot at the capsule core, so that further heating and compression of the hot spot occurs. We suggest it may be possible to drive the capsule to ignition by the pressure augmentation supplied by this extra deposition of energy.

  4. Heat of fusion of primary alcohol confined in Nano pores

    NASA Astrophysics Data System (ADS)

    Griffin, Harrisonn; Amanue, Samuel

    Melting behavior of physically confined 1-decanol in nano porous silica was probed using a Differential Scanning Calorimeter (DSC). In agreement with the Gibbs-Thompson prediction, we observe that the melting temperature of the confined 1-decanol scales inversely with the physical size of the pores. Contrary to the assumption used in developing the Gibbs-Thompson equation, however, the apparent heat of fusion decreases as the the pore size decreases. Previously, several models have been proposed where the interfacial layer/s of molecules do not participate in the phase transition and thereby would not contribute to the heat of fusion. While these could reconcile the seeming contradiction, annealing the nano confined materials enables some of the interfacial layers to be incorporated into an existing crystal. This leads to an increase in the apparent heat of fusion and a systematic relationship exists between the annealing temperature and the increase in the apparent heat of fusion. This work was partially supported by NSF-DMR: 1229142.

  5. Measures of Alpha Heating in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.

    2014-10-01

    Assessing the degree to which fusion alpha particles contribute to the fusion yield is essential to the understanding of the onset of the thermal runaway process of thermonuclear ignition. It is shown that in inertial confinement fusion, the yield enhancement resulting from alpha particle heating (before ignition occurs) depends on the fractional alpha energy or, equivalently, on the generalized Lawson criterion. Both the fractional alpha energy and the generalized Lawson criterion can be inferred from experimental observables. This result can be used to assess the performance of current ignition experiments at the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  6. Radio frequency heating of ceramic windows in fusion applications

    SciTech Connect

    Fowler, J.D. Jr.

    1981-11-01

    Ceramic windows will be used as material barriers for radio frequency plasma heating in fusion reactors. This report examines the theory behind rf heating phenomena. Heating calculations are presented for various window materials, thicknesses, wavelengths, and power densities. The most pertinent material properties are loss tangent, thermal conductivity, dielectric constant, strength, and radiation resistance. Calculations indicate that among candidate materials, beryllium oxide offers the most promise because of its large thermal conductivity and relatively low loss tangent and dielectric constant. On the other hand, beryllia is susceptible to neutron damage, and this may adversely affect its electrical properties. Another promising candidate is sapphire, particularly at lower temperatures where the thermal conductivity is high. Fused silica suffers from low thermal conductivity and large positive temperature coefficient for loss tangent, but it may be useful under some conditions. In summary, calculations of heating can lead to elimination of some candidate materials and selection of others for further study.

  7. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks

    SciTech Connect

    Scharer, J.E.

    1992-01-01

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  8. Study on Latent Heat of Fusion of Ice in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji

    In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.

  9. Control of ITBs in Fusion Self-Heated Plasmas

    NASA Astrophysics Data System (ADS)

    Panta, Soma; Newman, David; Terry, Paul; Sanchez, Raul

    2015-11-01

    Simple dynamical models have been able to capture a remarkable amount of the dynamics of the transport barriers found in many devices, including the often disconnected nature of the electron thermal transport channel sometimes observed in the presence of a standard (``ion channel'') barrier. By including in this rich though simple dynamic transport model an evolution equation for electron fluctuations we have previously investigated the interaction between the formation of the standard ion channel barrier and the somewhat less common electron channel barrier. The electron channel formation and evolution is even more sensitive to the alignment of the various gradients making up the sheared radial electric field then the ion barrier is. Because of this sensitivity and coupling of the barrier dynamics, the dynamic evolution of the fusion self-heating profile can have a significant impact on the barrier location and dynamics. To investigate this, self-heating has been added this model and the impact of the self-heating on the formation and controllability of the various barriers is explored. It has been found that the evolution of the heating profiles can suppress or collapse the electron channel barrier. NBI and RF schemes will be investigated for profile/barrier control.

  10. Raman spectroscopic evidence of tissue restructuring in heat-induced tissue fusion.

    PubMed

    Su, Lei; Cloyd, Kristy L; Arya, Shobhit; Hedegaard, Martin A B; Steele, Joseph A M; Elson, Daniel S; Stevens, Molly M; Hanna, George B

    2014-09-01

    Heat-induced tissue fusion via radio-frequency (RF) energy has gained wide acceptance clinically and here we present the first optical-Raman-spectroscopy study on tissue fusion samples in vitro. This study provides direct insights into tissue constituent and structural changes on the molecular level, exposing spectroscopic evidence for the loss of distinct collagen fibre rich tissue layers as well as the denaturing and restructuring of collagen crosslinks post RF fusion. These findings open the door for more advanced optical feedback-control methods and characterization during heat-induced tissue fusion, which will lead to new clinical applications of this promising technology.

  11. The Measurement of the Specific Latent Heat of Fusion of Ice: Two Improved Methods.

    ERIC Educational Resources Information Center

    Mak, S. Y.; Chun, C. K. W.

    2000-01-01

    Suggests two methods for measuring the specific latent heat of ice fusion for high school physics laboratories. The first method is an ice calorimeter which is made from simple materials. The second method improves the thermal contact and allows for a more accurate measurement. Lists instructions for both methods. (Author/YDS)

  12. Heat deposition into the superconducting central column of a spherical tokamak fusion plant

    NASA Astrophysics Data System (ADS)

    Windsor, C. G.; Morgan, J. G.; Buxton, P. F.

    2015-02-01

    A key challenge in designing a fusion power plant is to manage the heat deposition into the central core containing superconducting toroidal field coils. Spherical tokamaks have limited space for shielding the central core from fast neutrons produced by fusion and the resulting gamma rays. This paper reports a series of three-dimensional computations using the Monte Carlo N-particle code to calculate the heat deposition into the superconducting core. For a given fusion power, this is considered as a function of plasma major radius R0, core radius rsc and shield thickness d. Computations over the ranges 0.6 m ⩽ R0 ⩽ 1.6 m, 0.15 m ⩽ rsc ⩽ 0.25 m and 0.15 m ⩽ d ⩽ 0.4 m are presented. The deposited power shows an exponential dependence on all three variables to within around 2%. The additional effects of source profile, the outer shield and shield material are all considered. The results can be interpolated to 2% accuracy and have been successfully incorporated into a system code. A possible pilot plant with 174 MW of fusion is shown to lead to a heat deposition into the superconducting core of order 30 kW. An estimate of 1.7 MW is made for the cryogenic plant power necessary for heat removal, and of 88 s running time for an adiabatic experiment where the heat deposition is absorbed by a 10 K temperature rise.

  13. Development of neutral beams for fusion plasma heating

    SciTech Connect

    Haselton, H.H.; Pyle, R.V.

    1980-01-01

    A state-of-the-art account of neutral beam technology at the LBL/LLNL and ORNL facilities is given with emphasis on positive-ion-based systems. The advances made in the last few years are elaborated and problem areas are identified. The ORNL program has successfully completed the neutral injection systems for PLT, ISX-B, and most recently, PDX and the ISX-B upgrade. All of these are high current (60 to 100 A), medium energy (40 to 50 keV) systems. This program is also engaged in the development of a reactor-grade advanced positive ion system (150 to 200 kV/100 A/5 to 10 s) and a multimegawatt, long pulse (30 s) heating system for ISX-C. In a joint program, LBL and LLNL are developing and testing neutral beam injection systems based on the acceleration of positive ions for application in the 80- to 160-keV range on MFTF-B, D-III, TFTR/TFM, ETF, MNS, etc. A conceptual design of a 160-keV injection system for the German ZEPHYR project is in progress at LBL/LLNL and independently at ORNL. The laboratories are also engaged in the development of negative-ion-based systems for future applications at higher energies.

  14. Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Whittenberger, J. D.

    1986-01-01

    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.

  15. Evidences for and the Models of Fast Nonlocal Transport of Heat in Magnetic Fusion Devices

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Cherepanov, K. V.

    2009-07-01

    The paper gives a short survey of (i) recent evidences for fast nonlocal transport of the heat in magnetically confined plasmas (above all, the "cold/heat pulse" experiments), (ii) interpretations of such phenomena in terms of nonlocal transport formalisms, based on the dominance of long mean-free-path energy carriers, including the interpretations of "cold pulse" experiments, and gives (iii) quantitative evidence for the domination of nonlocality in the spatial profile of electron cyclotron net radiated power in fusion reactor-grade tokamak (strong toroidal magnetic field, BT>5 T, highly reflecting walls, Rwall>0.5, and hot electron plasma, >10 keV).

  16. Extended fusion yield integral using pathway idea in case of Shock-compressed heated plasma

    NASA Astrophysics Data System (ADS)

    Kumar, Dilip; Haubold, Hans

    The extended non-resonant thermonuclear reaction rate probability integral obtained in Haubold and Kumar [Haubold, H.J. and Kumar, D.: 2008, Extension of thermonuclear functions through the pathway model including Maxwell-Boltzmann and Tsallis distributions, Astroparticle Physics, 29, 70-76] is used to evaluate the fusion energy by itegrating it over temperature. The closed form representation of the extended reaction rate integral via Meijer's G-function is expressed as a solution of a homogeneous differential equation. A physical model of Guderley[Guderley G. :1942, Starke kugelige und zylindrische Verdichtungsstsse in der Nhe des Kugelmittelpunktes bzw. der Zylinderachse, Luftfahrtforschung, 19, 302] has been considered for the laser driven hydrodynamical process in a compressed fusion plasma and heated strong spherical shock wave. The fusion yield integral obtained in the paper is compared with the standard fusion yield ob-tained by Haubold and John [Haubold, H.J. and John, R.W.:1981, Analytical representation of the thermonuclear reaction rate and fusion energy production in a spherical plasma shock wave, Plasma Physics, 5, 399-411]. The pathway parameter used in this paper is given an interpretation in terms of moments.

  17. Energy storage as heat-of-fusion in containerized salts. Report on energy storage boiler tank

    NASA Astrophysics Data System (ADS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-06-01

    This report is concerned with energy storage based on heat-of-fusion in containerized salt. The 'energy storage boiler tank' uses evaporation and condensation of a heat transfer fluid to provide heat transfer into and out of stacked cans of salt. The 'energy storage superheater tank' uses a network of alkali metal heat pipes to distribute heat throughout a building filled with salt cans. It uses a radiation to transfer energy to and from stacked cans of salt. The paper summarizes the rationale for energy storage in containerized salt, it discusses salt availability, salt processing, container requirements, can technology and heat transfer fluid degradation problems. These discussions lead to estimates of energy storage system costs. The Naval Research Laboratory is building a 2 MWht proof-of-concept energy storage boiler tank. Laboratory investigations studying the compatibility of the heat transfer fluid with the molten storage salt are described, along with measurements of temperature drops associated with the energy input process. An assessment of the current status of the energy storage boiler tank is presented.

  18. Fusion reactivity, confinement, and stability of neutral-beam heated plasmas in TFTR and other tokamaks

    SciTech Connect

    Park, Hyeon, K.; Sabbagh, S.A.

    1996-05-01

    The hypothesis that the heating beam fueling profile shape connects the edge condition and improved core confinement and fusion reactivity is extensively studied on TFTR and applied to other tokamaks. The derived absolute scalings based on beam fueling profile shape for the stored energy and neutron yield can be applied to the deuterium discharges at different major radii in TFTR. These include Supershot, High poloidal beta, L-mode, and discharges with a reversed shear (RS) magnetic configuration. These scalings are also applied to deuterium-tritium discharges. The role of plasma parameters, such as plasma current, Isdo2(p), edge safety factor, qsdo5(a), and toroidal field, Bsdo2(T), in the performance and stability of the discharges is explicitly studied. Based on practical and externally controllable plasma parameters, the limitation and optimization of fusion power production of the present TFTR is investigated and a path for a discharge condition with fusion power gain, Q > 1 is suggested based on this study. Similar physics interpretation is provided for beam heated discharges on other major tokamaks.

  19. Magnetohydrodynamic Heat Transfer Research Related to the Design of Fusion Blankets

    SciTech Connect

    Barleon, Leopold; Burr, Ulrich; Mack, Klaus Juergen; Stieglitz, Robert

    2001-03-15

    Lithium or any lithium alloy like the lithium lead alloy Pb-17Li is an attractive breeder material used in blankets of fusion power reactors because it allows the breeding of tritium and, in the case of self-cooled blankets, the transfer of the heat generated within the liquid metal and the walls of the cooling ducts to an external heat exchanger. Nevertheless, this type of liquid-metal-cooled blanket, called a self-cooled blanket, requires specific design of the coolant ducts, because the interaction of the circulating fluid and the plasma-confining magnetic fields causes magnetohydrodynamic (MHD) effects, yielding completely different flow patterns compared to ordinary hydrodynamics (OHD) and pressure drops significantly higher than there. In contrast to OHD, MHD flows depend strongly on the electrical properties of the wall. Also, MHD flows reveal anisotropic turbulence behavior and are quite sensitive to obstacles exposed to the fluid flow.A comprehensive study of the heat transfer characteristics of free and forced convective MHD flows at fusion-relevant conditions is conducted. The general ideas of the analytical and numerical models to describe MHD heat transfer phenomena in this parameter regime are discussed. The MHD laboratory being installed, the experimental program established, and the experiments on heat transfer of free and forced convective flow being conducted are described. The theoretical results are compared to the results of a series of experiments in forced and free convective MHD flows with different wall properties, such as electrically insulating as well as electric conducting ducts. Based on this knowledge, methods to improve the heat transfer by means of electromagnetic/mechanic turbulence promoters (TPs) or sophisticated, arranged electrically conducting walls are discussed, experimental results are shown, and a cost-benefit analysis related to these methods is performed. Nevertheless, a few experimental results obtained should be

  20. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    SciTech Connect

    Nietert, R.E.

    1983-02-01

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten.

  1. Heat transfer in inertial confinement fusion reactor systems

    SciTech Connect

    Hovingh, J.

    1980-04-23

    The short time and deposition distance for the energy from inertial fusion products results in local peak power densities on the order of 10/sup 18/ watts/m/sup 3/. This paper presents an overview of the various inertial fusion reactor designs which attempt to reduce these peak power intensities and describes the heat transfer considerations for each design.

  2. Characteristics of GTA fusion zones and heat affected zones in superalloy 713C

    NASA Astrophysics Data System (ADS)

    Lachowicz, M. B.; Dudziński, W.

    2012-09-01

    In this paper, metallographic examinations, characterising microstructural changes in the 713C superalloy subjected to remelting by GTA method, are presented. In the fusion zone, precipitation of M23C6 or M6C carbides based on chromium and molybdenum was observed. Eutectic mixtures of ( γ- gg')-M x C y type with highly developed morphology were also perceived. It was found that, in the matrix areas with non-homogeneous chemical composition, the eutectic reaction γ-γ' can occur at the temperature close to that of the precipitation of the M x C y carbides. The presence of silicon in the carbide phases can be conducive to lowering their solidification point by creating low-melting compound NbSi. Both in the fusion zone (FZ) and in the heat-affected zone (HAZ), the secondary precipitates of the Ni3(AlTi)- γ' phase, varying in size from 50 to 100 nm, were found. The lattice mismatch factor of the γ and γ' particles was +0.48 % to +0.71 %, which is characteristic of the coherent precipitates of the Ni3Al phase enriched with titanium. No dislocations or stacking faults were observed in the microstructure of the FZ. In the HAZ, some primary undissolved γ' precipitates, with a part of aluminium probably replaced with niobium were observed, which raised their melting point.

  3. Production of tritium, neutrons, and heat based on the transmission resonance model (TRM) for cold fusion

    NASA Astrophysics Data System (ADS)

    Bush, Robert T.

    1991-05-01

    The TRM has recently been successful in fitting calorimetric data having interesting nonlinear structure. The model appears to provide a natural description for electrolytic cold fusion in terms of ``fractals''. Extended to the time dimension, the model can apparently account for the phenomenon of heat ``bursts''. The TRM combines a transmission condition involving quantized energies and an engergy shift of a Maxwell-Boltzmann energy distribution of deuterons at the cathodic surface that appears related to the concentration overpotential (hydrogen overvoltage). The model suggest three possible regimes vis-a-vis tritium production in terms of this energy shift, and indicates why measurable tritium production in the electrolytic case will tend to be the exception rather than the rule in absence of a recipe: Below a shift of approximately 2.8 meV there is production of both tritium and measureable excess heat, with the possibility of accounting for the Bockris curve indicating about a 1% correlation between excess heat and tritium. However, over the large range from about 2.8 meV to 340 meV energy shift there is a regime of observable excess heat production but little, and probably no measurable, tritium production. The third regime is more hypothetical: It begins at an energy shift of about 1 keV and extends to the boundaries of ``hot'' fusion at about 10 keV. A new type of nucelar reaction, trint (for transmission resonance-induced neutron transfer), is suggested by the model leading to triton and neutron production. A charge distribution ``polarization conjecture'' is the basis for theoretical derivation for the low-energy limit for an energy-dependent branching ratio for D-on-D. When the values of the parameters are inserted, this expression yields an estimate for the ratio of neutron-to-triton production of about 1.64×10-9. The possibility of some three-body reactions is also suggested. A comparison of the TRM's transmission energy levels for palladium deuteride

  4. Conceptual design of a laser-fusion power plant. Part II. Two technical options: 1. JADE reactor; 2. Heat transfer by heat pipes

    SciTech Connect

    Not Available

    1981-07-01

    A laser fusion reactor concept is described that employs liquid metal walls. The concept envisions a porous medium, called the JADE, of specific geometry lining the reactor cavity. Some advantages and disadvantages of the concept are pointed out. The possibility of using heat pipes for passive cooling in ICF reactors is discussed. Some of the problems are outlined. (MOW)

  5. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    SciTech Connect

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  6. External Heat Transfer Coefficient Measurements on a Surrogate Indirect Inertial Confinement Fusion Target

    DOE PAGES

    Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul

    2015-09-15

    External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.

  7. RF heating for fusion product studies

    SciTech Connect

    Hellsten, T. Johnson, T.; Sharapov, S. E.; Kiptily, V.; Rimini, F.; Eriksson, J.; Mantsinen, M.; Schneider, M.; Tsalas, M.

    2015-12-10

    Third harmonic cyclotron heating is an effective tool for accelerating deuterium (D) beams to the MeV energy range, suitable for studying ITER relevant fast particle physics in plasmas without significant tritium content. Such experiments were recently conducted in JET with an ITER like wall in D plasmas with {sup 3}He concentrations up to 30% in order to boost the fusion reactivity by D-{sup 3}He reactions. The harmonic cyclotron heating produces high-energy tails in the MeV range of D ions by on-axis heating and of {sup 3}He ions by tangential off-axis heating. The discharges are characterized by long sawtooth free periods and a rich spectrum of MHD modes excited by the fast D and {sup 3}He ions. The partitions of the power, which depend on the distribution function of D, vary strongly over several slowing down times. Self-consistent modelling of the distribution function with the SELFO-light code are presented and compared with experimental data from fast particle diagnostics.

  8. RF heating for fusion product studies

    NASA Astrophysics Data System (ADS)

    Hellsten, T.; Johnson, T.; Sharapov, S. E.; Kiptily, V.; Eriksson, J.; Mantsinen, M.; Schneider, M.; Rimini, F.; Tsalas, M.

    2015-12-01

    Third harmonic cyclotron heating is an effective tool for accelerating deuterium (D) beams to the MeV energy range, suitable for studying ITER relevant fast particle physics in plasmas without significant tritium content. Such experiments were recently conducted in JET with an ITER like wall in D plasmas with 3He concentrations up to 30% in order to boost the fusion reactivity by D-3He reactions. The harmonic cyclotron heating produces high-energy tails in the MeV range of D ions by on-axis heating and of 3He ions by tangential off-axis heating. The discharges are characterized by long sawtooth free periods and a rich spectrum of MHD modes excited by the fast D and 3He ions. The partitions of the power, which depend on the distribution function of D, vary strongly over several slowing down times. Self-consistent modelling of the distribution function with the SELFO-light code are presented and compared with experimental data from fast particle diagnostics.

  9. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Bose, A.; Woo, K. M.

    2016-05-01

    Assessing the degree to which fusion alpha particles contribute to the fusion yield is essential to understanding the onset of the thermal runaway process of thermonuclear ignition. It is shown that in inertial confinement fusion, the yield enhancement due to alpha particle heating (before ignition occurs) depends on the generalized Lawson parameter that can be inferred from experimental observables. A universal curve valid for arbitrary laser-fusion targets shows the yield amplification due to alpha heating for a given value of the Lawson parameter. The same theory is used to determine the onset of the burning plasma regime when the alpha heating exceeds the compression work. This result can be used to assess the performance of current ignition experiments at the National Ignition Facility.

  10. Facility for high heat flux testing of irradiated fusion materials and components using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S; Ohriner, Evan Keith; Kiggans, Jim; Harper, David C; Snead, Lance Lewis; Schaich, Charles Ross

    2014-01-01

    A new high-heat flux testing facility using water-wall stabilized high-power high-pressure argon Plasma Arc Lamps (PALs) has been developed for fusion applications. It can handle irradiated plasma facing component materials and mock-up divertor components. Two PALs currently available at ORNL can provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over a heated area of 9x12 and 1x10 cm2, respectively, which are fusion-prototypical steady state heat flux conditions. The facility will be described and the main differences between the photon-based high-heat flux testing facilities, such as PALs, and the e-beam and particle beam facilities more commonly used for fusion HHF testing are discussed. The components of the test chamber were designed to accommodate radiation safety and materials compatibility requirements posed by high-temperature exposure of low levels irradiated tungsten articles. Issues related to the operation and temperature measurements during testing are presented and discussed.

  11. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates.

    PubMed

    Askin, Samuel P; Morin, Isabelle; Schaeffer, Patrick M

    2011-08-15

    Proteases are implicated in various diseases and several have been identified as potential drug targets or biomarkers. As a result, protease activity assays that can be performed in high throughput are essential for the screening of inhibitors in drug discovery programs. Here we describe the development of a simple, general method for the characterization of protease activity and its use for inhibitor screening. GFP was genetically fused to a comparatively unstable Tus protein through an interdomain linker containing a specially designed protease site, which can be proteolyzed. When this Tus-GFP fusion protein substrate is proteolyzed it releases GFP, which remains in solution after a short heat denaturation and centrifugation step used to eliminate uncleaved Tus-GFP. Thus, the increase in GFP fluorescence is directly proportional to protease activity. We validated the protease activity assay with three different proteases, i.e., trypsin, caspase 3, and neutrophil elastase, and demonstrated that it can be used to determine protease activity and the effect of inhibitors with small sample volumes in just a few simple steps using a fluorescence plate reader.

  12. HSP70 kinetics study by continuous observation of HSP-GFP fusion protein expression on a perfusion heating stage.

    PubMed

    Wang, Sihong; Xie, Weijun; Rylander, Marissa Nichole; Tucker, Philip W; Aggarwal, Shanti; Diller, Kenneth R

    2008-01-01

    The direct correlation between levels of heat shock protein expression and efficiency of its tissue protection function motivates this study of how thermal doses can be used for an optimal stress protocol design. Heat shock protein 70 (HSP70) expression kinetics were visualized continuously in cultured bovine aortic endothelial cells (BAECs) on a microscope heating stage using green fluorescent protein (GFP) as a reporter. BAECs were transfected with a DNA vector, HSP(p)-HSP70-GFP which expresses an HSP70-GFP fusion protein under control of the HSP70 promoter. Expression levels were validated by western blot analysis. Transfected cells were heated on a controlled temperature microscope stage at 42 degrees C for a defined period, then shifted to 37 degrees C for varied post-heating times. The expression of HSP70-GFP and its sub-cellular localization were visualized via fluorescence microscopy. The progressive expression kinetics were measured by quantitative analysis of serial fluorescence images captured during heating protocols from 1 to 2 h and post-heating times from 0 to 20 h. The results show two sequential peaks in HSP70 expression at approximately 3 and 12 h post-heat shock. A progressive translocation of HSP70 from the cytoplasm to the nucleus was observed from 6 to 16 h. We conclude that we have successfully combined molecular cloning and optical imaging to study HSP70 expression kinetics. The kinetic profile for HSP70-GFP fusion protein is consistent with the endogenous HSP70. Furthermore, information on dynamic intracellular translocation of HSP70 was extracted from the same experimental data.

  13. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    DOE PAGES

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design andmore » implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.« less

  14. High-heat-flux testing of irradiated tungsten-based materials for fusion applications using infrared plasma arc lamps

    SciTech Connect

    Sabau, Adrian S.; Ohriner, Evan K.; Kiggans, Jim; Schaich, Charles R.; Ueda, Yoshio; Harper, David C.; Katoh, Yutai; Snead, Lance L.; Byun, Thak S.

    2014-11-01

    Testing of advanced materials and component mock-ups under prototypical fusion high-heat-flux conditions, while historically a mainstay of fusion research, has proved to be quite challenging, especially for irradiated materials. A new high-heat-flux–testing (HHFT) facility based on water-wall plasma arc lamps (PALs) is now introduced for materials and small-component testing. Two PAL systems, utilizing a 12 000°C plasma arc contained in a quartz tube cooled by a spiral water flow over the inside tube surface, provide maximum incident heat fluxes of 4.2 and 27 MW/m2 over areas of 9×12 and 1×10 cm2, respectively. This paper will present the overall design and implementation of a PAL-based irradiated material target station (IMTS). The IMTS is primarily designed for testing the effects of heat flux or thermal cycling on material coupons of interest, such as those for plasma-facing components. Temperature results are shown for thermal cycling under HHFT of tungsten coupon specimens that were neutron irradiated in HFIR. Finally, radiological surveys indicated minimal contamination of the 36×36×18 cm test section, demonstrating the capability of the new facility to handle irradiated specimens at high temperature.

  15. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    PubMed

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ. PMID:26197131

  16. Alpha heating and burning plasmas in inertial confinement fusion

    SciTech Connect

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  17. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Betti, R.; Christopherson, A. R.; Spears, B. K.; Nora, R.; Bose, A.; Howard, J.; Woo, K. M.; Edwards, M. J.; Sanz, J.

    2015-06-01

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  18. Fusion Plasma Theory: Task 3, Auxiliary radiofrequency heating of tokamaks. Annual report, November 16, 1991--November 15, 1992

    SciTech Connect

    Scharer, J.E.

    1992-12-31

    The research performed under this grant during the past year has been concentrated on the following several key tokamak ICRF (Ion Cyclotron Range of Frequencies) coupling, heating and current drive issues: Efficient coupling during the L- to H- mode transition by analysis and computer simulation of ICRF antennas; analysis of ICRF cavity-backed coil antenna coupling to plasma edge profiles including fast and ion Bernstein wave coupling for heating and current drive; benchmarking the codes to compare with current JET, D-IIID and ASDEX experimental results and predictions for advanced tokamaks such as BPX and SSAT (Steady-State Advanced Tokamak); ICRF full-wave field solutions, power conservation, heating analyses and minority ion current drive; and the effects of fusion alpha particle or ion tail populations on the ICRF absorption. Research progress, publications, and conference and workshop presentations are summarized in this report.

  19. Fusion Molecules of Heat Shock Protein HSPX with Other Antigens of Mycobacterium tuberculosis Show High Potential in Serodiagnosis of Tuberculosis

    PubMed Central

    Khalid, Ruqyya; Afzal, Madeeha; Khurshid, Sana; Paracha, Rehan Zafar; Khan, Imran H.

    2016-01-01

    Variable individual response against the antigens of Mycobacterium tuberculosis necessitates detection of multiple antibodies for enhancing reliability of serodiagnosis of tuberculosis. Fusion molecules consisting of two or more antigens showing high sensitivity would be helpful in achieving this objective. Antigens of M. tuberculosis HSPX and PE35 were expressed in a soluble form whereas tnPstS1 and FbpC1 were expressed as inclusion bodies at 37°C. Heat shock protein HSPX when attached to the N-termini of the antigens PE35, tnPstS1 and FbpC1, all the fusion molecules were expressed at high levels in E. coli in a soluble form. ELISA analysis of the plasma samples of TB patients against HSPX-tnPstS1 showed 57.7% sensitivity which is nearly the same as the expected combined value obtained after deducting the number of plasma samples (32) containing the antibodies against both the individual antigens. Likewise, the 54.4% sensitivity of HSPX-PE35 was nearly the same as that expected from the combined values of the contributing antigens. Structural analysis of all the fusion molecules by CD spectroscopy showed that α-helical and β-sheet contents were found close to those obtained through molecular modeling. Molecular modeling studies of HSPX-tnPstS1 and HSPX-PE35 support the analytical results as most of the epitopes of the contributing antigens were found to be available for binding to the corresponding antibodies. Using these fusion molecules in combination with other antigenic molecules should reduce the number of antigenic proteins required for a more reliable and economical serodiagnosis of tuberculosis. Also, HSPX seems to have potential application in soluble expression of heterologous proteins in E. coli. PMID:27654048

  20. NaOH-based high temperature heat-of-fusion thermal energy storage device

    NASA Technical Reports Server (NTRS)

    Cohen, B. M.; Rice, R. E.

    1978-01-01

    A material called Thermkeep, developed as a low-cost method for the storage of thermal energy for solar electric power generating systems is discussed. The storage device consists of an insulated cylinder containing Thermkeep in which coiled tubular heat exchangers are immersed. A one-tenth scale model of the design contains 25 heat-exchanger tubes and 1500 kg of Thermkeep. Its instrumentation includes thermocouples to measure internal Thermkeep temperatures, vessel surface, heated shroud surface, and pressure gauges to indicate heat-exchanger pressure drops. The test-circuit design is presented and experimental results are discussed.

  1. Heat-labile- and heat-stable-toxoid fusions (LTR₁₉₂G-STaP₁₃F) of human enterotoxigenic Escherichia coli elicit neutralizing antitoxin antibodies.

    PubMed

    Liu, Mei; Ruan, Xiaosai; Zhang, Chengxian; Lawson, Steve R; Knudsen, David E; Nataro, James P; Robertson, Donald C; Zhang, Weiping

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of diarrheal disease in humans and animals. Adhesins and enterotoxins, including heat-labile (LT) and heat-stable (STa) toxins, are the key virulence factors. Antigenic adhesin and LT antigens have been used in developing vaccines against ETEC diarrhea. However, STa has not been included because of its poor immunogenicity and potent toxicity. Our recent study showed that porcine-type STa toxoids became immunogenic and elicited neutralizing anti-STa antibodies after being genetically fused to a full-length porcine-type LT toxoid, LT(R₁₉₂G) (W. Zhang et al., Infect. Immun. 78:316-325, 2010). In this study, we mutated human-type LT and STa genes, which are highly homologous to porcine-type toxin genes, for a full-length LT toxoid (LT(R₁₉₂)) and a full-length STa toxoid (STa(P₁₃F)) and genetically fused them to produce LT₁₉₂-STa₁₃ toxoid fusions. Mice immunized with LT₁₉₂-STa₁₃ fusion antigens developed anti-LT and anti-STa IgG (in serum and feces) and IgA antibodies (in feces). Moreover, secretory IgA antibodies from immunized mice were shown to neutralize STa and cholera toxins in T-84 cells. In addition, we fused the STa₁₃ toxoid at the N terminus and C terminus, between the A1 and A2 peptides, and between the A and B subunits of LT₁₉₂ to obtain different fusions in order to explore strategies for enhancing STa immunogenicity. This study demonstrated that human-type LT₁₉₂-STa₁₃ fusions induce neutralizing antitoxin antibodies and provided important information for developing toxoid vaccines against human ETEC diarrhea. PMID:21788385

  2. Proceedings of US/Japan workshop, Q219 on high heat flux components and plasma surface interactions for next fusion devices

    SciTech Connect

    Ulrickson, M.A.; Stevens, P.L.; Hino, T.; Hirohata, Y.

    1996-12-01

    This report contains the viewgraphs from the proceedings of US/Japan Workshop on High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices. Some of the general topics covered by this report are: PFC/PSI in tokamak and helical devices; development of high heat flux components; PSIS and plasma facing materials;tritium; and material damage.

  3. The design of a multimegawatt heat pipe radiator for an inertial fusion rocket powered manned Mars mission

    NASA Technical Reports Server (NTRS)

    Murray, K. A.

    1988-01-01

    A system of heat pipe radiators has been designed to provide waste heat rejection for an inertial fusion powered spacecraft capable of manned missions to other planets. The radiators are arrays of unfinned, arterial heat pipes operating at 1500 and 900 K. Liquid metal coolant carries up to 8000 MW of waste heat through feed pipes from on-board components (laser drivers and coil shield). The radiators do not rely on armor for protection from micrometeoroid penetration. An armored radiator design for this application with a 99 percent survivability would have a specific mass of 0.06 to 0.11 kg/kW at 1500 K. Instead, a segmentation of heat pipes is used, and bumpers are utilized to protect the feed pipes. This design reduces the specific mass to 0.015 to 0.04 kg/kW for the coil shield radiator (1500 K) and 0.06 to 0.12 kg/kW for the laser driver radiator (900 K).

  4. Decay heat measurement of fusion related materials in an ITER-like neutron field

    NASA Astrophysics Data System (ADS)

    Morimoto, Y.; Ochiai, K.; Maekawa, F.; Wada, M.; Nishitani, T.; Takeuchi, H.

    2002-12-01

    Decay heat is one of the most important factors for the safety aspect of ITER. Especially, the prediction of decay heat with an uncertainty less than 15% for the three most important materials, i.e., copper, type-316 stainless steel (SS316) and tungsten, is strongly requested by designers of ITER. To provide experimental decay heat data needed for validation of decay heat calculations for SS316 and copper, an experiment was conducted as the ITER/EDA task T-426. An ITER-like neutron field was constructed, and decay heat source distributions in thick copper and SS316 plates were measured with the whole energy absorption spectrometer. The measured decay heat distributions in the thick sample plates were compared with the predicted values by MCNP calculations. It was found that the use of an effective activation cross-section calculated by MCNP was needed to consider the self-shielding effects and, for both cases, MCNP calculations could predict the decay heat adequately.

  5. Generating bifunctional fusion enzymes composed of heat-active endoglucanase (Cel5A) and endoxylanase (XylT).

    PubMed

    Rizk, Mazen; Elleuche, Skander; Antranikian, Garabed

    2015-01-01

    Bifunctional enzyme constructs were generated comprising two genes encoding heat-active endoglucanase (cel5A) and endoxylanase (xylT). The fused proteins Cel5A-XylT and XylT-Cel5A were active on both β-glucan and beechwood xylan. An improvement in endoglucanase and endoxylanase catalytic activities was observed. The specific activity of the fusion towards xylan was significantly raised when compared to XylT. The fusion constructs were active from 40 to 100 °C for endoglucanase and from 40 to 90 °C for endoxylanase, but the temperature optima were lowered from 90 to 80 °C for the endoglucanase and from 80 to 70 °C for the endoxylanase. XylT in the construct XylT-Cel5A was less stable at higher temperatures compared to Cel5A-XylT. Due to the enzymatic performance, these fusion enzymes are attractive candidates for applications in biorefineries based on plant waste.

  6. Plasma Heating and Current Drive for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  7. Implosion and heating diagnostics of fast ignition laser fusion target with ultra-high-speed x-ray imaging

    NASA Astrophysics Data System (ADS)

    Shiraga, H.; Zhong, J.; Koga, M.; Mochiyama, T.; Azechi, H.

    2008-11-01

    Implosion and heating experiments of Fast Ignition (FI) targets for FIREX-1 laser fusion project have been performed with Gekko-XII and PW/LFEX lasers at the Institute of Laser Engineering, Osaka University. Typical FI target has a hollow cone for guiding the short-pulse heating laser beam at the time of the maximum compression. The cone is mounted so as to in one-side penetrate the shell target. Detailed implosion hydrodynamics, FI heating and core plasma formation of plastic (CD) shell target with gold cone have been clarified by observing those with ultra high-speed imaging x-ray spectroscopy as well as neutron diagnostics. Multi-channel Multi-Imaging X-Ray Streak Camera (McMIXS) was improved for observation of time-resolved x-ray images and time-resolved two dimensional temperature distributions with spatial and temporal resolutions of 20 microns and 24 ps (42 Gfps), respectively. With this instrument, one can observe heating properties of the imploded core such as spatial distribution of the heated region and its temporal evolution. Also 2D-SIXS (Two-Dimensional Sampling Image X-ray Streak camera) coupled with an x-ray imager was improved for time resolved x-ray imaging of the imploded core. Synchronization of the heating beam injection to the implosion dynamics has been monitored with an x-ray framing camera. It was found that the shape of the core is neither spherical nor uniform mainly because of the existence of the cone and moving toward the tip of the cone and interacting with it. Experimental results are compared with two-dimensional hydrodynamic simulations. Target design taking into account of these phenomena is quite important because such core movement and jet formation can affect the condition of the cone.

  8. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  9. Temperature measurement methods during direct heat arterial tissue fusion.

    PubMed

    Cezo, James D; Kramer, Eric; Taylor, Kenneth D; Ferguson, Virginia; Rentschler, Mark E

    2013-09-01

    Fusion of biological tissues through direct and indirect heating is a growing area of medical research, yet there are still major gaps in understanding this procedure. Several companies have developed devices which fuse blood vessels, but little is known about the tissue's response to the stimuli. The need for accurate measurements of tissue behavior during tissue fusion is essential for the continued development and improvement of energy delivery devices. An experimental study was performed to measure the temperatures experienced during tissue fusion and the resulting burst pressure of the fused arteries. An array of thermocouples was placed in the lumen of a porcine splenic artery segment and sealed using a ConMed Altrus thermal fusion device. The temperatures within the tissue, in the device, and at the tissue-device interface were recorded. These measurements were then analyzed to calculate the temperature profile in the lumen of the artery. The temperature in the artery at the site of tissue fusion was measured to range from 142 to 163 °C using the ConMed Altrus. The corresponding burst pressure for arteries fused at this temperature was measured as 416 ± 79 mmHg. This study represents the first known experimental measurement of temperature at the site of vessel sealing found in the literature.

  10. Effect of Heat Treatment on Silicon Carbide Based Joining Materials for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Nozawa, T.; Kotani, M.; Kishimoto, H.; Katoh, Y.; Kohyama, A.

    2001-10-01

    Two general approaches to obtaining silicon carbide-based joint materials were used. The first method relies on reactions between silicon and carbon to form silicon carbide, or to bond silicon carbide powders together. The second method consists of pyrolysing a polycarbosilane polymer to yield an amorphous, covalently bonded material. In order to assess the long-term durability of the joint materials, various heat treatments were performed and the effects on the mechanical properties of the joints were measured. Although the joints derived from the polycarbosilane polymer were not the strongest, the value of strength measured was not affected by heat treatment. On the other hand, the value of the strength of the reaction-based joints was affected by heat treatment, indicating the presence of residual stresses or unreacted material subsequent to processing. Further investigation of reaction-based joining should consist of detailed microscopic studies; however, continued study of joints derived from polymers is also warranted.

  11. Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam

    SciTech Connect

    Gus’kov, S. Yu.; Zmitrenko, N. V.; Il’in, D. V.; Sherman, V. E.

    2014-11-15

    We investigate the ignition and burning of a precompressed laser fusion target when it is rapidly heated by an ion beam with the formation of a temperature peak in the central part of the target. We present the results of our comprehensive numerical simulations of the problem that include the following components: (1) the target compression under the action of a profiled laser pulse, (2) the heating of the compressed target with spatially nonuniform density and temperature distributions by a beam of high-energy ions, and (3) the burning of the target with the initial spatial density distribution formed at the instant of maximum target compression and the initial spatial temperature distribution formed as a result of the compressed-target heating by an ion beam. The dependences of the threshold energies of the igniting ion beam and the thermonuclear gain on the width of the Gaussian beam ion energy spectrum have been established. The peculiarities of fast ignition by an ion beam related to the spatial distribution of parameters for the target precompressed by a laser pulse are discussed.

  12. Particle model for nonlocal heat transport in fusion plasmas.

    PubMed

    Bufferand, H; Ciraolo, G; Ghendrih, Ph; Lepri, S; Livi, R

    2013-02-01

    We present a simple stochastic, one-dimensional model for heat transfer in weakly collisional media as fusion plasmas. Energies of plasma particles are treated as lattice random variables interacting with a rate inversely proportional to their energy schematizing a screened Coulomb interaction. We consider both the equilibrium (microcanonical) and nonequilibrium case in which the system is in contact with heat baths at different temperatures. The model exhibits a characteristic length of thermalization that can be associated with an interaction mean free path and one observes a transition from ballistic to diffusive regime depending on the average energy of the system. A mean-field expression for heat flux is deduced from system heat transport properties. Finally, it is shown that the nonequilibrium steady state is characterized by long-range correlations.

  13. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2016-07-12

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the “burning plasma” regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  14. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  15. Propagation of a laser beam in a time-varying waveguide. [plasma heating for controlled fusion

    NASA Technical Reports Server (NTRS)

    Chapman, J. M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is reported. For the case of an axially uniform waveguide it is found that the basic characteristics of alternating focusing and defocusing beams are maintained. However, the intensity distribution is changed at the foci and outer-beam regions. The features of paraxial beam propagation are discussed with reference to axially varying waveguides. Laser plasma coupling is considered noting the case where laser heating produces a density distribution radially parabolic near the axis and the energy absorbed over the focal length of the plasma is small. It is found that: (1) beam-propagation stability is governed by the relative magnitude of the density fluctuations existing in the axial variation of the waveguides due to laser heating, and (2) for beam propagation in a time-varying waveguide, the global instability of the propagation is a function of the initial fluctuation growth rate as compared to the initial time rate of change in the radial curvature of the waveguide.

  16. Remodeling of heat-treated cortical bone allografts for posterior lumbar interbody fusion: serial 10-year follow-up.

    PubMed

    Muramatsu, Koichi; Hachiya, Yudo; Izawa, Hiroyuki; Yamada, Harumoto

    2012-12-01

    We have selected heat-treated bone allografts as the graft material since the Tokai Bone Bank, the first regional bone bank in Japan, was established in 1992. In this study, we examined changes in bone mineral density (BMD), and morphology observed by magnetic resonance imaging (MRI), and histological findings of bone grafts in cases followed up for 7-10 years after bone grafting to grasp the remodeling of heat-treated cortical bone allografts for posterior lumber interbody fusion (PLIF). BMD of bone grafts was reduced by half at 10 years after grafting. MRI revealed that bone grafts were indistinguishable initially in only 22.2% of cases, whereas after a lengthy period of 10 years distinguishable in many cases. Histologically, new bone formation at the graft-host interface was observed earlier, at 1 year after grafting, than that at the periphery of canals in the specimens. The laminated structure of the cortical bone eroded over time, and fragmented bone trabeculae were observed in the specimens at 8 years or longer after grafting, though necrotic bone still remained in some sites.

  17. Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells.

    PubMed

    Zhang, Yunfei; Luo, Wen; Wang, Yucai; Chen, Jun; Liu, Yunyan; Zhang, Yong

    2015-06-01

    Tumor-derived heat shock proteins peptide complex (HSP.PC-Tu) has been regarded as a promising antitumor agent. However, inadequate immunogenicity and low bioavailability limit the clinical uses of this agent. In a previous study, we first produced an improved HSP70.PC-based vaccine purified from dendritic cell (DC)-tumor fusion cells (HSP70.PC-Fc) which had increased immunogenicity due to enhanced antigenic tumor peptides compared to HSP70.PC-Tu. In order to increase the bioavailability of HSP70.PC-Fc, the peptide complex was encapsulated with nanoliposomes (NL-HSP70.PC-Fc) in this study. After encapsulation, the tumor immunogenicity was observed using various assays. It was demonstrated that the NL-HSP70.PC-Fc has acceptable stability. The in vivo antitumor immune response was increased with regard to T-cell activation, CTL response and tumor therapy efficiency compared to that of HSP70.PC-Fc. In addition, it was shown that DC maturation was improved by NL-HSP70.PC-Fc, which added to the antitumor immunity. The results obtained for NL-HSP70.PC-Fc, which improved immunogenicity and increases the bioavailability of HSP70.PC, may represent superior heat shock proteins (HSPs)-based tumor vaccines. Such vaccines deserve further investigation and may provide a preclinical rationale to translate findings into early phase trials for patients with breast tumors.

  18. Transport of radial heat flux and second sound in fusion plasmas

    SciTech Connect

    Guercan, Oe. D.; Berionni, V.; Hennequin, P.; Morel, P.; Vermare, L.; Diamond, P. H.; Garbet, X.; Dif-Pradalier, G.; Kosuga, Y.

    2013-02-15

    Simple flux-gradient relations that involve time delay and radial coupling are discussed. Such a formulation leads to a rather simple description of avalanches and may explain breaking of gyroBohm transport scaling. The generalization of the flux-gradient relation (i.e., constitutive relation), which involve both time delay and spatial coupling, is derived from drift-kinetic equation, leading to kinetic definitions of constitutive elements such as the flux of radial heat flux. This allows numerical simulations to compute these cubic quantities directly. The formulation introduced here can be viewed as an extension of turbulence spreading to include the effect of spreading of cross-phase as well as turbulence intensity, combined in such a way to give the flux. The link between turbulence spreading and entropy production is highlighted. An extension of this formulation to general quasi-linear theory for the distribution function in the phase space of radial position and parallel velocity is also discussed.

  19. Favorite Demonstrations: The Hair Roller as a Mind Bender: A Demonstration of Specific Heat and Heat of Fusion.

    ERIC Educational Resources Information Center

    Bonicamp, Judith M.; And Others

    1989-01-01

    Provides a demonstration for showing the usefulness of thermal principles to physical science students who have difficulty understanding conventional explanations. Outlines materials, procedures, discussion, and advantages of using this method. (RT)

  20. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  1. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  2. Kinetic advantage of controlled intermediate nuclear fusion

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoming

    2012-09-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  3. Technical assessment of critical Plasma-Materials Interaction (PMI) and High Heat Flux (HHF) issues for alternative fusion concepts (AFCs)

    SciTech Connect

    Downing, J.N.

    1986-03-01

    A number of approaches to fusion energy are being pursued as alternative fusion concepts (AFCs). The goal of these systems is to provide a more desirable method of producing fusion energy than the mainline programs. Some of the AFCs have both a Low Power Density (LPD) option and a High Power Density (HPD) option. A summary of representative AFC programs and their associated PMI and HHF issues is followed by the technical assessment of the critical issues. These requirements are discussed relative to the mainline and/or HPD components. The HPD options are contrasted with a tabulation of the characteristics of components for the Reversed-Field Pinch (RFP), which is representative of the HPD concept.

  4. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    SciTech Connect

    Abdou, M.A.; Boyd, R.D.; Easor, J.R.; Gauster, W.B.; Gordon, J.D.; Mattas, R.F.; Morgan, G.D.; Ulrickson, M.A,; Watson, R.D.; Wolfer, W.G,

    1984-06-01

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted.

  5. Determination of Heats of Fusion: Using Differential Scanning Calorimetry for the AP Chemistry Courses.

    ERIC Educational Resources Information Center

    Temme, Susan M.

