Numberical Solution to Transient Heat Flow Problems
ERIC Educational Resources Information Center
Kobiske, Ronald A.; Hock, Jeffrey L.
1973-01-01
Discusses the reduction of the one- and three-dimensional diffusion equation to the difference equation and its stability, convergence, and heat-flow applications under different boundary conditions. Indicates the usefulness of this presentation for beginning students of physics and engineering as well as college teachers. (CC)
Numerical solution of the imprecisely defined inverse heat conduction problem
NASA Astrophysics Data System (ADS)
Smita, Tapaswini; Chakraverty, S.; Diptiranjan, Behera
2015-05-01
This paper investigates the numerical solution of the uncertain inverse heat conduction problem. Uncertainties present in the system parameters are modelled through triangular convex normalized fuzzy sets. In the solution process, double parametric forms of fuzzy numbers are used with the variational iteration method (VIM). This problem first computes the uncertain temperature distribution in the domain. Next, when the uncertain temperature measurements in the domain are known, the functions describing the uncertain temperature and heat flux on the boundary are reconstructed. Related example problems are solved using the present procedure. We have also compared the present results with those in [Inf. Sci. (2008) 178 1917] along with homotopy perturbation method (HPM) and [Int. Commun. Heat Mass Transfer (2012) 39 30] in the special cases to demonstrate the validity and applicability.
Solution to problems of bacterial impurity of heating systems
NASA Astrophysics Data System (ADS)
Sharapov, V. I.; Zamaleev, M. M.
2015-09-01
The article describes the problems of the operation of open and closed district heating systems related to the bacteriological contamination of heating-system water. It is noted that district heating systems are basically safe in sanitary epidemiological terms. Data on the dangers of sulfide contamination of heating systems are given. It is shown that the main causes of the development of sulfate-reducing and iron bacteria in heating systems are a significant biological contamination of source water to fuel heating systems, which is determined by water oxidizability, and a low velocity of the motion of heating-system water in the heating system elements. A case of sulfide contamination of a part of the outdoor heat-supply system of the city of Ulyanovsk is considered in detail. Measures for cleaning pipelines and heating system equipment from the waste products of sulfate-reducing bacteria and iron bacteria and for improving the quality of heating-system water by organizing the hydraulic and water-chemistry condition that makes it possible to avoid the bacteriological contamination of heating systems are proposed. The positive effect of sodium silicate on the prevention of sulfide contamination of heating systems is shown.
Analytical Solutions of Heat-Conduction Problems with Time-Varying Heat-Transfer Coefficients
NASA Astrophysics Data System (ADS)
Kudinov, V. A.; Eremin, A. V.; Stefanyuk, E. V.
2015-05-01
The problem on heat conduction of an infinite plate with a heat-transfer coefficient changing linearly with time for third-kind boundary conditions was solved analytically based on determination of the front of a temperature disturbance in this plate and introduction of additional boundary conditions. On the basis of the solution obtained, graphs of the distribution of isotherms in the indicated plate and the velocities of their movement along a spatial variable in it were constructed. As a result of the solution of the inverse problem on the heat conduction of the infinite plate with the use of the results of numerical calculation of the change in its temperature at any point on the indicated spatial coordinate, the Predvoditelev number was identified with an accuracy of 2%, which made it possible to determine the time dependence of the heat-transfer coefficient of the plate.
Numerical solution of nonlinear heat problem with moving boundary
NASA Astrophysics Data System (ADS)
AL-Mannai, Mona; Khabeev, Nail
2012-01-01
Two phase gas-liquid flow in pipes is widely spread in space applications: bubble flows appear in cryogenic components transport through fuel/oxidant supply lines. Another important application is based on the fact that in liquid flows with small bubbles a close contact between the two phases occurs resulting in high rates of transfer between them. The compactness of a system makes it ideally suited to serve as a space-based two-phase bio-reactor which forms an important unit in environmental control and life support system deployed onboard. A numerical method was developed for solving a nonlinear problem of thermal interaction between a spherical gas bubble and surrounding liquid. The system of equations for describing this interaction was formulated. It includes ordinary and nonlinear partial differential equations. The problem was solved using finite-difference technique by dividing the system into spherical layers inside the bubble and employing the new variable which "freezes" the moving boundary of the bubble. A numerical solution is obtained for the problem of radial bubble motion induced by a sudden pressure change in the liquid—a situation which corresponds to the behavior of bubbles beyond a shock wave front when the latter enters a bubble curtain.
Removal of numerical instability in the solution of an inverse heat conduction problem
NASA Astrophysics Data System (ADS)
Pourgholi, R.; Azizi, N.; Gasimov, Y. S.; Aliev, F.; Khalafi, H. K.
2009-06-01
In this paper, we consider an inverse heat conduction problem (IHCP). A set of temperature measurements at a single sensor location inside the heat conduction body is required. Using a transformation, the ill-posed IHCP becomes a Cauchy problem. Since the solution of Cauchy problem, exists and is unique but not always stable, the ill-posed problem is closely approximated by a well-posed problem. For this new well-posed problem, the existence, uniqueness, and stability of the solution are proved.
ERIC Educational Resources Information Center
Connors, G. Patrick
Heat problems and heat cramps related to jogging can be caused by fluid imbalances, medications, dietary insufficiency, vomiting or diarrhea, among other factors. If the condition keeps reoccurring, the advice of a physician should be sought. Some preventive measures that can be taken include: (1) running during the cooler hours of the day; (2)…
Conduction heat transfer solutions
VanSant, J.H.
1980-03-01
This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references.
Exact analytical solution to a transient conjugate heat-transfer problem
NASA Technical Reports Server (NTRS)
Sucec, J.
1973-01-01
An exact analytical solution is found for laminar, constant-property, slug flow over a thin plate which is also convectively cooled from below. The solution is found by means of two successive Laplace transformations when a transient in the plate and the fluid is initiated by a step change in the fluid inlet temperature. The exact solution yields the transient fluid temperature, surface heat flux, and surface temperature distributions. The results of the exact transient solution for the surface heat flux are compared to the quasi-steady values, and a criterion for the validity of the quasi-steady results is found. Also the effect of the plate coupling parameter on the surface heat flux are investigated.
Conduction heat transfer solutions
VanSant, J.H.
1983-08-01
This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.
NASA Astrophysics Data System (ADS)
Kharin, Stanislav N.; Sarsengeldin, Merey M.; Nouri, Hassan
2016-08-01
On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution, which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is obtained from integral error function and its properties which are represented in the form of series whose coefficients have to be determined. Convergence of solution series is proved.
NASA Technical Reports Server (NTRS)
Kozdoba, L. A.; Krivoshei, F. A.
1985-01-01
The solution of the inverse problem of nonsteady heat conduction is discussed, based on finding the coefficient of the heat conduction and the coefficient of specific volumetric heat capacity. These findings are included in the equation used for the electrical model of this phenomenon.
Correct Problems, Desperate Solutions.
ERIC Educational Resources Information Center
Donohue, William A.
1996-01-01
Argues that the social problems confronting America have been bombarded with ill-conceived and unsuccessful social policy largely driven by fear. Explains that parental licensing is a draconian and unworkable solution. Vouchers for indigent youth to attend Catholic schools, developing after-school and summer programs, and reforming welfare are…
NASA Astrophysics Data System (ADS)
Egidi, Nadaniela; Giacomini, Josephin; Maponi, Pierluigi
2016-06-01
Matter of this paper is the study of the flow and the corresponding heat transfer in a U-shaped heat exchanger. We propose a mathematical model that is formulated as a forced convection problem for incompressible and Newtonian fluids and results in the unsteady Navier-Stokes problem. In order to get a solution, we discretise the equations with both the Finite Elements Method and the Finite Volumes Method. These procedures give rise to a non-symmetric indefinite quadratic system of equations. Thus, three regularisation techniques are proposed to make approximations effective and ideas to compare their results are provided.
Tsai, Y.M.; Crane, R.A. )
1992-05-01
Heat transfer across surfaces in imperfect contact occurs in many practical situations. Since the thermal contact conductance problem has appeared in the literature, substantial efforts have been made to estimate the thermal conductance across the interface. Some of the techniques recently developed of estimating thermal contact conductance are based on experimental temperature data at one or several interior positions of the contacting solids and the calculation of the temperature at these locations for known contact conductance. Consequently, an accurate and efficient method for computing temperature distributions because quite important. FDM and FEM are most widely used. However, for most contact conductance computation methods, only the temperatures at the contacting regions and several other positions near the interface need to be determined, so the general FDM and FEM are not particularly efficient in solving this problem. This paper presents an analytical temperature distribution solution to the one-dimensional symmetric system with heat flux on one outside surface and insulation on the other. This analysis provides a theoretical basis for transient measurement of thermal contact conductance. While it is common practice in steady-state measurements to use a water-cooled heat sink, it is possible to limit the transient solution to time interval prior to any detectable temperature increase at the cold end. This effectively eliminates the need for water cooling and permits the use of an insulated boundary. The analytical solution to the mentioned problem obtained shows that for a symmetric system the temperature distribution solution includes two sets of distinct eigenfunctions.
Heat transfer in energy problems
NASA Astrophysics Data System (ADS)
Mizushina, T.; Yang, W. J.
Results of recent research are presented concerning heat transfer in energy problems, including high-temperature heat transfer, high-flux heat transfer, high-performance heat transfer, heat transfer in nonconventional energy (power and propulsion) systems, and novel heat transfer techniques. Topics discussed include studies of full-coverage film cooling, radiative properties of metals and alloys at high temperature, critical heat flux conditions in high-quality boiling systems, heat transfer characteristics of the evaporation of a liquid droplet on heated surfaces, high-performance surfaces for non-boiling heat transfer, and high performance heat transfer surfaces for boiling and condensation. Also examined are high flux heat transfer in gaseous solid suspension flow, nuclear process heat applications of high temperature heat exchange, heat transfer considerations in the use of new energy resources, and high performance mist-cooled condensers for geothermal binary cycle plants. No individual items are abstracted in this volume
Generating Problems from Problems and Solutions from Solutions
ERIC Educational Resources Information Center
Arcavi, Abraham; Resnick, Zippora
2008-01-01
This article describes a geometrical solution to a problem that is usually solved geometrically as an example of how alternative solutions may enrich the teaching and learning of mathematics. (Contains 11 figures.)
Classroom Management: Problems and Solutions.
ERIC Educational Resources Information Center
Gordon, Debra G.
2001-01-01
Focuses on classroom management in the music classroom. Discusses why a management system is important and how to meet student needs. Addresses types of behavior problems and solutions for four levels of problems related to student behavior. Explores the importance of proactive management on the part of the music teacher. (CMK)
Viking heat sterilization - Progress and problems
NASA Technical Reports Server (NTRS)
Daspit, L. P.; Cortright, E. M.; Stern, J. A.
1974-01-01
The Viking Mars landers to be launched in 1975 will carry experiments in biology, planetology, and atmospheric physics. A terminal dry-heat sterilization process using an inert gas was chosen to meet planetary quarantine requirements and preclude contamination of the biology experiment by terrestrial organisms. Deep sterilization is performed at the component level and terminal surface sterilization at the system level. Solutions to certain component problems relating to sterilization are discussed, involving the gyroscope, tape recorder, battery, electronic circuitry, and outgassing. Heat treatment placed special requirements on electronic packaging, including fastener preload monitoring and solder joints. Chemical and physical testing of nonmetallic materials was performed to establish data on their behavior in heat-treatment and vacuum environments. A Thermal Effects Test Model and a Proof Test Capsule were used. It is concluded that a space vehicle can be designed and fabricated to withstand heat sterilization requirements.
New computer program solves wide variety of heat flow problems
NASA Technical Reports Server (NTRS)
Almond, J. C.
1966-01-01
Boeing Engineering Thermal Analyzer /BETA/ computer program uses numerical methods to provide accurate heat transfer solutions to a wide variety of heat flow problems. The program solves steady-state and transient problems in almost any situation that can be represented by a resistance-capacitance network.
One solution for two problems.
This article presents Dr. Nicky Padayachee's resolution concerning AIDS and its effect on the problem of overpopulation. Dr. Nicky Padayachee of Johannesburg City Council's Health Department stated that both of these problems pose a threat to the economic development with solutions depending on the development of the country. The increasing population of South Africa in comparison with its economic decline resulted to unemployment and high fertility. It has been proposed that the local government should double its efforts in the promotion of family planning through the provision of electricity and using television as a mode of disseminating family planning information. Further, a strict implementation of optimal urbanization, education and general economic development opportunity for all individuals was suggested. It was estimated that 2.5-7.5 million people will be HIV-positive by the year 2005, and any long-term planning would need essential re-examination and review as the demographic situation unfolds. AIDS education was insufficient by itself to control AIDS, but the stability in education, family life and empowerment of women were important in the implementation of any AIDS prevention program. Generally, development plays a major role in the decrease of AIDS and fertility by providing individuals with opportunities and jobs. On his last statement, he concluded that the best treatment for AIDS and population growth is a job. PMID:12349359
School Discipline: Problems Effecting Solutions.
ERIC Educational Resources Information Center
Heitzman, Andrew J.; Wiley, David B.
1987-01-01
Failure to solve school discipline problems is attributed to four factors: school district priorities, unclear problem dimensions, inadequate teacher training, and flaws in teacher/ administrator applied psychology. Psychological approaches that provide systems to control student behavior are described, including biophysical, interactionist, and…
Multiple Solutions Involving Geoboard Problems.
ERIC Educational Resources Information Center
Smith, Lyle R.
1993-01-01
Illustrates various methods to determine the perimeter and area of triangles and polygons formed on the geoboard. Methods utilize algebraic techniques, trigonometry, geometric theorems, and analytic geometry to solve problems and connect a variety of mathematical concepts. (MDH)
Solution of the Robbins problem.
McCune, W.; Mathematics and Computer Science
1997-01-01
In this article we show that the three equations known as commutativity, associativity, and the Robbins equation are a basis for the variety of Boolean algebras. The problem was posed by Herbert Robbins in the 1930s. The proof was found automatically by EQP, a theorem-proving program for equational logic. We present the proof and the search strategies that enabled the program to find the proof.
Heat capacity of alkanolamine aqueous solutions
Chiu, L.F.; Li, M.H.
1999-12-01
Heat capacities of monoethanoloamine, diglycolamine, diethanolamine, di-w propanolamine, triethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-l-propanol, and 2-piperidineethanol aqueous solutions were measured from 30 to 80 C with a differential scanning calorimeter (DSC). The mole fractions of alkanolamines studied are 0.2, 0.4, 0.6, and 0.8. Heat capacities of N-methyldiethanolamine aqueous solutions have been measured to verify the validity of C{sub p} measurements for alkanolamine aqueous solutions. The estimated uncertainty of the measured heat capacities is {plus{underscore}minus}3%, including the effect of up to 5% impurities in a substance. An excess molar heat capacity expression using the Redlich-Kister equation for the composition dependence is used to represent the measured C{sub p} of alkanolamine aqueous solutions. For a total of 374 data points, the calculation results for eight alkanolamine solutions give the overall average absolute deviations of 11.9% and 0.29% for the excess molar heat capacity and the heat capacity, respectively. The heat capacities presented in this study are, in general, of sufficient accuracy for most engineering-design calculations. Solutions of alkanolamines are industrially important mixtures used in the natural gas industry, oil refineries, petroleum chemical plants, and synthetic ammonia plants for the removal of acidic components such as CO{sub 2} and H{sub 2}S from gas streams.
A Mathematical Solution to the Motorway Problem
ERIC Educational Resources Information Center
Michaelson, Matthew T.
2009-01-01
This article presents a mathematical solution to a motorway problem. The motorway problem is an excellent application in optimisation. As it integrates the concepts of trigonometric functions and differentiation, the motorway problem can be used quite effectively as the basis for an assessment tool in senior secondary mathematics subjects.…
Optimal solutions of unobservable orbit determination problems
NASA Astrophysics Data System (ADS)
Cicci, David A.; Tapley, Byron D.
1988-12-01
The method of data augmentation, in the form ofa priori covariance information on the reference solution, as a means to overcome the effects of ill-conditioning in orbit determination problems has been investigated. Specifically, for the case when ill-conditioning results from parameter non-observability and an appropriatea priori covariance is unknown, methods by which thea priori covariance is optimally chosen are presented. In problems where an inaccuratea priori covariance is provided, the optimal weighting of this data set is obtained. The feasibility of these ‘ridge-type’ solution methods is demonstrated by their application to a non-observable gravity field recovery simulation. In the simulation, both ‘ridge-type’ and conventional solutions are compared. Substantial improvement in the accuracy of the conventional solution is realized by the use of these ridge-type solution methods. The solution techniques presented in this study are applicable to observable, but ill-conditioned problems as well as the unobservable problems directly addressed. For the case of observable problems, the ridge-type solutions provide an improvement in the accuracy of the ordinary least squares solutions.
Numerical solutions for heat flow in adhesive lap joints
NASA Technical Reports Server (NTRS)
Howell, P. A.; Winfree, William P.
1992-01-01
The present formulation for the modeling of heat transfer in thin, adhesively bonded lap joints precludes difficulties associated with large aspect ratio grids required by standard FEM formulations. This quasi-static formulation also reduces the problem dimensionality (by one), thereby minimizing computational requirements. The solutions obtained are found to be in good agreement with both analytical solutions and solutions from standard FEM programs. The approach is noted to yield a more accurate representation of heat-flux changes between layers due to a disbond.
Radioactive Waste...The Problem and Some Possible Solutions
ERIC Educational Resources Information Center
Olivier, Jean-Pierre
1977-01-01
Nuclear safety is a highly technical and controversial subject that has caused much heated debate and political concern. This article examines the problems involved in managing radioactive wastes and the techniques now used. Potential solutions are suggested and the need for international cooperation is stressed. (Author/MA)
A Solution Framework for Environmental Characterization Problems
This paper describes experiences developing a grid-enabled framework for solving environmental inverse problems. The solution approach taken here couples environmental simulation models with global search methods and requires readily available computational resources of the grid ...
The Pizza Problem: A Solution with Sequences
ERIC Educational Resources Information Center
Shafer, Kathryn G.; Mast, Caleb J.
2008-01-01
This article addresses the issues of coaching and assessing. A preservice middle school teacher's unique solution to the Pizza problem was not what the professor expected. The student's solution strategy, based on sequences and a reinvention of Pascal's triangle, is explained in detail. (Contains 8 figures.)
Problem-Solving Competitions: Just the Solution!
ERIC Educational Resources Information Center
Riley, Tracy L.; Karnes, Frances A.
2005-01-01
This article describes competitions across a range of curricular areas that develop students' problem solving skills by setting authentic, real-world tasks. As individuals or members of a team, students in these competitions are challenged with finding solutions to problems faced not only in today's scientific and technological world, but also in…
Solution to the quantum Zermelo navigation problem.
Brody, Dorje C; Meier, David M
2015-03-13
The solution to the problem of finding a time-optimal control Hamiltonian to generate a given unitary gate, in an environment in which there exists an uncontrollable ambient Hamiltonian (e.g., a background field), is obtained. In the classical context, finding the time-optimal way to steer a ship in the presence of a background wind or current is known as the Zermelo navigation problem, whose solution can be obtained by working out geodesic curves on a space equipped with a Randers metric. The solution to the quantum Zermelo problem, which is shown here to take a remarkably simple form, is likewise obtained by finding explicit solutions to the geodesic equations of motion associated with a Randers metric on the space of unitary operators. The result reveals that the optimal control in a sense "goes along with the wind." PMID:25815915
Lie Symmetry Analysis of AN Unsteady Heat Conduction Problem
NASA Astrophysics Data System (ADS)
di Stefano, O.; Sammarco, S.; Spinelli, C.
2010-04-01
We consider an unsteady thermal storage problem in a body whose surface is subjected to heat transfer by convection to an external environment (with a time varying heat transfer coefficient) within the context of Lie group analysis. We determine an optimal system of two-dimensional Abelian Lie subalgebras of the admitted Lie algebra of point symmetries, and show an example of reduction to autonomous form. Also, by adding a small term to the equation, rendering it hyperbolic, we determine the first order approximate Lie symmetries, and solve a boundary value problem. The solution is compared with that of the parabolic equation.
Quantum solution to the Byzantine agreement problem.
Fitzi, M; Gisin, N; Maurer, U
2001-11-19
We present a solution to an old problem in distributed computing. In its simplest form, a sender has to broadcast some information to two receivers, but they have access only to pairwise communication channels. Unlike quantum key distribution, here the goal is not secrecy but agreement, and the adversary (one of the receivers or the sender himself) is not outside but inside the game. Using only classical channels this problem is provably impossible. The solution uses pairwise quantum channels and entangled qutrits. PMID:11736379
Asymptotic solution for heat convection-radiation equation
Mabood, Fazle; Ismail, Ahmad Izani Md; Khan, Waqar A.
2014-07-10
In this paper, we employ a new approximate analytical method called the optimal homotopy asymptotic method (OHAM) to solve steady state heat transfer problem in slabs. The heat transfer problem is modeled using nonlinear two-point boundary value problem. Using OHAM, we obtained the approximate analytical solution for dimensionless temperature with different values of a parameter ε. Further, the OHAM results for dimensionless temperature have been presented graphically and in tabular form. Comparison has been provided with existing results from the use of homotopy perturbation method, perturbation method and numerical method. For numerical results, we used Runge-Kutta Fehlberg fourth-fifth order method. It was found that OHAM produces better approximate analytical solutions than those which are obtained by homotopy perturbation and perturbation methods, in the sense of closer agreement with results obtained from the use of Runge-Kutta Fehlberg fourth-fifth order method.
Nature, Human Nature, and Solutions to Problems.
ERIC Educational Resources Information Center
Pedrini, D. T.; Pedrini, B. C.
This paper promotes an undergraduate course that would discuss the great ideas of Plato, St. Paul, Karl Marx, Sigmund Freud, Jean Paul Sartre, B. F. Skinner, and Konrad Lorenz. This course would help students understand human values and behaviors while focusing on historical, world, and national problems. Tentative solutions would then be…
The Hubble Space Telescope: Problems and Solutions.
ERIC Educational Resources Information Center
Villard, Ray
1990-01-01
Presented is the best understanding of the flaw discovered in the optics of the Hubble Space Telescope and the possible solutions to the problems. The spherical aberration in the telescope's mirror and its effect on the quality of the telescope's imaging ability is discussed. (CW)
It's No Problem to Invent a Solution
ERIC Educational Resources Information Center
Graca, Rose M.
2012-01-01
A kindergarten class learns about inventions, inventors, and how to be an inventor. Engaging students in learning about pencil sharpeners led to researching and developing a lesson plan designed so students could learn how inventions are solutions to problems. Through identifying, researching, and brainstorming new inventions, the students…
Loop observations and the coronal heating problem
NASA Astrophysics Data System (ADS)
López Fuentes, M. C.; Klimchuk, J. A.
2015-08-01
Coronal heating continues to be one of the fundamental problems of solar physics. In recent years, instrumental advances and the availability of data from space observatories produced important progress, imposing restrictions to the models proposed. However, since the physical processes occur at spatial scales below the present instrumental resolution, definitive answers are still due. Since the corona is strongly dominated by the magnetic field, active region plasma is confined in closed structures or loops. These are the basic observable blocks of the corona, so the analysis of their structure and evolution is essential to understand the heating. In this report, mainly addressed to astronomers not necessarily familiarized with the subject, we review some of the proposed heating models and we pay special attention to the sometimes confusing and apparently contradictory observations of coronal loops. We discuss the consequences of these observations for some of the heating models proposed, in particular those based on impulsive events known as nanoflares.
Method of successive approximations for the solution of certain problems in aerodynamics
NASA Technical Reports Server (NTRS)
Shvets, M E
1951-01-01
A method of successive approximations for the solution of problems in the fields of diffusion, boundary-layer flow, and heat-transfer is illustrated by solving problems in each of these fields. In most of the examples, the approximate solutions are compared with known accurate solutions and the agreement is shown to be good.
Perturbation solutions of combustion instability problems
NASA Technical Reports Server (NTRS)
Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.
1979-01-01
A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.
Analytical solutions to matrix diffusion problems
Kekäläinen, Pekka
2014-10-06
We report an analytical method to solve in a few cases of practical interest the equations which have traditionally been proposed for the matrix diffusion problem. In matrix diffusion, elements dissolved in ground water can penetrate the porous rock surronuding the advective flow paths. In the context of radioactive waste repositories this phenomenon provides a mechanism by which the area of rock surface in contact with advecting elements is greatly enhanced, and can thus be an important delay mechanism. The cases solved are relevant for laboratory as well for in situ experiments. Solutions are given as integral representations well suited for easy numerical solution.
[Adherence problems during CPAP usage and solutions].
Altıntaş, Nejat; Fırat, Hikmet
2013-01-01
CPAP treatment has a great importance in the treatment of obstructive sleep apnea syndrome and preventing complications due to obstructive sleep apnea syndrome however if it is not used by the patients, there is no point to diagnose obstructive sleep apnea syndrome. In this review, we wanted to inform the physicians who meet with this kind of patients often in their daily practice about the compliance problems in patients who use CPAP and solution ways. That is why we presented compliance problems in subtitles such as treatment modalities, demographic properties of patients, severity of disease, clostrophobia, patient, physician, healthcare profesional. PMID:23581270
Composting of MSW: Needs, problems and solutions
Irwin, T.J.
1996-12-31
This paper is constructed of three complementary sections. The first section discusses the need for composting municipal solid waste (MSW). Too often as scientists and engineers the focus narrows to solve a specific problem within a system or to find the most cost effective solution. One habitually fails to examine concepts holistically due to tight schedules or work backlogs. One understands how things work and gets renumerated by the ability to scale up from the bench or pilot, keep costs down and to troubleshoot cranky processes. Sitting back to understand the reason why something like composting makes sense is a luxury one usually cannot afford. Section two discusses problems specific to MSW composting such as product quality, production stabilization, nuisance odors, and vector attraction. The final segment deals with some solutions to these difficulties.
Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems
NASA Astrophysics Data System (ADS)
Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish
2015-12-01
This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.
Sensitivity of optimum solutions to problem parameters
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Barthelemy, J. F.; Ryan, K. M.
1981-01-01
Derivation of the sensitivity equations that yield the sensitivity derivatives directly, which avoids the costly and inaccurate perturb-and-reoptimize approach, is discussed and solvability of the equations is examined. The equations apply to optimum solutions obtained by direct search methods as well as those generated by procedures of the sequential unconstrained minimization technique class. Applications are discussed for the use of the sensitivity derivatives in extrapolation of the optimal objective function and design variable values for incremented parameters, optimization with multiple objectives, and decomposition of large optimization problems.
Least bad solutions to the 'drugs problem'.
Mugford, S
1991-01-01
This paper examines the current difficulties being faced in Australia by policy-makers attempting to regulate the non-medical use of illegal drugs, and it is suggested that the difficulties centre upon two aspects. First, existing prohibitions are unsuccessful, with use levels rising and, in some arenas (e.g. cocaine use in the USA), quite out of control. On the other hand, a move towards decriminalization or legalization is difficult because past propaganda has been so vehement that a change now apparently risks sending the wrong messages to young people. This dilemma means that there is no solution, including inertia, which is risk-free, nor is there one free of difficulties. It is thus relevant to think in terms of 'least bad' rather than 'best' when formulating a system to face these problems. The exploration of what this least bad solution might be begins with the examination of the prominent myths (such as 'the drug-free society', 'the evil pusher', 'the user as victim' and 'the young person as cultural dope') that hinder our reasoning. Secondly, by suggesting that, in a climate of increasing crime related to drugs, inability of prohibitions to control that use and escalating health risks attendant on use (including the AIDS problem), the central policy thrust must be harm reduction and damage minimization rather than illusory goals such as widespread abstinence. The paper concludes with a discussion of some relevant evidence on alternative options. PMID:16818303
Basic Health Physics: Problems and Solutions
NASA Astrophysics Data System (ADS)
Bevelacqua, Joseph John
1999-01-01
Radiation litigation, the cleanup and decommissioning of nuclear facilities, radon exposure, nuclear medicine, food irradiation, stricter regulatory climate--these are some of the reasons health physics and radiation protection professionals are increasingly called upon to upgrade their skills. Designed to prepare candidates for the American Board of Health Physics Comprehensive examination (Part I) and other certification examinations, Basic Health Physics: Problems and Solutions introduces professionals in the field to radiation protection principles and their practical application in routine and emergency situations. It features more than 650 worked examples illustrating concepts under discussion along with an in-depth coverage of sources of radiation, standards and regulations, biological effects of ionizing radiation, instrumentation, external and internal dosimetry, counting statistics, monitoring and interpretations, operational health physics, transportation and waste, nuclear emergencies, and more. Reflecting for the first time the true scope of health physics at an introductory level, Basic Health Physics: Problems and Solutions gives readers the tools to properly evaluate challenging situations in all areas of radiation protection, including the medical, university, power reactor, fuel cycle, research reactor, environmental, non-ionizing radiation, and accelerator health physics.
Monotonic solution of heterogeneous anisotropic diffusion problems
NASA Astrophysics Data System (ADS)
Aricò, Costanza; Tucciarelli, Tullio
2013-11-01
Anisotropic problems arise in various areas of science and engineering, for example groundwater transport and petroleum reservoir simulations. The pure diffusive anisotropic time-dependent transport problem is solved on a finite number of nodes, that are selected inside and on the boundary of the given domain, along with possible internal boundaries connecting some of the nodes. An unstructured triangular mesh, that attains the Generalized Anisotropic Delaunay condition for all the triangle sides, is automatically generated by properly connecting all the nodes, starting from an arbitrary initial one. The control volume of each node is the closed polygon given by the union of the midpoint of each side with the “anisotropic” circumcentre of each final triangle. A structure of the flux across the control volume sides similar to the standard Galerkin Finite Element scheme is derived. A special treatment of the flux computation, mainly based on edge swaps of the initial mesh triangles, is proposed in order to obtain a stiffness M-matrix system that guarantees the monotonicity of the solution. The proposed scheme is tested using several literature tests and the results are compared with analytical solutions, as well as with the results of other algorithms, in terms of convergence order. Computational costs are also investigated.
Travelers' Health: Problems with Heat and Cold
... for temperature swings. Prevention of Heat Disorders Heat Acclimatization Heat acclimatization is a process of physiologic adaptation ... there is no heat exposure. Physical Conditioning and Acclimatization Higher levels of physical fitness improve exercise tolerance ...
An extended classical solution of the droplet growth problem
NASA Technical Reports Server (NTRS)
Anderson, B. J.; Hallett, J.; Beesley, M.
1981-01-01
Problems of applying the classical kinetic theory to the growth of small droplets from vapor are examined. A solution for the droplet growth equation is derived which is based on the assumption of a diffusive field extending to the drop surface. The method accounts for partial thermal and mass accommodation at the interface and the kinetic limit to the mass and heat fluxes, and it avoids introducing the artifact of a discontinuity in the thermal and vapor field near the droplet. Consideration of the environmental fields in spherical geometry utilizing directional fluxes yields boundary values in terms of known parameters and a new Laplace transform integral.
Landmine research: technology solutions looking for problems
NASA Astrophysics Data System (ADS)
Trevelyan, James P.
2004-09-01
The global landmine problem came to the attention of researchers in the mid 1990's and by 1997 several advanced and expensive sensor research programs had started. Yet, by the end of 2003, there is little sign of a major advance in the technology available to humanitarian demining programs. Given the motivation and dedication of researchers, public goodwill to support such programs, and substantial research resources devoted to the problem, it is worth asking why these programs do not seem to have had an impact on demining costs or casualty rates. Perhaps there are factors that have been overlooked. This paper reviews several research programs to gain a deeper understanding of the problem. A possible explanation is that researchers have accepted mistaken ideas on the nature of the landmine problems that need to be solved. The paper provides several examples where the realities of minefield conditions are quite different to what researchers have been led to believe. Another explanation may lie in the political and economic realities that drive the worldwide effort to eliminate landmines. Most of the resources devoted to landmine clearance programs come from humanitarian aid budgets: landmine affected countries often contribute only a small proportion because they have different priorities based on realistic risk-based assessment of needs and political views of local people. Some aid projects have been driven by the need to find a market for demining technologies rather than by user needs. Finally, there is a common misperception that costs in less developed countries are intrinsically low, reflecting low rates paid for almost all classes of skilled labour. When actual productivity is taken into account, real costs can be higher than industrialized countries. The costs of implementing technological solutions (even using simple technologies) are often significantly under-estimated. Some political decisions may have discouraged thorough investigation of cost
Kelkar, K.M. )
1990-01-01
Heat exchange that occurs between materials with largely differing thermal conductivities is commonly encountered in engineering practice.Conventional iterative solution methods perform poorly for the numerical solution for such problems. Results for computations for test problems indicate that the proposed solution procedure enables efficient solution of heat transfer problems with large conductivity differences for which the conventional line-by-line method proves ineffective.
NASA Astrophysics Data System (ADS)
Oralsyn, Gulaym
2016-08-01
We study an inverse coefficient problem for a model equation for one-dimensional heat transfer with a preservation of medium temperature. It is needed (together with finding its solution) to find time dependent unknown coefficient of the equation. So, for this inverse problem, existence of an unique generalized solution is proved. The main difficulty of the considered problems is that the eigenfunction system of the corresponding boundary value problems does not have the basis property.
ERIC Educational Resources Information Center
Chow, Alan F.; Van Haneghan, James P.
2016-01-01
This study reports the results of a study examining how easily students are able to transfer frequency solutions to conditional probability problems to novel situations. University students studied either a problem solved using the traditional Bayes formula format or using a natural frequency (tree diagram) format. In addition, the example problem…
Anomalous solutions to the strong CP problem.
Hook, Anson
2015-04-10
We present a new mechanism for solving the strong CP problem using a Z_{2} discrete symmetry and an anomalous U(1) symmetry. A Z_{2} symmetry is used so that two gauge groups have the same theta angle. An anomalous U(1) symmetry makes the difference between the two theta angles physical and the sum unphysical. Two models are presented where the anomalous symmetry manifests itself in the IR in different ways. In the first model, there are massless bifundamental quarks, a solution reminiscent of the massless up quark solution. In the IR of this model, the η^{'} boson relaxes the QCD theta angle to the difference between the two theta angles-in this case zero. In the second model, the anomalous U(1) symmetry is realized in the IR as a dynamically generated mass term that has exactly the phase needed to cancel the theta angle. Both of these models make the extremely concrete prediction that there exist new colored particles at the TeV scale. PMID:25910109
A Solution in Search of Problems
NASA Technical Reports Server (NTRS)
1981-01-01
Ferrofluids offered vast-problem solving potential. Under license for the NASA technology, Dr. Ronald Moskowitz and Dr. Ronald Rosensweig formed Ferrofluids Corporation. First problem they found a solution for was related to the manufacture of semiconductor "chips" for use in electronic systems. They developed a magnetic seal composed of ferrofluid and a magnetic circuit. Magnetic field confines the ferrofluid in the regions between the stationary elements and the rotary shaft of the seal. Result is a series of liquid barriers that totally bar passage of contaminants. Seal is virtually wear-proof and has a lifetime measured in billions of shaft revolutions. It has reduced maintenance, minimizes "downtime" of production equipment, and reduces the cost of expensive materials that had previously been lost through seal failures. Products based on ferrofluid are exclusion seals for computer disc drives and inertia dampers for stepper motors. Uses are performance-improving, failure-reducing coolants for hi-fi loudspeakers. Other applications include analytical instrumentation, medical equipment, industrial processes, silicon crystal growing furnaces, plasma processes, fusion research, visual displays, and automated machine tools.
Real time solution of parameterised problems via Model Reduction techniques
NASA Astrophysics Data System (ADS)
Zlotnik, Sergio; Signorini, Marianna; Modesto, David
2016-04-01
Parameterised problems, in which the solution depends on space, time and a set of predefined parameters (e.g. material properties, boundary conditions, domain geometry, initial conditions, ...), can be solved with extremely high efficiency with Model Reduction techniques. Among these techniques the Proper Generalized Decomposition (PGD), has some very interesting features that will be investigated and presented in this work. The PGD technique involves two computational phases: first, one "offline" phase that can be computationally expensive but it is executed only once in a lifetime and, second, an "online" phase that is extremely fast and lightweight in computer resources. The possibilities of PGD are shown here via several example problems: i) heat transport parameterised in the material properties, boundary conditions and interface locations, ii) Stokes flow parameterised in the geometry domain, and iii) wave propagation parameterised in boundary conditions, material properties and interface locations. The extremely fast evaluation of PGD-solutions make them ideal to be used within inverse problems where the unknowns are the values of the parameters and the data consist in some partial observation of the solution field.
Gopinath, A.; Sadhal, S.S.; Jones, P.D.; Seyed-Yagoobi, J.; Woodbury, K.A.
1996-12-31
In the first section on heat transfer in microgravity, the papers cover phase-change phenomena and thermocapillary flows and surface effects. In the second section, several papers cover solution methods for radiative heat transfer while the rest cover heat transfer in low-temperature environments. The last section covers papers containing valuable information for thermal contact conductance of various materials plus papers on inverse problems in heat transfer. Separate abstracts were prepared for most papers in this volume.
ESPs: On- and offshore problems and solutions. Part 4
Lea, J.F.; Wells, M.R.; Bearden, J.L.; Wilson, L.; Shepler, R.; Lannom, R.
1996-03-01
This is the fourth in a multipart series on the usage of electrical submersible pumps. This installment deals with high temperature, design, power consumption, run life, sweep efficiency and miscellaneous problems. The final installment next month will include a complete list of references. The column heating ``ESPs`` refers to the number of ESPs reported installed. Although all of the topics in this series can be considered ways of increasing run life and solving problems, the Run Life table includes several topics that specifically help to increase run life. Two cases were identified where ESPs are used to increase the sweep efficiency of a flood. The Sweep Efficiency table summarizes case histories where fluids were produced without the production losses that normally plague high volume systems. The Miscellaneous-Overall table includes several solutions that were part of an overall plan to increase run life. These strategies included automation, running and pulling procedures and surveillance.
Locating CVBEM collocation points for steady state heat transfer problems
Hromadka, T.V., II
1985-01-01
The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.
Asymptotic traveling wave solution for a credit rating migration problem
NASA Astrophysics Data System (ADS)
Liang, Jin; Wu, Yuan; Hu, Bei
2016-07-01
In this paper, an asymptotic traveling wave solution of a free boundary model for pricing a corporate bond with credit rating migration risk is studied. This is the first study to associate the asymptotic traveling wave solution to the credit rating migration problem. The pricing problem with credit rating migration risk is modeled by a free boundary problem. The existence, uniqueness and regularity of the solution are obtained. Under some condition, we proved that the solution of our credit rating problem is convergent to a traveling wave solution, which has an explicit form. Furthermore, numerical examples are presented.
Geometric Series: A New Solution to the Dog Problem
ERIC Educational Resources Information Center
Dion, Peter; Ho, Anthony
2013-01-01
This article describes what is often referred to as the dog, beetle, mice, ant, or turtle problem. Solutions to this problem exist, some being variations of each other, which involve mathematics of a wide range of complexity. Herein, the authors describe the intuitive solution and the calculus solution and then offer a completely new solution…
TOUGH Simulations of the Updegraff's Set of Fluid and Heat Flow Problems
Moridis, G.J.; Pruess , K.
1992-11-01
The TOUGH code [Pruess, 1987] for two-phase flow of water, air, and heat in penneable media has been exercised on a suite of test problems originally selected and simulated by C. D. Updegraff [1989]. These include five 'verification' problems for which analytical or numerical solutions are available, and three 'validation' problems that model laboratory fluid and heat flow experiments. All problems could be run without any code modifications (*). Good and efficient numerical performance, as well as accurate results were obtained throughout. Additional code verification and validation problems from the literature are briefly summarized, and suggestions are given for proper applications of TOUGH and related codes.
DNA solution of a graph coloring problem.
Liu, Yachun; Xu, Jin; Pan, Linqiang; Wang, Shiying
2002-01-01
The graph-theoretic parameter that has probably received the most attention over the years is the chromatic number. As is well-known, the coloring problem is an NP-Complete problem. In this paper, it has been solved by means of molecular biology techniques. The algorithm is highly parallel and has satisfactory fidelity. This work shows further evidence for the ability of DNA computing to solve NP-Complete problems. PMID:12086509
Hurricanes as Heat Engines: Two Undergraduate Problems
ERIC Educational Resources Information Center
Pyykko, Pekka
2007-01-01
Hurricanes can be regarded as Carnot heat engines. One reason that they can be so violent is that thermodynamically, they demonstrate large efficiency, [epsilon] = (T[subscript h] - T[subscript c]) / T[subscript h], which is of the order of 0.3. Evaporation of water vapor from the ocean and its subsequent condensation is the main heat transfer…
Using Problem-Solution Maps to Improve Students' Problem-Solving Skills
ERIC Educational Resources Information Center
Selvaratnam, Mailoo; Canagaratna, Sebastian G.
2008-01-01
The effectiveness of problem solving as a learning tool is often diminished because students typically use only an algorithmic approach to get to the answer. We discuss a way of encouraging students to reflect on the solution to their problem by requiring them--after they have arrived at their solution--to draw solution maps. A solution map…
Potential Solutions to Jurisdictional Problems on Reservations.
ERIC Educational Resources Information Center
Skibine, A. T.; And Others
1980-01-01
The second of two articles on criminal jurisdiction on Indian reservations proposes federal and local remedies to the jurisdictional problems caused by the 1978 Supreme Court "Oliphant" decision. Problem-solving models including cross deputization/mutual aid agreements, tribal/state commissions on jurisdiction, legislative proposals, and judicial…
Articulation and Transfer: Definitions, Problems, and Solutions.
ERIC Educational Resources Information Center
Wright, M. Irene; And Others
Although the Maricopa County Community College District (MCCCD), in Arizona, maintains an exemplary relationship and numerous transfer agreements with the state's public universities, systematic and operational problems still exist. Systematic problems include the accumulation of excessive college credit hours; changes in applicable transfer…
Similarity solutions for phase-change problems
NASA Technical Reports Server (NTRS)
Canright, D.; Davis, S. H.
1989-01-01
A modification of Ivantsov's (1947) similarity solutions is proposed which can describe phase-change processes which are limited by diffusion. The method has application to systems that have n-components and possess cross-diffusion and Soret and Dufour effects, along with convection driven by density discontinuities at the two-phase interface. Local thermal equilibrium is assumed at the interface. It is shown that analytic solutions are possible when the material properties are constant.
Optimization of the heating surface shape in the contact melting problem
NASA Technical Reports Server (NTRS)
Fomin, Sergei A.; Cheng, Shangmo
1991-01-01
The theoretical analysis of contact melting by the migrating heat source with an arbitrary shaped isothermal heating surface is presented. After the substantiated simplification, the governing equations are transformed to the convenient equations for engineering calculations relationships. Analytical solutions are used for numerical prediction of optimal shape of the heating surface. The problem is investigated for the constant and for temperature dependent physical properties of the melt.
COYOTE: a finite-element computer program for nonlinear heat-conduction problems
Gartling, D.K.
1982-10-01
COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.
