GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.
Heat pump associations, alliances, and allies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Associations, Alliances, and Allies, a seminar and workshop sponsored by the Electric Power Research Institute, was held in Memphis, Tennessee, April 10--11, 1991. The focus of the meeting was relationships forged between electric utilities and trade allies that sell residential heat pumps. one hundred and seven representatives of electric utilities, dealer/contractors, manufacturers, and consultants attended. Electric utility trade ally programs run the gamut from coop advertising to heat pump association to elaborate technician training programs. All utility participants recognize the important programs, since it is the trade ally who sells, installs, and services heat pumps, while it is the electricmore » utility who gets blamed if the heat pumps fail to operate properly or are inefficient. Heat pumps are efficient and effective, but their efficiency and effectiveness depends critically upon the quality of installation and maintenance. A utility can thus help to ensure satisfied customers and can also help to achieve its own load shape objectives by working closely with its trade allies, the dealers, contractors, manufacturers, and distributors. Attendees spent the morning sessions of the two day meeting in plenary sessions, hearing about utility and dealer heat pump programs and issues. Afternoon roundtable discussions provided structured forums to discuss: Advertising; Heat pump association startup and operation; Rebates and incentives; Technician training school and centers; Installation inspection and dealer qualification; and Heat pump association training. These proceedings report on the papers presented in the morning plenary sessions and summarize the main points discussed in the afternoon workshops.« less
Recovery Act: Tennessee Energy Efficient Schools Initiative Ground Source Heat Pump Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, Terry; Slusher, Scott
The Tennessee Energy Efficient Schools Initiative (EESI) Hybrid-Water Source Heat Pump (HY-GSHP) Program sought to provide installation costs and operation costs for different Hybrid water source heat pump systems’ configurations so that other State of Tennessee School Districts will have a resource for comparison purposes if considering a geothermal system.
ENERGY STAR Certified Geothermal Heat Pumps
Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of January 1, 2012. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=geo_heat.pr_crit_geo_heat_pumps
Computational Simulation of a Water-Cooled Heat Pump
NASA Technical Reports Server (NTRS)
Bozarth, Duane
2008-01-01
A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
IEA HPT ANNEX 41 – Cold climate heat pumps: US country report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groll, Eckhard A.; Baxter, Van D.
In 2012 the International Energy Agency (IEA) Heat Pump Programme (now the Heat Pump Technologies (HPT) program) established Annex 41 to investigate technology solutions to improve performance of heat pumps for cold climates. Four IEA HPT member countries are participating in the Annex – Austria, Canada, Japan, and the United States (U.S.). The principal focus of Annex 41 is on electrically driven air-source heat pumps (ASHP) since that system type has the lowest installation cost of all heat pump alternatives. They also have the most significant performance challenges given their inherent efficiency and capacity issues at cold outdoor temperatures. Availabilitymore » of ASHPs with improved low ambient performance would help bring about a much stronger heat pump market presence in cold areas, which today rely predominantly on fossil fuel furnace heating systems.« less
Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, Alan L.; Anderson, David M.; Winiarski, David W.
2015-03-17
This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.
Development of a nonazeotropic heat pump for crew hygiene water heating
NASA Technical Reports Server (NTRS)
Walker, David H.; Deming, Glenn I.
1991-01-01
A Phase 2 SBIR Program funded by the NASA Marshall Space Flight Center to develop a Nonazeotropic Heat Pump is described. The heat pump system which was designed, fabricated, and tested in the Foster-Miller laboratory, is capable of providing crew hygiene water heating for future manned missions. The heat pump utilizes a nonazeotropic refrigerant mixture which, in this application, provides a significant Coefficient of Performance improvement over a single-constituent working fluid. In order to take full advantage of the refrigerant mixture, compact tube-in-tube heat exchangers were designed. A high efficiency scroll compressor with a proprietary lubrication system was developed to meet the requirements of operation in zero-gravity. The prototype heat pump system consumes less than 200W of power compared to the alternative of electric cartridge heaters which would require 2 to 5 kW.
Ground-source heat pump case studies and utility programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienau, P.J.; Boyd, T.L.; Rogers, R.L.
1995-04-01
Ground-source heat pump systems are one of the promising new energy technologies that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to consumers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school and commercial building applications. In order to verify the performance, information was collected for 253 case studies from mainly utilities throughout the United States. The casemore » studies were compiled into a database. The database was organized into general information, system information, ground system information, system performance, and additional information. Information was developed on the status of demand-side management of ground-source heat pump programs for about 60 electric utility and rural electric cooperatives on marketing, incentive programs, barriers to market penetration, number units installed in service area, and benefits.« less
Diaphragm Stirling engine heat-actuated heat pump development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ackermann, R.A.; Swenson, P.
1981-01-01
The objective of this program is to develop and demonstrate the performance of a diaphragm Stirling engine heat-actuated heat pump power module. The power module, consisting of a free displacer, resonant Stirling engine, hydraulic transmission, and resonant Rankine refrigerant (F-22) compressor, embodies several innovative concepts in free-piston Stirling engine heat pump design that will advance the state of the art of this technology. Progress is reported in three areas of the program. First, a compressor/engine matching analysis and a stability analysis have shown that the power module, which is representative of a two-degree-of-freedom resonant system, will operate stably over themore » full range of heat pump conditions. Second, a compressor design has evolved that has met criteria for performance and cost; and third, tests employing a hydraulic simulator test rig has shown that the transmission losses are less than had been predicted, and that properly designed and fabricated diaphragms can attain long life.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-25
... Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy... must identify the framework document for packaged terminal air conditioners and packaged terminal heat... packaged terminal air conditioners and packaged terminal heat pumps. 78 FR 12252. The document provided for...
Thermodynamic and economic analysis of heat pumps for energy recovery in industrial processes
NASA Astrophysics Data System (ADS)
Urdaneta-B, A. H.; Schmidt, P. S.
1980-09-01
A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit.
NASA Technical Reports Server (NTRS)
Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.
1994-01-01
A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.
Transient Analysis of a Magnetic Heat Pump
NASA Technical Reports Server (NTRS)
Schroeder, E. A.
1985-01-01
An experimental heat pump that uses a rare earth element as the refrigerant is modeled using NASTRAN. The refrigerant is a ferromagnetic metal whose temperature rises when a magnetic field is applied and falls when the magnetic field is removed. The heat pump is used as a refrigerator to remove heat from a reservoir and discharge it through a heat exchanger. In the NASTRAN model the components modeled are represented by one-dimensional ROD elements. Heat flow in the solids and fluid are analyzed. The problem is mildly nonlinear since the heat capacity of the refrigerant is temperature-dependent. One simulation run consists of a series of transient analyses, each representing one stroke of the heat pump. An auxiliary program was written that uses the results of one NASTRAN analysis to generate data for the next NASTRAN analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... Altherma system, which consists of an air-to-water heat pump that provides hydronic heating and cooling as... Altherma system consists of an air-to-water heat pump that provides hydronic space heating and cooling as well as domestic hot water functions. It operates either as a split system with the compressor unit...
Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Josh A. Salmond
2009-08-07
The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and lowmore » residual stresses. The products fabricated are used on multiple programs.« less
Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump
Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/
Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Podorson, David; Varshney, Kapil
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, J.; Podorson, D.; Varshney, K.