    1995-01-01

    Describes an exercise designed to be used in an Advanced Placement (AP) chemistry course to accompany the study of thermodynamics. Uses Differential Scanning Calorimetry in teaching the concepts of thermochemistry and thermodynamics. (JRH)

  6. Measuring the Heats of Water.

    ERIC Educational Resources Information Center

    Hunt, James L.; Tegart, Tracy L.

    1994-01-01

    Uses common equipment (tea kettle and vacuum bottles) to precisely measure the specific heat, latent heat of fusion, and latent heat of vaporization of water. Provides descriptions for all three experiments. (MVL)

  7. Overview of fusion reactor safety

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Crocker, J. G.

    Use of deuterium-tritium fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control; (2) neutron activation of structural materials, fluid streams and reactor hall environment; (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions; (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices; and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  8. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.

    2015-11-01

    In inertial confinement fusion, a spherical capsule of cryogenic DT is accelerated inward at a high velocity. Near stagnation, a dense hot spot is formed where the deuterium and tritium ions begin to fuse, creating a 3.5-MeV alpha particle per reaction. These alpha particles deposit energy back into the plasma, thereby increasing the pressure, temperature, and reaction rate. This feedback process is called ``alpha heating,'' and ignition is a direct consequence of this thermal instability. The onset of a burning-plasma regime occurs when the total alpha-particle energy produced exceeds the shell compression work. Using an analytic compressible-shell model for the implosion, it is found that the onset of the burning-plasma regime is a unique function of the neutron yield enhancement caused by alpha particles for any target, direct or indirect drive. This yield enhancement can then be inferred from experimentally measureable quantities, such as the Lawson parameter. From this analysis, the onset of a burning plasma occurs at yields exceeding 50 kJ for implosions at the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and DE-FC02-04ER54789 (Fusion Science Center).

  9. Advanced latent heat of fusion thermal energy storage for solar power systems

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Stearns, J. W.

    1985-01-01

    The use of solar thermal power systems coupled with thermal energy storage (TES) is being studied for both terrestrial and space applications. In the case of terrestrial applications, it was found that one or two hours of TES could shift the insolation peak (solar noon) to coincide with user peak loads. The use of a phase change material (PCM) is attractive because of the higher energy storage density which can be achieved. However, the use of PCM has also certain disadvantages which must be addressed. Proof of concept testing was undertaken to evaluate corrosive effects and thermal ratcheting effects in a slurry system. It is concluded that the considered alkali metal/alkali salt slurry approach to TES appears to be very viable, taking into account an elimination of thermal ratcheting in storage systems and the reduction of corrosive effects. The approach appears to be useful for an employment involving temperatures applicable to Brayton or Stirling cycles.

  10. Modeling and simulation support for ICRF heating of fusion plasmas. Annual report, 1990

    SciTech Connect

    1990-03-15

    Recent experimental, theoretical and computational results have shown the need and usefulness of a combined approach to the design, analysis and evaluation of ICH antenna configurations. The work at the University of Wisconsin (UW) in particular has shown that much needed information on the vacuum operation of ICH antennas can be obtained by a modest experimental and computational effort. These model experiments at UW and SAIC simulations have shown dramatically the potential for positive impact upon the ICRF program. Results of the UW-SAIC joint ICRF antenna analysis effort have been presented at several international meetings and numerous meetings in the United States. The PPPL bay M antenna has been modeled using the ARGUS code. The results of this effort are shown in Appendix C. SAIC has recently begun a collaboration with the ICRF antenna design and analysis group at ORNL. At present there are two separate projects underway. The first is associated with the simulation of and determination of the effect of adding slots in the antenna septum and side walls. The second project concerns the modeling and simulation of the ORNL folded waveguide (FWG) concept.

  11. Recent progress of high-power negative ion beam development for fusion plasma heating

    NASA Astrophysics Data System (ADS)

    Watanabe, Kazuhiro; Akino, Noboru; Aoyagi, Tetsuo; Ebisawa, Noboru; Fujiwara, Yukio; Honda, Atsusi; Inoue, Takashi; Itoh, Takao; Kawai, Mikito; Kazawa, Minoru; Koizumi, Junichi; Kuriyama, Masaaki; Miyamoto, Kenji; Miyamoto, Naoki; Mogaki, Kazuhiko; Ohara, Yoshihiro; Ohga, Tokumichi; Okumura, Yoshikazu; Oohara, Hiroshi; Ohshima, Katsumi; Satoh, Fujio; Shimizu, Kazuhiko; Takahashi, Syunji; Usami, Hirotsugu; Usui, Katsutomi; Yamamoto, Masahiro; Yamazaki, Takeshi

    1997-06-01

    A negative-ion-based neutral beam injector (N-NBI) has been constructed for JT-60U. The N-NBI is designed to inject 500 keV, 10 MW neutral beams using two ion sources, each producing a 500 keV, 22 A D - ion beam. In the preliminary experiment using one ion source, a D - ion beam of 13.5 A has been successfully accelerated with an energy of 400 keV (5.4 MW) for 0.12 s at an operating pressure of 0.22 Pa. This is the highest D - beam current and power in the world. Co-extracted electron current was effectively suppressed to the ratio of Ie/ ID - < 1. The highest energy beam of 460 keV, 2.4 A, 0.44 s has also been obtained. To realize 1 MeV class NBI system for ITER (International Thermonuclear Experimental Reactor), demonstration of ampere class negative ion beam acceleration up to 1 MeV is an important mile stone. To achieve the mile stone, a prototype accelerator and a 1 MV, 1 A test facility called MeV Test Facility (MTF) were constructed. Up to now, an H - ion beam was accelerated up to the energy of 805 keV with an acceleration drain current of 150 mA for 1 s in a five stage electrostatic multi-aperture accelerator.

  12. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    SciTech Connect

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  13. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    SciTech Connect

    Not Available

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  14. Toxicity and immunogenicity of Enterotoxigenic Escherichia coli heat-labile and heat-stable toxoid fusion 3xSTa(A14Q)-LT(S63K/R192G/L211A) in a murine model.

    PubMed

    Zhang, Chengxian; Knudsen, David E; Liu, Mei; Robertson, Donald C; Zhang, Weiping

    2013-01-01

    Diarrhea is the second leading cause of death to young children. Enterotoxigenic Escherichia coli (ETEC) are the most common bacteria causing diarrhea. Adhesins and enterotoxins are the virulence determinants in ETEC diarrhea. Adhesins mediate bacterial attachment and colonization, and enterotoxins including heat-labile (LT) and heat-stable type Ib toxin (STa) disrupt fluid homeostasis in host cells that leads to fluid hyper-secretion and diarrhea. Thus, adhesins and enterotoxins have been primarily targeted in ETEC vaccine development. A recent study reported toxoid fusions with STa toxoid (STa(P13F)) fused at the N- or C-terminus, or inside the A subunit of LT(R192G) elicited neutralizing antitoxin antibodies, and suggested application of toxoid fusions in ETEC vaccine development (Liu et al., Infect. Immun. 79:4002-4009, 2011). In this study, we generated a different STa toxoid (STa(A14Q)) and a triple-mutant LT toxoid (LT(S63K/R192G/L211A), tmLT), constructed a toxoid fusion (3xSTa(A14Q)-tmLT) that carried 3 copies of STa(A14Q) for further facilitation of anti-STa immunogenicity, and assessed antigen safety and immunogenicity in a murine model to explore its potential for ETEC vaccine development. Mice immunized with this fusion antigen showed no adverse effects, and developed antitoxin antibodies particularly through the IP route. Anti-LT antibodies were detected and were shown neutralizing against CT in vitro. Anti-STa antibodies were also detected in the immunized mice, and serum from the IP immunized mice neutralized STa toxin in vitro. Data from this study indicated that toxoid fusion 3xSTa(A14Q)-tmLT is safe and can induce neutralizing antitoxin antibodies, and provided helpful information for vaccine development against ETEC diarrhea. PMID:24146989

  15. Toxicity and immunogenicity of Enterotoxigenic Escherichia coli heat-labile and heat-stable toxoid fusion 3xSTa(A14Q)-LT(S63K/R192G/L211A) in a murine model.

    PubMed

    Zhang, Chengxian; Knudsen, David E; Liu, Mei; Robertson, Donald C; Zhang, Weiping

    2013-01-01

    Diarrhea is the second leading cause of death to young children. Enterotoxigenic Escherichia coli (ETEC) are the most common bacteria causing diarrhea. Adhesins and enterotoxins are the virulence determinants in ETEC diarrhea. Adhesins mediate bacterial attachment and colonization, and enterotoxins including heat-labile (LT) and heat-stable type Ib toxin (STa) disrupt fluid homeostasis in host cells that leads to fluid hyper-secretion and diarrhea. Thus, adhesins and enterotoxins have been primarily targeted in ETEC vaccine development. A recent study reported toxoid fusions with STa toxoid (STa(P13F)) fused at the N- or C-terminus, or inside the A subunit of LT(R192G) elicited neutralizing antitoxin antibodies, and suggested application of toxoid fusions in ETEC vaccine development (Liu et al., Infect. Immun. 79:4002-4009, 2011). In this study, we generated a different STa toxoid (STa(A14Q)) and a triple-mutant LT toxoid (LT(S63K/R192G/L211A), tmLT), constructed a toxoid fusion (3xSTa(A14Q)-tmLT) that carried 3 copies of STa(A14Q) for further facilitation of anti-STa immunogenicity, and assessed antigen safety and immunogenicity in a murine model to explore its potential for ETEC vaccine development. Mice immunized with this fusion antigen showed no adverse effects, and developed antitoxin antibodies particularly through the IP route. Anti-LT antibodies were detected and were shown neutralizing against CT in vitro. Anti-STa antibodies were also detected in the immunized mice, and serum from the IP immunized mice neutralized STa toxin in vitro. Data from this study indicated that toxoid fusion 3xSTa(A14Q)-tmLT is safe and can induce neutralizing antitoxin antibodies, and provided helpful information for vaccine development against ETEC diarrhea.

  16. Genetic fusions of a CFA/I/II/IV MEFA (multiepitope fusion antigen) and a toxoid fusion of heat-stable toxin (STa) and heat-labile toxin (LT) of enterotoxigenic Escherichia coli (ETEC) retain broad anti-CFA and antitoxin antigenicity.

    PubMed

    Ruan, Xiaosai; Sack, David A; Zhang, Weiping

    2015-01-01

    Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent

  17. Genetic fusions of a CFA/I/II/IV MEFA (multiepitope fusion antigen) and a toxoid fusion of heat-stable toxin (STa) and heat-labile toxin (LT) of enterotoxigenic Escherichia coli (ETEC) retain broad anti-CFA and antitoxin antigenicity.

    PubMed

    Ruan, Xiaosai; Sack, David A; Zhang, Weiping

    2015-01-01

    Immunological heterogeneity has long been the major challenge in developing broadly effective vaccines to protect humans and animals against bacterial and viral infections. Enterotoxigenic Escherichia coli (ETEC) strains, the leading bacterial cause of diarrhea in humans, express at least 23 immunologically different colonization factor antigens (CFAs) and two distinct enterotoxins [heat-labile toxin (LT) and heat-stable toxin type Ib (STa or hSTa)]. ETEC strains expressing any one or two CFAs and either toxin cause diarrhea, therefore vaccines inducing broad immunity against a majority of CFAs, if not all, and both toxins are expected to be effective against ETEC. In this study, we applied the multiepitope fusion antigen (MEFA) strategy to construct ETEC antigens and examined antigens for broad anti-CFA and antitoxin immunogenicity. CFA MEFA CFA/I/II/IV [CVI 2014, 21(2):243-9], which carried epitopes of seven CFAs [CFA/I, CFA/II (CS1, CS2, CS3), CFA/IV (CS4, CS5, CS6)] expressed by the most prevalent and virulent ETEC strains, was genetically fused to LT-STa toxoid fusion monomer 3xSTaA14Q-dmLT or 3xSTaN12S-dmLT [IAI 2014, 82(5):1823-32] for CFA/I/II/IV-STaA14Q-dmLT and CFA/I/II/IV-STaN12S-dmLT MEFAs. Mice intraperitoneally immunized with either CFA/I/II/IV-STa-toxoid-dmLT MEFA developed antibodies specific to seven CFAs and both toxins, at levels equivalent or comparable to those induced from co-administration of the CFA/I/II/IV MEFA and toxoid fusion 3xSTaN12S-dmLT. Moreover, induced antibodies showed in vitro adherence inhibition activities against ETEC or E. coli strains expressing these seven CFAs and neutralization activities against both toxins. These results indicated CFA/I/II/IV-STa-toxoid-dmLT MEFA or CFA/I/II/IV MEFA combined with 3xSTaN12S-dmLT induced broadly protective anti-CFA and antitoxin immunity, and suggested their potential application in broadly effective ETEC vaccine development. This MEFA strategy may be generally used in multivalent

  18. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    PubMed

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies. PMID:27441240

  19. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    PubMed

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  20. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  1. Status of fusion maintenance

    SciTech Connect

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission.

  2. FINAL Report on Analysis and direct numerical simulation of RF heating processes and advanced computational methods for fusion application

    SciTech Connect

    Cary, John R

    2015-02-23

    This completes the description of the work done under the above referenced grant. In brief, we have discovered many nonlinear effects, frequency doubling, nonlinear decays, that can prevent effective use of EBWs for plasma heating.

  3. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  4. EBW Current Drive and Heating for Fusion/Fission Hybrids

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Preinhaelter, Josef; Vahala, George; Vahala, Linda; Decker, Joan; Ram, Abhay

    2011-10-01

    From the RF requirements for spherical tokamak and the need to reduce antenna exposure to neutron bombardment, EBW are an important source for both heating and current drive (CD). ICRF, LH, HHFW antennas are subject to significant neutron damage (as are NBI) because of their very large size and necessary proximity to the plasma. Recently Mahajan et. al. have studied other important uses of fusion neutrons - in particular their use in the efficient breeding of fission reactor fuel as well as in the ``rapid'' destruction of nuclear waste using their Compact High Power Density Fast Neutron Source (CFNS). For overdense plasmas the standard electromagnetic O- and X- mode experience cutoffs. EBW can propagate and be absorbed in such plasmas but its characteristics are strongly dependent on the plasma parameters with important variations in the parallel wave number. If the required temperatures in CFNS are around 35 KeV, then one will may need to revisit the electrostatic approximation and incorporate relativistic effects for EBW rays.

  5. Core fusion power gain and alpha heating in JET, TFTR, and ITER

    NASA Astrophysics Data System (ADS)

    Budny, R. V.; Cordey, J. G.; TFTR Team; Contributors, JET

    2016-05-01

    Profiles of the ratio of fusion power and the auxiliary heating power q DT are calculated for the TFTR and JET discharges with the highest neutron emission rates, and are predicted for ITER. Core values above 1.3 for JET and 0.8 for TFTR are obtained. Values above 20 are predicted for ITER baseline plasmas.

  6. Applications of fusion thermal energy to industrial processes

    SciTech Connect

    Bowman, R. M.; Jody, B. J.; Lu, K. C.

    1980-01-01

    The feasibility of applying fusion thermal energy as process heat in the iron-steel industry, petrochemical industry, cement industry, and in the production of acetylene fom coal via calcium carbide are discussed. These four industries were selected for analysis because they require massive amounts of energy. This preliminary study concludes that the production of synthetic fuels using fusion heat appears to be the most promising method of storing and transporting this heat. Of the four industries studied, the iron-steel and the petrochemical industries appear to be the most promising because they consume substantial amounts of hydrogen and oxygen as feedstocks. These can be produced from water using the high-temperature fusion heat. The production of hydrogen and oxygen using fusion heat will also reduce the capital investment required for these industries. These two industries also consume tremendous amounts of heat at temperatures which can be delivered from a fusion blanket via chemical heat pipes.

  7. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts.

    PubMed

    Albarracín, Romina M; Becher, Melina Laguía; Farran, Inmaculada; Sander, Valeria A; Corigliano, Mariana G; Yácono, María L; Pariani, Sebastián; López, Edwin Sánchez; Veramendi, Jon; Clemente, Marina

    2015-05-01

    Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production.

  8. The fusion of Toxoplasma gondii SAG1 vaccine candidate to Leishmania infantum heat shock protein 83-kDa improves expression levels in tobacco chloroplasts.

    PubMed

    Albarracín, Romina M; Becher, Melina Laguía; Farran, Inmaculada; Sander, Valeria A; Corigliano, Mariana G; Yácono, María L; Pariani, Sebastián; López, Edwin Sánchez; Veramendi, Jon; Clemente, Marina

    2015-05-01

    Chloroplast transformation technology has emerged as an alternative platform offering many advantages over nuclear transformation. SAG1 is the main surface antigen of the intracellular parasite Toxoplasma gondii and a promising candidate to produce an anti-T. gondii vaccine. The aim of this study was to investigate the expression of SAG1 using chloroplast transformation technology in tobacco plants. In order to improve expression in transplastomic plants, we also expressed the 90-kDa heat shock protein of Leishmania infantum (LiHsp83) as a carrier for the SAG1 antigen. SAG1 protein accumulation in transplastomic plants was approximately 0.1-0.2 μg per gram of fresh weight (FW). Fusion of SAG1 to LiHsp83 significantly increased the level of SAG1 accumulation in tobacco chloroplasts (by up to 500-fold). We also evaluated the functionality of the chLiHsp83-SAG1. Three human seropositive samples reacted with SAG1 expressed in transplastomic chLiHsp83-SAG1 plants. Oral immunization with chLiHsp83-SAG1 elicited a significant reduction of the cyst burden that correlated with an increase of SAG1-specific antibodies. We propose the fusion of foreign proteins to LiHsp83 as a novel strategy to increase the expression level of the recombinant proteins using chloroplast transformation technology, thus addressing one of the current challenges for this approach in antigen protein production. PMID:25823559

  9. Heat generation above break-even from laser-induced fusion in ultra-dense deuterium

    SciTech Connect

    Holmlid, Leif

    2015-08-15

    Previous results from laser-induced processes in ultra-dense deuterium D(0) give conclusive evidence for ejection of neutral massive particles with energy >10 MeV u{sup −1}. Such particles can only be formed from nuclear processes like nuclear fusion at the low laser intensity used. Heat generation is of interest for future fusion energy applications and has now been measured by a small copper (Cu) cylinder surrounding the laser target. The temperature rise of the Cu cylinder is measured with an NTC resistor during around 5000 laser shots per measured point. No heating in the apparatus or the gas feed is normally used. The fusion process is suboptimal relative to previously published studies by a factor of around 10. The small neutral particles H{sub N}(0) of ultra-dense hydrogen (size of a few pm) escape with a substantial fraction of the energy. Heat loss to the D{sub 2} gas (at <1 mbar pressure) is measured and compensated for under various conditions. Heat release of a few W is observed, at up to 50% higher energy than the total laser input thus a gain of 1.5. This is uniquely high for the use of deuterium as fusion fuel. With a slightly different setup, a thermal gain of 2 is reached, thus clearly above break-even for all neutronicity values possible. Also including the large kinetic energy which is directly measured for MeV particles leaving through a small opening gives a gain of 2.3. Taking into account the lower efficiency now due to the suboptimal fusion process, previous studies indicate a gain of at least 20 during long periods.

  10. Primary heat transfer loop design for the Cascade inertial confinement fusion reactor

    SciTech Connect

    Murray, K.A.; McDowell, M.W.

    1984-05-01

    This study investigates a heat exchanger and balance of plant design to accompany the Cascade inertial confinement fusion reaction chamber concept. The concept uses solid Li/sub 2/O or other lithium-ceramic granules, held to the wall of a rotating reaction chamber by centrifugal action, as a tritium breeding blanket and first wall protection. The Li/sub 2/O granules enter the chamber at 800 K and exit at 1200 K after absorbing the thermal energy produced by the fusion process.

  11. [Construction of fusion gene vaccine of WT1 multi-epitope fused with stimulating epitope of mycobacterium tuberculosis heat shock protein 70 and its expression and immunogenicity].

    PubMed

    Tian, Wei-Wei; Qiao, Zhen-Hua; Yang, Lin-Hua; Wang, Hong-Wei; Tang, Yan-Hong; Bian, Si-Cheng

    2011-04-01

    This study was purposed to construct a fusion DNA vaccine containing WT1 multi-epitope and stimulating epitope of mycobacterium tuberculosis heat shock protein 70 and to detect its expression and immunogenicity. On the basis of published data, a multi-epitope gene (Multi-WT1) containing three HLA *0201-restricted CTL epitopes: one HLA*2402-restricted CTL epitope, two Th epitopes and one universal Th Pan-DR epitope (PADRE) was constructed. DNA-coding sequence was modified by Computer-Aided Design (CAD) to optimize proteasome-mediated epitope processing through the introduction of different amino acid spacer sequences. The synthetic nucleotide sequence was then inserted into an eukaryotic vector to construct the plasmid pcDNA3.1-WT1.For enhancing CTL activity, HSP70 fragment including stimulatory domain P407-426 was amplified by PCR from mycobacterial HSP70 gene and cloned into pcDNA3.1(+). Then Multi-WT1 was fused to the N-terminal of pcDNA3.1-mHSP70(407-426) to make the multi-epitope fusion gene vaccine pcDNA3.1-WT1-mHSP70(407-426). HEK-293T cells were transfected with this vaccine and the expressed product was identified by RT-PCR. Enzyme-linked immunospot assay (ELISPOT) was used to evaluate the immunological responses elicited by vaccine. The results showed that the most of WT1 epitopes could be correctly cleaved which was confirmed by software Net Chop 3.1 and PAPROCIanalysis. RT-PCR showed correct expression of target gene in HEK293T cells and ELISPOT showed specific T-cell responses. It is concluded that the eukaryotic expression vector PcDNA3.1-WT1-mHSP70(407-426) fusion gene has been successfully constructed and the immunity response is also elicited, which is a good candidate for further research of DNA vaccine.

  12. Status and problems of fusion reactor development.

    PubMed

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.

  13. Improvements of image fusion methods

    NASA Astrophysics Data System (ADS)

    Ben-Shoshan, Yotam; Yitzhaky, Yitzhak

    2014-03-01

    Fusion of images from different imaging modalities, obtained by conventional fusion methods, may cause artifacts, including destructive superposition and brightness irregularities, in certain cases. This paper proposes two methods for improving image multimodal fusion quality. Based on the finding that a better fusion can be achieved when the images have a more positive correlation, the first method is a decision algorithm that runs at the preprocessing fusion stage and determines whether a complementary gray level of one of the input images should be used instead of the original one. The second method is suitable for multiresolution fusion, and it suggests choosing only one image from the lowest-frequency sub-bands in the pyramids, instead of combining values from both sub-bands. Experimental results indicate that the proposed fusion enhancement can reduce fusion artifacts. Quantitative fusion quality measures that support this conclusion are shown.

  14. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  15. Design study of a G-band FEL amplifier for application to cyclotron resonant heating in magnetic fusion reactors

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; Read, M. E.; Jackson, R. H.; Pershing, D. E.; Taccetti, J. M.

    1995-04-01

    A G-band (140-150 GHz) free-electron laser is described using a coaxial hybrid iron (CHI) wiggler. The CHI wiggler is produced by insertion into a solenoid of a central rod and an outer ring composed of alternating ferrite and nonferrite spacers. The position of the spacers is such that the ferrite (nonferrite) spacers on the central rod are opposite the nonferrite (ferrite) spacers on the outer ring. The field is cylindrically symmetric and exhibits minima in the center of the gap providing for enhanced beam focusing. We describe a tapered wiggler amplifier for plasma heating applications. Preliminary design studies using a nonlinear simulation indicates that output powers of 3.5 MW are possible using a 690 kV/40 A electron beam for a total efficiency of 13%. It is important to note that no beam loss was observed even for realistic values of beam energy spread.

  16. Enhanced activation of T lymphocytes by urease-deficient recombinant bacillus Calmette-Guérin producing heat shock protein 70-major membrane protein-II fusion protein.

    PubMed

    Mukai, Tetsu; Maeda, Yumi; Tamura, Toshiki; Matsuoka, Masanori; Tsukamoto, Yumiko; Makino, Masahiko

    2010-11-15

    To activate naive T cells convincingly using Mycobacterium bovis bacillus Calmette-Guérin (BCG), recombinant BCG (BCG-D70M) that was deficient in urease, expressed with gene encoding the fusion of BCG-derived heat shock protein (HSP) 70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed. BCG-D70M was more potent in activation of both CD4(+) and CD8(+) subsets of naive T cells than recombinant BCGs including urease-deficient BCG and BCG-70M secreting HSP70-MMP-II fusion protein. BCG-D70M efficiently activated dendritic cells (DCs) to induce cytokine production and phenotypic changes and activated CD4(+) T cells even when macrophages were used as APCs. The activation of both subsets of T cells was MHC and CD86 dependent. Pretreatment of DCs with chloroquine inhibited both surface expression of MMP-II on DCs and the activation of T cells by BCG-D70M-infected APCs. The naive CD8(+) T cell activation was inhibited by treatment of DCs with brefeldin A and lactacystin so that the T cell was activated by TAP- and proteosome-dependent cytosolic cross-priming pathway. From naive CD8(+) T cells, effector T cells producing perforin and memory T cells having migration markers were produced by BCG-D70M stimulation. BCG-D70M primary infection in C57BL/6 mice produced T cells responsive to in vitro secondary stimulation with MMP-II and HSP70 and more efficiently inhibited the multiplication of subsequently challenged M. leprae than vector control BCG. These results indicate that the triple combination of HSP70, MMP-II, and urease depletion may provide a useful tool for inducing better activation of naive T cells.

  17. [Enhanced activation of T lymphocytes by urease-deficient recombinant bacillus Calmette-Guérin producing heat shock protein 70-major membrane protein-II fusion protein].

    PubMed

    Makino, Masahiko; Mukai, Tetsu

    2012-09-01

    To activate naïve T cells convincingly using Mycobacterium bovis BCG (BCG), rBCG (BCG-D70M) that was deficient in urease, expressed with gene encoding the fusion of BCG-derived heat shock protein (HSP) 70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed. BCG-D70M was more potent in activation of both CD4+ and CD8+ subsets of naïve T cells than rBCGs including urease-deficient BCG and BCG-70M secreting HSP70-MMP-II fusion protein. BCG-D70M efficiently activated dendritic cells (DC) to induce cytokine production and phenotypic changes, and activated CD4+ T cells even when macrophages were used as APCs. The activation of both subsets of T cells was MHC and CD86 dependent. Pre-treatment of DC with chloroquine inhibited both surface expression of MMP-II on DC and the activation of T cells by BCG-D70M-infected APCs. The naïve CD8+ T cell activation was inhibited by treatment of DC with brefeldin A and lactacystin so that the T cells was activated by TAP- and proteosome-dependent cytosolic cross-priming pathway. From naïve CD8+ T cells, effector T cells producing perforin and memory T cells having migration markers, were produced by BCG-D70M stimulation. BCG-D70M primary infection in C57BL/6 mice produced T cells responsive to in vitro secondary stimulation with MMP-II and HSP70, and more efficiently inhibited the multiplication of subsequently challenged M. leprae than vector control BCG. These results indicate that the triple combination of HSP70, MMP-II and urease depletion may provide useful tool for inducing better activation of naïve T cells.

  18. Interfacial optimization of tungsten fibre-reinforced copper for high-temperature heat sink material for fusion application

    NASA Astrophysics Data System (ADS)

    Herrmann, A.; Schmid, K.; Balden, M.; Bolt, H.

    2009-04-01

    W fibre-reinforced Cu shows great promise to improve the mechanical performance at high-temperatures compared to conventional Cu-based alloys. Focus was placed on the optimization of the interface to achieve an enhanced adhesion between W fibre and Cu matrix. The interfacial properties were investigated through pull-out measurements of single matrix-coated fibres for different interfacial concepts. The interfacial adhesion of W and Cu is determined solely through mechanical interlocking. Interdiffusion and segregations experiment showed that there are no interface reactions between W and Cu at elevated temperatures. From the investigated interfacial concepts, a stepwise graded transition interface with additional heat treatment was found to achieve the highest interfacial shear strength. The thermal stability of the MMC in thermal cycling tests can be assured by depositing a stepwise graded transition between W fibre and Cu matrix.

  19. Stochastic ion heating from many overlapping laser beams in fusion plasmas.

    PubMed

    Michel, P; Rozmus, W; Williams, E A; Divol, L; Berger, R L; Town, R P J; Glenzer, S H; Callahan, D A

    2012-11-01

    In this Letter, we show through numerical simulations and analytical results that overlapping multiple (N) laser beams in plasmas can lead to strong stochastic ion heating from many (~N(2)) electrostatic perturbations driven by beat waves between pairs of laser beams. For conditions typical of inertial-confinement-fusion experiment conditions, hundreds of such beat waves are driven in mm(3)-scale plasmas, leading to ion heating rates of several keV/ns. This mechanism saturates cross-beam energy transfer, with a reduction of linear gains by a factor ~4-5 and can strongly modify the overall hydrodynamics evolution of such laser-plasma systems. PMID:23215392

  20. A fusion of minds

    NASA Astrophysics Data System (ADS)

    Corfield, Richard

    2013-02-01

    Mystery still surrounds the visit of the astronomer Sir Bernard Lovell to the Soviet Union in 1963. But his collaboration - and that of other British scientists - eased geopolitical tensions at the height of the Cold War and paved the way for today's global ITER fusion project, as Richard Corfield explains.

  1. Elevated temperature properties of SiC-fibre reinforced CuCr1Zr, a candidate heat sink material for application in fusion reactors

    NASA Astrophysics Data System (ADS)

    Peters, P. W. M.; Hemptenmacher, J.; Muchilo, D.

    2007-03-01

    In experimental fusion reactors the copper alloy CuCr1Zr is a widely used alloy for heat sinks. The thermal conductivity at room temperature of this alloy measures 370 W m-1K-1. Its room temperature mechanical properties with a tensile strength of 400-470 MPa and a yield stress of 280-380 MPa are based on a dispersion hardening and an aging treatment. The long-term temperature capability is however limited due to an overaging effect taking place in the temperature range of roughly 350 °C up to an aging temperature of 480 °C. A possibile way to improve the properties at elevated temperatures is by embedding stiff, strong fibres, e.g. SiC-fibres. In the present study, the mechanical behaviour of SiC-fibre reinforced CuCr1Zr is determined at 550 °C and compared with the room temperature properties. The thermal conductivity is considerably reduced by embedding SiC-fibres. From measured values of the thermal conductivity of the composite material the axial thermal conductivity of the SiC-fibre can be roughly estimated to be 16 W m-1K-1.

  2. Fusion of Sendai virus with vesicles of oligomerizable lipids: a microcalorimetric analysis of membrane fusion.

    PubMed

    Ravoo, B J; Weringa, W D; Engberts, J B

    2000-01-01

    Sendai virus fuses efficiently with small and large unilamellar vesicles of the lipid 1,2-di-n-hexadecyloxypropyl-4- (beta-nitrostyryl) phosphate (DHPBNS) at pH 7.4 and 37 degrees C, as shown by lipid mixing assays and electron microscopy. However, fusion is strongly inhibited by oligomerization of the head groups of DHPBNS in the bilayer vesicles. The enthalpy associated with fusion of Sendai virus with DHPBNS vesicles was measured by isothermal titration microcalorimetry, comparing titrations of Sendai virus into (i) solutions of DHPBNS vesicles (which fuse with the virus) and (ii) oligomerized DHPBNS vesicles (which do not fuse with the virus), respectively. The observed heat effect of fusion of Sendai virus with DHPBNS vesicles is strongly dependent on the buffer medium, reflecting a partial charge neutralization of the Sendai F and HN proteins upon insertion into the negatively-charged vesicle membrane. No buffer effect was observed for the titration of Sendai virus into oligomerized DHPBNS vesicles, indicating that inhibition of fusion is a result of inhibition of insertion of the fusion protein into the target membrane. Fusion of Sendai virus with DHPBNS vesicles is endothermic and entropy-driven. The positive enthalpy term is dominated by heat effects resulting from merging of the protein-rich viral envelope with the lipid vesicle bilayers rather than by the fusion of the viral with the vesicle bilayers per se.

  3. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  4. Proceedings of 1999 U.S./Japan Workshop (99FT-05) On High Heat Flux Components and Plasma Surface Interactions for Next Fusion Devices

    SciTech Connect

    NYGREN,RICHARD E.; STAVROS,DIANA T.

    2000-06-01

    The 1999 US-Japan Workshop on High Heat Flux Components and Plasma Surface Interactions in Next Step Fusion Devices was held at the St. Francis Hotel in Santa Fe, New Mexico, on November 1-4, 1999. There were 42 presentations as well as discussion on technical issues and planning for future collaborations. The participants included 22 researchers from Japan and the United States as well as seven researchers from Europe and Russia. There have been important changes in the programs in both the US and Japan in the areas of plasma surface interactions and plasma facing components. The US has moved away from a strong focus on the ITER Project and has introduced new programs on use of liquid surfaces for plasma facing components, and operation of NSTX has begun. In Japan, the Large Helical Device began operation. This is the first large world-class confinement device operating in a magnetic configuration different than a tokamak. In selecting the presentations for this workshop, the organizers sought a balance between research in laboratory facilities or confinement devices related to plasma surface interactions and experimental research in the development of plasma facing components. In discussions about the workshop itself, the participants affirmed their preference for a setting where ''work-in-progress'' could be informally presented and discussed.

  5. The role and status of magnetic fusion

    NASA Astrophysics Data System (ADS)

    Frieman, E. A.

    1981-05-01

    A brief assessment is presented of the physical principles and technological development requirements of magnetic fusion devices such as the tokamak and magnetic mirror. Among the problems to be solved are: (1) MHD equilibrium and stability, (2) perpendicular ion and electron confinement, (3) parallel electron energy confinement, (4) heating by external means, (5) self-heating, (6) electric potential, (7) impurity influx and (8) refueling.

  6. Enhancement of HCV polytope DNA vaccine efficacy by fusion to an N-terminal fragment of heat shock protein gp96.

    PubMed

    Pishraft-Sabet, Leila; Kosinska, Anna D; Rafati, Sima; Bolhassani, Azam; Taheri, Tahereh; Memarnejadian, Arash; Alavian, Seyed-Moayed; Roggendorf, Michael; Samimi-Rad, Katayoun

    2015-01-01

    Induction of a strong hepatitis C virus (HCV)-specific immune response plays a key role in control and clearance of the virus. A polytope (PT) DNA vaccine containing B- and T-cell epitopes could be a promising vaccination strategy against HCV, but its efficacy needs to be improved. The N-terminal domain of heat shock protein gp96 (NT(gp96)) has been shown to be a potent adjuvant for enhancing immunity. We constructed a PT DNA vaccine encoding four HCV immunodominant cytotoxic T lymphocyte epitopes (two HLA-A2- and two H2-D(d)-specific motifs) from the Core, E2, NS3 and NS5B antigens in addition to a T-helper CD4+ epitope from NS3 and a B-cell epitope from E2. The NT(gp96) was fused to the C- or N-terminal end of the PT DNA (PT-NT(gp96) or NT(gp96)-PT), and their potency was compared. Cellular and humoral immune responses against the expressed peptides were evaluated in CB6F1 mice. Our results showed that immunization of mice with PT DNA vaccine fused to NT(gp96) induced significantly stronger T-cell and antibody responses than PT DNA alone. Furthermore, the adjuvant activity of NT(gp96) was more efficient in the induction of immune responses when fused to the C-terminal end of the HCV DNA polytope. In conclusion, the NT(gp96) improved the efficacy of the DNA vaccine, and this immunomodulatory effect was dependent on the position of the fusion.

  7. Heat-precipitation allows the efficient purification of a functional plant-derived malaria transmission-blocking vaccine candidate fusion protein.

    PubMed

    Beiss, Veronique; Spiegel, Holger; Boes, Alexander; Kapelski, Stephanie; Scheuermayer, Matthias; Edgue, Gueven; Sack, Markus; Fendel, Rolf; Reimann, Andreas; Schillberg, Stefan; Pradel, Gabriele; Fischer, Rainer

    2015-07-01

    Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 μg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail.

  8. Physics of laser fusion. Vol. I. Theory of the coronal plasma in laser-fusion targets

    SciTech Connect

    Max, C.E.

    1981-12-01

    This monograph deals with the physics of the coronal region in laser fusion targets. The corona consists of hot plasma which has been evaporated from the initially solid target during laser heating. It is in the corona that the laser light is absorbed by the target, and the resulting thermal energy is conducted toward cold high-density regions, where ablation occurs. The topics to be discussed are theoretical mechanisms for laser light absorption and reflection, hot-electron production, and the physics of heat conduction in laser-produced plasmas. An accompanying monograph by H. Ahlstrom (Vol.II) reviews the facilities, diagnostics, and data from recent laser fusion experiments.

  9. Dendritic-tumor fusion cells derived heat shock protein70-peptide complex has enhanced immunogenicity.

    PubMed

    Zhang, Yunfei; Zhang, Yong; Chen, Jun; Liu, Yunyan; Luo, Wen

    2015-01-01

    Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use.

  10. Economic potential of inertial fusion

    SciTech Connect

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

  11. An evaluation of fusion gain in the compact helical fusion reactor FFHR-c1

    NASA Astrophysics Data System (ADS)

    Miyazawa, J.; Goto, T.; Sakamoto, R.; Sagara, A.; the FFHR Design Group

    2014-01-01

    A new procedure to predict achievable fusion gain in a sub-ignition fusion reactor is proposed. This procedure uses the direct profile extrapolation (DPE) method based on the gyro-Bohm model. The DPE method has been developed to predict the radial profiles in a fusion reactor sustained without auxiliary heating (i.e., in the self-ignition state) from the experimental data. To evaluate the fusion gain in a fusion reactor sustained with auxiliary heating (i.e., in the sub-ignition state), the DPE method is modified to include the influence of the auxiliary heating. The beta scale factor from experiment to reactor is assumed to be 1. Under this assumption, it becomes reasonable to apply the magnetohydrodynamic (MHD) equilibrium (which is calculated to reproduce the experimental data) to the reactor. At the same time, the MHD stability of the reactor plasma is also guaranteed to a certain extent since that beta was already proven in the experiment. The fusion gain in the helical type nuclear test machine FFHR-c1 has been evaluated using this modified DPE method. FFHR-c1 is basically a large duplication of the Large Helical Device (LHD) with a scale factor of 10/3, which corresponds to the major radius of the helical coils of 13.0 m and the plasma volume of ∼1000 m3. Two options with different magnetic field strengths are considered. The fusion gain in FFHR-c1 extrapolated from a set of radial profile data obtained in LHD ranges from 1 to 7, depending on the profiles used together with the assumptions of the magnetic field strength and the alpha heating efficiency.

  12. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  13. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol dispersing.

    PubMed

    Dinunzio, James C; Brough, Chris; Hughey, Justin R; Miller, Dave A; Williams, Robert O; McGinity, James W

    2010-02-01

    Many techniques for the production of solid dispersions rely on elevated temperatures and prolonged material residence times, which can result in decomposition of temperature-sensitive components. In this study, hydrocortisone was used as a model temperature-sensitive active ingredient to study the effect of formulation and processing techniques as well as to characterize the benefits of KinetiSol Dispersing for the production of solid dispersions. Preformulation studies were conducted using differential scanning calorimetry and hot stage microscopy to identify optimum carriers for the production of amorphous solid dispersions. After identification, solid dispersions were prepared by hot melt extrusion and KinetiSol Dispersing, with material characterized by X-ray diffraction, dissolution and potency testing to evaluate physicochemical properties. Results from the preformulation studies showed that vinylacetate:vinylpyrrolidone (PVPVA) copolymer allowed for hydrocortisone dissolution within the carrier at temperatures as low as 160 degrees C, while hydroxypropyl methylcellulose required temperatures upward of 180 degrees C to facilitate solubilization. Low substituted hydroxypropyl cellulose, a high glass transition temperature control, showed that the material was unable to solubilize hydrocortisone. Manufacturing process control studies using hot melt extruded compositions of hydrocortisone and PVPVA showed that increased temperatures and residence times negatively impacted product potency due to decomposition. Using KinetiSol Dispersing to reduce residence time and to facilitate lower temperature processing, it was possible to produce solid dispersions with improved product potency. This study clearly demonstrated the importance of carrier selection to facilitate lower temperature processing, as well as the effect of residence time on product potency. Furthermore, KinetiSol Dispersing provided significant advantages over hot melt extrusion due to the reduced

  14. Beam-plasma generators of stochastic microwave oscillations used for plasma heating in fusion and plasma-chemistry devices and ionospheric investigations

    NASA Astrophysics Data System (ADS)

    Mitin, Leonid A.; Perevodchikov, Vladimir I.; Shapiro, A. L.; Zavjalov, M. A.; Bliokh, Yury P.; Fainberg, Ya. B.

    1996-10-01

    The results of theoretical and experimental investigations of generator of stochastic microwave power based on beam- plasma inertial feedback amplifier is discussed to use stochastic oscillation for heating of plasma. The efficiency of heating of plasma in the region of low-frequency resonance in the geometry of `Tokomak' is considered theoretically. It is shown, that the temp of heating is proportional the power multiplied by spectra width of noiselike signal.

  15. Core conditions for alpha heating attained in direct-drive inertial confinement fusion.

    PubMed

    Bose, A; Woo, K M; Betti, R; Campbell, E M; Mangino, D; Christopherson, A R; McCrory, R L; Nora, R; Regan, S P; Goncharov, V N; Sangster, T C; Forrest, C J; Frenje, J; Gatu Johnson, M; Glebov, V Yu; Knauer, J P; Marshall, F J; Stoeckl, C; Theobald, W

    2016-07-01

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.

  16. Core conditions for alpha heating attained in direct-drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Bose, A.; Woo, K. M.; Betti, R.; Campbell, E. M.; Mangino, D.; Christopherson, A. R.; McCrory, R. L.; Nora, R.; Regan, S. P.; Goncharov, V. N.; Sangster, T. C.; Forrest, C. J.; Frenje, J.; Gatu Johnson, M.; Glebov, V. Yu; Knauer, J. P.; Marshall, F. J.; Stoeckl, C.; Theobald, W.

    2016-07-01

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016), 10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.

  17. Core conditions for alpha heating attained in direct-drive inertial confinement fusion

    DOE PAGES

    Bose, A.; Woo, K. M.; Betti, R.; Campbell, E. M.; Mangino, D.; Christopherson, A. R.; McCrory, R. L.; Nora, R.; Regan, S. P.; Goncharov, V. N.; et al

    2016-07-07

    Here, it is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett.more » 117, 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less

  18. Role of impurities in fusion plasmas

    SciTech Connect

    Tokar, M. Z.

    2008-10-15

    The role of impurity at the plasma edge of fusion devices is considered by analysing the influence on radiation losses and anomalous transport of particle and energy. The conditions critical for the development of radiative instabilities leading to the formation of detachment and MARFE and those necessary for the creation of a stable radiating edge, protecting the wall elements from intensive heat loads, are analyzed. Mechanisms responsible for anomalous transport suppression with impurity seeding are elucidated.

  19. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    neutral beam injectors and the power supply systems were considered. This year the ion cyclotron resonant heating system is under evaluation. I. Cristescu et al (Germany) present the paper `Tritium inventories and tritium safety design principles for the fuel cycle of ITER'. She and her colleagues developed the dynamic mathematical model (TRIMO) for tritium inventory evaluation within each system of the ITER fuel cycle in various operational scenarios. TRIMO is used as a tool for trade-off studies within the fuel cycle systems with the final goal of global tritium inventory minimization. M. Matsuyama et al (Japan) describes a new technique for in situ quantitative measurements of high-level tritium inventory and its distribution in the VV and tritium systems of ITER and future fusion reactors. This technique is based on utilization of x-rays induced by beta-rays emitting from tritium species. It was applied to three physical states of high-level tritium: to gaseous, aqueous and solid tritium retained on/in various materials. Finally, there are four papers devoted to safety issues in fusion reactor decommissioning and waste management. A paper by R. Pampin et al (UK) provides the revised radioactive waste analysis of two models in the PPCS. Another paper by M. Zucchetti (Italy), S.A. Bartenev (Russia) et al describes a radiochemical extraction technology for purification of V-Cr-Ti alloy components from activation products to the dose rate of 10 µSv/h allowing their clearance or hands-on recycling which has been developed and tested in laboratory stationary conditions. L. El-Guebaly (USA) and her colleagues submitted two papers. In the first paper she optimistically considers the possibility of replacing the disposal of fusion power reactor waste with recycling and clearance. Her second paper considers the implications of new clearance guidelines for nuclear applications, particularly for slightly irradiated fusion materials.

  20. On the economic prospects of nuclear fusion with tokamaks

    NASA Astrophysics Data System (ADS)

    Pfirsch, D.; Schmitter, K. H.

    1987-12-01

    A method of cost and construction energy estimation for tokamak fusion power stations conforming to the present stage of fusion development is described. The method is based on first-wall heat load constraints rather than Beta limitations, which, however, might eventually be the more critical of the two. It is used to discuss the economic efficiency of pure fusion, with particular reference to the European study entitled Environmental Impact and Economic Prospects of Nuclear Fusion (1986). It is shown that the claims made therein for the economic prospects of pure fusion with tokamaks, when discussed on the basis of the present-day technology, do not stand up to critical examination. A fusion-fission hybrid, however, could afford more positive prospects. Support for the stated method is derived when it is properly applied for cost estimation of advanced gas-cooled and Magnox reactors, the two examples presented by the European study to disprove it.

  1. Deployment of membrane fusion protein domains during fusion.

    PubMed

    Bentz, J; Mittal, A

    2000-01-01

    It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion

  2. Future of Inertial Fusion Energy

    SciTech Connect

    Nuckolls, J H; Wood, L L

    2002-09-04

    In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

  3. Thermal Studies of the Laser Inertial Fusion Energy (LIFE) Target during Injection into the Fusion Chamber

    SciTech Connect

    Miles, R. R.; Havstad, M.; LeBlanc, M.; Chang, A.; Golosker, I.; Rosso, P.

    2014-09-09

    The tests of the external heat transfer coefficient suggests that the values used in the numerical analysis for the temperature distribution within the fusion fuel target following flight into the target chamber are probably valid. The tests of the heat transfer phenomena occurring within the target due the rapid heating of the LEH window for the hot gasses within the fusion chamber show that the heat does indeed convect via the internal helium environment of the target towards the capsule and that the pressure in the front compartment of the target adjacent to the LEH window increases such that t bypass venting of the internal helium into the second chamber adjacent to the capsule is needed to prevent rupture of the membranes. The bypass flow is cooled by the hohlraum during this venting. However, the experiments suggest that our internal heat flow calculations may be low by about a factor of 2. Further studies need to be conducted to investigate the differences between the experiment and the numerical analysis. Future studies could also possibly bring the test conditions closer to those expected in the fusion chamber to better validate the results. A sacrificial layer will probably be required on the LEH window of the target and this can be used to mitigate any unexpected target heating.

  4. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    NASA Astrophysics Data System (ADS)

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program

  5. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    SciTech Connect

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science.After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program

  6. A novel hNIS/tdTomato fusion reporter for visualizing the relationship between the cellular localization of sodium iodide symporter and its iodine uptake function under heat shock treatment.