Celestial mechanics: Fresh solutions to the four-body problem
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2016-05-01
Describing the motion of three or more bodies under the influence of gravity is one of the toughest problems in astronomy. The report of solutions to a large subclass of the four-body problem is truly remarkable.
Some explicit solutions for a class of one-phase Stefan problems
NASA Astrophysics Data System (ADS)
Layeni, Olawanle P.; Johnson, Jesse V.
2012-09-01
Salva and Tarzia, [N.N. Salva, D.A. Tarzia, J. Math. Anal. Appl. 379 (2011) 240 - 244], gave explicit solutions of a similarity type for a class of free boundary problem for a semi-infinite material. In this paper, through an elementary approach and less stringent assumption on data, we obtain more general results than those given by their central result, and thereby construct explicit solutions for a wider class of Stefan problems with a type of variable heat flux boundary conditions. Further, explicit solutions of certain forced one-phase Stefan problems are given.
The Numeric Solution of Eigenvalue Problems.
ERIC Educational Resources Information Center
Bauer, H.; Roth, K.
1980-01-01
Presents the mathematical background for solving eigenvalue problems, with illustrations of the applications in computer programing. The numerical matrix treatment is presented, with a demonstration of the simple HMO theory. (CS)
Toward a solution of the coincidence problem
Campo, Sergio del; Herrera, Ramon; Pavon, Diego
2008-07-15
The coincidence problem of late cosmic acceleration constitutes a serious riddle with regard to our understanding of the evolution of the Universe. Here we argue that this problem may someday be solved - or better understood - by expressing the Hubble expansion rate as a function of the ratio of densities (dark matter/dark energy) and observationally determining the said rate in terms of the redshift.
Equivalence of Two Solutions of Wahba's Problem
NASA Astrophysics Data System (ADS)
Markley, F. Landis
2013-12-01
Many attitude estimation methods are based on an optimization problem posed in 1965 by Grace Wahba. All these methods yield the same optimal estimate, except for inevitable computer roundoff errors. This note shows shows that Shuster's Quaternion Estimator (QUEST) and Mortari's Estimator of the Optimal Quaternion (ESOQ) are essentially identical even in the presence of roundoff errors. It also shows some connections between two other algorithms for solving Wahba's problem: Davenport's q method and the Singular Value Decomposition (SVD) method.
Student Health Insurance: Problems and Solutions
ERIC Educational Resources Information Center
Wagner, Robin
2006-01-01
Student health insurance experiences the same inflationary trends as employee benefits, but is rarely viewed as a significant direct cost to an institution, nor is the bill as high as the costs associated with employee health plans. Several long-term solutions and strategies that could help colleges to contain the ever-escalating cost of providing…
Multigrid solution strategies for adaptive meshing problems
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1995-01-01
This paper discusses the issues which arise when combining multigrid strategies with adaptive meshing techniques for solving steady-state problems on unstructured meshes. A basic strategy is described, and demonstrated by solving several inviscid and viscous flow cases. Potential inefficiencies in this basic strategy are exposed, and various alternate approaches are discussed, some of which are demonstrated with an example. Although each particular approach exhibits certain advantages, all methods have particular drawbacks, and the formulation of a completely optimal strategy is considered to be an open problem.
The residential space heating problem in Lithuania
Kazakevicius, E.; Schipper, L.; Meyers, S.
1996-02-01
This report gives preliminary data on housing in Lithuania. We focus on the actual housing structure now that much of the stock has been privatized-an action that carries with it uncertainty regarding who is responsible for heating energy use, who is responsible for conservation measures and retrofitting, and who benefits from these actions. The paper then discusses some of the measures undertaken by both property owners and by governmental agencies to ameliorate poor heating conditions. The report summarizes results from a number of recent studies of the potential for energy savings in heating Lithuanian multifamily buildings. In closing we recommend actions that should be taken soon to ensure that Lithuanian housing moves along a path to greater energy efficiency. Some signals as to where this path should go can be taken from European countries with similar climatic conditions.
Molecular computation of solutions to combinatorial problems.
Adleman, L M
1994-11-11
The tools of molecular biology were used to solve an instance of the directed Hamiltonian path problem. A small graph was encoded in molecules of DNA, and the "operations" of the computation were performed with standard protocols and enzymes. This experiment demonstrates the feasibility of carrying out computations at the molecular level. PMID:7973651
English Preservice Teaching: Problems and Suggested Solutions
ERIC Educational Resources Information Center
Naeem, Marwa Ahmed Refat
2014-01-01
The present study investigated the problems faced by Egyptian EFL prospective teachers during their first encounter with preservice teaching. The sample for the study included 135 prospective EFL teachers trained in five preparatory (middle) schools in Kafr El-Sheikh city, Egypt. At the end of their first year training course, the prospective…
Training 101: Solutions to All Your Problems.
ERIC Educational Resources Information Center
Petrini, Cathy, Ed.
1990-01-01
Two approaches to conflict resolution in the workplace are described. A systems approach questions the organization's systems rather than the behavior or motives of co-workers. Problem-solving retreats encourage team building and group cohesion and focus on long-term issues. (SK)
Can False Memories Prime Problem Solutions?
ERIC Educational Resources Information Center
Howe, Mark L.; Garner, Sarah R.; Dewhurst, Stephen A.; Ball, Linden J.
2010-01-01
Previous research has suggested that false memories can prime performance on related implicit and explicit memory tasks. The present research examined whether false memories can also be used to prime higher order cognitive processes, namely, insight-based problem solving. Participants were asked to solve a number of compound remote associate task…
Viruses in Water: The Problem, Some Solutions
ERIC Educational Resources Information Center
Gerba, Charles P.; And Others
1975-01-01
Increasing population and industrialization places heavy demands on water resources making recycling of wastewaters for domestic consumption inevitable. Eliminating human pathogenic viruses is a major problem of reclaiming wastewater. Present water treatment methods may not be sufficient to remove viruses. (MR)
Solutions to the Triangular Bicycle Flags Problem
ERIC Educational Resources Information Center
Hartweg, Kim
2005-01-01
Students in a fifth-grade general education class and a second-grade gifted class participated in the Triangular Bicycle Flags problem. The results indicated that providing students with geometric experiences at the correct van Hiele level is necessary for helping students move from one level of understanding to the next.
Problem Solvers: Solutions--The Inaugural Address
ERIC Educational Resources Information Center
Dause, Emily
2014-01-01
Fourth graders in Miss Dause's and Mrs. Hicks's mathematics classes at South Mountain Elementary School in Dillsburg, Pennsylvania, worked with the data from the Inauagural Address problem that was previously published published in the February 2013 issue of "Teaching Children Mathematics". This activity allowed students to…
The Reading Problem: Some Sensible Solutions.
ERIC Educational Resources Information Center
Marshall, Kim
1983-01-01
Researchers from the Center for the Study of Reading at the University of Illinois assert that inadequate reading textbooks and the failure to teach reading comprehension in the primary grades contribute to reading comprehension problems in the upper grades. Shortcomings of textbooks are specified and methods for teaching reading comprehension are…
Real Problems, Virtual Solutions: Engaging Students Online
ERIC Educational Resources Information Center
Pearson, A. Fiona
2010-01-01
In this article, the author explains how she used online blogs with more than 263 students over a period of four semesters in an introductory social problems course. She describes how she uses blogs to enhance student participation, engagement, and skill building. Finally, she provides an overview of students' qualitative assessments of the blog…
Problem Solvers: Solutions--Playing Basketball
ERIC Educational Resources Information Center
Smith, Jeffrey
2014-01-01
In this article, fourth grade Upper Allen Elementary School (Mechanicsburg, Pennsylvania) teacher Jeffrey Smith describes his exploration of the Playing Basketball activity. Herein he describes how he found the problem to be an effective way to review concepts associated with the measurement of elapsed time with his students. Additionally, it…
Student Absenteeism: Explanations, Problems and Possible Solutions.
ERIC Educational Resources Information Center
Truax, Cynthia T.
Student absenteeism has become a major concern of educators, parents, and communities. Accordingly, this paper presents a series of annotations of articles addressing three aspects of this problem: (1) explanations of student absenteeism, including descriptions of the habitual offender, along with school, peer, and community influences; (2)…
Implicit solution of large-scale radiation diffusion problems
Brown, P N; Graziani, F; Otero, I; Woodward, C S
2001-01-04
In this paper, we present an efficient solution approach for fully implicit, large-scale, nonlinear radiation diffusion problems. The fully implicit approach is compared to a semi-implicit solution method. Accuracy and efficiency are shown to be better for the fully implicit method on both one- and three-dimensional problems with tabular opacities taken from the LEOS opacity library.
Cosmic strings - A problem or a solution?
NASA Technical Reports Server (NTRS)
Bennett, David P.; Bouchet, Francois R.
1988-01-01
The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis.
Exact optimal solution for a class of dual control problems
NASA Astrophysics Data System (ADS)
Cao, Suping; Qian, Fucai; Wang, Xiaomei
2016-07-01
This paper considers a discrete-time stochastic optimal control problem for which only measurement equation is partially observed with unknown constant parameters taking value in a finite set of stochastic systems. Because of the fact that the cost-to-go function at each stage contains variance and the non-separability of the variance is so complicated that the dynamic programming cannot be successfully applied, the optimal solution has not been found. In this paper, a new approach to the optimal solution is proposed by embedding the original non-separable problem into a separable auxiliary problem. The theoretical condition on which the optimal solution of the original problem can be attained from a set of solutions of the auxiliary problem is established. In addition, the optimality of the interchanging algorithm is proved and the analytical solution of the optimal control is also obtained. The performance of this controller is illustrated with a simple example.
The Effect of Alternative Solutions on Problem Solving Performance
ERIC Educational Resources Information Center
Lee, Shin-Yi
2011-01-01
The purpose of this study was to investigate the effect of instruction in alternative solutions on Taiwanese eighth-grade students' mathematical problem solving performance. This study was exploratory rather than experimental. Alternative-Solution Worksheet (ASW) was developed to encourage students' engagement with alternative solutions to…
Ergonomics problems and solutions in biotechnology laboratories
Coward, T.W.; Stengel, J.W.; Fellingham-Gilbert, P.
1995-03-01
The multi-functional successful ergonomics program currently implemented at Lawrence Livermore National Laboratory (LLNL) will be presented with special emphasis on recent findings in the Biotechnology laboratory environment. In addition to a discussion of more traditional computer-related repetitive stress injuries and associated statistics, the presentation will cover identification of ergonomic problems in laboratory functions such as pipetting, radiation shielding, and microscope work. Techniques to alleviate symptoms and prevent future injuries will be presented.
Marine geodesy - Problem areas and solution concepts
NASA Technical Reports Server (NTRS)
Saxena, N.
1974-01-01
This paper deals with a conceptional geodetic approach to solve various oceanic problems, such as submersible navigation under iced seas, demarcation/determination of boundaries in open ocean, resolving sea-level slope discrepancy, improving tsunami warning system, ecology, etc., etc. The required instrumentation is not described here. The achieved as well as desired positional accuracy estimates in open ocean for various tasks are also given.
Computational solution of atmospheric chemistry problems
NASA Technical Reports Server (NTRS)
Jafri, J.; Ake, R. L.
1986-01-01
Extensive studies were performed on problems of interest in atmospheric chemistry. In addition to several minor projects, four major projects were performed and described (theoretical studies of ground and low-lying excited states of ClO2; ground and excited state potential energy surfaces of the methyl peroxy radical; electronic states ot the FO radical; and theoretical studies S02 (H2O) (sub n)).
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1986-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1985-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Symmetric periodic solutions of the Hill's problem. I
NASA Astrophysics Data System (ADS)
Batkhin, A. B.
2013-07-01
The planar circular Hill's problem is considered, as well as its limiting integrable variant called the Hénon problem, for which the original Hill's problem is a singular perturbation. Among solutions to the Hénon problem there are a countable number of generating solutions-arcs that are uniquely determined by the condition of successive passage through the origin of coordinates—singular point of equations of motion of the Hill's problem. Using the generating solutions-arcs as "letters" of a certain "alphabet", one can compose, according to some rules, the "words": generating solutions of families of periodic orbits of the Hill's problem. The sequence of letters in a word determines the order of orbit transfer from one invariant manifold to another, while the set of all properly specified words determine the system's symbolic dynamics.
Cosmic strings: A problem or a solution
Bennett, D.P.; Bouchet, F.R.
1987-10-01
The most fundamental issue in the theory of cosmic strings is addressed by means of Numerical Simulations: the existence of a scaling solution. The resolution of this question will determine whether cosmic strings can form the basis of an attractive theory of galaxy formation or prove to be a cosmological disaster like magnetic monopoles or domain walls. After a brief discussion of our numerical technique, results are presented which, though still preliminary, offer the best support to date of this scaling hypothesis. 6 refs., 2 figs.
Simple Solutions for Space Station Audio Problems
NASA Technical Reports Server (NTRS)
Wood, Eric
2016-01-01
Throughout this summer, a number of different projects were supported relating to various NASA programs, including the International Space Station (ISS) and Orion. The primary project that was worked on was designing and testing an acoustic diverter which could be used on the ISS to increase sound pressure levels in Node 1, a module that does not have any Audio Terminal Units (ATUs) inside it. This acoustic diverter is not intended to be a permanent solution to providing audio to Node 1; it is simply intended to improve conditions while more permanent solutions are under development. One of the most exciting aspects of this project is that the acoustic diverter is designed to be 3D printed on the ISS, using the 3D printer that was set up earlier this year. Because of this, no new hardware needs to be sent up to the station, and no extensive hardware testing needs to be performed on the ground before sending it to the station. Instead, the 3D part file can simply be uploaded to the station's 3D printer, where the diverter will be made.
Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code
NASA Technical Reports Server (NTRS)
Hou, Gene
2000-01-01
The report documents the recent effort to enhance a transient linear heat transfer code so as to solve nonlinear problems. The linear heat transfer code was originally developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat Transfer (SCHT) code. The report includes four parts. The first part outlines the formulation of the heat transfer problem of concern. The second and the third parts give detailed procedures to construct the nonlinear finite element equations and the required Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final part summarizes the results of the numerical experiments on the newly enhanced SCHT code.
Numerical solution of large nonsymmetric eigenvalue problems
NASA Technical Reports Server (NTRS)
Saad, Youcef
1988-01-01
Several methods are discribed for combinations of Krylov subspace techniques, deflation procedures and preconditionings, for computing a small number of eigenvalues and eigenvectors or Schur vectors of large sparse matrices. The most effective techniques for solving realistic problems from applications are those methods based on some form of preconditioning and one of several Krylov subspace techniques, such as Arnoldi's method or Lanczos procedure. Two forms of preconditioning are considered: shift-and-invert and polynomial acceleration. The latter presents some advantages for parallel/vector processing but may be ineffective if eigenvalues inside the spectrum are sought. Some algorithmic details are provided that improve the reliability and effectiveness of these techniques.
High order accurate solutions of viscous problems
NASA Technical Reports Server (NTRS)
Hayder, M. E.; Turkel, Eli
1993-01-01
We consider a fourth order extension to MacCormack's scheme. The original extension was fourth order only for the inviscid terms but was second order for the viscous terms. We show how to modify the viscous terms so that the scheme is uniformly fourth order in the spatial derivatives. Applications are given to some boundary layer flows. In addition, for applications to shear flows the effect of the outflow boundary conditions are very important. We compare the accuracy of several of these different boundary conditions for both boundary layer and shear flows. Stretching at the outflow usually increases the oscillations in the numerical solution but the addition of a filtered sponge layer (with or without stretching) reduces such oscillations. The oscillations are generated by insufficient resolution of the shear layer. When the shear layer is sufficiently resolved then oscillations are not generated and there is less of a need for a nonreflecting boundary condition.
The proton storage ring: Problems and solutions
Macek, R.J.
1988-01-01
The Los Alamos Proton Storage Ring (PSR) now operates with 35..mu..A at 20-Hz pulse repetition rate. Beam availability during 1988 suffered because of a number of problems with hardware reliability and from narrow operating margins for beam spill in the extraction line. A strong effort is underway to improve reliability with an eventual goal of obtaining beam availability in excess of 75%. Beam losses and the resulting component activation have limited operating currents to their present values. In detailed studies of the problem, loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two-step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. It is now apparent that the key to reducing losses is in reducing the number of foil traversals. A program of upgrades to reduce losses and improve the operating current is being planned. 8 refs., 17 figs., 2 tabs.
Food sustainability: problems, perspectives and solutions.
Garnett, Tara
2013-02-01
The global food system makes a significant contribution to climate changing greenhouse gas emissions with all stages in the supply chain, from agricultural production through processing, distribution, retailing, home food preparation and waste, playing a part. It also gives rise to other major environmental impacts, including biodiversity loss and water extraction and pollution. Policy makers are increasingly aware of the need to address these concerns, but at the same time they are faced with a growing burden of food security and nutrition-related problems, and tasked with ensuring that there is enough food to meet the needs of a growing global population. In short, more people need to be fed better, with less environmental impact. How might this be achieved? Broadly, three main 'takes' or perspectives, on the issues and their interactions, appear to be emerging. Depending on one's view point, the problem can be conceptualised as a production challenge, in which case there is a need to change how food is produced by improving the unit efficiency of food production; a consumption challenge, which requires changes to the dietary drivers that determine food production; or a socio-economic challenge, which requires changes in how the food system is governed. This paper considers these perspectives in turn, their implications for nutrition and climate change, and their strengths and weaknesses. Finally, an argument is made for a reorientation of policy thinking which uses the insights provided by all three perspectives, rather than, as is the situation today, privileging one over the other. PMID:23336559
Simulating water, solute, and heat transport in the subsurface with the VS2DI software package
Healy, R.W.
2008-01-01
The software package VS2DI was developed by the U.S. Geological Survey for simulating water, solute, and heat transport in variably saturated porous media. The package consists of a graphical preprocessor to facilitate construction of a simulation, a postprocessor for visualizing simulation results, and two numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). The finite-difference method is used to solve the Richards equation for flow and the advection-dispersion equation for solute or heat transport. This study presents a brief description of the VS2DI package, an overview of the various types of problems that have been addressed with the package, and an analysis of the advantages and limitations of the package. A review of other models and modeling approaches for studying water, solute, and heat transport also is provided. ?? Soil Science Society of America. All rights reserved.
School Budgeting: Problems and Solutions. AASA Critical Issues Report.
ERIC Educational Resources Information Center
Hymes, Donald L.
School budget problems are discussed in 13 chapters, and solutions are suggested. Case studies present successful experiences with various problems while brief subsections summarize recommended actions. The first two chapters note that budget problems are worsening and trace the causes to tax revolts, state involvement in education, and the…
Integrated Learning Systems: The Problems with the Solution.
ERIC Educational Resources Information Center
Bentley, Edward
1991-01-01
Discusses problems with integrated learning systems (ILSs) in the schools, noting they are still an unproven solution to problems in education plagued by many serious limitations. The article recommends dealing with the fundamental problems of the educational system before investing time and money in ILS. (SM)
Methods for calculating conjugate problems of heat transfer
NASA Astrophysics Data System (ADS)
Kalinin, E. K.; Dreitser, G. A.; Kostiuk, V. V.; Berlin, I. I.
Methods are examined for calculating various conjugate problems of heat transfer in channels and closed vessels in cases of single-phase and two-phase flow in steady and unsteady conditions. The single-phase-flow studies involve the investigation of gaseous and liquid heat-carriers in pipes, annular and plane channels, and pipe bundles in cases of cooling and heating. General relationships are presented for heat transfer in cases of film, transition, and nucleate boiling, as well as for boiling crises. Attention is given to methods for analyzing the filling and cooling of conduits and tanks by cryogenic liquids; and ways to intensify heat transfer in these conditions are examined.
Public problems: Still waiting on the marketplace for solutions
Gover, J.; Carayannis, E.; Huray, P.
1997-10-01
This report addresses the need for government sponsored R and D to address real public problems. The motivation is that a public benefit of the money spent must be demonstrated. The areas identified as not having appropriate attention resulting in unmet public needs include healthcare cost, cost and benefits of regulations, infrastructure problems, defense spending misaligned with foreign policy objectives, the crime problem, energy impact on the environment, the education problem, low productivity growth industry sectors, the income distribution problem, the aging problem, the propagation of disease and policy changes needed to address the solution of these problems.
Ritchie, R.H.; Sakakura, A.Y.
1956-01-01
The formal solutions of problems involving transient heat conduction in infinite internally bounded cylindrical solids may be obtained by the Laplace transform method. Asymptotic series representing the solutions for large values of time are given in terms of functions related to the derivatives of the reciprocal gamma function. The results are applied to the case of the internally bounded infinite cylindrical medium with, (a) the boundary held at constant temperature; (b) with constant heat flow over the boundary; and (c) with the "radiation" boundary condition. A problem in the flow of gas through a porous medium is considered in detail.
Chemicals in Household Products: Problems with Solutions
NASA Astrophysics Data System (ADS)
Glegg, Gillian A.; Richards, Jonathan P.
2007-12-01
The success of a regulatory regime in decreasing point-source emissions of some harmful chemicals has highlighted the significance of other sources. A growing number of potentially harmful chemicals have been incorporated into an expanding range of domestic household products and are sold worldwide. Tighter regulation has been proposed, and the European Commission has introduced the Regulation on the Registration, Evaluation, and Authorisation of Chemicals to address this concern. However, it is clear that in addition to the regulation, there is a potential to effect change through retailer and consumer attitudes and behaviours. Interviews were conducted with 7 key stakeholder groups to identify critical issues, which were then explored using a public survey questionnaire (1,008 respondents) and 8 subsequent focus groups. The findings demonstrated that the issue of chemicals in products is of concern to consumers for reasons of personal health rather than environmental protection. Key obstacles to the wider purchase of “green-alternative” products included perceived high cost and poor performance, lack of availability of products, and poor information concerning such products. Although improved regulation was seen as part of the solution, consumers must also play a role. It was clear from this study that consumers are not currently able to make informed choices about the chemicals they use but that they would be receptive to moving toward a more sustainable use of chemicals in the future if empowered to do so.
Software for embedded processors: Problems and solutions
NASA Astrophysics Data System (ADS)
Bogaerts, J. A. C.
1990-08-01
Data Acquistion systems in HEP experiments use a wide spectrum of computers to cope with two major problems: high event rates and a large data volume. They do this by using special fast trigger processors at the source to reduce the event rate by several orders of magnitude. The next stage of a data acquisition system consists of a network of fast but conventional microprocessors which are embedded in high speed bus systems where data is still further reduced, filtered and merged. In the final stage complete events are farmed out to a another collection of processors, which reconstruct the events and perhaps achieve a further event rejection by a small factor, prior to recording onto magnetic tape. Detectors are monitored by analyzing a fraction of the data. This may be done for individual detectors at an early state of the data acquisition or it may be delayed till the complete events are available. A network of workstations is used for monitoring, displays and run control. Software for trigger processors must have a simple structure. Rejection algorithms are carefully optimized, and overheads introduced by system software cannot be tolerated. The embedded microprocessors have to co-operate, and need to be synchronized with the preceding and following stages. Real time kernels are typically used to solve synchronization and communication problems. Applications are usually coded in C, which is reasonably efficient and allows direct control over low level hardware functions. Event reconstruction software is very similar or even identical to offline software, predominantly written in FORTRAN. With the advent of powerful RISC processors, and with manufacturers tending to adopt open bus architectures, there is a move towards commercial processors and hence the introduction of the UNIX operating system. Building and controlling such a heterogeneous data acquisition system puts a heavy strain on the software. Communications is now as important as CPU capacity and I
Solution to the Cosmic Ray Anisotropy Problem
NASA Astrophysics Data System (ADS)
Mertsch, Philipp; Funk, Stefan
2015-01-01
In the standard diffusive picture for transport of cosmic rays (CRs), a gradient in the CR density induces a typically small, dipolar anisotropy in their arrival directions. This is being widely advertised as a tool for finding nearby sources. However, the predicted dipole amplitude at TeV and PeV energies exceeds the measured one by almost 2 orders of magnitude. Here, we critically examine the validity of this prediction, which is based on averaging over an ensemble of turbulent magnetic fields. We focus on (1) the deviations of the dipole in a particular random realization from the ensemble average, and (2) the possibility of a misalignment between the regular magnetic field and the CR gradient. We find that if the field direction and the gradient direction are close to ˜90 ° , the dipole amplitude is considerably suppressed and can be reconciled with observations, which sheds light on a long-standing problem. Furthermore, we show that the dipole direction in general does not coincide with the gradient direction, thus hampering the search for nearby sources.
Solution to the cosmic ray anisotropy problem.
Mertsch, Philipp; Funk, Stefan
2015-01-16
In the standard diffusive picture for transport of cosmic rays (CRs), a gradient in the CR density induces a typically small, dipolar anisotropy in their arrival directions. This is being widely advertised as a tool for finding nearby sources. However, the predicted dipole amplitude at TeV and PeV energies exceeds the measured one by almost 2 orders of magnitude. Here, we critically examine the validity of this prediction, which is based on averaging over an ensemble of turbulent magnetic fields. We focus on (1) the deviations of the dipole in a particular random realization from the ensemble average, and (2) the possibility of a misalignment between the regular magnetic field and the CR gradient. We find that if the field direction and the gradient direction are close to ∼90°, the dipole amplitude is considerably suppressed and can be reconciled with observations, which sheds light on a long-standing problem. Furthermore, we show that the dipole direction in general does not coincide with the gradient direction, thus hampering the search for nearby sources. PMID:25635539
Organ shortage crisis: problems and possible solutions.
Abouna, G M
2008-01-01
The demand for organ transplantation has rapidly increased all over the world during the past decade due to the increased incidence of vital organ failure, the rising success and greater improvement in posttransplant outcome. However, the unavailability of adequate organs for transplantation to meet the existing demand has resulted in major organ shortage crises. As a result there has been a major increase in the number of patients on transplant waiting lists as well as in the number of patients dying while on the waiting list. In the United States, for example, the number of patients on the waiting list in the year 2006 had risen to over 95,000, while the number of patient deaths was over 6,300. This organ shortage crisis has deprived thousands of patients of a new and better quality of life and has caused a substantial increase in the cost of alternative medical care such as dialysis. There are several procedures and pathways which have been shown to provide practical and effective solutions to this crisis. These include implementation of appropriate educational programs for the public and hospital staff regarding the need and benefits of organ donation, the appropriate utilization of marginal (extended criteria donors), acceptance of paired organ donation, the acceptance of the concept of "presumed consent," implementation of a system of "rewarded gifting" for the family of the diseased donor and also for the living donor, developing an altruistic system of donation from a living donor to an unknown recipient, and accepting the concept of a controlled system of financial payment for the donor. As is outlined in this presentation, we strongly believe that the implementation of these pathways for obtaining organs from the living and the dead donors, with appropriate consideration of the ethical, religious and social criteria of the society, the organ shortage crisis will be eliminated and many lives will be saved through the process of organ donation and
Penalized solutions to functional regression problems
Harezlak, Jaroslaw; Coull, Brent A.; Laird, Nan M.; Magari, Shannon R.; Christiani, David C.
2007-01-01
SUMMARY Recent technological advances in continuous biological monitoring and personal exposure assessment have led to the collection of subject-specific functional data. A primary goal in such studies is to assess the relationship between the functional predictors and the functional responses. The historical functional linear model (HFLM) can be used to model such dependencies of the response on the history of the predictor values. An estimation procedure for the regression coefficients that uses a variety of regularization techniques is proposed. An approximation of the regression surface relating the predictor to the outcome by a finite-dimensional basis expansion is used, followed by penalization of the coefficients of the neighboring basis functions by restricting the size of the coefficient differences to be small. Penalties based on the absolute values of the basis function coefficient differences (corresponding to the LASSO) and the squares of these differences (corresponding to the penalized spline methodology) are studied. The fits are compared using an extension of the Akaike Information Criterion that combines the error variance estimate, degrees of freedom of the fit and the norm of the bases function coefficients. The performance of the proposed methods is evaluated via simulations. The LASSO penalty applied to the linearly transformed coefficients yields sparser representations of the estimated regression surface, while the quadratic penalty provides solutions with the smallest L2-norm of the basis functions coefficients. Finally, the new estimation procedure is applied to the analysis of the effects of occupational particulate matter (PM) exposure on the heart rate variability (HRV) in a cohort of boilermaker workers. Results suggest that the strongest association between PM exposure and HRV in these workers occurs as a result of point exposures to the increased levels of particulate matter corresponding to smoking breaks. PMID:18552972
Penalized solutions to functional regression problems.
Harezlak, Jaroslaw; Coull, Brent A; Laird, Nan M; Magari, Shannon R; Christiani, David C
2007-06-15
Recent technological advances in continuous biological monitoring and personal exposure assessment have led to the collection of subject-specific functional data. A primary goal in such studies is to assess the relationship between the functional predictors and the functional responses. The historical functional linear model (HFLM) can be used to model such dependencies of the response on the history of the predictor values. An estimation procedure for the regression coefficients that uses a variety of regularization techniques is proposed. An approximation of the regression surface relating the predictor to the outcome by a finite-dimensional basis expansion is used, followed by penalization of the coefficients of the neighboring basis functions by restricting the size of the coefficient differences to be small. Penalties based on the absolute values of the basis function coefficient differences (corresponding to the LASSO) and the squares of these differences (corresponding to the penalized spline methodology) are studied. The fits are compared using an extension of the Akaike Information Criterion that combines the error variance estimate, degrees of freedom of the fit and the norm of the bases function coefficients. The performance of the proposed methods is evaluated via simulations. The LASSO penalty applied to the linearly transformed coefficients yields sparser representations of the estimated regression surface, while the quadratic penalty provides solutions with the smallest L(2)-norm of the basis functions coefficients. Finally, the new estimation procedure is applied to the analysis of the effects of occupational particulate matter (PM) exposure on the heart rate variability (HRV) in a cohort of boilermaker workers. Results suggest that the strongest association between PM exposure and HRV in these workers occurs as a result of point exposures to the increased levels of particulate matter corresponding to smoking breaks. PMID:18552972
A History of Aerospace Problems, Their Solutions, Their Lessons
NASA Technical Reports Server (NTRS)
Ryan, R. S.
1996-01-01
The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete.
Numerical solution of control problems governed by nonlinear differential equations
Heinkenschloss, M.
1994-12-31
In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.
Moving to solution: effects of movement priming on problem solving.
Werner, K; Raab, M
2013-01-01
Embodied cognition theories suggest a link between bodily movements and cognitive functions. Given such a link, it is assumed that movement influences the two main stages of problem solving: creating a problem space and creating solutions. This study explores how specific the link between bodily movements and the problem-solving process is. Seventy-two participants were tested with variations of the two-string problem (Experiment 1) and the water-jar problem (Experiment 2), allowing for two possible solutions. In Experiment 1 participants were primed with arm-swing movements (swing group) and step movements on a chair (step group). In Experiment 2 participants sat in front of three jars with glass marbles and had to sort these marbles from the outer jars to the middle one (plus group) or vice versa (minus group). Results showed more swing-like solutions in the swing group and more step-like solutions in the step group, and more addition solutions in the plus group and more subtraction solutions in the minus group. This specificity of the connection between movement and problem-solving task will allow further experiments to investigate how bodily movements influence the stages of problem solving. PMID:23820945
Inverse problems and optimal experiment design in unsteady heat transfer processes identification
NASA Technical Reports Server (NTRS)
Artyukhin, Eugene A.
1991-01-01
Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.
Rwanda. AIDS orphans: problems and solutions.
Descombes, M
1993-01-01
An estimated 300,000 of Rwanda's population of 7.5 million are infected with HIV. This includes 130,000 women and 20,000 children. Due to AIDS-related mortality, there are an estimated 62,000 orphans in the country, with 150,000 expected by 1997. War, adverse economic conditions, and ignorance of the minimal or nonexistent risk of being infected by these children, however, constrain extended biological and foster families from accepting these orphans into their homes. These children are very much alone and need to be placed in warm, caring households. Caritas Rwanda with the help of the Rwandan Ministry of Health launched the Family Homes Project in 1992 as an extension of the organization's general program of caring for AIDS-affected families in Rwanda in place since 1989. The program offers psychological counseling and assistance with regard to food, basic medicines, the payment of school fees, and funeral expenses. Family homes are structures designed to give orphans a background as similar as possible to that of the family which they have lost. Each harbors 7-10 children typically up to age 16 cared for by a woman who is also the biological mother of some of them. Caritas buys and equips an house in the Kigali suburbs or in one of the provincial towns. The mother is then provided a budget to pay for the daily household expenses of food, clothing, maintenance, water, and electricity. HIV-positive children lead in this setting, as far as their health permits, the same life as their healthy peers. When a serious health problem arises, the orphans are treated at the medical and social center, or the hospital if needed. Caritas Rwanda plans to open a care center staffed with a nurse and an additional outside social worker for orphans who require permanent treatment. Only several hundred children are presently in the program, but Rwanda has set an objective of assisting, by 1997, 50% of its AIDS orphans. PMID:12179314
On similarity solutions for turbulent and heated round jets
NASA Technical Reports Server (NTRS)
So, R. M. C.; Hwang, B. C.
1986-01-01
Commonly used empirical correlations for incompressible, heated round jets are shown to represent similarity solutions of the governing jet equations. These solutions give rise to self-similar eddy viscosities. Not all the similarity solutions are physically valid because some lead to zero eddy viscosities at the jet centerline. One physically valid solution is found to correlate best with round jet measurements and it gives a Gaussian error function description for the normalized mean velocity and temperature. Heat and momentum fluxes thus calculated are also in good agreement with measurements. Therefore, in addition to the classical similarity solution obtained by assuming constant eddy viscosity, another similarity solution to the jet equations is found where the eddy viscosity is self-similar.
The Reasons and Solutions for Problems in Rural School Consolidation
ERIC Educational Resources Information Center
Qingyang, Guo
2013-01-01
Based on investigations in six midwestern provinces/autonomous regions, Hubei, Henan, Guangxi, Yunnan, Shaanxi, and Inner Mongolia, this article analyzes the reasons for problems in the process of consolidating rural schools and their solutions.
Hamilton's Principle and Approximate Solutions to Problems in Classical Mechanics
ERIC Educational Resources Information Center
Schlitt, D. W.
1977-01-01
Shows how to use the Ritz method for obtaining approximate solutions to problems expressed in variational form directly from the variational equation. Application of this method to classical mechanics is given. (MLH)
Group Testing: Four Student Solutions to a Classic Optimization Problem
ERIC Educational Resources Information Center
Teague, Daniel
2006-01-01
This article describes several creative solutions developed by calculus and modeling students to the classic optimization problem of testing in groups to find a small number of individuals who test positive in a large population.
Parallel decomposition methods for the solution of electromagnetic scattering problems
NASA Technical Reports Server (NTRS)
Cwik, Tom
1992-01-01
This paper contains a overview of the methods used in decomposing solutions to scattering problems onto coarse-grained parallel processors. Initially, a short summary of relevant computer architecture is presented as background to the subsequent discussion. After the introduction of a programming model for problem decomposition, specific decompositions of finite difference time domain, finite element, and integral equation solutions to Maxwell's equations are presented. The paper concludes with an outline of possible software-assisted decomposition methods and a summary.
NASA Astrophysics Data System (ADS)
Alekseev, Gennady
2016-04-01
We consider the boundary value problem for stationary magnetohydrodynamic equations of electrically and heat conducting fluid under inhomogeneous mixed boundary conditions for electromagnetic field and temperature and Dirichlet condition for the velocity. The problem describes the thermoelectromagnetic flow of a viscous fluid in 3D bounded domain with the boundary consisting of several parts with different thermo- and electrophysical properties. The global solvability of the boundary value problem is proved and the apriori estimates of the solution are derived. The sufficient conditions on the data are established which provide a local uniqueness of the solution.
Optimal recovery of the solution of the heat equation from inaccurate data
Magaril-Il'yaev, G G; Osipenko, Konstantin Yu
2009-06-30
The problem of optimal recovery of the solution of the heat equation in the entire space at a fixed instant of time from inaccurate observations of this solution at some other instants of time is investigated. Explicit expressions for an optimal recovery method and its error are given. The solution of a similar problem with a priori information about the temperature distribution at some instants of time is also given. In all cases the optimal method uses information about at most two observations. Bibliography: 22 titles.
General Solution of the Kenamond HE Problem 3
Kaul, Ann
2015-12-15
A general solution for programmed burn calculations of the light times produced by a singlepoint initiation of a single HE region surrounding an inert region has been developed. In contrast to the original solutions proposed in References 1 and 2, the detonator is no longer restricted to a location on a Cartesian axis and can be located at any point inside the HE region. This general solution has been implemented in the ExactPack suite of exact solvers for verification problems.
A Procedure for Identifying Problems and Solutions in Desegregated Schools.
ERIC Educational Resources Information Center
Uhl, Norman P.
The purpose of this study was to investigate the usefulness of a procedure (a modification of the Delphi technique) for identifying racially-related problems and achieving some consensus on solutions to these problems among students, parents, and the school staff. The students who participated attended six classes which were selected to provide a…
Literacy: Problems and Solutions. A Resource Handbook for Correctional Educators.
ERIC Educational Resources Information Center
Carsetti, Janet K.
This resource handbook addresses the problem of illiteracy in correctional institutions and focuses on practical methods for improving the reading skills of offenders. It defines illiteracy, offers statistics on its incidence in correctional institutions, and lists barriers to overcoming the problem with suggested solutions. An overview of methods…
Sensitivity Equation Derivation for Transient Heat Transfer Problems
NASA Technical Reports Server (NTRS)
Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson
2004-01-01
The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.
Fast multigrid solution of the advection problem with closed characteristics
Yavneh, I.; Venner, C.H.; Brandt, A.
1996-12-31
The numerical solution of the advection-diffusion problem in the inviscid limit with closed characteristics is studied as a prelude to an efficient high Reynolds-number flow solver. It is demonstrated by a heuristic analysis and numerical calculations that using upstream discretization with downstream relaxation-ordering and appropriate residual weighting in a simple multigrid V cycle produces an efficient solution process. We also derive upstream finite-difference approximations to the advection operator, whose truncation terms approximate {open_quotes}physical{close_quotes} (Laplacian) viscosity, thus avoiding spurious solutions to the homogeneous problem when the artificial diffusivity dominates the physical viscosity.
Solution of the stochastic control problem in unbounded domains.
NASA Technical Reports Server (NTRS)
Robinson, P.; Moore, J.
1973-01-01
Bellman's dynamic programming equation for the optimal index and control law for stochastic control problems is a parabolic or elliptic partial differential equation frequently defined in an unbounded domain. Existing methods of solution require bounded domain approximations, the application of singular perturbation techniques or Monte Carlo simulation procedures. In this paper, using the fact that Poisson impulse noise tends to a Gaussian process under certain limiting conditions, a method which achieves an arbitrarily good approximate solution to the stochastic control problem is given. The method uses the two iterative techniques of successive approximation and quasi-linearization and is inherently more efficient than existing methods of solution.
Constructing high-pressure thermodynamic models: problems and possible solutions
NASA Astrophysics Data System (ADS)
Brosh, E.
2013-12-01
Conventional thermodynamic databases (e.g. Fabrichnaya et al. 2004, Holland and Powell 1998, 2011) consist of expressions for the Gibbs energy at ambient pressure, extended to higher pressures through the integration of some EOS (Equation Of State). While this is simple and straight-forward, such thermodynamic models are prone to produce manifestly unphysical predictions of negative thermal expansion and even negative heat capacity at high pressure. It has been shown (Brosh et al. 2007) that these errors arise not only from problems the EOS itself but also from incompatibilities between the EOS and the models used for extrapolations of the heat capacity at ambient pressure. One solution is a radical restructuring of thermodynamic databases. Instead of modelling the Gibbs energy, new databases can be based on modelling the Helmholtz energy using Debye-Mie-Grüneisen EOS. This approach is very successful for modelling solid substances (Jacobs 2009, 2010, Dorogokupets et al. 2007, 2012) but the Debye-Mie-Grüneisen equations of state are not easily applicable to liquids. Other difficulties stem from the treatment of the predicted mechanical instability above the normal melting point. However, the most severe difficulty with the utilization of the Debye-Mie-Grüneisen approach is that it is incompatible with the current ambient-pressure thermodynamic databases and one will not be able to use them as a basis for high pressure modelling. Another approach (Brosh et al. 2007) is based on an interpolation of the thermophysical properties between the ambient pressure models given in conventional databases and the Debye-Mie-Grüneisen model at extreme pressures. This avoids most of the spurious anomalies of conventional models. The limitations of the interpolation scheme are the inclusion of several model parameters whose physical essence is not well-defined and an underestimation of the heat capacity at high pressures. In this presentation, the predictions of the
Leak testing of cryogenic components — problems and solutions
NASA Astrophysics Data System (ADS)
Srivastava, S. P.; Pandarkar, S. P.; Unni, T. G.; Sinha, A. K.; Mahajan, K.; Suthar, R. L.
2008-05-01
moderator pot was driving the MSLD out of range. Since it was very difficult to locate the leak by Tracer Probe Method, some other technique was ventured to solve the problem of leak location. Finally, it was possible to locate the leak by observing the change in Helium background reading of MSLD during masking/unmasking of the welded joints. This paper, in general describes the design and leak testing aspects of cryogenic components of Cold Neutron Source and in particular, the problems and solutions for leak testing of transfer lines and moderator pot.
A genetic algorithm solution to the unit commitment problem
Kazarlis, S.A.; Bakirtzis, A.G.; Petridis, V.
1996-02-01
This paper presents a Genetic Algorithm (GA) solution to the Unit Commitment problem. GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. A simple Ga algorithm implementation using the standard crossover and mutation operators could locate near optimal solutions but in most cases failed to converge to the optimal solution. However, using the Varying Quality Function technique and adding problem specific operators, satisfactory solutions to the Unit Commitment problem were obtained. Test results for systems of up to 100 units and comparisons with results obtained using Lagrangian Relaxation and Dynamic Programming are also reported.
Approximate solutions for certain bidomain problems in electrocardiography
NASA Astrophysics Data System (ADS)
Johnston, Peter R.
2008-10-01
The simulation of problems in electrocardiography using the bidomain model for cardiac tissue often creates issues with satisfaction of the boundary conditions required to obtain a solution. Recent studies have proposed approximate methods for solving such problems by satisfying the boundary conditions only approximately. This paper presents an analysis of their approximations using a similar method, but one which ensures that the boundary conditions are satisfied during the whole solution process. Also considered are additional functional forms, used in the approximate solutions, which are more appropriate to specific boundary conditions. The analysis shows that the approximations introduced by Patel and Roth [Phys. Rev. E 72, 051931 (2005)] generally give accurate results. However, there are certain situations where functional forms based on the geometry of the problem under consideration can give improved approximations. It is also demonstrated that the recent methods are equivalent to different approaches to solving the same problems introduced 20years earlier.
Solution of Boundary-Value Problems using Kantorovich Method
NASA Astrophysics Data System (ADS)
Gusev, A. A.; Hai, L. L.; Chuluunbaatar, O.; Vinitsky, S. I.; Derbov, V. L.