2014-05-01
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
International Energy Agency's Heat Pump Centre (IEA-HPC) Annual National Team Working Group Meeting
NASA Astrophysics Data System (ADS)
Broders, M. A.
1992-09-01
The traveler, serving as Delegate from the United States Advanced Heat Pump National Team, participated in the activities of the fourth IEA-HPC National Team Working Group meeting. Highlights of this meeting included review and discussion of 1992 IEA-HPC activities and accomplishments, introduction of the Switzerland National Team, and development of the 1993 IEA-HPC work program. The traveler also gave a formal presentation about the Development and Activities of the IEA Advanced Heat Pump U.S. National Team.
NASA Astrophysics Data System (ADS)
Timofeev, D. V.; Malyavina, E. G.
2017-11-01
The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
... contractors in the product supply chain. The Department is considering these approaches or some combination of... Conditioners and Heat Pumps AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy... efficiency standards for residential furnaces and residential central air conditioners and heat pumps. DOE...
Solar heating, cooling, and hot water systems installed at Richland, Washington
NASA Technical Reports Server (NTRS)
1979-01-01
The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.
Expert System For Heat Exchanger
NASA Technical Reports Server (NTRS)
Bagby, D. Gordon; Cormier, Reginald A.
1991-01-01
Diagnosis simplified for non-engineers. Developmental expert-system computer program assists operator in controlling, monitoring operation, diagnosing malfunctions, and ordering repairs of heat-exchanger system dissipating heat generated by 20-kW radio transmitter. System includes not only heat exchanger but also pumps, fans, sensors, valves, reservoir, and associated plumbing. Program conceived to assist operator while avoiding cost of keeping engineer in full-time attendance. Similar programs developed for heating, ventilating, and air-conditioning systems.
Assessment of the US Department of Energy's Sustainable Energy Resources for Consumers Grant Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenahan, Tim; Bausch, Daniel; Carroll, David
This report presents the results of an assessment of the Sustainable Energy Resources for Consumers (SERC) grant program that was administered by the US Department of Energy Weatherization and Intergovernmental Program Office. Grants totaling $90 million were awarded to 101 local weatherization agencies located in 27 states. More than 15,000 housing units were touched by the SERC program. Close to 29,000 SERC technologies were installed and/or services delivered. The report summarizes the results of site visits to 27 agencies in which the following 14 technologies were observed: solar photovoltaic panels, solar hot water heaters, solar thermal air panels for spacemore » heating, tankless water heaters, heat pump water heaters, geothermal heat pumps, super-evaporative cooling systems, combination boilers and indirect water heaters, small-scale residential wind systems, cool roofs, masonry spray foam insulation, attic radiant barriers, mini-split heat pumps, and in-home energy monitors. The evaluation found that the national weatherization network is capable of installing and delivering a wide range of new and innovative technologies, but the usability and adoptability of some technologies may prove impractical for the weatherization network and the demographic for which it serves.« less
Advanced spacecraft thermal control techniques
NASA Technical Reports Server (NTRS)
Fritz, C. H.
1977-01-01
The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-17
... any person wishing to bring a laptop computer into the Forrestal Building will be required to obtain a...; VRF water-source heat pumps at or greater than 135,000 Btu/h; and computer room air conditioners. DOE...-created classes of variable refrigerant flow air conditioners and heat pumps, ASHRAE 127 for computer room...
Testing of a heat pump clothes dryer. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, D.; Dieckmann, J.; Mallory, D.
1995-05-01
The integration of a heat pump heat source into a clothes dryer has been investigated by several U.S. and foreign appliance developers and manufacturers but no commercial or residential heat pump clothes dryers are currently available in North America. The objectives of this effort were to: (1) Evaluate a heat pump dryer prototype relative to residential dryer performance tests. (2) Quantify the product limitations. (3) Suggest design changes that would reduce the impact of the limitations or that have a positive impact on the benefits. (4) Position the product relative to utility DSM/IRP opportunities (e.g., reduced connected load, or energymore » conservation). (5) Develop preliminary cost data The program evaluated the performance of a prototype closed-cycle heat pump clothes dryer designed and built by the Nyle Corporation. The prototype design goals were: (1) Drying times equivalent to a conventional electric clothes dryer. (2) 60% reduction in energy consumption. (3) Effective lint removal (to prevent coil fouling). (4) Cool-down mode performance similar to conventional dryer. (5) 20 lb load capacity. (6) Low temperature dry for reduced clothes wrinkle. Test results indicated that the closed-cycle heat pump met some of the above mentioned goals but it fell short with respect to energy savings and dry time. Performance improvement recommendations were developed for the closed-cycle dryer approach. In addition, the closed-cycle design potential was compared to an open-cycle heat pump dryer configuration.« less
Energy dashboard for real-time evaluation of a heat pump assisted solar thermal system
NASA Astrophysics Data System (ADS)
Lotz, David Allen
The emergence of net-zero energy buildings, buildings that generate at least as much energy as they consume, has lead to greater use of renewable energy sources such as solar thermal energy. One example is a heat pump assisted solar thermal system, which uses solar thermal collectors with an electrical heat pump backup to supply space heating and domestic hot water. The complexity of such a system can be somewhat problematic for monitoring and maintaining a high level of performance. Therefore, an energy dashboard was developed to provide comprehensive and user friendly performance metrics for a solar heat pump system. Once developed, the energy dashboard was tested over a two-week period in order to determine the functionality of the dashboard program as well as the performance of the heating system itself. The results showed the importance of a user friendly display and how each metric could be used to better maintain and evaluate an energy system. In particular, Energy Factor (EF), which is the ratio of output energy (collected energy) to input energy (consumed energy), was a key metric for summarizing the performance of the heating system. Furthermore, the average EF of the solar heat pump system was 2.29, indicating an efficiency significantly higher than traditional electrical heating systems.
Millwright Apprenticeship. Related Training Modules. 9.1-9.7 Pumps.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This packet, part of the instructional materials for the Oregon apprenticeship program for millwright training, contains seven modules covering pumps. The modules provide information on the following topics: types and classification of pumps, applications, construction, calculating heat and flow, operation, monitoring and troubleshooting, and…
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers...
Design of a CO2 Twin Rotary Compressor for a Heat Pump Water Heater
NASA Astrophysics Data System (ADS)
Ahn, Jong Min; Kim, Woo Young; Kim, Hyun Jin; Cho, Sung Oug; Seo, Jong Cheun
2010-06-01
For a CO2 heat pump water heater, one-stage twin rotary compressor has been designed. As a design tool, computer simulation program for the compressor performance has been made. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Good agreement on P-V diagram between the simulation and the test was also obtained. With this validated compressor simulation program, parametric study has been performed to arrive at optimum dimensions for the compression chamber.
Waste-Heat-Driven Cooling Using Complex Compound Sorbents
NASA Technical Reports Server (NTRS)
Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh
2004-01-01
Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.
NASA Astrophysics Data System (ADS)
Kauffeld, Michael; Mulroy, William; McLinden, Mark; Didion, David
1990-02-01
As part of the Department of Energy/Oak Ridge National Laboratory Building Equipment Research program, the National Institute of Standards and Technology constructed an experimental, easily reconfigurable, water-to-water, breadboard heat pump apparatus in order to compare pure R22 to nonazeotropic refrigerant mixtures. Performance of the heat pump charged with a range of compositions of the binary mixtures R22/RI14 and R13/R12 were compared to R22. The advantage claimed for mixtures in this application is improved thermodynamic efficiency as a result of gliding refrigerant temperatures in the evaporator and condenser in low lift, high glide applications typical of air conditioning.