    PubMed

    Yeom, Chan Joo; Chung, Taemoon; Youn, Hyewon; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key

    2015-01-01

    The function of membrane-localized sodium iodide symporter (NIS) determines the efficacy of radioiodine therapy in thyroid cancer. Here, we describe a dual mode reporter fused with human NIS (hNIS) and a red fluorescent protein named tandem dimeric Tomato (tdTomato) for the in vitro and in vivo imaging of hNIS protein expression, localization, and iodide uptake function. Human cervical epithelial adenocarcinoma cell line (HeLa)-hNIS/tdTomato cells were established by transducing a fusion gene expressing hNIS/tdTomato under the control of a cytomegalovirus promoter. Fluorescence imaging, confocal microscopy, and an 125I uptake assay were performed to validate the integrity of the fusion protein. Actinomycin D and cycloheximide were used to block newly synthesized hNIS proteins. In vivo images were acquired using a gamma camera and a Maestro fluorescence imaging device. The fluorescence intensity of membrane-localized hNIS and 125I uptake both were increased after heat shock. Scintigraphy and fluorescence imaging indicated specific accumulation of the hNIS/tdTomato fusion protein in xenografted tumors, supporting the utility of this system for in vivo monitoring of hNIS expression and activity. We developed a novel hNIS/tdTomato dual mode reporter that enables visualization of the expression, localization, and iodine uptake function of hNIS in vitro and in vivo. PMID:25773964

  7. A novel hNIS/tdTomato fusion reporter for visualizing the relationship between the cellular localization of sodium iodide symporter and its iodine uptake function under heat shock treatment.

    PubMed

    Yeom, Chan Joo; Chung, Taemoon; Youn, Hyewon; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key

    2015-01-01

    The function of membrane-localized sodium iodide symporter (NIS) determines the efficacy of radioiodine therapy in thyroid cancer. Here, we describe a dual mode reporter fused with human NIS (hNIS) and a red fluorescent protein named tandem dimeric Tomato (tdTomato) for the in vitro and in vivo imaging of hNIS protein expression, localization, and iodide uptake function. Human cervical epithelial adenocarcinoma cell line (HeLa)-hNIS/tdTomato cells were established by transducing a fusion gene expressing hNIS/tdTomato under the control of a cytomegalovirus promoter. Fluorescence imaging, confocal microscopy, and an 125I uptake assay were performed to validate the integrity of the fusion protein. Actinomycin D and cycloheximide were used to block newly synthesized hNIS proteins. In vivo images were acquired using a gamma camera and a Maestro fluorescence imaging device. The fluorescence intensity of membrane-localized hNIS and 125I uptake both were increased after heat shock. Scintigraphy and fluorescence imaging indicated specific accumulation of the hNIS/tdTomato fusion protein in xenografted tumors, supporting the utility of this system for in vivo monitoring of hNIS expression and activity. We developed a novel hNIS/tdTomato dual mode reporter that enables visualization of the expression, localization, and iodine uptake function of hNIS in vitro and in vivo.

  8. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  9. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE PAGES

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  10. Nuclear Propulsion through Direct Conversion of Fusion Energy: The Fusion Driven Rocket

    NASA Technical Reports Server (NTRS)

    Slough, John; Pancotti, Anthony; Kirtley, David; Pihl, Christopher; Pfaff, Michael

    2012-01-01

    The future of manned space exploration and development of space depends critically on the creation of a dramatically more proficient propulsion architecture for in-space transportation. A very persuasive reason for investigating the applicability of nuclear power in rockets is the vast energy density gain of nuclear fuel when compared to chemical combustion energy. Current nuclear fusion efforts have focused on the generation of electric grid power and are wholly inappropriate for space transportation as the application of a reactor based fusion-electric system creates a colossal mass and heat rejection problem for space application.

  11. Prospects for fusion: The winds of change

    NASA Astrophysics Data System (ADS)

    Davidson, R. C.

    This paper addresses the following topics: (1) national energy circumstances and policy, and the implications for fusion; (2) the intrinsic merit of fusion research and development as it contributes to the national science and technology base; (3) the research opportunities and priorities in inertial confinement fusion; and (4) the research opportunities and priorities in magnetic fusion.

  12. Review of methods for fusion bonding thermoplastic composites

    SciTech Connect

    Benatar, A.; Gutowski, T.G.

    1987-02-01

    Bonding of thermoplastic composites is a critical step in the manufacture of aerospace structures. The objective of this project is to investigate different methods for fusion bonding thermoplastic composites quickly, with a good bond strength, and without warping and deconsolidation. This is best accomplished by heating and melting the thermoplastic on the bond surface only, and then pressing the parts together for a fusion bond. For this purpose, a variety of surface heating techniques were examined for bonding of PEEK and J Polymer composites. These included: resistance heating, infrared heating, induction heating, dielectric/microwave heating, and ultrasonic welding. In resistance heating, a single prepreg ply was placed between the composites and heated by passing electric current through the graphite fibers. With induction heating, a single ply of nickel coated graphite fibers was placed between the composites and heated. Ultrasonic welding was done by molding thermoplastic-only energy directors into the composites; the ultrasonic vibration melted these energy directors thereby fusion bonding the parts. 20 references.

  13. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  14. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  15. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    SciTech Connect

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.; Chan, A.A.; England, A.C.; Hendel, H.W.; Medley, S.S.; Nieschmidt, E.; Roquemore, A.L.; Scott, S.D.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and /sup 3/He ions, respectively. When the plasma was compressed, the d(d,n)/sup 3/He fusion reaction rate increased a factor of five, and the /sup 3/He(d,p)/sup 4/He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling.

  16. Effects of selective fusion on the thermal history of the Moon, Mars, and Venus

    USGS Publications Warehouse

    Lee, W.H.K.

    1968-01-01

    A comparative study on the thermal history of the Moon, Mars, and Venus was made by numerical solutions of the heat equation including and excluding selective fusion of silicates. Selective fusion was approximated by melting in a multicomponent system and redistribution of radioactive elements. Effects on selective fusion on the thermal models are (1) lowering (by several hundred degrees centigrade) and stabilizing the internal temperature distribution, and (2) increasing the surface heat-flow. ?? 1968.

  17. The emissivities of liquid metals at their fusion temperatures

    NASA Technical Reports Server (NTRS)

    Bonnell, D. W.; Treverton, J. A.; Valerga, A. J.; Margrave, J. L.

    1972-01-01

    A survey of the literature through 1969 shows an almost total lack of experimental emissivity data for metals in the liquid state. The emissivities for several transition metals and various other metals and compounds in the liquid state at their fusion temperatures have been determined. The technique used involves electromagnetic levitation-induction heating of the materials in an inert atmosphere. The brightness temperature of the liquid phase of the material is measured as the material is heated through fusion. Given a reliable value of the fusion temperature, which is available for most pure substances, one may readily calculate an emissivity for the liquid phase at the fusion temperatures. Even in cases where melting points are poorly known, the brightness temperatures are unique parameters, independent of the temperature scale and measured for a chemically defined system at a fixed point. Better emissivities may be recalculated as better melting point data become available.

  18. Rapid heating of matter using high power lasers

    SciTech Connect

    Bang, Woosuk

    2015-11-05

    This report describes rapid heating technology with ion sources. LANL calculated the expected heating per atom and temperatures of the target materials, used alumium ion beams to heat gold and diamond, produced deuterium fusion plasmas and then measured the ion temperature at the time of the fusion reactions.

  19. The emissivities of liquid metals at their fusion temperatures.

    NASA Technical Reports Server (NTRS)

    Bonnell, D. W.; Treverton, J. A.; Valerga, A. J.; Margrave , J. L.

    1972-01-01

    The emissivities for several transition metals and various other metals and compounds in the liquid state at their fusion temperatures have been determined in this laboratory. The technique used involves electromagnetic levitation-induction heating of the materials in an inert atmosphere. The brightness temperature of the liquid phase of the material is measured as the material is heated through fusion. Given a reliable value of the fusion temperature, which is available for most pure substances, one may readily calculate an emissivity for the liquid phase at the fusion temperature. Even in cases where melting points are poorly known, the brightness temperatures are unique parameters, independent of the temperature scale and measured for a chemically defined system at a fixed point.

  20. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing.

    PubMed

    Weirather, Jason L; Afshar, Pegah Tootoonchi; Clark, Tyson A; Tseng, Elizabeth; Powers, Linda S; Underwood, Jason G; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-10-15

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699

  1. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing

    PubMed Central

    Weirather, Jason L.; Afshar, Pegah Tootoonchi; Clark, Tyson A.; Tseng, Elizabeth; Powers, Linda S.; Underwood, Jason G.; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-01-01

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699

  2. Accelerator and Fusion Research Division: summary of activities, 1983

    SciTech Connect

    Not Available

    1984-08-01

    The activities described in this summary of the Accelerator and Fusion Research Division are diverse, yet united by a common theme: it is our purpose to explore technologically advanced techniques for the production, acceleration, or transport of high-energy beams. These beams may be the heavy ions of interest in nuclear science, medical research, and heavy-ion inertial-confinement fusion; they may be beams of deuterium and hydrogen atoms, used to heat and confine plasmas in magnetic fusion experiments; they may be ultrahigh-energy protons for the next high-energy hadron collider; or they may be high-brilliance, highly coherent, picosecond pulses of synchrotron radiation.

  3. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-01

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter ( ωeτe≫1 ), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ωeτe as does the Bohm diffusion coefficient c T /(16 e B ) , which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  4. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma

    SciTech Connect

    Velikovich, A. L.; Giuliani, J. L.; Zalesak, S. T.

    2015-04-15

    The magnetized liner inertial fusion (MagLIF) approach to inertial confinement fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010); Cuneo et al., IEEE Trans. Plasma Sci. 40, 3222 (2012)] involves subsonic/isobaric compression and heating of a deuterium-tritium plasma with frozen-in magnetic flux by a heavy cylindrical liner. The losses of heat and magnetic flux from the plasma to the liner are thereby determined by plasma advection and gradient-driven transport processes, such as thermal conductivity, magnetic field diffusion, and thermomagnetic effects. Theoretical analysis based on obtaining exact self-similar solutions of the classical collisional Braginskii's plasma transport equations in one dimension demonstrates that the heat loss from the hot compressed magnetized plasma to the cold liner is dominated by transverse heat conduction and advection, and the corresponding loss of magnetic flux is dominated by advection and the Nernst effect. For a large electron Hall parameter (ω{sub e}τ{sub e}≫1), the effective diffusion coefficients determining the losses of heat and magnetic flux to the liner wall are both shown to decrease with ω{sub e}τ{sub e} as does the Bohm diffusion coefficient cT/(16eB), which is commonly associated with low collisionality and two-dimensional transport. We demonstrate how this family of exact solutions can be used for verification of codes that model the MagLIF plasma dynamics.

  5. Bioenergetic roles of mitochondrial fusion.

    PubMed

    Silva Ramos, Eduardo; Larsson, Nils-Göran; Mourier, Arnaud

    2016-08-01

    Mitochondria are bioenergetic hotspots, producing the bulk of ATP by the oxidative phosphorylation process. Mitochondria are also structurally dynamic and undergo coordinated fusion and fission to maintain their function. Recent studies of the mitochondrial fusion machinery have provided new evidence in detailing their role in mitochondrial metabolism. Remarkably, mitofusin 2, in addition to its role in fusion, is important for maintaining coenzyme Q levels and may be an integral player in the mevalonate synthesis pathway. Here, we review the bioenergetic roles of mitochondrial dynamics and emphasize the importance of the in vitro growth conditions when evaluating mitochondrial respiration. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi. PMID:27060252

  6. Status of beryllium development for fusion applications

    SciTech Connect

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.B.

    1994-12-31

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing components of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/ release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. In this current work, the range of anticipated fusion operating conditions is reviewed with regard to surface heat loads, temperatures, displacement damage rates and levels, tritium generation rates and levels and helium generation rates and levels. The thermal, mechanical, chemical compatibility, tritium retention/release, and helium retention/swelling data bases are then reviewed for the proposed fabrication methods and fusion operating conditions of interest. Properties correlations and uncertainty ranges are also discussed brief.

  7. Acidification triggers Andes hantavirus membrane fusion and rearrangement of Gc into a stable post-fusion homotrimer.

    PubMed

    Acuña, Rodrigo; Bignon, Eduardo A; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2015-11-01

    The hantavirus membrane fusion process is mediated by the Gc envelope glycoprotein from within endosomes. However, little is known about the specific mechanism that triggers Gc fusion activation, and its pre- and post-fusion conformations. We established cell-free in vitro systems to characterize hantavirus fusion activation. Low pH was sufficient to trigger the interaction of virus-like particles with liposomes. This interaction was dependent on a pre-fusion glycoprotein arrangement. Further, low pH induced Gc multimerization changes leading to non-reversible Gc homotrimers. These trimers were resistant to detergent, heat and protease digestion, suggesting characteristics of a stable post-fusion structure. No acid-dependent oligomerization rearrangement was detected for the trypsin-sensitive Gn envelope glycoprotein. Finally, acidification induced fusion of glycoprotein-expressing effector cells with non-susceptible CHO cells. Together, the data provide novel information on the Gc fusion trigger and its non-reversible activation involving lipid interaction, multimerization changes and membrane fusion which ultimately allow hantavirus entry into cells.

  8. Core conditions for alpha heating attained in direct-drive inertial confinement fusion.

    PubMed

    Bose, A; Woo, K M; Betti, R; Campbell, E M; Mangino, D; Christopherson, A R; McCrory, R L; Nora, R; Regan, S P; Goncharov, V N; Sangster, T C; Forrest, C J; Frenje, J; Gatu Johnson, M; Glebov, V Yu; Knauer, J P; Marshall, F J; Stoeckl, C; Theobald, W

    2016-07-01

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions. PMID:27575069

  9. Chamber transport of ''foot'' pulses for heavy-ion fusion

    SciTech Connect

    Sharp, W.M.; Callahan-Miller, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.

    2002-02-20

    Indirect-drive targets for heavy-ion fusion must initially be heated by ''foot'' pulses that precede the main heating pulses by tens of nanoseconds. These pulses typically have a lower energy and perveance than the main pulses, and the fusion-chamber environment is different from that seen by later pulses. The preliminary particle-in-cell simulations of foot pulses here examine the sensitivity of the beam focusing to ion-beam perveance, background-gas density, and pre-neutralization by a plasma near the chamber entry port.

  10. Evaluation of performance of select fusion experiments and projected reactors

    NASA Technical Reports Server (NTRS)

    Miley, G. H.

    1978-01-01

    The performance of NASA Lewis fusion experiments (SUMMA and Bumpy Torus) is compared with other experiments and that necessary for a power reactor. Key parameters cited are gain (fusion power/input power) and the time average fusion power, both of which may be more significant for real fusion reactors than the commonly used Lawson parameter. The NASA devices are over 10 orders of magnitude below the required powerplant values in both gain and time average power. The best experiments elsewhere are also as much as 4 to 5 orders of magnitude low. However, the NASA experiments compare favorably with other alternate approaches that have received less funding than the mainline experiments. The steady-state character and efficiency of plasma heating are strong advantages of the NASA approach. The problem, though, is to move ahead to experiments of sufficient size to advance in gain and average power parameters.

  11. Overview of US heavy ion fusion research

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan,J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay,J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen,R.H.; Friedman, A.; Grote, D.P; Covo, Kireeff M.; Meier, W.R.; Molvik,A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham,L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.; Prost, L.

    2004-11-01

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

  12. Overview of US heavy ion fusion research

    SciTech Connect

    Logan, B.G.; Bieniosek, F.M.; Celata, C.M.; Henestroza, E.; Kwan,J.W.; Lee, E.P.; Leitner, M.; Roy, P.K.; Seidl, P.A.; Eylon, S.; Vay,J-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen,R.H.; Friedman, A.; Grote, D.P.; Kireeff Covo, M.; Meier, W.R.; Molvik,A.W.; Lund, S.M.; Davidson, R.C.; Efthimion, P.C.; Gilson, E.P.; Grisham,L.R.; Kaganovich, I.D.; Qin, H.; Startsev, E.A.; Rose, D.V.; Welch, D.R.; Olson, C.L.; Kishek, R.A.; O'Shea, P.; Haber, I.; Prost, L.R.

    2005-06-23

    Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, injectors, transport, final focusing, chambers and targets for high energy density physics (HEDP) and inertial fusion energy (IFE) driven by induction linac accelerators. One focus of present research is the beam physics associated with quadrupole focusing of intense, space-charge dominated heavy-ion beams, including gas and electron cloud effects at high currents, and the study of long-distance-propagation effects such as emittance growth due to field errors in scaled experiments. A second area of emphasis in present research is the introduction of background plasma to neutralize the space charge of intense heavy ion beams and assist in focusing the beams to a small spot size. In the near future, research will continue in the above areas, and a new area of emphasis will be to explore the physics of neutralized beam compression and focusing to high intensities required to heat targets to high energy density conditions as well as for inertial fusion energy.

  13. Equivalence of measurement space solution data fusion and complete fusion

    NASA Astrophysics Data System (ADS)

    Ceccherini, Simone

    2016-10-01

    Many observation systems are operating on space-borne and airborne platforms, as well as from ground-based stations, providing measurements of vertical profiles of atmospheric parameters. When independent measurements of the same profile are available data fusion methods can be used to combine them and exploit all the available information for a more comprehensive and accurate description of the atmospheric state. Several data fusion methods can be used. Among the others, both the measurement space solution data fusion method and the complete fusion method have the remarkable properties of using all the acquired information and of providing results that are independent from a priori information used in the individual retrievals. For this reason, though the two methods use two completely different procedures, it is reasonable to expect that they give the same results and in this paper the rigorous proof of the equivalence of the two methods is given. Therefore, the choice between them is only driven by the advantages of the different implementations.

  14. Calculation of fusion product angular correlation coefficients for fusion plasmas

    SciTech Connect

    Murphy, T.J.

    1987-08-01

    The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

  15. Design of a fusion engineering test facility

    SciTech Connect

    Sager, P.H.

    1980-01-01

    The fusion Engineering Test Facility (ETF) is being designed to provide for engineering testing capability in a program leading to the demonstration of fusion as a viable energy option. It will combine power-reactor-type components and subsystems into an integrated tokamak system and provide a test bed to test blanket modules in a fusion environment. Because of the uncertainties in impurity control two basic designs are being developed: a design with a bundle divertor (Design 1) and one with a poloidal divertor (Design 2). The two designs are similar where possible, the latter having somewhat larger toroidal field (TF) coils to accommodate removal of the larger torus sectors required for the single-null poloidal divertor. Both designs have a major radius of 5.4 m, a minor radius of 1.3 m, and a D-shaped plasma with an elongation of 1.6. Ten TF coils are incorporated in both designs, producing a toroidal field of 5.5 T on-axis. The ohmic heating and equilibrium field (EF) coils supply sufficient volt-seconds to produce a flat-top burn of 100 s and a duty cycle of 135 s, including a start of 12 s, a burn termination of 10 s, and a pumpdown of 13 s. The total fusion power during burn is 750 MW, giving a neutron wall loading of 1.5 MW/m/sup 2/. In Design 1 of the poloidal field (PF) coils except the fast-response EF coils are located outside the FT coils and are superconducting. The fast-response coils are located inside the TF coil bore near the torus and are normal conducting so that they can be easily replaced.In Design 2 all of the PF coils are located outside the TF coils and are superconducting. Ignition is achieved with 60 MW of neutral beam injection at 150 keV. Five megawatts of radio frequency heating (electron cyclotron resonance heating) is used to assist in the startup and limit the breakdown requirement to 25 V.

  16. Inspection of Fusion Joints in Plastic Pipe

    SciTech Connect

    Connie Reichert

    2005-09-01

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost-effective method exists for assessing the quality of fusion joints in the field. Visual examination and pressure testing are current nondestructive approaches, which do not provide any assurance about the long-term pipeline performance. This project developed, demonstrated, and validated an in-situ nondestructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system includes a laser-based image-recognition system that automatically generates and interprets digital images of pipe joints and assigns them a pass/fail rating, which eliminates operator bias in evaluating joint quality. An EWI-patented process, the Weld Zone Inspection Method (WZIM) was developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation, which reveals the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and two destructive forms of testing: short-term tensile testing and long-term creep rupture testing. There appears to be a direct correlation between the WZIM and the destructive testing results. Although WZIM appears to be more sensitive than destructive testing can verify, the approach appears valid.

  17. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-10-29

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  18. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2004-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and non-standard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  19. INSPECTION OF FUSION JOINTS IN PLASTIC PIPE

    SciTech Connect

    Alex Savitski; Connie Reichert; John Coffey

    2005-07-13

    The standard method of joining plastic pipe in the field is the butt fusion process. As in any pipeline application, joint quality greatly affects overall operational safety of the system. Currently no simple, reliable, cost effective method of assessing the quality of fusion joints in the field exists. Visual examination and pressure testing are current non-destructive approaches, which do not provide any assurance about the long-term pipeline performance. This project will develop, demonstrate, and validate an in-situ non-destructive inspection method for butt fusion joints in gas distribution plastic pipelines. The inspection system will include a laser based image-recognition system that will automatically generate and interpret digital images of pipe joints and assign them a pass/fail rating, which eliminates operator bias in evaluating joint quality. A Weld Zone Inspection Method (WZIM) is being developed in which local heat is applied to the joint region to relax the residual stresses formed by the original joining operation and reveal the surface condition of the joint. In cases where the joint is not formed under optimal conditions, and the intermolecular forces between contacting surfaces are not strong enough, the relaxation of macromolecules in the surface layer causes the material to pull back, revealing a fusion line. If the joint is sound, the bond line image does not develop. To establish initial feasibility of the approach, welds were performed under standard and nonstandard conditions. These welds were subjected to the WZIM and tensile testing. There appears to be a direct correlation between the WZIM and tensile testing results. Although WZIM appears to be more sensitive than tensile testing can verify, the approach appears valid.

  20. Role of Fusion Energy in a Sustainable Global Energy Strategy

    SciTech Connect

    Meier, W; Najmabadi, F; Schmidt, J; Sheffield, J

    2001-03-07

    Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion energy research program has been to develop a viable means of harnessing the virtually unlimited energy stored in the nuclei of light atoms--the primary fuel deuterium is present as one part in 6,500 of all hydrogen. This vision grew out of the recognition that the immense power radiated by the sun is fueled by nuclear fusion in its hot core. Such high temperatures are a prerequisite for driving significant fusion reactions. The fascinating fourth state of matter at high temperatures is known as plasma. It is only in this fourth state of matter that the nuclei of two light atoms can fuse, releasing the excess energy that was needed to separately bind each of the original two nuclei. Because the nuclei of atoms carry a net positive electric charge, they repel each other. Hydrogenic nuclei, such as deuterium and tritium, must be heated to approximately 100 million degrees Celsius to overcome this electric repulsion and fuse. There have been dramatic recent advances in both the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. For this reason, the general thrust of fusion research has focused on configuration improvements leading to an economically competitive product. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities [1]. In this paper we review the tremendous scientific progress in fusion during the last 10 years. We utilize the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements

  1. Control of a laser inertial confinement fusion-fission power plant

    SciTech Connect

    Moses, Edward I.; Latkowski, Jeffery F.; Kramer, Kevin J.

    2015-10-27

    A laser inertial-confinement fusion-fission energy power plant is described. The fusion-fission hybrid system uses inertial confinement fusion to produce neutrons from a fusion reaction of deuterium and tritium. The fusion neutrons drive a sub-critical blanket of fissile or fertile fuel. A coolant circulated through the fuel extracts heat from the fuel that is used to generate electricity. The inertial confinement fusion reaction can be implemented using central hot spot or fast ignition fusion, and direct or indirect drive. The fusion neutrons result in ultra-deep burn-up of the fuel in the fission blanket, thus enabling the burning of nuclear waste. Fuels include depleted uranium, natural uranium, enriched uranium, spent nuclear fuel, thorium, and weapons grade plutonium. LIFE engines can meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the highly undesirable stockpiles of depleted uranium, spent nuclear fuel and excess weapons materials.

  2. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  3. Observation of nuclear fusion driven by a pyroelectric crystal.

    PubMed

    Naranjo, B; Gimzewski, J K; Putterman, S

    2005-04-28

    While progress in fusion research continues with magnetic and inertial confinement, alternative approaches--such as Coulomb explosions of deuterium clusters and ultrafast laser-plasma interactions--also provide insight into basic processes and technological applications. However, attempts to produce fusion in a room temperature solid-state setting, including 'cold' fusion and 'bubble' fusion, have met with deep scepticism. Here we report that gently heating a pyroelectric crystal in a deuterated atmosphere can generate fusion under desktop conditions. The electrostatic field of the crystal is used to generate and accelerate a deuteron beam (> 100 keV and >4 nA), which, upon striking a deuterated target, produces a neutron flux over 400 times the background level. The presence of neutrons from the reaction D + D --> 3He (820 keV) + n (2.45 MeV) within the target is confirmed by pulse shape analysis and proton recoil spectroscopy. As further evidence for this fusion reaction, we use a novel time-of-flight technique to demonstrate the delayed coincidence between the outgoing alpha-particle and the neutron. Although the reported fusion is not useful in the power-producing sense, we anticipate that the system will find application as a simple palm-sized neutron generator. PMID:15858570

  4. Induction of cross-priming of naive CD8+ T lymphocytes by recombinant bacillus Calmette-Guerin that secretes heat shock protein 70-major membrane protein-II fusion protein.

    PubMed

    Mukai, Tetsu; Maeda, Yumi; Tamura, Toshiki; Matsuoka, Masanori; Tsukamoto, Yumiko; Makino, Masahiko

    2009-11-15

    Because Mycobacterium bovis bacillus Calmette-Guérin (BCG) unconvincingly activates human naive CD8(+) T cells, a rBCG (BCG-70M) that secretes a fusion protein comprising BCG-derived heat shock protein (HSP)70 and Mycobacterium leprae-derived major membrane protein (MMP)-II, one of the immunodominant Ags of M. leprae, was newly constructed to potentiate the ability of activating naive CD8(+) T cells through dendritic cells (DC). BCG-70M secreted HSP70-MMP-II fusion protein in vitro, which stimulated DC to produce IL-12p70 through TLR2. BCG-70M-infected DC activated not only memory and naive CD8(+) T cells, but also CD4(+) T cells of both types to produce IFN-gamma. The activation of these naive T cells by BCG-70M was dependent on the MHC and CD86 molecules on BCG-70M-infected DC, and was significantly inhibited by pretreatment of DC with chloroquine. Both brefeldin A and lactacystin significantly inhibited the activation of naive CD8(+) T cells by BCG-70M through DC. Thus, the CD8(+) T cell activation may be induced by cross-presentation of Ags through a TAP- and proteosome-dependent cytosolic pathway. When naive CD8(+) T cells were stimulated by BCG-70M-infected DC in the presence of naive CD4(+) T cells, CD62L(low)CD8(+) T cells and perforin-producing CD8(+) T cells were efficiently produced. MMP-II-reactive CD4(+) and CD8(+) memory T cells were efficiently produced in C57BL/6 mice by infection with BCG-70M. These results indicate that BCG-70M activated DC, CD4(+) T cells, and CD8(+) T cells, and the combination of HSP70 and MMP-II may be useful for inducing better T cell activation.

  5. Molecular mechanism of mitochondrial membrane fusion.

    PubMed

    Griffin, Erik E; Detmer, Scott A; Chan, David C

    2006-01-01

    Mitochondrial fusion requires coordinated fusion of the outer and inner membranes. This process leads to exchange of contents, controls the shape of mitochondria, and is important for mitochondrial function. Two types of mitochondrial GTPases are essential for mitochondrial fusion. On the outer membrane, the fuzzy onions/mitofusin proteins form complexes in trans that mediate homotypic physical interactions between adjacent mitochondria and are likely directly involved in outer membrane fusion. Associated with the inner membrane, the OPA1 dynamin-family GTPase maintains membrane structure and is a good candidate for mediating inner membrane fusion. In yeast, Ugo1p binds to both of these GTPases to form a fusion complex, although a related protein has yet to be found in mammals. An understanding of the molecular mechanism of fusion may have implications for Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy, neurodegenerative diseases caused by mutations in Mfn2 and OPA1.

  6. Fusion of Enveloped Viruses in Endosomes.

    PubMed

    White, Judith M; Whittaker, Gary R

    2016-06-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion-triggering mechanisms. A key take-home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion.

  7. Efficient activation of human T cells of both CD4 and CD8 subsets by urease-deficient recombinant Mycobacterium bovis BCG that produced a heat shock protein 70-M. tuberculosis-derived major membrane protein II fusion protein.

    PubMed

    Mukai, Tetsu; Tsukamoto, Yumiko; Maeda, Yumi; Tamura, Toshiki; Makino, Masahiko

    2014-01-01

    For the purpose of obtaining Mycobacterium bovis bacillus Calmette-Guérin (BCG) capable of activating human naive T cells, urease-deficient BCG expressing a fusion protein composed of Mycobacterium tuberculosis-derived major membrane protein II (MMP-II) and heat shock protein 70 (HSP70) of BCG (BCG-DHTM) was produced. BCG-DHTM secreted the HSP70-MMP-II fusion protein and effectively activated human monocyte-derived dendritic cells (DCs) by inducing phenotypic changes and enhanced cytokine production. BCG-DHTM-infected DCs activated naive T cells of both CD4 and naive CD8 subsets, in an antigen (Ag)-dependent manner. The T cell activation induced by BCG-DHTM was inhibited by the pretreatment of DCs with chloroquine. The naive CD8(+) T cell activation was mediated by the transporter associated with antigen presentation (TAP) and the proteosome-dependent cytosolic cross-priming pathway. Memory CD8(+) T cells and perforin-producing effector CD8(+) T cells were efficiently produced from the naive T cell population by BCG-DHTM stimulation. Single primary infection with BCG-DHTM in C57BL/6 mice efficiently produced T cells responsive to in vitro secondary stimulation with HSP70, MMP-II, and M. tuberculosis-derived cytosolic protein and inhibited the multiplication of subsequently aerosol-challenged M. tuberculosis more efficiently than did vector control BCG. These results indicate that the introduction of MMP-II and HSP70 into urease-deficient BCG may be useful for improving BCG for control of tuberculosis.

  8. Fusion bonding of non-pressurized process piping: A new technology and a new approach

    SciTech Connect

    Cooper, R.J.; Pinder, R.

    1996-07-01

    Perhaps the best-known method of thermoplastic fusion bonding for process piping is hot-plate or heated-tool butt welding. Despite the age of this method and the considerable research available on the subject, in practice, this method of heat fusion relies largely on the skill and knowledge of the machine operator. Hence, the quality of the completed fusion bond is largely dependent on human factors. Another method for joining thermoplastic process piping with heat fusion has been through the use of electrofusion fittings or couplings. A sleeve with an embedded resistance wire is slipped onto mating pipe ends, and welding takes place by electrically heating the resistance wire and forming a molecular bond on the outside surface of the mated pipes. While butt welding tends to rely heavily on the knowledge and experience of the machine operator, electrofusion fittings tend to rely more on automated mechanisms such as the software in the computerized fusion box. An alternative form of thermoplastic welding that employs the features of both butt welding and electrofusion couplings has recently been developed. This unique method employs the principles of electrofusion for performing butt welding. The authors have successfully demonstrated this technology at a major US chemical manufacturer`s facility to produce reliable, leak-tight fusion joints in non-pressurized, process piping applications. Research and practical experience were blended to provide consistent fusion quality based on monitoring key fusion parameters, while still relying on the experience and training of a fusion operator.

  9. The elementary fusion modalities of osteoclasts.

    PubMed

    Søe, Kent; Hobolt-Pedersen, Anne-Sofie; Delaisse, Jean-Marie

    2015-04-01

    The last step of the osteoclast differentiation process is cell fusion. Most efforts to understand the fusion mechanism have focused on the identification of molecules involved in the fusion process. Surprisingly, the basic fusion modalities, which are well known for fusion of other cell types, are not known for the osteoclast. Here we show that osteoclast fusion partners are characterized by differences in mobility, nuclearity, and differentiation level. Our demonstration was based on time-laps videos of human osteoclast preparations from three donors where 656 fusion events were analyzed. Fusions between a mobile and an immobile partner were most frequent (62%), while fusion between two mobile (26%) or two immobile partners (12%) was less frequent (p<0.001). In general, the immobile fusion partner contained more nuclei than the mobile one (p<0.01). Furthermore, enrichment in nuclei of an osteoclast with three or more nuclei resulted from fusion with a mono-nucleated cell in 67% of the cases (p<0.001), while mono-nucleated cells fused with a multinucleated cell in 61% of the cases (p<0.05). This observation suggested that a more mature osteoclast prefers to fuse with a less mature pre-osteoclast. This hypothesis was supported by a nucleus-tracing approach in a co-culture of more and less differentiated pre-osteoclasts/osteoclasts. Furthermore, we found that osteoclast fusion proceeds through primarily two different types of cell contacts: phagocytic-cup and broad-contact-surfaces (>80% of all fusions). We conclude that osteoclasts most often gain nuclei by addition of one nucleus at a time, and that this nucleus is most often delivered by a moving cell to an immobile cell. These characteristics fit the in vivo observations where mono-nucleated precursors migrating from the bone marrow fuse with more mature osteoclasts sitting on the bone surface. They also fit the fusion modalities of other cell types.

  10. Investigation of condensed matter fusion

    SciTech Connect

    Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

    1990-12-01

    Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations.

  11. Effects of selective fusion on the thermal history of the earth's mantle

    USGS Publications Warehouse

    Lee, W.H.K.

    1968-01-01

    A comparative study on the thermal history of the earth's mantle was made by numerical solutions of the heat equation including and excluding selective fusion of silicates. Selective fusion was approximated by melting in a multicomponent system and redistribution of radioactive elements. Effects of selective fusion on the thermal models are (1) lowering (by several hundred degrees centigrade) and stabilizing the internal temperature distribution, and (2) increasing the surface heat-flow. It was found that models with selective fusion gave results more compatible with observations of both present temperature and surface heat-flow. The results therefore suggest continuous differentiation of the earth's mantle throughout geologic time, and support the hypothesis that the earth's atmosphere, oceans, and crust have been accumulated throughout the earth's history by degassing and selective fusion of the mantle. ?? 1968.

  12. Magnetic fusion energy plasma interactive and high heat flux components. Volume III. Strategy for international collaborations in the areas of plasma materials interactions and high heat flux materials and components development

    SciTech Connect

    Gauster, W.B.; Bauer, W.; Roberto, J.B.; Post, D.E.

    1984-01-01

    The purpose of this summary is to assess opportunities for such collaborations in the specific areas of Plasma Materials Interaction and High Heat Flux Materials and Components Development, and to aid in developing a strategy to take advantage of them. After some general discussion of international collaborations, we summarize key technical issues and the US programs to address them. Then follows a summary of present collaborations and potential opportunities in foreign laboratories.

  13. Measurement of the fusion probability, PCN, for hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Yanez, R.; Loveland, W.; Barrett, J. S.; Yao, L.; Back, B. B.; Zhu, S.; Khoo, T. L.

    2013-07-01

    Background: The cross section for forming a heavy evaporation residue in fusion reactions depends on the capture cross section, the fusion probability, PCN, i.e., the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than reseparating (quasifission), and the survival of the completely fused system against fission. PCN is the least known of these quantities.Purpose: We want to determine PCN for the reactions of 101.2 MeV 18O, 147.3 MeV 26Mg, 170.9 MeV 30Si, and 195.3 MeV 36S with 197Au.Methods: We measured the fission fragment angular distributions for these reactions and used the formalism of Back to deduce the fusion-fission and quasifission cross sections. From these quantities we deduced PCN for each reaction.Results: The values of PCN for the reactions of 101.2 MeV 18O, 147.3 MeV 26Mg, 170.9 MeV 30Si, and 195.3 MeV 36S with 197Au are 0.66, 1.00, 0.06, and 0.13, respectively.Conclusions: The new measured values of PCN agree roughly with the semiempirical systematic dependence of PCN upon fissility for excited nuclei.

  14. Fission Fusion Hybrids: a nearer term application of Fusion

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2011-10-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power at a much lower level of technical development than a competitive fusion power plant. For waste incineration, hybrids burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs). The number of hybrids needed is 5-10 times less than the corresponding number of fast reactors (FRs). The highly sub-critical hybrids, with a thermal/epithermal spectrum, incinerate > 95% of the waste in decades rather than the centuries needed for FRs. For fuel production, hybrids can produce fuel for 3-4 times as many LWRs with no fuel reprocessing. Thorium fuel rods exposed to neutrons in the hybrid reach fissile concentrations that enable efficient burning in LWR without the proliferation risks of reprocessing. The proliferation risks of this method are far less than other fuel breeding approaches, including today's gas centrifuge. With this cycle, US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ~ 2.5-3.5 m), which is made feasible by the super-X divertor.

  15. A viable process for producing hydrogen synfuel using nuclear fusion heat

    NASA Astrophysics Data System (ADS)

    Galloway, T. R.; Brown, L. C.

    Analytical and costing analyses of a thermochemical water splitting plant powered by a tandem mirror fusion reactor are presented. Design criteria indicated directing high quality steam to the chemical plant, where no liquid metal coolants would be used. Minimal pumping distances for high pressure He, multiple barriers between the neutron-activated blanket and the hydrogen product, and modular construction where possible are necessary. A He-Brayton topping cycle, coupled to a steam-Rankine bottoming cycle are selected. Slightly over 1111 MWt and about 720 MWe could be produced by the plant if all low grade waste heat is directed to the Rankine cycle. SO3 is used with water for the splitting process, then recombined. H2 is siphoned off as a fuel and O2 is delivered to a coal reforming plant. A 30 yr plant life is projected, operating at a 70% thermal efficiency for the splitting process and producing H2 at $10-12/GJ. The plant is expected to become economically viable in the year 2030 if debt financing is available at 12.25% per year.

  16. Inertial Fusion Power Plant Concept of Operations and Maintenance

    SciTech Connect

    Anklam, T.; Knutson, B.; Dunne, A. M.; Kasper, J.; Sheehan, T.; Lang, D.; Roberts, V.; Mau, D.

    2015-01-15

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  17. Inertial fusion power plant concept of operations and maintenance

    NASA Astrophysics Data System (ADS)

    Knutson, Brad; Dunne, Mike; Kasper, Jack; Sheehan, Timothy; Lang, Dwight; Anklam, Tom; Roberts, Valerie; Mau, Derek

    2015-02-01

    Parsons and LLNL scientists and engineers performed design and engineering work for power plant pre-conceptual designs based on the anticipated laser fusion demonstrations at the National Ignition Facility (NIF). Work included identifying concepts of operations and maintenance (O&M) and associated requirements relevant to fusion power plant systems analysis. A laser fusion power plant would incorporate a large process and power conversion facility with a laser system and fusion engine serving as the heat source, based in part on some of the systems and technologies advanced at NIF. Process operations would be similar in scope to those used in chemical, oil refinery, and nuclear waste processing facilities, while power conversion operations would be similar to those used in commercial thermal power plants. While some aspects of the tritium fuel cycle can be based on existing technologies, many aspects of a laser fusion power plant presents several important and unique O&M requirements that demand new solutions. For example, onsite recovery of tritium; unique remote material handling systems for use in areas with high radiation, radioactive materials, or high temperatures; a five-year fusion engine target chamber replacement cycle with other annual and multi-year cycles anticipated for major maintenance of other systems, structures, and components (SSC); and unique SSC for fusion target waste recycling streams. This paper describes fusion power plant O&M concepts and requirements, how O&M requirements could be met in design, and how basic organizational and planning issues can be addressed for a safe, reliable, economic, and feasible fusion power plant.

  18. Study of fusion Q-value rule in sub-barrier fusion of heavy ions

    NASA Astrophysics Data System (ADS)

    Liu, Xing-Xing; Zhang, Gao-Long; Zhang, Huan-Qiao

    2015-07-01

    A vast body of fusion data has been analyzed for different projectiles and target nuclei. It is indicated that the sub-barrier fusion depends on the fusion Q-value. In terms of a recently introduced fusion Q-value rule and an energy scaling reduction procedure, the experimental fusion excitation functions are reduced and compared with each other. It is found that the reduced fusion excitations of selected fusion systems show a similar trend. The fusion data for massive nuclei are in agreement with the Q-value rule. In the fusion process, the Q contribution should be considered. Within this approach, the sub-barrier fusion cross sections of most fusion systems can be predicted without involving any structure effects of colliding nuclei. Instances of disagreement are presented in a few fusion systems. The use of the energy scaling as a criterion of possible experimental data inconsistency is discussed. More precise experimental fusion data need to be measured. Supported by National Nature Science Foundation of China (11475013, 11035007, 11175011), State Key Laboratory of Software Development Environment (SKLSDE-2014ZX-08), Fundamental Research Funds for the Central Universities and the Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences

  19. History of Nuclear Fusion Research in Japan

    NASA Astrophysics Data System (ADS)

    Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo

    In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.

  20. Review of alternative concepts for magnetic fusion

    SciTech Connect

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given.

  1. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  2. Influence of breakup on fusion barrier distributions

    NASA Astrophysics Data System (ADS)

    Patel, D.; Nayak, B. K.; Mukherjee, S.; Biswas, D. C.; Mirgule, E. T.; John, B. V.; Gupta, Y. K.; Mukhopadhyay, S.; Prajapati, G.; Danu, L. S.; Rath, P. K.; Desai, V.; Deshmukh, N.; Saxena, A.

    2013-04-01

    Fusion barrier distributions have been extracted from the quasi-elastic scattering excitation functions, measured at backward angle θlab = 160° in reactions of 6,7Li+209Bi. The present results have been compared with the barrier distributions obtained from the fusion excitation function measurements for the above mentioned systems. The fusion barrier distributions from the quasi-elastic scattering excitation functions have been analyzed with simplified Coupled Channels calculations using Fresco. Inclusions of resonant states for both 6,7Li projectiles improve the predictions to describe the measured quasi-elastic scattering excitation functions and barrier distributions. For both the reactions peak positions of fusion barrier distributions are shifted towards a lower energy side in comparison to that obtained from the fusion excitation function measurements. The observed discrepancy in peak positions of barrier distributions obtained from quasi-elastic scattering and fusion excitation function measurements has been discussed in terms of total reaction threshold distribution.

  3. Experimental Test of the Polarization Persistence in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Didelez, J. P.; Deutsch, C.; Fujiwara, M.; Nakai, M.; Utsuro, M.

    2016-03-01

    The complete deuteron and triton polarization in the DT fusion increases the reactivity by 50%. For Inertial Confinement Fusion (ICF), due to the dynamics of the fusion reaction process, the fusion rate could even be further increased. It has been argued that the polarization would survive as well in magnetic as in inertial confinements. Recently, we have proposed an experiment to test the persistence of the polarization in a fusion process, using a powerful laser hitting a polarized HD target.The polarized deuterons heated in the plasma induced by the laser can fuse. The corresponding reaction is: D + D → 3He + n. The angular distribution of the emitted neutrons and the change in the corresponding total cross section are signatures to estimate the polarization persistency. A proposal to test the persistence of the polarization in ICF has been accepted at ILE: the POLAF project (POlarization in LAser Fusion Process). It uses the polarized HD targets produced at RCNP and the powerful ILE lasers, as well as the neutron detectors existing there. Both institutions are on the same campus at Osaka University. The description of the POLAF experiment and of the corresponding set-up is given.

  4. Observations of membrane fusion in a liposome dispersion: the missing fusion intermediate?

    PubMed Central

    Foldvari, Marianna

    2015-01-01

    Early intermediate structures of liposome-liposome fusion events were captured by freeze-fracture electron microscopic (EM) technique. The images show the morphology of the fusion interface at several different stages of the fusion event. One of the intermediates was captured at a serendipitous stage of two vesicles’ membranes (both leaflets) merging and their contents starting to intermix clearly showing the fusion interface with a previously unseen fusion rim. From the morphological information a hypothetical sequence of the fusion event and corresponding lipid structural arrangements are described. PMID:26069726

  5. The Dark Side of Cell Fusion

    PubMed Central

    Bastida-Ruiz, Daniel; Van Hoesen, Kylie; Cohen, Marie

    2016-01-01

    Cell fusion is a physiological cellular process essential for fertilization, viral entry, muscle differentiation and placental development, among others. In this review, we will highlight the different cancer cell-cell fusions and the advantages obtained by these fusions. We will specially focus on the acquisition of metastatic features by cancer cells after fusion with bone marrow-derived cells. The mechanism by which cancer cells fuse with other cells has been poorly studied thus far, but the presence in several cancer cells of syncytin, a trophoblastic fusogen, leads us to a cancer cell fusion mechanism similar to the one used by the trophoblasts. The mechanism by which cancer cells perform the cell fusion could be an interesting target for cancer therapy. PMID:27136533

  6. Massachusetts Institute of Technology Plasma Fusion Center 1992--1993 report to the President

    SciTech Connect

    Not Available

    1993-07-01

    This report discusses research being conducted at MIT`s plasma fusion center. Some of the areas covered are: plasma diagnostics; rf plasma heating; gyrotron research; treatment of solid waste by arc plasma; divertor experiments; tokamak studies; and plasma and fusion theory.

  7. Optimization of the SHX Fusion Powered Transatmospheric Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Adams, Robert B.; Landrum, D. Brian

    2001-01-01

    Existing propulsion technology has not achieved cost effective payload delivery rates to low earth orbit. A fusion based propulsion system, denoted as the Simultaneous Heating and eXpansion (SHX) engine, has been proposed in earlier papers. The SHX couples energy generated by a fusion reactor to the engine flowpath by use of coherent beam emitters. A quasi-one-dimensional flow model was used to quantify the effects of area expansion and energy input on propulsive efficiency for several beam models. Entropy calculations were included to evaluate the lost work in the system.

  8. Natural fueling of a tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Wan, Weigang; Parker, Scott E.; Chen, Yang; Perkins, Francis W.

    2010-04-01

    A natural fueling mechanism that helps to maintain the main core deuterium and tritium (DT) density profiles in a tokamak fusion reactor is presented. In H-mode plasmas dominated by ion-temperature gradient (ITG) driven turbulence, cold DT ions near the edge will naturally pinch radially inward toward the core. This mechanism is due to the quasineutral heat flux dominated nature of ITG turbulence and still applies when trapped and passing kinetic electron effects are included. Fueling using shallow pellet injection is augmented by an inward pinch of cold DT fuel. The natural fueling mechanism is investigated using the gyrokinetic turbulence code GEM [Y. Chen and S. E. Parker, J. Comput. Phys. 220, 839 (2007)] and is analyzed using quasilinear theory. Profiles similar to those used for conservative International Thermonuclear Experimental Reactor [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)] transport modeling that have a completely flat density profile are examined and it is found that natural fueling actually reduces the linear growth rate and energy transport. Natural fueling requires a two-component plasma and ion-ion and charge-exchange collisions set limits on this favorable effect.