2016-02-01
We propose a computational scheme for solving the eigenvalue problem for an elliptic differential equation in a two-dimensional domain with Dirichlet boundary conditions. The solution is sought in the form of Kantorovich expansion over the basis functions of one of the independent variables with the second variable treated as a parameter. The basis functions are calculated as solutions of the parametric eigenvalue problem for an ordinary second-order differential equation. As a result, the initial problem is reduced to a boundary-value problem for a set of self-adjoint second-order differential equations for functions of the second independent variable. The discrete formulation of the problem is implemented using the finite element method with Hermite interpolation polynomials. The effciency of the calculation scheme is shown by benchmark calculations for a square membrane with a degenerate spectrum.
Fuzzy α-minimum spanning tree problem: definition and solutions
NASA Astrophysics Data System (ADS)
Zhou, Jian; Chen, Lu; Wang, Ke; Yang, Fan
2016-04-01
In this paper, the minimum spanning tree problem is investigated on the graph with fuzzy edge weights. The notion of fuzzy ? -minimum spanning tree is presented based on the credibility measure, and then the solutions of the fuzzy ? -minimum spanning tree problem are discussed under different assumptions. First, we respectively, assume that all the edge weights are triangular fuzzy numbers and trapezoidal fuzzy numbers and prove that the fuzzy ? -minimum spanning tree problem can be transformed to a classical problem on a crisp graph in these two cases, which can be solved by classical algorithms such as the Kruskal algorithm and the Prim algorithm in polynomial time. Subsequently, as for the case that the edge weights are general fuzzy numbers, a fuzzy simulation-based genetic algorithm using Prüfer number representation is designed for solving the fuzzy ? -minimum spanning tree problem. Some numerical examples are also provided for illustrating the effectiveness of the proposed solutions.
Solution of second order quasi-linear boundary value problems by a wavelet method
Zhang, Lei; Zhou, Youhe; Wang, Jizeng
2015-03-10
A wavelet Galerkin method based on expansions of Coiflet-like scaling function bases is applied to solve second order quasi-linear boundary value problems which represent a class of typical nonlinear differential equations. Two types of typical engineering problems are selected as test examples: one is about nonlinear heat conduction and the other is on bending of elastic beams. Numerical results are obtained by the proposed wavelet method. Through comparing to relevant analytical solutions as well as solutions obtained by other methods, we find that the method shows better efficiency and accuracy than several others, and the rate of convergence can even reach orders of 5.8.
Solution of mathematical programming formulations of subgame perfect equilibrium problems
Macal, C.M.; Hurter, A.P.
1992-02-12
Mathematical programming models have been developed to represent imperfectly competitive (oligopolistic) market structures and the interdependencies of decision-making units in establishing prices and production levels. The solution of these models represents an economic equilibrium. A subgame perfect equilibrium formulation explicitly considers that each agent`s strategies depend on the current state of the system; the state depends solely on previous decisions made by the economic agents. The structure of an industry-wide model that is formulated as a subgame perfect equilibrium problem is a matrix of simultaneous mathematical programming problems, where the rows represent time periods and the columns represent agents. This paper formally defines the subgame perfect equilibrium problem that includes mathematical programs for agent decision problems, and it characterizes the feasible space in a way that is conducive to the solution of the problem. The existence of equilibrium solutions on convex subspaces of the feasible region is proved, and this set is shown to contain the subgame perfect equilibrium solutions. A procedure for computing equilibrium solutions and systematically searching the subspaces is illustrated by a numerical example.
Numerical solutions of acoustic wave propagation problems using Euler computations
NASA Technical Reports Server (NTRS)
Hariharan, S. I.
1984-01-01
This paper reports solution procedures for problems arising from the study of engine inlet wave propagation. The first problem is the study of sound waves radiated from cylindrical inlets. The second one is a quasi-one-dimensional problem to study the effect of nonlinearities and the third one is the study of nonlinearities in two dimensions. In all three problems Euler computations are done with a fourth-order explicit scheme. For the first problem results are shown in agreement with experimental data and for the second problem comparisons are made with an existing asymptotic theory. The third problem is part of an ongoing work and preliminary results are presented for this case.
NASA Astrophysics Data System (ADS)
Fredman, T. P.
2004-12-01
A boundary identification problem in inverse heat conduction is studied, based on data from internal measurement of temperature and heat flux. Formulated as a sideways heat conduction equation, a spatial continuation technique is applied to extend the solution to a known boundary condition at the desired boundary position. Recording the positions traversed in the continuation for each time instant yields the boundary position trajectory and hence the solution of the identification problem. A prospective application of the method can be found in the ironmaking blast furnace, where it is desired to monitor the thickness of the accreted refractory wall based on measurement of its internal state. Simulations featuring noisy measurement data demonstrate the feasibility of the identification method for blast furnace wall thickness estimation.
Parallel solution of sparse one-dimensional dynamic programming problems
NASA Technical Reports Server (NTRS)
Nicol, David M.
1989-01-01
Parallel computation offers the potential for quickly solving large computational problems. However, it is often a non-trivial task to effectively use parallel computers. Solution methods must sometimes be reformulated to exploit parallelism; the reformulations are often more complex than their slower serial counterparts. We illustrate these points by studying the parallelization of sparse one-dimensional dynamic programming problems, those which do not obviously admit substantial parallelization. We propose a new method for parallelizing such problems, develop analytic models which help us to identify problems which parallelize well, and compare the performance of our algorithm with existing algorithms on a multiprocessor.
Solitary solutions to a relativistic two-body problem
NASA Astrophysics Data System (ADS)
Marcinkevicius, R.; Navickas, Z.; Ragulskis, M.; Telksnys, T.
2016-06-01
Necessary and sufficient conditions for the existence of solitary solutions to a generalized model of a two-body problem perturbed by small post-Newtonian relativistic term are derived in this paper. It is demonstrated that kink, bright and dark solitary solutions exist in the model, when the relativistic effects are treated as higher order perturbations. Numerical experiments are used to verify theoretical results.
Elementary solutions of the quantum planar two-center problem
NASA Astrophysics Data System (ADS)
González León, M. A.; Mateos Guilarte, J.; de la Torre Mayado, M.
2016-05-01
The quantum problem of an electron moving in a plane under the field created by two Coulombian centers admits simple analytical solutions for some particular intercenter distances. These elementary eigenfunctions, akin to those found by Demkov for the analogous three-dimensional problem, are calculated using the framework of quasi-exact solvability of a pair of entangled ODE's descendants from the Heun equation. A different but interesting situation arises when the two centers have the same strength. In this case completely elementary solutions do not exist.
Expert and novice solutions of genetic pedigree problems
NASA Astrophysics Data System (ADS)
Hackling, Mark W.; Lawrence, Jeanette A.
This study compared the problem-solving performance of university genetics professors and genetics students, and therefore fits the expert versus novice paradigm. The subjects solved three genetic pedigree problems. Data were gathered using standard think-aloud protocol procedures. Although the experts did not differ from the novices in terms of the number of correct solutions obtained, there were significant differences favoring the experts in terms of the completeness and conclusiveness of the solutions. The experts identified more critical cues in the pedigrees which were used to generate and test hypotheses, they tested more hypotheses by assigning genotypes to individuals in the pedigrees, and were more rigorous than the novices in the falsification of alternative hypotheses. The experts varied their problem-solving strategy to suit the particular conditions of problems involving rare or common traits. Novices did nor recognize the need to make such modifications to their strategies.
Solution of the determinantal assignment problem using the Grassmann matrices
NASA Astrophysics Data System (ADS)
Karcanias, Nicos; Leventides, John
2016-02-01
The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.
Advance directives: principles, problems, and solutions for physicians.
Hoffman, B F; Humniski, A
1997-04-01
Given the passage of recent legislation, the appearance of common-law reports in Canada and the United States, and the practical problems of implementation of advance directives in health care, physicians should understand the principles and issues involved. In this article, the advantages, disadvantages, and practical solutions to the problems are explored. Family physicians, geriatricians, neurologists, and psychiatrists are most likely to be consulted about advance directives in health care. PMID:12382657
Application of genetics knowledge to the solution of pedigree problems
NASA Astrophysics Data System (ADS)
Hackling, Mark W.
1994-12-01
This paper reports on a study of undergraduate genetics students' conceptual and procedural knowledge and how that knowledge influences students' success in pedigree problem solving. Findings indicate that many students lack the knowledge needed to test hypotheses relating to X-linked modes of inheritance using either patterns of inheritance or genotypes. Case study data illustrate how these knowledge deficiencies acted as an impediment to correct and conclusive solutions of pedigree problems.
Bin packing problem solution through a deterministic weighted finite automaton
NASA Astrophysics Data System (ADS)
Zavala-Díaz, J. C.; Pérez-Ortega, J.; Martínez-Rebollar, A.; Almanza-Ortega, N. N.; Hidalgo-Reyes, M.
2016-06-01
In this article the solution of Bin Packing problem of one dimension through a weighted finite automaton is presented. Construction of the automaton and its application to solve three different instances, one synthetic data and two benchmarks are presented: N1C1W1_A.BPP belonging to data set Set_1; and BPP13.BPP belonging to hard28. The optimal solution of synthetic data is obtained. In the first benchmark the solution obtained is one more container than the ideal number of containers and in the second benchmark the solution is two more containers than the ideal solution (approximately 2.5%). The runtime in all three cases was less than one second.
Problems encountered in solar heating and cooling systems
NASA Technical Reports Server (NTRS)
Cash, M.
1979-01-01
Report discussing various experiences of workers at Marshall Space Flight Center in developing solar heating and cooling systems is presented. Presents compilation of problems and their resolutions which can assist designers of solar-energy systems and prevent repetition of errors.
ERIC Educational Resources Information Center
Ewert, Alan
Outdoor leaders constantly face problems created by water shortage and, to act effectively, must thoroughly understand the body's use of water and the ways to delay dehydration when water shortage occurs. Dehydration begins when there is a negative water balance, or more water lost than ingested, and progresses from the stage of dryness, to the…
On Exact Solutions of Novel Multistate Landau-Zener Problems
NASA Astrophysics Data System (ADS)
Patra, Aniket; Yuzbashyan, Emil
A multistate Landau-Zener (MLZ) Hamiltonian is used to model numerous non-equilibrium experiments involving cold atoms, quantum dots and quantum dot molecules. We recently showed that all the known MLZ problems either reduce to the 2 × 2 Landau Zener problem or belong to a family of mutually commuting Hamiltonians (that are polynomial in time). Based on this classification we identify previously unknown MLZ problems, explicitly obtain their solutions and discuss relevant experimental scenarios. Supported in part by the David and Lucile Packard Foundation.
Solution to the cosmological horizon problem proposed by Zee
Pollock, M.D.
1981-08-15
Applying a theory of gravity with broken symmetry, Zee has suggested a solution to the cosmological horizon problem. His idea has been criticized on two independent grounds by Linde and by Sato. In this paper, we suggest answers to both these criticisms.
Finding Solutions to Environmental Problems: A Process Guide.
ERIC Educational Resources Information Center
Wert, Jonathan M.; Magnoli, Michael A.
This guide is an attempt to provide a workable methodology for helping college students and citizen groups to identify the most pressing environmental problems in their communities and to find solutions to them. With some modification, it can also be used by high school students who are interested in independent or team studies. The monograph…
New approach to the solution of quantum problems
NASA Astrophysics Data System (ADS)
Cummings, F. W.; Rajagopal, A. K.
1986-11-01
New exact forms for the equation for the resolvent operator are presented which take into account strong-interaction effects. The advantages of the method are illustrated by the exact solution of a problem in which the potential contains a random element.
Image Indexing and Retrieval: Some Problems and Proposed Solutions.
ERIC Educational Resources Information Center
Baxter, Graeme; Anderson, Douglas
1996-01-01
Image processing technology allows libraries to include photographs, paintings, monograph title pages, and maps in their databases. This article examines problems of and solutions to image indexing and retrieval, focusing on thesaurus-based indexing systems, visual thesauri and related hybrid systems, picture description languages, and image…
WATER CONSERVATION: LOCAL SOLUTIONS TO A GLOBAL PROBLEM
Water conservation issues are discussed. Local solutions to a global problem include changing old habits relating to the usage and abuse of water resources. While the suggested behavioral changes may not solve the world's pending water crisis, they may ease the impact of the l...
Generic Problems or Solutions in Rural Special Education.
ERIC Educational Resources Information Center
Marrs, Lawrence W.
While most rural special education leaders agree on the universality of certain problems (funding inadequacies, personnel recruitment/retention, transportation, low-incidence handicapped populations, staff development needs, resistance to change) in rural areas, no agreement exists regarding generalizable solutions which will work in all rural…
Adjoint optimization of natural convection problems: differentially heated cavity
NASA Astrophysics Data System (ADS)
Saglietti, Clio; Schlatter, Philipp; Monokrousos, Antonios; Henningson, Dan S.
2016-06-01
Optimization of natural convection-driven flows may provide significant improvements to the performance of cooling devices, but a theoretical investigation of such flows has been rarely done. The present paper illustrates an efficient gradient-based optimization method for analyzing such systems. We consider numerically the natural convection-driven flow in a differentially heated cavity with three Prandtl numbers (Pr=0.15{-}7 ) at super-critical conditions. All results and implementations were done with the spectral element code Nek5000. The flow is analyzed using linear direct and adjoint computations about a nonlinear base flow, extracting in particular optimal initial conditions using power iteration and the solution of the full adjoint direct eigenproblem. The cost function for both temperature and velocity is based on the kinetic energy and the concept of entransy, which yields a quadratic functional. Results are presented as a function of Prandtl number, time horizons and weights between kinetic energy and entransy. In particular, it is shown that the maximum transient growth is achieved at time horizons on the order of 5 time units for all cases, whereas for larger time horizons the adjoint mode is recovered as optimal initial condition. For smaller time horizons, the influence of the weights leads either to a concentric temperature distribution or to an initial condition pattern that opposes the mean shear and grows according to the Orr mechanism. For specific cases, it could also been shown that the computation of optimal initial conditions leads to a degenerate problem, with a potential loss of symmetry. In these situations, it turns out that any initial condition lying in a specific span of the eigenfunctions will yield exactly the same transient amplification. As a consequence, the power iteration converges very slowly and fails to extract all possible optimal initial conditions. According to the authors' knowledge, this behavior is illustrated here
Exact solution for an optimal impermeable parachute problem
NASA Astrophysics Data System (ADS)
Lupu, Mircea; Scheiber, Ernest
2002-10-01
In the paper there are solved direct and inverse boundary problems and analytical solutions are obtained for optimization problems in the case of some nonlinear integral operators. It is modeled the plane potential flow of an inviscid, incompressible and nonlimited fluid jet, witch encounters a symmetrical, curvilinear obstacle--the deflector of maximal drag. There are derived integral singular equations, for direct and inverse problems and the movement in the auxiliary canonical half-plane is obtained. Next, the optimization problem is solved in an analytical manner. The design of the optimal airfoil is performed and finally, numerical computations concerning the drag coefficient and other geometrical and aerodynamical parameters are carried out. This model corresponds to the Helmholtz impermeable parachute problem.
Integrated Force Method Solution to Indeterminate Structural Mechanics Problems
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.
2004-01-01
Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.
Anti-anthropic solutions to the cosmic coincidence problem
Fedrow, Joseph M.; Griest, Kim E-mail: kgriest@ucsd.edu
2014-01-01
A cosmological constant fits all current dark energy data, but requires two extreme fine tunings, both of which are currently explained by anthropic arguments. Here we discuss anti-anthropic solutions to one of these problems: the cosmic coincidence problem- that today the dark energy density is nearly equal to the matter density. We replace the ensemble of Universes used in the anthropic solution with an ensemble of tracking scalar fields that do not require fine-tuning. This not only does away with the coincidence problem, but also allows for a Universe that has a very different future than the one currently predicted by a cosmological constant. These models also allow for transient periods of significant scalar field energy (SSFE) over the history of the Universe that can give very different observational signatures as compared with a cosmological constant, and so can be confirmed or disproved in current and upcoming experiments.
Anthropic versus cosmological solutions to the coincidence problem
Barreira, A.; Avelino, P. P.
2011-05-15
In this paper, we investigate possible solutions to the coincidence problem in flat phantom dark-energy models with a constant dark-energy equation of state and quintessence models with a linear scalar field potential. These models are representative of a broader class of cosmological scenarios in which the universe has a finite lifetime. We show that, in the absence of anthropic constraints, including a prior probability for the models inversely proportional to the total lifetime of the universe excludes models very close to the {Lambda} cold dark matter model. This relates a cosmological solution to the coincidence problem with a dynamical dark-energy component having an equation-of-state parameter not too close to -1 at the present time. We further show that anthropic constraints, if they are sufficiently stringent, may solve the coincidence problem without the need for dynamical dark energy.
NASA Astrophysics Data System (ADS)
Alekseev, G. V.
2015-12-01
The boundary value problem for the stationary magnetohydrodynamics model of a viscous heatconducting fluid considered under inhomogeneous mixed boundary conditions for an electromagnetic field and the temperature and Dirichlet condition for the velocity is investigated. This problem describes the flow of an electricaland heat-conducting liquid in a bounded three-dimensional domain the boundary of which consists of several parts with different thermoand electrophysical properties. Sufficient conditions imposed on the initial data to provide for global solvability of the problem and local uniqueness of its solution are established.
A stable and high-order accurate conjugate heat transfer problem
NASA Astrophysics Data System (ADS)
Lindström, Jens; Nordström, Jan
2010-08-01
This paper analyzes well-posedness and stability of a conjugate heat transfer problem in one space dimension. We study a model problem for heat transfer between a fluid and a solid. The energy method is used to derive boundary and interface conditions that make the continuous problem well-posed and the semi-discrete problem stable. The numerical scheme is implemented using 2nd-, 3rd- and 4th-order finite difference operators on Summation-By-Parts (SBP) form. The boundary and interface conditions are implemented weakly. We investigate the spectrum of the spatial discretization to determine which type of coupling that gives attractive convergence properties. The rate of convergence is verified using the method of manufactured solutions.
On the solution of time-dependent problems
NASA Astrophysics Data System (ADS)
Abdou, M. A.
2005-10-01
The time-dependent radiative transfer problems involving non-equilibrium coupling to the material temperature to differential equation and ballistic-diffusive equation have been solved by means of two different techniques, namely, flux-limited approach and maximum entropy method. The behaviour of the radiative intensity is shown graphically. Knowing the radiative intensity allows us to calculate directly some physical parameters such as the reflection function and heat flux that are numerically computed.
NASA Astrophysics Data System (ADS)
Chen, Chuan-Zhong; Sun, Wei; Zhang, Jing
2016-01-01
In this paper, we use a probabilistic approach to show that there exists a unique, bounded continuous solution to the Dirichlet boundary value problem for a general class of second order non-symmetric elliptic operators L with singular coefficients, which does not necessarily have the maximum principle. The theory of Dirichlet forms and heat kernel estimates play a crucial role in our approach. A probabilistic representation of the non-symmetric semigroup {Tt } t ≥ 0 generated by L is also given.
A More General Solution of the Kenamond HE Problem 2
Kaul, Ann
2015-12-15
A more general solution for programmed burn calculations of the light times produced by an unobstructed line-of-sight, multi-point initiation of a composite HE region has been developed. The equations describing the interfaces between detonation fronts have also been included. In contrast to the original solutions proposed in References 1 and 2, four of the detonators are no longer restricted to specific locations on a Cartesian axis and can be located at any point inside the HE region. For the proposed solution, one detonator must be located at the origin. The more general solution for any locations on the 2D y-axis or 3D z-axis has been implemented in the ExactPack suite of exact solvers for verification problems. It could easily be changed to the most general case outlined above.
Application of Genetic Algorithms in Nonlinear Heat Conduction Problems
Khan, Waqar A.
2014-01-01
Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry. PMID:24695517
Lessons Learned During Solutions of Multidisciplinary Design Optimization Problems
NASA Technical Reports Server (NTRS)
Patnaik, Suna N.; Coroneos, Rula M.; Hopkins, Dale A.; Lavelle, Thomas M.
2000-01-01
Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. During solution of the multidisciplinary problems several issues were encountered. This paper lists four issues and discusses the strategies adapted for their resolution: (1) The optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. (2) Optimum solutions obtained were infeasible for aircraft and air-breathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. (3) Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. (4) The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through six problems: (1) design of an engine component, (2) synthesis of a subsonic aircraft, (3) operation optimization of a supersonic engine, (4) design of a wave-rotor-topping device, (5) profile optimization of a cantilever beam, and (6) design of a cvlindrical shell. The combined effort of designers and researchers can bring the optimization method from academia to industry.
Numerical solution-space analysis of satisfiability problems
NASA Astrophysics Data System (ADS)
Mann, Alexander; Hartmann, A. K.
2010-11-01
The solution-space structure of the three-satisfiability problem (3-SAT) is studied as a function of the control parameter α (ratio of the number of clauses to the number of variables) using numerical simulations. For this purpose one has to sample the solution space with uniform weight. It is shown here that standard stochastic local-search (SLS) algorithms like average satisfiability (ASAT) exhibit a sampling bias, as does “Metropolis-coupled Markov chain Monte Carlo” (MCMCMC) (also known as “parallel tempering”) when run for feasible times. Nevertheless, unbiased samples of solutions can be obtained using the “ballistic-networking approach,” which is introduced here. It is a generalization of “ballistic search” methods and yields also a cluster structure of the solution space. As application, solutions of 3-SAT instances are generated using ASAT plus ballistic networking. The numerical results are compatible with a previous analytical prediction of a simple solution-space structure for small values of α and a transition to a clustered phase at αc≈3.86 , where the solution space breaks up into several non-negligible clusters. Furthermore, in the thermodynamic limit there are, even for α=4.25 close to the SAT-UNSAT transition αs≈4.267 , always clusters without any frozen variables. This may explain why some SLS algorithms are able to solve very large 3-SAT instances close to the SAT-UNSAT transition.
Numerical solution-space analysis of satisfiability problems.
Mann, Alexander; Hartmann, A K
2010-11-01
The solution-space structure of the three-satisfiability problem (3-SAT) is studied as a function of the control parameter α (ratio of the number of clauses to the number of variables) using numerical simulations. For this purpose one has to sample the solution space with uniform weight. It is shown here that standard stochastic local-search (SLS) algorithms like average satisfiability (ASAT) exhibit a sampling bias, as does "Metropolis-coupled Markov chain Monte Carlo" (MCMCMC) (also known as "parallel tempering") when run for feasible times. Nevertheless, unbiased samples of solutions can be obtained using the "ballistic-networking approach," which is introduced here. It is a generalization of "ballistic search" methods and yields also a cluster structure of the solution space. As application, solutions of 3-SAT instances are generated using ASAT plus ballistic networking. The numerical results are compatible with a previous analytical prediction of a simple solution-space structure for small values of α and a transition to a clustered phase at α(c)≈3.86 , where the solution space breaks up into several non-negligible clusters. Furthermore, in the thermodynamic limit there are, even for α=4.25 close to the SAT-UNSAT transition α(s)≈4.267 , always clusters without any frozen variables. This may explain why some SLS algorithms are able to solve very large 3-SAT instances close to the SAT-UNSAT transition. PMID:21230614
CHAPARRAL: A library for solving large enclosure radiation heat transfer problems
Glass, M.W.
1995-08-01
Large, three-dimensional enclosure radiation beat transfer problems place a heavy demand on computing resources such as computational cycles, memory requirements, disk I/O, and disk space usage. This is primarily due to the computational and memory requirements associated with the view factor calculation and subsequent access of the view factor matrix during solution of the radiosity matrix equation. This is a fundamental problem that constrains Sandia`s current modeling capabilities. Reducing the computational and memory requirements for calculating and manipulating view factors would enable an analyst to increase the level of detail at which a body could be modeled and would have a major impact on many programs at Sandia such as weapon and transportation safety programs, component survivability programs, energy programs, and material processing programs. CHAPARRAL is a library package written to address these problems and is specifically tailored towards the efficient solution of extremely large three-dimensional enclosure radiation heat transfer problems.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
Chen, J.J.; Lin, J.D.
1998-06-01
Drying is one of the essential steps in a number of industrial applications, such as the preserving of food and the drying of paint, pulp, and paper. The quality of paper tubes is significantly affected by the heat and mass transfer process. The drying of polymer solution plays a crucial role in the manufacturer of photographic film, synthetic fibers, adhesives, and a variety of other polymeric products. During drying of wet materials, simultaneous heat and mass transfer occurs both inside the medium and in the boundary layer of the drying agent. Drying is one of the most energy-consuming processes in the industrial sector and can also be very time consuming as, for example, in conventional convective drying by hot air, while minimum cost and energy consumption and maximum product quality are among the main concerns in industry today. Here, a theoretical study is performed that describes heat transfer and moisture variation while a polymer solution is exposed to high-intensity infrared radiation flux and/or an airflow. While the intermittent heating is considered, the authors investigate the influences of various radiation and convection parameters on the transfer of heat and moisture variation of coated layers on an optically thick substrate. During the tempering stage in the intermittent heating process, the convective mass transfer is included to simulate the ambient air in reality. The effects of radiation and convection parameters on the transfer processes are presented in terms of the rate of water content removal, heat transfer, and moisture distributions. Numerical results show that the rate of water removal from the polymer solution is dominated by both the adsorbed radiative heat energy and the distributions of water mass fraction in the polymer solution.
Geometric projection filter: an efficient solution to the SLAM problem
NASA Astrophysics Data System (ADS)
Newman, Paul M.; Durrant-Whyte, Hugh F.
2001-10-01
This paper is concerned with the simultaneous localization and map building (SLAM) problem. The SLAM problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle location. Conventional approaches to this problem are plagued with a prohibitively large increase in computation with the size of the environment. This paper offers a new solution to the SLAM problem that is both consistent and computationally feasible. The proposed algorithm builds a map expressing the relationships between landmarks which is then transformed into landmark locations. Experimental results are presented employing the new algorithm on a subsea vehicle using a scanning sonar sensor.
The exact fundamental solution for the Benes tracking problem
NASA Astrophysics Data System (ADS)
Balaji, Bhashyam
2009-05-01
The universal continuous-discrete tracking problem requires the solution of a Fokker-Planck-Kolmogorov forward equation (FPKfe) for an arbitrary initial condition. Using results from quantum mechanics, the exact fundamental solution for the FPKfe is derived for the state model of arbitrary dimension with Benes drift that requires only the computation of elementary transcendental functions and standard linear algebra techniques- no ordinary or partial differential equations need to be solved. The measurement process may be an arbitrary, discrete-time nonlinear stochastic process, and the time step size can be arbitrary. Numerical examples are included, demonstrating its utility in practical implementation.
Superlinear nonlocal fractional problems with infinitely many solutions
NASA Astrophysics Data System (ADS)
Binlin, Zhang; Molica Bisci, Giovanni; Servadei, Raffaella
2015-07-01
In this paper we study the existence of infinitely many weak solutions for equations driven by nonlocal integrodifferential operators with homogeneous Dirichlet boundary conditions. A model for these operators is given by the fractional Laplacian where s ∈ (0, 1) is fixed. We consider different superlinear growth assumptions on the nonlinearity, starting from the well-known Ambrosetti-Rabinowitz condition. In this framework we obtain three different results about the existence of infinitely many weak solutions for the problem under consideration, by using the Fountain Theorem. All these theorems extend some classical results for semilinear Laplacian equations to the nonlocal fractional setting.
Solution methods for one-dimensional viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, John M.; Simitses, George J.
1987-01-01
A recently developed differential methodology for solution of one-dimensional nonlinear viscoelastic problems is presented. Using the example of an eccentrically loaded cantilever beam-column, the results from the differential formulation are compared to results generated using a previously published integral solution technique. It is shown that the results obtained from these distinct methodologies exhibit a surprisingly high degree of correlation with one another. A discussion of the various factors affecting the numerical accuracy and rate of convergence of these two procedures is also included. Finally, the influences of some 'higher order' effects, such as straining along the centroidal axis are discussed.
Solution of Exterior Acoustic Problems by the Boundary Element Method.
NASA Astrophysics Data System (ADS)
Kirkup, Stephen Martin
Available from UMI in association with The British Library. The boundary element method is described and investigated, especially in respect of its application to exterior two -dimensional Laplace problems. Both empirical and algebraic analyses (including the effects of approximation of the boundary and boundary functions and the precision of the evaluation of the discrete forms) are developed. Methods for the automatic evaluation of the discrete forms of the Laplace and Helmholtz integral operators are reviewed and extended. Boundary element methods for the solution of exterior Helmholtz problems with general (but most importantly Neumann) boundary conditions are reviewed and some are explicitly stated using a new notation. Boundary element methods based on the boundary integral equations introduced by Brakhage & Werner/ Leis/ Panich/ Kussmaul (indirect) and Burton & Miller (direct) are given prime consideration and implemented for three -dimensional problems. The influence of the choice of weighting parameter on the performance of the methods is explored and further guidance is given. The application of boundary element methods and methods based on the Rayleigh integral to acoustic radiation problems are considered. Methods for speeding up their solution via the boundary element method are developed. Library subroutines for the solution of acoustic radiation problems are described and demonstrated. Computational techniques for the problem of predicting the noise produced by a running engine are reviewed and appraised. The application of the boundary element method to low-noise engine design and in the design of noise shields is considered. The boundary element method is applied to the Ricardo crankcase simulation rig, which is an engine -like structure. A comparison of predicted and measured sound power spectra is given.
Solution of exterior acoustic problems by the boundary element method
NASA Astrophysics Data System (ADS)
Kirkup, Stephen Martin
The boundary element method is described and investigated, especially in respect of its application to exterior two-dimensional Laplace problems. Both empirical and algebraic analyses (including the effects of approximation of the boundary and boundary functions and the precision of the evaluation of the discrete forms) are developed. Methods for the automatic evaluation of the discrete forms of the Laplace and Helmholtz integral operators are reviewed and extended. Boundary element methods for the solution of exterior Helmholtz problems with general (but most importantly Neumann) boundary conditions are reviewed and some are explicitly stated using a new notation. Boundary element methods based on the boundary integral equations introduced by Brakhage and Werner/Leis/Panich/Kussmaul (indirect) and Burton and Miller (direct) are given prime consideration and implemented for three-dimensional problems. The influence of the choice of weighting parameter on the performance of the methods is explored and further guidance is given. The application of boundary element methods and methods based on the Rayleigh integral to acoustic radiation problems are considered. Methods for speeding up their solution via the boundary element method are developed. Library subroutines for the solution of acoustic radiation problems are described and demonstrated. Computational techniques for the problem of predicting the noise produced by a running engine are reviewed and appraised. The application of the boundary element method to low-noise engine design and in the design of noise shields is considered. The boundary element method is applied to the Ricardo crankcase simulation rig, which is an engine-like structure. A comparison of predicted and measured sound power spectra is given.
A multilayer method of fundamental solutions for Stokes flow problems
NASA Astrophysics Data System (ADS)
Boselli, F.; Obrist, D.; Kleiser, L.
2012-07-01
The method of fundamental solutions (MFS) is a meshless method for the solution of boundary value problems and has recently been proposed as a simple and efficient method for the solution of Stokes flow problems. The MFS approximates the solution by an expansion of fundamental solutions whose singularities are located outside the flow domain. Typically, the source points (i.e. the singularities of the fundamental solutions) are confined to a smooth source layer embracing the flow domain. This monolayer implementation of the MFS (monolayer MFS) depends strongly on the location of the user-defined source points: On the one hand, increasing the distance of the source points from the boundary tends to increase the convergence rate. On the other hand, this may limit the achievable accuracy. This often results in an unfavorable compromise between the convergence rate and the achievable accuracy of the MFS. The idea behind the present work is that a multilayer implementation of the MFS (multilayer MFS) can improve the robustness of the MFS by efficiently resolving different scales of the solution by source layers at different distances from the boundary. We propose a block greedy-QR algorithm (BGQRa) which exploits this property in a multilevel fashion. The proposed multilayer MFS is much more robust than the monolayer MFS and can compute Stokes flows on general two- and three-dimensional domains. It converges rapidly and yields high levels of accuracy by combining the properties of distant and close source points. The block algorithm alleviates the overhead of multiple source layers and allows the multilayer MFS to outperform the monolayer MFS.
NASA Technical Reports Server (NTRS)
Murio, Diego A.
1991-01-01
An explicit and unconditionally stable finite difference method for the solution of the transient inverse heat conduction problem in a semi-infinite or finite slab mediums subject to nonlinear radiation boundary conditions is presented. After measuring two interior temperature histories, the mollification method is used to determine the surface transient heat source if the energy radiation law is known. Alternatively, if the active surface is heated by a source at a rate proportional to a given function, the nonlinear surface radiation law is then recovered as a function of the interface temperature when the problem is feasible. Two typical examples corresponding to Newton cooling law and Stefan-Boltzmann radiation law respectively are illustrated. In all cases, the method predicts the surface conditions with an accuracy suitable for many practical purposes.
Algebraic solution for phase unwrapping problems in multiwavelength interferometry.
Falaggis, Konstantinos; Towers, David P; Towers, Catherine E
2014-06-10
Recent advances in multiwavelength interferometry techniques [Appl. Opt.52, 5758 (2013)] give new insights to phase unwrapping problems and allow the fringe order information contained in the measured phase to be extracted with low computational effort. This work introduces an algebraic solution to the phase unwrapping problem that allows the direct calculation of the unknown integer fringe order. The procedure resembles beat-wavelength approaches, but provides greater flexibility in choosing the measurement wavelengths, a larger measurement range, and a higher robustness against noise, due to the ability to correct for errors during the calculation. PMID:24921139
Explicit solutions of one-dimensional total variation problem
NASA Astrophysics Data System (ADS)
Makovetskii, Artyom; Voronin, Sergei; Kober, Vitaly
2015-09-01
This work deals with denosing of a one-dimensional signal corrupted by additive white Gaussian noise. A common way to solve the problem is to utilize the total variation (TV) method. Basically, the TV regularization minimizes a functional consisting of the sum of fidelity and regularization terms. We derive explicit solutions of the one-dimensional TV regularization problem that help us to restore noisy signals with a direct, non-iterative algorithm. Computer simulation results are provided to illustrate the performance of the proposed algorithm for restoration of noisy signals.
Multiresolution strategies for the numerical solution of optimal control problems
NASA Astrophysics Data System (ADS)
Jain, Sachin
There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a
NASA Technical Reports Server (NTRS)
Garcia, F., Jr.
1975-01-01
This paper presents a solution to a complex lifting reentry three-degree-of-freedom problem by using the calculus of variations to minimize the integral of the sum of the aerodynamics loads and heat rate input to the vehicle. The entry problem considered does not have state and/or control constraints along the trajectory. The calculus of variations method applied to this problem gives rise to a set of necessary conditions which are used to formulate a two point boundary value (TPBV) problem. This TPBV problem is then numerically solved by an improved method of perturbation functions (IMPF) using several starting co-state vectors. These vectors were chosen so that each one had a larger norm with respect to show how the envelope of convergence is significantly increased using this method and cases are presented to point this out.
Mathematical modeling of heat transfer problems in the permafrost
NASA Astrophysics Data System (ADS)
Gornov, V. F.; Stepanov, S. P.; Vasilyeva, M. V.; Vasilyev, V. I.
2014-11-01
In this work we present results of numerical simulation of three-dimensional temperature fields in soils for various applied problems: the railway line in the conditions of permafrost for different geometries, the horizontal tunnel underground storage and greenhouses of various designs in the Far North. Mathematical model of the process is described by a nonstationary heat equation with phase transitions of pore water. The numerical realization of the problem is based on the finite element method using a library of scientific computing FEniCS. For numerical calculations we use high-performance computing systems.
Baggie: A unique solution to an orbiter icing problem
NASA Technical Reports Server (NTRS)
Walkover, L. J.
1982-01-01
The orbiter icing problem, located in two lower surface mold line cavities, was solved. These two cavities are open during Shuttle ground operations and ascent, and are then closed after orbit insertion. If not protected, these cavities may be coated with ice, which may be detrimental to the adjacent thermal protection system (TPS) tiles if the ice breaks up during ascent, and may hinder the closing of the cavity doors if the ice does not break up. The problem of ice in these cavities was solved by the use of a passive mechanism called baggie, which is purge curtain used to enclose the cavity and is used in conjunction with gaseous nitrogen as the local purge gas. The baggie, the final solution, is unique in its simplicity, but its design and development were not. The final baggie design and its development testing are discussed. Also discussed are the baggie concepts and other solutions not used.
Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers
NASA Astrophysics Data System (ADS)
Taler, Dawid; Sury, Adam
2011-12-01
The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.
Spectral solution of acoustic wave-propagation problems
NASA Technical Reports Server (NTRS)
Kopriva, David A.
1990-01-01
The Chebyshev spectral collocation solution of acoustic wave propagation problems is considered. It is shown that the phase errors decay exponentially fast and that the number of points per wavelength is not sufficient to estimate the phase accuracy. Applications include linear propagation of a sinusoidal acoustic wavetrain in two space dimensions, and the interaction of a sound wave with the bow shock formed by placing a cylinder in a uniform Mach 4 supersonic free stream.
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1979-01-01
A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.
An Improved Differential Evolution Solution for Software Project Scheduling Problem
Biju, A. C.; Victoire, T. Aruldoss Albert; Mohanasundaram, Kumaresan
2015-01-01
This paper proposes a differential evolution (DE) method for the software project scheduling problem (SPSP). The interest on finding a more efficient solution technique for SPSP is always a topic of interest due to the fact of ever growing challenges faced by the software industry. The curse of dimensionality is introduced in the scheduling problem by ever increasing software assignments and the number of staff who handles it. Thus the SPSP is a class of NP-hard problem, which requires a rigorous solution procedure which guarantees a reasonably better solution. Differential evolution is a direct search stochastic optimization technique that is fairly fast and reasonably robust. It is also capable of handling nondifferentiable, nonlinear, and multimodal objective functions like SPSP. This paper proposes a refined DE where a new mutation mechanism is introduced. The superiority of the proposed method is experimented and demonstrated by solving the SPSP on 50 random instances and the results are compared with some of the techniques in the literature. PMID:26495419
Near earth propagation of distributed sensors: problems and solutions
NASA Astrophysics Data System (ADS)
Wert, R.; Goroch, A.; Worthington, E.; Chan, K.; Tremper, D.; Schuette, L.
2006-05-01
Both the military and consumer sectors are driving towards distributed networked sensors. A major stumbling block to deployment of these sensors is the radio frequency (RF) propagation environment within a few wavelengths of the earth. Increasing transmit power (battery consumption) is not the practical solution to the problem. This paper will discuss some aspects of the near earth propagation (NEP) problem and provide a few solutions. When radiating near the earth the communications link is subjected to a list of physical impairments. On the list are the expected Fresnel region encroachment and multipath reflections along with the intriguing radiation pattern changes and near earth boundary layer perturbations. A significant amount of data has been collected on NEP. Disturbances in the NEP atmosphere have a time varying attenuation related to the solar radiation (insolation). Solutions, or workarounds, to the near earth propagation problem hinge on dynamic adaptive RF elements. Adaptive RF elements will allow the distributed sensor to direct energy, beam form, impedance correct, increase communication efficiency, and decrease battery consumption. Small electrically controllable elements are under development to enable antenna impedance matching in a dynamic environment. Additionally, small dynamic beam forming antennas will be developed to focus RF energy in the direction of need. By creating provisions for decreasing the output RF power to the level required, battery consumption can be reduced. With the addition of adaptive RF elements, distributed autonomous networked sensors can become a reality within a few centimeters of the earth.
Massively parallel solution of the assignment problem. Technical report
Wein, J.; Zenios, S.
1990-12-01
In this paper we discuss the design, implementation and effectiveness of massively parallel algorithms for the solution of large-scale assignment problems. In particular, we study the auction algorithms of Bertsekas, an algorithm based on the method of multipliers of Hestenes and Powell, and an algorithm based on the alternating direction method of multipliers of Eckstein. We discuss alternative approaches to the massively parallel implementation of the auction algorithm, including Jacobi, Gauss-Seidel and a hybrid scheme. The hybrid scheme, in particular, exploits two different levels of parallelism and an efficient way of communicating the data between them without the need to perform general router operations across the hypercube network. We then study the performance of massively parallel implementations of two methods of multipliers. Implementations are carried out on the Connection Machine CM-2, and the algorithms are evaluated empirically with the solution of large scale problems. The hybrid scheme significantly outperforms all of the other methods and gives the best computational results to date for a massively parallel solution to this problem.
Topological inversion for solution of geodesy-constrained geophysical problems
NASA Astrophysics Data System (ADS)
Saltogianni, Vasso; Stiros, Stathis
2015-04-01
Geodetic data, mostly GPS observations, permit to measure displacements of selected points around activated faults and volcanoes, and on the basis of geophysical models, to model the underlying physical processes. This requires inversion of redundant systems of highly non-linear equations with >3 unknowns; a situation analogous to the adjustment of geodetic networks. However, in geophysical problems inversion cannot be based on conventional least-squares techniques, and is based on numerical inversion techniques (a priori fixing of some variables, optimization in steps with values of two variables each time to be regarded fixed, random search in the vicinity of approximate solutions). Still these techniques lead to solutions trapped in local minima, to correlated estimates and to solutions with poor error control (usually sampling-based approaches). To overcome these problems, a numerical-topological, grid-search based technique in the RN space is proposed (N the number of unknown variables). This technique is in fact a generalization and refinement of techniques used in lighthouse positioning and in some cases of low-accuracy 2-D positioning using Wi-Fi etc. The basic concept is to assume discrete possible ranges of each variable, and from these ranges to define a grid G in the RN space, with some of the gridpoints to approximate the true solutions of the system. Each point of hyper-grid G is then tested whether it satisfies the observations, given their uncertainty level, and successful grid points define a sub-space of G containing the true solutions. The optimal (minimal) space containing one or more solutions is obtained using a trial-and-error approach, and a single optimization factor. From this essentially deterministic identification of the set of gridpoints satisfying the system of equations, at a following step, a stochastic optimal solution is computed corresponding to the center of gravity of this set of gridpoints. This solution corresponds to a
Green's function of a heat problem with a periodic boundary condition
NASA Astrophysics Data System (ADS)
Erzhanov, Nurzhan E.
2016-08-01
In the paper, a nonlocal initial-boundary value problem for a non-homogeneous one-dimensional heat equation is considered. The domain under consideration is a rectangle. The classical initial condition with respect to t is put. A nonlocal periodic boundary condition by a spatial variable x is put. It is well-known that a solution of problem can be constructed in the form of convergent orthonormal series according to eigenfunctions of a spectral problem for an operator of multiple differentiation with periodic boundary conditions. Therefore Green's function can be also written in the form of an infinite series with respect to trigonometric functions (Fourier series). For classical first and second initial-boundary value problems there also exists a second representation of the Green's function by Jacobi function. In this paper we find the representation of the Green's function of the nonlocal initial-boundary value problem with periodic boundary conditions in the form of series according to exponents.
Periodic solutions about the collinear Lagrangian solution in the general problem of three bodies
NASA Technical Reports Server (NTRS)
Broucke, R.; Davoust, E.; Anderson, J. D.; Lass, H.; Blitzer, L.