Preliminary design activities for solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.
High Efficiency, High Performance Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter Pescatore; Phil Carbone
This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for bothmore » dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a gas dryer, significant time and energy savings, combined with dramatically reduced fabric temperatures, was achieved in a cost-effective manner. The key design factor lay in developing a system that matches the heat input to the dryer with the fabrics ability to absorb it. The development work done on the modulating gas dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) Up to 25% reduction in energy consumption for small and medium loads; (2) Up to 35% time savings for large loads with 10-15% energy reduction and no adverse effect on cloth temperatures; (3) Reduced fabric temperatures, dry times and 18% energy reduction for delicate loads; and, (4) Robust performance across a range of vent restrictions.« less
NASA Astrophysics Data System (ADS)
Offner, Avshalom; Ramon, Guy Z.
2016-11-01
Thermoacoustic phenomena - conversion of heat to acoustic oscillations - may be harnessed for construction of reliable, practically maintenance-free engines and heat pumps. Specifically, miniaturization of thermoacoustic devices holds great promise for cooling of micro-electronic components. However, as devices size is pushed down to micro-meter scale it is expected that non-negligible slip effects will exist at the solid-fluid interface. Accordingly, new theoretical models for thermoacoustic engines and heat pumps were derived, accounting for a slip boundary condition. These models are essential for the design process of micro-scale thermoacoustic devices that will operate under ultrasonic frequencies. Stability curves for engines - representing the onset of self-sustained oscillations - were calculated with both no-slip and slip boundary conditions, revealing improvement in the performance of engines with slip at the resonance frequency range applicable for micro-scale devices. Maximum achievable temperature differences curves for thermoacoustic heat pumps were calculated, revealing the negative effect of slip on the ability to pump heat up a temperature gradient. The authors acknowledge the support from the Nancy and Stephen Grand Technion Energy Program (GTEP).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps M Appendix M to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. M Appendix M to Subpart B of...
Free-piston Stirling Engine system considerations for various space power applications
NASA Technical Reports Server (NTRS)
Dochat, George R.; Dhar, Manmohan
1991-01-01
Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... rating the Altherma products in Europe. The test procedures are EN 14511 ``Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for space heating and cooling'' and... rated according to European Standard EN 14511, ``Air conditioners, liquid chilling packages and heat...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, J.D.
1995-11-01
The Federal Government is the largest single energy consumer in the United States; consumption approaches 1.5 quads/year of energy (1 quad = 10{sup 15} Btu) at a cost valued at nearly $10 billion annually. The US Department of Energy (DOE) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the Federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US Government. Pacific Northwest Laboratory (PNL) is one of four DOE national multiprogram laboratories that participate in themore » NTDP by providing technical expertise and equipment to evaluate new, energy-saving technologies being studied and evaluated under that program. This two-volume report describes a field evaluation that PNL conducted for DOE/FEMP and the US Department of Defense (DoD) Strategic Environmental Research and Development Program (SERDP) to examine the performance of a candidate energy-saving technology -- a gas-engine-driven heat pump. The unit was installed at a single residence at Fort Sam Houston, a US Army base in San Antonio, Texas, and the performance was monitored under the NTDP. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) were York International, the heat pump manufacturer; Gas Research Institute (GRI), the technology developer; City Public Service of San Antonio, the local utility; American Gas Cooling Center (AGCC); Fort Sam Houston; and PNL.« less
Geothermal Heat Pump Basics | NREL
a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly
Capillary-Condenser-Pumped Heat-Transfer Loop
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1989-01-01
Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.
Thermal management system technology development for space station applications
NASA Technical Reports Server (NTRS)
Rankin, J. G.; Marshall, P. F.
1983-01-01
A short discussion of the history to date of the NASA thermal management system technology development program is presented, and the current status of several ongoing studies and hardware demonstration tasks is reported. One element of technology that is required for long-life, high-power orbital platforms/stations that is being developed is heat rejection and a space-constructable radiator system. Aspects of this project include high-efficiency fin concepts, a heat pipe quick-disconnect device, high-capacity heat pipes, and an alternate interface heat exchanger design. In the area of heat acquisition and transport, developments in a pumped two-phase transport loop, a capillary pumped transport loop using the concept of thermal utility are reported. An example of a thermal management system concept is provided.
Energy Systems Training Programs and Certifications Survey White Paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Daryl; Nimbalkar, Sachin U.; Wenning, Thomas J.
2017-02-01
Compressed air system, industrial refrigeration system, chilled water system, pump system, fan system, steam system, process heating system, and combined heat and power system are the major industrial energy systems. By helping enhance knowledge and skills of workforce, training and certification programs on these systems are essential to improve energy efficiency of manufacturing facilities. A literature survey of currently available training and certification programs on these systems was conducted.
Sensitivity analysis on the performances of a closed-loop Ground Source Heat Pump
NASA Astrophysics Data System (ADS)
Casasso, Alessandro; Sethi, Rajandrea
2014-05-01
Ground Source Heat Pumps (GSHP) permit to achieve a significant reduction of greenhouse gas emissions, and the margins for economic saving of this technology are strongly correlated to the long-term sustainability of the exploitation of the heat stored in the soil. The operation of a GSHP over its lifetime should be therefore modelled considering realistic conditions, and a thorough characterization of the physical properties of the soil is essential to avoid large errors of prediction. In this work, a BHE modelling procedure with the finite-element code FEFLOW is presented. Starting from the governing equations of the heat transport in the soil around a GSHP and inside the BHE, the most important parameters are individuated and the adopted program settings are explained. A sensitivity analysis is then carried on both the design parameters of the heat exchanger, in order to understand the margins of improvement of a careful design and installation, and the physical properties of the soil, with the aim of quantifying the uncertainty induced by their variability. The relative importance of each parameter is therefore assessed by comparing the statistical distributions of the fluid temperatures and estimating the energy consumption of the heat pump, and practical conclusions are from these results about the site characterization, the design and the installation of a BHE. References Casasso A., Sethi R., 2014 Efficiency of closed loop geothermal heat pumps: A sensitivity analysis, Renewable Energy 62 (2014), pp. 737-746 Chiasson A.C., Rees S.J., Spitler J.D., 2000, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (2000), pp. 380-393 Delaleux F., Py X., Olives R., Dominguez A., 2012, Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity, Applied Thermal Engineering 33-34, pp. 92-99 Diao N., Li Q., Fang Z., 2004, Heat transfer in ground heat exchangers with groundwater advection, International Journal of Thermal Sciences 43, pp. 1203-1211 Michopoulos A., Kyriakis N., 2010, The influence of a vertical ground heat exchanger length on the electricity consumption of the heat pumps, Renewable Energy 35 (2010), pp. 1403-1407
NASA Technical Reports Server (NTRS)
Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.