  9. Imaging multiple intermediates of single-virus membrane fusion mediated by distinct fusion proteins.

    PubMed

    Joo, Kye-Il; Tai, April; Lee, Chi-Lin; Wong, Clement; Wang, Pin

    2010-09-01

    Membrane fusion plays an essential role in the entry of enveloped viruses into target cells. The merging of viral and target cell membranes is catalyzed by viral fusion proteins, which involves multiple sequential steps in the fusion process. However, the fusion mechanisms mediated by different fusion proteins involve multiple transient intermediates that have not been well characterized. Here, we report a synthetic virus platform that allows us to better understand the different fusion mechanisms driven by the diverse types fusion proteins. The platform consists of lentiviral particles coenveloped with a surface antibody, which serves as the binding protein, along with a fusion protein derived from either influenza virus (HAmu) or Sindbis virus (SINmu). By using a single virus tracking technique, we demonstrated that both HAmu- and SINmu-bearing viruses enter cells through clathrin-dependent endocytosis, but they required different endosomal trafficking routes to initiate viral fusion. Direct observation of single viral fusion events clearly showed that hemifusion mediated by SINmu upon exposure to low pH occurs faster than that mediated by HAmu. Monitoring sequential fusion processes by dual labeling the outer and inner leaflets of viral membranes also revealed that the SINmu-mediated hemifusion intermediate is relatively long-lived as compared with that mediated by HAmu. Taken together, we have demonstrated that the combination of this versatile viral platform with the techniques of single virus tracking can be a powerful tool for revealing molecular details of fusion mediated by various fusion proteins.

  10. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC.

    PubMed

    Whiteside, T S; Hilal, S H; Brenner, A; Carreira, L A

    2016-08-01

    The entropy of fusion, enthalpy of fusion, and melting point of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modelled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modelled as a function of the entropy of fusion, boiling point, and flexibility of the molecule. The melting point model is the enthalpy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapour pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol(-1) K(-1). The enthalpy model has a RMS of 4.87 kJ mol(-1). The melting point model has a RMS of 54.4°C. PMID:27586365

  11. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC.

    PubMed

    Whiteside, T S; Hilal, S H; Brenner, A; Carreira, L A

    2016-08-01

    The entropy of fusion, enthalpy of fusion, and melting point of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modelled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modelled as a function of the entropy of fusion, boiling point, and flexibility of the molecule. The melting point model is the enthalpy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapour pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol(-1) K(-1). The enthalpy model has a RMS of 4.87 kJ mol(-1). The melting point model has a RMS of 54.4°C.

  12. Charge exchange recombination spectroscopy measurements in the extreme ultraviolet region of central carbon concentrations during high power neutral beam heating in TFTR (Tokamak Fusion Test Reactor)

    SciTech Connect

    Stratton, B.C.; Fonck, R.J.; Ramsey, A.T.; Synakowski, E.J.; Grek, B.; Hill, K.W.; Johnson, D.W.; Mansfield, D.K.; Park, H.; Taylor, G.; Valanju, P.M. . Plasma Physics Lab.; Texas Univ., Austin, TX . Fusion Research Center)

    1989-09-01

    The carbon concentration in the central region of TFTR discharges with high power neutral beam heating has been measured by charge-extracted recombination spectroscopy (CXRS) of the C{sup +5} n = 3--4 transition in the extreme ultraviolet region. The carbon concentrations were deduced from absolute measurements of the line brightness using a calculation of the beam attenuation and the appropriate cascade-corrected line excitation rates. As a result of the high ion temperatures in most of the discharges, the contribution of beam halo neutrals to the line brightness was significant and therefore had to be included in the modeling of the data. Carbon concentrations have been measured in discharges with I{sub p} = 1.0-1.6 MA and beam power in the range of 2.6-30 MW, including a number of supershots. The results are in good agreement with carbon concentrations deduced from the visible bremsstrahlung Z{sub eff} and metallic impurity concentrations measured by x-ray pulse-height analysis, demonstrating the reliability of the atomic rates used in the beam attenuation and line excitation calculations. Carbon is the dominant impurity species in these discharges; the oxygen concentration measured via CXRS in a high beam power case was 0.0006 of n{sub e}, compard to 0.04 for carbon. Trends with I{sub p} and beam power in the carbon concentration and the inferred deuteron concentration are presented. The carbon concentration is independent of I{sub p} and decreases from 0.13 at 2.6 MW beam power to 0.04 at 30 MW, while the deuteron concentration increases from 0.25 to 0.75 over the same range of beam power. These changes are primarily the result of beam particle fueling, as the carbon density did not vary significantly with beam power. The time evolutions of the carbon and deuteron concentrations during two high power beam pulses, one which exhibited a carbon bloom and one which did not, are compared. 30 refs., 12 figs., 2 tabs.

  13. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  14. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  15. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    SciTech Connect

    Choi, B. William; Chiu, Ing L.

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  16. [La(3+)-induced fusion of plant protoplasts].

    PubMed

    Sheremet'ev, Iu A; Smirnova, D V; Sheremet'eva, A V

    2009-01-01

    The effect of La(3+) on the fusion of plant protoplasts has been studied. It was shown that La(3+) induced the aggregation of plant protoplasts. The incubation of a suspension of aggregated protoplasts at 42 degrees C for 30 min resulted in their fusion.

  17. Kinetic models of laser-tissue fusion processes.

    PubMed

    Pearce, J A; Thomsen, S

    1993-01-01

    Laser tissue fusion processes depend primarily on thermal denaturization of tissue collagen: the fibrils of apposed collagen strands apparently unravel under sufficient heat and re-entwine during the cooling phase. Excessive heating desiccates the fibers to a brittle state unsuitable for fusion while inadequate heating results in weak bonds. In all cases local heat transfer processes significantly affect, and may dominate, the thermal damage realized. Consequently, in addition to spot size power and beam activation time, the choice of laser wavelength is critically dependent on the particular vessel or tissue geometry (chiefly the thickness). We have conducted parametric studies on tissue welding laser activation protocols in transient finite difference numerical models which include tissue water vaporization processes in parallel with kinetic models of collagen and smooth muscle thermal damage. The results show the complex inter-relationship between laser parameters and tissue geometry which determines whether successful fusion may be obtained. The advantage of the numerical modeling approach is that individual physical processes may be studied singly to determine their relative importance.

  18. Nuclear design of a very-low-activation fusion reactor

    SciTech Connect

    Cheng, E.T.; Hopkins, G.R.

    1983-06-01

    An investigation was conducted to study the nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE tokamak reactor design.

  19. Computer Modeling of a Fusion Plasma

    SciTech Connect

    Cohen, B I

    2000-12-15

    Progress in the study of plasma physics and controlled fusion has been profoundly influenced by dramatic increases in computing capability. Computational plasma physics has become an equal partner with experiment and traditional theory. This presentation illustrates some of the progress in computer modeling of plasma physics and controlled fusion.

  20. Lenr and "cold Fusion" Excess Heat:. Their Relation to Other Anomalous Microphysical Energy Experiments and Emerging New Energy Technologies

    NASA Astrophysics Data System (ADS)

    Mallove, Eugene F.

    2005-12-01

    During the past 15 years, indisputable experimental evidence has built up for substantial excess heat (far beyond ordinary chemical energy) and low-energy nuclear reaction phenomena in specialized heavy hydrogen and ordinary hydrogen-containing systems.1 The primary theorists in the field that is properly designated Cold Fusion/LENR have generally assumed that the excess heat phenomena is commensurate with nuclear ash (such as helium), whether already identified or presumed to be present but not yet found. That was an excellent initial hypothesis. However, the commensurate nuclear ash hypothesis has not been proved, and appears to be approximately correct in only a few experiments. During this same period, compelling evidence although not as broadly verified as data from cold fusion/LENR has also emerged for other microphysical sources of energy that were previously unexpected by accepted physics. The exemplar of this has been the "hydrino" physics work of Dr. Randall Mills and his colleagues at Black-Light Power Corporation, which was a radical outgrowth from the cold fusion field that emerged publicly in May 1991.2 Even more far-reaching is the work in vacuum energy extraction pioneered by Dr. Paulo and Alexandra Correa, which first became public in 1996.3 This vacuum energy experimentation began in the early 1980s and has been reduced to prototype technological devices, such as the patented PAGDTM (pulsed abnormal glow discharge) electric power generator, as well as many published experiments that can be performed in table-top fashion to verify the Correa Aetherometry (non-luminiferous or non-electromagnetic aether measurement science).4 In an era when mainstream science and its media is all agog about dark matter and dark energy composing the vast bulk of the universe, there is a great need to reconcile, if possible, the significant bodies of evidence from these three major experimental and theoretical streams: cold fusion/LENR, hydrino physics, and

  1. Application of polarized nuclei to fusion

    SciTech Connect

    Kulsrud, R.M.

    1987-07-01

    It is shown that the d-t fusion reaction can be modified by polarizing nuclear spins. The ways in which this improves reactor performance are mentioned and the feasibility of the process of spin polarization for magnetic fusion is discussed. 18 refs.

  2. Socio-economic Aspects of Fusion

    SciTech Connect

    J.A. Schmidt

    2004-10-21

    Fusion power systems, if developed and deployed, would have many attractive features including power production not dependant on weather or solar conditions, flexible siting, and minimal carbon dioxide production. In this paper, we quantify the benefit of these features. In addition, fusion deployment scenarios are developed for the last half of this century and these scenarios are analyzed for resource requirements and waste production.

  3. Fast ignition of inertial confinement fusion targets

    SciTech Connect

    Gus'kov, S. Yu.

    2013-01-15

    Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

  4. Status of beryllium development for fusion applications

    SciTech Connect

    Billone, M.C.; Donne, M.D.; Macaulay-Newcombe, R.G.

    1994-05-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing component of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.

  5. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    ERIC Educational Resources Information Center

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  6. Economic potential of magnetic fusion energy

    SciTech Connect

    Henning, C.D.

    1981-03-10

    Scientific feasibility of magnetic fusion is no longer seriously in doubt. Rapid advances have been made in both tokamak and mirror research, leading to a demonstration in the TFTR tokamak at Princeton in 1982 and the tandem mirror MFTF-B at Livermore in 1985. Accordingly, the basis is established for an aggressive engineering thrust to develop a reactor within this century. However, care must be taken to guide the fusion program towards an economically and environmentally viable goal. While the fusion fuels are essentially free, capital costs of reactors appear to be at least as large as current power plants. Accordingly, the price of electricity will not decline, and capital availability for reactor constructions will be important. Details of reactor cost projections are discussed and mechanisms suggested for fusion power implementation. Also discussed are some environmental and safety aspects of magnetic fusion.

  7. The social evolution of somatic fusion.

    PubMed

    Aanen, Duur K; Debets, Alfons J M; de Visser, J Arjan G M; Hoekstra, Rolf F

    2008-11-01

    The widespread potential for somatic fusion among different conspecific multicellular individuals suggests that such fusion is adaptive. However, because recognition of non-kin (allorecognition) usually leads to a rejection response, successful somatic fusion is limited to close kin. This is consistent with kin-selection theory, which predicts that the potential cost of fusion and the potential for somatic parasitism decrease with increasing relatedness. Paradoxically, however, Crozier found that, in the short term, positive-frequency-dependent selection eliminates the required genetic polymorphism at allorecognition loci. The 'Crozier paradox' may be solved if allorecognition is based on extrinsically balanced polymorphisms, for example at immune loci. Alternatively, the assumption of most models that self fusion is mutually beneficial is wrong. If fusion is on average harmful, selection will promote unconditional rejection. However, we propose that fusion within individuals is beneficial, selecting for the ability to fuse, but fusion between individuals on average costly, selecting for non-self recognition (rather than non-kin recognition). We discuss experimental data on fungi that are consistent with this hypothesis. PMID:18937373

  8. Status of cold fusion (2010).

    PubMed

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  9. Status of cold fusion (2010)

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  10. Magneized target fusion: An overview of the concept

    SciTech Connect

    Kirkpatrick, R.C.

    1994-12-31

    Magnetized target fusion (MTF) seeks to take advantage of the reduction of thermal conductivity through the application of a strong magneticfield and thereby ease the requirements for reaching fusion conditions in a thermonuclear (TN) fusion fuel. A potentially important benefit of the strong field in the partial trapping of energetic charged particles to enhance energy deposition by the TN fusion reaction products. The essential physics is described. MTF appears to lead to fusion targets that require orders of magnitude less power and intensity for fusion ignition than currently proposed (unmagnetized) inertial confinement fusion (ICF) targets do, making some very energetic pulsed power drivers attractive for realizing controlled fusion.

  11. Purdue Contribution of Fusion Simulation Program

    SciTech Connect

    Jeffrey Brooks

    2011-09-30

    . It will address the origins and structure of the plasma electric field, rotation, the L-H transition, and the wide variety of pedestal relaxation mechanisms. The Whole Device Model will predict the entire discharge evolution given external actuators (i.e., magnets, power supplies, heating, current drive and fueling systems) and control strategies. Based on components operating over a range of physics fidelity, the WDM will model the plasma equilibrium, plasma sources, profile evolution, linear stability and nonlinear evolution toward a disruption (but not the full disruption dynamics). The plan assumes that, as the FSP matures and demonstrates success, the program will evolve and grow, enabling additional science problems to be addressed. The next set of integration opportunities could include: 1) Simulation of disruption dynamics and their effects; 2) Prediction of core profile including 3D effects, mesoscale dynamics and integration with the edge plasma; 3) Computation of non-thermal particle distributions, self-consistent with fusion, radio frequency (RF) and neutral beam injection (NBI) sources, magnetohydrodynamics (MHD) and short-wavelength turbulence.

  12. In vitro fusion of Acanthamoeba phagolysosomes. I. Demonstration and quantitation of vacuole fusion in Acanthamoeba homogenates.

    PubMed

    Oates, P J; Touster, O

    1976-02-01

    Fusion of phagolysosomes (PLs) has been demonstrated to occur in vitro. Two separate cell homogenates of the ameba Acanthamoeba sp. (Neff) were prepared, each rich in PLs labeled with distinctive particulate markers. Portions of each were incubated together in vitro and fusion occurred as evidenced by the appearance of PLs containing both types of markers. Fusion was confirmed by electron microscopy, including serial sectioning. The membranes of fused vacuoles excluded the dye eosin Y. Surviving cells in the homogenates were not responsible for the observed fusion. Fusion was obtained using either synthetic markers (polystyrene and polyvinyltoluene latex) or biological markers (autoclaved yeast cells and glutaraldehyde-fixed goat red blood cells), or a combination of both. The specificity of PL fusion in vivo appeared to be maintained in vitro. As determined by light and electron microscopy, the fusion reaction was dependent on time and temperature, and on the initial presence of membrane around both marker particles. A minimum of 10% of the vacuoles fused by 10 min of incubation at 30 degrees C, and no rupture of the vacuoles was detected during this time. After 10 min of incubation, vacuole rupture began and fusion ceased. At a constant initial vacuole concentration, the extent of PL fusion in vitro was quantitatively reproducible. This appears to be a promising system for further investigation of membrane fusion in the lysosomal system. PMID:1245550

  13. Fusion pore regulation of transmitter release.

    PubMed

    Fernández-Peruchena, Carlos; Navas, Sergio; Montes, María A; Alvarez de Toledo, Guillermo

    2005-09-01

    During the last decade a wealth of new information about the properties of the exocytotic fusion pore is changing our current view of exocytosis. The exocytotic fusion pore, a necessary stage before the full merging of the vesicle membrane with the plasma membrane, is becoming a key cellular structure that might critically control the amount of neurotransmitter released into the synaptic cleft and that can be subjected to control by second messengers and phosphorylated proteins. Fusion pores form, expand to fully merge membranes, or can close leaving an intact and identical synaptic vesicle in place for a new round of exocytosis. Transient formation of fusion pores is the mechanistic representation of the "kiss-and-run" hypothesis of transmitter release and offers new alternatives for synaptic vesicle recycling besides to the classical mechanism mediated by clathrin coat endocytosis. For vesicle recycling transient fusion pores ensures a fast mechanism for maintaining an active pool of synaptic vesicles. The size reached by transient fusion pores and the time spent on the open state can determine the release of subquantal synaptic transmission, which could be a mechanism of synaptic potentiation. In this review we will described the electrophysiological and fluorescence methods that contribute to further explore the biophysical properties of the exocytotic fusion pore and the relevant experiments obtained by these methods.

  14. Self-organized helical equilibria as a new paradigm for ohmically heated fusion plasmas

    NASA Astrophysics Data System (ADS)

    Lorenzini, R.; Martines, E.; Piovesan, P.; Terranova, D.; Zanca, P.; Zuin, M.; Alfier, A.; Bonfiglio, D.; Bonomo, F.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Escande, D. F.; Fassina, A.; Franz, P.; Gobbin, M.; Innocente, P.; Marrelli, L.; Pasqualotto, R.; Puiatti, M. E.; Spolaore, M.; Valisa, M.; Vianello, N.; Martin, P.; Martin, P.; Apolloni, L.; Puiatti, M. E.; Adamek, J.; Agostini, M.; Alfier, A.; Annibaldi, S. V.; Antoni, V.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Brotankova, J.; Buffa, A.; Buratti, P.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Chapman, B. E.; Chitarin, G.; Dal Bello, S.; de Lorenzi, A.; de Masi, G.; Escande, D. F.; Fassina, A.; Ferro, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guazzotto, L.; Guo, S. C.; Igochine, V.; Innocente, P.; Liu, Y. Q.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Martines, E.; McCollam, K.; Milani, F.; Moresco, M.; Novello, L.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Predebon, I.; Reusch, J. A.; Rostagni, G.; Rubinacci, G.; Sarff, J. S.; Sattin, F.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Spizzo, G.; Taliercio, C.; Terranova, D.; Toigo, V.; Valisa, M.; Vianello, N.; Villone, F.; White, R. B.; Yadikin, D.; Zaccaria, P.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zohm, H.; Zuin, M.

    2009-08-01

    In the quest for new energy sources, the research on controlled thermonuclear fusion has been boosted by the start of the construction phase of the International Thermonuclear Experimental Reactor (ITER). ITER is based on the tokamak magnetic configuration, which is the best performing one in terms of energy confinement. Alternative concepts are however actively researched, which in the long term could be considered for a second generation of reactors. Here, we show results concerning one of these configurations, the reversed-field pinch (RFP). By increasing the plasma current, a spontaneous transition to a helical equilibrium occurs, with a change of magnetic topology. Partially conserved magnetic flux surfaces emerge within residual magnetic chaos, resulting in the onset of a transport barrier. This is a structural change and sheds new light on the potential of the RFP as the basis for a low-magnetic-field ohmic fusion reactor.

  15. The fusion diagnostic gamma experiment: A high-bandwidth fusion diagnostic of the National Ignition Facility

    SciTech Connect

    Moran, M.J.

    1999-01-01

    Diagnostics for the National Ignition Facility/inertial confinement fusion program must include good characterization of the fusion source. Ideally, diagnostics would measure the spatially resolved history of the fusion reaction rate and temperature. Existing diagnostics can satisfy this goal only partially. One class of new techniques that could play a major role in high-yield diagnostics is measurements based on fusion {gamma} rays. The fusion diagnostic gamma experiment can perform energy-resolved measurements of (D,T) fusion reaction rates. This diagnostic is based on the 16.7 MeV {gamma} rays that are produced by (D,T) fusion. The {gamma} rays are free of spectral dispersion and can be detected (via Compton recoil electrons) with a high bandwidth Cherenkov detector. A simple magnetic monochromator selects signals from the 16.7 MeV {gamma} rays and reduces background signals from nonfusion {gamma} rays. {copyright} {ital 1998 American Institute of Physics.}

  16. Establishment of an Institute for Fusion Studies

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.

    1992-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a center for information exchange, nationally and internationally, by hosting exchange visits, conferences, and workshops; (3) and to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results that are obtained by the Institute contribute mainly to the progress of national and international efforts in nuclear fusion research, whose goal is the development of fusion power as a basic energy source. In addition to its primary focus on fusion physics, the Institute is also involved with research in related fields, such as advanced computing techniques, nonlinear dynamics, plasma astrophysics, and accelerator physics. The work of EFS scientists continued to receive national and international recognition. Numerous invited papers were given during the past year at workshops, conferences, and scientific meetings. Last year IFS scientists published 95 scientific articles in technical journals and monographs.

  17. Establishment of an Institute for Fusion Studies

    SciTech Connect

    Hazeltine, R.D.

    1992-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a center for information exchange, nationally and internationally, by hosting exchange visits, conferences, and workshops; (3) and to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results that are obtained by the Institute contribute mainly to the progress of national and international efforts in nuclear fusion research, whose goal is the development of fusion power.as a basic energy source. In addition to its primary focus on fusion physics, the Institute is also involved with research in related fields, such as advanced computing techniques, nonlinear dynamics, plasma astrophysics, and accelerator physics. The work of EFS scientists continued to receive national and international recognition. Numerous invited papers were given during the past year at workshops, conferences, and scientific meetings. Last year IFS scientists published 95 scientific articles in technical journals and monographs.

  18. Design of Fusion Safety Data Base

    NASA Astrophysics Data System (ADS)

    Aoki, Isao; Seki, Yasushi

    1994-03-01

    This report presents a data base architecture with its circumstance which is designed to be used for safety design and analysis studies. Design of Fusion Safety Data Base has been carried out to take into account a great number of published references on operation and control of fusion energy and engineering features to secure safety of fusion devices. Data Base of Fiscal Year 1993 - which has been established over an extended year - realized on PC (Personal Computer) peripherals is reported. The concept of data base architecture with its attributive issues and a manipulating way for users are also shown.

  19. A burning plasma program strategy to advance fusion energy. Report of the Fusion Energy Sciences Advisory Committee, Burning Plasma Strategy Panel

    SciTech Connect

    None, None

    2002-09-01

    Fusion energy shows great promise to contribute to securing the energy future of humanity. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are strong reasons to pursue fusion energy now. The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. This investigation, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. The defining feature of a burning plasma is that it is self-heated: the 100 million degree temperature of the plasma is maintained mainly by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system. Understanding all elements of this system poses a major challenge to fundamental plasma physics. The technology needed to produce and control a burning plasma presents challenges in engineering science similarly essential to the development of fusion energy.

  20. [Fusion implants of carbon fiber reinforced plastic].

    PubMed

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  1. Reply to "Comment on papers by K. Shanahan that propose to explain anomalous heat generated by cold fusion", E. Storms, Thermochim. Acta (2005)

    SciTech Connect

    Shanahan, Kirk

    2005-09-21

    Dr. E. Storms has published a Letter [1] in which he argues that in a sequence of recent papers [2-5], the apparent excess heat signal claimed by Dr. Shanahan to arise from a calibration constant shift is actually true excess heat. In particular he proposes that the mechanisms proposed that foster the proposed calibration constant shifts [3,5] cannot occur as postulated for several reasons. As well, he proposes Shanahan has ignored the extant data proving this. Because this Letter may lend unwarranted support to acceptance of cold fusion claims, these erroneous arguments used by Storms need to be answered.

  2. Bibliography of fusion product physics in tokamaks

    SciTech Connect

    Hively, L. M.; Sigmar, D. J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category.

  3. Computational mathematics and physics of fusion reactors

    PubMed Central

    Garabedian, Paul R.

    2003-01-01

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  4. Reactor applications of the Compact Fusion Advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Hoffman, H. A.; Logan, B. G.; Campbell, R. B.

    1988-03-01

    A preliminary design of a D-T fusion reactor blanket and MHD power conversion system is made based on the CFAR concept, and it was found that performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boiling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection temperatures, and only a relatively small natural-draft heat exchanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although a cost analysis has not yet been performed, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity.

  5. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  6. Safety of magnetic fusion facilities: Guidance

    SciTech Connect

    1996-05-01

    This document provides guidance for the implementation of the requirements identified in DOE-STD-6002-96, Safety of Magnetic Fusion Facilities: Requirements. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While the requirements in DOE-STD-6002-96 are generally applicable to a wide range of fusion facilities, this Standard, DOE-STD-6003-96, is concerned mainly with the implementation of those requirements in large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This Standard is oriented toward regulation in the Department of Energy (DOE) environment as opposed to regulation by other regulatory agencies. As the need for guidance involving other types of fusion facilities or other regulatory environments emerges, additional guidance volumes should be prepared. The concepts, processes, and recommendations set forth here are for guidance only. They will contribute to safety at magnetic fusion facilities.

  7. Fusion Physics Toward ITER

    NASA Astrophysics Data System (ADS)

    Stambaugh, R. D.

    2006-04-01

    Stars are powered by fusion, the energy released by fusing together light nuclei, using gravitational confinement of plasma. Fusion on earth will be done in a 100 million degree plasma made of deuterium and tritium and confined by magnetic fields or inertia. The worldwide fusion research community will construct ITER, the first experiment that will burn a DT plasma by copious fusion reactions. ITER's nominal goal is to create 500 MW of fusion power. An energy gain of 10 will mean the plasma is dominantly self-heated by the fusion-produced alpha particles. ITER's all superconducting magnet technology and steady-state heat removal technology will enable nominal 400 s pulses to allow the study of burning plasmas on the longest intrinsic timescale of the confined plasma - diffusive redistribution of the electrical currents in the plasma. The advances in magnetic confinement physics that have led to this opportunity will be described, as well as the research opportunities afforded by ITER. The physics of confining stable plasmas and heating them will produce the high gain state in ITER. Sustained burn will come from the physics of controlling currents in plasmas and how the hot plasma is interfaced to its room temperature surroundings. ITER will provide our first experience with how fusion plasma self-heating will profoundly affect the complex, interlinked physical processes that occur in confined plasmas.

  8. Multivariable optimization of fusion reactor blankets

    SciTech Connect

    Meier, W.R.

    1984-04-01

    The optimization problem consists of four key elements: a figure of merit for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the figure of merit subject to the constraints. The first reactor concept investigated uses a liquid lithium blanket for breeding tritium and a steel blanket to increase the fusion energy multiplication factor. The capital cost per unit of net electric power produced is minimized subject to constraints on the tritium breeding ratio and radiation damage rate. The optimal design has a 91-cm-thick lithium blanket denatured to 0.1% /sup 6/Li. The second reactor concept investigated uses a BeO neutron multiplier and a LiAlO/sub 2/ breeding blanket. The total blanket thickness is minimized subject to constraints on the tritium breeding ratio, the total neutron leakage, and the heat generation rate in aluminum support tendons. The optimal design consists of a 4.2-cm-thick BeO multiplier and 42-cm-thick LiAlO/sub 2/ breeding blanket enriched to 34% /sup 6/Li.

  9. Fission-detector determination of D-D triton burnup fraction in beam-heated TFTR (Tokamak Fusion Test Reactor) plasmas

    SciTech Connect

    Jassby, D.L.; Hendel, H.W.; Barnes, C.W.; Bosch, S.; Cecil, F.E.; McCune, D.C.; Nieschmidt, E.B.; Strachan, J.D.

    1987-06-01

    After the end of a neutral-beam injection pulse into a low-density TFTR plasma, once the beam-injected deuterons have thermalized, the neutron emission is dominated by the 14-MeV neutron production from D-D triton burnup. Ordinary fission detectors can measure the 14-MeV emission rate, which can be extrapolated back in time to estimate the equilibrium triton burnup fraction. The fractional burnup determined by this method is in the range of 0.3 to 1.5% for TFTR discharges to date, and is consistent with classical confinement and slowing down. 10 refs., 3 figs.

  10. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  11. FusionDB: a database for in-depth analysis of prokaryotic gene fusion events.

    PubMed

    Suhre, Karsten; Claverie, Jean-Michel

    2004-01-01

    FusionDB (http://igs-server.cnrs-mrs.fr/FusionDB/) constitutes a resource dedicated to in-depth analysis of bacterial and archaeal gene fusion events. Such events can provide the 'Rosetta stone' in the search for potential protein-protein interactions, as well as metabolic and regulatory networks. However, the false positive rate of this approach may be quite high, prompting a detailed scrutiny of putative gene fusion events. FusionDB readily provides much of the information required for that task. Moreover, FusionDB extends the notion of gene fusion from that of a single gene to that of a family of genes by assembling pairs of genes from different genomes that belong to the same Cluster of Orthogonal Groups (COG). Multiple sequence alignments and phylogenetic tree reconstruction for the N- and C-terminal parts of these 'COG fusion' events are provided to distinguish single and multiple fusion events from cases of gene fission, pseudogenes and other false positives. Finally, gene fusion events with matches to known structures of heterodimers in the Protein Data Bank (PDB) are identified and may be visualized. FusionDB is fully searchable with access to sequence and alignment data at all levels. A number of different scores are provided to easily differentiate 'real' from 'questionable' cases, especially when larger database searches are performed. FusionDB is cross-linked with the 'Phylogenomic Display of Bacterial Genes' (PhydBac) online web server. Together, these servers provide the complete set of information required for in-depth analysis of non-homology-based gene function attribution. PMID:14681411

  12. FusionDB: a database for in-depth analysis of prokaryotic gene fusion events.

    PubMed

    Suhre, Karsten; Claverie, Jean-Michel

    2004-01-01

    FusionDB (http://igs-server.cnrs-mrs.fr/FusionDB/) constitutes a resource dedicated to in-depth analysis of bacterial and archaeal gene fusion events. Such events can provide the 'Rosetta stone' in the search for potential protein-protein interactions, as well as metabolic and regulatory networks. However, the false positive rate of this approach may be quite high, prompting a detailed scrutiny of putative gene fusion events. FusionDB readily provides much of the information required for that task. Moreover, FusionDB extends the notion of gene fusion from that of a single gene to that of a family of genes by assembling pairs of genes from different genomes that belong to the same Cluster of Orthogonal Groups (COG). Multiple sequence alignments and phylogenetic tree reconstruction for the N- and C-terminal parts of these 'COG fusion' events are provided to distinguish single and multiple fusion events from cases of gene fission, pseudogenes and other false positives. Finally, gene fusion events with matches to known structures of heterodimers in the Protein Data Bank (PDB) are identified and may be visualized. FusionDB is fully searchable with access to sequence and alignment data at all levels. A number of different scores are provided to easily differentiate 'real' from 'questionable' cases, especially when larger database searches are performed. FusionDB is cross-linked with the 'Phylogenomic Display of Bacterial Genes' (PhydBac) online web server. Together, these servers provide the complete set of information required for in-depth analysis of non-homology-based gene function attribution.

  13. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  14. Plasma-Materials Interactions (PMI) and High-Heat-Flux (HHF) component research and development in the US Fusion Program

    SciTech Connect

    Conn, R.W.

    1986-10-01

    Plasma particle and high heat fluxes to in-vessel components such as divertors, limiters, RF launchers, halo plasma scrapers, direct converters, and wall armor, and to the vacuum chamber itself, represent central technical issues for fusion experiments and reactors. This is well recognized and accepted. It is also well recognized that the conditions at the plasma boundary can directly influence core plasma confinement. This has been seen most dramatically, on the positive side, in the discovery of the H-mode using divertors in tokamaks. It is also reflected in the attention devoted worldwide to the problems of impurity control. Nowadays, impurities are controlled by wall conditioning, special discharge cleaning techniques, special coatings such as carbonization, the use of low-Z materials for limiters and armor, a careful tailoring of heat loads, and in some machines, through the use of divertors. All programs, all experiments, and all designers are now keenly aware that PMI and HHF issues are key to the successful performance of their machines. In this brief report we present general issues in Section 2, critical issues in Section 3, existing US PMI/HHF experiments and facilities in Section 4, US International Cooperative PMI/HHF activities in Section 5, and conclude with a discussion on major tasks in PMI/HHF in Section 6.

  15. [Recent Advances of Biomechanical Studies on Cervical Fusion and Non-fusion Surgery].

    PubMed

    Liao, Zhenhua; Liu, Weiqiang

    2016-02-01

    This article reviews the progress of biomechanical studies on anterior cervical fusion and non-fusion surgery in recent years. The similarities and differences between animal and human cervical spines as well as the major three biomechanical test methods are introduced. Major progresses of biomechanical evaluation in anterior cervical fusion and non-fusion devices, hybrid surgery, coupled motion and biomechanical parameters, such as the instant center of rotation, are classified and summarized. Future development of loading method, multilevel hybrid surgery and coupling character are also discussed. PMID:27382760

  16. A tripartite fusion, FaeG-FedF-LT(192)A2:B, of enterotoxigenic Escherichia coli (ETEC) elicits antibodies that neutralize cholera toxin, inhibit adherence of K88 (F4) and F18 fimbriae, and protect pigs against K88ac/heat-labile toxin infection.

    PubMed

    Ruan, Xiaosai; Liu, Mei; Casey, Thomas A; Zhang, Weiping

    2011-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 (F4) or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing antiadhesin (anti-K88 and anti-F18) and antitoxin (anti-LT and anti-ST) immunity would provide broad protection to young pigs against ETEC. In this study, we genetically fused nucleotides coding for peptides from K88ac major subunit FaeG, F18 minor subunit FedF, and LT toxoid (LT(192)) A2 and B subunits for a tripartite adhesin-adhesin-toxoid fusion (FaeG-FedF-LT(192)A2:B). This fusion was used for immunizations in mice and pigs to assess the induction of antiadhesin and antitoxin antibodies. In addition, protection by the elicited antiadhesin and antitoxin antibodies against a porcine ETEC strain was evaluated in a gnotobiotic piglet challenge model. The data showed that this FaeG-FedF-LT(192)A2:B fusion elicited anti-K88, anti-F18, and anti-LT antibodies in immunized mice and pigs. In addition, the anti-porcine antibodies elicited neutralized cholera toxin and inhibited adherence against both K88 and F18 fimbriae. Moreover, immunized piglets were protected when challenged with ETEC strain 30302 (K88ac/LT/STb) and did not develop clinical disease. In contrast, all control nonvaccinated piglets developed severe diarrhea and dehydration after being challenged with the same ETEC strain. This study clearly demonstrated that this FaeG-FedF-LT(192)A2:B fusion antigen elicited antibodies that neutralized LT toxin and inhibited the adherence of K88 and F18 fimbrial E. coli strains and that this fusion could serve as an antigen for vaccines against porcine ETEC diarrhea. In addition, the adhesin-toxoid fusion approach used in this study may provide important information for developing effective vaccines against human ETEC diarrhea. PMID:21813665

  17. Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane

    1986-04-22

    Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.

  18. Ultrahigh heat flux plasma-facing components for magnetic fusion energy

    SciTech Connect

    Youchison, D. L.

    2012-03-01

    Sandia and Ultramet partnered to design and test refractory metal plasma-facing components and heat exchangers for advanced, high-temperature power conversion systems. These devices consisted of high-temperature helium-to-helium and lithium-to-helium heat exchangers that operate with high efficiency due to the porous foam inserts used in the gas stream, which promote turbulence and provide extended surface area for enhanced convection. Single- and multi-channel helium panels and the Li-He heat exchanger were fabricated from either pure molybdenum, TZM, or tungsten. The design was carried out through an Ultramet subcontractor. The flow path was carefully tailored to minimize the pressure drop while maximizing the heat transfer. The single- and multi-channel helium panels were tested at Sandia's PMTF using an electron beam system and the closed helium flow loop. In 2006, a single-channel tungsten tube was successfully tested to an average heat flux of 14 MW/m{sup 2} with a localized peak of 22 MW/m{sup 2} along the axial centerline at the outer radius. Under this CRADA, multiple square-channel molybdenum components were successfully tested to heat flux levels approaching 8.5 MW/m{sup 2}. The three multi-channel prototypes experienced mechanical failure due to issues related to the design of the large unsupported span of the heated faceplates in combination with prototype material and braze selection. The Li-He heat exchanger was both designed and partially tested at the PMTF for helium and lithium flow.

  19. The properties and weldability of materials for fusion reactor applications

    SciTech Connect

    Chin, B.A.; Kee, C.K.; Wilcox, R.C.; Zinkle, S.J.

    1991-11-15

    Low-activation austenitic stainless steels have been suggested for applications within fusion reactors. The use of these nickel-free steels will help to reduce the radioactive waste management problem after service. one requirement for such steels is the ability to obtain sound welds for fabrication purposes. Thus, two austenitic Fe-Cr-Mn alloys were studied to characterize the welded microstructure and mechanical properties. The two steels investigated were a Russian steel (Fe-11.6Cr19.3Mn-0.181C) and an US steel (Fe-12.lCr-19.4Mn-0.24C). Welding was performed using a gas tungsten arc welding (GTAW) process. Microscopic examinations of the structure of both steels were conducted. The as-received Russian steel was found to be in the annealed state. Only the fusion zone and the base metal were observed in the welded Russian steel. No visible heat affected zone was observed. Examination revealed that the as-received US steel was in the cold rolled condition. After welding, a fusion zone and a heat affected zone along with the base metal region were found.

  20. Direct measurement of the enthalpy of fusion of diopside

    SciTech Connect

    Ziegler, D.; Navrotsky, A.

    1986-11-01

    Crystalline diopside, CaMgSi/sub 2/O/sub 6/, was dropped directly into a Setaram HT1500 calorimeter operating at high temperature. At 1575 < T < 1624 K, the heat content of the crystals was in excellent agreement with previously published results. Above 1634 K, a rise in the enthalpy was seen, supporting the incongruent melting reported by Kushiro. The total enthalpy of fusion at 1665 K, the nominal melting point, is 138.5 kJ/mol, in excellent agreement with measurements which used a cycle that involves dropping the liquid to form a glass and measuring heats of solution of glass and crystals. The heat content of a glassy diopside starting material was also measured. Because the calorimetric experiment lasts only about 8 minutes, these measurements could be extended into the supercooled liquid range (to 1170 K) before the onset of rapid crystallization. A change in slope in the measured heat contents gives a glass transition temperature of 9333 K, about 70 K lower than that reported by other methods. A linear fit of all the data above T/sub g/ (supercooled liquid at 970 to 1170 K, stable liquid at 1668 to 1766 K) gives an average heat capacity for the liquid of 332.8 J/mol/ x K, comparable to the value of 334.6 J/mol x K reported by Richet and Bottinga.

  1. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein.

    PubMed Central

    Wahlberg, J M; Bron, R; Wilschut, J; Garoff, H

    1992-01-01

    Infection of cells with enveloped viruses is accomplished through membrane fusion. The binding and fusion processes are mediated by the spike proteins in the envelope of the virus particle and usually involve a series of conformational changes in these proteins. We have studied the low-pH-mediated fusion process of the alphavirus Semliki Forest virus (SFV). The spike protein of SFV is composed of three copies of the protein heterodimer E2E1. This structure is resistant to solubilization in mild detergents such as Nonidet P-40 (NP40). We have recently shown that the spike structure is reorganized during virus entry into acidic endosomes (J. M. Wahlberg and H. Garoff, J. Cell Biol. 116:339-348, 1992). The original NP40-resistant heterodimer is dissociated, and the E1 subunits form new NP40-resistant protein oligomers. Here, we show that the new oligomer is represented by an E1 trimer. From studies that use an in vitro assay for fusion of SFV with liposomes, we show that the E1 trimer is efficiently expressed during virus-mediated membrane fusion. Time course studies show that both E1 trimer formation and fusion are fast processes, occurring in seconds. It was also possible to inhibit virus binding and fusion with a monoclonal antibody directed toward the trimeric E1. These results give support for a model in which the E1 trimeric structure is involved in the SFV-mediated fusion reaction. Images PMID:1433520

  2. Numerical studies of impact-fusion target dynamics

    SciTech Connect

    Ribe, F.L.; Christiansen, W.H.; MacCormack, R.W.; Sankaran, L.; Yaghmaee, S.

    1986-01-01

    Impact fusion involves the collision of gas-filled metallic shells which heat the gas to fusion conditions. We report on the numerical solution of the one-dimensional (1-D) and two-dimensional (2-D) Euler equations for the combination of metallic shells and internal deuterium gas with a typical initial radial velocity of 25 km/s, corresponding to possible next generation rail-gun velocities. In the 2-D case impacting shells whose initial shapes are spherical caps making acute internal angles of contact produce a quasispherical compression of the internal gas, initially assumed to be at rest. The computations proceed through turnaround, corresponding to maximum plasma compression, neutron yield and quasispherical cavity shaping. We compare plasma parameters and energy efficiency with the 1-D, spherical case.

  3. Status report of the fusion alpha confinement test, March 1980

    SciTech Connect

    Grisham, L.R.; Post, D.E.; Weisheit, J.C.; Eubank, H.P.; Mikkelsen, D.R.; Stewart, L.D.

    1980-05-01

    The Fusion Alpha Confinement Test (FACT) investigates the ability of tokamaks and other magnetic devices to confine fusion-produced alpha particles and be heated by them. This report summarizes the progress made since the initial conception, and lists and discusses the remaining unresolved issues. Preliminary results are given for two experiments at the Lawrence Berkeley Laboratory (LBL) in which He/sup -/ currents of 30 mA and 69 mA, respectively, were obtained from two different ion sources. A number of atomic physics issues relevant to the utility of He/sup -/ as a source for He/sup 0/ are discussed, and a review of considerations for HeH/sup +/ and Li/sup -/ accelerators is presented.

  4. Neutral particle measurements of fusion tritons in JET

    SciTech Connect

    Afanasyev, V. I.; Khudoleev, A. V.

    2010-08-15

    A neutral particle analyzer [A.D. Izvozchikov et al., JET Report No. JET-R(91)-12, 1991] operating in the MeV energy range was used to measure the flux of neutralized d-d fusion tritons emitted from the hot-ion H-mode deuterium plasma heated by deuterium neutral beams. It was found that tritons in the energy range of 0.3-1.1 MeV were largely neutralized by the beam atoms and the beam halo atoms. This enabled us to find the localized energy distribution function of the fusion tritons in the central plasma region. Simulation of the triton energy distribution function shows that MeV ions in the JET hot-ion H-mode plasma behave classically.

  5. Review of the Inertial Fusion Energy Program

    SciTech Connect

    none,

    2004-03-29

    Igniting fusion fuel in the laboratory remains an alluring goal for two reasons: the desire to study matter under the extreme conditions needed for fusion burn, and the potential of harnessing the energy released as an attractive energy source for mankind. The inertial confinement approach to fusion involves rapidly compressing a tiny spherical capsule of fuel, initially a few millimeters in radius, to densities and temperatures higher than those in the core of the sun. The ignited plasma is confined solely by its own inertia long enough for a significant fraction of the fuel to burn before the plasma expands, cools down and the fusion reactions are quenched. The potential of this confinement approach as an attractive energy source is being studied in the Inertial Fusion Energy (IFE) program, which is the subject of this report. A complex set of interrelated requirements for IFE has motivated the study of novel potential solutions. Three types of “drivers” for fuel compression are presently studied: high-averagepower lasers (HAPL), heavy-ion (HI) accelerators, and Z-Pinches. The three main approaches to IFE are based on these drivers, along with the specific type of target (which contains the fuel capsule) and chamber that appear most promising for a particular driver.

  6. Fragmentation of suddenly heated liquids

    SciTech Connect

    Blink, J.A.

    1985-03-01

    Fragmentation of free liquids in Inertial Confinement Fusion reactors could determine the upper bound on reactor pulse rate. The x-ray ablated materials must cool and recondense to allow driver beam propagation. The increased surface area caused by fragmentation will enhance the cooling and condensation rates. Relaxation from the suddenly heated state will move a liquid into the negative pressure region under the liquid-vapor P-V dome. The lithium equation of state was used to demonstrate that neutron-induced vaporization uses only a minor fraction of the added heat, much less than would be required to drive the expansion. A 77% expansion of the lithium is required before the rapid vaporization process of spinodal decomposition could begin, and nucleation and growth are too slow to contribute to the expansion.

  7. Energy Balance of Controlled Thermonuclear Fusion

    NASA Astrophysics Data System (ADS)

    Hashmi, M.; Staudenmaier, G.

    It is shown that a discrepancy and incompatibility persist between basic physics and fusion-literature regarding the radiation losses from a thermonuclear plasma. Whereas the fusion-literature neglects the excitation or line radiation completely, according to basic physics it depends upon the prevailing conditions and cannot be neglected in general. Moreover, for a magnetized plasma, while the fusion-literature assumes a self-absorption or reabsorption of cyclotron or synchrotron radiation emitted by the electrons spiraling along the magnetic field, the basic physics does not allow any effective reabsorption of cyclotron or synchrotron radiation. As is demonstrated, fallacious assumptions and notions, which somehow or other crept into the fusion-literature, are responsible for this discrepancy. In the present work, the theory is corrected. On the grounds of basic physics, a complete energy balance of magnetized and non-magnetized plasmas is presented for pulsed, stationary and self-sustaining operations by taking into account the energy release by reactions of light nuclei as well as different kinds of diffusive (conduction) and radiative (bremsstrahlung, cyclotron or synchrotron radiation and excitation radiation) energy losses. Already the energy losses by radiation make the energy balance negative. Hence, a fusion reactor - an energy producing device - seems to be beyond the realms of realization.

  8. Reviewers Comments on the 5th Symposium and the Status of Fusion Research 2003

    SciTech Connect

    Post, R F

    2005-02-03

    Better to understand the status of fusion research in the year 2003 we will first put the research in its historical context. Fusion power research, now beginning its sixth decade of continuous effort, is unique in the field of scientific research. Unique in its mixture of pure and applied research, unique in its long-term goal and its promise for the future, and unique in the degree that it has been guided and constrained by national and international governmental policy. Though fusion research's goal has from the start been precisely defined, namely, to obtain a net release of energy from controlled nuclear fusion reactions between light isotopes (in particular those of hydrogen and helium) the difficulty of the problem has spawned in the past a very wide variety of approaches to the problem. Some of these approaches have had massive international support for decades, some have been pursued only at a ''shoestring'' level by dedicated groups in small research laboratories or universities. In discussing the historical and present status of fusion research the implications of there being two distinctly different approaches to achieving net fusion power should be pointed out. The first, and oldest, approach is the use of strong magnetic fields to confine the heated fuel, in the form of a plasma and at a density typically four or five orders of magnitude smaller than the density of the atmosphere. In steady state this fusion fuel density is still sufficient to release fusion energy at the rate of many megawatts per cubic meter. The plasma confinement times required for net energy release in this regime are long--typically a second or more, representing an extremely difficult scientific challenge --witness the five decades of research in magnetic fusion, still without having reaching that goal. The second, more recently initiated approach, is of course the ''inertial'' approach. As its name implies, the ''confinement'' problem is solved ''inertially,'' that is by

  9. New applications of Spectral Edge image fusion

    NASA Astrophysics Data System (ADS)

    Hayes, Alex E.; Montagna, Roberto; Finlayson, Graham D.

    2016-05-01

    In this paper, we present new applications of the Spectral Edge image fusion method. The Spectral Edge image fusion algorithm creates a result which combines details from any number of multispectral input images with natural color information from a visible spectrum image. Spectral Edge image fusion is a derivative-based technique, which creates an output fused image with gradients which are an ideal combination of those of the multispectral input images and the input visible color image. This produces both maximum detail and natural colors. We present two new applications of Spectral Edge image fusion. Firstly, we fuse RGB-NIR information from a sensor with a modified Bayer pattern, which captures visible and near-infrared image information on a single CCD. We also present an example of RGB-thermal image fusion, using a thermal camera attached to a smartphone, which captures both visible and low-resolution thermal images. These new results may be useful for computational photography and surveillance applications.