1981-01-01
The article describes the solutions near Lagrange's circular collinear configuration in the planar problem of three bodies with three finite masses. The article begins with a detailed review of the properties of Lagrange's collinear solution. Lagrange's quintic equation is derived and several expressions are given for the angular velocity of the rotating frame. The equations of motion are then linearized near the circular collinear solution, and the characteristic equation is also derived in detail. The different types of roots and their corresponding solutions are discussed. The special case of two equal outer masses receives special attention, as well as the special case of two small outer masses. Finally, the fundamental family of periodic solutions is extended by numerical integration all the way up to and past a binary collision orbit. The stability and the bifurcations of this family are briefly enumerated.
North Dakota's Centennial Quilt and Problem Solvers: Solutions: The Library Problem
ERIC Educational Resources Information Center
Small, Marian
2010-01-01
Quilt investigations, such as the Barn quilt problem in the December 2008/January 2009 issue of "Teaching Children Mathematics" and its solutions in last month's issue, can spark interdisciplinary pursuits for teachers and exciting connections for the full range of elementary school students. This month, North Dakota's centennial quilt problem…
Numerical Solution of the k-Eigenvalue Problem
NASA Astrophysics Data System (ADS)
Hamilton, Steven Paul
2011-12-01
Obtaining solutions to the k-eigenvalue form of the radiation transport equation is an important topic in the design and analysis of nuclear reactors. Although this has been an area of active interest in the nuclear engineering community for several decades, to date no truly satisfactory solution strategies exist. In general, existing techniques are either slow to converge for difficult problems or suffer from stability and robustness issues that can cause solvers to diverge for some problems. This work provides a comparison between a variety of methods and introduces a new strategy based on the Davidson method that has been used in other fields for many years but never for this problem. The Davidson method offers an alternative to the nested iteration structure inherent to standard approaches and allows expensive linear solvers to be replaced by a potentially cheap preconditioner. To fill the role of this preconditioner, a strategy based on a multigrid treatment of the energy variable is developed. Numerical experiments using the 2-D NEWT transport package are presented, demonstrating the effectiveness of the proposed strategy.
Novel Problem Solving - The NASA Solution Mechanism Guide
NASA Technical Reports Server (NTRS)
Keeton, Kathryn E.; Richard, Elizabeth E.; Davis, Jeffrey R.
2014-01-01
Over the past five years, the Human Health and Performance (HH&P) Directorate at the NASA Johnson Space Center (JSC) has conducted a number of pilot and ongoing projects in collaboration and open innovation. These projects involved the use of novel open innovation competitions that sought solutions from "the crowd", non-traditional problem solvers. The projects expanded to include virtual collaboration centers such as the NASA Human Health and Performance Center (NHHPC) and more recently a collaborative research project between NASA and the National Science Foundation (NSF). These novel problem-solving tools produced effective results and the HH&P wanted to capture the knowledge from these new tools, to teach the results to the directorate, and to implement new project management tools and coursework. The need to capture and teach the results of these novel problem solving tools, the HH&P decided to create a web-based tool to capture best practices and case studies, to teach novice users how to use new problem solving tools and to change project management training/. This web-based tool was developed with a small, multi-disciplinary group and named the Solution Mechanism Guide (SMG). An alpha version was developed that was tested against several sessions of user groups to get feedback on the SMG and determine a future course for development. The feedback was very positive and the HH&P decided to move to the beta-phase of development. To develop the web-based tool, the HH&P utilized the NASA Tournament Lab (NTL) to develop the software with TopCoder under an existing contract. In this way, the HH&P is using one new tool (the NTL and TopCoder) to develop the next generation tool, the SMG. The beta-phase of the SMG is planed for release in the spring of 2014 and results of the beta-phase testing will be available for the IAC meeting in September. The SMG is intended to disrupt the way problem solvers and project managers approach problem solving and to increase the
Hayat, Tasawar; Ali, Shafqat; Farooq, Muhammad Asif; Alsaedi, Ahmad
2015-01-01
In this paper, we have investigated the combined effects of Newtonian heating and internal heat generation/absorption in the two-dimensional flow of Eyring-Powell fluid over a stretching surface. The governing non-linear analysis of partial differential equations is reduced into the ordinary differential equations using similarity transformations. The resulting problems are computed for both series and numerical solutions. Series solution is constructed using homotopy analysis method (HAM) whereas numerical solution is presented by two different techniques namely shooting method and bvp4c. A comparison of homotopy solution with numerical solution is also tabulated. Both solutions are found in an excellent agreement. Dimensionless velocity and temperature profiles are plotted and discussed for various emerging physical parameters. PMID:26402366
Application of inverse heat conduction problem on temperature measurement
NASA Astrophysics Data System (ADS)
Zhang, X.; Zhou, G.; Dong, B.; Li, Q.; Liu, L. Q.
2013-09-01
For regenerative cooling devices, such as G-M refrigerator, pulse tube cooler or thermoacoustic cooler, the gas oscillating bring about temperature fluctuations inevitably, which is harmful in many applications requiring high stable temperatures. To find out the oscillating mechanism of the cooling temperature and improve the temperature stability of cooler, the inner temperature of the cold head has to be measured. However, it is difficult to measure the inner oscillating temperature of the cold head directly because the invasive temperature detectors may disturb the oscillating flow. Fortunately, the outer surface temperature of the cold head can be measured accurately by invasive temperature measurement techniques. In this paper, a mathematical model of inverse heat conduction problem is presented to identify the inner surface oscillating temperature of cold head according to the measured temperature of the outer surface in a GM cryocooler. Inverse heat conduction problem will be solved using control volume approach. Outer surface oscillating temperature could be used as input conditions of inverse problem and the inner surface oscillating temperature of cold head can be inversely obtained. A simple uncertainty analysis of the oscillating temperature measurement also will be provided.
MAST solution of advection problems in irrotational flow fields
NASA Astrophysics Data System (ADS)
Aricò, Costanza; Tucciarelli, Tullio
2007-03-01
A new numerical-analytical Eulerian procedure is proposed for the solution of convection-dominated problems in the case of existing scalar potential of the flow field. The methodology is based on the conservation inside each computational elements of the 0th and 1st order effective spatial moments of the advected variable. This leads to a set of small ODE systems solved sequentially, one element after the other over all the computational domain, according to a MArching in Space and Time technique. The proposed procedure shows the following advantages: (1) it guarantees the local and global mass balance; (2) it is unconditionally stable with respect to the Courant number, (3) the solution in each cell needs information only from the upstream cells and does not require wider and wider stencils as in most of the recently proposed higher-order methods; (4) it provides a monotone solution. Several 1D and 2D numerical test have been performed and results have been compared with analytical solutions, as well as with results provided by other recent numerical methods.
The iteration method for the Wahba problem solution
NASA Astrophysics Data System (ADS)
Kruzhilov, Ivan
2014-12-01
Wahba problem is the task of constrained optimization on SO(3). Solution of this task is vital for satellite attitude determination using star trackers. An iterative method having quadratic convergence is proposed. Each iteration of the proposed method is reduced to sequential rotation of the vectors and solving the system of linear algebraic equations. The method needs an initial approximation, which can be obtained by the TRIAD method. The quaternion form of the TRIAD method is given. One or two iterations are sufficient for finding the optimal solution using the proposed method. The primary advantage of the proposed method as compared with classical methods based on calculation of eigenvectors and singular decomposition is the simplicity of its implementation.
Wavelets in the solution of nongray radiative heat transfer equation
Bayazitoglu, Y.; Wang, B.Y.
1996-12-31
The wavelet basis functions are introduced into the radiative transfer equation in the frequency domain. The intensity of radiation is expanded in terms of Daubechies` wrapped around wavelet functions. It is shown that the wavelet basis approach to modeling nongrayness can be incorporated into any solution method for the equation of transfer. In this paper the resulting system of equations is solved for the one-dimensional radiative equilibrium problem using the P-N approximation.
Solution to certain problems in the failure of composite structures
NASA Astrophysics Data System (ADS)
Goodsell, Johnathan
The present work contains the solution of two problems in composite structures. In the first, an approximate elasticity solution for prediction of the displacement, stress and strain fields within the m-layer, symmetric and balanced angle-ply composite laminate of finite-width subjected anticlastic bending deformation is developed. The solution is shown to recover classical laminated plate theory predictions at interior regions of the laminate and thereby illustrates the boundary layer character of this interlaminar phenomenon. The results exhibit the anticipated response in congruence with the solutions for uniform axial extension and uniform temperature change, where divergence of the interlaminar shearing stress is seen to occur at the intersection of the free-edge and planes between lamina of +theta and -theta orientation. The analytical results show excellent agreement with the finite-element predictions for the same boundary-value problem and thereby provide an efficient and compact solution available for parametric studies of the influence of geometry and material properties. The solution is combined with previously developed solutions for uniform axial extension and uniform temperature change of the identical laminate and the combined solution is exercised to compare the relative magnitudes of free-edge phenomenon arising from the different loading conditions, to study very thick laminates and laminates where the laminate width is less than the laminate thickness. Significantly, it was demonstrated that the solution is valid for arbitrary stacking sequence and the solution was exercised to examine antisymmetric and non-symmetric laminates. Finally, the solution was exercised to determine the dimensions of the boundary layer for very large numbers of layers. It was found that the dimension of the boundary layer width in bending is approximately twice that in uniform axial extension and uniform temperature change. In the second, the intrinsic flaw concept is
Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT
Thorne, D.; Langevin, C.D.; Sukop, M.C.
2006-01-01
SEAWAT is a finite-difference computer code designed to simulate coupled variable-density ground water flow and solute transport. This paper describes a new version of SEAWAT that adds the ability to simultaneously model energy and solute transport. This is necessary for simulating the transport of heat and salinity in coastal aquifers for example. This work extends the equation of state for fluid density to vary as a function of temperature and/or solute concentration. The program has also been modified to represent the effects of variable fluid viscosity as a function of temperature and/or concentration. The viscosity mechanism is verified against an analytical solution, and a test of temperature-dependent viscosity is provided. Finally, the classic Henry-Hilleke problem is solved with the new code. ?? 2006 Elsevier Ltd. All rights reserved.
Analytical solution of the bosonic three-body problem.
Gogolin, Alexander O; Mora, Christophe; Egger, Reinhold
2008-04-11
We revisit the problem of three identical bosons in free space, which exhibits a universal hierarchy of bound states (Efimov trimers). Modeling a narrow Feshbach resonance within a two-channel description, we map the integral equation for the three-body scattering amplitude to a one-dimensional Schrödinger-type single-particle equation, where an analytical solution of exponential accuracy is obtained. We give exact results for the trimer binding energies, the three-body parameter, the threshold to the three-atom continuum, and the recombination rate. PMID:18518009
Solutions of contact problems by the assumed stress hybrid model
NASA Technical Reports Server (NTRS)
Kubomura, K.; Pian, T. H. H.
1980-01-01
A method was developed for contact problems which may be either frictional or frictionless and may involve extensive sliding between deformable bodies. It was based on an assumed stress hybrid approach and on an incremental variational principle for which the Euler's equations of the functional include the equilibrium and compatibility conditions at the contact surface. The tractions at an assumed contact surface were introduced as Lagrangian multipliers in the formulation. It was concluded from the results of several example solutions that the extensive sliding contact between deformable bodies can be solved by the present method.
New discretization and solution techniques for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.
1983-01-01
Several topics arising in the finite element solution of the incompressible Navier-Stokes equations are considered. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. The role of artificial viscosity in viscous flow calculations is studied, emphasizing work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some modifications are mentioned.
Building Science and Technology Solutions for National Problems
Bishop, Alan R.
2012-06-05
The nation's investment in Los Alamos has fostered scientific capabilities for national security missions. As the premier national security science laboratory, Los Alamos tackles: (1) Multidisciplinary science, technology, and engineering challenges; (2) Problems demanding unique experimental and computational facilities; and (3) Highly complex national security issues requiring fundamental breakthroughs. Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) ensure the safety, security, and reliability of the US nuclear deterrent; (2) protect against the nuclear threat; and (3) solve national security challenges.
Phononic heat transport in the transient regime: An analytic solution
NASA Astrophysics Data System (ADS)
Tuovinen, Riku; Säkkinen, Niko; Karlsson, Daniel; Stefanucci, Gianluca; van Leeuwen, Robert
2016-06-01
We investigate the time-resolved quantum transport properties of phonons in arbitrary harmonic systems connected to phonon baths at different temperatures. We obtain a closed analytic expression of the time-dependent one-particle reduced density matrix by explicitly solving the equations of motion for the nonequilibrium Green's function. This is achieved through a well-controlled approximation of the frequency-dependent bath self-energy. Our result allows for exploring transient oscillations and relaxation times of local heat currents, and correctly reduces to an earlier known result in the steady-state limit. We apply the formalism to atomic chains, and benchmark the validity of the approximation against full numerical solutions of the bosonic Kadanoff-Baym equations for the Green's function. We find good agreement between the analytic and numerical solutions for weak contacts and baths with a wide energy dispersion. We further analyze relaxation times from low to high temperature gradients.
Finite element solution of optimal control problems with inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1990-01-01
A finite-element method based on a weak Hamiltonian form of the necessary conditions is summarized for optimal control problems. Very crude shape functions (so simple that element numerical quadrature is not necessary) can be used to develop an efficient procedure for obtaining candidate solutions (i.e., those which satisfy all the necessary conditions) even for highly nonlinear problems. An extension of the formulation allowing for discontinuities in the states and derivatives of the states is given. A theory that includes control inequality constraints is fully developed. An advanced launch vehicle (ALV) model is presented. The model involves staging and control constraints, thus demonstrating the full power of the weak formulation to date. Numerical results are presented along with total elapsed computer time required to obtain the results. The speed and accuracy in obtaining the results make this method a strong candidate for a real-time guidance algorithm.
Multidimensional Assessment of Criminal Recidivism: Problems, Pitfalls, and Proposed Solutions
Vrieze, Scott I.; Grove, William M.
2010-01-01
All states have statutes in place to commit civilly individuals at high risk for violence. This note addresses difficulties in assessing such risk, but uses as an example the task of predicting sexual violence recidivism; the principles espoused here generalize to predicting all violence. As part of commitment process, mental health professionals, who are often psychologists, evaluate an individual’s risk of sexual recidivism. It is common for professionals conducting these risk assessments to use several actuarial risk prediction instruments (i.e., psychological tests). These tests rarely agree closely in the risk figures they provide. Serious epistemological and psychometric problems in the multivariate assessment of recidivism risk are pointed out. Sound psychometric, or in some cases heuristic, solutions to these problems are proffered, in hope of improving clinical practice. We focus on how to make these tests’ outputs commensurable, and discuss various ways to combine them in coherent, justifiable, fashions. PMID:20528065
Exact solution of two phase spherical Stefan problem with two free boundaries
NASA Astrophysics Data System (ADS)
Kavokin, Alexey A.; Nauryz, Targyn; Bizhigitova, Nazerke T.
2016-08-01
Solution of the heat equation in a spherical domain with two free boundaries (two-phase Stefan problem) when one of the subdomains degenerates at the initial time is considered. The use of conventional finite-difference methods in these cases is not expedient because of the degenerate domain. The solution is found in the form of combination of Integral Error functions series, [M. Sarsengeldin, and S. Kharin, Filomat, (2016), (in Press)] and then recurrent solvability of nonlinear algebraic equations for determining the coefficients of the series is proved. Such problems are of practical interest for the simulation of laser material processing as well for the modeling of thermal effects of electric arc that ignites during the opening of electric contacts [S. N. Kharin, and M. Sarsengeldin, ï£¡Influence of contact materials on phenomena in a short electrical arcï£¡, in Key Engineering Materials, Trans tech publications, Islamabad, Pakistan, 2012, pp. 321-329].
Integrating LPR with CCTV systems: problems and solutions
NASA Astrophysics Data System (ADS)
Bissessar, David; Gorodnichy, Dmitry O.
2011-06-01
A new generation of high-resolution surveillance cameras makes it possible to apply video processing and recognition techniques on live video feeds for the purpose of automatically detecting and identifying objects and events of interest. This paper addresses a particular application of detecting and identifying vehicles passing through a checkpoint. This application is of interest to border services agencies and is also related to many other applications. With many commercial automated License Plate Recognition (LPR) systems available on the market, some of which are available as a plug-in for surveillance systems, this application still poses many unresolved technological challenges, the main two of which are: i) multiple and often noisy license plate readings generated for the same vehicle, and ii) failure to detect a vehicle or license plate altogether when the license plate is occluded or not visible. This paper presents a solution to both of these problems. A data fusion technique based on the Levenshtein distance is used to resolve the first problem. An integration of a commercial LPR system with the in-house built Video Analytic Platform is used to solve the latter. The developed solution has been tested in field environments and has been shown to yield a substantial improvement over standard off-the-shelf LPR systems.
Comet solutions to a stylized BWR benchmark problem
Zhang, D.; Rahnema, F.
2012-07-01
In this paper, a stylized 3-D BWR benchmark problem was used to evaluate the performance of the coarse mesh radiation transport method COMET. The benchmark problem consists of 560 fuel bundles at 3 different burnups and 3 coolant void states. The COMET solution was compared with the corresponding Monte Carlo reference solution using the same 2-group material cross section library for three control blade (rod) configurations, namely, all rods out (ARO), all rods in (ARI) and some rods in (SRJ). The differences in the COMET and MCNP eigenvalues were 43 pcm, 66 pcm and 32 pcm for the ARO, ARI and SRI cases, respectively. These differences are all within 3 standard deviations of the COMET uncertainty. The average relative differences in the bundle averaged fission densities for these three cases were 0.89%, 1.24%, and 1.05%, respectively. The corresponding differences in the fuel pin averaged fission densities were 1.24%, 1.84% and 1.29%, respectively. It was found that COMET is 3,000 times faster than Monte Carlo, while its statistical uncertainty in the fuel pin fission density is much lower than that of Monte Carlo (i.e., {approx}40 times lower). (authors)
Nucleate pool boiling heat transfer in aqueous surfactant solutions
NASA Astrophysics Data System (ADS)
Wasekar, Vivek Mahadeorao
Saturated, nucleate pool boiling in aqueous surfactant solutions is investigated experimentally. Also, the role of Marangoni convection, driven both by temperature and surfactant concentration gradients at the vapor-liquid interface of a nucleating bubble is computationally explored. Experimental measurements of dynamic and equilibrium sigma using the maximum bubble pressure method indicate dynamic sigma to be higher than the corresponding equilibrium value, both at room and elevated temperatures. Also, nonionic surfactants (Triton X-100, Triton X-305) show larger sigma depression than anionic surfactants (SDS, SLES), and a normalized representation of their dynamic adsorption isotherms is shown to be helpful in generalizing the surfactant effectiveness to reduce surface tension. The dynamic sigma has a primary role in the modification of bubble dynamics and associated heat transfer, and is dictated by the adsorption kinetics of the surfactant molecules at boiling temperatures. In general, an enhancement in heat transfer is observed, which is characterized by an early incipience and an optimum boiling performance at or around the critical micelle concentration of the surfactant. The optimum performances, typically in the fully developed boiling regime ( q''w > 100 kW/m2), show a reverse trend with respect to surfactant molecular weights M, i.e., higher molecular weight additives promote lower enhancement. Normalized boiling performance using the respective solution's dynamic sigma correlates heat transfer coefficient by M-0.5 for anionics and M 0 for nonionics. This has been shown to be brought about by the surfactant concentration and its interfacial activity in a concentration sublayer around the growing vapor bubble, which governs the bubble growth behavior through the mechanism of dynamic sigma. The ionic nature of the surfactant influences the thickness and molecular makeup of the enveloping sublayer, thereby affecting the bubble dynamics and boiling heat
Numerical strategies for the solution of inverse problems
NASA Astrophysics Data System (ADS)
Hebber (Haber), Eldad
This thesis deals with the numerical solutions of linear and nonlinear inverse problems. The goal of this thesis is to review and develop new techniques for solving such problems. In so doing, the computations tools for solving inverse problems are comprehensively studied. The thesis can be divided into two parts. In the first part, linear inverse theory is dealt with. Methods to estimate noise and efficiently invert large and full matrixes are reviewed and developed. Emphasis is given to Generalized Cross Validation (GCV) for noise estimation, and to Krylov space methods for efficient methods to invert large systems. This part is summarized by applying and comparing the methods developed on linear inverse problems which arise in gravity and tomography. In the second part of this thesis, extensive use of the linear algebra and the noise estimation methods which were developed in the first part of the thesis is made. A review of the current methods to carry out nonlinear inverse problems is given. A test example is constructed to demonstrate that these methods may fail. Next, a new algorithm for solving nonlinear inverse problems is developed. The algorithm is based on the ability to differentiate between correlated errors which comes from the linearization, and non-correlated noise which comes from the measurement. Based on these two types of noise, a regularization procedure which has two parts is developed. The first part is made of global regulation, to deal with the measurement noise, and the second part is made from a local regularization, to deal with the nonlinearity. The thesis demonstrates that GCV can be used in order to determine the measurement noise, and the Damped Gauss-Newton method can be used in order to deal with the local nonlinear terms. Another aspect of nonlinear inverse theory which is developed in this work concerns approximate sensitivities. A new formulation is suggested for the approximate sensitivities and bounds are calculated using
Stability of Solutions to Classes of Traveling Salesman Problems.
Niendorf, Moritz; Kabamba, Pierre T; Girard, Anouck R
2016-04-01
By performing stability analysis on an optimal tour for problems belonging to classes of the traveling salesman problem (TSP), this paper derives margins of optimality for a solution with respect to disturbances in the problem data. Specifically, we consider the asymmetric sequence-dependent TSP, where the sequence dependence is driven by the dynamics of a stack. This is a generalization of the symmetric non sequence-dependent version of the TSP. Furthermore, we also consider the symmetric sequence-dependent variant and the asymmetric non sequence-dependent variant. Amongst others these problems have applications in logistics and unmanned aircraft mission planning. Changing external conditions such as traffic or weather may alter task costs, which can render an initially optimal itinerary suboptimal. Instead of optimizing the itinerary every time task costs change, stability criteria allow for fast evaluation of whether itineraries remain optimal. This paper develops a method to compute stability regions for the best tour in a set of tours for the symmetric TSP and extends the results to the asymmetric problem as well as their sequence-dependent counterparts. As the TSP is NP-hard, heuristic methods are frequently used to solve it. The presented approach is also applicable to analyze stability regions for a tour obtained through application of the k -opt heuristic with respect to the k -neighborhood. A dimensionless criticality metric for edges is proposed, such that a high criticality of an edge indicates that the optimal tour is more susceptible to cost changes in that edge. Multiple examples demonstrate the application of the developed stability computation method as well as the edge criticality measure that facilitates an intuitive assessment of instances of the TSP. PMID:25910270
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-06-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).
ULTRA-SHARP solution of the Smith-Hutton problem
NASA Technical Reports Server (NTRS)
Leonard, B. P.; Mokhtari, Simin
1992-01-01
Highly convective scalar transport involving near-discontinuities and strong streamline curvature was addressed in a paper by Smith and Hutton in 1982, comparing several different convection schemes applied to a specially devised test problem. First order methods showed significant artificial diffusion, whereas higher order methods gave less smearing but had a tendency to overshoot and oscillate. Perhaps because unphysical oscillations are more obvious than unphysical smearing, the intervening period has seen a rise in popularity of low order artificially diffusive schemes, especially in the numerical heat transfer industry. The present paper describes an alternate strategy of using non-artificially diffusive high order methods, while maintaining strictly monotonic transitions through the use of simple flux limited constraints. Limited third order upwinding is usually found to be the most cost effective basic convection scheme. Tighter resolution of discontinuities can be obtained at little additional cost by using automatic adaptive stencil expansion to higher order in local regions, as needed.
Mohan, R.S.; Kovacevic, R.; Beardsley, H.E.
1996-12-31
In abrasive waterjet (AWJ) cutting, the cutting tool is a thin stream of high velocity abrasive waterjet slurry which can be considered as a moving line heat source that increases the temperature of the narrow zone along the cut kerf wall. A suitably defined inverse heat conduction problem which uses the experimentally determined temperature histories at various points in the workpiece, is adopted to determine the heat flux at the cutting zone. Temperature distribution in the workpiece and the cutting nozzle during AWJ cutting is monitored using infrared thermography. A suitable strategy for on-line monitoring of the radial and axial wear of the AWJ nozzle based on the nozzle temperature distribution is also proposed.
Hierarchical Adaptive Solution of Radiation Transport Problems on Unstructured Grids
Dr. Cassiano R. E de Oliveira
2008-06-30
Computational radiation transport has steadily gained acceptance in the last decade as a viable modeling tool due to the rapid advancements in computer software and hardware technologies. It can be applied for the analysis of a wide range of problems which arise in nuclear reactor physics, medical physics, atmospheric physics, astrophysics and other areas of engineering physics. However, radiation transport is an extremely chanllenging computational problem since the governing equation is seven-deimensional (3 in space, 2 in direction, 1 in energy, and 1 in time) with a high degree of coupleing betwen these variables. If not careful, this relatively large number of independent variables when discretized can potentially lead to sets of linear equations of intractable size. Though parallel computing has allowed the solution of very large problems, avaliable computational resources will always be finite due to the fact that every more sophisticated multiphysics models are being demanded by industry. There is thus the pressing requirement to optimize the discretizations so as to minimize the effort and maximize the accuracy.
[Problems and solutions in giving an expert evaluation].
Martin, M
2006-03-01
According to the law for the prevention of cruelty to animals, the officially employed veterinarians are the experts per se. All administrative legal steps are based on their reports. Such reports are also of major significance at court hearings. However, veterinary colleagues working in private practices or clinics are often requested to submit an expert evaluation in cases of cruelty to animals. The problems which occur in putting together an expert's report are often based on a lack of knowledge about the clear structure of such a report (preliminary details, description of the situation as found, assessments of results, evaluation of findings, justification). The situation is made more complicated by the two different languages of lawyers (that of administrative officials, advocates of district courts and higher district courts or public prosecutors) and of veterinarians. A detailed description and a clear assessment together with a detailed justification of the concluding findings are absolutely essential. By providing examples of the correct way to write an expert's report, both the problems and solutions to improve the situation can be pointed out. This will be of the utmost importance in the future when quality management of animal rights is introduced. Specific training should be introduced during studies, in training courses for district examinations and in practical, further education. In addition, the range of problems caused by the constantly rising number of expert's reports made as a favour should also be considered. PMID:16669192
Contact Problem Of Conducting And Heated Punch On A Multifield Foundation
NASA Astrophysics Data System (ADS)
Rogowski, B.
2015-08-01
The solution for a multifield material subjected to temperature loading in a circular region is presented in an explicit analytical form. The study concerns the steady - state thermal loading infinite region (heated embedded inclusion), half - space region and two - constituent magneto - electro - thermo - elastic material region. The new mono - harmonic potential functions, obtained by the author, are used in the analysis of punch problem. The more interested case in which the contact region is annular is analyzed. By using the methods of triple integral equations and series solution technique the solution for an indentured multifield substrate over an annular contact region is given. The sensitivity analysis of obtained indentation parameters shows some interesting points. In particular, it shows that the increasing of the applied electric and magnetic potentials reduces the indentation depth in multifield materials.
General solutions of optimum problems in nonstationary flight
NASA Technical Reports Server (NTRS)
Miele, Angelo
1955-01-01
A general method concerning optimum problems in nonstationary flight is developed and discussed. Best flight techniques are determined for the following conditions: climb with minimum time, climb with minimum fuel consumption, steepest climb, descending and gliding flight with maximum time or with maximum distance. Optimum distributions of speed with altitude are derived assuming constant airplane weight and neglecting curvatures and squares of path inclination in the projection of the equation of motion on the normal to the flight path. The results of this paper differ from the well-known results obtained by neglecting accelerations with one exception, namely the case of gliding with maximum range. The paper is concluded with criticisms and remarks concerning the physical nature of the solutions and their usefulness for practical applications.
Solution to the Delta vehicle second stage pogo problem
NASA Technical Reports Server (NTRS)
Markowitz, M.; Morgan, M. J.
1977-01-01
A discussion of the pogo phenomenon observed on the Delta launch vehicle second stage is presented. The pressure-fed engine and the high frequency of the oscillation (125 Hz) required unique analysis and extensive testing to support analysis detail. In addition, the need to continue a one vehicle per month launch rate required both an immediate interim and a timely long-term solution to the problem. The development and implementation of a program involving analysis, ground test, and flight instrumentation is described. An analytical model was developed and used to investigate both structural and propulsion system modifications. The factors which influenced the final suppression system selection, the analytical predictions for that system, and flight data which validate that system's effectiveness are presented.
Graphene in therapeutics delivery: Problems, solutions and future opportunities.
McCallion, Catriona; Burthem, John; Rees-Unwin, Karen; Golovanov, Alexander; Pluen, Alain
2016-07-01
Graphene based nanomaterials are being used experimentally to deliver therapeutic agents to cells or tissues both in vitro and in vivo. However, substantial challenges remain before moving to safe and effective use in humans. In particular, it is recognised that graphene molecules undergo complex interactions with solutes, proteins or cellular systems within the body, and that these interactions impact significantly on the behaviour or toxicity of the molecule. Approaches to overcome these problems include modification of the graphene or its combination with other molecules to accentuate favourable characteristics or modify adverse interactions. This has led to an emerging role for graphene as one part of highly-tailored multifunctional delivery vehicles. This review examines the knowledge that underpins present approaches to exploit graphene in therapeutics delivery, discussing both favourable and unfavourable aspects of graphene behaviour in biological systems and how these may be modified; then considers the present place of the molecule and the challenges for its further development. PMID:27113141
Robustness of solutions to a benchmark control problem
NASA Technical Reports Server (NTRS)
Stengel, Robert F.; Marrison, Christopher I.
1992-01-01
The robustness of 10 solutions to a benchmark control design problem presented at the 1990 American Control Conference has been evaluated. The 10 controllers have second-to-eighth-order transfer functions and have been designed using several different methods, including H-infinity optimization, loop-transfer recovery, imaginary-axis shifting, constrained optimization, structured covariance, game theory, and the internal model principle. Stochastic robustness analysis quantifies the controllers' stability and performance robustness with structured uncertainties in up to six system parameters. The analysis provides insights into system response that are not readily derived from other robustness criteria and provides a common ground for judging controllers produced by alternative methods. One important conclusion is that gain and phase margins are not reliable indicators of the probability of instability. Furthermore, parameter variations actually may improve the likelihood of achieving selected performance metrics, as demonstrated by results for the probability of settling-time exceedance.
Efficient solution of an inverse problem in cell population dynamics
NASA Astrophysics Data System (ADS)
Groh, Andreas; Krebs, Jochen; Wagner, Mathias
2011-06-01
In this paper, a size-structured model for cell division is examined and the question of determining the division (birth) rate from a measurable stable size distribution of the population is addressed. This inverse problem can be formulated as a differential-dilation equation. We propose a novel solution scheme based on mollification. The method of approximate inverse allows us to shift the derivative from the data to a precomputable reconstruction kernel. To comprise all available a priori information, a presmoothing step based on regression in reproducing kernel Hilbert spaces is introduced. We establish an error theory for the emerging algorithm, prove convergence and deduce a parameter strategy. The results are substantiated with extensive numerical tests both for artificial and real data based on proliferating tumor cells.
Testable solution of the cosmological constant and coincidence problems
Shaw, Douglas J.; Barrow, John D.
2011-02-15
We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, {Lambda}, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of {Lambda}{approx_equal}(9.3 Gyrs){sup -2}[{approx_equal}10{sup -120} in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvature of {Omega}{sub k0}=-0.0056({zeta}{sub b}/0.5), where {zeta}{sub b}{approx}1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given {Lambda}. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t{sub {Lambda}={Lambda}}{sup -1/2} and the age of the Universe, t{sub U}, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different {Lambda} values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.
Doughty, C.; Pruess, K.
1991-06-01
Over the past few years the authors have developed a semianalytical solution for transient two-phase water, air, and heat flow in a porous medium surrounding a constant-strength linear heat source, using a similarity variable {eta} = r/{radical}t. Although the similarity transformation approach requires a simplified geometry, all the complex physical mechanisms involved in coupled two-phase fluid and heat flow can be taken into account in a rigorous way, so that the solution may be applied to a variety of problems of current interest. The work was motivated by adverse to predict the thermohydrological response to the proposed geologic repository for heat-generating high-level nuclear wastes at Yucca Mountain, Nevada, in a partially saturated, highly fractured volcanic formation. The paper describes thermal and hydrologic conditions near the heat source; new features of the model; vapor pressure lowering; and the effective-continuum representation of a fractured/porous medium.
Dust in the divertor sheath: a problem or a possible solution to a problem?
NASA Astrophysics Data System (ADS)
Delzanno, Gian Luca; Tang, Xianzhu
2012-03-01
In this work, we will present results on dust transport in the magnetized sheath near the divertor plate for micron-sized dust. We consider conditions relevant to present short-pulse tokamak machines as well as conditions for long-pulse ITER/DEMO reactors. We solve the dust charging equation, the dust equation of motion and the equations for dust heating and mass loss in the magnetized sheath. We present parametric studies changing the divertor plasma conditions and the angle of the equilibrium magnetic field relative to the wall. Our main result is that, for conditions relavant to DEMO, the stronger heat flux to the wall severely limits the dust survivability and mobility. We discuss the implications of this result for the divertor plates of long-pulse fusion reactors. We will also discuss two fusion technology solutions to DEMO PFC, the dust patch and the dust shield, based on externally introduced solid particulates to patch areas of net erosion and to provide the primary heat exhaust for the divertor.
A verifiable solution to the MEG inverse problem.
Barnes, Gareth R; Furlong, Paul L; Singh, Krish D; Hillebrand, Arjan
2006-06-01
Magnetoencephalography (MEG) is a non-invasive brain imaging technique with the potential for very high temporal and spatial resolution of neuronal activity. The main stumbling block for the technique has been that the estimation of a neuronal current distribution, based on sensor data outside the head, is an inverse problem with an infinity of possible solutions. Many inversion techniques exist, all using different a-priori assumptions in order to reduce the number of possible solutions. Although all techniques can be thoroughly tested in simulation, implicit in the simulations are the experimenter's own assumptions about realistic brain function. To date, the only way to test the validity of inversions based on real MEG data has been through direct surgical validation, or through comparison with invasive primate data. In this work, we constructed a null hypothesis that the reconstruction of neuronal activity contains no information on the distribution of the cortical grey matter. To test this, we repeatedly compared rotated sections of grey matter with a beamformer estimate of neuronal activity to generate a distribution of mutual information values. The significance of the comparison between the un-rotated anatomical information and the electrical estimate was subsequently assessed against this distribution. We found that there was significant (P < 0.05) anatomical information contained in the beamformer images across a number of frequency bands. Based on the limited data presented here, we can say that the assumptions behind the beamformer algorithm are not unreasonable for the visual-motor task investigated. PMID:16480896
A spatiotemporal dynamic distributed solution to the MEG inverse problem.
Lamus, Camilo; Hämäläinen, Matti S; Temereanca, Simona; Brown, Emery N; Purdon, Patrick L
2012-11-01
MEG/EEG are non-invasive imaging techniques that record brain activity with high temporal resolution. However, estimation of brain source currents from surface recordings requires solving an ill-conditioned inverse problem. Converging lines of evidence in neuroscience, from neuronal network models to resting-state imaging and neurophysiology, suggest that cortical activation is a distributed spatiotemporal dynamic process, supported by both local and long-distance neuroanatomic connections. Because spatiotemporal dynamics of this kind are central to brain physiology, inverse solutions could be improved by incorporating models of these dynamics. In this article, we present a model for cortical activity based on nearest-neighbor autoregression that incorporates local spatiotemporal interactions between distributed sources in a manner consistent with neurophysiology and neuroanatomy. We develop a dynamic maximum a posteriori expectation-maximization (dMAP-EM) source localization algorithm for estimation of cortical sources and model parameters based on the Kalman Filter, the Fixed Interval Smoother, and the EM algorithms. We apply the dMAP-EM algorithm to simulated experiments as well as to human experimental data. Furthermore, we derive expressions to relate our dynamic estimation formulas to those of standard static models, and show how dynamic methods optimally assimilate past and future data. Our results establish the feasibility of spatiotemporal dynamic estimation in large-scale distributed source spaces with several thousand source locations and hundreds of sensors, with resulting inverse solutions that provide substantial performance improvements over static methods. PMID:22155043
A spatiotemporal dynamic distributed solution to the MEG inverse problem
Lamus, Camilo; Hämäläinen, Matti S.; Temereanca, Simona; Brown, Emery N.; Purdon, Patrick L.
2012-01-01
MEG/EEG are non-invasive imaging techniques that record brain activity with high temporal resolution. However, estimation of brain source currents from surface recordings requires solving an ill-conditioned inverse problem. Converging lines of evidence in neuroscience, from neuronal network models to resting-state imaging and neurophysiology, suggest that cortical activation is a distributed spatiotemporal dynamic process, supported by both local and long-distance neuroanatomic connections. Because spatiotemporal dynamics of this kind are central to brain physiology, inverse solutions could be improved by incorporating models of these dynamics. In this article, we present a model for cortical activity based on nearest-neighbor autoregression that incorporates local spatiotemporal interactions between distributed sources in a manner consistent with neurophysiology and neuroanatomy. We develop a dynamic Maximum a Posteriori Expectation-Maximization (dMAP-EM) source localization algorithm for estimation of cortical sources and model parameters based on the Kalman Filter, the Fixed Interval Smoother, and the EM algorithms. We apply the dMAP-EM algorithm to simulated experiments as well as to human experimental data. Furthermore, we derive expressions to relate our dynamic estimation formulas to those of standard static models, and show how dynamic methods optimally assimilate past and future data. Our results establish the feasibility of spatiotemporal dynamic estimation in large-scale distributed source spaces with several thousand source locations and hundreds of sensors, with resulting inverse solutions that provide substantial performance improvements over static methods. PMID:22155043
Solution of open region electromagnetic scattering problems on hypercube multiprocessors
Gedney, S.D.
1991-01-01
This thesis focuses on development of parallel algorithms that exploit hypercube multiprocessor computers for the solution of the scattering of electromagnetic fields by bodies situated in an unbounded space. Initially, algorithms based on the method of moments are investigated for coarse-grained MIMD hypercubes as well as finite-grained MIMD and SIMD hypercubes. It is shown that by exploiting the architecture of each hypercube, supercomputer performance can be obtained using the JPL Mark III hypercube and the Thinking Machine's CM2. Second, the use of the finite-element method for solution of the scattering by bodies of composite materials is presented. For finite bodies situated in an unbounded space, use of an absorbing boundary condition is investigated. A method known as the mixed-{chi} formulation is presented, which reduces the mesh density in the regions away from the scatterer, enhancing the use of an absorbing boundary condition. The scattering by troughs or slots is also investigated using a combined FEM/MoM formulation. This method is extended to the problem of the diffraction of electromagnetic waves by thick conducting and/or dielectric gratings. Finally, the adaptation of the FEM method onto a coarse-grained hypercube is presented.
Application of program generation technology in solving heat and flow problems
NASA Astrophysics Data System (ADS)
Wan, Shui; Wu, Bangxian; Chen, Ningning
2007-05-01
Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.
Exploiting New Features of COMSOL Version 4 on Conjugate Heat Transfer Problems
Freels, James D; Arimilli, Rao V; Bodey, Isaac T
2010-01-01
Users of COMSOL Multiphysics at version 3.5a and earlier have enjoyed many features that have provided not only a good user experience at the GUI interface, but also the capability to solve many classes of problems in a consistent manner with the physics being simulated. With the new release version 4.0 and later (4+) of COMSOL, the user is provided a dramatic new interface from which to interact, and many new features ``under the hood'' for solving problems more efficiently and with even greater accuracy and consistency than before. This paper will explore several of these new version 4+ features for the conjugate heat transfer class of problems. Our environment is challenging in that we demand high-quality solutions for nuclear-reactor systems and the models tend to become large and difficult to solve. Areas investigated include turbulence modeling, distributed parallel processing, solver scaling, and opengl graphics issues in a Linux computing environment.
MHD and heat transfer benchmark problems for liquid metal flow in rectangular ducts
Sidorenkov, S.I.; Hua, T.Q.; Araseki, H.
1994-12-31
Liquid metal cooling systems of a self-cooled blanket in a tokamak reactor will likely include channels of rectangular cross section where liquid metal is circulated in the presence of strong magnetic fields. MHD pressure drop, velocity distribution and heat transfer characteristics are important issues in the engineering design considerations. Computer codes for the reliable solution of three-dimensional MHD flow problems are needed for fusion relevant conditions. Argonne National Laboratory and The Efremov Institute have jointly defined several benchmark problems for code validation. The problems, described in this paper, are based on two series of rectangular duct experiments conducted at ANL; one of the series is a joint ANL/Efremov experiment. The geometries consist of variation of aspect ratio and wall thickness (thus wall conductance ratio). The transverse magnetic fields are uniform and nonuniform in the axial direction.
NASA Astrophysics Data System (ADS)
Temirbekov, Nurlan M.; Baigereyev, Dossan R.
2016-08-01
The paper focuses on the numerical implementation of a model optimal control problem governed by equations of three-phase non-isothermal flow in porous media. The objective is to achieve preassigned temperature distribution along the reservoir at a given time of development by controlling mass flow rate of heat transfer agent on the injection well. The problem of optimal control is formulated, the adjoint problem is presented, and an algorithm for the numerical solution is proposed. Results of computational experiments are presented for a test problem.
Isothermal heat measurements of TBP-nitric acid solutions
Smith, J.R.; Cavin, W.S.
1994-12-16
Net heats of reaction were measured in an isothermal calorimeter for both single phase (organic) and two phase (organic and aqueous) TBP/HNO{sub 3} reacting solutions at temperatures above 100 C. The oxidation rate constant was determined to be 5.4E-4 min{sup {minus}1} at 110 C for an open ``vented`` system as compared to 1.33 E-3 min{sup {minus}1} in the closed system. The heat released per unit material oxidized was also reduced. The oxidation in both phases was found to be first order in nitric acid and pseudo-zero order in butylnitrate and water. The hydrolysis (esterification) rate constant determined by Nichols` (1.33E-3 min{sup {minus}1}) fit the experimental data from this work well. Forced evaporation of the volatile components by the product gases from oxidation resulted in a cooling mechanism which more than balanced the heat from the oxidation reaction in the two-phased systems. Rate expressions were derived and rate constants determined for both the single and two phase systems. An approximating mathematical model was developed to fit the experimental data and to extrapolate beyond the experimental conditions. This model shows that one foot of ``reacting`` 14.3M HNO{sub 3} aqueous phase solution at 121 C will transport sufficient water to the organic phase to replace evaporative losses, maintaining endothermicity, for organic layers up to 12.2 + 6.0 feet deep. If the pressure in a reacting system is allowed to increase due to insufficient venting the temperature of the organic phase would increase in temperature to reach a new equilibrium. The rate of oxidation would increase not only due to the increase in temperature but also from the increased concentration of dissolved HNO{sub 3} reduction products. Another important factor is that the cooling system described in this work becomes less effective as the total pressure increases. These factors probably contributed to the explosion at Tomsk.
Improved time-space method for 3-D heat transfer problems including global warming
Saitoh, T.S.; Wakashima, Shinichiro
1999-07-01
In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.
Sonic limitations and startup problems of heat pipes
NASA Technical Reports Server (NTRS)
Deverall, J. E.; Kemme, J. E.; Florschuetz, L. W.