1994-01-01
This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were analyzed in ideal single and two-stage thermodynamic cycles. Top candidates were analyzed assuming realistic component limits and system pressure drops, and were evaluated for other considerations such as safety, environmental impact, and commercial availability. A maximum coefficient of performance (COP) of 56 percent of the Carnot ideal was achievable for a three-stage CFC-11 cycle operating under the flight conditions above. The program was completed by defining a control scheme and by researching and selecting the major components, compressor and heat exchangers, that could be used to implement the thermodynamic cycle selected. Special attention was paid to using similar technologies for the SIRF and flight heat pumps resulting in the commercially available equivalent of the flight unit. A package concept was generated for the components selected and mass and volume estimated.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
... of a central air conditioner which is designed to remove the heat absorbed by the refrigerant and to... heat absorbed by the refrigerant and to transfer it to the outside environment, and which consists of... pump that is designed to transfer heat between the refrigerant and the outdoor air, and which consists...
EPA has created the Environmental Technology Verification program to provide high quality, peer reviewed data on technology performance. This data is expected to accelerate the acceptance and use of improved environmental protection technologies. The Greenhouse Gas Technology C...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, D.; Sutherland, K.; Chasar, D.
The U.S. Department of Energy (DOE) Building America program, in collaboration with Florida Power and Light (FPL), conducted a phased residential energy-efficiency retrofit program. This research sought to establish impacts on annual energy and peak energy reductions from the technologies applied at two levels of retrofit - shallow and deep, with savings levels approaching the Building America program goals of reducing whole-house energy use by 40%. Under the Phased Deep Retrofit (PDR) project, we have installed phased, energy-efficiency retrofits in a sample of 56 existing, all-electric homes. End-use savings and economic evaluation results from the phased measure packages and singlemore » measures are summarized in this report. Project results will be of interest to utility program designers, weatherization evaluators, and the housing remodel industry. Shallow retrofits were conducted in all homes from March to June 2013. The measures for this phase were chosen based on ease of installation, targeting lighting (CFLs and LED lamps), domestic hot water (wraps and showerheads), refrigeration (cleaning of coils), pool pump (reduction of operating hours), and the home entertainment center (smart plugs). Deep retrofits were conducted on a subset of ten PDR homes from May 2013 through March 2014. Measures included new air source heat pumps, duct repair, ceiling insulation, heat pump water heaters, variable speed pool pumps and learning thermostats. Major appliances such as refrigerators and dishwashers were replaced where they were old and inefficient.« less
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Go, Byeong-Soo; Jiang, Zhenan; Park, Minwon; Yu, In-Keun
2016-11-01
The development of an effective high-temperature superconducting (HTS) generator is currently a research focus; however, the reduction of heat loss of a large-scale HTS generator is a challenge. This study deals with a heat loss analysis-based design of a 12 MW wind power generator module having an HTS flux pump exciter. The generator module consists of an HTS rotor of the generator and an HTS flux pump exciter. The specifications of the module were described, and the detailed configuration of the module was illustrated. For the heat loss analysis of the module, the excitation loss of the flux pump exciter, eddy current loss of all of the structures in the module, radiation loss, and conduction loss of an HTS coil supporter were assessed using a 3D finite elements method program. In the case of the conduction loss, different types of the supporters were compared to find out the supporter of the lowest conduction loss in the module. The heat loss analysis results of the module were reflected in the design of the generator module and discussed in detail. The results will be applied to the design of large-scale superconducting generators for wind turbines including a cooling system.
Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs
2009-03-26
of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aschliman, Dave; Lubbehusen, Mike
2015-06-30
This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of themore » data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode« less
User's manual for the Heat Pipe Space Radiator design and analysis Code (HEPSPARC)
NASA Technical Reports Server (NTRS)
Hainley, Donald C.
1991-01-01
A heat pipe space radiatior code (HEPSPARC), was written for the NASA Lewis Research Center and is used for the design and analysis of a radiator that is constructed from a pumped fluid loop that transfers heat to the evaporative section of heat pipes. This manual is designed to familiarize the user with this new code and to serve as a reference for its use. This manual documents the completed work and is intended to be the first step towards verification of the HEPSPARC code. Details are furnished to provide a description of all the requirements and variables used in the design and analysis of a combined pumped loop/heat pipe radiator system. A description of the subroutines used in the program is furnished for those interested in understanding its detailed workings.
NASA Technical Reports Server (NTRS)
Jones, Jack A.
2004-01-01
The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.
Heat-Powered Pump for Liquid Metals
NASA Technical Reports Server (NTRS)
Campana, R. J.
1986-01-01
Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
"The BAPIRC team and Florida Power and Light (FPL) electric utility pursued a pilot phased energy-efficiency retrofit program in Florida by creating detailed data on the energy and economic performance of two levels of retrofit - simple and deep. For this Phased Deep Retrofit (PDR) project, a total of 56 homes spread across the utility partner's territory in east central Florida, southeast Florida, and southwest Florida were instrumented between August 2012 and January 2013, and received simple pass-through retrofit measures during the period of March 2013 - June 2013. Ten of these homes received a deeper package of retrofits duringmore » August 2013 - December 2013. A full account of Phase I of this project, including detailed home details and characterization, is found in Parker et al, 2015 (currently in draft). Phase II of this project, which is the focus of this report, applied the following additional retrofit measures to select homes that received a shallow retrofit in Phase I: supplemental mini-split heat pump (MSHP) (6 homes), ducted and space coupled heat pump water heater (8 homes), exterior insulation finish system (EIFS) (1 homes), window retrofit (3 homes), smart thermostat (21 homes: 19 NESTs; 2 Lyrics), heat pump clothes dryer (8 homes), and variable speed pool pump (5 homes).« less
Prototype solar heating and cooling systems, including potable hot water
NASA Technical Reports Server (NTRS)
Bloomquist, D.; Oonk, R. L.
1977-01-01
Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.
Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa
Fayose, Folasayo; Huan, Zhongjie
2016-01-01
Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump drying technology as fragile, slow, and high capital intensive when compared with conventional dryer. This paper tried to divulge the principles and potentials of heat pump drying technology and the conditions for its optimum use. Also, various methods of quantifying performances during heat pump drying as well as the quality of the dried products are highlighted. Necessary factors for maximizing the capacity and efficiency of a heat pump dryer were identified. Finally, the erroneous view that heat pump drying is not feasible economically in sub-Saharan Africa was clarified. PMID:26904668
Effectiveness of a heat exchanger in a heat pump clothes dryer
NASA Astrophysics Data System (ADS)
Nasution, A. H.; Sembiring, P. G.; Ambarita, H.
2018-02-01
This paper deals with study on a heat pump clothes dryer coupled with a heat exchanger. The objective is to explore the effects of the heat exchanger on the performance of the heat pump dryer. The heat pump dryer consists of a vapor compression cycle and integrated with a drying room with volume 1 m3. The power of compressor is 800 Watt and the refrigerant of the cycle is R22. The heat exchanger is a flat plate type with dimensions of 400 mm × 400 mm × 400 mm. The results show the present of the heat exchanger increase the performance of the heat pump dryer. In the present experiment the COP, TP and SMER increase 15.11%, 4.81% and 58.62%, respectively. This is because the heat exchanger provides a better drying condition in the drying room with higher temperature and lower relative humidity in comparison with heat pump dryer without heat exchanger. The effectiveness of the heat exchanger is also high, it is above 50%. It is suggested to install a heat exchanger in a heat pump dryer.
Heat pump evaluation for Space Station ATCS evolution
NASA Technical Reports Server (NTRS)
Ames, Brian E.; Petete, Patricia A.