  10. Fusion, fragmentation, and fission of mitochondria.

    PubMed

    Polyakov, V Yu; Soukhomlinova, M Yu; Fais, D

    2003-08-01

    Individual mitochondria which form the chondriom of eucaryotic cells are highly dynamic systems capable of fusion and fragmentation. These two processes do not exclude one another and can occur concurrently. However, fragmentation and fusion of mitochondria regularly alternate in the cell cycle of some unicellular and multicellular organisms. Mitochondrial shapes are also described which are interpreted as intermediates of their "equational" division, or fission. Unlike the fragmentation, the division of mitochondria, especially synchronous division, is also accompanied by segregation of mitochondrial genomes and production of specific "dumbbell-shaped" intermediates. This review considers molecular components and possible mechanisms of fusion, fragmentation, and fission of mitochondria, and the biological significance of these processes is discussed. PMID:12948383

  11. Overview of the US Fusion Materials Sciences Program

    NASA Astrophysics Data System (ADS)

    Zinkle, Steven

    2004-11-01

    The challenging fusion reactor environment (radiation, heat flux, chemical compatibility, thermo-mechanical stresses) requires utilization of advanced materials to fulfill the promise of fusion to provide safe, economical, and environmentally acceptable energy. This presentation reviews recent experimental and modeling highlights on structural materials for fusion energy. The materials requirements for fusion will be compared with other demanding technologies, including high temperature turbine components, proposed Generation IV fission reactors, and the current NASA space fission reactor project to explore the icy moons of Jupiter. A series of high-performance structural materials have been developed by fusion scientists over the past ten years with significantly improved properties compared to earlier materials. Recent advances in the development of high-performance ferritic/martensitic and bainitic steels, nanocomposited oxide dispersion strengthened ferritic steels, high-strength V alloys, improved-ductility Mo alloys, and radiation-resistant SiC composites will be reviewed. Multiscale modeling is providing important insight on radiation damage and plastic deformation mechanisms and fracture mechanics behavior. Electron microscope in-situ straining experiments are uncovering fundamental physical processes controlling deformation in irradiated metals. Fundamental modeling and experimental studies are determining the behavior of transmutant helium in metals, enabling design of materials with improved resistance to void swelling and helium embrittlement. Recent chemical compatibility tests have identified promising new candidates for magnetohydrodynamic insulators in lithium-cooled systems, and have established the basic compatibility of SiC with Pb-Li up to high temperature. Research on advanced joining techniques such as friction stir welding will be described. ITER materials research will be briefly summarized.

  12. Midterm Summary of Japan-US Fusion Cooperation Program TITAN

    SciTech Connect

    Muroga, Takeo; Sze, Dai-Kai; Sokolov, Mikhail; Katoh, Yutai; Stoller, Roger E

    2011-01-01

    Japan-US cooperation program TITAN (Tritium, Irradiation and Thermofluid for America and Nippon) started in April 2007 as 6-year project. This is the summary report at the midterm of the project. Historical overview of the Japan-US cooperation programs and direction of the TITAN project in its second half are presented in addition to the technical highlights. Blankets are component systems whose principal functions are extraction of heat and tritium. Thus it is crucial to clarify the potentiality for controlling heat and tritium flow throughout the first wall, blanket and out-of-vessel recovery systems. The TITAN project continues the JUPITER-II activity but extends its scope including the first wall and the recovery systems with the title of 'Tritium and thermofluid control for magnetic and inertial confinement systems'. The objective of the program is to clarify the mechanisms of tritium and heat transfer throughout the first-wall, the blanket and the heat/tritium recovery systems under specific conditions to fusion such as irradiation, high heat flux, circulation and high magnetic fields. Based on integrated models, the breeding, transfer, inventory of tritium and heat extraction properties will be evaluated for some representative liquid breeder blankets and the necessary database will be obtained for focused research in the future.

  13. A semi-analytic model of magnetized liner inertial fusion

    SciTech Connect

    McBride, Ryan D.; Slutz, Stephen A.

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  14. Role of Fusion Energy in a Sustainable Global Energy Strategy

    SciTech Connect

    Sheffield, J.

    2001-03-07

    Fusion can play an important role in sustainable global energy because it has an available and unlimited fuel supply and location not restricted by climate or geography. Further, it emits no greenhouse gases. It has no potential for large energy releases in an accident, and no need for more than about 100 years retention for radioactive waste disposal. Substantial progress in the realization of fusion energy has been made during the past 20 years of research. It is now possible to produce significant amounts of energy from controlled deuterium and tritium (DT) reactions in the laboratory. This has led to a growing confidence in our ability to produce burning plasmas with significant energy gain in the next generation of fusion experiments. As success in fusion facilities has underpinned the scientific feasibility of fusion, the high cost of next-step fusion facilities has led to a shift in the focus of international fusion research towards a lower cost development path and an attractive end product. The increasing data base from fusion research allows conceptual fusion power plant studies, of both magnetic and inertial confinement approaches to fusion, to translate commercial requirements into the design features that must be met if fusion is to play a role in the world's energy mix; and identify key R and D items; and benchmark progress in fusion energy development. This paper addresses the question, ''Is mankind closer or farther away from controlled fusion than a few decades ago?'' We review the tremendous scientific progress during the last 10 years. We use the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements of an attractive fusion system with present achievements and to identify remaining technical challenges for fusion. We discuss scenarios for fusion energy deployment in the

  15. Expansion of the fusion stalk and its implication for biological membrane fusion

    PubMed Central

    Risselada, Herre Jelger; Bubnis, Gregory; Grubmüller, Helmut

    2014-01-01

    Over the past 20 years, it has been widely accepted that membrane fusion proceeds via a hemifusion step before opening of the productive fusion pore. An initial hourglass-shaped lipid structure, the fusion stalk, is formed between the adjacent membrane leaflets (cis leaflets). It remains controversial if and how fusion proteins drive the subsequent transition (expansion) of the stalk into a fusion pore. Here, we propose a comprehensive and consistent thermodynamic understanding in terms of the underlying free-energy landscape of stalk expansion. We illustrate how the underlying free energy landscape of stalk expansion and the concomitant pathway is altered by subtle differences in membrane environment, such as leaflet composition, asymmetry, and flexibility. Nonleaky stalk expansion (stalk widening) requires the formation of a critical trans-leaflet contact. The fusion machinery can mechanically enforce trans-leaflet contact formation either by directly enforcing the trans-leaflets in close proximity, or by (electrostatically) condensing the area of the cis leaflets. The rate of these fast fusion reactions may not be primarily limited by the energetics but by the forces that the fusion proteins are able to exert. PMID:25024174

  16. Thermally-induced aggregation and fusion of protein-free lipid vesicles.

    PubMed

    Ibarguren, Maitane; Bomans, Paul H H; Ruiz-Mirazo, Kepa; Frederik, Peter M; Alonso, Alicia; Goñi, Félix M

    2015-12-01

    Membrane fusion is an important phenomenon in cell biology and pathology. This phenomenon can be modeled using vesicles of defined size and lipid composition. Up to now fusion models typically required the use of chemical (polyethyleneglycol, cations) or enzymatic catalysts (phospholipases). We present here a model of lipid vesicle fusion induced by heat. Large unilamellar vesicles consisting of a phospholipid (dioleoylphosphatidylcholine), cholesterol and diacylglycerol in a 43:57:3 mol ratio were employed. In this simple system, fusion was the result of thermal fluctuations, above 60 °C. A similar system containing phospholipid and cholesterol but no diacylglycerol was observed to aggregate at and above 60 °C, in the absence of fusion. Vesicle fusion occurred under our experimental conditions only when (31)P NMR and cryo-transmission electron microscopy of the lipid mixtures used in vesicle preparation showed non-lamellar lipid phase formation (hexagonal and cubic). Non-lamellar structures are probably the result of lipid reassembly of the products of individual fusion events, or of fusion intermediates. A temperature-triggered mechanism of lipid reassembly might have occurred at various stages of protocellular evolution.

  17. Laser Intertial Fusion Energy: Neutronic Design Aspects of a Hybrid Fusion-Fission Nuclear Energy System

    SciTech Connect

    Kramer, Kevin James

    2010-04-08

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 μm of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles

  18. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein.

    PubMed

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-02-15

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.

  19. Clinical Experiences of Non-fusion Dynamic Stabilization Surgery for Adjacent Segmental Pathology after Lumbar Fusion

    PubMed Central

    Lee, Soo Eon; Kim, Hyun-Jib

    2016-01-01

    Background As an alternative to spinal fusion, non-fusion dynamic stabilization surgery has been developed, showing good clinical outcomes. In the present study, we introduce our surgical series, which involves non-fusion dynamic stabilization surgery for adjacent segment pathology (ASP) after lumbar fusion surgery. Methods Fifteen patients (13 female and 2 male, mean age of 62.1 years) who underwent dynamic stabilization surgery for symptomatic ASP were included and medical records, magnetic resonance images (MRI), and plain radiographs were retrospectively evaluated. Results Twelve of the 15 patients had the fusion segment at L4-5, and the most common segment affected by ASP was L3-4. The time interval between prior fusion and later non-fusion surgery was mean 67.0 months. The Visual Analog Scale and Oswestry Disability Index showed values of 7.4 and 58.5% before the non-fusion surgery and these values respectively declined to 4.2 and 41.3% postoperatively at 36 months (p=0.027 and p=0.018, respectively). During the mean 44.8 months of follow-up, medication of analgesics was also significantly reduced. The MRI grade for disc and central stenosis identified significant degeneration at L3-4, and similar disc degeneration from lateral radiographs was determined at L3-4 between before the prior fusion surgery and the later non-fusion surgery. After the non-fusion surgery, the L3-4 segment and the proximal segment of L2-3 were preserved in the disc, stenosis and facet joint whereas L1-2 showed disc degeneration on the last MRI (p=0.032). Five instances of radiologic ASP were identified, showing characteristic disc-space narrowing at the proximal segments of L1-2 and L2-3. However, no patient underwent additional surgery for ASP after non-fusion dynamic stabilization surgery. Conclusion The proposed non-fusion dynamic stabilization system could be an effective surgical treatment for elderly patients with symptomatic ASP after lumbar fusion. PMID:27162710

  20. Fast Radiometry Guided Fusion of Disparity Images

    NASA Astrophysics Data System (ADS)

    Schmid, Stephan; Fritsch, Dieter

    2016-06-01

    Previous work on disparity map fusion has mostly focused on geometric or statistical properties of disparity maps. Since failure of stereo algorithms is often consistent in many frames of a scene, it cannot be detected by such methods. Instead, we propose to use radiometric information from the original camera images together with externally supplied camera pose information to detect mismatches. As radiometric information is local information, the computations in the proposed algorithm for disparity fusion can be decoupled and parallelized to a very large degree, which allows us to easily achieve real-time performance.

  1. Transport and deceleration of fusion products in microturbulence

    NASA Astrophysics Data System (ADS)

    Wilkie, George J.; Abel, Ian G.; Landreman, Matt; Dorland, William

    2016-06-01

    The velocity-space distribution of alpha particles born in fusion devices is subject to modification at moderate energies due to turbulent transport. Therefore, one must calculate the evolution of an equilibrium distribution whose functional form is not known a priori. Using a novel technique, applicable to any trace impurity, we have made this calculation for fully nonlinear gyrokinetic simulations not only possible but also particularly efficient. We demonstrate a microturbulence-induced departure from the local slowing-down distribution, an inversion of the energy distribution, and associated modifications to the alpha heating and pressure profiles in an ITER-like scenario.

  2. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  3. Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy

    SciTech Connect

    Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B

    2008-08-12

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  4. ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY

    SciTech Connect

    Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.

    2008-08-01

    Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.

  5. Outcome of instrumented lumbar fusion for low grade spondylolisthesis; Evaluation of interbody fusion with & without cages

    PubMed Central

    Fathy, Mostafa; Fahmy, Mohamed; Fakhri, Mazen; Aref, Khaled; Abdin, Khaled; Zidan, Ihab

    2010-01-01

    Object: The aim is to evalute the outcome of posterior lumbar interbody fusion with autologous bone graft versus titanium Cages, BAK system (Bagby – Kuslich, Spine Tech, Inc. Minneapolis, MN) for low grade spondyloisthesis (Grade1,11). Interbody cages have been developed to replace tricortical Interbody grafts in posterior lumbar interbody fusion (PLIF) procedures. The cages provide immediate post operative stability and facilitate bony union with cancellous bone packed in the cage itself. METHOD: We Evaluated 50 consecutive patients in whom surgery was performed between June 2000 to June 2003 in the Main Alexandria University Hospital at EGYPT. Twenty five patients were operated using autologous bone graft and 25 patients using the BAK cages. The neuro–radiologic al work up consisted of; plain X – ray lumbosacral spine including dynamic films preoperative and postoperative follow up; C.T lumbosacral spine and MRI lumbosacral spine. The surgery was performed at L4-5 level in 34 cases and at L5-S1 level in 16 cases. The median follow up was 15 months. RESULTS: Satisfactory fusion was obtained at all levels at a minimum one year follow – up. The fusion rate was 96% (24 patients) for the cage group and 80% (20 patients) for bone graft group however clinical improvement was 64% (16 patients) for those with bone graft group. CONCLUSION: A higher fusion rates and a better clinical outcome have been obtained by Instrumented PLIF with titanium cages that with bone graft. Inderbody fusion cages help to stabilize spainal segment primarily by distracting them as well as by allowing bone ingrowth and fusion. The procedure is safe and effective with 96% fusion rate and 76% overall Satisfactory rate. The use of cages help to distract the space between the vertebral bodies making the correction of the degree of spondylolisthesis easier. Long term follow up revealed better fusion rate and better realignment and less resorption with cages than with bone grafts. PMID

  6. Colorado School of Mines fusion gamma ray diagnostic project

    SciTech Connect

    Cecil, F.E.

    1992-02-14

    This report summarizes the 1991 calendar year activities of the fusion gamma ray diagnostics project in the Physics Department at the Colorado School of Mines. Considerable progress has been realized in the fusion gamma ray diagnostic project in the last year. Specifically we have achieved the two major goals of the project as outlined in last year's proposed work statement to the Office of Applied Plasma Physics in the DOE Division of Magnetic Fusion Energy. The two major goals were: (1) Solution of the severe interference problem encountered during the operation of the gamma ray spectrometer concurrent with high power levels of the neutral beam injectors (NBI) and the ICRH antenae. (2) Experimental determination of the absolute detection efficiency of the gamma ray spectrometer. This detection efficiency will allow the measured yields of the gamma rays to be converted to a total reaction rate. In addition to these two major accomplishments, we have continued, as permitted by the TFTR operating schedule, the observation of high energy gamma rays from the 3He(D,{gamma})5Li reaction during deuterium NBI heating of 3He plasmas.

  7. Fusion of Liposomes with Mitochondrial Inner Membranes

    NASA Astrophysics Data System (ADS)

    Schneider, Heinz; Lemasters, John J.; Hochli, Matthias; Hackenbrock, Charles R.

    1980-01-01

    A procedure is outlined for the fusion of mixed phospholipid liposomes (small unilamellar vesicles) with the mitochondrial inner membrane, which enriches the membrane lipid bilayer 30-700% in a controlled fashion. Fusion was initiated by manipulation of the pH of a mixture of freshly sonicated liposomes and the functional inner membrane/matrix fraction of rat liver mitochondria. During the pH fusion procedure, liposomes became closely apposed with and sequestered by the inner membranes as revealed by freeze-fracture electron microscopy. After the pH fusion procedure, a number of ultrastructural, compositional, and functional characteristics were found to be proportionally related: the membrane surface area increased; the lateral density distribution of intramembrane particles (integral proteins) in the plane of the membrane decreased whereas the particles remained random; the membrane became more buoyant; the ratio of membrane lipid phosphorus to total membrane protein increased; the ratio of membrane lipid phosphorus to heme a of cytochrome c oxidase increased; and the rate of electron transfer between some interacting membrane oxidoreduction proteins decreased. These data reveal that liposomal phospholipid was incorporated into the membrane bilayer (not simply adsorbed to the membrane surface) and that integral membrane proteins diffused freely into the laterally expanding bilayer. Furthermore, the data suggest that the rate of electron transfer may be limited by the rate of lateral diffusion of oxidoreduction components in the bilayer of the mitochondrial inner membrane.

  8. Reorganization of cytoplasmic structures during cell fusion.

    PubMed

    Zheng, Q A; Chang, D C

    1991-11-01

    In order to provide a better understanding of the dynamic process of cell fusion, we studied the reorganization of cytoplasmic structures in electro-fused CV-1 cells. Using fluorescence microscopy and double staining methods, we examined correlations between the structural patterns of the major cytoskeletal proteins (microtubules, actin and vimentin intermediate filaments) and the distribution of various organelles (endoplasmic reticulum, mitochondria and nuclei) at different stages of cell fusion. Our results suggest that microtubules appear to play a primary role in the process of cytoplasmic reorganization. At the early stage of cell fusion, microtubules were observed to infiltrate rapidly into the newly formed cytoplasmic bridges and establish a connection between the cytoskeletal networks of fusing cells. The reorganization of microtubules was found to be correlated with the redistribution of endoplasmic reticulum (ER), vimentin intermediate filaments, mitochondria, and the aggregation of nuclei. The F-actin system, on the other hand, appeared to be independent of the reorganization of the other cytoplasmic structures. The principal function of F-actin during cell fusion is probably to widen the cytoplasmic bridges by lamellipodial extension.

  9. A laser device for fusion of nasal mucosa

    NASA Astrophysics Data System (ADS)

    Sooklal, Valmiki; McClure, Jesse; Hooper, Luke; Larson, Michael

    2010-02-01

    A prototype device has been created to fuse septal tissue membranes as an alternative to sutures or staples through the controlled application of laser heating and pressure to induce protein denaturation and subsequent tissue fusion, through renaturation and intertwining, across the interface. Lasers have been used to close wounds in controlled laboratory tests over the last 15 years. Many encouraging results have been obtained; however, no commercial delivery systems are currently available. This is due primarily to two factors: requiring an inordinate amount of experience on the part of the operator, and attempting to achieve general applicability for multiple tissue systems. The present device overcomes these barriers as it is tailored for the particular application of septal laser fusion, namely for the coaptation of mucoperichondrial membranes. The important parameters involved in fusing biological tissues are identified. The development of the device followed from computational modeling based on Monte Carlo simulation of photon transport and on engineering firstprinciples. Experiments were designed and analyzed using orthogonal arrays, employing a subset of the relevant parameters, i.e., laser irradiance, dwell time and spot size, for a range of wavelengths. The in vitro fusion experiments employed 1cm by 1cm sections of equine nasal mucosa having a nominal thickness of 1mm.

  10. Inertial Confinement Fusion alpha-heating signatures in prompt gamma-ray measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Church, Jennifer; Herrmann, Hans; Cerjan, Charlie; Sayre, Daniel; Carpenter, Arthur; Liebman, Judy; Stoeffl, Wolfgang; Kim, Yongho

    2015-11-01

    Prompt gamma-rays measured at the National Ignition Facility (NIF) with the Gamma-ray Reaction History detector (GRH) supply vital diagnostic information, such as the peak burn time, burn width, and total neutron yield, from prompt DT-fusion gamma-ray emission during high convergence implosion experiments. Additionally, the stagnated cold shell density distribution may be inferred from the time-integrated, calibrated 12C (n,n' γ) signal, thus providing estimates of remaining ablator carbon areal density. Furthermore, simulations suggest that alpha heating signatures might be accessible using more highly resolved temporal gamma-ray emission. Correlation of these signatures with time-dependent neutron emission will constrain the implosion dynamics immediately prior to thermonuclear burn. Measurement of these gamma-ray signatures will be discussed along with updates on our work toward inferred total DT yield and 12C areal density. This work performed under the auspices of the U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07-NA27344, LLNL-ABS-670282.

  11. Nuclear diagnostics in support of inertial confinement fusion experiments (invited)

    SciTech Connect

    Moran, M.J.; Hall, J.

    1997-01-01

    As the yields of inertial confinement fusion (ICF) experiments increase to National Ignition Facility levels new diagnostic techniques for studying details of fusion burn behavior will become feasible. The new techniques will provide improved measurements of fusion burn temperature and history. Improved temperature measurements might be achieved with magnetic spectroscopy of fusion neutrons. High-bandwidth fusion reaction history will be measured with fusion-specific {gamma}-ray diagnostics. Additional energy-resolved {gamma}-ray diagnostics might be able to study a selection of specific behaviors during fusion burn. Present ICF yields greater that 10{sup 13} neutrons are sufficient to demonstrate the basic methods that underlie the new techniques. As ICF yields increase, the diagnostics designs can be adjusted accordingly in order to provide clear and specific data on fusion burn performance. {copyright} {ital 1997 American Institute of Physics.}

  12. Neutron measurements in search of cold fusion

    SciTech Connect

    Anderson, R.E.; Goulding, C.A.; Johnson, M.W.; Butterfield, K.B.; Gottesfeld, S.; Baker, D.A.; Springer, T.E.; Garzon, F.H.; Bolton, R.D.; Leonard, E.M.; Chancellor, T.

    1990-01-01

    We have conducted a research for neutron emission from cold fusion systems of the electrochemical type and, to a lesser extent, the high-pressure gas cell type. Using a high-efficiency well counter and an NE 213 scintillator, the experiments were conducted on the earth's surface and in a shielded cave approximately 50 ft underground. After approximately 6500 h of counting time, we have obtained no evidence for cold fusion processes leading to neutron production. However, we have observed all three types of neutron data that have been presented as evidence for cold fusion: large positive fluctuations in the neutron counting rate, weak peaks near 2.5 MeV in the neutron energy spectrum, and bursts of up to 145 neutrons in 500-{mu}s intervals. The data were obtained under circumstances that clearly show our results to be data encountered as a part of naturally occurring neutron background, which is due primarily to cosmic rays. Thus, observing these types of data does not, of itself, provide evidence for the existence of cold fusion processes. Artifacts in the data that were due to counter misbehavior were also to lead to long-term neutron bursts'' whose time duration varied from several hours to several days. We conclude that any experiments which attempt to observe neutron emission must include strong steps to ensure that the experiments deal adequately with both cosmic-ray processes and counter misbehavior. 13 refs., 14 figs.

  13. Fudge: a high-bandwidth fusion diagnostic of the NIF

    SciTech Connect

    Moran, M. J., LLNL

    1998-06-02

    Diagnostics for the National Ignition Facility (NIF)/Inertial Confinement Fusion (ICF) program must include good characterization of the fusion source. Ideally, diagnostics would measure the spatially-resolved history of the fusion reaction rate and temperature. Existing diagnostics can satisfy this goal only partially. One class of new techniques that could play a major role in high-yield diagnostics is measurements based on fusion {gamma} rays. The Fusion Diagnostic Gamma Experiment (FUDGE) can be used to perform energy-resolved measurements of (D,T) fusion reaction rates This diagnostic is based on the 16 7-MeV {gamma} rays that are produced by (D,T) fusion. The {gamma} rays are free of spectral dispersion and can be detected with a high bandwidth Cherenkov detector. A simple magnetic monochromator selects signals from the 16 7-MeV {gamma} rays and reduces background signals from non-fusion {gamma} rays.

  14. Statistical fusion of GPR and EMI data

    NASA Astrophysics Data System (ADS)

    Weisenseel, Robert A.; Karl, William C.; Castanon, David A.; Miller, Eric L.; Rappaport, Carey M.; DiMarzio, Charles A.

    1999-08-01

    In this paper, we develop a statistical detection system exploiting sensor fusion for the detection of plastic A/P miens. We design and test the system using data from Monte Carlo electromagnetic induction (EMI) and ground penetrating radar (GPR) simulations. We include the effects of both random soil surface variability and sensor noise. In spite of the presence of a rough surface, we can obtain good result fusing EMI and GPR data using a statistical approach in a simple clutter environment. More generally, we develop a framework for simulation and testing of sensor configurations and sensor fusion approaches for landmine and unexploded ordinance detection systems. Exploiting accurate electromagnetic simulation, we develop a controlled environment for testing sensor fusion concepts, from varied sensor arrangements to detection algorithms, In this environment, we can examine the effect of changing mine structure, soil parameters, and sensor geometry on the sensor fusion problem. We can then generalize these results to produce mine detectors robust to real-world variations.

  15. Review of the Fusion Theory and Computing Program. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect

    Antonsen, Thomas M.; Berry, Lee A.; Brown, Michael R.; Dahlburg, Jill P.; Davidson, Ronald C.; Greenwald, Martin; Hegna, Chris C.; McCurdy, William; Newman, David E.; Pellegrini, Claudio; Phillips, Cynthia K.; Post, Douglass E.; Rosenbluth, Marshall N.; Sheffield, John; Simonen, Thomas C.; Van Dam, James

    2001-08-01

    At the November 14-15, 2000, meeting of the Fusion Energy Sciences Advisory Committee, a Panel was set up to address questions about the Theory and Computing program, posed in a charge from the Office of Fusion Energy Sciences (see Appendix A). This area was of theory and computing/simulations had been considered in the FESAC Knoxville meeting of 1999 and in the deliberations of the Integrated Program Planning Activity (IPPA) in 2000. A National Research Council committee provided a detailed review of the scientific quality of the fusion energy sciences program, including theory and computing, in 2000.

  16. Neutronic analysis of a fusion hybrid reactor

    SciTech Connect

    Kammash, T.

    2012-07-01

    In a PHYSOR 2010 paper(1) we introduced a fusion hybrid reactor whose fusion component is the gasdynamic mirror (GDM), and whose blanket was made of thorium - 232. The thrust of that study was to demonstrate the performance of such a reactor by establishing the breeding of uranium - 233 in the blanket, and the burning thereof to produce power. In that analysis, we utilized the diffusion equation for one-energy neutron group, namely, those produced by the fusion reactions, to establish the power distribution and density in the system. Those results should be viewed as a first approximation since the high energy neutrons are not effective in inducing fission, but contribute primarily to the production of actinides. In the presence of a coolant, however, such as water, these neutrons tend to thermalize rather quickly, hence a better assessment of the reactor performance would require at least a two group analysis, namely the fast and thermal groups. We follow that approach and write an approximate set of equations for the fluxes of these groups. From these relations we deduce the all-important quantity, k{sub eff}, which we utilize to compute the multiplication factor, and subsequently, the power density in the reactor. We show that k{sub eff} can be made to have a value of 0.99, thus indicating that 100 thermal neutrons are generated per fusion neutron, while allowing the system to function as 'subcritical.' Moreover, we show that such a hybrid reactor can generate hundreds of megawatts of thermal power per cm of length depending on the flux of the fusion neutrons impinging on the blanket. (authors)

  17. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    SciTech Connect

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due

  18. Prospects for fusion applications of reversed-field pinches

    NASA Astrophysics Data System (ADS)

    Bathke, C. G.; Krakowski, R. A.; Hagenson, R. L.

    1985-11-01

    The applicability of the Reversed-Field Pinch (RFP) as a source of fusion neutrons for use in developing key fusion nuclear technologies is examined. This Fusion Test Facility (FTF) would emphasize high neutron wall loading, small plasma volume, low fusion and driver powers, and steady-state operation. Both parametric tradeoffs based on present-day physics understanding and a conceptual design based on an approx. 1-MW/m (neutron) driven operation are reported.

  19. Massachusetts Institute of Technology, Plasma Fusion Center, Technical Research Programs

    SciTech Connect

    Davidson, Ronald C.

    1980-08-01

    A review is given of the technical programs carried out by the Plasma Fusion Center. The major divisions of work areas are applied plasma research, confinement experiments, fusion technology and engineering, and fusion systems. Some objectives and results of each program are described. (MOW)

  20. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  1. Seeking the Limits of Low-Temperature Nuclear Fusion: Sticking in Muon-Catalyzed Fusion, and Piezonuclear Fusion in Deuterium/condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    Studies seeking an upper limit of two types of low temperature nuclear fusion is presented. The upper limit for muon catalyzed fusion is generally considered to be the number of fusions per muon obtainable. The limiting factor has been found to be how often the muon remains bound to the alpha produced by the fusion, known as the "sticking fraction." Experiments directly measuring the sticking and determining the sticking using high tritium fractions are presented. In deuterium/condensed matter systems the question is nearly whether nuclear fusion proceeds at all. Experiments where neutrons around deuterided titanium and palladium are measured are presented.

  2. Development of divertor plate with CFCs bonded onto DSCu cooling tube for fusion reactor application

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Suzuki, T.; Araki, M.; Nakamura, K.; Akiba, M.

    1998-10-01

    This paper presents the high heat flux experiment of divertor mock-ups with CFC-Cu duplex structure. A plasma-facing component (PFC), which is served as a protection wall against heat and particle loads from fusion plasma, is one of the critical components of next fusion devices such as ITER. A divertor plate which is one of the PFCs must be capable of withstanding cyclic heat load of 5-20 MW/m 2 in ITER. To investigate the thermal fatigue behavior, a thermal cycling experiment was conducted in Particle Beam Engineering Facility. As a result, the divertor mock-up with a dispersion strengthened copper cooling tube could withstand a heat flux of 20 MW/m 2 for 1000 cycles. On the other hand, the mock-up with an oxygen-free-high conductivity copper cooling tube showed a water leakage at about 400 cycles due to thermal fatigue cracking.

  3. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusion propulsion applications

    SciTech Connect

    Orth, C.D.; Klein, G.; Sercel, J.; Hoffman, N.; Murray, K.; Chang-Diaz, F.

    1987-10-02

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  4. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  5. Development of advanced low-temperature heat transfer fluids for district heating and cooling

    SciTech Connect

    Not Available

    1991-09-30

    The feasibility of adding phase change materials (PCMs) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMs, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literaturevalues. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. When using PCMs in district cooling systems, clogging of frozen PCM particles isone of the major problems to be overcome. In the present project it is proposed to minimize or prevent clogging by the addition of an emulsifier. Effects of the emulsifier on the mixture of water and hexadecane(a PCM) were studied. As the amount of the emulsifier was increased, the size of the solid PCM particles became smaller. When the size of the particles was small enough, they did not stick together or stick to the cold surface of a heat exchanger. The amount of emulsifier to produce this condition was determined.

  6. Effect of particle pinch on the fusion performance and profile features of an international thermonuclear experimental reactor-like fusion reactor

    NASA Astrophysics Data System (ADS)

    Wang, Shijia; Wang, Shaojie

    2015-04-01

    The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITER inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ˜30 % , with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by 60 % , with the central pressure also significantly raised.

  7. Effect of particle pinch on the fusion performance and profile features of an international thermonuclear experimental reactor-like fusion reactor

    SciTech Connect

    Wang, Shijia Wang, Shaojie

    2015-04-15

    The evolution of the plasma temperature and density in an international thermonuclear experimental reactor (ITER)-like fusion device has been studied by numerically solving the energy transport equation coupled with the particle transport equation. The effect of particle pinch, which depends on the magnetic curvature and the safety factor, has been taken into account. The plasma is primarily heated by the alpha particles which are produced by the deuterium-tritium fusion reactions. A semi-empirical method, which adopts the ITERH-98P(y,2) scaling law, has been used to evaluate the transport coefficients. The fusion performances (the fusion energy gain factor, Q) similar to the ITER inductive scenario and non-inductive scenario (with reversed magnetic shear) are obtained. It is shown that the particle pinch has significant effects on the fusion performance and profiles of a fusion reactor. When the volume-averaged density is fixed, particle pinch can lower the pedestal density by ∼30%, with the Q value and the central pressure almost unchanged. When the particle source or the pedestal density is fixed, the particle pinch can significantly enhance the Q value by  60%, with the central pressure also significantly raised.

  8. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    SciTech Connect

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

    2011-07-31

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.

  9. Matched Comparison of Fusion Rates between Hydroxyapatite Demineralized Bone Matrix and Autograft in Lumbar Interbody Fusion

    PubMed Central

    Kim, Dae Hwan; Lee, Nam; Shin, Dong Ah; Yi, Seong; Kim, Keung Nyun

    2016-01-01

    Objective To compare the fusion rate of a hydroxyapatite demineralized bone matrix (DBM) with post-laminectomy acquired autograft in lumbar interbody fusion surgery and to evaluate the correlation between fusion rate and clinical outcome. Methods From January 2013 to April 2014, 98 patients underwent lumbar interbody fusion surgery with hydroxyapatite DBM (HA-DBM group) in our institute. Of those patients, 65 received complete CT scans for 12 months postoperatively in order to evaluate fusion status. For comparison with autograft, we selected another 65 patients who underwent lumbar interbody fusion surgery with post-laminectomy acquired autograft (Autograft group) during the same period. Both fusion material groups were matched in terms of age, sex, body mass index (BMI), and bone mineral density (BMD). To evaluate the clinical outcomes, we analyzed the results of visual analogue scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey (SF-36). Results We reviewed the CT scans of 149 fusion levels in 130 patients (HA-DBM group, 75 levels/65 patients; Autograft group, 74 levels/65 patients). Age, sex, BMI, and BMD were not significantly different between the groups (p=0.528, p=0.848, p=0.527, and p=0.610, respectively). The HA-DBM group showed 39 of 75 fused levels (52%), and the Autograft group showed 46 of 74 fused levels (62.2%). This difference was not statistically significant (p=0.21). In the HA-DBM group, older age and low BMD were significantly associated with non-fusion (61.24 vs. 66.68, p=0.027; -1.63 vs. -2.29, p=0.015, respectively). VAS and ODI showed significant improvement after surgery when fusion was successfully achieved in both groups (p=0.004, p=0.002, HA-DBM group; p=0.012, p=0.03, Autograft group). Conclusion The fusion rates of the hydroxyapatite DBM and Autograft groups were not significantly different. In addition, clinical outcomes were similar between the groups. However, older age and low BMD are risk factors that might

  10. Confinement and heating of a deuterium-tritium plasma

    SciTech Connect

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Ashcroft, D.; Barnes, C.W.; Barnes, G.; Batha, S.; Bell, M.G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N.L.; Budny, R.; Bush, C.E.; Camp, R.; Caorlin, M.; Cauffman, S.; Chang, Z.; Cheng, C.Z.; Collins, J.; Coward, G.; Darrow, D.S.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Fisher, R.; Fonck, R.J.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Gentile, C.; Gorelenkov, N.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Herrmann, H.W.; Hill, K.W.; Hosea, J.; Hsuan, H.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Kamperschroer, J.; Kugel, H.; Lam, N.T.; LaMarche, P.H.; Loughlin, M.J.; LeBlanc, B.; Leonard, M.; Levinton, F.M.; Machuzak, J.; Mansfield, D.K.; Martin, A.; Mazzucato, E.; Majeski, R.; Marmar, E.; McChesney, J.; McCormack, B.; McCune, D.C.; McGuire, K.M.; McKee, G.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Muelle

    1994-05-30

    The Tomamak Fusion Test reactor has performed initial high-power experiments with the plasma fueled with nominally equal densities of deuterium and tritium. Compared to pure deuterium plasmas, the energy stored in the electron and ions increased by [similar to]20%. These increases indicate improvements in confinement associated with the use of tritium and possibly heating of electrons by [alpha] particles created by the D-T fusion reactions.

  11. Antigen-Mediated Fusion of Specifically Sensitized Rabbit Alveolar Macrophages

    PubMed Central

    Galindo, B.

    1972-01-01

    Rabbits sensitized intravenously with heat-killed Mycobacterium tuberculosis (strain H37Ra) suspended in mineral oil developed a strong pulmonary granulomatous response which reached its peak about 3 to 4 weeks after injection. Alveolar cells (4 × 106 cells/ml of tissue culture medium 199) procured 6 weeks after sensitization showed extensive development of multinucleated giant cells after 12 hr of incubation in tissue culture flasks containing heat-killed H37Ra (5 μg/ml). Giant cells measured 80 μm to 2.5 mm in length and contained between 30 and 700 nuclei. In contrast, no giant cells were observed when similar samples of the same cell populations were incubated in flasks containing: (i) no mycobacteria; (ii) heat-killed Escherichia coli; (iii) heat-killed Bacillus subtilis; (iv) latex particles; (v) ovalbumin; or (vi) phytohemagglutinin. The addition of immune (anti-H37Ra) sera potentiated the phenomenon of giant cell formation. In addition, supernatant fluids obtained from sensitive alveolar cells incubated with H37Ra were capable of inducing giant cell formation when incubated with nonsensitized alveolar cells. The results suggest that fusion of alveolar macrophages is mediated by an immunological mechanism. Images PMID:4629127

  12. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report

    SciTech Connect

    Cho, Y.I.; Lorsch, H.G.

    1991-03-31

    The feasibility of adding phase change materials (PCMS) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMS, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literature values. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. For 10% and 25% PCM/water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent above the value for water, respectively. Within the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  13. Selection of a toroidal fusion reactor concept for a magnetic fusion production reactor

    NASA Astrophysics Data System (ADS)

    Jassby, D. L.

    1987-03-01

    The basic fusion driver requirements of a toroidal materials production reactor are considered. The tokamak, stellarator, bumpy torus, and reversed-field pinch are compared with regard to their demonstrated performance, probable near-term development, and potential advantages and disadvantages if used as reactors for materials production. Of the candidate fusion drivers, the tokamak is determined to be the most viable for a near-term production reactor. Four tokamak reactor concepts (TORFA/FED-R, AFTR/ZEPHYR, Riggatron, and Superconducting Coil) of approximately 500-MW fusion power are compared with regard to their demands on plasma performance, required fusion technology development, and blanket configuration characteristics. Because of its relatively moderate requirements on fusion plasma physics and technology development, as well as its superior configuration of production blankets, the TORFA/FED-R type of reactor operating with a fusion power gain of about 3 is found to be the most suitable tokamak candidate for implementation as a near-term production reactor.

  14. Exocytotic fusion pores are composed of both lipids and proteins

    PubMed Central

    Bao, Huan; Goldschen-Ohm, Marcel; Jeggle, Pia; Chanda, Baron; Edwardson, J Michael; Chapman, Edwin R

    2016-01-01

    During exocytosis, fusion pores form the first aqueous connection that allows escape of neurotransmitters and hormones from secretory vesicles. Although it is well established that SNARE proteins catalyze fusion, the structure and composition of fusion pores remain unknown. Here, we exploited the rigid framework and defined size of nanodiscs to interrogate the properties of reconstituted fusion pores, using the neurotransmitter glutamate as a content-mixing marker. Efficient Ca2+-stimulated bilayer fusion, and glutamate release, occurred with approximately two molecules of mouse synaptobrevin 2 reconstituted into ~6-nm nanodiscs. The transmembrane domains of SNARE proteins assumed distinct roles in lipid mixing versus content release and were exposed to polar solvent during fusion. Additionally, tryptophan substitutions at specific positions in these transmembrane domains decreased glutamate flux. Together, these findings indicate that the fusion pore is a hybrid structure composed of both lipids and proteins. PMID:26656855

  15. Evaluation of taste solutions by sensor fusion

    SciTech Connect

    Kojima, Yohichiro; Sato, Eriko; Atobe, Masahiko; Nakashima, Miki; Kato, Yukihisa; Nonoue, Koichi; Yamano, Yoshimasa

    2009-05-23

    In our previous studies, properties of taste solutions were discriminated based on sound velocity and amplitude of ultrasonic waves propagating through the solutions. However, to make this method applicable to beverages which contain many taste substances, further studies are required. In this study, the waveform of an ultrasonic wave with frequency of approximately 5 MHz propagating through a solution was measured and subjected to frequency analysis. Further, taste sensors require various techniques of sensor fusion to effectively obtain chemical and physical parameter of taste solutions. A sensor fusion method of ultrasonic wave sensor and various sensors, such as the surface plasmon resonance (SPR) sensor, to estimate tastes were proposed and examined in this report. As a result, differences among pure water and two basic taste solutions were clearly observed as differences in their properties. Furthermore, a self-organizing neural network was applied to obtained data which were used to clarify the differences among solutions.

  16. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    SciTech Connect

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang; Liu, Yan-Hong; Li, Yan; Wang, Jia-Ye; Hattori, Toshio; Ling, Hong; Zhang, Feng-Min

    2010-01-22

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  17. Modelling third harmonic ion cyclotron acceleration of deuterium beams for JET fusion product studies experiments

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Johnson, T.; Dumont, R.; Eriksson, J.; Eriksson, L.-G.; Giacomelli, L.; Girardo, J.-B.; Hellsten, T.; Khilkevitch, E.; Kiptily, V. G.; Koskela, T.; Mantsinen, M.; Nocente, M.; Salewski, M.; Sharapov, S. E.; Shevelev, A. E.; Contributors, JET

    2016-11-01

    Recent JET experiments have been dedicated to the studies of fusion reactions between deuterium (D) and Helium-3 (3He) ions using neutral beam injection (NBI) in synergy with third harmonic ion cyclotron radio-frequency heating (ICRH) of the beam. This scenario generates a fast ion deuterium tail enhancing DD and D3He fusion reactions. Modelling and measuring the fast deuterium tail accurately is essential for quantifying the fusion products. This paper presents the modelling of the D distribution function resulting from the NBI+ICRF heating scheme, reinforced by a comparison with dedicated JET fast ion diagnostics, showing an overall good agreement. Finally, a sawtooth activity for these experiments has been observed and interpreted using SPOT/RFOF simulations in the framework of Porcelli’s theoretical model, where NBI+ICRH accelerated ions are found to have a strong stabilizing effect, leading to monster sawteeth.

  18. Regulation of cell-cell fusion by nanotopography

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Jagannath; Augelli, Michael J.; Cheung, Bettina; Kinser, Emily R.; Cleary, Barnett; Kumar, Priyanka; Wang, Renhao; Sawyer, Andrew J.; Li, Rui; Schwarz, Udo D.; Schroers, Jan; Kyriakides, Themis R.

    2016-09-01

    Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions.

  19. Regulation of cell-cell fusion by nanotopography

    PubMed Central

    Padmanabhan, Jagannath; Augelli, Michael J.; Cheung, Bettina; Kinser, Emily R.; Cleary, Barnett; Kumar, Priyanka; Wang, Renhao; Sawyer, Andrew J.; Li, Rui; Schwarz, Udo D.; Schroers, Jan; Kyriakides, Themis R.

    2016-01-01

    Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions. PMID:27615159

  20. Regulation of cell-cell fusion by nanotopography.

    PubMed

    Padmanabhan, Jagannath; Augelli, Michael J; Cheung, Bettina; Kinser, Emily R; Cleary, Barnett; Kumar, Priyanka; Wang, Renhao; Sawyer, Andrew J; Li, Rui; Schwarz, Udo D; Schroers, Jan; Kyriakides, Themis R

    2016-01-01

    Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions. PMID:27615159

  1. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; and others

    2015-05-15

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/−0.06) MG · cm, a ∼ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  2. Effects of magnetization on fusion product trapping and secondary neutron spectra

    SciTech Connect

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; Harding, Eric; Jennings, Christopher A.; Desjarlais, M. P.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Geissel, Matthias; Harvey-Thompson, Adam James; Porter, John L.; Rochau, Gregory A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Herrmann, Mark

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  3. Effects of magnetization on fusion product trapping and secondary neutron spectra

    DOE PAGES

    Knapp, Patrick F.; Schmit, Paul F.; Hansen, Stephanie B.; Gomez, Matthew R.; Hahn, Kelly D.; Sinars, Daniel Brian; Peterson, Kyle J.; Slutz, Stephen A.; Sefkow, Adam B.; Awe, Thomas James; et al

    2015-05-14

    In magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, we found that the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used tomore » infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner InertialFusion experiments conducted on the Z machine at Sandia National Laboratories. Furthermore, we show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG · cm, a ~ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. Lastly, this is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.« less

  4. Effects of magnetization on fusion product trapping and secondary neutron spectraa)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Schmit, P. F.; Hansen, S. B.; Gomez, M. R.; Hahn, K. D.; Sinars, D. B.; Peterson, K. J.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Harding, E.; Jennings, C. A.; Desjarlais, M. P.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Geissel, M.; Harvey-Thompson, A. J.; Porter, J. L.; Rochau, G. A.; Rovang, D. C.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Herrmann, M. C.

    2015-05-01

    By magnetizing the fusion fuel in inertial confinement fusion (ICF) systems, the required stagnation pressure and density can be relaxed dramatically. This happens because the magnetic field insulates the hot fuel from the cold pusher and traps the charged fusion burn products. This trapping allows the burn products to deposit their energy in the fuel, facilitating plasma self-heating. Here, we report on a comprehensive theory of this trapping in a cylindrical DD plasma magnetized with a purely axial magnetic field. Using this theory, we are able to show that the secondary fusion reactions can be used to infer the magnetic field-radius product, BR, during fusion burn. This parameter, not ρR, is the primary confinement parameter in magnetized ICF. Using this method, we analyze data from recent Magnetized Liner Inertial Fusion experiments conducted on the Z machine at Sandia National Laboratories. We show that in these experiments BR ≈ 0.34(+0.14/-0.06) MG . cm, a ˜ 14× increase in BR from the initial value, and confirming that the DD-fusion tritons are magnetized at stagnation. This is the first experimental verification of charged burn product magnetization facilitated by compression of an initial seed magnetic flux.

  5. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    SciTech Connect

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; Sinars, Daniel B.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; Schmit, Paul F.; Jennings, Christopher A.; Awe, Thomas James; Geissel, Matthias; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Harvey-Thompson, Adam James; Herrmann, Mark; Hess, M. H.; Johns, Owen; Lamppa, Derek C.; Martin, Matthew R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Robertson, Grafton Kincannon; Rochau, Gregory A.; Ruiz, Carlos L.; Savage, Mark E.; Smith, Ian C.; Stygar, William A.; Vesey, Roger A.

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

  6. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion

    DOE PAGES

    Gomez, Matthew R.; Slutz, Stephen A..; Sefkow, Adam B.; Sinars, Daniel B.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; Schmit, Paul F.; Jennings, Christopher A.; et al

    2014-10-06

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti, and produces up to 2e12 thermonuclearmore » DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.« less

  7. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  8. A free-electron laser for cyclotron resonant heating in magnetic fusion reactors

    NASA Astrophysics Data System (ADS)

    Freund, H. P.; Read, M. E.; Jackson, R. H.; Pershing, D. E.; Taccetti, J. M.

    1995-05-01

    A G-band free-electron laser designed for plasma heating is described using a coaxial hybrid iron (CHI) wiggler formed by insertion into a solenoid of a central rod and an outer ring of alternating ferrite and nonferrite spacers positioned so that the central ferrite (nonferrite) spacers are opposite the outer nonferrite (ferrite) spacers. The CHI wiggler provides for enhanced beam focusing and the ability to handle intense beams and high-power continuous wave radiation. Simulations indicate that a power/efficiency of 3.5 MW/13% are possible using a 690 kV/40 A beam. No beam loss was found in simulation.

  9. Future engineering needs of mirror fusion reactors

    SciTech Connect

    Thomassen, K.I.

    1982-07-30

    Fusion research has matured during the last decade and significant insight into the future program needs has emerged. While some will properly note that the crystal ball is cloudy, it is equally important to note that the shape and outline of our course is discernable. In this short summary paper, I will draw upon the National Mirror Program Plan for mirror projects and on available design studies of these projects to put the specific needs of the mirror program in perspective.