1972-01-01
Introduction of small amounts of inert, noncombustible gas aids startup in certain types of heat pipes. When the heat pipe is closely coupled to the heat sink, the startup system must be designed to bring the heat sink on-line slowly.
A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM
Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi; Hooper, Dan E-mail: mqk@astro.berkeley.edu E-mail: dhooper@fnal.gov
2013-03-01
It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhanced tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem.
A Baryonic Solution to the Missing Satellites Problem
Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi; Hooper, Dan
2013-03-01
It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhanced tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem
Milne, a routine for the numerical solution of Milne's problem
NASA Astrophysics Data System (ADS)
Rawat, Ajay; Mohankumar, N.
2010-11-01
The routine Milne provides accurate numerical values for the classical Milne's problem of neutron transport for the planar one speed and isotropic scattering case. The solution is based on the Case eigen-function formalism. The relevant X functions are evaluated accurately by the Double Exponential quadrature. The calculated quantities are the extrapolation distance and the scalar and the angular fluxes. Also, the H function needed in astrophysical calculations is evaluated as a byproduct. Program summaryProgram title: Milne Catalogue identifier: AEGS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 701 No. of bytes in distributed program, including test data, etc.: 6845 Distribution format: tar.gz Programming language: Fortran 77 Computer: PC under Linux or Windows Operating system: Ubuntu 8.04 (Kernel version 2.6.24-16-generic), Windows-XP Classification: 4.11, 21.1, 21.2 Nature of problem: The X functions are integral expressions. The convergence of these regular and Cauchy Principal Value integrals are impaired by the singularities of the integrand in the complex plane. The DE quadrature scheme tackles these singularities in a robust manner compared to the standard Gauss quadrature. Running time: The test included in the distribution takes a few seconds to run.
Metal cladding envelope problems, retrofit solutions, and quality control investigations
NASA Astrophysics Data System (ADS)
Colantonio, Antonio
1992-04-01
This paper deals with a case study of a building envelope retrofit of an insulated sheet steel and corrugated metal clad building. The building in discussion is a satellite testing facility which requires specific clean room conditions with controlled interior temperature (22 degree(s)C +/- 1 degree(s)C) and high relative humidity conditions (45% +/- 3%) to facilitate satellite testing programs. Preliminary mechanical system inspections indicated substantial increase in air intake to make up for air leakage losses. An infrared inspection along with an approximate air leakage test of the building envelope was requested by the client to determine the magnitude of the building envelope problem. This investigation concluded that significant air leakage was present throughout the building envelope and that existing mechanical systems did not have sufficient capacity to pressurize the building and negate wind and stack effect. Exfiltration particularly through openings on the top sections of the building were causing interior moisture to saturate wall insulation and render it ineffective. Concern for rusting of metal components was indicated. The subsequent envelope analysis discovered a number of typical metal building details that led to poor air tightness and wall insulation ineffectiveness. These were correlated to infrared investigation data. The retrofit solutions produced for this building not only apply to this building but to other similar building types. Further investigations indicated that air leakage and mechanical system performance were significant problems with buildings using metal cladding systems comparable to this building. Quality control before, during and after construction was identified as an important function of the architectural commissioning of the retrofit work and infrared investigations were used to verify locations of air leakage and insulation effectiveness.
Study on Latent Heat of Fusion of Ice in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji
In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.
On the Solar wind Origin Problem and its Evolutionary Solution
NASA Astrophysics Data System (ADS)
Veselovsky, I.
2008-09-01
We demonstrate that the solar wind origin problem can have only one evolutionary solution. It is not known when and how the solar wind started to blow, but there are evidences that it existed on the geological time scale and will continue to exist even during crossing of dense galactic arms by the Sun in future. The Hayashi phase or the ignition of the thermonuclear burning could be an evolutionary benchmark in this respect, but details are not elaborated. It is also often assumed as plausible (but not proven) in available macroscopic and kinetic plasma theories that the solar wind exists because of the hot and dense corona with high pressure of gas and magnetic fields from one side near the Sun and rarefied low density, low temperature and low magnetic fields in the interstellar medium surrounding the Sun from the other side. Nevertheless, all these conditions are compatible both with inflow (accretion) and outflow (breeze and wind) branches of the same quasi steady politropic model solution of the Bernoulli equation without jumps considered by Bondi (1952) and Parker (1957). The solution of the quadratic equation is twice eroded and can only depict, but not predict the situation, which is totally prescribed by initial and boundary conditions at the star and in the interstellar medium around it. The definitive answers to the posed questions can be found only based on time dependent theories and observations. The magnetic, thermal and gravitational pumping of the material in the atmosphere of the star can proceed (and observed indeed) in both directions - away from the star and towards the star along finite (convective) or infinite (outflow/inflow) trajectories in kinetic or fluid approximations. Microphysical, macro-physical and global processes on the Sun and sun-like stars are non-locally and non-linearly coupled in a complicated way described by dimensionless scaling based on dissipative MHD and plasma kinetic equations with radiation. The question about
Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee
2014-03-01
The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.
A minimalist legislative solution to the problem of euthanasia.
Komesaroff, Paul A; Charles, Stephen
2015-05-18
Intense debate has continued for many years about whether voluntary euthanasia or assisted suicide should be permitted by law. The community is bitterly divided and there has been vigorous opposition from medical practitioners and the Australian Medical Association. Despite differences of religious and philosophical convictions and ethical values, there is widespread community agreement that people with terminal illnesses are entitled to adequate treatment, and should also be allowed to make basic choices about when and how they die. A problem with the current law is that doctors who follow current best practice cannot be confident that they will be protected from criminal prosecution. We propose simple changes to Commonwealth and state legislation that recognise community concerns and protect doctors acting in accordance with best current practice. This minimalist solution should be widely acceptable to the community, including both the medical profession and those who object to euthanasia for religious reasons. Important areas of disagreement will persist that can be addressed in future debates. PMID:25971571
ERIC Educational Resources Information Center
Topolinski, Sascha; Reber, Rolf
2010-01-01
A temporal contiguity hypothesis for the experience of veracity is tested which states that a solution candidate to a cognitive problem is more likely to be experienced as correct the faster it succeeds the problem. Experiment 1 varied the onset time of the appearance of proposed solutions to anagrams (50 ms vs. 150 ms) and found for both correct…
Finite element method formulation in polar coordinates for transient heat conduction problems
NASA Astrophysics Data System (ADS)
Duda, Piotr
2016-04-01
The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.
NASA Astrophysics Data System (ADS)
Tatsii, R. M.; Pazen, O. Yu.
2016-03-01
A constructive scheme for the construction of a solution of a mixed problem for the heat conduction equation with piecewise-continuous coefficients coordinate-dependent in the final interval is suggested and validated in the present work. The boundary conditions are assumed to be most general. The scheme is based on: the reduction method, the concept of quasi-derivatives, the currently accepted theory of the systems of linear differential equations, the Fourier method, and the modified method of eigenfunctions. The method based on this scheme should be related to direct exact methods of solving mixed problems that do not employ the procedures of constructing Green's functions or integral transformations. Here the theorem of eigenfunction expansion is adapted for the case of coefficients that have discontinuity points of the 1st kind. The results obtained can be used, for example, in investigating the process of heat transfer in a multilayer slab under conditions of ideal thermal contact between the layers. A particular case of piecewise-continuous coefficients is considered. A numerical example of calculation of a temperature field in a real four-layer building slab under boundary conditions of the 3rd kind (conditions of convective heat transfer) that model the phenomenon of fire near one of the external surfaces is given.
Strategies, Not Solutions: Involving Students in Problem Solving.
ERIC Educational Resources Information Center
Von Kuster, Lee N.
1984-01-01
Defines problem solving, discusses the use of problems developed by students that are relevant to their own lives, presents examples of practical mathematics problems that deal with local situations, discusses fringe benefits of this type of problem solving, and addresses teachers' concern that this method consumes too much time. (MBR)
NASA Astrophysics Data System (ADS)
Garashchenko, A. N.; Rudzinsky, V. P.; Garashchenko, N. A.
2016-02-01
Results of solving problems of simulating temperature fields in domains with movable boundaries of characteristic zones of intensive physical-chemical and thermomechanical transformations to be realized in materials upon high-temperature heating have been presented. Intumescent fire-protective coatings based on organic and mineral materials are the object of study. Features of numerical realization of input equation systems taking into account, in particular, a dynamics of considerable increase and subsequent decrease of the intumescent layer thickness have been considered. Example calculations for structures of metal and wood protected with various coatings are given. Results of calculating two-dimensional temperature fields in polymer composite square-shaped structures with internal cruciform load-bearing elements have been presented. The intumescent coating is arranged on the external surface of a structure. The solution of the above-listed problems is of important significance to provide fire protection of different-purpose structures and products.
Entire nodal solutions to the pure critical exponent problem arising from concentration
NASA Astrophysics Data System (ADS)
Clapp, Mónica
2016-09-01
We obtain new sign changing solutions to the problem We exhibit solutions up to (℘p) which blow up at a single point as p →2*, developing a peak whose asymptotic profile is a rescaling of a nonradial sign changing solution to problem (℘∞). We also obtain existence and multiplicity of sign changing nonradial solutions to the Bahri-Coron problem (℘2*) in annuli.
Kurtosis Approach to Solution of a Nonlinear ICA Problem
NASA Technical Reports Server (NTRS)
Duong, Vu; Stubberud, Allen
2009-01-01
An algorithm for solving a particular nonlinear independent-component-analysis (ICA) problem, that differs from prior algorithms for solving the same problem, has been devised. The problem in question of a type known in the art as a post nonlinear mixing problem is a useful approximation of the problem posed by the mixing and subsequent nonlinear distortion of sensory signals that occur in diverse scientific and engineering instrumentation systems.
C. AVILES-RAMOS; C. RUDY
2000-11-01
The transient exact solution of heat conduction in a two-domain composite cylinder is developed using the separation of variables technique. The inner cylinder is isotropic and the outer cylindrical layer is orthotropic. Temperature solutions are obtained for boundary conditions of the first and second kinds at the outer surface of the orthotropic layer. These solutions are applied to heat flow calorimeters modeling assuming that there is heat generation due to nuclear reactions in the inner cylinder. Heat flow calorimeter simulations are carried out assuming that the inner cylinder is filled with plutonium oxide powder. The first objective in these simulations is to predict the onset of thermal equilibrium of the calorimeter with its environment. Two types of boundary conditions at the outer surface of the orthotropic layer are used to predict thermal equilibrium. The procedure developed to carry out these simulations can be used as a guideline for the design of calorimeters. Another important application of these solutions is on the estimation of thermophysical properties of orthotropic cylinders. The thermal conductivities in the vertical, radial and circumferential directions of the orthotropic outer layer can be estimated using this exact solution and experimental data. Simultaneous estimation of the volumetric heat capacity and thermal conductivities is also possible. Furthermore, this solution has potential applications to the solution of the inverse heat conduction problem in this cylindrical geometry. An interesting feature of the construction of this solution is that two different sets of eigenfunctions need to be considered in the eigenfunction expansion. These eigenfunctions sets depend on the relative values of the thermal diffusivity of the inner cylinder and the thermal diffusivity in the vertical direction of the outer cylindrical layer.
Singh, Brajesh K.; Srivastava, Vineet K.
2015-01-01
The main goal of this paper is to present a new approximate series solution of the multi-dimensional (heat-like) diffusion equation with time-fractional derivative in Caputo form using a semi-analytical approach: fractional-order reduced differential transform method (FRDTM). The efficiency of FRDTM is confirmed by considering four test problems of the multi-dimensional time fractional-order diffusion equation. FRDTM is a very efficient, effective and powerful mathematical tool which provides exact or very close approximate solutions for a wide range of real-world problems arising in engineering and natural sciences, modelled in terms of differential equations. PMID:26064639
Solution of the inverse problem of magnetic induction tomography (MIT).
Merwa, Robert; Hollaus, Karl; Brunner, Patricia; Scharfetter, Hermann
2005-04-01
Magnetic induction tomography (MIT) of biological tissue is used to reconstruct the changes in the complex conductivity distribution inside an object under investigation. The measurement principle is based on determining the perturbation DeltaB of a primary alternating magnetic field B0, which is coupled from an array of excitation coils to the object under investigation. The corresponding voltages DeltaV and V0 induced in a receiver coil carry the information about the passive electrical properties (i.e. conductivity, permittivity and permeability). The reconstruction of the conductivity distribution requires the solution of a 3D inverse eddy current problem. As in EIT the inverse problem is ill-posed and on this account some regularization scheme has to be applied. We developed an inverse solver based on the Gauss-Newton-one-step method for differential imaging, and we implemented and tested four different regularization schemes: the first and second approaches employ a classical smoothness criterion using the unit matrix and a differential matrix of first order as the regularization matrix. The third method is based on variance uniformization, and the fourth method is based on the truncated singular value decomposition. Reconstructions were carried out with synthetic measurement data generated with a spherical perturbation at different locations within a conducting cylinder. Data were generated on a different mesh and 1% random noise was added. The model contained 16 excitation coils and 32 receiver coils which could be combined pairwise to give 16 planar gradiometers. With 32 receiver coils all regularization methods yield fairly good 3D-images of the modelled changes of the conductivity distribution, and prove the feasibility of difference imaging with MIT. The reconstructed perturbations appear at the right location, and their size is in the expected range. With 16 planar gradiometers an additional spurious feature appears mirrored with respect to the median
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
...., Currently Known as Truheat, a Division of Three Heat LLC, Allegan, MI; Electro-Heat, Inc., a Subsidiary of Global Heating Solutions, Inc., Currently Known as Truheat, a Division of Three Heat LLC, Allegan, MI..., applicable to workers of TrueHeat, Inc., a subsidiary of Global Heating Solutions, Inc., Allegan,...
Shumaker, D E; Woodward, C S
2005-05-03
In this paper, the authors investigate performance of a fully implicit formulation and solution method of a diffusion-reaction system modeling radiation diffusion with material energy transfer and a fusion fuel source. In certain parameter regimes this system can lead to a rapid conversion of potential energy into material energy. Accuracy in time integration is essential for a good solution since a major fraction of the fuel can be depleted in a very short time. Such systems arise in a number of application areas including evolution of a star and inertial confinement fusion. Previous work has addressed implicit solution of radiation diffusion problems. Recently Shadid and coauthors have looked at implicit and semi-implicit solution of reaction-diffusion systems. In general they have found that fully implicit is the most accurate method for difficult coupled nonlinear equations. In previous work, they have demonstrated that a method of lines approach coupled with a BDF time integrator and a Newton-Krylov nonlinear solver could efficiently and accurately solve a large-scale, implicit radiation diffusion problem. In this paper, they extend that work to include an additional heating term in the material energy equation and an equation to model the evolution of the reactive fuel density. This system now consists of three coupled equations for radiation energy, material energy, and fuel density. The radiation energy equation includes diffusion and energy exchange with material energy. The material energy equation includes reaction heating and exchange with radiation energy, and the fuel density equation includes its depletion due to the fuel consumption.
Dalir, Nemat
2014-01-01
An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed.
River Restoration Within Water Supply Areas - Problems and Solution Approaches
NASA Astrophysics Data System (ADS)
Regli, C.; Huggenberger, P.; Guldenfels, L.
2004-05-01
The demand of river restoration in many areas of Europe and North America clarifies the existing problems of a sustainable use of water resources. River restoration generally intensifies the exchange between surface- and groundwater and related dissolved compounds or particles. Recommendations concerning ecological measures of river restoration within water supply areas should allow differentiated solutions, which take into account groundwater and flood protection. Model scenarios play an important role in decision-making processes. An application of this approach is given for the groundwater production system of the city of Basel, Switzerland: The former channelized river Wiese should be restored to more natural conditions to re-establish the biological connectivity and to increase the recreational value of this area. These initiatives might conflict with the requirements of groundwater protection, especially during flood events. Therefore, processes of river-groundwater interaction have been characterized by analyses of physical, chemical, and microbiological data sampled in several well clusters between the river and production wells. The well clusters allow sampling of groundwater in different depths of the aquifer. These data together with data from tracer experiments are used for modeling the river-groundwater interaction. The large- and medium-scaled, transient groundwater models are used to evaluate the well capture zones in the different river restoration scenarios. Well capture zones have to satisfy the safety requirements of groundwater protection. A further step includes optimizations of water supply operation such as artificial recharge and pumping. At the small scale, uncertainty estimations concerning delineation of well capture zones are made by stochastic approaches including geological and geophysical data of the aquifer. The methods presented can be used to define and evaluate groundwater protection zones in heterogeneous aquifers associated with
NASA Astrophysics Data System (ADS)
Malik, M. Y.; Bibi, M.; Khan, Farzana; Salahuddin, T.
2016-03-01
In this article, Williamson fluid flow and heat transfer over a stretching cylinder is discussed. The thermal conductivity is assumed to be vary linearly with temperature. Heat generation/absorption effects are also taken into account. Modeled partial differential equations are converted into ordinary differential form by using appropriate transformations. Shooting method in conjunction with Runge-Kutta-Fehlberg method is used to find the solution of the problem. Moreover, the effects of different flow parameters γ, λ, ɛ, β and Pr on velocity and temperature profiles are shown graphically. Local Nusselt number and skin friction coefficient are shown in tabular and graphical form.
Teaching Writing: Problems and Solutions. AASA Critical Issues Report.
ERIC Educational Resources Information Center
Neill, Shirley Boes
The nine articles in this guide discuss the problems involved in teaching writing and offer suggestions for improving writing instruction. The first article presents responses given by educators to a nationwide survey concerning the causes of writing problems, concluding that until recently the biggest problems were untrained teachers and a lack…
Moist-heat sterilization and the chemical stability of heat-labile parenteral solutions.
Li, L C; Parasrampuria, J; Bommireddi, A; Pec, E; Dudleston, A; Mayoral, J
1998-01-01
The impact of moist-heat sterilization (autoclaving) on the chemical stability of parenteral solutions was examined using two heat-labile products, clindamycin phosphate and succinylcholine chloride injections, as examples. A nonisothermal kinetic model was used to predict the extent of product degradation during autoclaving. The predicted results were found to be in close agreement with the experimental data. For the same peak temperature, a greater loss of product was shown by using a cycle with a higher F0. On the other hand, a higher peak-temperature cycle resulted in less product degradation for the same F0 value. The benefit of a high-temperature cycle was further illustrated by the fact that less chemical degradation for both products was produced by a 122 degrees C cycle with an F0 of 11 as compared to that which occurred during a 116.5 degrees C cycle with an F0 of 8. Although clindamycin phosphate was found to be highly unstable during a conventional autoclaving process, predicted data indicate that a UHT (Ultra-High Temperature) process may be used to sterilize this product with acceptable degradation. PMID:15605602
SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport
Langevin, Christian D.; Thorne, Daniel T., Jr.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing
2008-01-01
The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant
Using Diagrams as Tools for the Solution of Non-Routine Mathematical Problems
ERIC Educational Resources Information Center
Pantziara, Marilena; Gagatsis, Athanasios; Elia, Iliada
2009-01-01
The Mathematics education community has long recognized the importance of diagrams in the solution of mathematical problems. Particularly, it is stated that diagrams facilitate the solution of mathematical problems because they represent problems' structure and information (Novick & Hurley, 2001; Diezmann, 2005). Novick and Hurley were the first…
Reduction in CS: A (Mostly) Quantitative Analysis of Reductive Solutions to Algorithmic Problems
ERIC Educational Resources Information Center
Armoni, Michal
2009-01-01
Reduction is a problem-solving strategy, relevant to various areas of computer science, and strongly connected to abstraction: a reductive solution necessitates establishing a connection among problems that may seem totally disconnected at first sight, and abstracts the solution to the reduced-to problem by encapsulating it as a black box. The…
Finding Similarities and Differences in the Solutions of Word Problems
ERIC Educational Resources Information Center
Reed, Stephen K.; Stebick, Sara; Comey, Brittany; Carroll, Donja
2012-01-01
This study extends the Rittle-Johnson and Star (2009) research agenda of identifying when solution comparisons are effective by combining their quantitative approach with the qualitative descriptive approach advocated by Lobato (2008). In Experiment 1 university students described similarities and differences between detailed solutions of…
Parents' Aggressive Influences and Children's Aggressive Problem Solutions with Peers
ERIC Educational Resources Information Center
Duman, Sarah; Margolin, Gayla
2007-01-01
This study examined children's aggressive and assertive solutions to hypothetical peer scenarios in relation to parents' responses to similar hypothetical social scenarios and parents' actual marital aggression. The study included 118 children ages 9 to 10 years old and their mothers and fathers. Children's aggressive solutions correlated with…
Solution of the Modified Bratu Problem in SAMRAI
Pernice, M; Gunney, B T
2004-02-02
A model implementation of the solution of an unsteady nonlinear reaction-diffusion on a SAMR grid using SAMRAI has been developed. This model implementation illustrates the use of new capabilities for implicit timestepping and solution of large-scale systems of nonlinear equations using implementations of inexact Newton methods found in KINSOL and PETSc. This document provides a detailed description of the implementation.
The complete solution of the conformastat electrovacuum problem
NASA Astrophysics Data System (ADS)
González, Guillermo A.; Vera, Raül
2011-09-01
We find the complete solution of the Einstein-Maxwell field equations without sources for static spacetimes in which the space of Killing trajectories is conformally flat. The result is used to present an improved local characterisation of the Majumdar-Papapetrou class of solutions.
The Lunar Internal Structure Model: Problems and Solutions
NASA Astrophysics Data System (ADS)
Nefedyev, Yuri; Gusev, Alexander; Petrova, Natalia; Varaksina, Natalia
decomposition of gravitational field of the Moon of members up to 165th order with a high degree of accuracy. Judging from the given data, the distinctive feature of the Moon’s gravitational field is that harmonics of the third and even the fourth order are comparable with harmonics of the second order, except for member J2. General conclusion: according to recent data, the true figure of the Moon is much more complex than a three-axis ellipsoid. Gravitational field and dynamic figure of the multilayered Moon: One of the main goals of selenodesy is the study of a dynamic figure of the Moon which determines distribution of the mass within the Moon’s body. A dynamic figure is shaped by the inertia ellipsoid set by values of resultant moments of inertia of the Moon A, B, C and their orientation in space. Selenoid satellites (SS) open new and most perspective opportunities in the study of gravitational field and the Moon’s figure. SSs “Moon 10”, “Apollo”, “Clementine”, “Lunar Prospector” trajectory tracking data processing has allowed for identification of coefficients in decomposition of gravitational field of the Moon of members up to 165th order with a high degree of accuracy. Judging from the given data, the distinctive feature of the Moon’s gravitational field is that harmonics of the third and even the fourth order are comparable with harmonics of the second order. Difference from zero of c-coefficients proves asymmetry of gravitational fields on the visible and invisible sides of the Moon. As a first attempt at solving the problem, the report presents the survey of internal structure of the Moon, tabulated values of geophysical parameters and geophysical profile of the Moon, including liquid lunar core, analytical solution of Clairaut’s equation for the two-layer model of the Moon; mathematical and bifurcational analysis of solution based on physically justified task options; original debugged software in VBA programming language for computer
Characteristic of Absorption Heat Transfer using LiBr+LiI Solution
NASA Astrophysics Data System (ADS)
Tsujimori, Atsushi; Ozaki, Eiichi; Nakao, Kazushige
LiBr-H20 absorption chiller is widely used in Japan, and many research have been made for absorption characteristic in terms of enhancing heat transfer. Another study have been performed for widening working range with higher crystallization limits, and it was reported that adding LiI salt to LiBr-H20 working fluid provide about 5 [mass%] higher crystallization limit under the condition of absorption pressure range. It is necessary to reveal absorption heat transfer performance to utilize this working fluid pair for absorption chiller. In this study absorption heat transfer characteristic was investigated for horizontal and vertical tube. As a result, it was found that heat transfer coefficient increased as mass flow rate of solution increased and mass concentration of solution decrease and that these characteristic were almost the same as LiBr solution, though this solution gave slightly less heat transfer coefficient than LiBr solution.
Lunar Dust on Heat Rejection System Surfaces: Problems and Prospects
NASA Technical Reports Server (NTRS)
Gaier, James R.; Jaworske, Donald A.
2007-01-01
Heat rejection from power systems will be necessary for human and robotic activity on the lunar surface. Functional operation of such heat rejection systems is at risk of degradation as a consequence of dust accumulation. The Apollo astronauts encountered marked degradation of performance in heat rejection systems for the lunar roving vehicle, science packages, and other components. Although ground testing of dust mitigation concepts in support of the Apollo mission identified mitigation tools, the brush concept adopted by the Apollo astronauts proved essentially ineffective. A better understanding of the issues associated with the impact of lunar dust on the functional performance of heat rejection systems and its removal is needed as planning gets underway for human and robotic missions to the Moon. Renewed emphasis must also be placed on ground testing of pristine and dust-covered heat rejection system surfaces to quantify degradation and address mitigation concepts. This paper presents a review of the degradation in performance of heat rejection systems encountered on the lunar surface to-date, and will discuss current activities underway to evaluate the durability of candidate heat rejection system surfaces and current dust mitigation concepts.
A New Approach to the Coronal Heating Problem
Vranjes, J.; Poedts, S.
2009-11-10
The heating of the solar corona is discussed within both frameworks of kinetic and fluid drift wave theory. It is shown that the basic ingredient necessary for the heating is the presence of the background density gradients in the direction perpendicular to the magnetic field vector. These gradients are a source of free energy for the electrostatic instabilities. Strongly growing modes are found for some typical coronal plasma parameters. The instabilities a) imply the presence of electric fields that can accelerate the plasma particles in both the perpendicular and the parallel direction with respect to the magnetic field vector, and b) can stochastically heat ions. The stochastic heating i) is due to the electrostatic nature of the waves, ii) is more effective on ions than on electrons, iii) acts predominantly in the perpendicular direction, iv) heats heavier ions more efficiently than lighter ions, and v) may easily provide a drift wave heating rate that is orders of magnitude above the value that is presently believed to be sufficient for heating the solar corona.
Finite element solution of optimal control problems with state-control inequality constraints
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.
1992-01-01
It is demonstrated that the weak Hamiltonian finite-element formulation is amenable to the solution of optimal control problems with inequality constraints which are functions of both state and control variables. Difficult problems can be treated on account of the ease with which algebraic equations can be generated before having to specify the problem. These equations yield very accurate solutions. Owing to the sparse structure of the resulting Jacobian, computer solutions can be obtained quickly when the sparsity is exploited.
Hardware problems encountered in solar heating and cooling systems
NASA Technical Reports Server (NTRS)
Cash, M.
1978-01-01
Numerous problems in the design, production, installation, and operation of solar energy systems are discussed. Described are hardware problems, which range from simple to obscure and complex, and their resolution.
Auditing Management Practices in Schools: Recurring Communication Problems and Solutions
ERIC Educational Resources Information Center
Zwijze-Koning, Karen H.; de Jong, Menno D. T.
2009-01-01
Purpose: Over the past ten years, most Dutch high schools have been confronted with mergers, curriculum reforms, and managerial changes. As a result, the pressure on the schools' communication systems has increased and several problems have emerged. This paper aims to examine recurring clusters of communication problems in high schools.…
Problems and Solutions Related to College Students' Belief
ERIC Educational Resources Information Center
Zhang, Jinming
2008-01-01
With China staying in its social transition period, its changes in economy, politics and culture have influenced college students' thought to a large extent. Currently, in spite of the healthy and upward mainstream thought among college students, there are also some problems. This article elaborates on the problems and manifestations in college…
Teenage Pregnancy: A Continuing Problem Defies Easy Solution.
ERIC Educational Resources Information Center
Beachum-Bilby, Sheila
1997-01-01
The goals, grantmaking strategies, and interests of the Mott Foundation with regard to identifying problems and developing programs for adolescent women are reviewed in a brief introduction. Four articles address various aspects of the problem of teenage pregnancy. The title article provides a review of recent statistics on a decline in the teen…
Transdisciplinary Variation in Engineering Curricula. Problems and Means for Solutions
ERIC Educational Resources Information Center
Jakobsen, Arne; Bucciarelli, Louis L.
2007-01-01
An essential difficulty in solving practical problems that are not like the ones a student has solved before is discerning the core of the problem. It is claimed that discernment has to be trained by variation--by varying the context of the assignments in which students have to identify and grasp their "underlying form". A decisive challenge in…
Constructive analytical solution of the evolution hill problem
NASA Astrophysics Data System (ADS)
Vashkov'yak, M. A.
2010-12-01
A new analytical solution of the system of differential equations describing secular perturbations and long-period solar perturbations of mean orbits of outer satellites of giant planets was obtained. As distinct from other solutions, the solution constructed using von Zeipel's method approximately takes into account, in the secular part of the perturbing function, the totality of fourth order with respect to the small parameter m of the ratio of the mean motions of the primary planet and the satellite. This enables us to describe more accurately the evolution of satellite orbits with large apocentric distances, which in the course of evolution may exceed the halved radius of the Hill sphere of the planet with respect to the Sun. Among these are the orbits of the two outermost Neptunian satellites N10 (Psamathe) and N13 (Neso). For these satellites, the parameter m amounts to 0.152 and 0.165, respectively. Different from a purely analytical solution, the proposed solution requires preliminary calculations for each satellite. More precisely, in doing so, we need to construct some simple functions to approximate more complex ones. This is why we use the phrase "constructive analytical." To illustrate the solution, we compare it with the results of the numerical integration of the strict motion equations of the satellites N10 and N13 over time intervals 5-15 thousand years.
NASA Astrophysics Data System (ADS)
Mushtaq, A.; Abbasbandy, S.; Mustafa, M.; Hayat, T.; Alsaedi, A.
2016-01-01
Present work studies the well-known Sakiadis flow of Maxwell fluid along a moving plate in a calm fluid by considering the Cattaneo-Christov heat flux model. This recently developed model has the tendency to describe the characteristics of relaxation time for heat flux. Some numerical local similarity solutions of the associated problem are computed by two approaches namely (i) the shooting method and (ii) the Keller-box method. The solution is dependent on some interesting parameters which include the viscoelastic fluid parameter β, the dimensionless thermal relaxation time γ and the Prandtl number Pr. Our simulations indicate that variation in the temperature distribution with an increase in local Deborah number γ is non-monotonic. The results for the Fourier's heat conduction law can be obtained as special cases of the present study.
NASA Astrophysics Data System (ADS)
Wan, Ling; Wang, Tao; Zou, Qingyang
2016-04-01
We investigate the large-time behavior of solutions to an outflow problem of the compressible Navier-Stokes equations for viscous and heat-conducting ideal polytropic gases in the half line. The non-degenerate stationary solution is shown to be asymptotically stable under large initial perturbation with no restriction on the adiabatic exponent, provided that the boundary strength is sufficiently small. The proofs are based on the nonlinear energy estimates and the crucial step is to obtain positive lower and upper bounds of the density and the temperature uniformly in time and space.
ERIC Educational Resources Information Center
Rebello, Carina M.
2012-01-01
This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…
Offshore asphaltene and wax deposition: Problems/solutions
Leontaritis, K.J. |
1996-05-01
Many production facilities around the world suffer from either asphaltene or wax deposition. Such problems seriously threaten economic production from many offshore reservoirs due to the high cost of remedial measures. Offshore facilities are especially susceptible to such deposition for a number of reasons. This article presents ideas and methodologies on how to predict, diagnose, prevent, or mitigate problems caused by organic deposition in offshore production facilities. In one facility where these ideas were put to use, despite the debilitating magnitude of the problems, the field has been produced for more than 14 years with minimum environmental impact. Principal conclusions developed are discussed in this paper.
Verification of high-order mixed FEM solution of transient Magnetic diffusion problems
Rieben, R; White, D A
2005-05-12
We develop and present high order mixed finite element discretizations of the time dependent electromagnetic diffusion equations for solving eddy current problems on 3D unstructured grids. The discretizations are based on high order H(grad), H(curl) and H(div) conforming finite element spaces combined with an implicit and unconditionally stable generalized Crank-Nicholson time differencing method. We develop three separate electromagnetic diffusion formulations, namely the E (electric field), H (magnetic field) and the A-{phi} (potential) formulations. For each formulation, we also provide a consistent procedure for computing the secondary variables F (current flux density) and B (magnetic flux density), as these fields are required for the computation of electromagnetic force and heating terms. We verify the error convergence properties of each formulation via a series of numerical experiments on canonical problems with known analytic solutions. The key result is that the different formulations are equally accurate, even for the secondary variables J and B, and hence the choice of which formulation to use depends mostly upon relevance of the Natural and Essential boundary conditions to the problem of interest. In addition, we highlight issues with numerical verification of finite element methods which can lead to false conclusions on the accuracy of the methods.
Existence and non-uniqueness of similarity solutions of a boundary-layer problem
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Lakin, W. D.
1986-01-01
A Blasius boundary value problem with inhomogeneous lower boundary conditions f(0) = 0 and f'(0) = - lambda with lambda strictly positive was considered. The Crocco variable formulation of this problem has a key term which changes sign in the interval of interest. It is shown that solutions of the boundary value problem do not exist for values of lambda larger than a positive critical value lambda. The existence of solutions is proven for 0 lambda lambda by considering an equivalent initial value problem. It is found however that for 0 lambda lambda, solutions of the boundary value problem are nonunique. Physically, this nonuniqueness is related to multiple values of the skin friction.
Numerical solution of initial-value problems in plasma physics
Killeen, J.
1980-10-01
The numerical models used in fusion research are briefly reviewed. The application of implicit difference techniques to problems in resistive magnetohydrodynamics, transport and the Fokker-Planck equation is discussed.
Development of an efficient solution method for solving the radiative heat transfer equation
Xing Ouyang; Minardi, A.; Kassab, A.
1996-12-31
The radiative heat transfer equation in a participating medium is a Fredholm integral equation of the second kind whose kernels are formally singular at the position where the incident radiation is to be determined. A general method is developed to remove this singularity by capitalizing on the mutual interactions between the source function and the exponential integral appearing in the kernel. The method is based on an interpolation of the unknown source functions, and the analytical integration of the resulting product in the integrand (source function expansion multiplied by the known exponential integral). As such, the method is considered semi-analytical. The method is superior to traditional solution techniques which employ quadratures approximating both the unknown and known functions appearing in the integrand, and which consequently, have numerical difficulties in addressing singularities. The general approach is presented in detail for one-dimensional problems, and extensions to two-dimensional enclosures are also given. One and two-dimensional numerical examples are considered, comparing the predictions to benchmark work. The method is shown to be computationally efficient and highly accurate. In comparison with traditional quadrature based techniques, the method readily handles the singularity of the exponential integral of first order at zero, converges rapidly under grid refinement, and provides superior prediction for radiative heat transfer. The technique is shown to be valid for a wide range of values of the scattering albedo and optical thickness. The proposed technique could be applied to a wide range of conservation problems which lend themselves to an integral formulation.
Aquatic acetylene-reduction techniques: solutions to several problems.
Flett, R J; Hamilton, R D; Campbell, N E
1976-01-01
Previous methods of performing aquatic acetylene-reduction assays are described and several problems associated with them are discussed. A refinement of these older techniques is introduced and problems that it overcomes are also discussed. A depth profile of nitrogen fixation (C2H4 production), obtained by the refined technique, is shown for a fertilized Canadian Shield lake in the Experimental Lakes Area of northwestern Ontario. PMID:814983
Hiding quiet solutions in random constraint satisfaction problems
Zdeborova, Lenka; Krzakala, Florent
2008-01-01
We study constraint satisfaction problems on the so-called planted random ensemble. We show that for a certain class of problems, e.g., graph coloring, many of the properties of the usual random ensemble are quantitatively identical in the planted random ensemble. We study the structural phase transitions and the easy-hard-easy pattern in the average computational complexity. We also discuss the finite temperature phase diagram, finding a close connection with the liquid-glass-solid phenomenology.
Hiding quiet solutions in random constraint satisfaction problems.
Krzakala, Florent; Zdeborová, Lenka
2009-06-12
We study constraint satisfaction problems on the so-called planted random ensemble. We show that for a certain class of problems, e.g., graph coloring, many of the properties of the usual random ensemble are quantitatively identical in the planted random ensemble. We study the structural phase transitions and the easy-hard-easy pattern in the average computational complexity. We also discuss the finite temperature phase diagram, finding a close connection with the liquid-glass-solid phenomenology. PMID:19658978
Exact Solution of The Anharmonic Electron-Phonon Problem
NASA Astrophysics Data System (ADS)
Freericks, James; Jarrell, Mark; Mahan, Gerald
1998-03-01
The anharmonic Holstein model is solved exactly using a quantum Monte Carlo simulation on an infinite-dimensional hypercubic lattice (dynamical-mean-field theory). We find that lattice anharmonicity greatly favors superconducting solutions over charge-density-wave (CDW) solutions, and that it generically causes the phase diagrams to be asymmetric in the filling. We compare the exact solutions to different perturbation theories to shed light on the effects of the anharmonicity. As a general rule, we do not find significant enhancements of the superconducting transition temperature relative to the CDW transition temperatures (in the harmonic case), but the phase space for superconductivity is greatly enhanced by anharmonicity. JKF was supported by ONR-YIP N000149610828, MJ by NSF DMR-9357199 and DMR-9704021, and GDM by DOE under DE-AC05-96OR22464.
Shadid, J.N.; Tuminaro, R.S.; Walker, H.F.
1997-02-01
The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.
Technology Solutions Case Study: Heat Pump Water Heater Retrofit
none,
2012-08-01
In this project, Pacific Northwest National Laboratory studied heat pump water heaters, an efficient, cost-effective alternative to traditional electric resistance water heaters that can improve energy efficiency by up to 62%.
NASA Astrophysics Data System (ADS)
Qiu, Zhiping; Wang, Xiaojun
2005-04-01
Generalized eigenvalue problems from the modal analysis are often converted to the standard eigenvalue problems. In this paper, it evaluates the upper and lower bounds on the eigenvalues of the standard eigenvalue problem of structures subject to severely deficient information about the structural parameters. Here, we focus on non-probabilistic interval analysis models of uncertainty, which are adapted to the case of severe lack of information on uncertainty. Non-probabilistic, interval analysis method in which uncertainties are defined by interval numbers appears as an alternative to the classical probabilistic models. For the standard eigenvalue problem of structures with uncertain-but-bounded parameters, the vertex solution theorem, the positive semi-definite solution theorem and the parameter decomposition solution theorem for the standard eigenvalue problem are presented, and compared with Deif's solution theorem in numerical examples. It is shown that, for the upper and lower bounds on the eigenvalues of the standard eigenvalue problem with uncertain-but-bounded parameters, the presented vertex solution theorem is unconditional, and the positive semi-definite solution theorem and the parameter decomposition solution theorem have less limitary conditions compared with Deif's solution theorem. The effectiveness of the vertex solution theorem, the positive semi-definite solution theorem and the parameter decomposition solution theorem are illustrated by numerical examples
Similarity solution of a Stefan drug-release subdiffusion problem
NASA Astrophysics Data System (ADS)
Volpert, V. A.; Nepomnyashchy, A. A.
2016-04-01
Propagation of a gel/glass transition boundary in a polymer is considered in the context of drug release. Drug molecules are assumed to undergo subdiffusive motion in the gel and be quiescent in the glass region. Exact self-similar solutions for the drug concentration are constructed, and the amount of released drug is determined as a function of time.
Hiring and Recruitment Practices in Academic Libraries: Problems and Solutions.
ERIC Educational Resources Information Center
Raschke, Gregory K.
2003-01-01
Academic libraries need to change their recruiting and hiring procedures to stay competitive in today's changing marketplace. To be more competitive and effective in their recruitment and hiring processes, academic libraries must foster manageable internal solutions, look to other professions for effective hiring techniques and models, and employ…
New-Age Solutions to Old Age Problems?
ERIC Educational Resources Information Center
World of Work, 2002
2002-01-01
As people live longer, produce fewer children, and retire earlier, the ratio of older people to working people is growing. This creates an imbalance in the replenishment of pension funds. Solutions include promoting training and flexibility for older workers, ending discrimination, and changing attitudes thorough education and information. (JOW)
Clearance of serum solutes by hemofiltration in dogs with severe heat stroke
2014-01-01
Background We have previously reported that hemofiltration (HF) may be an effective additional means of treating heat stroke when rapid cooling is not effective. Methods Dogs were assigned to a heat stroke (control) or heat stroke + hemofiltration (HF) group (n = 8 each group). After heat stroke induction, dogs in the HF group received HF for 3 h. Serum concentrations of interleukin (IL)-10, tumor necrosis factor (TNF)-α, IL-6, blood urea nitrogen (BUN) and creatinine were measured at baseline and 1, 2, and 3 h after heat stroke. Clearance rates of solutes were determined 1, 2, and 3 h after the start of HF. Results Serum concentrations of all solutes tended to increase with time after heat stroke in the control group, but decreased (BUN, creatinine) or remained relatively unchanged (TNF-α, IL-6, IL-10) with time in the HF group. Concentrations of all solutes were significantly lower in the HF group compared with the control group at 2 and 3 h (P < 0.05). Clearance rates for small molecular weight solutes were high, while those for larger molecular weight solutes were low. Conclusion HF prevents heat stroke-induced increases in serum cytokine concentrations and is effective for clearing small molecular weight solutes from serum, but less effective for clearing larger molecular weight solutes, including TNF-α, IL-6, and IL-10. PMID:25145441
New numerical methods for open-loop and feedback solutions to dynamic optimization problems
NASA Astrophysics Data System (ADS)
Ghosh, Pradipto
The topic of the first part of this research is trajectory optimization of dynamical systems via computational swarm intelligence. Particle swarm optimization is a nature-inspired heuristic search method that relies on a group of potential solutions to explore the fitness landscape. Conceptually, each particle in the swarm uses its own memory as well as the knowledge accumulated by the entire swarm to iteratively converge on an optimal or near-optimal solution. It is relatively straightforward to implement and unlike gradient-based solvers, does not require an initial guess or continuity in the problem definition. Although particle swarm optimization has been successfully employed in solving static optimization problems, its application in dynamic optimization, as posed in optimal control theory, is still relatively new. In the first half of this thesis particle swarm optimization is used to generate near-optimal solutions to several nontrivial trajectory optimization problems including thrust programming for minimum fuel, multi-burn spacecraft orbit transfer, and computing minimum-time rest-to-rest trajectories for a robotic manipulator. A distinct feature of the particle swarm optimization implementation in this work is the runtime selection of the optimal solution structure. Optimal trajectories are generated by solving instances of constrained nonlinear mixed-integer programming problems with the swarming technique. For each solved optimal programming problem, the particle swarm optimization result is compared with a nearly exact solution found via a direct method using nonlinear programming. Numerical experiments indicate that swarm search can locate solutions to very great accuracy. The second half of this research develops a new extremal-field approach for synthesizing nearly optimal feedback controllers for optimal control and two-player pursuit-evasion games described by general nonlinear differential equations. A notable revelation from this development
Psychological considerations of man in space: Problems & solutions
NASA Astrophysics Data System (ADS)
Kass, J.; Kass, R.; Samaltedinov, I.