1991-01-01
A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin
2018-02-01
The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... applies to certain basic models of the Daikin Altherma system, which consists of an air-to-water heat pump... pumps, and an application for interim waiver. The Daikin Altherma system consists of an air-to-water... operates either as a split system with the compressor unit outdoors and the hydronic components in an...
NASA Astrophysics Data System (ADS)
Creswick, F. A.
Incentives for the development of gas heat pumps are discussed. Technical progress made on several promising technologies was reviewed. The status of development of gas-engine-driven heat pumps, the absorption cycle for the near- and long-term gas heat pump systems, the Stirling engine, the small Rankine-cycle engines, and gas-turbine-driven heat pump systems were briefly reviewed. Progress in the US, Japan, and Europe is noted.
NASA Astrophysics Data System (ADS)
Choi, M. K.; Morehouse, J. H.; Hughes, P. J.
1981-07-01
An analysis is performed of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating is determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, DC; Fort Worth, Texas; and Madison, Wisconsin. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Fort Worth. Though the ground-coupled stand-alone heat pump provides 51 percent of the heating and cooling load with non-purchased energy in Fort Worth, its thermal performance in Washington and Madison is poor.
Kirol, Lance D.
1988-01-01
A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.
Kirol, L.D.
1987-02-11
A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.
Research and development of a heat-pump water heater. Volume 2. R and D task reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunning, R.L.; Amthor, F.R.; Doyle, E.J.
1978-08-01
The heat pump water heater is a device that works much like a window air conditioner except that heat from the home is pumped into a water tank rather than to the outdoors. The objective established for the device is to operate with a Coefficient of Performance (COP) of 3 or, an input of one unit of electric energy would create three units of heat energy in the form of hot water. With such a COP, the device would use only one-third the energy and at one-third the cost of a standard resistance water heater. This Volume 2 contains themore » final reports of the three major tasks performed in Phase I. In Task 2, a market study identifies the future market and selects an initial target market and channel of distribution, all based on an analysis of the parameters affecting feasibility of the device and the factors that will affect its market acceptance. In the Task 3 report, the results of a design and test program to arrive at final designs of heat pumps for both new water heaters and for retrofitting existing water heaters are presented. In the Task 4 report, a plan for an extensive field demonstration involving use in actual homes is presented. Volume 1 contains a final summary report of the information in Volume 2.« less
Hybrid Heat Pumps Using Selective Water Sorbents (SWS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, M. R.
2006-11-30
The development of the ground-coupled and air-coupled Heating Ventilation and Air-Conditioning (HVAC) system is essential in meeting the goals of Zero Energy Houses (ZEH), a viable concept vigorously pursued under DOE sponsorship. ORNL has a large Habitat for Humanity complex in Lenoir City where modem buildings technology is incorporated on a continual basis. This house of the future is planned for lower and middle income families in the 21st century. The work undertaken in this CRADA is an integral part of meeting DOE's objectives in the Building America program. SWS technology is a prime candidate for reducing the footprint, costmore » and improve the performance of ground-coupled heat pumps. The efficacy of this technique to exchange energy with the ground is a topic of immense interest to DOE, builders and HVAC equipment manufacturers. If successful, the SWS concept will become part of a packaged ZEH kit for affordable and high-end houses. Lennox Industries entered into a CRADA with Oak Ridge National Laboratory in November 2004. Lennox, Inc. agreed to explore ways of using Selective Water Sorbent materials to boost the efficiency of air-coupled heat pumps whereas ORNL concentrated on ground-coupled applications. Lennox supplied ORNL with heat exchangers and heat pump equipment for use at ORNL's Habitat for Humanity site in Lenoir City, Tennessee. Lennox is focused upon air-coupled applications of SWS materials at the Product Development and Research Center in Carrollton, TX.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... capacity ECO-i (commercial) multi- split heat pumps. Through this document, DOE: (1) Solicits comments.... Brenda Edwards, U.S. Department of Energy, Building Technologies Program, Mailstop EE-2J/1000... Technologies Program, 950 L'Enfant Plaza, SW., Suite 600, Washington, DC 20024. Please submit one signed...
Development of a nonazeotropic heat pump for crew hygiene water heating
NASA Technical Reports Server (NTRS)
Walker, David H.; Deming, Glenn I.
1991-01-01
A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-01
... the low-voltage transformer used when testing coil-only residential central air conditioners and heat... the Low-Voltage Transformer Used When Testing Coil- Only Central Air Conditioners and Heat Pumps and... metric, estimating off-mode energy consumption, and selecting the low- voltage transformer in the test...
Thermal and economic assessment of ground-coupled storage for residential solar heat pump systems
NASA Astrophysics Data System (ADS)
Choi, M. K.; Morehouse, J. H.
1980-11-01
This study performed an analysis of ground-coupled stand-alone and series configured solar-assisted liquid-to-air heat pump systems for residences. The year-round thermal performance of these systems for space heating, space cooling, and water heating were determined by simulation and compared against non-ground-coupled solar heat pump systems as well as conventional heating and cooling systems in three geographic locations: Washington, D.C., Fort Worth, Tex., and Madison, Wis. The results indicate that without tax credits a combined solar/ground-coupled heat pump system for space heating and cooling is not cost competitive with conventional systems. Its thermal performance is considerably better than non-ground-coupled solar heat pumps in Forth Worth. Though the ground-coupled stand-alone heat pump provides 51% of the heating and cooling load with non-purchased energy in Forth Worth, its thermal performance in Washington and Madison is poor.
Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
1993-06-01
The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less
NASA Astrophysics Data System (ADS)
Wang, Hong; Duan, Huanlin; Chen, Aidong
2018-02-01
In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.
NASA Astrophysics Data System (ADS)
Vanheyden, L.; Evertz, E.
1980-12-01
Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.
Refrigerant charge management in a heat pump water heater
Chen, Jie; Hampton, Justin W.
2014-06-24
Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.
Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.
Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K
1995-01-01
The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.
A capital cost comparison of commercial ground-source heat pump systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rafferty, K.
1994-06-01
The purpose of the report is to compare capital costs associated with the three designs of ground source heat pumps. Specifically, the costs considered are those associated with the heat source/heat sink or ground source portion of the system. In order to standardize the heat rejection over the three designs, it was assumed that the heat pump loop would operate at a temperature range of 85{degree} (to the heat pumps) to 95{degree} (from the heat pumps) under peak conditions. The assumption of constant loop temperature conditions for all three permits an apples-to-apples comparison of the alternatives.
Cooling system for high speed aircraft
NASA Technical Reports Server (NTRS)
Lawing, P. L.; Pagel, L. L. (Inventor)
1981-01-01
The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.
An energy and cost analysis of residential heat pumps in northern climates
NASA Astrophysics Data System (ADS)
Martin, J. K.; Oneal, D. L.
1980-04-01
Lack of natural gas and high oil prices, combined with the large energy costs of electric resistance heat have forced renewed attention to the heat pump in colder climates. The diversity in heating energy use and cost effectiveness of forty-one currently retailed heat pumps in three northern cities, Boston, Denver, and Minneapolis, were examined. Heat pump heating energy use and annualized life cycle costs were compared with other forms of space heating equipment in those same cities.