  10. Intraoperative identification of adrenal-renal fusion

    PubMed Central

    Boll, Griffin; Rattan, Rishi; Yilmaz, Osman; Tarnoff, Michael E

    2015-01-01

    Adrenal - renal fusion is a rare entity defined as incomplete encapsulation of the adrenal gland and kidney with histologically adjacent functional tissue. This report describes the first published intraoperative identification of this anomaly during laparoscopic adrenalectomy. The patient was a 59-year-old man with chronic hypertension refractory to multiple antihypertensives found to be caused by a right-sided aldosterone-producing adrenal adenoma in the setting of bilateral adrenal hyperplasia. During laparoscopic adrenalectomy, the normal avascular plane between the kidney and adrenal gland was absent. Pathologic evaluation confirmed adrenal - renal fusion without adrenal heterotopia. Identified intraoperatively, this may be misdiagnosed as invasive malignancy, and thus awareness of this anomaly may help prevent unnecessarily morbid resection. PMID:26195881

  11. A quasi-optical electron cyclotron maser for fusion reactor heating

    SciTech Connect

    Morse, E.C.

    1990-01-01

    High power microwave and millimeter sources, such as the quasi-optical electron cyclotron maser (QOECM) are important in fusion research as well as in high-energy physics and in other applications. The interaction between the electromagnetic modes of a Fabry-Perot resonator and an electron beam gyrating through a magnetic field has been studied for both the cases of beams parallel and perpendicular to the resonator. The parallel case was theoretically first studied by Kurin for forward and backward wave interaction, and experimentally by Komlev and Kurin. Kreischer and Temkin reviewed the general case of the linear small signal interaction parallel and perpendicular to the resonator. Sprangle, et al discussed the perpendicular case in a self-consistent linear and nonlinear theoretical study using the Gaussian transverse profile of an open resonator with a single longitudinal mode. Experimental verification of the devices operation was first mentioned in work at the Naval Research Laboratory. Theoretical studies using a time-dependent analysis of a large number of longitudinal modes with similar transverse mode profiles have demonstrated that single longitudinal-mode operation can be achieved at equilibrium and that performance can be enhanced by prebunching the electron beam and tapering the magnetic field. The use of output coupling apertures in the mirrors has been studied theoretically in relation to the structure of the modes for both confocal and nonconfocal resonators by Permnoud; use of an open resonator with stepped mirrors has been studied in order to choose a particular longitudinal mode. Studies at the Naval Research Laboratory mirror used configurations that diffraction couple the energy from around the mirror edges, so that the transverse profile inside the resonator can be selective to the fundamental mode.

  12. A quasi-optical electron cyclotron maser for fusion reactor heating. Final report

    SciTech Connect

    Morse, E.C.

    1990-12-31

    High power microwave and millimeter sources, such as the quasi-optical electron cyclotron maser (QOECM) are important in fusion research as well as in high-energy physics and in other applications. The interaction between the electromagnetic modes of a Fabry-Perot resonator and an electron beam gyrating through a magnetic field has been studied for both the cases of beams parallel and perpendicular to the resonator. The parallel case was theoretically first studied by Kurin for forward and backward wave interaction, and experimentally by Komlev and Kurin. Kreischer and Temkin reviewed the general case of the linear small signal interaction parallel and perpendicular to the resonator. Sprangle, et al discussed the perpendicular case in a self-consistent linear and nonlinear theoretical study using the Gaussian transverse profile of an open resonator with a single longitudinal mode. Experimental verification of the devices operation was first mentioned in work at the Naval Research Laboratory. Theoretical studies using a time-dependent analysis of a large number of longitudinal modes with similar transverse mode profiles have demonstrated that single longitudinal-mode operation can be achieved at equilibrium and that performance can be enhanced by prebunching the electron beam and tapering the magnetic field. The use of output coupling apertures in the mirrors has been studied theoretically in relation to the structure of the modes for both confocal and nonconfocal resonators by Permnoud; use of an open resonator with stepped mirrors has been studied in order to choose a particular longitudinal mode. Studies at the Naval Research Laboratory mirror used configurations that diffraction couple the energy from around the mirror edges, so that the transverse profile inside the resonator can be selective to the fundamental mode.

  13. Experimental Demonstration of Fusion-Relevant Conditions in Magnetized Liner Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Sinars, D. B.; Hahn, K. D.; Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.

    2014-10-01

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 T axial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te≈Ti, and produces up to 2×1012 thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. Greater than 1010 secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2.

  14. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion.

    PubMed

    Gomez, M R; Slutz, S A; Sefkow, A B; Sinars, D B; Hahn, K D; Hansen, S B; Harding, E C; Knapp, P F; Schmit, P F; Jennings, C A; Awe, T J; Geissel, M; Rovang, D C; Chandler, G A; Cooper, G W; Cuneo, M E; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Peterson, K J; Porter, J L; Robertson, G K; Rochau, G A; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2). PMID:25375714

  15. Choice of coils for a fusion reactor

    PubMed Central

    Alexander, Romeo; Garabedian, Paul R.

    2007-01-01

    In a fusion reactor a hot plasma of deuterium and tritium is confined by a strong magnetic field to produce helium ions and release energetic neutrons. The 3D geometry of a stellarator provides configurations for such a device that reduce net toroidal current that might lead to disruptions. We construct smooth coils generating an external magnetic field designed to prevent the plasma from deteriorating. PMID:17640879

  16. On the reversibility of mandibular symphyseal fusion.

    PubMed

    Scott, Jeremiah E; Lack, Justin B; Ravosa, Matthew J

    2012-09-01

    Experimental and comparative studies suggest that a major determinant of increased ossification of the mandibular symphysis is elevated masticatory stress related to a mechanically challenging diet. However, the morphology of this joint tracks variation in dietary properties in only some mammalian clades. Extant anthropoid primates are a notable exception: synostosis is ubiquitous in this speciose group, despite its great age and diverse array of feeding adaptations. One possible explanation for this pattern is that, once synostosis evolves, reversion to a lesser degree of fusion is unlikely or even constrained. If correct, this has important implications for functional and phylogenetic analyses of the mammalian feeding apparatus. To test this hypothesis, we generated a molecular tree for 76 vespertilionoid and noctilionoid chiropterans using Bayesian phylogenetic analysis and examined character evolution using parsimony and likelihood ancestral-state reconstructions along with the binary state speciation and extinction (BiSSE) model. Results indicate that reversals have occurred within Vespertilionoidea. In contrast, noctilionoids exhibit an anthropoid-like pattern, which suggests that more detailed comparisons of the functional and developmental bases for fusion in these bat clades may provide insight into why fusion is maintained in some lineages but not in others. Potential functional and developmental explanations for the lack of reversal are discussed. PMID:22946814

  17. Method of blast heating

    SciTech Connect

    Voges, B.

    1984-06-05

    A method of and a device for blast heating is described, employing separate indirect heat exchangers for combustion air and fuel gas fed to a regenerator and flue gases discharged from the regenerator. The indirect heat exchangers share heat-transfer liquid recirculating in a circuit in which an auxiliary heat exchanger is connected. In the latter exchanger, the temperature of transfer liquid is increased by combustion of partial streams of combustion air and fuel gas branched off downstream of the indirect heat exchangers. The temperature is increased to such a value which preheats the fuel gas to a temperature at which a substitution of fuel gas of a low calorific value, such as waste gas from a blast furnace, for fuel gas of high calorific value, is made possible.

  18. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis.

    PubMed

    Lu, Mengxiao; Gantz, Donald L; Herscovitz, Haya; Gursky, Olga

    2012-10-01

    Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.

  19. Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly

    PubMed Central

    Dutta, Somnath; Yan, Lianying; Feng, YanRu; Wang, Lin-Fa; Skiniotis, Georgios; Lee, Benhur; Zhou, Z. Hong; Broder, Christopher C.; Aguilar, Hector C.; Nikolov, Dimitar B.

    2015-01-01

    Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein. PMID:26646856

  20. Bayesian fusion of hyperspectral astronomical images

    NASA Astrophysics Data System (ADS)

    Jalobeanu, André; Petremand, Matthieu; Collet, Christophe

    2011-03-01

    The new integral-field spectrograph MUSE will acquire hyperspectral images of the deep sky, requiring huge amounts of raw data to be processed, posing a challenge to modern algorithms and technologies. In order to achieve the required sensitivity to observe very faint objects, many observations need to be reconstructed and co-added into a single data cube. In this paper, we propose a new fusion method to combine all raw observations while removing most of the instrumental and observational artifacts such as blur or cosmic rays. Thus, the results can be accurately and consistently analyzed by astronomers. We use a Bayesian framework allowing for optimal data fusion and uncertainty estimation. The knowledge of the instrument allows to write the direct problem (data acquisition on the detector matrix) and then to invert it through Bayesian inference, assuming a smoothness prior for the data cube to be reconstructed. Compared to existing methods, the originality of the new technique is in the propagation of errors throughout the fusion pipeline and the ability to deal with various acquisition parameters for each input image. For this paper, we focus on small-size, simulated astronomical observations with varying parameters to validate the image formation model, the reconstruction algorithm and the predicted uncertainties.

  1. Impact properties of 500-kg heat of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Gazda, J.

    1995-04-01

    Following previous reports of excellent properties of a laboratory heat of V-4Cr-4Ti, the alloy identified as the primary vanadium-based candidate for application as fusion reactor structural components, a large industrial-scale (500-kg) heat of the alloy was fabricated successfully. The objective of this work is to determine the impact properties of the industrial-scale heat.

  2. Method for fusion bonding thermoplastic composites

    SciTech Connect

    Benatar, A.; Gutowski, T.G.

    1986-10-01

    Bonding of thermoplastic composites is a critical step in the manufacture of aerospace structures. The objective of this project is to investigate different methods for fusion bonding thermoplastic composites quickly, with a good bond strength, and without warping and deconsolidation. This is best accomplished by heating and melting the thermoplastic on the bond surface only, and then pressing the parts together for a fusion bond. For this purpose, a variety of surface heating techniques were examined for bonding of PEEK and J Polymer composites. These included: resistance heating, infrared heating, induction heating, dielectric/microwave heating, and ultrasonic welding. 20 references, 10 figures, 1 table.

  3. N-learners problem: Fusion of concepts

    SciTech Connect

    Rao, N.S.V.; Oblow, E.M.; Glover, C.W.; liepins, G.E. . Dept. of Computer Science)

    1991-09-01

    We are given N learners each capable of learning concepts (subsets) of a domain set X in the sense of Valiant, i.e. for any c {element of} C {improper subset} 2{sup X}, given a finite set of examples of the form < x{sub 1}, M{sub c}(x{sub 1}) >; < x{sub 2}, M{sub c}(x{sub 2}) >;...;< x{sub 1}, M{sub c}(x{sub 1}) > generated according to an unknown probability distribution P{sub X} on X, each learner produces a close approximation to c with a high probability. We are interested in combining the N learners using a single fuser or consolidator. We consider the paradigm of passive fusion, where each learner is first trained with the sample without the influence of the consolidator. The composite system is constituted by the fuser and the individual learners. We consider two cases: open and closed fusion. In open fusion the fuser is given the sample and the hypotheses of the individual learners; we show that the fusion rule can be obtained by formulating this problem as another learning problem. For the case all individual learners are trained with the same sample, we show sufficiency conditions that ensure the composite system to be better than the best of the individual: the hypothesis space of the consolidator (a) satisfies the isolation property of degree at least N, and (b) has Vapnik-Chervonenkis dimension less than or equal to that of every individual learner. If individual learners are trained by independently generated samples, we obtain a much weaker bound on the VC-dimension of the hypothesis space of the fuser. Second, in closed fusion the fuser does not have an access to either the training sample or the hypotheses of the individual learners. By suitable designing a linear threshold function of the outputs of individual learners, we show that the composite system can be made better than the best of the learners.

  4. The ignition design space of magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Lindemuth, Irvin R.

    2015-12-01

    The simple magnetized target implosion model of Lindemuth and Kirkpatrick [Nucl. Fusion 23, 263 (1983)] has been extended to survey the potential parameter space in which three types of magnetized targets—cylindrical with axial magnetic field, cylindrical with azimuthal magnetic field, and spherical with azimuthal magnetic field—might achieve ignition and produce large gain at achievable radial convergence ratios. The model has been used to compute the dynamic, time-dependent behavior of many initial parameter sets that have been based upon projected ignition conditions using the quasi-adiabatic and quasi-flux-conserving properties of magnetized target implosions. The time-dependent calculations have shown that energy gains greater than 30 can potentially be achieved for each type of target. By example, it is shown that high gain may be obtained at extremely low convergence ratios, e.g., less than 15, for appropriate initial conditions. It is also shown that reaching the ignition condition, i.e., when fusion deposition rates equal total loss rates, does not necessarily lead to high gain and high fuel burn-up. At the lower densities whereby fusion temperatures can be reached in magnetized targets, the fusion burn rate may be only comparable with the hydrodynamic heating/cooling rates. On the other hand, when the fusion burn rates significantly exceed the hydrodynamic rates, the calculations show a characteristic rapid increase in temperature due to alpha particle deposition with a subsequent increased burn rate and high gain. A major result of this paper is that each type of target operates in a different initial density-energy-velocity range. The results of this paper provide initial target plasma parameters and driver parameters that can be used to guide plasma formation and driver development for magnetized targets. The results indicate that plasmas for spherical, cylindrical with azimuthal field, and cylindrical with axial field targets must have an initial

  5. The ignition design space of magnetized target fusion

    SciTech Connect

    Lindemuth, Irvin R.

    2015-12-15

    The simple magnetized target implosion model of Lindemuth and Kirkpatrick [Nucl. Fusion 23, 263 (1983)] has been extended to survey the potential parameter space in which three types of magnetized targets—cylindrical with axial magnetic field, cylindrical with azimuthal magnetic field, and spherical with azimuthal magnetic field—might achieve ignition and produce large gain at achievable radial convergence ratios. The model has been used to compute the dynamic, time-dependent behavior of many initial parameter sets that have been based upon projected ignition conditions using the quasi-adiabatic and quasi-flux-conserving properties of magnetized target implosions. The time-dependent calculations have shown that energy gains greater than 30 can potentially be achieved for each type of target. By example, it is shown that high gain may be obtained at extremely low convergence ratios, e.g., less than 15, for appropriate initial conditions. It is also shown that reaching the ignition condition, i.e., when fusion deposition rates equal total loss rates, does not necessarily lead to high gain and high fuel burn-up. At the lower densities whereby fusion temperatures can be reached in magnetized targets, the fusion burn rate may be only comparable with the hydrodynamic heating/cooling rates. On the other hand, when the fusion burn rates significantly exceed the hydrodynamic rates, the calculations show a characteristic rapid increase in temperature due to alpha particle deposition with a subsequent increased burn rate and high gain. A major result of this paper is that each type of target operates in a different initial density-energy-velocity range. The results of this paper provide initial target plasma parameters and driver parameters that can be used to guide plasma formation and driver development for magnetized targets. The results indicate that plasmas for spherical, cylindrical with azimuthal field, and cylindrical with axial field targets must have an initial

  6. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential

    SciTech Connect

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-lin; Liu, Ke; Shang, Zheng-jun

    2014-10-15

    Most previous studies have linked cancer–macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression. - Highlights: • The fusion events between oral cancer and endothelial cells undergo nuclear fusion. • The resulting hybrid cells acquire a new property of drug resistance. • The resulting hybrid cells express the markers of both parental cells (i.e. vimentin and cytokeratin 18). • The hybrid cells contribute to tumor repopulation in vivo.

  7. Direct observation of intermediate states in model membrane fusion

    PubMed Central

    Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig

    2016-01-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285

  8. Direct observation of intermediate states in model membrane fusion.

    PubMed

    Keidel, Andrea; Bartsch, Tobias F; Florin, Ernst-Ludwig

    2016-01-01

    We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead's thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285

  9. Comparison of additive image fusion vs. feature-level image fusion techniques for enhanced night driving

    NASA Astrophysics Data System (ADS)

    Bender, Edward J.; Reese, Colin E.; Van Der Wal, Gooitzen S.

    2003-02-01

    The Night Vision & Electronic Sensors Directorate (NVESD) has conducted a series of image fusion evaluations under the Head-Tracked Vision System (HTVS) program. The HTVS is a driving system for both wheeled and tracked military vehicles, wherein dual-waveband sensors are directed in a more natural head-slewed imaging mode. The HTVS consists of thermal and image-intensified TV sensors, a high-speed gimbal, a head-mounted display, and a head tracker. A series of NVESD field tests over the past two years has investigated the degree to which additive (A+B) image fusion of these sensors enhances overall driving performance. Additive fusion employs a single (but user adjustable) fractional weighting for all the features of each sensor's image. More recently, NVESD and Sarnoff Corporation have begun a cooperative effort to evaluate and refine Sarnoff's "feature-level" multi-resolution (pyramid) algorithms for image fusion. This approach employs digital processing techniques to select at each image point only the sensor with the strongest features, and to utilize only those features to reconstruct the fused video image. This selection process is performed simultaneously at multiple scales of the image, which are combined to form the reconstructed fused image. All image fusion techniques attempt to combine the "best of both sensors" in a single image. Typically, thermal sensors are better for detecting military threats and targets, while image-intensified sensors provide more natural scene cues and detect cultural lighting. This investigation will address the differences between additive fusion and feature-level image fusion techniques for enhancing the driver's overall situational awareness.

  10. Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Veres, G.

    This chapter is devoted to the fundamental concepts of nuclear fusion. To be more precise, it is devoted to the theoretical basics of fusion reactions between light nuclei such as hydrogen, helium, boron, and lithium. The discussion is limited because our purpose is to focus on laboratory-scale fusion experiments that aim at gaining energy from the fusion process. After discussing the methods of calculating the fusion cross section, it will be shown that sustained fusion reactions with energy gain must happen in a thermal medium because, in beam-target experiments, the energy of the beam is randomized faster than the fusion rate. Following a brief introduction to the elements of plasma physics, the chapter is concluded with the introduction of the most prominent fusion reactions ongoing in the Sun.

  11. Biochemical studies on cell fusion. II. Control of fusion response by lipid alteration

    PubMed Central

    1985-01-01

    The preceding communication (Roos, D.S. and P.W. Choppin, 1985, J. Cell Biol. 101:1578-1590) described the lipid composition of a series of mouse fibroblast cell lines which vary in susceptibility to the fusogenic effects of polyethylene glycol (PEG). Two alterations in lipid content were found to be directly correlated with resistance to PEG-induced cell fusion: increases in fatty acyl chain saturation, and the elevation of neutral glycerides, including an unusual ether-linked compound. In this study, we have probed the association between lipid composition and cell fusion through the use of fatty acid supplements to the cellular growth medium, and show that the fusibility of cells can be controlled by altering their acyl chain composition. The parental Clone 1D cells contain moderately unsaturated fatty acids with a ratio of saturates to polyunsaturates (S/P) approximately 1 and fuse virtually to completion following a standard PEG treatment. By contrast, the lipids of a highly fusion-resistant mutant cell line, F40, are highly saturated (S/P approximately 4). When the S/P ratio of Clone 1D cells was increased to approximate that normally found in F40 cells by growth in the presence of high concentrations of saturated fatty acids, they became highly resistant to PEG. Reduction of the S/P ratio of F40 cells by growth in cis-polyunsaturated fatty acids rendered them susceptible to fusion. Cell lines F8, F16, etc., which are normally intermediate between Clone 1D and F40 in both lipid composition and fusion response, can be altered in either direction (towards either increased or decreased susceptibility to fusion) by the addition of appropriate fatty acids to the growth medium. Although trans-unsaturated fatty acids have phase-transition temperatures roughly similar to saturated compounds, and might therefore be expected to affect membrane fluidity in a similar manner, trans-unsaturated fatty acids exerted the same effect as cis-unsaturates on the control of PEG

  12. Repair welding of fusion reactor components. Final technical report

    SciTech Connect

    Chin, B.A.; Wang, C.A.

    1997-09-30

    The exposure of metallic materials, such as structural components of the first wall and blanket of a fusion reactor, to neutron irradiation will induce changes in both the material composition and microstructure. Along with these changes can come a corresponding deterioration in mechanical properties resulting in premature failure. It is, therefore, essential to expect that the repair and replacement of the degraded components will be necessary. Such repairs may require the joining of irradiated materials through the use of fusion welding processes. The present ITER (International Thermonuclear Experimental Reactor) conceptual design is anticipated to have about 5 km of longitudinal welds and ten thousand pipe butt welds in the blanket structure. A recent study by Buende et al. predict that a failure is most likely to occur in a weld. The study is based on data from other large structures, particularly nuclear reactors. The data used also appear to be consistent with the operating experience of the Fast Flux Test Facility (FFTF). This reactor has a fuel pin area comparable with the area of the ITER first wall and has experienced one unanticipated fuel pin failure after two years of operation. The repair of irradiated structures using fusion welding will be difficult due to the entrapped helium. Due to its extremely low solubility in metals, helium will diffuse and agglomerate to form helium bubbles after being trapped at point defects, dislocations, and grain boundaries. Welding of neutron-irradiated type 304 stainless steels has been reported with varying degree of heat-affected zone cracking (HAZ). The objectives of this study were to determine the threshold helium concentrations required to cause HAZ cracking and to investigate techniques that might be used to eliminate the HAZ cracking in welding of helium-containing materials.

  13. Fusion FISH Imaging: Single-Molecule Detection of Gene Fusion Transcripts In Situ

    PubMed Central

    Markey, Fatu Badiane; Ruezinsky, William; Tyagi, Sanjay; Batish, Mona

    2014-01-01

    Double-stranded DNA breaks occur on a regular basis in the human genome as a consequence of genotoxic stress and errors during replication. Usually these breaks are rapidly and faithfully repaired, but occasionally different chromosomes, or different regions of the same chromosome, are fused to each other. Some of these aberrant chromosomal translocations yield functional recombinant genes, which have been implicated as the cause of a number of lymphomas, leukemias, sarcomas, and solid tumors. Reliable methods are needed for the in situ detection of the transcripts encoded by these recombinant genes. We have developed just such a method, utilizing single-molecule fluorescence in situ hybridization (sm-FISH), in which approximately 50 short fluorescent probes bind to adjacent sites on the same mRNA molecule, rendering each target mRNA molecule visible as a diffraction-limited spot in a fluorescence microscope. Utilizing this method, gene fusion transcripts are detected with two differently colored probe sets, each specific for one of the two recombinant segments of a target mRNA; enabling the fusion transcripts to be seen in the microscope as distinct spots that fluoresce in both colors. We demonstrate this method by detecting the BCR-ABL fusion transcripts that occur in chronic myeloid leukemia cells, and by detecting the EWSR1-FLI1 fusion transcripts that occur in Ewing's sarcoma cells. This technology should pave the way for accurate in situ typing of many cancers that are associated with, or caused by, fusion transcripts. PMID:24675777

  14. Estimated radiactive and shock loading of fusion reactor armor

    SciTech Connect

    Swift, D C

    2008-11-25

    Inertial confinement fusion (ICF) is of interest as a source of neutrons for proliferation-resistant and high burn-up fission reactor designs. ICF is a transient process, each implosion leading to energy release over a short period, with a continuous series of ICF operations needed to drive the fission reactor. ICF yields energy in the form of MeV-range neutrons and ions, and thermal x-rays. These radiations, particularly the thermal x-rays, can deposit a pulse of energy in the wall of the ICF chamber, inducing loading by isochoric heating (i.e. at constant volume before the material can expand) or by ablation of material from the surface. The explosion of the hot ICF system, and the compression of any fill material in the chamber, may also result in direct mechanical loading by a blast wave (decaying shock) reaching the chamber wall. The chamber wall must be able to survive the repetitive loading events for long enough for the reactor to operate economically. It is thus necessary to understand the loading induced by ICF systems in possible chamber wall designs, and to predict the response and life time of the wall. Estimates are given for the loading induced in the wall armor of the fusion chamber caused by ablative thermal radiation from the fusion plasma and by the hydrodynamic shock. Taking a version of the LIFE design as an example, the ablation pressure was estimated to be {approx}0.6 GPa with an approximately exponential decay with time constant {approx}0.6 ns. Radiation hydrodynamics simulations suggested that ablation of the W armor should be negligible.

  15. Study of a water-cooled convective divertor prototype for the DEMO fusion reactor

    NASA Astrophysics Data System (ADS)

    Di Maio, P.; Oliveri, E.; Vella, G.

    2000-04-01

    The plasma facing components of a fusion power reactor have a large impact on the overall plant design, its performance and availability and on the cost of electricity. The present work concerns a study of feasibility for a water-cooled prototype of the convective divertor component of the DEMO fusion reactor. The study has been carried out in two steps. In the first one thermal-hydraulic and neutronic parametric analyses have been performed to find out the prototype optimized configuration. In the second step thermo-mechanical analyses have been carried out on the obtained configuration to investigate the potential and limits of the proposed prototype, with a particular reference to the maximum heat flux it can undergo without incoming both in critical heat flux and in mechanical stress limits. The results show that the proposed divertor prototype is able to safely withstand peak heat fluxes of 9 MW/m2.

  16. Study of a Water-Cooled Convective Divertor Prototype for the DEMO Fusion Reactor

    SciTech Connect

    P. Di Maio; E. Oliveri; G. Vella

    2000-12-31

    The plasma facing components of a fusion power reactor have a large impact on the overall plant design, its performance and availability and on the cost of electricity. The present work concerns a study of feasibility for a water-cooled prototype of the convective divertor component of the DEMO fusion reactor. The study has been carried out in two steps. In the first one thermal-hydraulic and neutronic parametric analyses have been performed to find out the prototype optimized configuration. In the second step thermo-mechanical analyses have been carried out on the obtained configuration to investigate the potential and limits of the proposed prototype, with a particular reference to the maximum heat flux it can undergo without incoming both in critical heat flux and in mechanical stress limits. the results show that the proposed divertor prototype is able to safely withstand peak heat fluxes of 9 MW/m{sup 2}.

  17. Fusion Welding of AerMet 100 Alloy

    SciTech Connect

    ENGLEHART, DAVID A.; MICHAEL, JOSEPH R.; NOVOTNY, PAUL M.; ROBINO, CHARLES V.

    1999-08-01

    A database of mechanical properties for weldment fusion and heat-affected zones was established for AerMet{reg_sign}100 alloy, and a study of the welding metallurgy of the alloy was conducted. The properties database was developed for a matrix of weld processes (electron beam and gas-tungsten arc) welding parameters (heat inputs) and post-weld heat treatment (PWHT) conditions. In order to insure commercial utility and acceptance, the matrix was commensurate with commercial welding technology and practice. Second, the mechanical properties were correlated with fundamental understanding of microstructure and microstructural evolution in this alloy. Finally, assessments of optimal weld process/PWHT combinations for cotildent application of the alloy in probable service conditions were made. The database of weldment mechanical properties demonstrated that a wide range of properties can be obtained in welds in this alloy. In addition, it was demonstrated that acceptable welds, some with near base metal properties, could be produced from several different initial heat treatments. This capability provides a means for defining process parameters and PWHT's to achieve appropriate properties for different applications, and provides useful flexibility in design and manufacturing. The database also indicated that an important region in welds is the softened region which develops in the heat-affected zone (HAZ) and analysis within the welding metallurgy studies indicated that the development of this region is governed by a complex interaction of precipitate overaging and austenite formation. Models and experimental data were therefore developed to describe overaging and austenite formation during thermal cycling. These models and experimental data can be applied to essentially any thermal cycle, and provide a basis for predicting the evolution of microstructure and properties during thermal processing.

  18. Use of data fusion to optimize contaminant transport predictions

    SciTech Connect

    Eeckhout, E. van

    1997-10-01

    The original data fusion workstation, as envisioned by Coleman Research Corp., was constructed under funding from DOE (EM-50) in the early 1990s. The intent was to demonstrate the viability of fusion and analysis of data from various types of sensors for waste site characterization, but primarily geophysical. This overall concept changed over time and evolved more towards hydrogeological (groundwater) data fusion after some initial geophysical fusion work focused at Coleman. This initial geophysical fusion platform was tested at Hanford and Fernald, and the later hydrogeological fusion work has been demonstrated at Pantex, Savannah River, the US Army Letterkenny Depot, a DoD Massachusetts site and a DoD California site. The hydrogeologic data fusion package has been spun off to a company named Fusion and Control Technology, Inc. This package is called the Hydrological Fusion And Control Tool (Hydro-FACT) and is being sold as a product that links with the software package, MS-VMS (MODFLOW-SURFACT Visual Modeling System), sold by HydroGeoLogic, Inc. MODFLOW is a USGS development, and is in the public domain. Since the government paid for the data fusion development at Coleman, the government and their contractors have access to the data fusion technology in this hydrogeologic package for certain computer platforms, but would probably have to hire FACT (Fusion and Control Technology, Inc.,) and/or HydroGeoLogic for some level of software and services. Further discussion in this report will concentrate on the hydrogeologic fusion module that is being sold as Hydro-FACT, which can be linked with MS-VMS.

  19. A neutron study of the feline leukaemia virus fusion peptide: Implications for biological fusion?

    NASA Astrophysics Data System (ADS)

    Davies, Sarah M. A.; Darkes, Malcolm J. M.; Bradshaw, Jeremy P.

    Neutron diffraction studies were performed on stacked phospholipid bilayers to determine the effects of the feline leukaemia virus (FeLV) fusion peptide on membrane structure. Bilayers were composed of dioleoylphosphatidylcholine with 50% (mol) dioleoylphosphatidylglycerol. Neutron scattering profiles with peptide present showed an increase in scattering density in the lipid-tails region, whilst scattering by the lipid headgroup region was decreased. This is interpreted as a lowering of the packing density of the lipid headgroups and an increase in the packing density of the lipid tails. Modelling studies and experimental evidence have suggested that fusion peptides catalyse fusion by increasing the negative curvature of the target membrane's outer monolayer. Our results presented here add support to this hypothesis for the fusion mechanism. The 2H 2O scattering profile was also slightly perturbed in the lipid headgroup region with 1% (mol)FeLV fusion peptide present. The FeLV peptide had no significant effect on the organisation of bilayers containing only dioleoylphosphatidylcholine.

  20. Oral cancer/endothelial cell fusion experiences nuclear fusion and acquisition of enhanced survival potential.

    PubMed

    Song, Kai; Song, Yong; Zhao, Xiao-Ping; Shen, Hui; Wang, Meng; Yan, Ting-Lin; Liu, Ke; Shang, Zheng-Jun

    2014-10-15

    Most previous studies have linked cancer-macrophage fusion with tumor progression and metastasis. However, the characteristics of hybrid cells derived from oral cancer and endothelial cells and their involvement in cancer remained unknown. Double-immunofluorescent staining and fluorescent in situ hybridization (FISH) were performed to confirm spontaneous cell fusion between eGFP-labeled human umbilical vein endothelial cells (HUVECs) and RFP-labeled SCC9, and to detect the expression of vementin and cytokeratin 18 in the hybrids. The property of chemo-resistance of such hybrids was examined by TUNEL assay. The hybrid cells in xenografted tumor were identified by FISH and GFP/RFP dual-immunofluoresence staining. We showed that SCC9 cells spontaneously fused with cocultured endothelial cells, and the resultant hybrid cells maintained the division and proliferation activity after re-plating and thawing. Such hybrids expressed markers of both parental cells and became more resistant to chemotherapeutic drug cisplatin as compared to the parental SCC9 cells. Our in vivo data indicated that the hybrid cells contributed to tumor composition by using of immunostaining and FISH analysis, even though the hybrid cells and SCC9 cells were mixed with 1:10,000, according to the FACS data. Our study suggested that the fusion events between oral cancer and endothelial cells undergo nuclear fusion and acquire a new property of drug resistance and consequently enhanced survival potential. These experimental findings provide further supportive evidence for the theory that cell fusion is involved in cancer progression.

  1. Status of Oak Ridge National Laboratory fusion activities

    SciTech Connect

    Rosenthal, M.W.

    1985-01-01

    This review covers the following research being carried out at ORNL: (1) confinement experiments such as ATF, EBT, and STX, (2) theory, (3) atomic physics, (4) shielding, (5) technology developments on superconducting magnets, pellet injection, rf plasma heating, and materials, and (6) fusion engineering design center. (MOW)

  2. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    SciTech Connect

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T. Jr.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  3. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    NASA Astrophysics Data System (ADS)

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting

  4. Experimental study on ash fusion characteristics of biomass.

    PubMed

    Fang, Xiang; Jia, Li

    2012-01-01

    In this study, ash fusion characteristics (AFC) of biomass red pine, corn straw, Bermuda grass and bamboo are investigated. Results of this study show that ash melting temperatures are higher when samples are ashed at 815 °C than at 600 °C, but the differences are small. The ash deformation temperatures of pine and straw are over 1100 °C, but the ash deformation temperatures of Bermuda grass and bamboo are lower than the former biomass. Also, Bermuda grass and bamboo are prone to sintering phenomenon when burning. In the thermogravimetric experiment on ash, the heating process can be divided into three stages, namely water evaporation, oxidation of organic compounds and evaporation, and reaction of inorganic components. The ash of Bermuda grass and bamboo contains more unburned organic matters because of sintering, and higher calcium content in pine ash results in a more mass loss in the third stage. The ash fusion characteristics for co-combustion of biomass with coal are investigated. It is found that the ash melting temperature firstly decreases and then increases with the content of the corn straw increase, changing as "V" shape. PMID:22154746

  5. Cryomicroscopy provides structural snapshots of influenza virus membrane fusion.

    PubMed

    Calder, Lesley J; Rosenthal, Peter B

    2016-09-01

    The lipid-enveloped influenza virus enters host cells during infection by binding cell-surface receptors and, after receptor-mediated endocytosis, fusing with the membrane of the endosome and delivering the viral genome and transcription machinery into the host cell. These events are mediated by the hemagglutinin (HA) surface glycoprotein. At the low pH of the endosome, an irreversible conformational change in the HA, including the exposure of the hydrophobic fusion peptide, activates membrane fusion. Here we used electron cryomicroscopy and cryotomography to image the fusion of influenza virus with target membranes at low pH. We visualized structural intermediates of HA and their interactions with membranes during the course of membrane fusion as well as ultrastructural changes in the virus that accompany membrane fusion. Our observations are relevant to a wide range of protein-mediated membrane-fusion processes and demonstrate how dynamic membrane events may be studied by cryomicroscopy. PMID:27501535

  6. Summary of progress in inertial confinement fusion

    SciTech Connect

    Younger, S.M.

    1992-01-01

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  7. Summary of progress in inertial confinement fusion

    SciTech Connect

    Younger, S.M.

    1992-12-31

    Progress in inertial confinement fusion (ICF) has been very rapid over the past two years. Significant advances have been made in the production of smooth laser beams, the focusing of light ions beams, and the development of heavy ion accelerators. The availability of advanced target diagnostics on several major drivers has resulted in an extensive database of target performance over a wide range of conditions. Theoretical models of ICF targets are approaching the predictive level with two and even three dimensional calculations becoming routine. Within the next several years information should be available to allow confident extrapolation to ignition on the next generation driver.

  8. Big fusion, little fusion

    NASA Astrophysics Data System (ADS)

    Chen, Frank; ddtuttle

    2016-08-01

    In reply to correspondence from George Scott and Adam Costley about the Physics World focus issue on nuclear energy, and to news of construction delays at ITER, the fusion reactor being built in France.

  9. Data fusion for the detection of buried land mines

    SciTech Connect

    Clark, G.A.; Sengupta, S.K.; Schaich, P.C.; Sherwood, R.J.; Buhl, M.R.; Hernandez, J.E.; Kane, R.J.; Barth, M.J.; Fields, D.J.; Carter, M.R.

    1993-10-01

    The authors conducted experiments to demonstrate the enhanced delectability of buried land mines using sensor fusion techniques. Multiple sensors, including imagery, infrared imagery, and ground penetrating radar, have been used to acquire data on a number of buried mines and mine surrogates. The authors present this data along with a discussion of the application of sensor fusion techniques for this particular detection problem. The authors describe the data fusion architecture and discuss some relevant results of these classification methods.

  10. Performance of advanced missions using fusion propulsion

    NASA Technical Reports Server (NTRS)

    Friedlander, Alan; Mcadams, Jim; Schulze, Norm

    1989-01-01

    A quantitive evaluation of the premise that nuclear fusion propulsion offers benefits as compared to other propulsion technologies for carrying out a program of advanced exploration of the solar system and beyond is presented. Using a simplified analytical model of trajectory performance, numerical results of mass requirements versus trip time are given for robotic missions beyond the solar system that include flyby and rendezvous with the Oort cloud of comets and with the star system Alpha Centauri. Round trip missions within the solar system, including robotic sample returns from the outer planet moons and multiple asteroid targets, and manned Mars exploration are also described.

  11. Environmental and safety aspects of fusion

    SciTech Connect

    Crocker, J.G.

    1980-01-01

    In any deuterium-tritium burning fusion reactor there are several safety and environmental issues that must be addressed. The major issues involve: (1) use of tritium in the fuel cycle, (2) activation of structural materials, corrosion products in fluid streams, and reactor hall environment by high-energy neutrons, (3) the requirement for use of lithium to breed tritium and the attendant fire potential, and (4) the handling and disposal of radioactive waste. Also, a major concern with the magnetic systems is the presence of large superconducting magnets and magnetic fields and their potential effects on personnel, structures, and equipment. Each of these issues is discussed.

  12. Performance characteristic of thermosyphon heat pipe at radiant heat source

    NASA Astrophysics Data System (ADS)

    Hrabovský, Peter; Papučík, Štefan; Kaduchová, Katarína

    2016-06-01

    This article discusses about device, which is called heat pipe. This device is with heat source with radiant heat source. Heat pipe is device with high efficiency of heat transfer. The heat pipe, which is describe in this article is termosyphon heat pipe. The experiment with termosyphon heat pipe get a result. On the base of result, it will be in future to create mathematical model in Ansys. Thermosyphon heat pipe is made of copper and distilled water is working fluid. The significance of this experiment consists in getting of the heat transfer and performance characteristic. On the basis of measured and calculated data can be constructed the plots.

  13. Elements of Successful and Safe Fusion Experiment Operations

    SciTech Connect

    K. Rule, L. Cadwallader, Y. Takase, T. Norimatsu, O. Kaneko, M. Sato, and R. Savercool

    2009-02-03

    A group of fusion safety professionals contribute to a Joint Working Group (JWG) that performs occupational safety walkthroughs of US and Japanese fusion experiments on a routine basis to enhance the safety of visiting researchers. The most recent walkthrough was completed in Japan in March 2008 by the US Safety Monitor team. This paper gives the general conclusions on fusion facility personnel safety that can be drawn from the series of walkthroughs.

  14. Multivariate Chemical Image Fusion of Vibrational Spectroscopic Imaging Modalities.

    PubMed

    Gowen, Aoife A; Dorrepaal, Ronan M

    2016-01-01

    Chemical image fusion refers to the combination of chemical images from different modalities for improved characterisation of a sample. Challenges associated with existing approaches include: difficulties with imaging the same sample area or having identical pixels across microscopic modalities, lack of prior knowledge of sample composition and lack of knowledge regarding correlation between modalities for a given sample. In addition, the multivariate structure of chemical images is often overlooked when fusion is carried out. We address these challenges by proposing a framework for multivariate chemical image fusion of vibrational spectroscopic imaging modalities, demonstrating the approach for image registration, fusion and resolution enhancement of chemical images obtained with IR and Raman microscopy. PMID:27384549

  15. Fusion reactions of Ni,6458+124Sn

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Almaraz-Calderon, S.; Avila, M. L.; Back, B. B.; Bourgin, D.; Corradi, L.; Courtin, S.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Haas, F.; Mazzocco, M. M.; Montanari, D.; Montagnoli, G.; Mijatovic, T.; Sagaidak, R.; Santiago-Gonzalez, D.; Scarlassara, F.; Strano, E. E.; Szilner, S.

    2015-04-01

    Measurements of fusion excitation functions of 58Ni+124Sn and 64Ni+124Sn are extended towards lower energy to cross sections of 1 μ b and are compared to detailed coupled-channels calculations. The calculations clearly show the importance of including transfer reactions in a coupled-channels treatment for such heavy systems. This result is different from the conclusion made in a previous article which claimed that the influence of transfer on fusion is not important for fusion reactions of Ni +Sn . In the energy region studied in this experiment no indication of fusion hindrance has been observed, which is consistent with a systematic study of this behavior.

  16. Conceptual design of Fusion Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Seki, Yasushi; Takatsu, Hideyuki; Iida, Hiromasa

    1991-08-01

    Safety analysis and evaluation have been made for the FER (Fusion Experimental Reactor) as well as for the ITER (International Thermonuclear Experimental Reactor) which are basically the same in terms of safety. This report describes the results obtained in fiscal years 1988 - 1990, in addition to a summary of the results obtained prior to 1988. The report shows the philosophy of the safety design, safety analysis and evaluation for each of the operation conditions, namely, normal operation, repair and maintenance, and accident. Considerations for safety regulations and standards are also added.

  17. Micromachining of inertial confinement fusion targets

    SciTech Connect

    Gobby, P.L.; Salzer, L.J.; Day, R.D.

    1996-12-31

    Many experiments conducted on today`s largest inertial confinement fusion drive lasers require target components with sub-millimeter dimensions, precisions of a micron or less and surface finishes measured in nanometers. For metal and plastic, techniques using direct machining with diamond tools have been developed that yield the desired parts. New techniques that will be discussed include the quick-flip locator, a magnetically held kinematic mount that has allowed the direct machining of millimeter-sized beryllium hemishells whose inside and outside surface are concentric to within 0.25 micron, and an electronic version of a tracer lathe which has produced precise azimuthal variations of less than a micron.

  18. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  19. Comparison of mainline and alternate approaches to fusion energy

    NASA Astrophysics Data System (ADS)

    Hayman, Paul W.; Roth, J. Reece

    1985-02-01

    The tokamak and tandem mirror concepts are compared with alternate confinement concepts using the criteria established in DOE/ET-0047, “An Evaluation of Alternate Magnetic Fusion Concepts 1977.” The concepts are evaluated and rated in each of three broad categories: confidence in physics and technology, and reactor desirability. The STARFIRE and MARS reactors are used as a basis for comparing the mainline tokamak and tandem mirror concepts with the alternate concepts evaluated in DOE/ET-0047. Two recent alternate concepts, the ohmically heated toroidal experiment (OHTE) and the compact reversed field pinch reactor (CRFPR), are also evaluated. Results indicate that the physics of the mainline tokamaks and tandem mirrors is better understood than that of most alternate concepts. Both mainline concepts rank near the middle for technology requirements, and both rank near or at the bottom when compared with the reactor desirability of alternate concepts.

  20. Safety and environmental constraints on space applications of fusion energy

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece

    1990-01-01

    Some of the constraints are examined on fusion reactions, plasma confinement systems, and fusion reactors that are intended for such space related missions as manned or unmanned operations in near earth orbit, interplanetary missions, or requirements of the SDI program. Of the many constraints on space power and propulsion systems, those arising from safety and environmental considerations are emphasized since these considerations place severe constraints on some fusion systems and have not been adequately treated in previous studies.

  1. Stalk model of membrane fusion: solution of energy crisis.

    PubMed Central

    Kozlovsky, Yonathan; Kozlov, Michael M

    2002-01-01

    Membrane fusion proceeds via formation of intermediate nonbilayer structures. The stalk model of fusion intermediate is commonly recognized to account for the major phenomenology of the fusion process. However, in its current form, the stalk model poses a challenge. On one hand, it is able to describe qualitatively the modulation of the fusion reaction by the lipid composition of the membranes. On the other, it predicts very large values of the stalk energy, so that the related energy barrier for fusion cannot be overcome by membranes within a biologically reasonable span of time. We suggest a new structure for the fusion stalk, which resolves the energy crisis of the model. Our approach is based on a combined deformation of the stalk membrane including bending of the membrane surface and tilt of the hydrocarbon chains of lipid molecules. We demonstrate that the energy of the fusion stalk is a few times smaller than those predicted previously and the stalks are feasible in real systems. We account quantitatively for the experimental results on dependence of the fusion reaction on the lipid composition of different membrane monolayers. We analyze the dependence of the stalk energy on the distance between the fusing membranes and provide the experimentally testable predictions for the structural features of the stalk intermediates. PMID:11806930

  2. Fundamental studies of fusion plasmas

    SciTech Connect

    Aamodt, R.E.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.; Russell, D.A.

    1992-05-26

    The major portion of this program is devoted to critical ICH phenomena. The topics include edge physics, fast wave propagation, ICH induced high frequency instabilities, and a preliminary antenna design for Ignitor. This research was strongly coordinated with the world's experimental and design teams at JET, Culham, ORNL, and Ignitor. The results have been widely publicized at both general scientific meetings and topical workshops including the speciality workshop on ICRF design and physics sponsored by Lodestar in April 1992. The combination of theory, empirical modeling, and engineering design in this program makes this research particularly important for the design of future devices and for the understanding and performance projections of present tokamak devices. Additionally, the development of a diagnostic of runaway electrons on TEXT has proven particularly useful for the fundamental understanding of energetic electron confinement. This work has led to a better quantitative basis for quasilinear theory and the role of magnetic vs. electrostatic field fluctuations on electron transport. An APS invited talk was given on this subject and collaboration with PPPL personnel was also initiated. Ongoing research on these topics will continue for the remainder fo the contract period and the strong collaborations are expected to continue, enhancing both the relevance of the work and its immediate impact on areas needing critical understanding.

  3. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  4. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  5. Fusion of the ear bones

    MedlinePlus

    ... treatment of conductive hearing loss. In: Cummings CW, Flint PW, Haughey BH, et al. eds. Otolaryngology: Head ... JW, Cunningham CD III. Otosclerosis. In: Cummings CW, Flint PW, Haughey BH, et al. eds. Otolaryngology: Head ...

  6. Estimating heat capacity and heat content of rocks

    USGS Publications Warehouse

    Robertson, Eugene C.; Hemingway, Bruch S.

    1995-01-01

    Our measured heat-capacity values for rocks and other measurements of heat capacity or heat content of rocks found in the literature have been compared with estimated rock heat capacities calculated from the summation of heat capacities of both minerals and oxide components. The validity of calculating the heat content or heat capacity of rocks to better than about ± 3% from its mineral or chemical composition is well demonstrated by the data presented here.

  7. Economic aspects of heavy ion fusion

    SciTech Connect

    Herrmannsfeldt, W.B.

    1984-01-01

    The usual parameter space for examining scenarios for heavy ion fusion power plants has generally been based on large, slow cycling, reactor chambers which are only marginally different from chambers proposed for laser drivers. This paper will examine the economic implications of assuming that an inexpensive, low gain pellet is available and that a suitable high-repetition rate reactor has been devised. Interesting scenarios are found that generate economically feasible power from a system with a minimum net capacity of approx. 1 GWe compared to the larger approx. 4 GWe required in previous studies.

  8. Opportunistic replacement of fusion power system parts

    SciTech Connect

    Day, J.A.; George, L.L.

    1981-10-26

    This paper describes a maintenance problem in a fusion power plant. The problem is to specify which life limited parts should be replaced when there is an opportunity. The objective is to minimize the cost rate of replacement parts and of maintenance actions while satisfying a power plant availability constraint. The maintenance policy is to look ahead and replace all parts that will reach their life limits within a time called a screen. Longer screens yield greater system availabilities because more parts are replaced prior to their life limits.

  9. Observation of incomplete fusion reactions at l < l {sub crit}

    SciTech Connect

    Yadav, Abhishek Sharma, Vijay R. Singh, Devendra P. Unnati,; Singh, B. P.; Prasad, R.; Singh, Pushpendra P.; Bala, Indu; Kumar, R.; Muralithar, S.; Singh, R. P.; Sharma, M. K.