With concrete plans for long duration flight taking form a new impetus is lent to preparing man for this hostile and unnatural environment. Cramped conditions, isolation from family and loved ones, work stress, fear, and incompatibility with fellow crew, are but a few of the problems suffered by astronauts and cosmonauts during their long missions in orbit about the earth. Although criteria for selection of crew is one aspect of attacking the problem, it has not solved it Notwithstanding good selection, team combination, and counselling before flight, problems have still occurred with unwanted consequences. Incompatibility of team members, far from being the exception, has been frequent. This has been detrímental both physiologically and psychologically for the individual as well as for the operational success and safety of the missions. Because problems will inevitably occur in future long duration missions, especially when they are of international and multi-cultural nature, the importance of dealing with them is underlined. This paper takes a different approach towards ameliorating these problems, namely that of psychological group training before a mission.
A practical solution to Hanford's tank waste problem
Siemer, D.D.
2013-07-01
The main characteristics of the Hanford radwaste are: -) it is extremely dilute and generates little heat, -) it is comprised of materials incompatible with high loading in borosilicate glass, and -) it is already situated at a good geological repository site. We propose that Hanford's radwaste should be homogenized (not separated), converted to an iron phosphate (Fe-P) glass 'aggregate' (marbles, gems, or cullet), that is then slurried up with a cementitious grout and pumped into Hanford's 'best preserved' tanks for disposal. This proposal is efficient, safe and cheap.
NASA Astrophysics Data System (ADS)
Shojaeefard, M. H.; Goudarzi, K.; Mazidi, M. Sh.
2009-06-01
The problems involving periodic contacting surfaces have different practical applications. An inverse heat conduction problem for estimating the periodic Thermal Contact Conductance (TCC) between one-dimensional, constant property contacting solids has been investigated with conjugate gradient method (CGM) of function estimation. This method converges very rapidly and is not so sensitive to the measurement errors. The advantage of the present method is that no a priori information is needed on the variation of the unknown quantities, since the solution automatically determines the functional form over the specified domain. A simple, straight forward technique is utilized to solve the direct, sensitivity and adjoint problems, in order to overcome the difficulties associated with numerical methods. Two general classes of results, the results obtained by applying inexact simulated measured data and the results obtained by using data taken from an actual experiment are presented. In addition, extrapolation method is applied to obtain actual results. Generally, the present method effectively improves the exact TCC when exact and inexact simulated measurements input to the analysis. Furthermore, the results obtained with CGM and the extrapolation results are in agreement and the little deviations can be negligible.
Fast and optimal solution to the Rankine-Hugoniot problem
NASA Technical Reports Server (NTRS)
Vinas, A. F.; Scudder, J. D.
1985-01-01
A new, definitive, reliable and fast iterative method is described for determining the geometrical properties of a shock (i.e., theta sub Bn, yields N, V sub s and M sub A), the conservation constants and the self-consistent asymptotic magnetofluid variables, that uses the three dimensional magnetic field and plasma observations. The method is well conditioned and reliable at all theta sub Bn angles regardless of the shock strength or geometry. Explicit proof of uniqueness of the shock geometry solution by either analytical or graphical methods is given. The method is applied to synthetic and real shocks, including a bow shock event and the results are then compared with those determined by preaveraging methods and other iterative schemes. A complete analysis of the confidence region and error bounds of the solution is also presented.
To the editor: Two solutions in search of a problem
Technology Transfer Automated Retrieval System (TEKTRAN)
Two recent articles in Hepatology suggest that the problems of fructose-induced fibrosis severity in patients with nonalcoholic fatty liver disease (NAFLD) or nonalcoholic hepatic steatosis (NASH) could be solved if their exposure were limited either directly through diet or indirectly through curcu...
Behaviorism: part of the problem or part of the solution.
Holland, J G
1978-01-01
The form frequently taken by behavior-modification programs is analyzed in terms of the parent science, Behaviorism. Whereas Behaviorism assumes that behavior is the result of contingencies, and that lasting behavior change involves changing the contingencies that give rise to and support the behavior, most behavior-modification programs merely arrange special contingencies in a special environment to eliminate the "problem" behavior. Even when the problem behavior is as widespread as alcoholism and crime, behavior modifiers focus on "fixing" the alcoholic and the criminal, not on changing the societal contingencies that prevail outside the therapeutic environment and continue to produce alcoholics and criminals. The contingencies that shape this method of dealing with behavioral problems are also analyzed, and this analysis leads to a criticism of the current social structure as a behavior control system. Although applied behaviorists have frequently focused on fixing individuals, the science of Behaviorism provides the means to analyze the structures, the system, and the forms of societal control that produce the "problems". PMID:649524
Computer-Assisted Rare Book Cataloguing: Problems and Solutions.
ERIC Educational Resources Information Center
Steele, Victoria
This study proposes answers to questions of how and why computers can be used to catalog rare books. Divided into two parts, the first examines the nature of rare book cataloging needs and considers problems associated with machine-readable rare book cataloging. The question of how rare book cataloging differs from standard cataloging is analyzed…
School Energy Crisis: Problems and Solutions. AASA Critical Issues Report.
ERIC Educational Resources Information Center
Neill, Shirley Boes
This publication provides an overview of the energy crisis in schools. This overview has been written for school administrators who desire to understand their energy problems and to know what to do to conserve energy in their schools. Included are: (1) the impact of the energy crisis on the nation and the schools; (2) what state education agencies…
Staff Dismissal: Problems & Solutions. AASA Critical Issues Report.
ERIC Educational Resources Information Center
Neill, Shirley Boes; Custis, Jerry
This report, addressed to administrators and board members, discusses teacher dismissals in light of such motivating factors as declining enrollment, teacher supply and demand, and budget problems. Divided into nine chapters, this how-to-do-it book discusses some of the following topics: facts and figures on the dismissal of teachers, alternatives…
An Improved Approach to Solution of the Faculty Assignment Problem.
ERIC Educational Resources Information Center
Yang, Chin W.
1989-01-01
Examined is the problem of assigning faculty members to teach various courses in an accounting department. Based on selected evaluation information, a zero-one integer programing model was implemented. This approach utilizes readily available data and takes into consideration the learning curve phenomenon, various competing needs, and…
Technology: The Problem or the Solution to Childhood Obesity
ERIC Educational Resources Information Center
Silverstone, Susan; Teatum, Jim
2011-01-01
One-third of the population of US children is considered obese and two-thirds of the adult population falls into the same category. These figures have tripled over the last 30 years. This demonstrates that the existing strategies to combat obesity do not work and it is time to look for alternatives. The recommendation is to turn the problem into a…
A Computer Solution of the Parking Lot Problem.
ERIC Educational Resources Information Center
Rumble, Richard T.
A computer program has been developed that will accept as inputs the physical description of a portion of land, and the parking design standards to be followed. The program will then give as outputs the numerical and graphical descriptions of the maximum-density parking lot for that portion of land. The problem has been treated as a standard…
Creativity, Problem Solving, and Solution Set Sightedness: Radically Reformulating BVSR
ERIC Educational Resources Information Center
Simonton, Dean Keith
2012-01-01
Too often, psychological debates become polarized into dichotomous positions. Such polarization may have occurred with respect to Campbell's (1960) blind variation and selective retention (BVSR) theory of creativity. To resolve this unnecessary controversy, BVSR was radically reformulated with respect to creative problem solving. The reformulation…
Household Hazardous Waste: Everyone's Problem--Everyone's Solution.
ERIC Educational Resources Information Center
Evenson, Linda
1985-01-01
Examines the household hazardous waste problem, addressing several areas related to regulation, disposal, and control. Also gives a list of safer alternatives for household cleaners/disinfectants, paint products, and pesticides. Indicates that individuals can collectively make a difference in public exposure by changing purchases and practices.…
AACSB Accreditation in China--Current Situation, Problems, and Solutions
ERIC Educational Resources Information Center
Zhang, Xinrui; Gao, Yan
2012-01-01
This paper first introduces the background of the AACSB (Association to Advance Collegiate Schools of Business) accreditation, and then analyzes the current status of the participation of Chinese business schools in AACSB accreditation. Based on the data analysis, the paper points out that there are two main problems in the Chinese business…
Environmental Problems, Causes, and Solutions: An Open Question
ERIC Educational Resources Information Center
Negev, Maya; Garb, Yaakov; Biller, Roni; Sagy, Gonen; Tal, Alon
2010-01-01
In a national evaluation of environmental literacy in Israel, (Negev, Sagy, Garb, Salzberg, & Tal, 2008), the authors included both multiple choice questions and open questions. In this article the authors describe the qualitative analysis of the answers to an open question regarding a local environmental problem. Most participants specified solid…
Drama That Delivers: Real-Life Problems, Students' Solutions.
ERIC Educational Resources Information Center
Hery, Nancy Duffy
Drama and role playing are effective ways for teachers, school counselors, and other individuals who work with young people to teach and discuss sensitive issues. The eight plays in this publication are designed to help middle school students develop critical-thinking, problem-solving, and logical decision-making skills. The eight scripts use a…
Programmable Calculators Facilitate Simple Solutions to Mathematical Problems.
ERIC Educational Resources Information Center
Snover, Stephen L.; Spikell, Mark A.
The message of this article is that there are many types of problems ordinarily requiring advanced techniques or special insight to solve which can now be done as simple programming exercises on inexpensive programmable calculators. Several examples appropriate for the secondary school curriculum are given. These are: (1) evaluating polynomials;…
Expert and Novice Solutions of Genetic Pedigree Problems.
ERIC Educational Resources Information Center
Hackling, Mark W.; Lawrence, Jeanette A.
1988-01-01
Compares experts', advanced students', and novice students' use of genetics knowledge to generate and test hypotheses while solving genetic pedigree problems. Reports that experts identified more critical cues, tested more hypotheses, were more rigorous in the falsification of alternative hypotheses, and were more flexible to their solving…
Toward precise solution of one-dimensional velocity inverse problems
Gray, S.; Hagin, F.
1980-01-01
A family of one-dimensional inverse problems are considered with the goal of reconstructing velocity profiles to reasonably high accuracy. The travel-time variable change is used together with an iteration scheme to produce an effective algorithm for computation. Under modest assumptions the scheme is shown to be convergent.
Multiple Solutions to Problems in Mathematics Teaching: Do Teachers Really Value Them?
ERIC Educational Resources Information Center
Bingolbali, Erhan
2011-01-01
Solving problems in different ways is strongly advised for mathematics learning and teaching. There is, however, little data available on the examination of teachers' openness to and evaluation of different solutions to the problems. In this paper, the author examines classroom teachers' openness to different solutions (or to what extent they…
Expanding the Space of Plausible Solutions in a Medical Tutoring System for Problem-Based Learning
ERIC Educational Resources Information Center
Kazi, Hameedullah; Haddawy, Peter; Suebnukarn, Siriwan
2009-01-01
In well-defined domains such as Physics, Mathematics, and Chemistry, solutions to a posed problem can objectively be classified as correct or incorrect. In ill-defined domains such as medicine, the classification of solutions to a patient problem as correct or incorrect is much more complex. Typical tutoring systems accept only a small set of…
An Efficient Algorithm for Partitioning and Authenticating Problem-Solutions of eLeaming Contents
ERIC Educational Resources Information Center
Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn
2013-01-01
Content authenticity and correctness is one of the important challenges in eLearning as there can be many solutions to one specific problem in cyber space. Therefore, the authors feel it is necessary to map problems to solutions using graph partition and weighted bipartite matching. This article proposes an efficient algorithm to partition…
Solutions of the Noh Problem for Various Equations of State Using Lie Groups
Axford, R.A.
1998-08-01
A method for developing invariant equations of state for which solutions of the Noh problem will exist is developed. The ideal gas equation of state is shown to be a special case of the general method. Explicit solutions of the Noh problem in planar, cylindrical and spherical geometry are determined for a Mie-Gruneisen and the stiff gas equation of state.
ERIC Educational Resources Information Center
Kiselica, Mark S.; Baker, Stanley B.
1992-01-01
Reviews common problems experienced by clients during progressive muscle relaxation training (PMRT) and summarizes pertinent solutions to those problems. Discusses difficulties and solutions related to cognitive restructuring training. Notes that cognitive restructuring is often used to enhance effectiveness of PMRT. Concludes with suggestions for…
An Optical Wavelength-Based Solution to the 3-SAT Problem
NASA Astrophysics Data System (ADS)
Goliaei, Sama; Jalili, Saeed
The NP-complete is a class of complexity including many real-world problems. Although many efforts made to find efficient solutions to NP-complete problems, no such a solution having polynomial complexity of used resources is found yet.
An Isospectral Problem for Global Conservative Multi-Peakon Solutions of the Camassa-Holm Equation
NASA Astrophysics Data System (ADS)
Eckhardt, Jonathan; Kostenko, Aleksey
2014-08-01
We introduce a generalized isospectral problem for global conservative multi-peakon solutions of the Camassa-Holm equation. Utilizing the solution of the indefinite moment problem given by M. G. Krein and H. Langer, we show that the conservative Camassa-Holm equation is integrable by the inverse spectral transform in the multi-peakon case.
Competitive neural architecture for hardware solution to the assignment problem
NASA Technical Reports Server (NTRS)
Eberhardt, S. P.; Daud, T.; Kerns, D. A.; Brown, T. X.; Thakoor, A. P.
1991-01-01
The architecture for competitive assignment is described with attention given to the VLSI design and critical circuits fabricated in complementary metal-oxide semiconductor. The local application of association costs to processing units reduces the connectivity to the number of VLSI-compatible processing units. 'Hysteretic annealing' is discussed and when compared to mean-field annealing is found to enhance processing-unit gain and provide near-optimal solutions in about 150 microsec.
Transatlantic and European Videoconferencing: Many Problems, Some Solutions
NASA Astrophysics Data System (ADS)
Mount, R. P.; Galvez, P.
Transatlantic and European videoconferencing suffers from high tariffs for ISDN services and an Internet infrastructure that is normally too loaded to offer intelligible audio. New public domain packet-video software offers the prospect of acceptable conferencing over low but dedicated bandwidth. A partial solution for the US-CERN service will come with the installation of a new T1 link on which bandwidth will be reserved for videoconferencing.
Heats of immersion of titania powders in primer solutions
NASA Technical Reports Server (NTRS)
Siriwardane, R.; Wightman, J. P.
1983-01-01
The oxide layer present on titanium alloys can play an important role in determining the strength and durability of adhesive bonds. Here, three titania powders in different crystalline phases, rutile-R1, anatase-A1, and anatase-A2, are characterized by several techniques. These include microelectrophoresis, X-ray diffractometry, surface area pore volume analysis, X-ray photoelectron spectroscopy, and measurements of the heats of immersion. Of the three powders, R1 has the highest heat of immersion in water, while the interaction between water and A1 powder is low. Experimental data also suggest a specific preferential interaction of polyphenylquinoxaline with anatase.
A probabilistic solution of robust H∞ control problem with scaled matrices
NASA Astrophysics Data System (ADS)
Xie, R.; Gong, J. Y.
2016-07-01
This paper addresses the robust H∞ control problem with scaled matrices. It is difficult to find a global optimal solution for this non-convex optimisation problem. A probabilistic solution, which can achieve globally optimal robust performance within any pre-specified tolerance, is obtained by using the proposed method based on randomised algorithm. In the proposed method, the scaled H∞ control problem is divided into two parts: (1) assume the scaled matrices be random variables, the scaled H∞ control problem is converted to a convex optimisation problem for the fixed sample of the scaled matrix and a optimal solution corresponding to the fixed sample is obtained; (2) a probabilistic optimal solution is obtained by using the randomised algorithm based on a finite number N optimal solutions, which are obtained in part (1). The analysis shows that the worst case complexity of proposed method is a polynomial.
ERIC Educational Resources Information Center
Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie
2016-01-01
Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic…
Finite element solution of transient fluid-structure interaction problems
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.
1991-01-01
A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.
Structural qualia: a solution to the hard problem of consciousness
Loorits, Kristjan
2014-01-01
The hard problem of consciousness has been often claimed to be unsolvable by the methods of traditional empirical sciences. It has been argued that all the objects of empirical sciences can be fully analyzed in structural terms but that consciousness is (or has) something over and above its structure. However, modern neuroscience has introduced a theoretical framework in which also the apparently non-structural aspects of consciousness, namely the so called qualia or qualitative properties, can be analyzed in structural terms. That framework allows us to see qualia as something compositional with internal structures that fully determine their qualitative nature. Moreover, those internal structures can be identified which certain neural patterns. Thus consciousness as a whole can be seen as a complex neural pattern that misperceives some of its own highly complex structural properties as monadic and qualitative. Such neural pattern is analyzable in fully structural terms and thereby the hard problem is solved. PMID:24672510
Proper use of medical language: Main problems and solutions.
Aleixandre-Benavent, R; Valderrama Zurián, J C; Bueno-Cañigral, F J
2015-10-01
Medical language should be characterized by its precision, emotional neutrality and stability. The effective communication of results of scientific studies depends on compliance with current standards of drafting and style; texts with defects can hinder interest in the findings. In this study, we discuss some of the most common problems and errors in medical language, including the abuse of abbreviations and foreign words, the use of improper words, syntax errors and solecisms, the most common errors in titles and the abuse of capital letters and the gerund. Investigators have effective tools for dealing with these problems, such as quality texts, critical dictionaries of questions and difficulties with the Spanish language and various drafting and style manuals. PMID:25982421
MODEL 9975 SHIPPING PACKAGE FABRICATION PROBLEMS AND SOLUTIONS
May, C; Allen Smith, A
2008-05-07
The Model 9975 Shipping Package is the latest in a series (9965, 9968, etc.) of radioactive material shipping packages that have been the mainstay for shipping radioactive materials for several years. The double containment vessels are relatively simple designs using pipe and pipe cap in conjunction with the Chalfont closure to provide a leak-tight vessel. The fabrication appears simple in nature, but the history of fabrication tells us there are pitfalls in the different fabrication methods and sequences. This paper will review the problems that have arisen during fabrication and precautions that should be taken to meet specifications and tolerances. The problems and precautions can also be applied to the Models 9977 and 9978 Shipping Packages.
Beyond Λ CDM: Problems, solutions, and the road ahead
NASA Astrophysics Data System (ADS)
Bull, Philip; Akrami, Yashar; Adamek, Julian; Baker, Tessa; Bellini, Emilio; Beltrán Jiménez, Jose; Bentivegna, Eloisa; Camera, Stefano; Clesse, Sébastien; Davis, Jonathan H.; Di Dio, Enea; Enander, Jonas; Heavens, Alan; Heisenberg, Lavinia; Hu, Bin; Llinares, Claudio; Maartens, Roy; Mörtsell, Edvard; Nadathur, Seshadri; Noller, Johannes; Pasechnik, Roman; Pawlowski, Marcel S.; Pereira, Thiago S.; Quartin, Miguel; Ricciardone, Angelo; Riemer-Sørensen, Signe; Rinaldi, Massimiliano; Sakstein, Jeremy; Saltas, Ippocratis D.; Salzano, Vincenzo; Sawicki, Ignacy; Solomon, Adam R.; Spolyar, Douglas; Starkman, Glenn D.; Steer, Danièle; Tereno, Ismael; Verde, Licia; Villaescusa-Navarro, Francisco; von Strauss, Mikael; Winther, Hans A.
2016-06-01
Despite its continued observational successes, there is a persistent (and growing) interest in extending cosmology beyond the standard model, Λ CDM. This is motivated by a range of apparently serious theoretical issues, involving such questions as the cosmological constant problem, the particle nature of dark matter, the validity of general relativity on large scales, the existence of anomalies in the CMB and on small scales, and the predictivity and testability of the inflationary paradigm. In this paper, we summarize the current status of Λ CDM as a physical theory, and review investigations into possible alternatives along a number of different lines, with a particular focus on highlighting the most promising directions. While the fundamental problems are proving reluctant to yield, the study of alternative cosmologies has led to considerable progress, with much more to come if hopes about forthcoming high-precision observations and new theoretical ideas are fulfilled.
Optimal Parametric Discrete Event Control: Problem and Solution
Griffin, Christopher H
2008-01-01
We present a novel optimization problem for discrete event control, similar in spirit to the optimal parametric control problem common in statistical process control. In our problem, we assume a known finite state machine plant model $G$ defined over an event alphabet $\\Sigma$ so that the plant model language $L = \\LanM(G)$ is prefix closed. We further assume the existence of a \\textit{base control structure} $M_K$, which may be either a finite state machine or a deterministic pushdown machine. If $K = \\LanM(M_K)$, we assume $K$ is prefix closed and that $K \\subseteq L$. We associate each controllable transition of $M_K$ with a binary variable $X_1,\\dots,X_n$ indicating whether the transition is enabled or not. This leads to a function $M_K(X_1,\\dots,X_n)$, that returns a new control specification depending upon the values of $X_1,\\dots,X_n$. We exhibit a branch-and-bound algorithm to solve the optimization problem $\\min_{X_1,\\dots,X_n}\\max_{w \\in K} C(w)$ such that $M_K(X_1,\\dots,X_n) \\models \\Pi$ and $\\LanM(M_K(X_1,\\dots,X_n)) \\in \\Con(L)$. Here $\\Pi$ is a set of logical assertions on the structure of $M_K(X_1,\\dots,X_n)$, and $M_K(X_1,\\dots,X_n) \\models \\Pi$ indicates that $M_K(X_1,\\dots,X_n)$ satisfies the logical assertions; and, $\\Con(L)$ is the set of controllable sublanguages of $L$.
Solution of dynamic contact problems by implicit/explicit methods. Final report
Salveson, M.W.; Taylor, R.L.
1996-10-14
The solution of dynamic contact problems within an explicit finite element program such as the LLNL DYNA programs is addressed in the report. The approach is to represent the solution for the deformation of bodies using the explicit algorithm but to solve the contact part of the problem using an implicit approach. Thus, the contact conditions at the next solution state are considered when computing the acceleration state for each explicit time step.
Collaboration Results - Applying Technical Solutions To Environmental Remediation Problems
Boyd, G.; Fiore, J.; Walker, J.; DeRemer, C.; Wight, E.
2002-02-26
Within the Department of Energy's Office of Environmental Management (EM), the Office of Science and Technology (OST) identifies and develops innovative technologies that accelerate cleanup of high-priority environmental contamination problems and enable EM closure sites to meet closure schedules. OST manages an integrated research and development program that is essential to completing timely and cost-effective cleanup and stewardship of DOE sites. While innovative technologies can make significant contributions to the cleanup process, in some cases, EM has encountered unexpected barriers to their implementation. Technical obstacles are expected, but administrative challenges-such as regulatory, organizational, and stakeholder issues-must also be addressed. OST has found that collaborative needs identification and problem solving are essential components in overcoming these barriers. Collaboration helps EM meet its cleanup goals, close sites, and reduce the overall cost of cleanup at DOE sites nationwide. This paper presents examples of OST's collaboration efforts that expedite site closure and solve specific cleanup problems at EM sites.
Glass, Micheal W.; Hogan, Roy E., Jr.; Gartling, David K.
2010-03-01
The need for the engineering analysis of systems in which the transport of thermal energy occurs primarily through a conduction process is a common situation. For all but the simplest geometries and boundary conditions, analytic solutions to heat conduction problems are unavailable, thus forcing the analyst to call upon some type of approximate numerical procedure. A wide variety of numerical packages currently exist for such applications, ranging in sophistication from the large, general purpose, commercial codes, such as COMSOL, COSMOSWorks, ABAQUS and TSS to codes written by individuals for specific problem applications. The original purpose for developing the finite element code described here, COYOTE, was to bridge the gap between the complex commercial codes and the more simplistic, individual application programs. COYOTE was designed to treat most of the standard conduction problems of interest with a user-oriented input structure and format that was easily learned and remembered. Because of its architecture, the code has also proved useful for research in numerical algorithms and development of thermal analysis capabilities. This general philosophy has been retained in the current version of the program, COYOTE, Version 5.0, though the capabilities of the code have been significantly expanded. A major change in the code is its availability on parallel computer architectures and the increase in problem complexity and size that this implies. The present document describes the theoretical and numerical background for the COYOTE program. This volume is intended as a background document for the user's manual. Potential users of COYOTE are encouraged to become familiar with the present report and the simple example analyses reported in before using the program. The theoretical and numerical background for the finite element computer program, COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis of nonlinear heat conduction problems
Boundary-integral methods in elasticity and plasticity. [solutions of boundary value problems
NASA Technical Reports Server (NTRS)
Mendelson, A.
1973-01-01
Recently developed methods that use boundary-integral equations applied to elastic and elastoplastic boundary value problems are reviewed. Direct, indirect, and semidirect methods using potential functions, stress functions, and displacement functions are described. Examples of the use of these methods for torsion problems, plane problems, and three-dimensional problems are given. It is concluded that the boundary-integral methods represent a powerful tool for the solution of elastic and elastoplastic problems.
A Heat Vulnerability Index and Adaptation Solutions for Pittsburgh, Pennsylvania
NASA Astrophysics Data System (ADS)
Klima, K.; Abrahams, L.; Bradford, K.; Hegglin, M.
2015-12-01
With increasing evidence of global warming, many cities have focused attention on response plans to address their populations' vulnerabilities. Despite expected increased frequency and intensity of heat waves, the health impacts of such events in urban areas can be minimized with careful policy and economic investments. We focus on Pittsburgh, Pennsylvania and ask two questions. First, what are the top factors contributing to heat vulnerability and how do these characteristics manifest geospatially throughout Pittsburgh? Second, assuming the City wishes to deploy additional cooling centers, what placement will optimally address the vulnerability of the at risk populations? We use national census data, ArcGIS geospatial modeling, and statistical analysis to determine a range of heat vulnerability indices and optimal cooling center placement. We find that while different studies use different data and statistical calculations, all methods tested locate additional cooling centers at the confluence of the three rivers (Downtown), the northeast side of Pittsburgh (Shadyside/ Highland Park), and the southeast side of Pittsburgh (Squirrel Hill). This suggests that for Pittsburgh, a researcher could apply the same factor analysis procedure to compare datasets for different locations and times; factor analyses for heat vulnerability are more robust than previously thought.
Genetic solutions to infertility caused by heat stress
Technology Transfer Automated Retrieval System (TEKTRAN)
Reproductive function in mammals is very susceptible to disruption by heat stress. In lactating dairy cows, for example, pregnancy rates per insemination can be as low as 10-15% in the summer vs. 25-40% in cool weather. Reduced fertility in females is caused by a combination of 1) the negative cons...
A Heat Vulnerability Index and Adaptation Solutions for Pittsburgh, Pennsylvania.
Bradford, Kathryn; Abrahams, Leslie; Hegglin, Miriam; Klima, Kelly
2015-10-01
With increasing evidence of global warming, many cities have focused attention on response plans to address their populations' vulnerabilities. Despite expected increased frequency and intensity of heat waves, the health impacts of such events in urban areas can be minimized with careful policy and economic investments. We focus on Pittsburgh, Pennsylvania and ask two questions. First, what are the top factors contributing to heat vulnerability and how do these characteristics manifest geospatially throughout Pittsburgh? Second, assuming the City wishes to deploy additional cooling centers, what placement will optimally address the vulnerability of the at risk populations? We use national census data, ArcGIS geospatial modeling, and statistical analysis to determine a range of heat vulnerability indices and optimal cooling center placement. We find that while different studies use different data and statistical calculations, all methods tested locate additional cooling centers at the confluence of the three rivers (Downtown), the northeast side of Pittsburgh (Shadyside/Highland Park), and the southeast side of Pittsburgh (Squirrel Hill). This suggests that for Pittsburgh, a researcher could apply the same factor analysis procedure to compare data sets for different locations and times; factor analyses for heat vulnerability are more robust than previously thought. PMID:26333158
The ladder problem: Painlevé integrability and explicit solution
NASA Astrophysics Data System (ADS)
Andriopoulos, K.; Leach, P. G. L.; Nucci, M. C.
2003-11-01
We consider the n-dimensional ladder system, that is the homogeneous quadratic system of first-order differential equations of the form \\dot {x}_i = x_i\\sum_{j = 1} ^n a_{ij}x_j, i = 1,n , where (aij) = (i + 1 - j), i, j = 1, n, introduced by Imai and Hirata (2002 Preprint nlin.SI/0212007 v1 3). The ladder system is found to be integrable for all n in terms of the Painlevé analysis and its solution is explicitly given.
Future of primary healthcare education: current problems and potential solutions.
Lord, J
2003-10-01
This review examines the origins of primary care and the pressures currently faced in terms of patient expectation, regulation, accountability, and work force shortages. It recognises the appropriateness of adding to the burden in primary care further by the shift both of more services and more medical education from secondary care. Some conclusions are drawn concerning potential solutions including skill mix changes, centralisation of services, a change in attitudes to professional mistakes, increased protected development time, evidence based education, and academic, leadership, and feedback skills for general practitioners. Six recommendations are offered as a prescription for organisational and educational change. PMID:14612596
A new solution for a chronic problem; aqueous enteric coating.
Rafati, Hasan; Ghassempour, Alireza; Barzegar-Jalali, Mohammad
2006-11-01
In this research, we have reconsidered the current enteric coating techniques and offered a new solution using both theoretical and practical approaches. This approach is based on the fact that salt formation can solubilize the pH-sensitive polymers in water. However, having applied the polymer solution onto the dosage form's surface, the polymer should be converted to the nonionized form for delayed release action. Ammonium hydrogen carbonate (AHC) is used as a buffering agent with dual actions of salting in and desalting the polymer. Following the application of the coating medium onto the dosage form's surface and drying, AHC dissociate completely to ammonia, carbon dioxide, and water converting the polymer to its nonionized form. FT-IR studies on free film samples further confirmed the proposed mechanism. A range of pH-sensitive polymers and other ingredients in water have been successfully applied at the surface of a model ASA tablets, using pan coating technique. According to the SEM observation, the coating layer is very dense and rigid, despite the fact that, the coated amount of the polymers is quit small. The enteric tablets maintain their shapes in acid medium and passed the USP dissolution test for DR ASA tablets. PMID:16886197
Solutions of some problems in applied mathematics using MACSYMA
NASA Technical Reports Server (NTRS)
Punjabi, Alkesh; Lam, Maria
1987-01-01
Various Symbolic Manipulation Programs (SMP) were tested to check the functioning of their commands and suitability under various operating systems. Support systems for SMP were found to be relatively better than the one for MACSYMA. The graphics facilities for MACSYMA do not work as expected under the UNIX operating system. Not all commands for MACSYMA function as described in the manuals. Shape representation is a central issue in computer graphics and computer-aided design. Aside from appearance, there are other application dependent, desirable properties like continuity to certain order, symmetry, axis-independence, and variation-diminishing properties. Several shape representations are studied, which include the Osculatory Method, a Piecewise Cubic Polynomial Method using two different slope estimates, Piecewise Cubic Hermite Form, a method by Harry McLaughlin, and a Piecewise Bezier Method. They are applied to collected physical and chemical data. Relative merits and demerits of these methods are examined. Kinematics of a single link, non-dissipative robot arm is studied using MACSYMA. Lagranian is set-up and Lagrange's equations are derived. From there, Hamiltonian equations of motion are obtained. Equations suggest that bifurcation of solutions can occur, depending upon the value of a single parameter. Using the characteristic function W, the Hamilton-Jacobi equation is derived. It is shown that the H-J equation can be solved in closed form. Analytical solutions to the H-J equation are obtained.
On solutions of the mixed Dirichlet-Navier problem for the polyharmonic equation in exterior domains
NASA Astrophysics Data System (ADS)
Matevosyan, O. A.
2016-01-01
We study the unique solvability of the mixed Dirichlet-Navier problem for the polyharmonic equation in exterior domains under the assumption that a generalized solution of this problem has a bounded Dirichlet integral with weight | x| a . Depending on the value of the parameter a, we prove a uniqueness theorem or present exact formulas for the dimension of the solution space of the mixed Dirichlet-Navier problem in the exterior of a compact set.
Fast Combinatorial Algorithm for the Solution of Linearly Constrained Least Squares Problems
Van Benthem, Mark H.; Keenan, Michael R.
2008-11-11
A fast combinatorial algorithm can significantly reduce the computational burden when solving general equality and inequality constrained least squares problems with large numbers of observation vectors. The combinatorial algorithm provides a mathematically rigorous solution and operates at great speed by reorganizing the calculations to take advantage of the combinatorial nature of the problems to be solved. The combinatorial algorithm exploits the structure that exists in large-scale problems in order to minimize the number of arithmetic operations required to obtain a solution.
NASA Astrophysics Data System (ADS)
Ashyralyyev, Charyyar; Akyüz, Gulzipa
2016-08-01
In this study, we discuss well-posedness of Bitsadze-Samarskii type inverse elliptic problem with Dirichlet conditions. We establish abstract results on stability and coercive stability estimates for the solution of this inverse problem. Then, the abstract results are applied to three overdetermined problems for the multi-dimensional elliptic equation with different boundary conditions. Stability inequalities for solutions of these applications are obtained.
Enhancement of Pool Boiling Heat Transfer to Lithium Bromide Aqueous Solution
NASA Astrophysics Data System (ADS)
Furukawa, Masahiro; Kaji, Masuo; Suyama, Takayuki; Sekoguchi, Kotohiko
An experimental study on enhancement of nucleate pool boiling heat tranfer by placing a sponge metal close to a plain heated surface was conducted in order to improve the heat transfer performance of the high temperature generator of absorption chiller/heater. The sponge metal has three dimensional porous mesh framework like sponge. Boiling curves of water under the atmospheric pressure were compared with those of lithium bromide aqueous solution of mass concentration 55 to 58%. Heat transfer characteristics were improved by 2 to3 times both for water and lithium bromide aqueous solution when the sponge metal was placed on the heated surface with and without cleareance. Three kinds of sponge metals were used for lithium bromide aqueous solution under the reduced pressure (24 kPa). At lower heat fluxes,#6 sponge metal which has the finest mesh and the lowest porosity shows excellent results. At high heat fluxes, however,it causes deterioration of heat transfer. Over the wide range of heat fluxes,# 4 sponge metal was found to be most suitable and the optimal clearence was determined as 0.5 mm. The sponge metal is of good practical use as a device to enhance the boiling, since no special manufacturing is required for placing it on the heated surface.
A Solution to the Cosmological Problem of Relativity Theory
NASA Astrophysics Data System (ADS)
Janzen, Daryl
After nearly a century of scientific investigation, the standard cosmological theory continues to have many unexplained problems, which invariably amount to one troubling statement: we know of no good reason for the Universe to appear just as it does, which is described extremely well by the flat ΛCDM cosmological model. Therefore, the problem is not that the physical model is at all incompatible with observation, but that, as our empirical results have been increasingly constrained, it has also become increasingly obvious that the Universe does not meet our prior expectations; e.g., the evidence suggests that the Universe began from a singularity of the theory that is used to describe it, and with space expanding thereafter in cosmic time, even though relativity theory is thought to imply that no such objective foliation of the spacetime continuum should reasonably exist. Furthermore, the expanding Universe is well-described as being flat, isotropic, and homogeneous, even though its shape and expansion rate are everywhere supposed to be the products of local energy-content---and the necessary prior uniform distribution, of just the right amount of matter for all three of these conditions to be met, could not have been causally determined to begin with. And finally, the empirically constrained density parameters now indicate that all of the matter that we directly observe should make up only four percent of the total, so that the dominant forms of energy in the Universe should be dark energy in the form of a cosmological constant, Λ, and cold dark matter (CDM). The most common ways of attacking these problems have been: to apply modifications to the basic physical model, e.g. as in the inflation and quintessence theories which strive to resolve the horizon, flatness, and cosmological constant problems; to use particle physics techniques in order to formulate the description of dark matter candidates that might fit with observations; and, in the case of the Big
Particulate problem solutions for rod pumped producing wells
Williams, S.J.
1995-12-31
Sand and other fluid entrained particulates can cause substantial operational problems for rod pumped producing wells. These problems take the form of down-hole pump wear, plunger sticking, and/or catastrophic breakage of pump components. A six year study of 600+ pump investigations shows that problems with particulates account for a substantial number of the total barrel and plunger failures. Many of these failures could have been avoided through the proper application of API and special pump designs as well as certain choices of pump variables. These pump variables and designs will be addressed along with operating parameters. How hard is sand? How large is it? Should plunger and barrel choices take these variables into account? Also, metal plungers must {open_quotes}slip{close_quotes} fluid for proper lubrication. Too much slippage leads to pump inefficiencies. However, down-hole pump efficiencies based on slippage need to be balanced against pump longevity due to proper selection for particulate production. Some time-proven rules of thumb can be applied to make these choices, and an included chart will make plunger slippage calculations simple and straightforward. Scale which sticks to pump surfaces dictates the choice of a different style down-hole pump. A straight-forward modification of an RH style API pump has proved successful in these conditions. Fluid and particulate production with and without attendant gas production requires a different approach to down-hole pump selection. Several successful older pump designs as well as some recently proven new designs will be described. A test program has been completed and actual applications have shown that an API Tubing Pump derivative can pump large volumes of particulate laden fluid without characteristic sticking of the plunger.
Regulatory Solutions to the Problem of High Generic Drug Costs
Luo, Jing; Sarpatwari, Ameet; Kesselheim, Aaron S.
2015-01-01
Recent reports have highlighted dramatic price increases for several older generic drugs, including a number of essential products used to treat deadly infectious diseases. Although most of these medicines have been widely available at reasonable prices for decades, some manufacturers have seized on unique features of the pharmaceutical marketplace to seek substantial profits. In this Perspective, we examine limitations in current price regulation among public and private payors and consider several reforms that could address the problem of expensive generic drugs through improved competition. PMID:26693494
A broken E6 solution to the solar neutrino problem
NASA Astrophysics Data System (ADS)
Ross, G. G.; Segrè, G. C.
1987-10-01
Broken E6 models, as suggested by superstrings, may have stable massive neutrinos in matter multiplets. These can be candidates for the dark matter of the universe. If we choose an additional Z' in the E6 gauge multiplet to couple to these neutrinos, but not ordinary leptons, we may also solve the solar neutrino problem, without violating known experimental bounds. The Z' must have a mass comparable to the ordinary Z mass. On sabbatical leave from Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA.
Problem Definition and Solution Concept for En Route Constrained Airspace Problems
NASA Technical Reports Server (NTRS)
Green, Steven; Vivona, Robert
2000-01-01
NASA's AATT Program is investigating potential ground-based decision support tool (DST) development for en route controllers and managers. NASA's previous work in en route DST development has focused on Transition airspace, where aircraft are impacted by constraints associated with the transition of aircraft from en route to terminal airspace. This paper investigates the problems associated with aircraft in non-transitional en route airspace, termed Constrained Airspace. A literature search was performed to catalog previously identified constrained airspace problems. The results of this search were investigated with industry representatives to validate these problems were significant in constrained airspace. Three general problem areas were identified. The first problem area involves negative impacts caused by a loss of airspace (e.g., activation of Special Use Airspace (SUA), weather cell formation, and overloaded sectors). The second problem area is the lack of identifying and taking advantage of gained airspace (e.g., SUA deactivation, weather dissipation, and sector loading reductions). The third problem area is unforeseen negative impacts caused by the acceptance of user routing requests (e.g., a route change into an area of congestion that negated the users intended benefit). Based upon the problems identified, an operational concept was developed for a DST to help handle these problems efficiently. The goal is to strategically identify constrained airspace problems and to provide functionality to support ARTCC TMUs in resolving the identified impacts. The capability lends itself well to TMU and Airline Operations Center (AOC) collaboration.
NASA Astrophysics Data System (ADS)
Ndlovu, Partner; Moitsheki, Rasselo
2013-08-01
Some new conservation laws for the transient heat conduction problem for heat transfer in a straight fin are constructed. The thermal conductivity is given by a power law in one case and by a linear function of temperature in the other. Conservation laws are derived using the direct method when thermal conductivity is given by the power law and the multiplier method when thermal conductivity is given as a linear function of temperature. The heat transfer coefficient is assumed to be given by the power law function of temperature. Furthermore, we determine the Lie point symmetries associated with the conserved vectors for the model with power law thermal conductivity.
On uniqueness of quasi-regular solutions to Protter problem for Keldish type equations
NASA Astrophysics Data System (ADS)
Hristov, T. D.; Popivanov, N. I.; Schneider, M.
2013-12-01
Some three-dimensional boundary value problems for mixed type equations of second kind are studied. Such type problems, but for mixed type equations of first kind are stated by M. Protter in the fifties. For hyperbolic-elliptic equations they are multidimensional analogue of the classical two-dimensional Morawetz-Guderley transonic problem. For hyperbolic and weakly hyperbolic equations the Protter problems are 3D analogues of Darboux or Cauchy-Goursat plane problems. In this case, in contrast of well-posedness of 2D problems, the new problems are strongly ill-posed. In this paper are given similar statement of Protter problems for equations of Keldish type, involving lower order terms. It is shown that the new problems are also ill-posed. A notion of quasi-regular solution is given and sufficient conditions for uniqueness of such solutions are found. The dependence of lower order terms is also studied.
On the solution of a lubrication problem with particulate solids
NASA Technical Reports Server (NTRS)
Dai, F.; Khonsari, M. M.
1991-01-01
The lubrication characteristic of a fluid with solid particles is studied using the continuum theory of mixtures. The governing equations are formulated and appropriate boundary conditions are introduced for an arbitrary-shaped lubricant film thickness. As a special case, closed-form analytical perturbation solutions for pressure and shear stress are obtained for a mixture of a conventional oil and solid particles with small values of solid-volume fraction sheared in the clearance space of an infinitely long slider bearing. It is found that when compared with a pure fluid, the mixture of the fluid and solid generates a higher pressure and therefore a higher load-carrying capacity with the added advantage of a reduction in the coefficient of friction.
A solution to the problem of separation in logistic regression.
Heinze, Georg; Schemper, Michael
2002-08-30
The phenomenon of separation or monotone likelihood is observed in the fitting process of a logistic model if the likelihood converges while at least one parameter estimate diverges to +/- infinity. Separation primarily occurs in small samples with several unbalanced and highly predictive risk factors. A procedure by Firth originally developed to reduce the bias of maximum likelihood estimates is shown to provide an ideal solution to separation. It produces finite parameter estimates by means of penalized maximum likelihood estimation. Corresponding Wald tests and confidence intervals are available but it is shown that penalized likelihood ratio tests and profile penalized likelihood confidence intervals are often preferable. The clear advantage of the procedure over previous options of analysis is impressively demonstrated by the statistical analysis of two cancer studies. PMID:12210625
Global existence of weak solution to the heat and moisture transport system in fibrous porous media
NASA Astrophysics Data System (ADS)
Li, Buyang; Sun, Weiwei; Wang, Yi
This paper is concerned with theoretical analysis of a heat and moisture transfer model arising from textile industries, which is described by a degenerate and strongly coupled parabolic system. We prove the global (in time) existence of weak solution by constructing an approximate solution with some standard smoothing. The proof is based on the physical nature of gas convection, in which the heat (energy) flux in convection is determined by the mass (vapor) flux in convection.
Solvation thermodynamics and heat capacity of polar and charged solutes in water
Sedlmeier, Felix; Netz, Roland R.
2013-03-21
The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F{sup -} and a Na{sup +} ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na{sup +} and F{sup -} ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity {Delta}C{sub p} stays positive and even increases slightly upon charging the Na{sup +} ion, it decreases upon charging the F{sup -} ion and becomes negative beyond an ion charge of q=-0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.