Heat pumps in the PESAG supply district
NASA Astrophysics Data System (ADS)
Osterhus, A.
1980-04-01
The paper examines the feasibility of using large scale heat pumps in the PESAG (Paderborner Elektrizitaetswerk und Strassenbahn AG) power supply district. It is shown that due to favorable geological factors in the district which allow the tapping of ground water, the market share for heat pumps will increase steadily. Topics discussed include: calculation of electricity consumption, operating experiences with heat pumps in one- and two-family houses, heat pumps in multifamily houses, and industrially used systems.
24 CFR 3280.702 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-04-01
... (in the case of a heat pump) heating system which includes the refrigerant pump (compressor) and the external heat exchanger. Air conditioning evaporator section means a heat exchanger used to cool or (in the case of a heat pump) heat air for use in comfort cooling (or heating) the living space. Air...
24 CFR 3280.702 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... (in the case of a heat pump) heating system which includes the refrigerant pump (compressor) and the external heat exchanger. Air conditioning evaporator section means a heat exchanger used to cool or (in the case of a heat pump) heat air for use in comfort cooling (or heating) the living space. Air...
The influence of heat sink temperature on the seasonal efficiency of shallow geothermal heat pumps
NASA Astrophysics Data System (ADS)
Pełka, Grzegorz; Luboń, Wojciech; Sowiżdżał, Anna; Malik, Daniel
2017-11-01
Geothermal heat pumps, also known as ground source heat pumps (GSHP), are the most efficient heating and cooling technology utilized nowadays. In the AGH-UST Educational and Research Laboratory of Renewable Energy Sources and Energy Saving in Miękinia, shallow geothermal heat is utilized for heating. In the article, the seasonal efficiency of two geothermal heat pump systems are described during the 2014/2015 heating season, defined as the period between 1st October 2014 and 30th April 2015. The first system has 10.9 kW heating capacity (according to European Standard EN 14511 B0W35) and extracts heat from three vertical geothermal loops at a depth of 80m each. During the heating season, tests warmed up the buffer to 40°C. The second system has a 17.03 kW heating capacity and extracts heat from three vertical geothermal loops at a depth of 100 m each, and the temperature of the buffer was 50°C. During the entire heating season, the water temperatures of the buffers was constant. Seasonal performance factors were calculated, defined as the quotient of heat delivered by a heat pump to the system and the sum of electricity consumed by the compressor, source pump, sink pump and controller of heat pumps. The measurements and calculations give the following results: - The first system was supplied with 13 857 kWh/a of heat and consumed 3 388 kWh/a electricity. The SPF was 4.09 and the average temperature of outlet water from heat pump was 40.8°C, and the average temperature of brine flows into the evaporator was 3.7 °C; - The second system was supplied with 12 545 kWh/a of heat and consumed 3 874 kWh/a electricity. The SPF was 3.24 and the average temperature of outlet water from heat pump was 51.6°C, and the average temperature of brine flows into the evaporator was 5.3°C. To summarize, the data shown above presents the real SPF of the two systems. It will be significant in helping to predict the SPF of objects which will be equipped with ground source heat pumps.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... heating exceeds the high-stage compressor capacity for cooling. Finally, the test procedure must account... test method to cover Hallowell's three-capacity compressor. The two (of three potential) active stages... pumps for the heating mode as follows: a. Conduct one Maximum Temperature Test (H0 1 ), two High...
Closed-Cycle Engine Program Used to Study Brayton Power Conversion
NASA Technical Reports Server (NTRS)
Johnson, Paul K.
2005-01-01
One form of power conversion under consideration in NASA Glenn Research Center's Thermal Energy Conversion Branch is the closed-Brayton-cycle engine. In the tens-of-kilowatts to multimegawatt class, the Brayton engine lends itself to potential space nuclear power applications such as electric propulsion or surface power. The Thermal Energy Conversion Branch has most recently concentrated its Brayton studies on electric propulsion for Prometheus. One piece of software used for evaluating such designs over a limited tradeoff space has been the Closed Cycle Engine Program (CCEP). The CCEP originated in the mid-1980s from a Fortran aircraft engine code known as the Navy/NASA Engine Program (NNEP). Components such as a solar collector, heat exchangers, ducting, a pumped-loop radiator, a nuclear heat source, and radial turbomachinery were added to NNEP, transforming it into a high-fidelity design and performance tool for closed-Brayton-cycle power conversion and heat rejection. CCEP was used in the 1990s in conjunction with the Solar Dynamic Ground Test Demonstration conducted at Glenn. Over the past year, updates were made to CCEP to adapt it for an electric propulsion application. The pumped-loop radiator coolant can now be n-heptane, water, or sodium-potassium (NaK); liquid-metal pump design tables were added to accommodate the NaK fluid. For the reactor and shield, a user can now elect to calculate a higher fidelity mass estimate. In addition, helium-xenon working-fluid properties were recalculated and updated.
77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... distribution of those central air conditioning systems and heat pump systems manufactured after January 1, 2010... system central air conditioners and heat pumps be tested using ``the evaporator coil that is likely to... issued two guidance documents surrounding testing central air conditioner and heat pump systems utilizing...
24 CFR 3280.702 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-04-01
... means that portion of a refrigerated air cooling or (in the case of a heat pump) heating system which includes the refrigerant pump (compressor) and the external heat exchanger. Air conditioning evaporator section means a heat exchanger used to cool or (in the case of a heat pump) heat air for use in comfort...
Development of a hybrid chemical/mechanical heat pump
NASA Technical Reports Server (NTRS)
Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.
1991-01-01
The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.
Development of a Gravity-Insensitive Heat Pump for Lunar Applications
NASA Technical Reports Server (NTRS)
Cole, Gregory S.; Scaringe, Robert P.; Grzyll, Lawrence R.; Ewert, Michael K.
2006-01-01
Mainstream Engineering Corporation is developing a gravity-insensitive system that will allow a vapor-compression-cycle heat pump to be used in both microgravity (10(exp -6)g) and lunar (10(exp -6)g) environments. System capacity is 5 kW to 15 kW at design refrigerant operating conditions of 4.44 C and 60 C evaporating and condensing temperatures, respectively. The current program, performed for NASA Johnson Space Center (JSC) and presented in this paper, includes compressor performance analysis, detailed system design, and thermal analysis. Future efforts, including prototype fabrication, integration of a solar power source and controls, ground-testing, and flight-testing support, are also discussed.
Measured Performance of a Low Temperature Air Source Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.K. Johnson
2013-09-01
A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.C.
An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less
Residential Central Air Conditioning and Heat Pump Installation – Workshop Outcomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Zogg, Robert; Young, Jim
DOE's Building Technologies Office works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption in residential and commercial buildings. This report aims to advance BTO’s energy savings, emissions reduction, and other program goals by identifying research and development (R&D), demonstration and deployment, and other non-regulatory initiatives for improving the design and installation of residential central air conditioners (CAC) and central heat pumps (CHP). Improving the adoption of CAC/CHP design and installation best practices has significant potential to reduce equipment costs, improve indoor air quality and comfort, improve system performance, and most importantly, reducemore » household energy consumption and costs for heating and cooling by addressing a variety of common installation issues.« less
Initial results of stimulated radiation measurements during the HAARP campaign of September 2017
NASA Astrophysics Data System (ADS)
Yellu, A. D.; Scales, W. A.; Mahmoudian, A.; Siefring, C.; Bernhardt, P.