    2014-08-14

    In order to understand the presence of incomplete fusion at low energies i.e. 4-7MeV/nucleon and also to study its dependence on various entrance-channel parameters, the two type of measurements (i) excitation function for {sup 12}C+{sup 159}Tb, and (ii) forward recoil ranges for {sup 12}C+{sup 159}Tb systems have been performed. The experimentally measured excitation functions have been analyzed within the framework of compound nucleus decay using statistical model code PACE4. Analysis of data suggests the production of xn/px)n-channels via complete fusion, as these are found to be well reproduced by PACE4 predictions, while, a significant enhancement in the excitation functions of α-emitting channels has been observed over the theoretical ones, which has been attributed due to the incomplete fusion processes. Further, the incomplete fusion events observed in case of forward recoil range measurements have been explained on the basis of the breakup fusion model, where these events may be attributed to the fusion of {sup 8}Be and/or {sup 4}He from {sup 12}C projectile to the target nucleus. In the present work, the SUMRULE model calculations are found to highly underestimate the observed incomplete fusion cross-sections which indicate that the l-values lower than l {sub crit} (limit of complete fusion) significantly contribute to the incomplete fusion reactions.

  10. Computational analyses of different intervertebral cages for lumbar spinal fusion.

    PubMed

    Bashkuev, Maxim; Checa, Sara; Postigo, Sergio; Duda, Georg; Schmidt, Hendrik

    2015-09-18

    Lumbar spinal fusion is the most common approach for treating spinal disorders such as degeneration or instability. Although this procedure has been performed for many years, there are still important challenges that must be overcome and questions that need to be addressed regarding the high rates of non-union. The present finite element model study aimed to investigate the influence of different cage designs on the fusion process. An axisymmetric finite element model of a spinal segment with an interbody fusion cage was used. The fusion process was based on an existing mechano-regulation algorithm for tissue formation. With this model, the following principal concepts of cage design were investigated: (1) different cage geometries with constant compressive stiffness and (2) cage designs optimized to provide the ideal mechanical stimulus for bone formation, first at the beginning of fusion and then throughout the entire fusion process. The cage geometry substantially influenced the fusion outcome. A cage that created an optimized initial mechanical stimulus did not necessarily lead to accelerated fusion, but rather resulted in delayed fusion or non-union. In contrast, a cage made of a degradable material produced a significantly higher amount of bone and resulted in higher segmental stiffness. However, different compressive loads (250, 500 and 1000 N) substantially affected the amount of newly formed bone tissue. The results of the present study suggest that aiming for an optimal initial mechanical stimulus may be misleading because the initial mechanical environment is not preserved throughout the bone modeling process.

  11. Sensor fusion methodology for remote detection of buried land mines

    SciTech Connect

    Del Grande, N.

    1990-04-01

    We are investigation a sensor fusion methodology for remote detection of buried land mines. Our primary approach is sensor intrafusion. Our dual-channel passive IR methodology decouples true (corrected) surface temperature variations of 0.2{degree}C from spatially dependent surface emissivity noise. It produces surface temperature maps showing patterns of conducted heat from buried objects which heat and cool differently from their surroundings. Our methodology exploits Planck's radiation law. It produces separate maps of surface emissivity variations which allow us to reduce false alarms. Our secondary approach is sensor interfusion using other methodologies. For example, an active IR CO{sub 2} laser reflectance channel helps distinguish surface targets unrelated to buried land mines at night when photographic methods are ineffective. Also, the interfusion of ground penetrating radar provides depth information for confirming the site of buried objects. Together with EG G in Las Vegas, we flew a mission at Nellis AFB using the Daedalus dual-channel (5 and 10 micron) IR scanner mounted on a helicopter platform at an elevation of 60 m above the desert sand. We detected surface temperature patterns associated with buried (inert) land mines covered by as much as 10 cm of dry sand. The respective spatial, spectral, thermal, emissivity and temporal signatures associated with buried targets differed from those associated with surface vegetation, rocks and manmade objects. Our results were consistent with predictions based on the annual Temperature Wave Model.They were confirmed by field measurements. The dual-channel sensor fusion methodology is expected to enhance the capabilities of the military and industrial community for standoff mine detection. Other important potential applications are open skies, drug traffic control and environmental restoration at waste burial sites. 11 figs.

  12. Influenza Virus-Mediated Membrane Fusion: Determinants of Hemagglutinin Fusogenic Activity and Experimental Approaches for Assessing Virus Fusion

    PubMed Central

    Hamilton, Brian S.; Whittaker, Gary R.; Daniel, Susan

    2012-01-01

    Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future. PMID:22852045

  13. Modeling and numerical analysis of a magneto-inertial fusion concept with the target created through FRC merging

    NASA Astrophysics Data System (ADS)

    Li, Chenguang; Yang, Xianjun

    2016-10-01

    The Magnetized Plasma Fusion Reactor concept is proposed as a magneto-inertial fusion approach based on the target plasma created through the collision merging of two oppositely translating field reversed configuration plasmas, which is then compressed by the imploding liner driven by the pulsed-power driver. The target creation process is described by a two-dimensional magnetohydrodynamics model, resulting in the typical target parameters. The implosion process and the fusion reaction are modeled by a simple zero-dimensional model, taking into account the alpha particle heating and the bremsstrahlung radiation loss. The compression on the target can be 2D cylindrical or 2.4D with the additive axial contraction taken into account. The dynamics of the liner compression and fusion burning are simulated and the optimum fusion gain and the associated target parameters are predicted. The scientific breakeven could be achieved at the optimized conditions.

  14. Accelerator and Fusion Research Division: Summary of activities, 1986

    SciTech Connect

    Not Available

    1987-04-15

    This report contains a summary of activities at the Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division for the year 1986. Topics and facilities investigated in individual papers are: 1-2 GeV Synchrotron Radiation Source, the Center for X-Ray Optics, Accelerator Operations, High-Energy Physics Technology, Heavy-Ion Fusion Accelerator Research and Magnetic Fusion Energy. Six individual papers have been indexed separately. (LSP)

  15. Clinical and Radiological Outcomes of Segmental Spinal Fusion in Transforaminal Lumbar Interbody Fusion with Spinous Process Tricortical Autograft

    PubMed Central

    Tangviriyapaiboon, Teera

    2014-01-01

    Study Design A retrospective study. Purpose To investigate clinical and radiological outcomes when using spinous process as a tricortical autograft for segmental spinal fusion in transforaminal lumbar interbody fusion (TLIF). Overview of Literature Interbody spinal fusion is one of the important procedures in spinal surgery. Many types of autografts are harvested at the expense of complications. Clinical and radiographic results of patients who underwent TLIF with intraoperative harvested spinous process autograft in Prasat Neurological Institue, Bangkok, Thailand, were assessed as new technical innovation. Methods Between October 2005 to July 2009, 30 cases of patients who underwent TLIF with spinous process tricortical autograft were included. Clinical evaluations were assessed by visual analog scales (VAS) and Prolo functional and economic scores at the preoperation and postoperation and at 2 years postoperation. Static and dynamic plain radiograph of lumbar spine were reviewed for achievement of fusion. Results Initial successful fusion time in lumbar interbody fusion with spinous process tricortical autograft was 4.72 months (range, 3.8-6.1 months) postoperation and 100% fusion rate was reported at 2 years. Our initial successful fusion time in lumbar interbody fusion was compared to the other types of grafts in previous literatures. Conclusions The use of intraoperative harvested spinous process tricortical autograft has overcome many disadvantages of harvesting autograft with better initial successful fusion time (4.72 months). VAS and Prolo scores showed some improvement in the outcomes between the preoperative and postoperative periods. PMID:24761199

  16. Magnetized Target Fusion collaboration

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas

    2004-11-01

    Magnetized Target Fusion (MTF) may be a low cost path to fusion, in a regime that is intermediate between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. We hope to demonstrate the physics basis for MTF, with a Field Reversed Configuration (FRC) target plasma to be translated axially to a compression region. We show recent and improved FRC formation data, example deformable liner implosions, and a conceptual design for the upcoming translation experiments, and describe a multi institution collaboration. The FRC is an elongated, compact toroid equilibrium that is extreme among magnetic configurations, and relaxed to a non force free state. There is high plasma beta, small toroidal field, cross-field diamagnetic current and flows, vanishing rotational transform, magnetic shear, helicity and anomalously large resistivity. Scientific issues include MTF with and without FRC's, and fundamental plasma physics beyond MHD, relevant to geophysical and astrophysical phenomena.

  17. Office of Fusion Energy Sciences. A ten-year perspective (2015-2025)

    SciTech Connect

    2015-12-01

    The vision described here builds on the present U.S. activities in fusion plasma and materials science relevant to the energy goal and extends plasma science at the frontier of discovery. The plan is founded on recommendations made by the National Academies, a number of recent studies by the Fusion Energy Sciences Advisory Committee (FESAC), and the Administration’s views on the greatest opportunities for U.S. scientific leadership.This report highlights five areas of critical importance for the U.S. fusion energy sciences enterprise over the next decade: 1) Massively parallel computing with the goal of validated whole-fusion-device modeling will enable a transformation in predictive power, which is required to minimize risk in future fusion energy development steps; 2) Materials science as it relates to plasma and fusion sciences will provide the scientific foundations for greatly improved plasma confinement and heat exhaust; 3) Research in the prediction and control of transient events that can be deleterious to toroidal fusion plasma confinement will provide greater confidence in machine designs and operation with stable plasmas; 4) Continued stewardship of discovery in plasma science that is not expressly driven by the energy goal will address frontier science issues underpinning great mysteries of the visible universe and help attract and retain a new generation of plasma/fusion science leaders; 5) FES user facilities will be kept world-leading through robust operations support and regular upgrades. Finally, we will continue leveraging resources among agencies and institutions and strengthening our partnerships with international research facilities.

  18. Tissue fusion bursting pressure and the role of tissue water content

    NASA Astrophysics Data System (ADS)

    Cezo, James; Kramer, Eric; Taylor, Kenneth; Ferguson, Virginia; Rentschler, Mark

    2013-02-01

    Tissue fusion is a complex, poorly understood process which bonds collagenous tissues together using heat and pressure. The goal of this study is to elucidate the role of hydration in bond efficacy. Hydration of porcine splenic arteries (n=30) was varied by pre-fusion treatments: 24-48 hour immersion in isotonic, hypotonic, or hypertonic baths. Treated arteries were fused in several locations using Conmed's Altrus thermal fusion device and the bursting pressure was then measured for each fused segment. Artery sections were then weighed before and after lyophilization, to quantify water content. Histology (HE, EVG staining) enabled visualization of the bonding interface. Bursting pressure was significantly greater (p=4.17 E-ll) for the hypotonic group (607.6 +/- 83.2mmHg), while no significant difference existed between the isotonic (332.6 +/- 44.7mmHg) and hypertonic (348.7 +/- 44.0mmHg) treatment groups. Total water content varied (p=8.80 E-24) from low water content in the hypertonic samples (72.5% weight +/- 0.9), to high water content in the hypotonic samples (83.1% weight +/- 1.9), while the isotonic samples contained 78.8% weight +/- 1.1. Strength differences between the treated vessels imply that bound water driven from the tissue during fusion may reveal available collagen crosslinking sites to facilitate bond formation during the fusion process. Thus when the tissue contains greater bound water volumes, more crosslinking sites may become available during fusion, leading to a stronger bond. This study provides an important step towards understanding the chemistry underlying tissue fusion and the mechanics of tissue fusion as a function of bound water within the tissue.

  19. New eutectic alloys and their heats of transformation

    NASA Technical Reports Server (NTRS)

    Farkas, D.; Birchenall, C. E.

    1985-01-01

    Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.

  20. Experimental investigation of a manifold heat-pipe heat exchanger

    SciTech Connect

    Konev, S.V.; Wang Tszin` Lyan`; D`yakov, I.I.

    1995-12-01

    Results of experimental investigations of a heat exchanger on a manifold water heat pipe are given. An analysis is made of the temperature distribution along the heat-transfer agent path as a function of the transferred heat power. The influence of the degree of filling with the heat transfer agent on the operating characteristics of the construction is considered.

  1. Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners.

    PubMed

    Zhang, Mengru; Gong, Ming; Yang, Yumei; Li, Xujuan; Wang, Haibo; Zou, Zhurong

    2015-04-01

    Cytosolic ascorbate peroxidase 1 (APX1) plays a crucial role in regulating the level of plant cellular reactive oxygen species and its thermolability is proposed to cause plant heat-susceptibility. Herein, several hyper-acidic fusion partners, such as the C-terminal peptide tails, were evaluated for their effects on the thermal stability and activity of APX1 from Jatropha curcas and Arabidopsis. The hyper-acidic fusion partners efficiently improved the thermostability and prevented thermal inactivation of APX1 in both plant species with an elevated heat tolerance of at least 2 °C. These hyper-acidified thermostable APX1 fusion variants are of considerable biotechnological potential and can provide a new route to enhance the heat tolerance of plant species especially of inherent thermo-sensitivity.

  2. Methodologies in the study of cell-cell fusion.

    PubMed

    Cohen, F S; Melikyan, G B

    1998-10-01

    The process of membrane fusion has been profitably studied by fusing cells that express fusion proteins on their surfaces to the membranes of target cells. Primary methods for monitoring the occurrence of fusion between cells are measurement of formation of heterokaryons, measurement of activation of reporter genes, measurement of transfer of lipidic and aqueous fluorescent dyes, and electrophysiological recording of fusion pores. Fluorescence and electrical methods have been well developed for fusion of a nucleated cell expressing viral fusion proteins to red blood cell targets. These techniques are now being extended to the study of fusion between two nucleated cells. Microscopic observation of spread of fluorescent dyes from one cell to another is a sensitive and convenient means of detecting fusion on the level of single events. In such studies, both the membrane and the aqueous continuities that occur as a result of fusion can be measured in the same experiment. By following spread of aqueous dyes of different sizes from one cell to another, the growth of a fusion pore can also be followed. By labeling cells with fluorescent probes, a state of hemifusion can be identified if probes in outer membrane leaflets transfer but probes in inner leaflets or aqueous spaces do not. Electrical measurements-both capacitance and double-whole-cell voltage-clamp techniques-are the most sensitive methods yet developed for detecting the formation of pores and for quantifying their growth. These powerful single-event methodologies should be directly applicable to further advances in expressing nonviral fusion proteins on cell surfaces. PMID:9790869

  3. Evolution of gene fusions: horizontal transfer versus independent events

    PubMed Central

    Yanai, Itai; Wolf, Yuri I; Koonin, Eugene V

    2002-01-01

    Background Gene fusions can be used as tools for functional prediction and also as evolutionary markers. Fused genes often show a scattered phyletic distribution, which suggests a role for processes other than vertical inheritance in their evolution. Results The evolutionary history of gene fusions was studied by phylogenetic analysis of the domains in the fused proteins and the orthologous domains that form stand-alone proteins. Clustering of fusion components from phylogenetically distant species was construed as evidence of dissemination of the fused genes by horizontal transfer. Of the 51 examined gene fusions that are represented in at least two of the three primary kingdoms (Bacteria, Archaea and Eukaryota), 31 were most probably disseminated by cross-kingdom horizontal gene transfer, whereas 14 appeared to have evolved independently in different kingdoms and two were probably inherited from the common ancestor of modern life forms. On many occasions, the evolutionary scenario also involves one or more secondary fissions of the fusion gene. For approximately half of the fusions, stand-alone forms of the fusion components are encoded by juxtaposed genes, which are known or predicted to belong to the same operon in some of the prokaryotic genomes. This indicates that evolution of gene fusions often, if not always, involves an intermediate stage, during which the future fusion components exist as juxtaposed and co-regulated, but still distinct, genes within operons. Conclusion These findings suggest a major role for horizontal transfer of gene fusions in the evolution of protein-domain architectures, but also indicate that independent fusions of the same pair of domains in distant species is not uncommon, which suggests positive selection for the multidomain architectures. PMID:12049665

  4. Heat pipes and use of heat pipes in furnace exhaust

    DOEpatents

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  5. Single residue deletions along the length of the influenza HA fusion peptide lead to inhibition of membrane fusion function

    SciTech Connect

    Langley, William A.; Thoennes, Sudha; Bradley, Konrad C.; Galloway, Summer E.; Talekar, Ganesh R.; Cummings, Sandra F.; Vareckova, Eva; Russell, Rupert J.; Steinhauer, David A.

    2009-11-25

    A panel of eight single amino acid deletion mutants was generated within the first 24 residues of the fusion peptide domain of the of the hemagglutinin (HA) of A/Aichi/2/68 influenza A virus (H3N2 subtype). The mutant HAs were analyzed for folding, cell surface transport, cleavage activation, capacity to undergo acid-induced conformational changes, and membrane fusion activity. We found that the mutant DELTAF24, at the C-terminal end of the fusion peptide, was expressed in a non-native conformation, whereas all other deletion mutants were transported to the cell surface and could be cleaved into HA1 and HA2 to activate membrane fusion potential. Furthermore, upon acidification these cleaved HAs were able to undergo the characteristic structural rearrangements that are required for fusion. Despite this, all mutants were inhibited for fusion activity based on two separate assays. The results indicate that the mutant fusion peptide domains associate with target membranes in a non-functional fashion, and suggest that structural features along the length of the fusion peptide are likely to be relevant for optimal membrane fusion activity.

  6. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction.

    PubMed

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J

    2015-03-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction.

  7. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction

    PubMed Central

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J.

    2015-01-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. PMID:25655701

  8. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  9. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    NASA Astrophysics Data System (ADS)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  10. Surface conditioning of fusion devices plasma assisted thin film deposition

    SciTech Connect

    Winter, J.; Waelbroeck, F.; Weinhold, P.; Esser, H.G.; von Seggern, J.; Philipps, V.; Vietzke, E. )

    1990-02-05

    Conditioning of the plasma facing surfaces of a fusion device is a necessary prerequisite for the generaton of pure, hot and stable fusion plasmas. Thin layers of carbon or of boron containing carbon deposited plasmachemically on the entire inner surfaces of a tokamak have proven to be a very effective technique for wall prehandling.

  11. Molecular bond effects in the fusion of halo nuclei

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Balantekin, A. B.

    1993-09-01

    We consider the effect of the long tail of the neutron distribution in the fusion of halo nuclei. We show that for relative separations on the order of the halo size, the exchange of the valence neutrons between the two nuclei is responsible for an effective attractive potential which decreases the Coulomb barrier and increases the fusion cross sections dramatically.

  12. Complexity versus availability for fusion: The potential advantages of inertial fusion energy

    SciTech Connect

    Perkins, L.J.,

    1996-09-05

    Probably the single largest advantage of the inertial route to fusion energy (IFE) is the perception that its power plant embodiments could achieve acceptable capacity factors. This is a result of its relative simplicity, the decoupling of the driver and reactor chamber, and the potential to employ thick liquid walls. We examine these issues in terms of the complexity, reliability, maintainability and, therefore, availability of both magnetic and inertial fusion power plants and compare these factors with corresponding scheduled and unscheduled outage data from present day fission experience. We stress that, given the simple nature of a fission core, the vast majority of unplanned outages in fission plants are due to failures outside the reactor vessel itself Given we must be prepared for similar outages in the analogous plant external to a fusion power core, this puts severe demands on the reliability required of the fusion core itself. We indicate that such requirements can probably be met for IFE plants. We recommend that this advantage be promoted by performing a quantitative reliability and availability study for a representative IFE power plant and suggest that databases are probably adequate for this task.

  13. Negative specific heat of a magnetically self-confined plasma torus

    PubMed Central

    Kiessling, Michael K.-H.; Neukirch, Thomas

    2003-01-01

    It is shown that the thermodynamic maximum-entropy principle predicts negative specific heat for a stationary, magnetically self-confined current-carrying plasma torus. Implications for the magnetic self-confinement of fusion plasma are considered. PMID:12576553

  14. On the fusion triple product and fusion power gain of tokamak pilot plants and reactors

    NASA Astrophysics Data System (ADS)

    Costley, A. E.

    2016-06-01

    The energy confinement time of tokamak plasmas scales positively with plasma size and so it is generally expected that the fusion triple product, nTτ E, will also increase with size, and this has been part of the motivation for building devices of increasing size including ITER. Here n, T, and τ E are the ion density, ion temperature and energy confinement time respectively. However, tokamak plasmas are subject to operational limits and two important limits are a density limit and a beta limit. We show that when these limits are taken into account, nTτ E becomes almost independent of size; rather it depends mainly on the fusion power, P fus. In consequence, the fusion power gain, Q fus, a parameter closely linked to nTτ E is also independent of size. Hence, P fus and Q fus, two parameters of critical importance in reactor design, are actually tightly coupled. Further, we find that nTτ E is inversely dependent on the normalised beta, β N; an unexpected result that tends to favour lower power reactors. Our findings imply that the minimum power to achieve fusion reactor conditions is driven mainly by physics considerations, especially energy confinement, while the minimum device size is driven by technology and engineering considerations. Through dedicated R&D and parallel developments in other fields, the technology and engineering aspects are evolving in a direction to make smaller devices feasible.

  15. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, D.L.; Micklich, B.J.

    1983-06-01

    This invention pertains to methods of controlling in the steady state, neutron albedo in toroidal fusion devices, and in particular, to methods of controlling the flux and energy distribution of collided neutrons which are incident on an outboard wall of a toroidal fusion device.

  16. Calorimetric detection of influenza virus induced membrane fusion.

    PubMed

    Nebel, S; Bartoldus, I; Stegmann, T

    1995-05-01

    Membrane fusion induced by the hemagglutinin glycoprotein of influenza virus has been extensively characterized, but the mechanism whereby the protein achieves the merger of the viral and target membrane lipids remains enigmatic. Various lipid intermediate structures have been proposed, and the energies required for their formation predicted. Here, we have analyzed the enthalpies of fusion of influenza with liposomes by titration calorimetry. If a small sample of virus in a weak neutral pH buffer was added to an excess of liposomes at low pH, a two-component reaction was seen, composed of an exothermic reaction and a slower endothermic reaction. The exothermic reaction was the result of acid-base reactions between the neutral pH virus sample and low pH buffer and low-pH-induced changes in the virus. The endothermic reaction was not observed in the absence of liposomes and much reduced if acid-inactivated virus, which had lost its fusion but not its binding activity, was added to liposomes. The endothermic reaction was more temperature dependent than the exothermic reaction; its pH dependence corresponded with that of fusion and its enthalpy was higher if fusion was more extensive. These data indicate that most of the endothermic reaction was due to membrane fusion. The experimentally determined enthalpy of fusion, 0.6-0.7 kcal per mol of viral phospholipids, is much higher than expected on the basis of current theories about the formation of lipid intermediates during membrane fusion.

  17. Indirect drive targets for fusion power

    DOEpatents

    Amendt, Peter A.; Miles, Robin R.

    2016-10-11

    A hohlraum for an inertial confinement fusion power plant is disclosed. The hohlraum includes a generally cylindrical exterior surface, and an interior rugby ball-shaped surface. Windows over laser entrance holes at each end of the hohlraum enclose inert gas. Infrared reflectors on opposite sides of the central point reflect fusion chamber heat away from the capsule. P2 shields disposed on the infrared reflectors help assure an enhanced and more uniform x-ray bath for the fusion fuel capsule.

  18. Parametric Study of Axisymmetric Fusion Devices.

    NASA Astrophysics Data System (ADS)

    Ducar, William Scott

    1987-09-01

    Three different axisymmetric magnetic mirror fusion machines are examined in order to optimize the ratio the fusion power produced by them to the power injected into them to maintain the plasma. These three devices were chosen to study the continuum between a simple mirror and a tandem mirror. This allowed the evolutionary process leading from the simple to the tandem mirror to be examined in detail. The Kelley mirror, which corresponds to the middle step, was examined in depth for the first time. A computer code that models the plasma in these machines was written to investigate the steady state operation of these machines. The balance equations are solved by using an ordinary differential equation solver, LSODE ^{11}, to numerically solve the system of differential equations. Unlike previous methods, this technique allowed for a quick, inexpensive, and exhaustive examination of parameter space and has the added advantage that the steady state solutions obtained are numerically stable, which is not always the case with fixed point iteration. Furthermore, this computer model also permitted investigation of the use of polarized fuels, which has not been done before in mirror machines. The computer model was used to examine parameter space to optimize Q for each of the three machines. When feasible, a comparison with a Fokker-Planck code was made for the optimal Q case for each machine. It was found that the computer model compared favorably with the Fokker -Planck code, HYBRIDII^{22}. HYBRIDII used 54 minutes of Cray-1 computing time for a tandem mirror case to reach steady state, while the computer model obtained a steady state solution in one and a half minutes. Finally, the possible roles these devices might fill was discussed. It was found that none of the devices appeared suited for the role of a pure fussion electrical power plant. However, the Kelley machine and tandem machine appeared to be strong candidates for the role of a hybrid fusion-fission reactor

  19. Cold fusion: The scientific fiasco of the century

    SciTech Connect

    Huizenga, J.R.

    1992-01-01

    A summary of the cold fusion fiasco, its history, claims, experimental questions, are presented in this book. The author gives in some detail good reasons why cold fusion has been disregarded by mainstream science. Disturbing questions about the behavior of scientific investigators and reactions to such events are raised.

  20. LIFE: The Case for Early Commercialization of Fusion Energy

    SciTech Connect

    Anklam, T; Simon, A J; Powers, S; Meier, W R

    2010-11-30

    This paper presents the case for early commercialization of laser inertial fusion energy (LIFE). Results taken from systems modeling of the US electrical generating enterprise quantify the benefits of fusion energy in terms of carbon emission, nuclear waste and plutonium production avoidance. Sensitivity of benefits-gained to timing of market-entry is presented. These results show the importance of achieving market entry in the 2030 time frame. Economic modeling results show that fusion energy can be competitive with other low-carbon energy sources. The paper concludes with a description of the LIFE commercialization path. It proposes constructing a demonstration facility capable of continuous fusion operations within 10 to 15 years. This facility will qualify the processes and materials needed for a commercial fusion power plant.

  1. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains.

    PubMed

    Wu, Zhenyong; Auclair, Sarah M; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R; Krishnakumar, Shyam S; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle -the fusion pore- can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, "flipped" t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  2. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains

    PubMed Central

    Wu, Zhenyong; Auclair, Sarah M.; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R.; Krishnakumar, Shyam S.; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle –the fusion pore– can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, “flipped” t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  3. Training The Next Generation Of Fusion Scientists And Engineers: Summer High School Fusion Science Workshop

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh

    2005-10-01

    The goal of the education and outreach activities of the Hampton University Center for Fusion Research and Training (HU CFRT) is to create a high school-to-Ph.D. pipeline in plasma physics, fusion science, and related sciences for underrepresented minorities and female students. The HU CFRT Summer High School Fusion Research Workshop is an integral component of this pipeline. This workshop has been extraordinarily successful. The workshop participants are chosen from a national pool of young and talented minority and female high school students through the NASA SHARP program. These students come to HU from all over US and its possessions for eight weeks during the summer. Over the last ten years, these workshops have provided one-on-one high quality research experiences in fusion science to the best and the brightest minority and female high school students in the nation. Our high school students have presented over 25 contributed papers at APS/DPP annual meetings, twice reached semi-finalist positions in Siemens-Westinghouse competitions, won awards and prizes, admissions and scholarships to prestigious universities, and won high praises from the fusion research community and other educators and researchers. We wish to emphasize that we have been able to achieve these results with limited human and fiscal resources and a meager infrastructure. Here we will present the details of how this workshop has evolved over the years, the approaches, the activities, and the structure that we have used to train, motivate, and provide valuable research experiences to the next generation of our national leaders in science. We thank the U.S. DOE OFES for supporting these efforts. We also thank Dr. Allen Boozer and Dr. Thomas Simonen for their invaluable help in the workshop and in all our efforts.

  4. 76 FR 4645 - Fusion Energy Sciences Advisory Committee; Notice of Open Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Fusion Nuclear Sciences Pathways Assessment Activities Public Comments Public Participation: The meeting... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Fusion... Science. SUMMARY: This notice announces a meeting of the Fusion Energy Sciences Advisory Committee....

  5. Identification and characterization of RET fusions in advanced colorectal cancer

    PubMed Central

    Garrett, Christopher R.; Seery, Tara; Sanford, Eric M.; Balasubramanian, Sohail; Ross, Jeffrey S.; Stephens, Philip J.; Miller, Vincent A.; Ali, Siraj M.; Chiu, Vi K.

    2015-01-01

    There is an unmet clinical need for molecularly directed therapies available for metastatic colorectal cancer. Comprehensive genomic profiling has the potential to identify actionable genomic alterations in colorectal cancer. Through comprehensive genomic profiling we prospectively identified 6 RET fusion kinases, including two novel fusions of CCDC6-RET and NCOA4-RET, in metastatic colorectal cancer (CRC) patients. RET fusion kinases represent a novel class of oncogenic driver in CRC and occurred at a 0.2% frequency without concurrent driver mutations, including KRAS, NRAS, BRAF, PIK3CA or other fusion tyrosine kinases. Multiple RET kinase inhibitors were cytotoxic to RET fusion kinase positive cancer cells and not RET fusion kinase negative CRC cells. The presence of a RET fusion kinase may identify a subset of metastatic CRC patients with a high response rate to RET kinase inhibition. This is the first characterization of RET fusions in CRC patients and highlights the therapeutic significance of prospective comprehensive genomic profiling in advanced CRC. PMID:26078337

  6. Identification and characterization of RET fusions in advanced colorectal cancer.

    PubMed

    Le Rolle, Anne-France; Klempner, Samuel J; Garrett, Christopher R; Seery, Tara; Sanford, Eric M; Balasubramanian, Sohail; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Chiu, Vi K

    2015-10-01

    There is an unmet clinical need for molecularly directed therapies available for metastatic colorectal cancer. Comprehensive genomic profiling has the potential to identify actionable genomic alterations in colorectal cancer. Through comprehensive genomic profiling we prospectively identified 6 RET fusion kinases, including two novel fusions of CCDC6-RET and NCOA4-RET, in metastatic colorectal cancer (CRC) patients. RET fusion kinases represent a novel class of oncogenic driver in CRC and occurred at a 0.2% frequency without concurrent driver mutations, including KRAS, NRAS, BRAF, PIK3CA or other fusion tyrosine kinases. Multiple RET kinase inhibitors were cytotoxic to RET fusion kinase positive cancer cells and not RET fusion kinase negative CRC cells. The presence of a RET fusion kinase may identify a subset of metastatic CRC patients with a high response rate to RET kinase inhibition. This is the first characterization of RET fusions in CRC patients and highlights the therapeutic significance of prospective comprehensive genomic profiling in advanced CRC. PMID:26078337

  7. Performance analysis of image fusion methods in transform domain

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Image fusion involves merging two or more images in such a way as to retain the most desirable characteristics of each. There are various image fusion methods and they can be classified into three main categories: i) Spatial domain, ii) Transform domain, and iii) Statistical domain. We focus on the transform domain in this paper as spatial domain methods are primitive and statistical domain methods suffer from a significant increase of computational complexity. In the field of image fusion, performance analysis is important since the evaluation result gives valuable information which can be utilized in various applications, such as military, medical imaging, remote sensing, and so on. In this paper, we analyze and compare the performance of fusion methods based on four different transforms: i) wavelet transform, ii) curvelet transform, iii) contourlet transform and iv) nonsubsampled contourlet transform. Fusion framework and scheme are explained in detail, and two different sets of images are used in our experiments. Furthermore, various performance evaluation metrics are adopted to quantitatively analyze the fusion results. The comparison results show that the nonsubsampled contourlet transform method performs better than the other three methods. During the experiments, we also found out that the decomposition level of 3 showed the best fusion performance, and decomposition levels beyond level-3 did not significantly affect the fusion results.

  8. Physical and mechanical characteristics and chemical compatibility of aluminum nitride insulator coatings for fusion reactor applications

    SciTech Connect

    Natesan, K.; Rink, D.L.

    1996-04-01

    The blanket system is one of the most important components in a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of various concepts, including liquid metal, molten salt, water, and helium. Based on the requirements for an electrically insulating coating on the first-wall structural material to minimize the MHD pressure drop during the flow of liquid metal in a magnetic field, AlN was selected as a candidate coating material for the Li self-cooled blanket concept. This report discusses the results from an ongoing study of physical and mechanical characteristics and chemical compatibility of AlN electrical insulator coatings in a liquid Li environment. Details are presented on the AlN coating fabrication methods, and experimental data are reported for microstructures, chemistry of coatings, pretreatment of substrate, heat treatment of coatings, hardness data for coatings, coating/lithium interactions, and electrical resistance before and after exposure to lithium. Thermodynamic calculations are presented to establish regions of stability for AlN coatings in an Li environment as a function of O concentration and temperature, which can aid in-situ development of AlN coatings in Li.

  9. Major achievements and challenges of fusion research

    NASA Astrophysics Data System (ADS)

    Tendler, Michael

    2015-09-01

    The ITER project is truly at the frontier of knowledge, a collective effort to explore the tantalizing future of free, clean and inexhaustible energy offered by nuclear fusion. Where the Large Hadron Collider at CERN pushes the boundaries of physics to find the origins of matter, the ITER Project seeks to give humans an endless stream of power which could have potentially game-changing consequences for the entire planet. Seminal contributions to the general physics knowledge accomplished by the plasma physics research for the benefit of the ITER project will be brought to light. The legacy of Professor H Alfvén within the framework of the ITER project will be described.

  10. Mechanical-engineering aspects of mirror-fusion technology

    SciTech Connect

    Fisher, D.K.; Doggett, J.N.

    1982-07-15

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design.

  11. Overview of Indian activities on fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Srikumar

    2014-12-01

    This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V-4Cr-4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu-1 wt%Cr-0.1 wt%Zr - an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall - was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead-lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li2TiO3 pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb-Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U-shaped first wall of the TBM box

  12. Numerical Studies of Impurities in Fusion Plasmas

    DOE R&D Accomplishments Database

    Hulse, R. A.

    1982-09-01

    The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.

  13. Current Status of Lumbar Interbody Fusion for Degenerative Spondylolisthesis

    PubMed Central

    TAKAHASHI, Toshiyuki; HANAKITA, Junya; OHTAKE, Yasufumi; FUNAKOSHI, Yusuke; OICHI, Yuki; KAWAOKA, Taigo; WATANABE, Mizuki

    2016-01-01

    Instrumented lumbar fusion can provide immediate stability and assist in satisfactory arthrodesis in patients who have pain or instability of the lumbar spine. Lumbar adjunctive fusion with decompression is often a good procedure for surgical management of degenerative spondylolisthesis (DS). Among various lumbar fusion techniques, lumbar interbody fusion (LIF) has an advantage in that it maintains favorable lumbar alignment and provides successful fusion with the added effect of indirect decompression. This technique has been widely used and represents an advancement in spinal instrumentation, although the rationale and optimal type of LIF for DS remains controversial. We evaluated the current status and role of LIF in DS treatment, mainly as a means to augment instrumentation. We addressed the basic concept of LIF, its indications, and various types including minimally invasive techniques. It also has acceptable biomechanical features, and offers reconstruction with ideal lumbar alignment. Postsurgical adverse events related to each LIF technique are also addressed. PMID:27169496

  14. Neutron computed tomography of plasma facing components for fusion experiments

    NASA Astrophysics Data System (ADS)

    Schillinger, B.; Greuner, H.; Linsmeier, Ch.

    2011-09-01

    In nuclear fusion experiments, divertor plates are used to remove energy and particles from the plasma. These divertor plates can be made of water-cooled copper heat sinks covered by carbon fiber composite (CFC) protection tiles. During operation, surface temperatures in excess of 1000 °C are reached for typical heat loads of 10 MW/m 2. The large mismatch in the coefficients of thermal expansion for CFC and Cu causes high stresses and possibly bonding defects. Growing joint defects, which lead to unacceptable overheating of the protection tiles, are critical for the lifetime of the components. A prototype component was subjected to 10,000 cycles at 10 MW/m 2 to study the crack growth mechanism. Neutron computed tomography offers the possibility to analyze such structures on centimeter-sized samples non-destructively with a high spatial resolution. At the ANTARES neutron imaging facility of the FRM II reactor, the samples were loaded with a contrast agent and examined with neutron computed tomography.

  15. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  16. Mitochondrial fusion and inheritance of the mitochondrial genome.

    PubMed

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion. PMID:20196232

  17. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Mitochondrial fusion and inheritance of the mitochondrial genome.

    PubMed

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion.

  19. Application of image fusion techniques in DSA

    NASA Astrophysics Data System (ADS)

    Ye, Feng; Wu, Jian; Cui, Zhiming; Xu, Jing

    2007-12-01

    Digital subtraction angiography (DSA) is an important technology in both medical diagnoses and interposal therapy, which can eliminate the interferential background and give prominence to blood vessels by computer processing. After contrast material is injected into an artery or vein, a physician produces fluoroscopic images. Using these digitized images, a computer subtracts the image made with contrast material from a series of post injection images made without background information. By analyzing the characteristics of DSA medical images, this paper provides a solution of image fusion which is in allusion to the application of DSA subtraction. We fuse the images of angiogram and subtraction, in order to obtain the new image which has more data information. The image that fused by wavelet transform can display the blood vessels and background information clearly, and medical experts gave high score on the effect of it.

  20. Repair welding of fusion reactor components

    SciTech Connect

    Chin, B.A.

    1992-05-20

    Recent experimental investigations indicate that the repair welding of irradiated materials containing greater than 1 to 2.5 appm helium leads to catastrophic cracking in the heat affected zone of the weld. The high temperatures and cooling tensile stresses which occur during the welding process lead to enhanced helium bubble growth in the heat affected zone region, resulting in catastrophic cracking upon cooling. An investigation is proposed which seeks to determine the effect of stress state on the helium bubble growth process and develop engineering modifications to the welding process based upon this understanding in an attempt to alleviate or eliminate the weld cracking problem in type 316 stainless steel materials.

  1. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  2. Elastic scattering, fusion, and breakup of light exotic nuclei

    NASA Astrophysics Data System (ADS)

    Kolata, J. J.; Guimarães, V.; Aguilera, E. F.

    2016-05-01

    The present status of fusion reactions involving light ( A < 20) radioactive projectiles at energies around the Coulomb barrier ( E < 10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed.

  3. Experimental research on heat transfer of pulsating heat pipe

    NASA Astrophysics Data System (ADS)

    Li, Jia; Yan, Li

    2008-06-01

    Experimental research was conducted to understand heat transfer characteristic of pulsating heat pipe in this paper, and the PHP is made of high quality glass capillary tube. Under different fill ratio, heat transfer rate and many other influence factors, the flow patterns were observed in the start-up, transition and stable stage. The effects of heating position on heat transfer were discussed. The experimental results indicate that no annular flow appears in top heating condition. Under different fill ratios and heat transfer rate, the flow pattern in PHP is transferred from bulk flow to semi-annular flow and annular flow, and the performance of heat transfer is improved for down heating case. The experimental results indicate that the total heat resistant of PHP is increased with fill ratio, and heat transfer rate achieves optimum at filling rate 50%. But for pulsating heat pipe with changing diameters the thermal resistance is higher than that with uniform diameters.

  4. Organotypic three-dimensional culture model of mesenchymal and epithelial cells to examine tissue fusion events.

    EPA Science Inventory

    Tissue fusion during early mammalian development requires coordination of multiple cell types, the extracellular matrix, and complex signaling pathways. Fusion events during processes including heart development, neural tube closure, and palatal fusion are dependent on signaling ...

  5. Existing and new applications of micropellet injection (MPI) in magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Lunsford, Robert; Mansfield, Dennis K.; Nichols, Jacob H.

    2016-04-01

    > The intense heat and energetic particle fluxes expected in ITER and future magnetic fusion reactors pose prohibitive problems to the design, selection and maintenance of the first wall and divertor. Micropellet injection (MPI) technologies can offer some innovative solutions to the material and extreme heat challenges. Basic physics of micropellet motion, ablation and interactions with high-temperature plasmas and energetic particles are presented first. We then discuss MPI technology options and applications. In addition to plasma diagnostic applications, controlled injection of micropellets of different sizes, velocities and injection frequencies will offer several possibilities: (1) better assessment of the core plasma cooling due to dust produced in situ; (2) better understanding of the plasma-material interaction physics near the wall; (3) new methods for plasma fuelling and impurity control; and (4) techniques for edge cooling with minimal impact on the plasma core. Dedicated small-scale laboratory experiments will complement major fusion experiments in development and applications of MPI.

  6. Fusion and fission of fluid amphiphilic bilayers.

    PubMed

    Gotter, Martin; Strey, Reinhard; Olsson, Ulf; Wennerström, Håkan

    2005-01-01

    The system water-oil (n-decane)-nonionic surfactant (C12E5) forms bilayer phases in a large concentration region, but, for a given oil-to-surfactant ratio, only in a narrow temperature range. In addition to the anisotropic lamellar phase (Lalpha) there is also, at slightly higher temperature, a sponge or L3-phase where the bilayers build up an isotropic structure extending macroscopically in three dimensions. In this phase the bilayer mid-surface has a mean curvature close to zero and a negative Euler characteristic. In this paper we study how the bilayers in the lamellar and the sponge phase respond dynamically to sudden temperature changes. The monolayer spontaneous curvature depends sensitively on temperature and a change of temperature thus provides a driving force for a change in bilayer topology. The equilibration therefore involves kinetic steps of fusion/fission of bilayers. Such dynamic processes have previously been monitored by temperature jump experiments using light scattering in the sponge phase. These experiments revealed an extraordinarily strong dependence of the relaxation time on the bilayer volume fraction phi. At phi < 0.1 the relaxation times are so slow that experiments using deuterium nuclear magnetic resonance (2H-NMR) appear feasible. We here report on the first experiments concerned with the dynamics of the macroscopic phase transition sponge-lamellae by 2H-NMR. We find that the sponge-to-lamellae transition occurs through a nucleation process followed by domain growth involving bilayer fission at domain boundaries. In contrast, the lamellae-to-sponge transformation apparently occurs through a succession of uncorrelated bilayer fusion events. PMID:15715316

  7. Acceleration of compact toruses and fusion applications

    SciTech Connect

    Hartman, C.W.; Eddleman, J.L.; Hammer, J.H.; Logan, B.G.; McLean, H.S.; Molvik, A.W.

    1990-10-11

    The Compact Torus (Spheromak-type) is a near ideal plasma confinement configuration for acceleration. The fields are mostly generated by internal plasma currents, plasma confinement is toroidal, and the compact torus exhibits resiliency and stability in virtue of the ``rugged`` helicity invariant. Based on these considerations we are developing a coaxial rail-gun type Compact Torus Accelerator (CTA). In the CTA, the CT ring is formed between coaxial electrodes using a magnetized Marshall gun, it is quasistatically ``precompressed`` in a conical electrode section for inductive energy storage, it is accelerated in a straight-coaxial electrode section as in a conventional rail-gun, and it is focused to small size and high energy and power density in a final ``focus`` cone section. The dynamics of slow precompression and acceleration have been demonstrated experimentally in the RACE device with results in good agreement with 2-D MHD code calculations. CT plasma rings with 100 {micro}gms mass have been accelerated to 40 Kj kinetic energy at 20% efficiency with final velocity = 1 X 10{sup 8} cm/s (= 5 KeV/H{sup +}). Preliminary focus tests exhibi dynamics of radius compression, deceleration, and bouncing. Compression ratios of 2-3 have been achieved. A scaled-up 10-100 MJ CTA is predicted to achieve a focus radius of several cm to deliver = 30 MJ ring kinetic energy in 5-10 nsec. This is sufficient energy, power, and power density to enable the CTA to act as a high efficiency, low cost ICF driver. Alternatively, the focused CT can form the basis for an magnetically insulated, inertial confinement fusion (MICF) system. Preliminary calculations of these fusion systems will be discussed.

  8. Physics of laser fusion. Volume II. Diagnostics of experiments on laser fusion targets at LLNL

    SciTech Connect

    Ahlstrom, H.G.

    1982-01-01

    These notes present the experimental basis and status for laser fusion as developed at LLNL. There are two other volumes in this series: Vol. I, by C.E. Max, presents the theoretical laser-plasma interaction physics; Vol. III, by J.F. Holzrichter et al., presents the theory and design of high-power pulsed lasers. A fourth volume will present the theoretical implosion physics. The notes consist of six sections. The first, an introductory section, provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLNL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLNL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  9. Summary of the IEA workshop/working group meeting on ferritic/martensitic steels for fusion

    SciTech Connect

    Klueh, R.L.

    1997-04-01

    An International Energy Agency (IEA) Working Group on Ferritic/Martensitic Steels for Fusion Applications, consisting of researchers from Japan, the European Union, the United States, and Switzerland, met at the headquarters of the Joint European Torus (JET), Culham, United Kingdom, 24-25 October 1996. At the meeting preliminary data generated on the large heats of steel purchased for the IEA program and on other heats of steels were presented and discussed. The second purpose of the meeting was to continue planning and coordinating the collaborative test program in progress on reduced-activation ferritic/martensitic steels. The next meeting will be held in conjunction with the International Conference on Fusion Reactor Materials (ICFRM-8) in Sendai, Japan, 23-31 October 1997.

  10. Application of Magnetized Target Fusion to High-Energy Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. F.; Schmidt, G. R.; Kirkpatrick, R. C.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Most fusion propulsion concepts that have been investigated in the past employ some form of inertial or magnetic confinement. Although the prospective performance of these concepts is excellent, the fusion processes on which these concepts are based still require considerable development before they can be seriously considered for actual applications. Furthermore, these processes are encumbered by the need for sophisticated plasma and power handling systems that are generally quite inefficient and have historically resulted in large, massive spacecraft designs. Here we present a comparatively new approach, Magnetized Target Fusion (MTF), which offers a nearer-term avenue for realizing the tremendous performance benefits of fusion propulsion'. The key advantage of MTF is its less demanding requirements for driver energy and power processing. Additional features include: 1) very low system masses and volumes, 2) high gain and relatively low waste heat, 3) substantial utilization of energy from product neutrons, 4) efficient, low peak-power drivers based on existing pulsed power technology, and 5) very high Isp, specific power and thrust. MTF overcomes many of the problems associated with traditional fusion techniques, thus making it particularly attractive for space applications. Isp greater than 50,000 seconds and specific powers greater than 50 kilowatts/kilogram appear feasible using relatively near-term pulse power and plasma gun technology.

  11. Magnetic-compression/magnetized-target fusion (MAGO/MTF): A marriage of inertial and magnetic confinement

    SciTech Connect

    Lindemuth, I.R.; Ekdahl, C.A.; Kirkpatrick, R.C.

    1996-12-31

    Intermediate between magnetic confinement (MFE) and inertial confinement (ICF) in time and density scales is an area of research now known in the US as magnetized target fusion (MTF) and in Russian as MAGO (MAGnitnoye Obzhatiye--magnetic compression). MAGO/MTF uses a magnetic field and preheated, wall-confined plasma fusion fuel within an implodable fusion target. The magnetic field suppresses thermal conduction losses in the fuel during the target implosion and hydrodynamic compression heating process. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (i.e., ICF), MAGO/MTF involves two steps: (a) formation of a warm (e.g., 100 eV or higher), magnetized (e.g., 100 kG) plasma within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression by an imploding pusher, of which a magnetically driven imploding liner is one example. In this paper, the authors present ongoing activities and potential future activities in this relatively unexplored area of controlled thermonuclear fusion.