Institutional Solutions to the ``Two-Body Problem"
NASA Astrophysics Data System (ADS)
Knezek, P.
2005-05-01
The Committee on the Status of Women (CSWA), in conjunction with the Employment Committee (EC), will hold a special session that will focus on institutional approaches to solving the ``two-body problem". In step with the national employment trend, for the majority of astronomers with partners, those partners work outside the home. This is particularly true for female astronomers, who generally are married to professionals (and often to other astronomers). Academic and professional institutions that employ the majority of astronomers are now beginning to recognize the importance of addressing what has come to be known as the ``two-body" problem in order to attract and retain the best scientists. A few of those institutions are making pioneering efforts to create pro-active approaches to the issue of dual-career couples. The special session will feature two or three speakers involved with the administration at institutions with pro-active policies. This special session will be coupled with the normal afternoon CSWA session, which will focus on the other side of the issue - how dual-career couples have successfully approached the issue at institutions that do NOT have proactive policies.
Solution to the Sigma Problem of Pulsar Wind Nebulae
NASA Astrophysics Data System (ADS)
Porth, Oliver; Komissarov, Serguei S.; Keppens, Rony
2014-03-01
Pulsar wind nebulae (PWN) provide a unique test-bed for the study of highly relativistic processes right at our astronomical doorstep. In this contribution we will show results from the first 3D RMHD simulations of PWN. Of key interest to our study is the long standing "sigma-problem" that challenges MHD models of Pulsars and their nebulae now for 3 decades. Earlier 2D MHD models were very successful in reproducing the morphology of the inner Crab nebula showing a jet, torus, concentric wisps and a variable knot. However, these models are limited to a purely toroidal field geometry which leads to an exaggerated compression of the termination shock and polar jet — in contrast to the observations. In three dimensions, the toroidal field structure is susceptible to current driven instabilities; hence kink instability and magnetic dissipation govern the dynamics of the nebula flow. This leads to a resolution of the sigma-problem once also the pulsar's obliqueness (striped wind) is taken into account. In addition, we present polarized synchrotron maps constructed from the 3D simulations, showing the wealth of morphological features reproduced in 2D is preserved in the 3D case.
Mishra, Subhash C. . E-mail: scm_iitg@yahoo.com; Roy, Hillol K.
2007-04-10
The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable.
ERIC Educational Resources Information Center
Bremigan, Elizabeth George
2005-01-01
In the study reported here, I examined the diagrams that mathematically capable high school students produced in solving applied calculus problems in which a diagram was provided in the problem statement. Analyses of the diagrams contained in written solutions to selected free-response problems from the 1996 BC level Advanced Placement Calculus…
NASA Technical Reports Server (NTRS)
Gossard, Myron L
1952-01-01
An iterative transformation procedure suggested by H. Wielandt for numerical solution of flutter and similar characteristic-value problems is presented. Application of this procedure to ordinary natural-vibration problems and to flutter problems is shown by numerical examples. Comparisons of computed results with experimental values and with results obtained by other methods of analysis are made.
Higher order sensitivity of solutions to convex programming problems without strict complementarity
NASA Technical Reports Server (NTRS)
Malanowski, Kazimierz
1988-01-01
Consideration is given to a family of convex programming problems which depend on a vector parameter. It is shown that the solutions of the problems and the associated Lagrange multipliers are arbitrarily many times directionally differentiable functions of the parameter, provided that the data of the problems are sufficiently regular. The characterizations of the respective derivatives are given.
Using Predictor-Corrector Methods in Numerical Solutions to Mathematical Problems of Motion
ERIC Educational Resources Information Center
Lewis, Jerome
2005-01-01
In this paper, the author looks at some classic problems in mathematics that involve motion in the plane. Many case problems like these are difficult and beyond the mathematical skills of most undergraduates, but computational approaches often require less insight into the subtleties of the problems and can be used to obtain reliable solutions.…
On relative periodic solutions of the planar general three-body problem
NASA Technical Reports Server (NTRS)
Broucke, R.
1975-01-01
We describe two relatively simple reductions to order 6 for the planar general three-body problem. We also show that this reduction leads to the distinction between two types of periodic solutions: absolute or relative periodic solutions. An algorithm for obtaining relative periodic solutions using heliocentric coordinates is then described. It is concluded from the periodicity conditions that relative periodic solutions must form families with a single parameter. Finally, two such families have been obtained numerically and are described in some detail.
On solutions of mixed boundary-value problems for the elasticity system in unbounded domains
NASA Astrophysics Data System (ADS)
Matevossian, H. A.
2003-10-01
We study the properties of generalized solutions of mixed boundary-value problems for the linear system of elasticity theory in the exterior of a compact set and in a half-space under the assumption that the energy integral with weight \\vert x\\vert^a is finite for such solutions. Depending on the value of the parameter a, a uniqueness criterion is established for these solutions, and exact formulae are obtained for the dimension of the space of solutions.
Finite element formulation for transient heat treat problems
NASA Technical Reports Server (NTRS)
Mullen, R. L.; Hendricks, R. C.
1983-01-01
The macrothermomechanical behavior of materials subjected to rapid thermal or mechanical loading such as occurs in most heat treatments is described. The equations are developed for Lagrangian, Eulerian, and intermediary kinematic descriptions and are independent of the constitutive laws and the equation of state; they can be solved numerically for a specified material and boundary conditions. The coupled transport effects between dissipation and energy are included. The conventional linearized stability approach indicates the numerical procedure to be stable, with certain restriction on the time step size.
Heat and mass transfer at adiabatic evaporation of binary zeotropic solutions
NASA Astrophysics Data System (ADS)
Makarov, M. S.; Makarova, S. N.
2016-01-01
Results of numerical simulation of heat and mass transfer in a laminar flow of three-component gas at adiabatic evaporation of binary solutions from a flat plate are presented. The studies were carried out for the perfect solution of ethanol/methanol and zeotrope solutions of water/acetone, benzene/acetone, and ethanol/acetone. The liquid-vapor equilibrium is described by the Raoult law for the ideal solution and Carlson-Colburn model for real solutions. The effect of gas temperature and liquid composition on the heat and diffusion flows, and temperature of vapor-gas mixture at the interface is analyzed. The formula for calculating the temperature of the evaporation surface for the binary liquid mixtures using the similarity of heat and mass transfer was proposed. Data of numerical simulations are in a good agreement with the results of calculations based on the proposed dependence for all examined liquid mixtures in the considered range of temperatures and pressures.
Twin solution calorimeter determines heats of formation of alloys at high temperatures
NASA Technical Reports Server (NTRS)
Darby, J. B., Jr.; Kleb, R.; Kleppa, O. J.
1968-01-01
Calvert-type, twin liquid metal solution calorimeter determines the heats of formation of transition metal alloys at high temperatures. The twin differential calorimeter measures the small heat effects generated over extended periods of time, has maximum operating temperature of 1073 degrees K and an automatic data recording system.
Fast algorithm for the solution of large-scale non-negativity constrained least squares problems.
Van Benthem, Mark Hilary; Keenan, Michael Robert
2004-06-01
Algorithms for multivariate image analysis and other large-scale applications of multivariate curve resolution (MCR) typically employ constrained alternating least squares (ALS) procedures in their solution. The solution to a least squares problem under general linear equality and inequality constraints can be reduced to the solution of a non-negativity-constrained least squares (NNLS) problem. Thus the efficiency of the solution to any constrained least square problem rests heavily on the underlying NNLS algorithm. We present a new NNLS solution algorithm that is appropriate to large-scale MCR and other ALS applications. Our new algorithm rearranges the calculations in the standard active set NNLS method on the basis of combinatorial reasoning. This rearrangement serves to reduce substantially the computational burden required for NNLS problems having large numbers of observation vectors.
Behavior of the formal solution to a mixed problem for the wave equation
NASA Astrophysics Data System (ADS)
Khromov, A. P.
2016-02-01
The behavior of the formal solution, obtained by the Fourier method, to a mixed problem for the wave equation with arbitrary two-point boundary conditions and the initial condition φ(x) (for zero initial velocity) with weaker requirements than those for the classical solution is analyzed. An approach based on the Cauchy-Poincare technique, consisting in the contour integration of the resolvent of the operator generated by the corresponding spectral problem, is used. Conditions giving the solution to the mixed problem when the wave equation is satisfied only almost everywhere are found. When φ(x) is an arbitrary function from L 2[0, 1], the formal solution converges almost everywhere and is a generalized solution to the mixed problem.
Solution of the Traffic Jam Problem through Fuzzy Applications
NASA Astrophysics Data System (ADS)
Fernandez, Shery
2010-11-01
The major hurdle of a city planning council is to handle the traffic jam problem. The number of vehicles on roads increases day by day. Also the number of vehicles is directly proportional to the width of the road (including that of parallel roads). But it is not always possible to make roads or to increase width of the road corresponding to the increase in the number of vehicles. Also we cannot tell a person not to buy a vehicle. So trying to minimise the traffic jam is the only possible way to overcome this hurdle. Here we try to develop a method to avoid traffic jam through a mathematical approach (through fuzzy applications). This method helps to find a suitable route from an origin to a destination with lesser time than other routes.
Solutions to problems of weathering in Antarctic eucrites
NASA Technical Reports Server (NTRS)
Strait, Melissa M.
1990-01-01
Neutron activation analysis was performed for major and trace elements on a suite of eucrites from both Antarctic and non-Antarctic sources. The chemistry was examined to see if there was an easy way to distinguish Antarctic eucrites that had been disturbed in their trace elements systematics from those that had normal abundances relative to non-Antarctic eucrites. There was no simple correlation found, and identifying the disturbed meteorites still remains a problem. In addition, a set of mineral separates from an eucrite were analyzed. The results showed no abnormalities in the chemistry and provides a possible way to use Antarctic eucrites that were disturbed in modelling of the eucrite parent body.
[Caries and fluorine: role of water factor, problems and solutions].
Rakhmanin, Iu A; Kir'ianova, L F; Mikhaĭlova, R I; Sevost'ianova, E M
2001-01-01
The epidemiological studies of the severity and spread of caries of deciduous and permanent teeth in Moscow schoolchildren (n = > 20,000) aged 7-17 years in relation to the content of fluoride in the drinking water, to the use of fluorine-containing tablets and varnishes have provided evidence for the high efficiency of drinking water fluorination for the primary prevention of caries as compared with other preventive alternatives. Based on sanitary studies, two main lines are now under way in solving the problem connected with low dietary fluoride intake: the introduction of routine water-purifying fluorine generators (based on a new technology of fluorination of limited water volumes for drinking and cooking) and the setting-up of plants manufacturing bottled drinking waters containing the optimum or higher fluorine levels for provision of different population groups, primarily children and pregnant women in particular. PMID:11517875
Solution to the Problems of the Sustainable Development Management
NASA Astrophysics Data System (ADS)
Rusko, Miroslav; Procházková, Dana
2011-01-01
The paper shows that environment is one of the basic public assets of a human system, and it must be therefore specially protected. According to our present knowledge, the sustainability is necessary for all human systems and it is necessary to invoke the sustainable development principles in all human system assets. Sustainable development is understood as a development that does not erode ecological, social or politic systems on which it depends, but it explicitly approves ecological limitation under the economic activity frame and it has full comprehension for support of human needs. The paper summarises the conditions for sustainable development, tools, methods and techniques to solve the environmental problems and the tasks of executive governance in the environmental segment.
Global asymptotics of solutions to the Cauchy problem for the damped wave equation with absorption
NASA Astrophysics Data System (ADS)
Ikehata, Ryo; Nishihara, Kenji; Zhao, Huijiang
We consider the Cauchy problem for the damped wave equation with absorption u-Δu+u+|u=0, (t,x)∈R×R. The behavior of u as t→∞ is expected to be same as that for the corresponding heat equation ϕ-Δϕ+|ϕ=0, (t,x)∈R×R. In the subcritical case 1<ρ<ρ(N):=1+2/N there exists a similarity solution w(t,x) with the form tf(x/√{t} ) depending on b=lim|f(|x|)⩾0. Our first aim is to show the decay rates (‖u(t)‖,‖u(t)‖,‖∇u(t)‖)=O(t,t,t) provided that the initial data without initial data size restriction spatially decays with reasonable polynomial order. The decay rates (∗∗) are sharp in the sense that they are same as those of the similarity solution. The second aim is to show that the Gauss kernel is the asymptotic profile in the supercritical case, which has been shown in case of one-dimensional space by Hayashi, Kaikina and Naumkin [N. Hayashi, E.I. Kaikina, P.I. Naumkin, Asymptotics for nonlinear damped wave equations with large initial data, preprint, 2004]. We show this assertion in two- and three-dimensional space. To prove our results, both the weighted L-energy method and the explicit formula of solutions will be employed. The weight is an improved one originally developed in [Y. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].
Helical magnetohydrodynamic turbulence and the coronal heating problem
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Dahlburg, J. P.; Mariska, J. T.
1988-01-01
Numerical simulations are used to investigate the relaxation of an unconfined, helically turbulent, fully three-dimensional magnetofluid, with conditions similar to those which are thought to result in the heating of the solar corona. In these simulations, the system evolves through a succession of force free states. After a relatively quiescent period of Ohmic decay, a phase of accelerated magnetic energy dissipation occurs. Some magnetic energy is transformed into kinetic energy, and the magnitude of entrophy created is a nontrival fraction of the mean square electric current. Concentrated vorticity structures are seen to play almost as important a role as electric current sheets in the heating process. Coincident with this accelerated dissipation process, a reorganization of the magnetic fields occurs, with transfer of magnetic energy to both shorter and longer wavelength modes than are initially present. The ratio of the magnetic field to the electric current density, alpha does not in general tend to assume a constant value in the force free regions during the evolution of the magnetofluid.
First-order corrections to approximate solutions to two-point boundary-condition problems
NASA Technical Reports Server (NTRS)
Andrus, J. F.; Greenleaf, W. G.
1973-01-01
A method, applicable to real time guidance, is developed for accurate solution to exo-atmospheric space flight optimization problems. In principle the method is applicable to many other two-point boundary-condition (TPBC) problems. The first step of the method is the iterative solution (using a shooting method) of a TPBC problem with differential equations simplified so that they may be solved analytically by means of a single closed-form solution over each stage of the flight. The second step is the addition of a closed-form correction to the solution to the TPBC problem obtained in the first step. The correction accounts (to first-order accuracy) for the errors due to the aforementioned simplifications. Numerical results are given for several orbital injection problems.
Bacteriocins: Novel Solutions to Age Old Spore-Related Problems?
Egan, Kevin; Field, Des; Rea, Mary C; Ross, R Paul; Hill, Colin; Cotter, Paul D
2016-01-01
Bacteriocins are ribosomally synthesized antimicrobial peptides produced by bacteria, which have the ability to kill or inhibit other bacteria. Many bacteriocins are produced by food grade lactic acid bacteria (LAB). Indeed, the prototypic bacteriocin, nisin, is produced by Lactococcus lactis, and is licensed in over 50 countries. With consumers becoming more concerned about the levels of chemical preservatives present in food, bacteriocins offer an alternative, more natural approach, while ensuring both food safety and product shelf life. Bacteriocins also show additive/synergistic effects when used in combination with other treatments, such as heating, high pressure, organic compounds, and as part of food packaging. These features are particularly attractive from the perspective of controlling sporeforming bacteria. Bacterial spores are common contaminants of food products, and their outgrowth may cause food spoilage or food-borne illness. They are of particular concern to the food industry due to their thermal and chemical resistance in their dormant state. However, when spores germinate they lose the majority of their resistance traits, making them susceptible to a variety of food processing treatments. Bacteriocins represent one potential treatment as they may inhibit spores in the post-germination/outgrowth phase of the spore cycle. Spore eradication and control in food is critical, as they are able to spoil and in certain cases compromise the safety of food by producing dangerous toxins. Thus, understanding the mechanisms by which bacteriocins exert their sporostatic/sporicidal activity against bacterial spores will ultimately facilitate their optimal use in food. This review will focus on the use of bacteriocins alone, or in combination with other innovative processing methods to control spores in food, the current knowledge and gaps therein with regard to bacteriocin-spore interactions and discuss future research approaches to enable spores to be more
Problems Related to Computer Ethics: Origins of the Problems and Suggested Solutions
ERIC Educational Resources Information Center
Kuzu, Abdullah
2009-01-01
Increasing use of information and communication technologies (ICTs) help individuals to solve several everyday problems, which used to be harder, more complicated and time consuming. Even though ICTs provide individuals with many advantages, they might also serve as grounds for several societal and ethical problems which vary in accordance with…
A sensor array is the solution to the CBRNE problem
NASA Astrophysics Data System (ADS)
Swaby, James A.
2004-11-01
Chemical/Biological/Radiological/Nuclear/Explosives (CBRNE) is a threat to all forces that deploy to any part of the globe. Lightweight expeditionary forces are especially vulnerable because they operate with minimum force structure in or near enemy forces and may become indirect targets due to the proximity of opposing forces. There is currently no integrated tactical, agile CBRNE detect-to-warn and detect-to-treat detection system suitable for lightweight expeditionary forces. The current solutions are often outside the deployment and support constraints of expeditionary forces. Expeditionary forces, typically, require a 30-day capability without re-supply and must maximize resources. Situational awareness is limited with little or no automation. Due to the limitations in existing detectors, no detector has been found to be the magic bullet for all types of agents. An array of sensors that are redundant and overlap the capabilities of each and the limitations of each technology, on the other hand, would provide a level of security that is progressively more acceptable to the warfighter. Initially, the array will be composed of integrated commercial-off-the-shelf (COTS) and government-off-the-shelf (GOTS) CBRNE samplers, identification devices, tamper sensors, and communications and alert equipment. The sensor array will plug-and-play new technologies as they become available.
Author identities an interoperability problem solved by a collaborative solution
NASA Astrophysics Data System (ADS)
Fleischer, D.; Czerniak, A.; Schirnick, C.
2012-12-01
The identity of authors and data providers is crucial for personalized interoperability. The marketplace of available identifiers is packed and the right choice is getting more and more complicated. Even though there are more then 15 different systems available there are still some under development and proposed to come up by the end of 2012 ('PubMed Central Author ID' and ORCID). Data Management on a scale beyond the size of a single research institute but on the scale of a scientific site including a university with student education program needs to tackle this problem and so did the Kiel Data Management an Infrastructure. The main problem with the identities of researchers is the quite high frequency changes in positions during a scientist life. The required system needed to be a system that already contained the potential of preregistered people with their scientific publications from other countries, institutions and organizations. Scanning the author ID marketplace brought up, that there us a high risk of additional workload to the researcher itself or the administration due to the fact that individuals need to register an ID for themselves or the chosen register is not yet big enough to simply find the right entry. On the other hand libraries deal with authors and their publications now for centuries and they have high quality catalogs with person identities already available. Millions of records internationally mapped are available by collaboration with libraries and can be used in exactly the same scope. The international collaboration between libraries (VIAF) provides a mapping between libraries from the US, CA, UK, FR, GER and many more. The international library author identification system made it possible to actually reach at the first matching a success of 60% of all scientists. The additional advantage is that librarians can finalize the Identity system in a kind of background process. The Kiel Data Management Infrastructure initiated a web service
Long-term solution to the imagery bandwidth problem
NASA Astrophysics Data System (ADS)
Kent, Dennis C.
1996-11-01
There are numerous technological challenges in the Tactical Reconnaissance (Tac Recce) arena as the digital imagery era dawns. Foremost among them are the problems of imagery transmission bandwidth and the storage of the collected imagery. In this paper I seek to address these problems in an interrelated manner. I do not propose any new technological innovation, but rather a fundamental change in the philosophy of the collection, transmission, and storage of tactical imagery. The core of the approach requires that the area being imaged has already been imaged before (old imagery). This is reasonable given satellite, long range, UAV, and tactical imagery collection systems presently planned for, anticipated data collection rates, and how hot spots are repeatedly imaged. In addition, the Defense Airborne Reconnaissance Office (DARO) expects to be imaging tens of thousands of square kilometers each day within the next decade. When new tasking to collect imaging is received, imagery collected before by some imagery collection system must be taken with the aircraft (A/C) or person sent out to collect new imagery. As the new imagery is collected, the old and new imagery of the same area would be automatically registered. The old imagery can be pre-scaled, pre-warped, pre-rotated, etc., in order to maximize the efficiency of this process. The registered images can be spatially and spectrally thresholded in order to isolate significant deltas. Automatic target cueing (ATC)/automatic target recognition (ATR) could be used on both images for comparison to further isolate new objects of interest. Segmentation techniques could then be used to extract objects or regions of interest from the new image and only these objects or regions would be transmitted to the ground, a relay aircraft, or a satellite. Once at the ground station or long-term storage site, the new information could be inserted into the original image, thus minimizing the amount of storage space required as areas
NASA Astrophysics Data System (ADS)
Rebello, Carina M.
This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.
Light Particle Solution to the Cosmic Lithium Problem.
Goudelis, Andreas; Pospelov, Maxim; Pradler, Josef
2016-05-27
We point out that the cosmological abundance of ^{7}Li can be reduced down to observed values if during its formation, big bang nucleosynthesis is modified by the presence of light electrically neutral particles X that have substantial interactions with nucleons. We find that the lithium problem can be solved without affecting the precisely measured abundances of deuterium and helium if the following conditions are satisfied: the mass (energy) and lifetimes of such particles are bounded by 1.6 MeV≤m_{X}(E_{X})≤20 MeV and few100s≲τ_{X}≲10^{4} s, and the abundance times the absorption cross section by either deuterium or ^{7}Be are comparable to the Hubble rate, n_{X}σ_{abs}v∼H, at the time of ^{7}Be formation. We include X-initiated reactions into the primordial nucleosynthesis framework, observe that it leads to a substantial reduction of the freeze-out abundances of ^{7}Li+^{7}Be, and find specific model realizations of this scenario. Concentrating on the axionlike-particle case, X=a, we show that all these conditions can be satisfied if the coupling to d quarks is in the range of f_{d}^{-1}∼TeV^{-1}, which can be probed at intensity frontier experiments. PMID:27284644
Light Particle Solution to the Cosmic Lithium Problem
NASA Astrophysics Data System (ADS)
Goudelis, Andreas; Pospelov, Maxim; Pradler, Josef
2016-05-01
We point out that the cosmological abundance of 7Li can be reduced down to observed values if during its formation, big bang nucleosynthesis is modified by the presence of light electrically neutral particles X that have substantial interactions with nucleons. We find that the lithium problem can be solved without affecting the precisely measured abundances of deuterium and helium if the following conditions are satisfied: the mass (energy) and lifetimes of such particles are bounded by 1.6 MeV ≤mX(EX)≤20 MeV and few 100 s ≲τX≲104 s , and the abundance times the absorption cross section by either deuterium or 7Be are comparable to the Hubble rate, nXσabsv ˜H , at the time of 7Be formation. We include X -initiated reactions into the primordial nucleosynthesis framework, observe that it leads to a substantial reduction of the freeze-out abundances of 7Li + 7Be, and find specific model realizations of this scenario. Concentrating on the axionlike-particle case, X =a , we show that all these conditions can be satisfied if the coupling to d quarks is in the range of fd-1˜TeV-1 , which can be probed at intensity frontier experiments.
Toward the solution of the inverse problem in neutron reflectometry
Haan, V.O. de; Well, A.A. van; Sacks, P.E.; Adenwalla, S.; Felcher, G.P.
1995-08-01
The authors show that the chemical depth profile of a film of unknown structure can be retrieved unambiguously from neutron reflection data by adding to the system a known magnetic layer. Three independent reflectivities are obtained by taking measurements with the sample magnetized in a magnetic field perpendicular to the surface and subsequently parallel to it, and using in the latter geometry neutrons polarized either in the direction of the field or opposite to it. The procedure consists of two steps. First, from the three reflectivities both the real and imaginary parts of the reflection coefficient of the unknown film are extracted within the framework of the rigorous dynamical theory. Second, the neutron scattering-length density (and consequently the chemical depth profile) is obtained by a suitable numerical technique for the conventional Schroedinger inverse scattering problem. Computer experiments were conducted for selected cases: starting from the profiles the reflectivities were calculated in a limited range of q and then the original profiles were successfully recovered. The influence on the accuracy of the recovered depth profile of the counting statistics and the cutoffs at low and high q are discussed.
Mechanical solution for a mechanical problem: Tennis elbow
Rothschild, Bruce
2013-01-01
Lateral epicondylitis is a relatively common clinical problem, easily recognized on palpation of the lateral protuberance on the elbow. Despite the “itis” suffix, it is not an inflammatory process. Therapeutic approaches with topical non-steroidal anti-inflammatory drugs, corticosteroids and anesthetics have limited benefit, as would be expected if inflammation is not involved. Other approaches have included provision of healing cytokines from blood products or stem cells, based on the recognition that this repetitive effort-derived disorder represents injury. Noting calcification/ossification of tendon attachments to the lateral epicondyle (enthesitis), dry needling, radiofrequency, shock wave treatments and surgical approaches have also been pursued. Physiologic approaches, including manipulation, therapeutic ultrasound, phonophoresis, iontophoresis, acupuncture and exposure of the area to low level laser light, has also had limited success. This contrasts with the benefit of a simple mechanical intervention, reducing the stress on the attachment area. This is based on displacement of the stress by use of a thin (3/4-1 inch) band applied just distal to the epicondyle. Thin bands are required, as thick bands (e.g., 2-3 inch wide) simply reduce muscle strength, without significantly reducing stress. This approach appears to be associated with a failure rate less than 1%, assuming the afflicted individual modifies the activity that repeatedly stresses the epicondylar attachments. PMID:23878775
Solution accelerators for large scale 3D electromagnetic inverse problems
Newman, Gregory A.; Boggs, Paul T.
2004-04-05
We provide a framework for preconditioning nonlinear 3D electromagnetic inverse scattering problems using nonlinear conjugate gradient (NLCG) and limited memory (LM) quasi-Newton methods. Key to our approach is the use of an approximate adjoint method that allows for an economical approximation of the Hessian that is updated at each inversion iteration. Using this approximate Hessian as a preconditoner, we show that the preconditioned NLCG iteration converges significantly faster than the non-preconditioned iteration, as well as converging to a data misfit level below that observed for the non-preconditioned method. Similar conclusions are also observed for the LM iteration; preconditioned with the approximate Hessian, the LM iteration converges faster than the non-preconditioned version. At this time, however, we see little difference between the convergence performance of the preconditioned LM scheme and the preconditioned NLCG scheme. A possible reason for this outcome is the behavior of the line search within the LM iteration. It was anticipated that, near convergence, a step size of one would be approached, but what was observed, instead, were step lengths that were nowhere near one. We provide some insights into the reasons for this behavior and suggest further research that may improve the performance of the LM methods.
Animal and human innovation: novel problems and novel solutions.
Reader, Simon M; Morand-Ferron, Julie; Flynn, Emma
2016-03-19
This theme issue explores how and why behavioural innovation occurs, and the consequences of innovation for individuals, groups and populations. A vast literature on human innovation exists, from the development of problem-solving in children, to the evolution of technology, to the cultural systems supporting innovation. A more recent development is a growing literature on animal innovation, which has demonstrated links between innovation and personality traits, cognitive traits, neural measures, changing conditions, and the current state of the social and physical environment. Here, we introduce these fields, define key terms and discuss the potential for fruitful exchange between the diverse fields researching innovation. Comparisons of innovation between human and non-human animals provide opportunities, but also pitfalls. We also summarize some key findings specifying the circumstances in which innovation occurs, discussing factors such as the intrinsic nature of innovative individuals and the environmental and socio-ecological conditions that promote innovation, such as necessity, opportunity and free resources. We also highlight key controversies, including the relationship between innovation and intelligence, and the notion of innovativeness as an individual-level trait. Finally, we discuss current research methods and suggest some novel approaches that could fruitfully be deployed. PMID:26926273
The tangential breast match plane: practical problems and solutions.
Norris, M
1989-09-01
The three-field breast set-up, in which tangential oblique opposed fields are joined to an anterior supraclavicular field, has been the method of choice for treatment of breast cancer for many years. In the last several years many authors have suggested refinements to the technique that improve the accuracy with which fields join at a match plane. The three-field breast set-up, using a rotatable half-beam block is the technique used at our institution. In instituting this procedure, several practical problems were encountered. Due to the small collimator rotation angles used it is possible to clinically reverse the collimator angle without observing an error noticeable on fluoroscopy. A second error can occur when the table base angle is used to compensate for the incorrect collimator rotation. These potential sources of error can be avoided if a programmable calculator or computer program is used to assist the dosimetrist during the simulation. Utilization of fluoroscopy, digital table position displays and a caliper provide accurate input for the computer program. This paper will present a hybrid procedure that combines practical set-up procedures with the mathematical calculation of ideal angles to result in an accurate and practical approach to breast simulation. PMID:2604852
Animal and human innovation: novel problems and novel solutions
2016-01-01
This theme issue explores how and why behavioural innovation occurs, and the consequences of innovation for individuals, groups and populations. A vast literature on human innovation exists, from the development of problem-solving in children, to the evolution of technology, to the cultural systems supporting innovation. A more recent development is a growing literature on animal innovation, which has demonstrated links between innovation and personality traits, cognitive traits, neural measures, changing conditions, and the current state of the social and physical environment. Here, we introduce these fields, define key terms and discuss the potential for fruitful exchange between the diverse fields researching innovation. Comparisons of innovation between human and non-human animals provide opportunities, but also pitfalls. We also summarize some key findings specifying the circumstances in which innovation occurs, discussing factors such as the intrinsic nature of innovative individuals and the environmental and socio-ecological conditions that promote innovation, such as necessity, opportunity and free resources. We also highlight key controversies, including the relationship between innovation and intelligence, and the notion of innovativeness as an individual-level trait. Finally, we discuss current research methods and suggest some novel approaches that could fruitfully be deployed. PMID:26926273
Integro-differential method of solving the inverse coefficient heat conduction problem
NASA Astrophysics Data System (ADS)
Baranov, V. L.; Zasyad'Ko, A. A.; Frolov, G. A.
2010-03-01
On the basis of differential transformations, a stable integro-differential method of solving the inverse heat conduction problem is suggested. The method has been tested on the example of determining the thermal diffusivity on quasi-stationary fusion and heating of a quartz glazed ceramics specimen.
Heat-transfer tests of aqueous ethylene glycol solutions in an electrically heated tube
NASA Technical Reports Server (NTRS)
Bernardo, Everett; Eian, Carroll S
1945-01-01
As part of an investigation of the cooling characteristics of liquid-cooled engines, tests were conducted with an electrically heated single-tube heat exchanger to determine the heat-transfer characteristics of an-e-2 ethylene glycol and other ethylene glycol-water mixtures. Similar tests were conducted with water and commercial butanol (n-butyl alcohol) for check purposes. The results of tests conducted at an approximately constant liquid-flow rate of 0.67 pound per second (Reynolds number, 14,500 to 112,500) indicate that at an average liquid temperature 200 degrees f, the heat-transfer coefficients obtained using water, nominal (by volume) 30 percent-70 percent and 70 percent-30 percent glycol-water mixtures are approximately 3.8, 2.8, and 1.4 times higher, respectively, than the heat-transfer coefficients obtained using an-e-2 ethylene glycol.
NASA Technical Reports Server (NTRS)
Ballhaus, W. F.; Jameson, A.; Albert, J.
1977-01-01
Implicit approximate-factorization algorithms (AF) are developed for the solution of steady-state transonic flow problems. The performance of the AF solution method is evaluated relative to that of the standard solution method for transonic flow problems, successive line over-relaxation (SLOR). Both methods are applied to the solution of the nonlinear, two-dimensional transonic small-disturbance equation. Results indicate that the AF method requires substantially less computer time than SLOR to solve the nonlinear finite-difference matrix equation for a transonic flow field. This increase in computational efficiency is achieved with no appreciable increase in computer storage or coding complexity.
NASA Astrophysics Data System (ADS)
Enright, W. H.
2016-06-01
In recent years we have developed a class of reliable order p methods for the approximate solution of general systems of initial value problems (IVPs) and delay differential equations (DDEs). In the theoretical analysis of these methods we have identified several trade-offs that do arise and have to be addressed when applying these methods to problems that exhibit special structure. Similar trade-offs also arise when one is concerned with investigating other important properties of the solutions. We will give examples of such trade-offs that arise when investigating the sensitivities of the solutions, and when very accurate approximate solutions are required.
Active Solution Space and Search on Job-shop Scheduling Problem
NASA Astrophysics Data System (ADS)
Watanabe, Masato; Ida, Kenichi; Gen, Mitsuo
In this paper we propose a new searching method of Genetic Algorithm for Job-shop scheduling problem (JSP). The coding method that represent job number in order to decide a priority to arrange a job to Gannt Chart (called the ordinal representation with a priority) in JSP, an active schedule is created by using left shift. We define an active solution at first. It is solution which can create an active schedule without using left shift, and set of its defined an active solution space. Next, we propose an algorithm named Genetic Algorithm with active solution space search (GA-asol) which can create an active solution while solution is evaluated, in order to search the active solution space effectively. We applied it for some benchmark problems to compare with other method. The experimental results show good performance.
Natural gas production problems : solutions, methodologies, and modeling.
Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick; Basinski, Paul M.; Olsson, William Arthur; Arnold, Bill Walter; Broadhead, Ronald F.; Knight, Connie D.; Keefe, Russell G.; McKinney, Curt; Holm, Gus; Holland, John F.; Larson, Rich; Engler, Thomas W.; Lorenz, John Clay
2004-10-01
Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.
Total shoulder arthroplasty -- current problems and possible solutions.
Skirving, A P
1999-01-01
The concept and design of a cemented unconstrained total shoulder arthroplasty (TSA), introduced by Charles Neer II 25 years ago, has been successful in the management of degenerative and inflammatory conditions of the shoulder, controlling pain and, in many patients, significantly improving function. The clinical outcome is very much determined by the nature and severity of the pathology, as well as by the surgeon's experience and ability to correctly locate and fix the components. Total shoulder arthroplasty is a technically difficult procedure with perhaps a greater potential for technical errors and complications compared with other commonly performed arthroplasties. Current systems are modular on the humeral side, with varying head diameters and neck lengths, allowing more accurate coverage of the cut surface of the humeral neck and improved ability to establish the position of the joint line within the requirements of correct soft tissue tension and balance. Cemented all-polyethylene glenoid components remain the most favored, but the majority now have an increased radius of curvature compared with their corresponding humeral head, to allow translation during movement. Aseptic glenoid component loosening is the most frequently encountered long-term complication and is hastened by conforming prostheses, incorrect positioning, rotator cuff tears, and capsular contractures, but is protected by secure glenoid fixation. Cemented one-piece metal-backed glenoids have been disappointing, but non-cemented glenoids are being trialed with promising early results, although they have introduced their own particular problems of rapid polyethylene wear and component dissociation. Although cemented humeral components have a very low incidence of symptomatic loosening, most surgeons currently use press-fit designs supplemented with metaphyseal porous coating for osseous integration. Based on increased understanding of the morphology of the upper humerus, current designs are
A transportronic solution to the problem of interorbital transportation
NASA Technical Reports Server (NTRS)
Brown, William C.
1992-01-01
An all-electronic transportation system described by the term 'transportronics' is examined as a means of solving the current problem of the high cost of transporting material from low-Earth orbit (LEO) to geostationary orbit (GEO). In this transportation system, low cost electric energy at the surface of the Earth is efficiently converted into microwave power which is then efficiently formed into a narrow beam which is kept incident upon the orbital transfer vehicles (OTV's) by electronic tracking. The incident beam is efficiently captured and converted into DC power by a device which has a very high ratio of DC power output to its mass. Because the mass of the electric thruster is also low, the resulting acceleration is unprecedented for electric-propelled vehicles. However, the performance of the system in terms of transit times from LEO to GEO is penalized by the short time of contact between the beam and the vehicle in low-Earth orbits. This makes it necessary to place the Earth based transmitters and the vehicles in the equatorial plane thus introducing many geopolitical factors. Technically, however, such a system as described in the report may out-perform any other approach to transportation in the LEO to GEO regime. The report describes and analyzes all portions of the beamed microwave power transmission system in considerable detail. An economic analysis of the operating and capital costs is made with the aid of a reference system capable of placing about 130,000 kilograms of payload into GEO each year. More mature states of the system are then examined, to a level in which 60,000 metric tons per year could be placed into GEO.
NASA Technical Reports Server (NTRS)
Baik, Jong-Jin
1992-01-01
Two-dimensional airflow characteristics past a heat island are investigated using both a linear analytic model and a nonlinear numerical model in the context of the response of a stably stratified atmosphere to specified low-level heating in a constant shear flow. Results from the steady-state, linear, analytic solutions exhibit typical flow response fields that gravity waves produce in response to the local heat source in the presence of environmental flow. The magnitude of the perturbation vertical velocity is shown to be much larger in the shear-flow case than in the uniform-flow case. Two distinct flow features are observed for larger heating amplitude (hence, larger nonlinearity factor): the gravity-wave-type response field on the upstream side of the heat island and the strong updraft circulation cell located on the downstream side. As the heating amplitude increases, the updraft circulation cell strengthens and shifts farther downwind. The strong updraft cell is believed to be partly responsible for precipitation enhancement observed on the downstream side of the heat island. It is found that the continuing downwind propagation of the updraft circulation cell is related to basic-state wind speed.
On the black carbon problem and its solutions
NASA Astrophysics Data System (ADS)
Jacobson, M. Z.
2010-12-01
electrification. However, the real solution, to be implemented over a 20-40 year period is complete conversion of the combustion infrastructure to electricity and electrolytic hydrogen, where the electricity is all produced by near-zero emitting wind, water, and solar (WWS) based energy technologies. Such a conversion would reduce BC and greenhouse gases simultaneously with cooling aerosol particles. This would ramp down the presence of both warming and cooling agents, but still cause net reduction of global warming, while reducing devastating health impacts that are occurring from both warming and cooling aerosols.
Knowledge representation and problem solution in expert and novice youth baseball players.
French, K E; Nevett, M E; Spurgeon, J H; Graham, K C; Rink, J E; McPherson, S L
1996-12-01
The purpose of this study was to examine differences in knowledge representation and problem solutions in expert and novice youth baseball players. Ninety-four players in two age divisions, 7-8 years of age and 9-10 years of age, were assigned to three levels of expertise: high; average; and low skilled. Each subject participated in an interview session to elicit knowledge representation and solutions to five different defensive game situations. Interviews were transcribed and analyzed for content, solution to the problem, errors in problem solution, and qualitative trends. The frequency of advanced solutions to each of the five situations were analyzed in separate chi-square tests for age and expertise. Differences among the levels of expertise were found for the accuracy of solutions to three complex situations. Age was significant for only one situation. Patterns of knowledge content accessed during advanced and less advanced responses indicated both experts and novices were in a beginning stage of developing baseball knowledge structures. Errors in problem solutions indicated children had difficulty monitoring critical conditions and making correct inferences. Players' and teammates' ability to execute baseball skills seemed to influence the content and structure of tactical knowledge accessed during problem solution. PMID:9016480
Sanchez-Sarmiento, G.; Mues, E.; Bunte, C.
1996-12-31
The computational system INC-PHATRAN, previously developed by the first author for the numerical simulation of a wide variety of heat treating operations, has been successfully applied to quenching of steel bars in a quench-tank installation with a tilt-up type integral quenching manipulator. Excellent agreements between calculated temperatures at the bar surface and the corresponding values measured by contact thermocouples after the end of immersion has been obtained. The quench-tank installation belongs to ACINDAR S.A., a high-quality specialty steel manufacturer in Argentina, and use UCON Quenchants HT, a type of nonflammable aqueous solution of a liquid organic polymer and a corrosion inhibitor, made by Union Carbide Co. The numerical model solves the inverse heat conduction equation coupled with the equations governing the phase transformations in arbitrary steel specimens in heat treating operations. The spacial and time variation of the temperature and of the volume fractions of austenite transformed to ferrite, perlite and martensite are predicted by the model. If the evolution of temperature at some points within the material or at the surface of the specimens are measured with thermocouples, the System INC-PHATRAN obtains numerically the time-varying heat transfer coefficients, solving the corresponding inverse heat conduction problem. Because the model predicts the spatial distribution of the fractions of ferrite, perlite and martensite remaining after the quenching, knowledge of the hardness and of other physical properties of the material may be obtained if correlations between those phases and the properties are available.
Spectral methods and their implementation to solution of aerodynamic and fluid mechanic problems
NASA Technical Reports Server (NTRS)
Streett, C. L.
1987-01-01
Fundamental concepts underlying spectral collocation methods, especially pertaining to their use in the solution of partial differential equations, are outlined. Theoretical accuracy results are reviewed and compared with results from test problems. A number of practical aspects of the construction and use of spectral methods are detailed, along with several solution schemes which have found utility in applications of spectral methods to practical problems. Results from a few of the successful applications of spectral methods to problems of aerodynamic and fluid mechanic interest are then outlined, followed by a discussion of the problem areas in spectral methods and the current research under way to overcome these difficulties.
Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region
NASA Astrophysics Data System (ADS)
Furukawa, Masahiro; Kaji, Masao; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko
To improve the thermal performance of high temperature generator of absorption chiller/heater, heat transfer characteristics of flow boiling of lithium bromide aqueous solution in the subcooled region were experimentally investigated. Experiments were made for water and lithium bromide aqueous solution flowing in a rectangular channel (5 mm × 20 mm cross section) with one side wall heated. Boiling onset quality of lithium bromide aqueous solution is greater than that of water. The heat transfer coefficient of lithium bromide aqueous solution is about a half of that of water under the same experimental conditions of inlet velocity and heat flux. The experimental data of heat transfer coefficient for water are compared with the empirical correlation of Thom et al.11) and a fairly good agreement is obtained. The predictive calculations by the method of Sekoguchi et al.12) are compared with the data for water and lithium bromide aqueous solution. Agreement between them is good for water, while the results for lithium bromide aqueous solution are not satisfactory.
Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region
NASA Astrophysics Data System (ADS)
Kaji, Masao; Furukawa, Masahiro; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko
A theoretical prediction model of the boiling heat transfer coefficient in the subcooled region for water and lithium bromide aqueous solution flowing in a rectangular channel is proposed. In the present heat transfer model, a heat flux is assumed to consist of both the forced convective and the boiling effect components. The forced convective component is evaluated from the empirical correlation of convective heat transfer coefficient for single-phase flow considering the effect of increase of liquid velocity due to net vapor generation. Empirical correlations for determining the heat flux due to the boiling effect and the quality at the onset point of net vapor generation are obtained from the data presented in the first report1). Agreement between the present theoretical prediction and the experimental data is satisfactorily good both for water and lithium bromide aqueous solution.
Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1992-01-01
Previous numerical and experimental studies indicate that the high-temperature heat pipe startup process is characterized by a moving hot zone with relatively sharp fronts. Based on the above observation, a flat-front model for an approximate analytical solution is proposed. A closed-form solution related to the temperature distribution in the hot zone and the hot zone length as a function of time are obtained. The analytical results agree well with the corresponding experimental data, and provide a quick prediction method for the heat pipe startup performance. Finally, a heat pipe limitation related to the frozen startup process is identified, and an explicit criterion for the high-temperature heat pipe startup is derived. The frozen startup limit identified in this paper provides a fundamental guidance for high-temperature heat pipe design.