2018-02-01
Initial results of stimulated electromagnetic radiation observed during an ionosphere heating experiment conducted at the High-Frequency Active Auroral Program (HAARP) facility are reported. The frequency of the pump wave used in the heating is in the neighborhood of the third harmonic of the electron cyclotron frequency, and of interest are simulated electromagnetic emissions (SEEs) within ? kHz of the heating frequency known as narrowband SEE (NSEE) and the commonly known wideband SEE (WSEE) which occur within ? kHz of the pump wave frequency. With the transmit power maintained at maximum, and all other conditions of the experiment invariable, the characteristics of NSEE and WSEE as time progresses from the time the transmitter is switched on are detailed in the results. The dependence of the characteristics of the NSEE and WSEE with temporal evolution into the heating cycle are observed to be fundamentally different.
Breadboard RL10-2B low-thrust operating mode (second iteration) test report
NASA Technical Reports Server (NTRS)
Kanic, Paul G.; Kaldor, Raymond B.; Watkins, Pia M.
1988-01-01
Cryogenic rocket engines requiring a cooling process to thermally condition the engine to operating temperature can be made more efficient if cooling propellants can be burned. Tank head idle and pumped idle modes can be used to burn propellants employed for cooling, thereby providing useful thrust. Such idle modes required the use of a heat exchanger to vaporize oxygen prior to injection into the combustion chamber. During December 1988, Pratt and Whitney conducted a series of engine hot firing demonstrating the operation of two new, previously untested oxidizer heat exchanger designs. The program was a second iteration of previous low thrust testing conducted in 1984, during which a first-generation heat exchanger design was used. Although operation was demonstrated at tank head idle and pumped idle, the engine experienced instability when propellants could not be supplied to the heat exchanger at design conditions.
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
2016-01-01
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
NASA Astrophysics Data System (ADS)
Januševičius, Karolis; Streckienė, Giedrė
2013-12-01
In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of renewable energy use in total energy balance of country. The presented paper describes a simulation study of solar assisted heat pump systems carried out in TRNSYS. The purpose of this simulation was to investigate how the performance of a solar assisted heat pump combination varies in near zero energy building. Results of three systems were compared to autonomous (independent) systems simulated performance. Different solar assisted heat pump design solutions with serial and parallel solar thermal collector connections to the heat pump loop were modelled and a passive cooling possibility was assessed. Simulations were performed for three Baltic countries: Lithuania, Latvia and Estonia.
Magnetic heat pump flow director
NASA Technical Reports Server (NTRS)
Howard, Frank S. (Inventor)
1995-01-01
A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.
Development and application of soil coupled heat pump
NASA Astrophysics Data System (ADS)
Liu, Lu
2017-05-01
Soil coupled heat pump technology is a new clean heating mode, is the world's most energy efficient heating one of the ways. And because of the use of renewable geothermal resources with high heating performance so more and more people's attention. Although the use of soil-coupled heat pumps has been in use for more than 50 years (the first application in the United States), the market penetration of this technology is still in its infancy. This paper will focus on the development, characteristics and application of the coupled heat pump.
NASA Technical Reports Server (NTRS)
Walker, D.; Fischbach, D.; Tetreault, R.
1996-01-01
The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.
Comparative analysis of heat pump and biomass boiler for small detached house heating
NASA Astrophysics Data System (ADS)
Olkowski, Tomasz; Lipiński, Seweryn; Olędzka, Aneta
2017-10-01
The purpose of the work is to answer the question - which of the two selected heat sources is more economically beneficial for small detached house: heat pump or biomass boiler fuelled with wood-pellets? The comparative analysis of these sources was carried out to discuss the issue. First, cost of both, equipment and operation of selected heat systems were analysed. Additionally, CO2 emission levels associated with these heat systems were determined. The comparative analysis of the costs of both considered heat systems showed that equipment cost of heat pump system is considerably bigger than the cost of biomass boiler system. The comparison of annual operation costs showed that heat pump operation cost is slightly lower than operation cost of biomass boiler. The analysis of above results shows that lower operation cost of heat pump in comparison with biomass boiler cost lets qualify heat pump as more economically justified only after 38 years of work. For both analysed devices, CO2 emission levels were determined. The considerations take into account the fact that heat pump consumes electricity. It is mostly generated through combustion of coal in Poland. The results show that in Poland biomass boiler can be described as not only more economically justified system but also as considerably more ecological.
Magnetic Heat Pump Containing Flow Diverters
NASA Technical Reports Server (NTRS)
Howard, Frank S.
1995-01-01
Proposed magnetic heat pump contains flow diverters for suppression of undesired flows. If left unchecked, undesired flows mix substantial amounts of partially heated and partially cooled portions of working fluid, effectively causing leakage of heat from heated side to cooled side. By reducing leakage of heat, flow diverters increase energy efficiency of magnetic heat pump, potentially offering efficiency greater than compressor-driven refrigerator.
Malone-brayton cycle engine/heat pump
NASA Astrophysics Data System (ADS)
Gilmour, Thomas A.
1994-07-01
A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.
Gas Fride Heat Pumps : The Present and Future
NASA Astrophysics Data System (ADS)
Kurosawa, Shigekichi; Ogura, Masao
In japan techniques for saving energy is an important goal since energy resources such as oil and nuclear power are limited. Recently gas fired absorption heat pumps and gas engine driven heat pumps have been installed in facilifies such as hotels, swimming pools and offices.
In this article recent techniques, applications and future aspects for gas fired heat pumps are explained.
New and future heat pump technologies
NASA Astrophysics Data System (ADS)
Creswick, F. A.
It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.
Heat transfer in an evaporation-condensation system in simulated weightlessness conditions
NASA Astrophysics Data System (ADS)
Bologa, M. K.; Grosu, F. P.; Kozhevnikov, I. V.; Motorin, O. V.; Polikarpov, A. A.