  12. Necropsy survey of metacarpal fusion in the horse.

    PubMed

    Les, C M; Stover, S M; Willits, N H

    1995-11-01

    Paired metacarpi obtained at necropsy from 100 horses ranging in age from term fetus to 35 years were examined to estimate the prevalence and sites of metacarpal fusion. Metacarpal fusion was seen in 192 of 200 metacarpi, and 78% of all horses 2 years or older had 2 or more fusions. Fusion of the second metacarpal bone to the third metacarpal bone was significantly (P < 0.001) more common than was fusion of the fourth to the third metacarpal bone. Fusions appeared for the most part in pairs and were bilaterally symmetric. Rooney-Prickett type-A carpometacarpal joint configurations (in which there is no measurable articulation between the third carpal and second metacarpal bones) were rare in this population, and Rooney-Prickett type-B configurations (in which there is a measurable articulation between the third carpal and second metacarpal bones) were observed in 98.5% of metacarpi. Medial metacarpal fusion was positively correlated with age, occupation, and proportion of the proximal projection of the carpometacarpal distal joint surface that was taken by the second metacarpal bone. Lateral metacarpal fusion was positively correlated with age and the proportion of the proximal projection of the carpometacarpal distal joint surface taken by the fourth metacarpal bone. Horses in performance careers (racing, race training, or show ring occupations) had an earlier development of the first 2 fusions than did horses in other or unknown occupations; development of the third and fourth fusions were not significantly different between occupation groups. The rate of metacarpal fusion per horse-year appeared to be at least 10 times higher than a clinically evident rate. A variety of gross morphologic features was observed in the fusions from this sample, some of which were small, subtle, and possibly difficult to detect in vivo. It is hypothesized that many instances of metacarpal fusion may be a result of functional adaptation of the metacarpus to increased or changed

  13. Physics of the edge plasma and first wall in fusion devices: synergistic effects

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. I.; Pigarov, A. Yu; Lee, Wonjae

    2015-04-01

    Various synergistic effects resulting from plasma-wall interactions in magnetic fusion devices are considered. The crucial role of the first wall out-gassing processes in the recovery of pedestal density in the high-confinement mode of tokamak operation after giant type-I edge localized modes (ELMs) transient events as well as in the setting the ELM period is discussed. The shielding effects of vapor plasma formed during interactions of extremely large plasma heat fluxes with material surfaces are analyzed. The strongly non-linear impact of secondary electron emission from the divertor target on the incident plasma heat flux is discussed.

  14. Tidal heating of Ariel

    NASA Technical Reports Server (NTRS)

    Tittemore, William C.

    1990-01-01

    During evolution through the 4:1 commensurability early in the history of the Uranian system, over 3.8 billion years ago, tidal heating may have raised the internal temperature of Ariel by up to about 20 K; the internal temperature of Ariel may already have been high in virtue of both accretional and radiogenic heating. The additional increase in Ariel's temperature could then have triggered the geological activity that led to a late resurfacing, by decreasing lithospheric thickness and exacerbating thermal stresses on it to the point where observed cracks and faults formed.

  15. Review of progress on fusion materials technology, Harwell, December 1980. Irradiation effects in fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Harries, D. R.

    1981-03-01

    The evolution of the radiation damage structure, void and gas bubble swelling, and surface blistering effects in both model and potential first wall materials for a D-T fusion reactor system of the TOKAMAK type was investigated along with radiation effects in inorganic insulator materials. In addition, investigations were carried out into the effects of irradiation on organic insulators and on the performance of rubber seals. The principal achievements are summarized and a list of 50 references is given.

  16. Influence of incomplete fusion on complete fusion: Observation of a large incomplete fusion fraction at E {approx_equal}5-7 MeV/nucleon

    SciTech Connect

    Singh, Pushpendra P.; Singh, B. P.; Sharma, Manoj Kumar; Unnati,; Singh, Devendra P.; Prasad, R.; Kumar, Rakesh; Golda, K. S.

    2008-01-15

    Experiments have been carried out to explore the reaction dynamics leading to incomplete fusion of heavy ions at moderate excitation energies. Excitation functions for {sup 168}Lu{sup m}, {sup 167}Lu, {sup 167}Yb, {sup 166}Tm, {sup 179}Re, {sup 177}Re, {sup 177}W, {sup 178}Ta, and {sup 177}Hf radio-nuclides populated via complete and/or incomplete fusion of {sup 16}O with {sup 159}Tb and {sup 169}Tm have been studied over the wide projectile energy range E{sub proj}{approx_equal}75-95 MeV. Recoil-catcher technique followed by off-line {gamma}-spectrometry has been employed in the present measurements. Experimental data have been compared with the predictions of theoretical model code PACE2. The experimentally measured production cross sections of {alpha}-emitting channels were found to be larger as compared to the theoretical model predictions and may be attributed to incomplete fusion at these energies. During the analysis of experimental data, incomplete fusion has been found to be competing with complete fusion. As such, an attempt has been made to estimate the incomplete fusion fraction for both the systems, and has been found to be sensitive for projectile energy and mass asymmetry of interacting partners.

  17. Disassembly of the fusion-1 capsule after irradiation in the BOR-60 reactor

    SciTech Connect

    Tsai, H.; Kazakov, V.A.; Chakin, V.P.

    1997-04-01

    A U.S./Russia (RF) collaborative irradiation experiment, Fusion-1, was completed in June 1996 after reaching a peak exposure of {approx}17 dpa in the BOR-60 fast reactor at the Research Institute of Atomic Reactors (RIAR) in Russia. The specimens were vanadium alloys, mainly of recent heats from both countries. In this reporting period, the capsule was disassembled at the RIAR hot cells and all test specimens were successfully retrieved. For the disassembly, an innovative method of using a heated diffusion oil to melt and separate the lithium bond from the test specimens was adopted. This method proved highly successful.

  18. When group membership gets personal: a theory of identity fusion.

    PubMed

    Swann, William B; Jetten, Jolanda; Gómez, Angel; Whitehouse, Harvey; Bastian, Brock

    2012-07-01

    Identity fusion is a relatively unexplored form of alignment with groups that entails a visceral feeling of oneness with the group. This feeling is associated with unusually porous, highly permeable borders between the personal and social self. These porous borders encourage people to channel their personal agency into group behavior, raising the possibility that the personal and social self will combine synergistically to motivate pro-group behavior. Furthermore, the strong personal as well as social identities possessed by highly fused persons cause them to recognize other group members not merely as members of the group but also as unique individuals, prompting the development of strong relational as well as collective ties within the group. In local fusion, people develop relational ties to members of relatively small groups (e.g., families or work teams) with whom they have personal relationships. In extended fusion, people project relational ties onto relatively large collectives composed of many individuals with whom they may have no personal relationships. The research literature indicates that measures of fusion are exceptionally strong predictors of extreme pro-group behavior. Moreover, fusion effects are amplified by augmenting individual agency, either directly (by increasing physiological arousal) or indirectly (by activating personal or social identities). The effects of fusion on pro-group actions are mediated by perceptions of arousal and invulnerability. Possible causes of identity fusion--ranging from relatively distal, evolutionary, and cultural influences to more proximal, contextual influences--are discussed. Finally, implications and future directions are considered. PMID:22642548

  19. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  20. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    DOE PAGES

    Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly D.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Ruiz, Carlos L.; Sinars, Daniel Brian; Harding, Eric C.; et al

    2015-04-29

    In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as highmore » as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.« less

  1. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor

    NASA Astrophysics Data System (ADS)

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S. V.

    2016-01-01

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  2. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor.

    PubMed

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S V

    2016-01-01

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  3. dysfusion Transcriptional Control of Drosophila Tracheal Migration, Adhesion, and Fusion

    PubMed Central

    Jiang, Lan; Crews, Stephen T.

    2006-01-01

    The Drosophila dysfusion basic-helix-loop-helix-PAS transcription factor gene is expressed in specialized fusion cells that reside at the tips of migrating tracheal branches. dysfusion mutants were isolated, and genetic analysis of live embryos revealed that mutant tracheal branches migrate to close proximity but fail to recognize and adhere to each other. Misexpression of dysfusion throughout the trachea further indicated that dysfusion has the ability to both inhibit cell migration and promote ectopic tracheal fusion. Nineteen genes whose expression either increases or decreases in fusion cells during development were analyzed in dysfusion mutant embryos. dysfusion upregulates the levels of four genes, including the shotgun cell adhesion protein gene and the zona pellucida family transmembrane protein gene, CG13196. Misexpression experiments with CG13196 result in ectopic tracheal fusion events, suggesting that it also encodes a cell adhesion protein. Another target gene of dysfusion is members only, which inhibits protein nuclear export and influences tracheal fusion. dysfusion also indirectly downregulates protein levels of Trachealess, an important regulator of tracheal development. These results indicate that fusion cells undergo dynamic changes in gene expression as they switch from migratory to fusion modes and that dysfusion regulates a discrete, but important, set of these genes. PMID:16914738

  4. The status of Fast Ignition Realization Experiment (FIREX) and prospects for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Azechi, H.; FIREX Project Team

    2016-05-01

    Here we report recent progress for the fast ignition inertial confinement fusion demonstration. The fraction of low energy (< 1 MeV) component of the relativistic electron beam (REB), which efficiently heats the fuel core, increases by a factor of 4 by enhancing pulse contrast of heating laser and removing preformed plasma sources. Kilo-tesla magnetic field is studied to guide the diverging REB to the fuel core. The transport simulation of the REB accelerated by the heating laser in the externally applied and compressed magnetic field indicates that the REB can be guided efficiently to the fuel core. The integrated simulation shows > 4% of the heating efficiency and > 4 keV of ion temperature are achievable by using GEKKO-XII and LFEX, properly designed cone-fuel and an external magnetic field.

  5. Studies of electron and proton isochoric heating for fast ignition

    SciTech Connect

    Mackinnon, A; Key, M; Akli, K; Beg, F; Clarke, R; Clarke, D; Chen, M; Chung, H; Chen, S; Freeman, R; Green, J; Gu, P; Gregori, G; Highbarger, K; Habara, H; Hatchett, S; Hey, D; Heathcote, R; Hill, J; King, J; Kodama, R; Koch, J; Lancaster, K; Langdon, B; Murphy, C; Norreys, P; Neely, D; Nakatsutsumi, M; Nakamura, H; Patel, N; Patel, P; Pasley, J; Snavley, R; Stephens, R; Stoeckl, C; Foord, M; Tabak, M; Theobald, W; Storm, M; Tanaka, K; Tempo, M; Toley, M; Town, R; Wilks, S; VanWoerkom, L; Weber, R; Yabuuchi, T; Zhang, B

    2006-10-02

    Isochoric heating of inertially confined fusion plasmas by laser driven MeV electrons or protons is an area of great topical interest in the inertial confinement fusion community, particularly with respect to the fast ignition (FI) proposal to use this technique to initiate burn in a fusion capsule. Experiments designed to investigate electron isochoric heating have measured heating in two limiting cases of interest to fast ignition, small planar foils and hollow cones. Data from Cu K{alpha} fluorescence, crystal x-ray spectroscopy of Cu K shell emission, and XUV imaging at 68eV and 256 eV are used to test PIC and Hybrid PIC modeling of the interaction. Isochoric heating by focused proton beams generated at the concave inside surface of a hemi-shell and from a sub hemi-shell inside a cone have been studied with the same diagnostic methods plus imaging of proton induced K{alpha}. Conversion efficiency to protons has also been measured and modeled. Conclusions from the proton and electron heating experiments will be presented. Recent advances in modeling electron transport and innovative target designs for reducing igniter energy and increasing gain curves will also be discussed.

  6. Development progresses of radio frequency ion source for neutral beam injector in fusion devices

    NASA Astrophysics Data System (ADS)

    Chang, D. H.; Jeong, S. H.; Kim, T. S.; Park, M.; Lee, K. W.; In, S. R.

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe.

  7. Development progresses of radio frequency ion source for neutral beam injector in fusion devices.

    PubMed

    Chang, D H; Jeong, S H; Kim, T S; Park, M; Lee, K W; In, S R

    2014-02-01

    A large-area RF (radio frequency)-driven ion source is being developed in Germany for the heating and current drive of an ITER device. Negative hydrogen ion sources are the major components of neutral beam injection systems in future large-scale fusion experiments such as ITER and DEMO. RF ion sources for the production of positive hydrogen (deuterium) ions have been successfully developed for the neutral beam heating systems at IPP (Max-Planck-Institute for Plasma Physics) in Germany. The first long-pulse ion source has been developed successfully with a magnetic bucket plasma generator including a filament heating structure for the first NBI system of the KSTAR tokamak. There is a development plan for an RF ion source at KAERI to extract the positive ions, which can be applied for the KSTAR NBI system and to extract the negative ions for future fusion devices such as the Fusion Neutron Source and Korea-DEMO. The characteristics of RF-driven plasmas and the uniformity of the plasma parameters in the test-RF ion source were investigated initially using an electrostatic probe. PMID:24593580

  8. Overexpression of calpastatin inhibits L8 myoblast fusion

    SciTech Connect

    Barnoy, Sivia; E-mail: sivia@post.tau.ac.il; Maki, Masatoshi; Kosower, Nechama S.

    2005-07-08

    The formation of skeletal muscle fibers involves cessation of myoblast division, myoblast alignment, and fusion to multinucleated myofibers. Calpain is one of the factors shown to be involved in myoblast fusion. Using L8 rat myoblasts, we found that calpain levels did not change significantly during myoblast differentiation, whereas calpastatin diminished prior to myoblast fusion and reappeared after fusion. The transient diminution in calpastatin allows the Ca{sup 2+}-promoted activation of calpain and calpain-induced membrane proteolysis, which is required for myoblast fusion. Here we show that calpastatin overexpression in L8 myoblasts does not inhibit cell proliferation and alignment, but prevents myoblast fusion and fusion-associated protein degradation. In addition, calpastatin appears to modulate myogenic gene expression, as indicated by the lack of myogenin (a transcription factor expressed in differentiating myoblasts) in myoblasts overexpressing calpastatin. These results suggest that, in addition to the role in membrane disorganization in the fusing myoblasts, the calpain-calpastatin system may also modulate the levels of factors required for myoblast differentiation.

  9. Comparison of Fusion Rates between Glycerol-Preserved and Frozen Composite Allografts in Cervical Fusion.

    PubMed

    Rodway, Ian; Gander, Julie

    2014-01-01

    Background. This retrospective, two cohort series study was designed to compare a room temperature, glycerol-preserved composite pinned bone allograft (G-CPBA) with the same graft type provided in a frozen state (F-CPBA) for use as a cervical interbody spacer in anterior cervical discectomy and fusion (ACDF). Methods. A comprehensive chart review was performed for 67 sequential patients that received either a F-CPBA or a G-CPBA and had at least one-year follow-up. Twenty-eight patients had received G-CPBA grafts and 37 patients had received F-CPBA grafts. Two additional 2-level patients had received one of each type of grafts. Results. At 3 months, 45.3% (29 of 64) of glycerol-preserved and 41.4% (29 of 70) of frozen allografts, respectively, were considered to be fused radiographically. At 12 months, 100% of both treatment groups (41 glycerol-preserved and 45 frozen) were considered fused. Fusion rates for G-CPBA were statistically similar to F-CPBA at both 3 and 12 months (P = 0.6535 and >0.999, resp.). There were no allograft related complications in either treatment group. Conclusions. 100% fusion rates were attained by both treatment groups at 12 months and were similar at short-term follow-up for all comparable levels. Level of Evidence. Level of evidence is III.

  10. Comparison of Fusion Rates between Glycerol-Preserved and Frozen Composite Allografts in Cervical Fusion

    PubMed Central

    Rodway, Ian; Gander, Julie

    2014-01-01

    Background. This retrospective, two cohort series study was designed to compare a room temperature, glycerol-preserved composite pinned bone allograft (G-CPBA) with the same graft type provided in a frozen state (F-CPBA) for use as a cervical interbody spacer in anterior cervical discectomy and fusion (ACDF). Methods. A comprehensive chart review was performed for 67 sequential patients that received either a F-CPBA or a G-CPBA and had at least one-year follow-up. Twenty-eight patients had received G-CPBA grafts and 37 patients had received F-CPBA grafts. Two additional 2-level patients had received one of each type of grafts. Results. At 3 months, 45.3% (29 of 64) of glycerol-preserved and 41.4% (29 of 70) of frozen allografts, respectively, were considered to be fused radiographically. At 12 months, 100% of both treatment groups (41 glycerol-preserved and 45 frozen) were considered fused. Fusion rates for G-CPBA were statistically similar to F-CPBA at both 3 and 12 months (P = 0.6535 and >0.999, resp.). There were no allograft related complications in either treatment group. Conclusions. 100% fusion rates were attained by both treatment groups at 12 months and were similar at short-term follow-up for all comparable levels. Level of Evidence. Level of evidence is III. PMID:27382618

  11. Welcome Back: Responses of Female Bonobos (Pan paniscus) to Fusions.

    PubMed

    Moscovice, Liza R; Deschner, Tobias; Hohmann, Gottfried

    2015-01-01

    In species with a high degree of fission-fusion social dynamics, fusions may trigger social conflict and thus provide an opportunity to identify sources of social tension and mechanisms related to its alleviation. We characterized behavioral and endocrine responses of captive female bonobos (Pan paniscus) to fusions within a zoo facility designed to simulate naturalistic fission-fusion social dynamics. We compared urinary cortisol levels and frequencies of aggression, grooming and socio-sexual interactions between female bonobos while in stable sub-groups and when one "joiner" was reunited with the "residents" of another sub-group. We hypothesized that fusions would trigger increases in aggression and cortisol levels among reunited joiners and resident females. We further predicted that females who face more uncertainty in their social interactions following fusions may use grooming and/or socio-sexual behavior to reduce social tension and aggression. The only aggression on reunion days occurred between reunited females, but frequencies of aggression remained low across non-reunion and reunion days, and there was no effect of fusions on cortisol levels. Fusions did not influence patterns of grooming, but there were increases in socio-sexual solicitations and socio-sexual interactions between joiners and resident females. Joiners who had been separated from residents for longer received the most solicitations, but were also more selective in their acceptance of solicitations and preferred to have socio-sexual interactions with higher-ranking residents. Our results suggest that socio-sexual interactions play a role in reintegrating female bonobos into social groups following fusions. In addition, females who receive a high number of solicitations are able to gain more control over their socio-sexual interactions and may use socio-sexual interactions for other purposes, such as to enhance their social standing.

  12. Welcome Back: Responses of Female Bonobos (Pan paniscus) to Fusions.

    PubMed

    Moscovice, Liza R; Deschner, Tobias; Hohmann, Gottfried

    2015-01-01

    In species with a high degree of fission-fusion social dynamics, fusions may trigger social conflict and thus provide an opportunity to identify sources of social tension and mechanisms related to its alleviation. We characterized behavioral and endocrine responses of captive female bonobos (Pan paniscus) to fusions within a zoo facility designed to simulate naturalistic fission-fusion social dynamics. We compared urinary cortisol levels and frequencies of aggression, grooming and socio-sexual interactions between female bonobos while in stable sub-groups and when one "joiner" was reunited with the "residents" of another sub-group. We hypothesized that fusions would trigger increases in aggression and cortisol levels among reunited joiners and resident females. We further predicted that females who face more uncertainty in their social interactions following fusions may use grooming and/or socio-sexual behavior to reduce social tension and aggression. The only aggression on reunion days occurred between reunited females, but frequencies of aggression remained low across non-reunion and reunion days, and there was no effect of fusions on cortisol levels. Fusions did not influence patterns of grooming, but there were increases in socio-sexual solicitations and socio-sexual interactions between joiners and resident females. Joiners who had been separated from residents for longer received the most solicitations, but were also more selective in their acceptance of solicitations and preferred to have socio-sexual interactions with higher-ranking residents. Our results suggest that socio-sexual interactions play a role in reintegrating female bonobos into social groups following fusions. In addition, females who receive a high number of solicitations are able to gain more control over their socio-sexual interactions and may use socio-sexual interactions for other purposes, such as to enhance their social standing. PMID:25996476

  13. Welcome Back: Responses of Female Bonobos (Pan paniscus) to Fusions

    PubMed Central

    Moscovice, Liza R.; Deschner, Tobias; Hohmann, Gottfried

    2015-01-01

    In species with a high degree of fission-fusion social dynamics, fusions may trigger social conflict and thus provide an opportunity to identify sources of social tension and mechanisms related to its alleviation. We characterized behavioral and endocrine responses of captive female bonobos (Pan paniscus) to fusions within a zoo facility designed to simulate naturalistic fission-fusion social dynamics. We compared urinary cortisol levels and frequencies of aggression, grooming and socio-sexual interactions between female bonobos while in stable sub-groups and when one “joiner” was reunited with the “residents” of another sub-group. We hypothesized that fusions would trigger increases in aggression and cortisol levels among reunited joiners and resident females. We further predicted that females who face more uncertainty in their social interactions following fusions may use grooming and/or socio-sexual behavior to reduce social tension and aggression. The only aggression on reunion days occurred between reunited females, but frequencies of aggression remained low across non-reunion and reunion days, and there was no effect of fusions on cortisol levels. Fusions did not influence patterns of grooming, but there were increases in socio-sexual solicitations and socio-sexual interactions between joiners and resident females. Joiners who had been separated from residents for longer received the most solicitations, but were also more selective in their acceptance of solicitations and preferred to have socio-sexual interactions with higher-ranking residents. Our results suggest that socio-sexual interactions play a role in reintegrating female bonobos into social groups following fusions. In addition, females who receive a high number of solicitations are able to gain more control over their socio-sexual interactions and may use socio-sexual interactions for other purposes, such as to enhance their social standing. PMID:25996476

  14. Laser heating challenges of high yield MagLIF targets

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Sefkow, Adam; Vesey, Roger

    2014-10-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept is predicted by numerical simulation to produce fusion yields of about 100 kJ, when driven by 25 MA from the existing Z accelerator [S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)] and much higher yields with future accelerators delivering higher currents [Slutz and Vesey PRL 108, 025003 (2012)]. The fuel must be heated before compression to obtain significant fusion yields due to the relatively slow implosion velocities (~ 100 km/s) of magnetically driven liners. Lasers provide a convenient means to accomplish this pre-compressional heating of the fusion fuel, but there are challenges. The laser must penetrate a foil covering the laser entrance hole and deposit 20-30 kJ within the ~1 cm length of the liner in fuel at 6-12 mg/cc. Such high densities could result in beam scattering due to refraction and laser plasma interactions. Numerical simulations of the laser heating process are presented, which indicate that energies as high as 30 kJ could be deposited in the fuel by using two laser pulses of different wavelengths. Simulations of this process will be presented as well of results for a MagLIF design for a potential new machine delivering 50 MA of current. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  15. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.

    PubMed

    Joglekar, A S; Thomas, A G R; Fox, W; Bhattacharjee, A

    2014-03-14

    In the interaction of high-power laser beams with solid density plasma there are a number of mechanisms that generate strong magnetic fields. Such fields subsequently inhibit or redirect electron flows, but can themselves be advected by heat fluxes, resulting in complex interplay between thermal transport and magnetic fields. We show that for heating by multiple laser spots reconnection of magnetic field lines can occur, mediated by these heat fluxes, using a fully implicit 2D Vlasov-Fokker-Planck code. Under such conditions, the reconnection rate is dictated by heat flows rather than Alfvènic flows. We find that this mechanism is only relevant in a high β plasma. However, the Hall parameter ωcτei can be large so that thermal transport is strongly modified by these magnetic fields, which can impact longer time scale temperature homogeneity and ion dynamics in the system.

  16. Two basic plastic joining methods are fusion, mechanical--Part 1. [Comparison of mechanical and fusion joints in pipeline construction

    SciTech Connect

    Gunther, K.M. )

    1993-09-01

    Two basics techniques currently accepted by gas distribution utility companies for joining polyethylene pipe underground are fusion methods and mechanical joining. The general philosophy of Washington Gas Light Co. is to use fusion methods as much as possible, and use mechanical joints for repair and final tie-ins where fusion methods are impractical or impossible to use. Fusion methods used by gas industry users of plastic pipe include: butt fusion; socket fusion; saddle fusion; electrofusion. Mechanical pipe joining techniques or procedures include: factory made mechanical joints such as meter risers and transition fittings; hydraulic compression couplings; bolted and screwed compression couplings; stab type compression couplings; interior seal couplings. Every joining method has strengths, weaknesses, pitfalls and ways they can fail in service. The key is making the best selection based on such factors as location, temperature, conditions, available equipment, training level of personnel on the job and cost. No one method will do it all or every company would be using that particular method. Part 1 focuses on strengths, weaknesses, pitfalls and failure possibilities of the four fusion methods. In the second part, attention will be given to the five mechanical techniques.

  17. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  18. Safety of magnetic fusion facilities: Volume 2, Guidance

    SciTech Connect

    1995-07-01

    This document provides guidance for the implementation of the requirements identified in Vol. 1 of this Standard. This guidance is intended for the managers, designers, operators, and other personnel with safety responsibilities for facilities designated as magnetic fusion facilities. While Vol. 1 is generally applicable in that requirements there apply to a wide range of fusion facilities, this volume is concerned mainly with large facilities such as the International Thermonuclear Experimental Reactor (ITER). Using a risk-based prioritization, the concepts presented here may also be applied to other magnetic fusion facilities. This volume is oriented toward regulation in the Department of Energy (DOE) environment.

  19. Fusion of phospholipid vesicles arrested by quick-freezing. The question of lipidic particles as intermediates in membrane fusion.

    PubMed

    Bearer, E L; Düzgünes, N; Friend, D S; Papahadjopoulos, D

    1982-12-01

    We have examined the early events in Ca2+-induced fusion of large (0.2 microns diameter) unilamellar cardiolipin/phosphatidylcholine and phosphatidylserine/phosphatidylethanolamine vesicles by quick-freezing freeze-fracture electron microscopy, eliminating the necessity of using glycerol as a cryoprotectant. Freeze-fracture replicas of vesicle suspensions frozen after 1-2 s of stimulation revealed that the majority of vesicles had already undergone membrane fusion, as evidenced by dumbbell-shaped structures and large vesicles. In the absence of glycerol, lipidic particles or the hexagonal HII phase, which have been proposed to be intermediate structures in membrane fusion, were not observed at the sites of fusion. Lipidic particles were evident in less than 5% of the cardiolipin/phosphatidylcholine vesicles after long-term incubation with Ca2+, and the addition of glycerol produced more vesicles displaying the particles. We have also shown that rapid fusion occurred within seconds of Ca2+ addition by the time-course of fluorescence emission produced by the intermixing of aqueous contents of two separate vesicle populations. These studies therefore have produced no evidence that lipidic particles are necessary intermediates for membrane fusion. On the contrary, they indicate that lipidic particles are structures obtained at equilibrium long after fusion has occurred and they become particularly prevalent in the presence of glycerol.

  20. Laser inertial fusion-based energy: Neutronic design aspects of a hybrid fusion-fission nuclear energy system

    NASA Astrophysics Data System (ADS)

    Kramer, Kevin James

    This study investigates the neutronics design aspects of a hybrid fusion-fission energy system called the Laser Fusion-Fission Hybrid (LFFH). A LFFH combines current Laser Inertial Confinement fusion technology with that of advanced fission reactor technology to produce a system that eliminates many of the negative aspects of pure fusion or pure fission systems. When examining the LFFH energy mission, a significant portion of the United States and world energy production could be supplied by LFFH plants. The LFFH engine described utilizes a central fusion chamber surrounded by multiple layers of multiplying and moderating media. These layers, or blankets, include coolant plenums, a beryllium (Be) multiplier layer, a fertile fission blanket and a graphite-pebble reflector. Each layer is separated by perforated oxide dispersion strengthened (ODS) ferritic steel walls. The central fusion chamber is surrounded by an ODS ferritic steel first wall. The first wall is coated with 250-500 mum of tungsten to mitigate x-ray damage. The first wall is cooled by Li17Pb83 eutectic, chosen for its neutron multiplication and good heat transfer properties. The Li17Pb 83 flows in a jacket around the first wall to an extraction plenum. The main coolant injection plenum is immediately behind the Li17Pb83, separated from the Li17Pb83 by a solid ODS wall. This main system coolant is the molten salt flibe (2LiF-BeF2), chosen for beneficial neutronics and heat transfer properties. The use of flibe enables both fusion fuel production (tritium) and neutron moderation and multiplication for the fission blanket. A Be pebble (1 cm diameter) multiplier layer surrounds the coolant injection plenum and the coolant flows radially through perforated walls across the bed. Outside the Be layer, a fission fuel layer comprised of depleted uranium contained in Tristructural-isotropic (TRISO) fuel particles having a packing fraction of 20% in 2 cm diameter fuel pebbles. The fission blanket is cooled by

  1. Role of radiogenic heat generation in surface heat flow formation

    NASA Astrophysics Data System (ADS)

    Khutorskoi, M. D.; Polyak, B. G.

    2016-03-01

    Heat generation due to decay of long-lived radioactive isotopes is considered in the Earth's crust of the Archean-Proterozoic and Paleozoic provinces of Eurasia and North America. The heat flow that forms in the mantle is calculated as the difference between the heat flow observed at the boundary of the solid Earth and radiogenic heat flow produced in the crust. The heat regime in regions with anomalously high radiogenic heat generation is discussed. The relationship between various heat flow components in the Precambrian and Phanerozoic provinces has been comparatively analyzed, and the role of erosion of the surfaceheat- generating layer has been estimated.

  2. Benchmarking of data fusion algorithms in support of earth observation based Antarctic wildlife monitoring

    NASA Astrophysics Data System (ADS)

    Witharana, Chandi; LaRue, Michelle A.; Lynch, Heather J.

    2016-03-01

    Remote sensing is a rapidly developing tool for mapping the abundance and distribution of Antarctic wildlife. While both panchromatic and multispectral imagery have been used in this context, image fusion techniques have received little attention. We tasked seven widely-used fusion algorithms: Ehlers fusion, hyperspherical color space fusion, high-pass fusion, principal component analysis (PCA) fusion, University of New Brunswick fusion, and wavelet-PCA fusion to resolution enhance a series of single-date QuickBird-2 and Worldview-2 image scenes comprising penguin guano, seals, and vegetation. Fused images were assessed for spectral and spatial fidelity using a variety of quantitative quality indicators and visual inspection methods. Our visual evaluation elected the high-pass fusion algorithm and the University of New Brunswick fusion algorithm as best for manual wildlife detection while the quantitative assessment suggested the Gram-Schmidt fusion algorithm and the University of New Brunswick fusion algorithm as best for automated classification. The hyperspherical color space fusion algorithm exhibited mediocre results in terms of spectral and spatial fidelities. The PCA fusion algorithm showed spatial superiority at the expense of spectral inconsistencies. The Ehlers fusion algorithm and the wavelet-PCA algorithm showed the weakest performances. As remote sensing becomes a more routine method of surveying Antarctic wildlife, these benchmarks will provide guidance for image fusion and pave the way for more standardized products for specific types of wildlife surveys.

  3. Application of the JDL data fusion process model to hard/soft information fusion in the condition monitoring of aircraft

    NASA Astrophysics Data System (ADS)

    Bernardo, Joseph T.

    2014-05-01

    Hard/soft information fusion has been proposed as a way to enhance diagnostic capability for the condition monitoring of machinery. However, there is a limited understanding of where hard/soft information fusion could and should be applied in the condition monitoring of aircraft. Condition-based maintenance refers to the philosophy of performing maintenance when the need arises, based upon indicators of deterioration in the condition of the machinery. The addition of the multisensory capability of human cognition to electronic sensors may create a fuller picture of machinery condition. Since 1988, the Joint Directors of Laboratories (JDL) data fusion process model has served as a framework for information fusion research. Advances are described in the application of hard/soft information fusion in condition monitoring using terms that condition-based maintenance professionals in aviation will recognize. Emerging literature on hard/soft information fusion in condition monitoring is organized into the levels of the JDL data fusion process model. Gaps in the literature are identified, and the author's ongoing research is discussed. Future efforts will focus on building domain-specific frameworks and experimental design, which may provide a foundation for improving flight safety, increasing mission readiness, and reducing the cost of maintenance operations.

  4. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    SciTech Connect

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  5. Variable control of neutron albedo in toroidal fusion devices

    DOEpatents

    Jassby, Daniel L.; Micklich, Bradley J.

    1986-01-01

    An arrangement is provided for controlling neutron albedo in toroidal fusion devices having inboard and outboard vacuum vessel walls for containment of the neutrons of a fusion plasma. Neutron albedo material is disposed immediately adjacent the inboard wall, and is movable, preferably in vertical directions, so as to be brought into and out of neutron modifying communication with the fusion neutrons. Neutron albedo material preferably comprises a liquid form, but may also take pebble, stringer and curtain-like forms. A neutron flux valve, rotatable about a vertical axis is also disclosed.

  6. Current use of biologic graft extenders for spinal fusion.

    PubMed

    Coseo, N M; Saldua, N; Harrop, J

    2012-09-01

    Use of biologic graft extenders in spinal fusions is increasing. Multiple allograft alternatives exist to the "gold-standard" autologous bone grafting. The ideal graft extender is osteoconductive, osteoinductive and has osteogenic potential. While the ideal graft extender has yet to be found, available bone graft extenders have varying degrees of predominantly osteoconductive and osteoinductive properties. This review will provide an update on available graft extenders including bone morphogenetic proteins, mesenchymal stem cells, and demineralized bone matrix. The goal is to provide a review of the current use in spinal fusions and future directions in biologics for spinal fusion.

  7. Cost assessment of a generic magnetic fusion reactor

    SciTech Connect

    Sheffield, J.; Dory, R.A.

    1984-01-01

    A generic magnetic fusion reactor model is used to determine the conditions under which electricity generation from fusion would be economically viable. The use of a generic model helps to circumvent problems associated with present perceptions of magnetic configurations. It helps also to decouple those limitations set by generic constraints such as nuclear cross sections from those set by the state of development today. The model shows that only moderate advances are required in reactor characteristics over current designs to make an economically attractive magnetic fusion reactor.

  8. Suppression of energetic particle driven instabilities with HHFW heating

    SciTech Connect

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; Darrow, D. S.; Gorelenkov, N.; Kramer, G.; Liu, D.; Crocker, N. A.; Kubota, S.; White, R.

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fast Wave heating.

  9. The effect of albumin fusion patterns on the production and bioactivity of the somatostatin-14 fusion protein in Pichia pastoris.

    PubMed

    Ding, Yuedi; Fan, Jun; Li, Wenxin; Yang, Runlin; Peng, Ying; Deng, Lili; Wu, Yu; Fu, Qiang

    2013-08-01

    Somatostatin is a natural inhibitor of growth hormone, and its analogues are clinically used for the therapy of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndrome. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins, and Pichia pastoris was used as an expression system. Three fusion proteins, (somatostatin (SS)14)2-human serum albumin (HSA), (SS14)3-HSA, and HSA-(SS14)3, were constructed with different fusion copies of somatostatin-14 and fusion orientations. The expression level of (SS14)3-HSA and HSA-(SS14)3 was much lower than (SS14)2-HSA due to the additional fusion of the somatostatin-14 molecule. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard of somatostatin-14, all three fusion proteins were able to inhibit growth hormone secretion in the blood, with (SS14)2-HSA being the most effective one. On the whole, (SS14)2-HSA was the most effective protein in both production level and bioactivity, and increasing the number of small protein copies fused to HSA may not be a suitable method to improve the protein bioactivity. PMID:23712794

  10. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    SciTech Connect

    Reyes, S; Gomez del Rio, J; Sanz, J

    2000-02-23

    Previous studies of the safety and environmental (S and E) aspects of the HYLIFE-II inertial fusion energy (IFE) power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work a set of computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) has been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here the authors consider a severe lost of coolant accident (LOCA) producing simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the containment) and of the two barriers surrounding the chamber (inner shielding and containment building it self). Even though containment failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product release and transport. The results of these calculations show that the estimated off-site dose is less than 6 mSv (0.6 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  11. Investigation of materials for fusion power reactors

    NASA Astrophysics Data System (ADS)

    Bouhaddane, A.; Slugeň, V.; Sojak, S.; Veterníková, J.; Petriska, M.; Bartošová, I.

    2014-06-01

    The possibility of application of nuclear-physical methods to observe radiation damage to structural materials of nuclear facilities is nowadays a very actual topic. The radiation damage to materials of advanced nuclear facilities, caused by extreme radiation stress, is a process, which significantly limits their operational life as well as their safety. In the centre of our interest is the study of the radiation degradation and activation of the metals and alloys for the new nuclear facilities (Generation IV fission reactors, fusion reactors ITER and DEMO). The observation of the microstructure changes in the reactor steels is based on experimental investigation using the method of positron annihilation spectroscopy (PAS). The experimental part of the work contains measurements focused on model reactor alloys and ODS steels. There were 12 model reactor steels and 3 ODS steels. We were investigating the influence of chemical composition on the production of defects in crystal lattice. With application of the LT 9 program, the spectra of specimen have been evaluated and the most convenient samples have been determined.

  12. The effect of albumin fusion structure on the production and bioactivity of the somatostatin-28 fusion protein in Pichia pastoris.

    PubMed

    Ding, Yuedi; Fan, Jun; Li, Wenxin; Peng, Ying; Yang, Runlin; Deng, Lili; Fu, Qiang

    2014-06-01

    Somatostatin, a natural inhibitor of growth hormone (GH), and its analogs have been used in clinical settings for the treatment of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndromes. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins and Pichia pastoris was used as an expression system. Three fusion proteins (SS28)(2)-HSA, (SS28)(3)-HSA, and HSA-(SS28)(2), were constructed with different fusion copies of somatostatin-28 and fusion orientations. The expression level of (SS28)(3)-HSA was much lower than (SS28)(2)-HSA and HSA-(SS28)(2) due to the additional fusion of the somatostatin-28 molecule. MALDI-TOF mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard, somatostatin-14, all three fusion proteins were able to inhibit GH secretion in blood, with (SS28)(2)-HSA being the most effective one. A pharmacokinetics study showed that (SS28)(2)-HSA had a prolonged half-life of 2 h. These results showed that increasing the number of small protein copies fused to HSA may not be a suitable method for improving protein bioactivity.

  13. The effect of albumin fusion structure on the production and bioactivity of the somatostatin-28 fusion protein in Pichia pastoris.

    PubMed

    Ding, Yuedi; Fan, Jun; Li, Wenxin; Peng, Ying; Yang, Runlin; Deng, Lili; Fu, Qiang

    2014-06-01

    Somatostatin, a natural inhibitor of growth hormone (GH), and its analogs have been used in clinical settings for the treatment of acromegaly, gigantism, thyrotropinoma, and other carcinoid syndromes. However, natural somatostatin is limited for clinical usage because of its short half-life in vivo. Albumin fusion technology was used to construct long-acting fusion proteins and Pichia pastoris was used as an expression system. Three fusion proteins (SS28)(2)-HSA, (SS28)(3)-HSA, and HSA-(SS28)(2), were constructed with different fusion copies of somatostatin-28 and fusion orientations. The expression level of (SS28)(3)-HSA was much lower than (SS28)(2)-HSA and HSA-(SS28)(2) due to the additional fusion of the somatostatin-28 molecule. MALDI-TOF mass spectrometry revealed that severe degradation occurred in the fermentation process. Similar to the standard, somatostatin-14, all three fusion proteins were able to inhibit GH secretion in blood, with (SS28)(2)-HSA being the most effective one. A pharmacokinetics study showed that (SS28)(2)-HSA had a prolonged half-life of 2 h. These results showed that increasing the number of small protein copies fused to HSA may not be a suitable method for improving protein bioactivity. PMID:24752560

  14. Accident consequences analysis of the HYLIFE-II inertial fusion energy power plant design

    NASA Astrophysics Data System (ADS)

    Reyes, S.; Latkowski, J. F.; Gomez del Rio, J.; Sanz, J.

    2001-05-01

    Previous studies of the safety and environmental aspects of the HYLIFE-II inertial fusion energy power plant design have used simplistic assumptions in order to estimate radioactivity releases under accident conditions. Conservatisms associated with these traditional analyses can mask the actual behavior of the plant and have revealed the need for more accurate modeling and analysis of accident conditions and radioactivity mobilization mechanisms. In the present work, computer codes traditionally used for magnetic fusion safety analyses (CHEMCON, MELCOR) have been applied for simulating accident conditions in a simple model of the HYLIFE-II IFE design. Here we consider a severe loss of coolant accident (LOCA) in conjunction with simultaneous failures of the beam tubes (providing a pathway for radioactivity release from the vacuum vessel towards the confinement) and of the two barriers surrounding the chamber (inner shielding and confinement building itself). Even though confinement failure would be a very unlikely event it would be needed in order to produce significant off-site doses. CHEMCON code allows calculation of long-term temperature transients in fusion reactor first wall, blanket, and shield structures resulting from decay heating. MELCOR is used to simulate a wide range of physical phenomena including thermal-hydraulics, heat transfer, aerosol physics and fusion product transport and release. The results of these calculations show that the estimated off-site dose is less than 5 mSv (0.5 rem), which is well below the value of 10 mSv (1 rem) given by the DOE Fusion Safety Standards for protection of the public from exposure to radiation during off-normal conditions.

  15. Development of silicon carbide composites for fusion

    SciTech Connect

    Snead, L.L. )

    1993-08-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these [open quotes]reduced activity[close quotes] materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs.

  16. Premature activation of the paramyxovirus fusion protein before target cell attachment with corruption of the viral fusion machinery.

    PubMed

    Farzan, Shohreh F; Palermo, Laura M; Yokoyama, Christine C; Orefice, Gianmarco; Fornabaio, Micaela; Sarkar, Aurijit; Kellogg, Glen E; Greengard, Olga; Porotto, Matteo; Moscona, Anne

    2011-11-01

    Paramyxoviruses, including the childhood pathogen human parainfluenza virus type 3, enter host cells by fusion of the viral and target cell membranes. This fusion results from the concerted action of its two envelope glycoproteins, the hemagglutinin-neuraminidase (HN) and the fusion protein (F). The receptor-bound HN triggers F to undergo conformational changes that render it competent to mediate fusion of the viral and cellular membranes. We proposed that, if the fusion process could be activated prematurely before the virion reaches the target host cell, infection could be prevented. We identified a small molecule that inhibits paramyxovirus entry into target cells and prevents infection. We show here that this compound works by an interaction with HN that results in F-activation prior to receptor binding. The fusion process is thereby prematurely activated, preventing fusion of the viral membrane with target cells and precluding viral entry. This first evidence that activation of a paramyxovirus F can be specifically induced before the virus contacts its target cell suggests a new strategy with broad implications for the design of antiviral agents.

  17. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  18. Overview of inertial fusion research in the United States

    NASA Astrophysics Data System (ADS)

    Sangster, T. C.; McCrory, R. L.; Goncharov, V. N.; Harding, D. R.; Loucks, S. J.; McKenty, P. W.; Meyerhofer, D. D.; Skupsky, S.; Yaakobi, B.; MacGowan, B. J.; Atherton, L. J.; Hammel, B. A.; Lindl, J. D.; Moses, E. I.; Porter, J. L.; Cuneo, M. E.; Matzen, M. K.; Barnes, C. W.; Fernandez, J. C.; Wilson, D. C.; Kilkenny, J. D.; Bernat, T. P.; Nikroo, A.; Logan, B. G.; Yu, S.; Petrasso, R. D.; Sethian, J. D.; Obenschain, S.

    2007-10-01

    The inertial confinement fusion (ICF) programme, the high-average-power lasers (HAPL) programme, and the heavy ion fusion (HIF) programme are making long-term investments to establish the scientific and technical basis for an economically and environmentally attractive fusion power source. In the near term, the National Ignition Campaign is expected to establish the scientific and technical basis for ignition and gain on the National Ignition Facility. The results of these experiments and the implications for target design will be incorporated into the long-term efforts to develop a viable power-plant concept including target production, chamber dynamics and driver.

  19. Direct heating of a laser-imploded core by ultraintense laser-driven ions.

    PubMed

    Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A

    2015-05-15

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion. PMID:26024175

  20. Direct heating of a laser-imploded core by ultraintense laser-driven ions.

    PubMed

    Kitagawa, Y; Mori, Y; Komeda, O; Ishii, K; Hanayama, R; Fujita, K; Okihara, S; Sekine, T; Satoh, N; Kurita, T; Takagi, M; Watari, T; Kawashima, T; Kan, H; Nishimura, Y; Sunahara, A; Sentoku, Y; Nakamura, N; Kondo, T; Fujine, M; Azuma, H; Motohiro, T; Hioki, T; Kakeno, M; Miura, E; Arikawa, Y; Nagai, T; Abe, Y; Ozaki, S; Noda, A

    2015-05-15

    A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

  1. Fusion Of Edge Maps In Color Images

    NASA Astrophysics Data System (ADS)

    Delcroix, C. J.; Abidi, M. A.

    1988-10-01

    In this paper, a new analytic method for the detection, of edges in color images is presented. This method focuses on the integration of three edge maps in order to increase one's confidence about the presence/absence of edges in a depicted scene. The integration process utilizes an algorithm developed by the authors under a broader research topic: The integration of registered multisensory data. It is based on the interaction between the following two constraints: the principle of existence, which tends to maximize the value of the output edge map at a given location if one input edge map features an edge, and the principle of confirmability, which adjusts this value according to the edge contents in the other input edge map at the same location by maximiz-ing the similarity between them. The latter two maximizations are achieved using the Euler-Language Calculus of Variations equations. This algorithm, which fuses optimally two correlated edge maps with regard to the above principles is extended to the simultaneous fusion of three edge maps. Experiments were conducted using not only the red, green, and blue representation of color information but also other bases.

  2. Impact of Fast Ignition on Laser Fusion Energy Development

    NASA Astrophysics Data System (ADS)

    Mirna, Kunioki

    2016-10-01

    Reviewed are the early history of Japanese laser fusion research and the recent achievement of fast ignition research at Institute of Laser Engineering (ILE), Osaka University. After the achievement of high density compression at Osaka University, LLE of University Rochester, and LLNL, the critical issue of Inertial Fusion Energy (IFE) research became the formation of hot spark in a compressed plasma. In this lecture, the history of the fast ignition research will be reviewed and future prospects are presented.

  3. Fusion of phospholipid vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the absence of calcium.

    PubMed

    Morero, R D; Viñals, A L; Bloj, B; Farías, R N

    1985-04-01

    Ca2+-induced fusion of phospholipid vesicles (phosphatidylcholine/phosphatidic acid, 9:1 mol/mol) prepared by ethanolic injection was followed by five different procedures: resonance energy transfer, light scattering, electron microscopy, intermixing of aqueous content, and gel filtration through Sepharose 4-B. The five methods gave concordant results, showing that vesicles containing only 10% phosphatidic acid can be induced to fuse by millimolar concentrations of Ca2+. When the fusing capability of several soluble proteins was assayed, it was found that concanavalin A, bovine serum albumin, ribonuclease, and protease were inactive