NASA Astrophysics Data System (ADS)
Inaba, Hideo; Morita, Shin-Ichi
The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.
Analytical solution of the heat equation in a longitudinally pumped cubic solid-state laser
Sabaeian, Mohammad; Nadgaran, Hamid; Mousave, Laleh
2008-05-01
Knowledge about the temperature distribution inside solid-state laser crystals is essential for calculation of thermal phase shift, thermal lensing, thermally induced birefringence, and heat-induced crystal bending. Solutions for the temperature distribution for the case of steady-state heat loading have appeared in the literature only for simple cylindrical crystal shapes and are usually based on numerical techniques. For the first time, to our knowledge, a full analytical solution of the heat equation for an anisotropic cubic cross-section solid-state crystal is presented. The crystal is assumed to be longitudinally pumped by a Gaussian pump profile. The pump power attenuation along the crystal and the real cooling mechanisms, such as convection, are considered in detail. A comparison between our analytical solutions and its numerical counterparts shows excellent agreement when just a few terms are employed in the series solutions.
Visualization of protein interaction networks: problems and solutions
2013-01-01
Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI) are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN) and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins) and edges (interactions), the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology) that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i) technology, i.e. availability/license of the software and supported OS (Operating System) platforms; (ii) interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii) visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv) analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the possibility to
NASA Astrophysics Data System (ADS)
Grigoriev, M.; Babich, L.
2015-09-01
The article represents the main noninvasive methods of heart electrical activity examination, theoretical bases of solution of electrocardiography inverse problem, application of different methods of heart examination in clinical practice, and generalized achievements in this sphere in global experience.
Entropy landscape and non-Gibbs solutions in constraint satisfaction problems.
Dall'Asta, L; Ramezanpour, A; Zecchina, R
2008-03-01
We study the entropy landscape of solutions for the bicoloring problem in random graphs, a representative difficult constraint satisfaction problem. Our goal is to classify which types of clusters of solutions are addressed by different algorithms. In the first part of the study we use the cavity method to obtain the number of clusters with a given internal entropy and determine the phase diagram of the problem--e.g., dynamical, rigidity, and satisfiability-unsatisfiability (SAT-UNSAT) transitions. In the second part of the paper we analyze different algorithms and locate their behavior in the entropy landscape of the problem. For instance, we show that a smoothed version of a decimation strategy based on belief propagation is able to find solutions belonging to subdominant clusters even beyond the so-called rigidity transition where the thermodynamically relevant clusters become frozen. These nonequilibrium solutions belong to the most probable unfrozen clusters. PMID:18517340
NASA Astrophysics Data System (ADS)
Wahid, Juliana; Hussin, Naimah Mohd
2016-08-01
The construction of population of initial solution is a crucial task in population-based metaheuristic approach for solving curriculum-based university course timetabling problem because it can affect the convergence speed and also the quality of the final solution. This paper presents an exploration on combination of graph heuristics in construction approach in curriculum based course timetabling problem to produce a population of initial solutions. The graph heuristics were set as single and combination of two heuristics. In addition, several ways of assigning courses into room and timeslot are implemented. All settings of heuristics are then tested on the same curriculum based course timetabling problem instances and are compared with each other in terms of number of population produced. The result shows that combination of saturation degree followed by largest degree heuristic produce the highest number of population of initial solutions. The results from this study can be used in the improvement phase of algorithm that uses population of initial solutions.
NASA Astrophysics Data System (ADS)
Deswal, Sunita; Kalkal, Kapil Kumar; Sheoran, Sandeep Singh
2016-09-01
A mathematical model of fractional order two-temperature generalized thermoelasticity with diffusion and initial stress is proposed to analyze the transient wave phenomenon in an infinite thermoelastic half-space. The governing equations are derived in cylindrical coordinates for a two dimensional axi-symmetric problem. The analytical solution is procured by employing the Laplace and Hankel transforms for time and space variables respectively. The solutions are investigated in detail for a time dependent heat source. By using numerical inversion method of integral transforms, we obtain the solutions for displacement, stress, temperature and diffusion fields in physical domain. Computations are carried out for copper material and displayed graphically. The effect of fractional order parameter, two-temperature parameter, diffusion, initial stress and time on the different thermoelastic and diffusion fields is analyzed on the basis of analytical and numerical results. Some special cases have also been deduced from the present investigation.
Solution of the Problem of the Couette Flow for a Fermi Gas with Almost Specular Boundary Conditions
NASA Astrophysics Data System (ADS)
Bedrikova, E. A.; Latyshev, A. V.
2016-06-01
A solution of the Couette problem for a Fermi gas is constructed. The kinetic Bhatnagar-Gross-Krook (BGK) equation is used. Almost specular boundary conditions are considered. Formulas for the mass flux and the heat flux of the gas are obtained. These fluxes are proportional to the difference of the tangential momentum accommodation coefficients of the molecules. An expression for the viscous drag force acting on the walls of the channel is also found. An analysis of the macroparameters of the gas is performed. The limit to classical gases is taken. The obtained results are found to go over to the known results in this limit.
A New Solution to the Problem of Finding All Numerical Solutions to Ordered Metric Structures.
ERIC Educational Resources Information Center
Lehner, Paul E.; Norma, Elliot
1980-01-01
A new algorithm is used to test and describe the set of all possible solutions for any linear model of an empirical ordering derived from techniques such as additive conjoint measurement, unfolding theory, general Fechnerian scaling, and ordinal multiple regression. The algorithm is computationally faster and numerically superior to previous…
Some notes on the numerical solution of shear-lag and mathematically related problems
NASA Technical Reports Server (NTRS)
Kuhn, Paul
1939-01-01
The analysis of box beams with shear deformation of the flanges can be reduced to the solution of a differential equation. The same equation is met in other problems of stress analysis. No analytical solutions of this equation can be given for practical cases, and numerical methods of evaluation must be used. Available methods are briefly discussed. Two numerical examples show the application of the step-by-step method of integration to shear-lag problems.
Note: An explicit solution of the optimal superposition and Eckart frame problems
NASA Astrophysics Data System (ADS)
Cioslowski, Jerzy
2016-07-01
Attention is called to an explicit solution of both the optimal superposition and Eckart frame problems that requires neither matrix diagonalization nor quaternion algebra. A simple change in one variable that enters the expression for the solution matrix T allows for selection of T representing either a proper rotation or a more general orthogonal transformation. The issues concerning the use of these alternative selections and the equivalence of the two problems are addressed.
NASA Astrophysics Data System (ADS)
Zingerman, K. M.; Shavyrin, D. A.
2016-06-01
The approximate analytical solution of a quasi-static plane problem of the theory of viscoelasticity is obtained under finite strains. This is the problem of the stress-strain state in an infinite body with circular viscoelastic inclusion. The perturbation technique, Laplace transform, and complex Kolosov-Muskhelishvili's potentials are used for the solution. The numerical results are presented. The nonlinear effects and the effects of viscosity are estimated.
Abelian solutions of the soliton equations and Riemann-Schottky problems
NASA Astrophysics Data System (ADS)
Krichever, Igor M.
2008-12-01
The present article is an exposition of the author's talk at the conference dedicated to the 70th birthday of S.P. Novikov. The talk contained the proof of Welters' conjecture which proposes a solution of the classical Riemann-Schottky problem of characterizing the Jacobians of smooth algebraic curves in terms of the existence of a trisecant of the associated Kummer variety, and a solution of another classical problem of algebraic geometry, that of characterizing the Prym varieties of unramified covers.
Note: An explicit solution of the optimal superposition and Eckart frame problems.
Cioslowski, Jerzy
2016-07-14
Attention is called to an explicit solution of both the optimal superposition and Eckart frame problems that requires neither matrix diagonalization nor quaternion algebra. A simple change in one variable that enters the expression for the solution matrix T allows for selection of T representing either a proper rotation or a more general orthogonal transformation. The issues concerning the use of these alternative selections and the equivalence of the two problems are addressed. PMID:27421427
An iterative method to solve the heat transfer problem under the non-linear boundary conditions
NASA Astrophysics Data System (ADS)
Zhu, Zhenggang; Kaliske, Michael
2012-02-01
The aim of the paper is to determine the approximation of the tangential matrix for solving the non-linear heat transfer problem. Numerical model of the strongly non-linear heat transfer problem based on the theory of the finite element method is presented. The tangential matrix of the Newton method is formulated. A method to solve the heat transfer with the non-linear boundary conditions, based on the secant slope of a reference function, is developed. The contraction mapping principle is introduced to verify the convergence of this method. The application of the method is shown by two examples. Numerical results of these examples are comparable to the ones solved with the Newton method and the commercial software COMSOL for the heat transfer problem under the radiative boundary conditions.
Effective-medium model of wire metamaterials in the problems of radiative heat transfer
Mirmoosa, M. S. Nefedov, I. S. Simovski, C. R.; Rüting, F.
2014-06-21
In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.
Global solutions to the two-dimensional Riemann problem for a system of conservation laws
NASA Astrophysics Data System (ADS)
Pang, Yicheng; Cai, Shaohong; Zhao, Yuanying
2016-06-01
We study the global solutions to the two-dimensional Riemann problem for a system of conservation laws. The initial data are three constant states separated by three rays emanating from the origin. Under the assumption that each ray in the initial data outside of the origin projects exactly one planar contact discontinuity, this problem is classified into five cases. By the self-similar transformation, the reduced system changes type from being elliptic near the origin to being hyperbolic far away in self-similar plane. Then in hyperbolic region, applying the generalized characteristic analysis method, a Goursat problem is solved to describe the interactions of planar contact discontinuities. While, in elliptic region, a boundary value problem arises. It is proved that this boundary value problem admits a unique solution. Based on these preparations, five explicit solutions and their corresponding criteria can be obtained in self-similar plane.
Using a derivative-free optimization method for multiple solutions of inverse transport problems
Armstrong, Jerawan C.; Favorite, Jeffrey A.
2016-01-14
Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less
NASA Astrophysics Data System (ADS)
Nassar, M.; Ginn, T.
2012-12-01
The purpose of this study is to investigate the effect of the computational error on the solution of the inverse problem connecting with density-dependent flow problem. This effect will be addressed by evaluating the uniqueness of the inverse via monitoring objective function surface behavior in two dimensions parameter space, hydraulic conductivity and longitudinal dispersivity. In addition, the Pareto surface will be generated to evaluate the trade-offs between two calibration objectives based on head and concentration measurement errors. This is conducted by changing the aspects of forward model solution scheme, Eulerian and Lagrangian methods with associated variables. The data used for this study is based on the lab study of Nassar et al (2008). The seepage tank is essentially 2D (in an x-z vertical plane) with relatively homogenous coarse sand media with assigned flux in the upstream and constant head or assigned flux boundary condition at the downstream. The forward model solution is conducted with SEAWAT and it is utilized jointly with the inverse code UCODE-2005. This study demonstrates that the choice of the different numerical scheme with associated aspects of the forward problem is a vital step in the solution of the inverse problem in indirect manner. The method of characteristics gives good results by increasing the initial particles numbers and/ or reducing the time step. The advantage of using more particles concept over decreasing the time step is in smoothing the objective function surface that enable the gradient based search technique works in efficient way. Also, the selected points on the Pareto surface is collapsed to two points on the objective function space. Most likely they are not collapsed to a single point in objective function space with one best parameter set because the problem is advection dominating problem.
Panov, E Yu
2013-10-31
The concept of a renormalized entropy solution of the Cauchy problem for an inhomogeneous quasilinear equation of the first order is introduced. Existence and uniqueness theorems are proved, together with a comparison principle. Connections with generalized entropy solutions are investigated. Bibliography: 10 titles.
ERIC Educational Resources Information Center
Hill, Kennedy T.; Horton, Margaret W.
Educational solutions to the problem of test anxiety were explored. Test anxiety has a debilitating effect on performance which increases over the school years. The solution is, first, to measure test anxiety so that the extent of it, as well as the effectiveness of programs designed to alleviate it, can be measured. The seven-item Comfort Index,…
Calculating Probabilistic Distance to Solution in a Complex Problem Solving Domain
ERIC Educational Resources Information Center
Sudol, Leigh Ann; Rivers, Kelly; Harris, Thomas K.
2012-01-01
In complex problem solving domains, correct solutions are often comprised of a combination of individual components. Students usually go through several attempts, each attempt reflecting an individual solution state that can be observed during practice. Classic metrics to measure student performance over time rely on counting the number of…
An implicit semianalytic numerical method for the solution of nonequilibrium chemistry problems
NASA Technical Reports Server (NTRS)
Graves, R. A., Jr.; Gnoffo, P. A.; Boughner, R. E.
1974-01-01
The first order differential equation form systems of equations. They are solved by a simple and relatively accurate implicit semianalytic technique which is derived from a quadrature solution of the governing equation. This method is mathematically simpler than most implicit methods and has the exponential nature of the problem embedded in the solution.
NASA Technical Reports Server (NTRS)
Hedgley, D. R., Jr.
1982-01-01
The requirements for computer-generated perspective projections of three dimensional objects has escalated. A general solution was developed. The theoretical solution to this problem is presented. The method is very efficient as it minimizes the selection of points and comparison of line segments and hence avoids the devastation of square-law growth.
Kettunen, L.; Forsman, K.; Levine, D.; Gropp, W.
1993-12-31
In this paper a brief discussion of h-type volume integral formulations implemented in GFUNET/CORAL code is given and solutions of TEAM benchmark No. 13 are shown. GFUNET/CORAL is a general purpose code for 2D and 3D magnetostatics. Solutions of TEAM problem No. 13 are computed using both a sequential and parallel version of GFUNET/CORAL.
Problem Solvers: Problem--Light It up! and Solutions--Flags by the Numbers
ERIC Educational Resources Information Center
Hall, Shaun
2009-01-01
A simple circuit is created by the continuous flow of electricity through conductors (copper wires) from a source of electrical energy (batteries). "Completing a circuit" means that electricity flows from the energy source through the circuit and, in the case described in this month's problem, causes the light bulb tolight up. The presence of…
The general solution to the classical problem of the finite Euler-Bernoulli beam
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Amba-Rao, C. L.
1978-01-01
An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler-Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.
The general solution to the classical problem of finite Euler Bernoulli beam
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Amba-Rao, C. L.
1977-01-01
An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.
Hip-hop solutions of the 2N-body problem
NASA Astrophysics Data System (ADS)
Barrabés, Esther; Cors, Josep Maria; Pinyol, Conxita; Soler, Jaume
2006-05-01
Hip-hop solutions of the 2N-body problem with equal masses are shown to exist using an analytic continuation argument. These solutions are close to planar regular 2N-gon relative equilibria with small vertical oscillations. For fixed N, an infinity of these solutions are three-dimensional choreographies, with all the bodies moving along the same closed curve in the inertial frame.
Exact solution for spin precession in the radiationless relativistic Kepler problem
NASA Astrophysics Data System (ADS)
Mane, S. R.
2014-11-01
There is interest in circulating beams of polarized particles in all-electric storage rings to search for nonzero permanent electric dipole moments of subatomic particles. To this end, it is helpful to derive exact analytical solutions of the spin precession in idealized models, both for pedagogical reasons and to serve as benchmark tests for analysis and design of experiments. This paper derives exact solutions for the spin precession in the relativistic Kepler problem. Some counterintuitive properties of the solutions are pointed out.
Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Turner, J. D.; Chun, H. M.
1984-01-01
Closed-form solutions are derived for coupled Riccati-like matrix differential equations describing the solution of a class of optimal finite time quadratic regulator problems with terminal constraints. Analytical solutions are obtained for the feedback gains and the closed-loop response trajectory. A computational procedure is presented which introduces new variables for efficient computation of the terminal control law. Two examples are given to illustrate the validity and usefulness of the theory.
Comparison of DSMC and CFD Solutions of Fire II Including Radiative Heating
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Johnston, Christopher O.; Lewis, Mark J.
2011-01-01
The ability to compute rarefied, ionized hypersonic flows is becoming more important as missions such as Earth reentry, landing high mass payloads on Mars, and the exploration of the outer planets and their satellites are being considered. These flows may also contain significant radiative heating. To prepare for these missions, NASA is developing the capability to simulate rarefied, ionized flows and to then calculate the resulting radiative heating to the vehicle's surface. In this study, the DSMC codes DAC and DS2V are used to obtain charge-neutral ionization solutions. NASA s direct simulation Monte Carlo code DAC is currently being updated to include the ability to simulate charge-neutral ionized flows, take advantage of the recently introduced Quantum-Kinetic chemistry model, and to include electronic energy levels as an additional internal energy mode. The Fire II flight test is used in this study to assess these new capabilities. The 1634 second data point was chosen for comparisons to be made in order to include comparisons to computational fluid dynamics solutions. The Knudsen number at this point in time is such that the DSMC simulations are still tractable and the CFD computations are at the edge of what is considered valid. It is shown that there can be quite a bit of variability in the vibrational temperature inferred from DSMC solutions and that, from how radiative heating is computed, the electronic temperature is much better suited for radiative calculations. To include the radiative portion of heating, the flow-field solutions are post-processed by the non-equilibrium radiation code HARA. Acceptable agreement between CFD and DSMC flow field solutions is demonstrated and the progress of the updates to DAC, along with an appropriate radiative heating solution, are discussed. In addition, future plans to generate more high fidelity radiative heat transfer solutions are discussed.
NASA Astrophysics Data System (ADS)
Raynaud, M.; Bransier, J.
A space-marching finite difference algorithm is developed for solving the one-dimensional inverse heat conduction problem. The method is easy to apply, stable, and as accurate as the most efficient existing methods. An experimental set-up made of a rectangular parallelepiped polymerized around a woof of thermocouples has been designed especially to validate the method. The thermal conductivity of the test specimen was previously determined with the same set-up, and the specific heat is estimated during the experiments. The estimated surface heat flux is in very good agreement with the heat flux measured by a foil heat flux gage, regardless of the sensor locations. These results show that the method remains effective in spite of the cumulated effects of the errors due to the data acquisition system, to the location and calibration of the sensors, and to the simultaneous estimation of the specific heat.
A unified theory of electrodynamic coupling in coronal magnetic loops - The coronal heating problem
NASA Technical Reports Server (NTRS)
Ionson, J. A.
1984-01-01
The coronal heating problem is studied, and it is demonstrated that Ionson's (1982) LRC approach results in a unified theory of coronal heating which unveils a variety of new heating mechanisms and which links together previously proposed mechanisms. Ionson's LRC equation is rederived, focusing on various aspects that were not clarified in the original article and incorporating new processes that were neglected. A parameterized heating rate is obtained. It is shown that Alfvenic surface wave heating, stochastic magnetic pumping, resonant electrodynamic heating, and dynamical dissipation emerge as special cases of a much more general formalism. This generalized theory is applied to solar coronal loops and it is found that active region and large scale loops are underdamped systems. Young active region loops and (possibly) bright points are found to be overdamped systems.
Every Word Problem Has a Solution--The Social Rationality of Mathematical Modelling in Schools.
ERIC Educational Resources Information Center
Reusser, Kurt; Stebler, Rita
1997-01-01
Two experiments involving 67 elementary school and 439 high school students show that students present solutions to many unsolvable problems without showing realistic reactions. Results are discussed with respect to the quality of word problems in teaching mathematics, the culture of teaching and learning, and the issue of social rationality in…
Disabilities and e-Learning Problems and Solutions: An Exploratory Study
ERIC Educational Resources Information Center
Fichten, Catherine S.; Ferraro, Vittoria; Asuncion, Jennison V.; Chwojka, Caroline; Barile, Maria; Nguyen, Mai N.; Klomp, Ryan; Wolforth, Joan
2009-01-01
This study explored e-learning problems and solutions reported by 223 students with disabilities, 58 campus disability service providers, 28 professors, and 33 e-learning professionals from Canadian colleges and universities. All four groups indicated, via online questionnaires, problems with: accessibility of websites and course/learning…
The CLEAR[TM] Problem-Solving Model: Discovering Strengths and Solutions
ERIC Educational Resources Information Center
Koehler, Nancy; Seger, Vikki
2011-01-01
This article introduces a unique team approach to planning and positive behavior support. The young person becomes a key participant in solving problems and setting goals for growth. The CLEAR Team Problem Solving model shifts the focus from deficits to strengths and solutions. The goal is to identify how a child's private logic and interpersonal…
A Problem and Its Solution Involving Maxwell's Equations and an Inhomogeneous Medium.
ERIC Educational Resources Information Center
Williamson, W., Jr.
1980-01-01
Maxwell's equation are solved for an inhomogeneous medium which has a coordinate-dependent dielectric function. The problem and its solutions are given in a format which should make it useful as an intermediate or advanced level problem in an electrodynamics course. (Author/SK)
Family Involvement in Preschool Education: Rationale, Problems and Solutions for the Participants
ERIC Educational Resources Information Center
Kocyigit, Sinan
2015-01-01
This aim of this study is to examine the views of teachers, administrators and parents about the problems that emerge during family involvement in preschool activities and solutions for these problems. The participants were 10 teachers, 10 parents and 10 administrators from 4 preschools and 6 kindergartens in the Palandöken and Yakutiye districts…
Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.
2006-01-01
We describe a possible solution to the inverse refraction-traveltime problem (IRTP) that reduces the range of possible solutions (nonuniqueness). This approach uses a reference model, derived from surface-wave shear-wave velocity estimates, as a constraint. The application of the joint analysis of refractions with surface waves (JARS) method provided a more realistic solution than the conventional refraction/tomography methods, which did not benefit from a reference model derived from real data. This confirmed our conclusion that the proposed method is an advancement in the IRTP analysis. The unique basic principles of the JARS method might be applicable to other inverse geophysical problems. ?? 2006 Society of Exploration Geophysicists.
NASA Astrophysics Data System (ADS)
Hristov, Jordan
2016-03-01
Closed form approximate solutions to nonlinear heat (mass) diffusion equation with power-law nonlinearity of the thermal (mass) diffusivity have been developed by the integral-balance method avoiding the commonly used linearization by the Kirchhoff transformation. The main improvement of the solution is based on the double-integration technique and a new approach to the space derivative. Solutions to Dirichlet and Neumann boundary condition problems have been developed and benchmarked against exact numerical and approximate analytical solutions available in the literature.
Sensitivity of the solution of the Elder problem to density, velocity and numerical perturbations
NASA Astrophysics Data System (ADS)
Park, Chan-Hee; Aral, Mustafa M.
2007-06-01
In this paper the Elder problem is studied with the purpose of evaluating the inherent instabilities associated with the numerical solution of this problem. Our focus is first on the question of the existence of a unique numerical solution for this problem, and second on the grid density and fluid density requirements necessary for a unique numerical solution. In particular we have investigated the instability issues associated with the numerical solution of the Elder problem from the following perspectives: (i) physical instability issues associated with density differences; (ii) sensitivity of the numerical solution to idealization irregularities; and, (iii) the importance of a precise velocity field calculation and the association of this process with the grid density levels that is necessary to solve the Elder problem accurately. In the study discussed here we have used a finite element Galerkin model we have developed for solving density-dependent flow and transport problems, which will be identified as TechFlow. In our study, the numerical results of Frolkovič and de Schepper [Frolkovič, P. and H. de Schepper, 2001. Numerical modeling of convection dominated transport coupled with density-driven flow in porous media, Adv. Water Resour., 24, 63-72.] were replicated using the grid density employed in their work. We were also successful in duplicating the same result with a less dense grid but with more computational effort based on a global velocity estimation process we have adopted. Our results indicate that the global velocity estimation approach recommended by Yeh [Yeh, G.-T., 1981. On the computation of Darcian velocity and mass balance in finite element modelling of groundwater flow, Water Resour. Res., 17(5), 1529-1534.] allows the use of less dense grids while obtaining the same accuracy that can be achieved with denser grids. We have also observed that the regularity of the elements in the discretization of the solution domain does make a difference
Wu, S.H.; Wu, C.Y.; Hsu, P.
1996-12-31
This work considers radiative heat transfer in a three-dimensional, rectangular, scattering medium exposed to diffuse radiation. Applying the quadrature method with singularity subtraction to the exact integral equations in terms of the moments of intensity can generate highly accurate solutions, and so the method is adopted in this work. The example solutions provided are for radiative equilibrium in homogeneous absorbing-emitting media, and for radiative transfer in nonhomogeneous absorbing-scattering (isotropic and linearly anisotropic) media with non-reflecting surfaces. To validate the solutions, the present results are compared with the solutions obtained by the YIX method and other methods.
Optimality conditions for the numerical solution of optimization problems with PDE constraints :
Aguilo Valentin, Miguel Alejandro; Ridzal, Denis
2014-03-01
A theoretical framework for the numerical solution of partial di erential equation (PDE) constrained optimization problems is presented in this report. This theoretical framework embodies the fundamental infrastructure required to e ciently implement and solve this class of problems. Detail derivations of the optimality conditions required to accurately solve several parameter identi cation and optimal control problems are also provided in this report. This will allow the reader to further understand how the theoretical abstraction presented in this report translates to the application.
A complete and explicit solution to the three-dimensional problem of two fixed centres
NASA Astrophysics Data System (ADS)
Biscani, Francesco; Izzo, Dario
2016-02-01
We present for the first time an explicit, complete and closed-form solution to the three-dimensional problem of two fixed centres, based on Weierstrass elliptic and related functions. With respect to previous treatments of the problem, our solution is exact, valid for all initial conditions and physical parameters of the system (including unbounded orbits and repulsive forces), and expressed via a unique set of formulae. Various properties of the three-dimensional problem of two fixed centres are investigated and analysed, with a particular emphasis on quasi-periodic and periodic orbits, regions of motion and equilibrium points.
Exact solution of a monomer-dimer problem: A single boundary monomer on a nonbipartite lattice
Wu, F. Y.; Tzeng, Wen-Jer; Izmailian, N. Sh.
2011-01-15
We solve the monomer-dimer problem on a nonbipartite lattice, a simple quartic lattice with cylindrical boundary conditions, with a single monomer residing on the boundary. Due to the nonbipartite nature of the lattice, the well-known method of solving single-monomer problems with a Temperley bijection cannot be used. In this paper, we derive the solution by mapping the problem onto one of closed-packed dimers on a related lattice. Finite-size analysis of the solution is carried out. We find from asymptotic expansions of the free energy that the central charge in the logarithmic conformal field theory assumes the value c=-2.
Efficient solutions to the NDA-NCA low-order eigenvalue problem
Willert, J. A.; Kelley, C. T.
2013-07-01
Recent algorithmic advances combine moment-based acceleration and Jacobian-Free Newton-Krylov (JFNK) methods to accelerate the computation of the dominant eigenvalue in a k-eigenvalue calculation. In particular, NDA-NCA [1], builds a sequence of low-order (LO) diffusion-based eigenvalue problems in which the solution converges to the true eigenvalue solution. Within NDA-NCA, the solution to the LO k-eigenvalue problem is computed by solving a system of nonlinear equation using some variant of Newton's method. We show that we can speed up the solution to the LO problem dramatically by abandoning the JFNK method and exploiting the structure of the Jacobian matrix. (authors)
Accurate solution of the proton-hydrogen three-body scattering problem
NASA Astrophysics Data System (ADS)
Abdurakhmanov, I. B.; Kadyrov, A. S.; Bray, I.
2016-02-01
An accurate solution to the fundamental three-body problem of proton-hydrogen scattering including direct scattering and ionization, electron capture and electron capture into the continuum (ECC) is presented. The problem has been addressed using a quantum-mechanical two-center convergent close-coupling approach. At each energy the internal consistency of the solution is demonstrated with the help of single-center calculations, with both approaches converging independently to the same electron-loss cross section. This is the sum of the electron capture, ECC and direct ionization cross sections, which are only obtainable separately in the solution of the problem using the two-center expansion. Agreement with experiment for the electron-capture cross section is excellent. However, for the ionization cross sections some discrepancy exists. Given the demonstrated internal consistency we remain confident in the provided theoretical solution.
A study on periodic solutions for the circular restricted three-body problem
Gao, F. B.; Zhang, W. E-mail: gaofabao@gmail.com
2014-12-01
For the circular restricted three-body problem (CR3BP) in the inertial frame, we interpret the fact that there is no non-trivial 2π-periodic solution of the problem's homogeneous system. Furthermore, based on Reissig's theory, the existence of periodic solutions for the CR3BP is proved rigorously by using the above fact in conjunction with an a priori estimate. It is significant that the existence of periodic solutions of the CR3BP is mainly influenced by factors such as initial values, primary masses, and selection of the problem's control function. In addition, it is notable that the analytic proof of Poincaré's first class solutions is addressed for all values of the mass parameter in the interval (0, 1), the value of which must be sufficiently small according to previously published literature.
Accurate ω-ψ Spectral Solution of the Singular Driven Cavity Problem
NASA Astrophysics Data System (ADS)
Auteri, F.; Quartapelle, L.; Vigevano, L.
2002-08-01
This article provides accurate spectral solutions of the driven cavity problem, calculated in the vorticity-stream function representation without smoothing the corner singularities—a prima facie impossible task. As in a recent benchmark spectral calculation by primitive variables of Botella and Peyret, closed-form contributions of the singular solution for both zero and finite Reynolds numbers are subtracted from the unknown of the problem tackled here numerically in biharmonic form. The method employed is based on a split approach to the vorticity and stream function equations, a Galerkin-Legendre approximation of the problem for the perturbation, and an evaluation of the nonlinear terms by Gauss-Legendre numerical integration. Results computed for Re=0, 100, and 1000 compare well with the benchmark steady solutions provided by the aforementioned collocation-Chebyshev projection method. The validity of the proposed singularity subtraction scheme for computing time-dependent solutions is also established.
Elasticity solutions for a class of composite laminate problems with stress singularities
NASA Technical Reports Server (NTRS)
Wang, S. S.
1983-01-01
A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.
The Effect of Solution Heat Treatment on an Advanced Nickel-Base Disk Alloy
NASA Technical Reports Server (NTRS)
Gayda, J.; Gabb, T. P.; Kantzos, P. T.
2004-01-01
Five heat treat options for an advanced nickel-base disk alloy, LSHR, have been investigated. These included two conventional solution heat treat cycles, subsolvus/oil quench and supersolvus/fan cool, which yield fine grain and coarse grain microstructure disks respectively, as well as three advanced dual microstructure heat treat (DMHT) options. The DMHT options produce disks with a fine grain bore and a coarse grain rim. Based on an overall evaluation of the mechanical property data, it was evident that the three DMHT options achieved a desirable balance of properties in comparison to the conventional solution heat treatments for the LSHR alloy. However, one of the DMHT options, SUB/DMHT, produced the best set of properties, largely based on dwell crack growth data. Further evaluation of the SUB/DMHT option in spin pit experiments on a generic disk shape demonstrated the advantages and reliability of a dual grain structure at the component level.
Describing function method applied to solution of nonlinear heat conduction equation
Nassersharif, B. )
1989-08-01
Describing functions have traditionally been used to obtain the solutions of systems of ordinary differential equations. The describing function concept has been extended to include the non-linear, distributed parameter solid heat conduction equation. A four-step solution algorithm is presented that may be applicable to many classes of nonlinear partial differential equations. As a specific application of the solution technique, the one-dimensional nonlinear transient heat conduction equation in an annular fuel pin is considered. A computer program was written to calculate one-dimensional transient heat conduction in annular cylindrical geometry. It is found that the quasi-linearization used in the describing function method is as accurate as and faster than true linearization methods.
Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition
NASA Astrophysics Data System (ADS)
Yang, Xin; Zhou, Zhengfang
2016-09-01
This paper estimates the blow-up time for the heat equation ut = Δu with a local nonlinear Neumann boundary condition: The normal derivative ∂ u / ∂ n =uq on Γ1, one piece of the boundary, while on the rest part of the boundary, ∂ u / ∂ n = 0. The motivation of the study is the partial damage to the insulation on the surface of space shuttles caused by high speed flying subjects. We show the finite time blow-up of the solution and estimate both upper and lower bounds of the blow-up time in terms of the area of Γ1. In many other work, they need the convexity of the domain Ω and only consider the problem with Γ1 = ∂ Ω. In this paper, we remove the convexity condition and only require ∂Ω to be C2. In addition, we deal with the local nonlinearity, namely Γ1 can be just part of ∂Ω.
NASA Astrophysics Data System (ADS)
Portsmore, Merredith D.
This dissertation presents research that investigated how first grade students' ability to construct solutions and to plan through drawing for engineering design problems is related to their participation in a LEGO-based engineering curriculum with two variations on the instruction for planning. The quasi-experimental design engaged two first grade classrooms in an urban K-6 Science and Technology elementary school outside of Boston, MA in a set of activities that asked students to construct solutions to engineering design problems inspired by the story of Goldilocks and the Three Bears. The planning classroom was provided with instructions on how to plan and students were required to plan through drawing prior to constructing their solution to engineering design problems. Students in the spontaneous classroom were not given instruction in planning and were allowed immediate access to materials to construct their solution. Students' drawings and constructed artifacts for engineering design problems during pre and post assessments as well as during the classroom were collected. The analysis of the classroom data found that students were able to successfully construct solutions to engineering design problems with increasingly number of requirements. Pre and post comparisons of students' performance on problems with materials they had had extensive experience with (LEGO) and craft materials (non-LEGO) found that students only made gains in constructing solutions to engineering design problems with materials they had prior experience with. The planning intervention appeared to have no relationship with students' ability to construct solutions that addressed requirements that were clearly presented to the students. However, there may be a relationship with less obvious requirements regarding aesthetics (as measured by symmetry of the artifacts) and material selection. In general, the findings suggest that planning through drawing may help students preserve their ideas
NASA Astrophysics Data System (ADS)
Tucciarelli, T.
2012-12-01
A new methodology for the solution of irrotational 2D flow problems in domains with strongly unstructured meshes is presented. A fractional time step procedure is applied to the original governing equations, solving consecutively a convective prediction system and a diffusive corrective system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system, of the order of the number of computational cells. A MArching in Space and Time (MAST) approach is applied for the solution of the convective prediction step. The major advantages of the model, as well as its ability to maintain the solution monotonicity even in strongly irregular meshes, are briefly described. The algorithm is applied to the solution of diffusive shallow water equations in a simple domain.
Nonuniqueness and multi-bump solutions in parabolic problems with the p-Laplacian
NASA Astrophysics Data System (ADS)
Benedikt, Jiří; Girg, Petr; Kotrla, Lukáš; Takáč, Peter
2016-01-01
The validity of the weak and strong comparison principles for degenerate parabolic partial differential equations with the p-Laplace operator Δp is investigated for p > 2. This problem is reduced to the comparison of the trivial solution (≡0, by hypothesis) with a nontrivial nonnegative solution u (x, t). The problem is closely related also to the question of uniqueness of a nonnegative solution via the weak comparison principle. In this article, realistic counterexamples to the uniqueness of a nonnegative solution, the weak comparison principle, and the strong maximum principle are constructed with a nonsmooth reaction function that satisfies neither a Lipschitz nor an Osgood standard "uniqueness" condition. Nonnegative multi-bump solutions with spatially disconnected compact supports and zero initial data are constructed between sub- and supersolutions that have supports of the same type.
[The Swiss population and drug problems: perception of the problems and proposals for solutions].
Leuthold, A; Cattaneo, M; Dubois-Arber, F
1993-01-01
The aim of this study is to investigate which problems in relation with drug abuse are considered to be the most important by the Swiss population and which measures do they support to reduce them. Base for this study are the results of a representative telephone survey realized in october 1991 with 1004 Swiss residents. People are mostly concerned with problems related to the danger for youth and those concerning public order but also with the human condition of addicts. Drug addicts are considered as people who have lost the sense of live, as sick but also as dangerous and less truthful. Supported are overall prevention, offers for therapies, the repression of trafficking and money-laundering but not of drug users as well as measures going in the direction of harm-minimisation (shooting rooms, medical prescription of drugs). Younger people, those with higher education and the german-speaking population have a more positive view of drug addicts and support measures in the sense of harm-minimisation. Elder people and the french-speaking population have a rather negative view of drug addicts and don't favour measures for harm-minimisation. PMID:8212910
Kim, D.; Ghanem, R.
1994-12-31
Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.
Solution to the backward-Kolmogorov equation for a nonstationary oscillation problem
NASA Technical Reports Server (NTRS)
Solomos, G. P.; Spanos, P.-T. D.
1982-01-01
The transition probability density function of a Markovian approximation of the response amplitude of an oscillator under nonstationary excitation is determined in an analytical form. A solution is presented for the associated backward-Kolmogorov equation by transforming the equation into a form amenable to solution by the method of the separation of variables. This procedure results in a boundary value problem which is then solved by using an infinite series of Laguerre polynomials. It is found that the infinite series solution is equivalent to a closed-form solution involving a Bessel function.
Probing for quantum speedup in spin-glass problems with planted solutions
NASA Astrophysics Data System (ADS)
Hen, Itay; Job, Joshua; Albash, Tameem; Rønnow, Troels F.; Troyer, Matthias; Lidar, Daniel A.
2015-10-01
The availability of quantum annealing devices with hundreds of qubits has made the experimental demonstration of a quantum speedup for optimization problems a coveted, albeit elusive goal. Going beyond earlier studies of random Ising problems, here we introduce a method to construct a set of frustrated Ising-model optimization problems with tunable hardness. We study the performance of a D-Wave Two device (DW2) with up to 503 qubits on these problems and compare it to a suite of classical algorithms, including a highly optimized algorithm designed to compete directly with the DW2. The problems are generated around predetermined ground-state configurations, called planted solutions, which makes them particularly suitable for benchmarking purposes. The problem set exhibits properties familiar from constraint satisfaction (SAT) problems, such as a peak in the typical hardness of the problems, determined by a tunable clause density parameter. We bound the hardness regime where the DW2 device either does not or might exhibit a quantum speedup for our problem set. While we do not find evidence for a speedup for the hardest and most frustrated problems in our problem set, we cannot rule out that a speedup might exist for some of the easier, less frustrated problems. Our empirical findings pertain to the specific D-Wave processor and problem set we studied and leave open the possibility that future processors might exhibit a quantum speedup on the same problem set.
NASA Technical Reports Server (NTRS)
Siegel, R.; Goldstein, M. E.
1972-01-01
An analytical solution is obtained for flow and heat transfer in a three-dimensional porous medium. Coolant from a reservoir at constant pressure and temperature enters one portion of the boundary of the medium and exits through another portion of the boundary which is at a specified uniform temperature and uniform pressure. The variation with temperature of coolant density and viscosity are both taken into account. A general solution is found that provides the temperature distribution in the medium and the mass and heat fluxes along the portion of the surface through which the coolant is exiting.
Solution of stochastic media transport problems using a numerical quadrature-based method
Pautz, S. D.; Franke, B. C.; Prinja, A. K.; Olson, A. J.
2013-07-01
We present a new conceptual framework for analyzing transport problems in random media. We decompose such problems into stratified subproblems according to the number of material pseudo-interfaces within realizations. For a given subproblem we assign pseudo-interface locations in each realization according to product quadrature rules, which allows us to deterministically generate a fixed number of realizations. Quadrature integration of the solutions of these realizations thus approximately solves each subproblem; the weighted superposition of solutions of the subproblems approximately solves the general stochastic media transport problem. We revisit some benchmark problems to determine the accuracy and efficiency of this approach in comparison to randomly generated realizations. We find that this method is very accurate and fast when the number of pseudo-interfaces in a problem is generally low, but that these advantages quickly degrade as the number of pseudo-interfaces increases. (authors)
A study on the re-solution heat treatment of AA 2618 aluminum alloy
Ozbek, Ibrahim . E-mail: iozbek@sakarya.edu.tr
2007-03-15
In the present study, the effects of re-solution treatment of AA2618 aluminum alloy has been investigated. Solution heat treatments of 520-640 deg. C for 14-24 h were applied followed by artificial aging. Characterization studies that were carried out by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy techniques showed that recrystallisation was not observed by solution treatment at 530 deg. C whereas it did occur as the solution treatment and the duration time were increased above 530 deg. C. Increasing the solution treatment temperature further coarsened both the grains and the precipitates, resulting in significant reduction in hardness. Al{sub 9}FeNi-type intermetallics are not completely dissolved by these solution treatments.
Iterative refinement of the minimum norm solution of the bioelectric inverse problem.
Srebro, R
1996-05-01
Functional brain imaging based on the bioelectric scalp field depends on the solution of the inverse problem. The object is to estimate the current distribution in the cortex from a measured noisy scalp potential field. A minimum norm least squares solution is often used for this purpose. Although this approach leads to a unique solution, it represents only one of a set of feasible solutions. In particular, it leads to a solution in which current is found to be generated widely in the cortex. There are other feasible minimum norm solutions for which cortical current is generated only in a restricted region, and it is likely that in many cases, these solutions are of physiological importance. This study presents a method to uncover these solutions. It is based on the idea that a minimum norm solution can be used to define a region of interest, an ellipsoid, within which it is worthwhile to search for another feasible solution. The minimum norm approach is used iteratively and the ellipsoid shrinks. As it shrinks it provides evidence pointing to the location of the active cortical region. The method explicitly recognizes the role of measurement noise in defining feasible solutions. It is tested in a model of the human head that incorporates a realistic cortex in a three-shell sphere. The method improves the localization of cortical activity mimicking physiological processing. PMID:8849467
Gartling, D.K.; Hogan, R.E.
1994-10-01
The theoretical and numerical background for the finite element computer program, COYOTE II, is presented in detail. COYOTE II is designed for the multi-dimensional analysis of nonlinear heat conduction problems and other types of diffusion problems. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in COYOTE II are also outlined. Instructions for use of the code are documented in SAND94-1179; examples of problems analyzed with the code are provided in SAND94-1180.
Solutions to the Inverse LQR Problem with Application to Biological Systems Analysis
Priess, M Cody; Conway, Richard; Choi, Jongeun; Popovich, John M; Radcliffe, Clark
2015-01-01
In this paper, we present a set of techniques for finding a cost function to the time-invariant Linear Quadratic Regulator (LQR) problem in both continuous- and discrete-time cases. Our methodology is based on the solution to the inverse LQR problem, which can be stated as: does a given controller K describe the solution to a time-invariant LQR problem, and if so, what weights Q and R produce K as the optimal solution? Our motivation for investigating this problem is the analysis of motion goals in biological systems. We first describe an efficient Linear Matrix Inequality (LMI) method for determining a solution to the general case of this inverse LQR problem when both the weighting matrices Q and R are unknown. Our first LMI-based formulation provides a unique solution when it is feasible. Additionally, we propose a gradient-based, least-squares minimization method that can be applied to approximate a solution in cases when the LMIs are infeasible. This new method is very useful in practice since the estimated gain matrix K from the noisy experimental data could be perturbed by the estimation error, which may result in the infeasibility of the LMIs. We also provide an LMI minimization problem to find a good initial point for the minimization using the proposed gradient descent algorithm. We then provide a set of examples to illustrate how to apply our approaches to several different types of problems. An important result is the application of the technique to human subject posture control when seated on a moving robot. Results show that we can recover a cost function which may provide a useful insight on the human motor control goal. PMID:26640359