2017-10-01
The process of heat transfer in an evaporation-condensation system (ECS) at circulation of dielectric liquid in a closed thermoelectrohydrodynamic (TEHD) loop consisting of an evaporator, a condenser and electrohydrodynamic (EHD) pump for pumping of heat carrier, is considered. Previously, the authors studied the dependence of heat transfer on the angle of rotation of TEHD loop in a vertical plane. The report contains the results of studies of heat transfer at electrohydrodynamic pumping of the heat carrier (8% solution of acetone in Freon 113) in the condenser area by means of EHD pump of “cone-cone” type. All elements of the ECS are arranged in a horizontal plane and the heat transfer from the heater to the condenser without EHD pumping is impossible. A pulsating heat carrier flow mode, depending on the heat input and the voltage applied to the pump, takes place at EHD pumping. As the input power is decreasing the frequency of the coolant pulsations as well as the departure diameter and number of vapour bubbles are also decreasing. At some critical heat input the pulsations disappear and the transition from turbulent mode to the laminar one takes place causing the decrease of the heat transfer coefficient. The increase of the pumping flow rate by raising the voltage applied to the EHD pump, results in a partial suppression of boiling. The maximum intensification of heat transfer is reached at pulsation frequency of 1.25 Hz. The maximum heat flow from the heater was 4.2·104 W/m2. Graphical representation and the physical interpretation of the results, which reflect the essence of the process, are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb Aldrich; Lois Arena; Dianne Griffiths
2010-12-31
This final report summarizes the work conducted by the Consortium of Advanced Residential Buildings (CARB) (http://www.carb-swa.com/), one of the 'Building America Energy Efficient Housing Partnership' Industry Teams, for the period January 1, 2008 to December 31, 2010. The Building America Program (BAP) is part of the Department of Energy (DOE), Energy Efficiency and Renewable Energy, Building Technologies Program (BTP). The long term goal of the BAP is to develop cost effective, production ready systems in five major climate zones that will result in zero energy homes (ZEH) that produce as much energy as they use on an annual basis bymore » 2020. CARB is led by Steven Winter Associates, Inc. with Davis Energy Group, Inc. (DEG), MaGrann Associates, and Johnson Research, LLC as team members. In partnership with our numerous builders and industry partners, work was performed in three primary areas - advanced systems research, prototype home development, and technical support for communities of high performance homes. Our advanced systems research work focuses on developing a better understanding of the installed performance of advanced technology systems when integrated in a whole-house scenario. Technology systems researched included: - High-R Wall Assemblies - Non-Ducted Air-Source Heat Pumps - Low-Load HVAC Systems - Solar Thermal Water Heating - Ventilation Systems - Cold-Climate Ground and Air Source Heat Pumps - Hot/Dry Climate Air-to-Water Heat Pump - Condensing Boilers - Evaporative condensers - Water Heating CARB continued to support several prototype home projects in the design and specification phase. These projects are located in all five program climate regions and most are targeting greater than 50% source energy savings over the Building America Benchmark home. CARB provided technical support and developed builder project case studies to be included in near-term Joule Milestone reports for the following community scale projects: - SBER Overlook at Clipper Mill (mixed, humid climate) - William Ryan Homes - Tampa (hot, humid climate).« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... require the use of heat pump technology to meet the minimum standard for electric storage water heaters... recently amended energy conservation standards for residential electric water heaters on utility programs that use high-storage-volume (above 55 gallons) electric storage water heaters to reduce peak...
The role of gas heat pumps in electric DSM
NASA Astrophysics Data System (ADS)
Fulmer, M.; Hughes, P. J.
1993-05-01
Natural gas-fired heat pumps (GHP's), an emerging technology, may offer environmental economic, and energy benefits relative to standard and advanced space conditioning equipment now on the market. This paper describes an analysis of GHP's for residential space heating, and cooling relative to major competing technologies under an Integrated Resource (IRP) framework. Our study models a hypothetical GHP rebate program using conditions typical of the Great Lakes region. The analysis is performed for a base scenario with sensitivity cases. In the base scenario, the GHP program is cost-effective according to the societal test, total resource cost test (TRC), and the participant test, but is not cost-effective according to the non-participant test. The sensitivity analyses indicate that the results for the TRC test are most sensitive to the season in which electric demand peaks and the technology against which the GHP's are competing, and are less sensitive to changes in the marginal administrative costs. The modeled GHP program would save 900 million kWh over the life of the program and reduce peak load by about 100 MW in winter and about 135 MW in summer. We estimate all of the GHP's in service (both GHP's of program participants and nonparticipants) in the case study region would save 1,900 million kWh and reduce summer peak load by over 350 MW.
Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems
NASA Astrophysics Data System (ADS)
Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.
The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2014 CFR
2014-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2010 CFR
2010-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
7 CFR 1721.104 - Eligible purposes.
Code of Federal Regulations, 2011 CFR
2011-01-01
... measures: (i) Caulking; (ii) Weather-stripping; (iii) Heat pump systems (including water source heat pumps); (iv) Heat pumps, water heaters, and central heating or central air conditioning system replacements or modifications, which reduce energy consumption; (v) Ceiling insulation; (vi) Wall insulation; (vii) Floor...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Rice, C Keith; Abdelaziz, Omar
2015-01-01
This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.
A regional comparison of solar, heat pump, and solar-heat pump systems
NASA Astrophysics Data System (ADS)
Manton, B. E.; Mitchell, J. W.
1982-08-01
A comparative study of the thermal and economic performance of the parallel and series solar heat pump systems, stand alone solar and stand alone heat pump systems for residential space and domestic hot water heating for the U.S. using FCHART 4.0 is presented. Results show that the parallel solar heat pump system yields the greatest energy savings in the south. Very low cost collectors (50-150 dollars/sq m) are required for a series solar heat pump system in order for it to compete economically with the better of the parallel or solar systems. Conventional oil or gas furnaces need to have a seasonal efficiency of at least 70-85% in order to save as much primary energy as the best primary system in the northeast. In addition, the implications of these results for current or proposed federal tax credit measures are discussed.
NASA Technical Reports Server (NTRS)
1981-01-01
The liquid rocket propulsion technology needs to support anticipated future space vehicles were examined including any special action needs to be taken to assure that an industrial base in substained. Propulsion system requirements of Earth-to-orbit vehicles, orbital transfer vehicles, and planetary missions were evaluated. Areas of the fundamental technology program undertaking these needs discussed include: pumps and pump drives; combustion heat transfer; nozzle aerodynamics; low gravity cryogenic fluid management; and component and system life reliability, and maintenance. The primary conclusion is that continued development of the shuttle main engine system to achieve design performance and life should be the highest priority in the rocket engine program.
Frostless heat pump having thermal expansion valves
Chen, Fang C [Knoxville, TN; Mei, Viung C [Oak Ridge, TN
2002-10-22
A heat pump system having an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant and further having a compressor, an interior heat exchanger, an exterior heat exchanger, a heat pump reversing valve, an accumulator, a thermal expansion valve having a remote sensing bulb disposed in heat transferable contact with the refrigerant piping section between said accumulator and said reversing valve, an outdoor temperature sensor, and a first means for heating said remote sensing bulb in response to said outdoor temperature sensor thereby opening said thermal expansion valve to raise suction pressure in order to mitigate defrosting of said exterior heat exchanger wherein said heat pump continues to operate in a heating mode.
Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump
NASA Astrophysics Data System (ADS)
Kowalska, Kinga; Ambrożek, Bogdan
2017-12-01
The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling
Kusters, R W J; Simons, A P; Lancé, M D; Ganushchak, Y M; Bekers, O; Weerwind, P W
2017-01-01
Low-flow extracorporeal life support can be used for cardiopulmonary support of paediatric and neonatal patients and is also emerging as a therapy for patients suffering from exacerbation of chronic obstructive pulmonary disease. However, pump heating and haemolysis have proven to negatively affect the system and outcome. This in vitro study aimed at gaining insight into blood warming, pump heating and haemolysis related to the performance of a new low-flow centrifugal pump. Pump performance in the 400-1,500 ml/min flow range was modulated using small-sized dual-lumen catheters and freshly donated human blood. Measurements included plasma free haemoglobin, blood temperature, pump speed, pump pressure, blood flow and thermographic imaging. Blood warming (ΔT max =0.5°C) had no relationship with pump performance or haemolysis (R 2 max =0.05). Pump performance-related parameters revealed no relevant relationships with haemolysis (R 2 max =0.36). Thermography showed no relevant heat zones in the pump (T max =36°C). Concerning blood warming, pump heating and haemolysis, we deem the centrifugal pump applicable for low-flow extracorporeal circulation.
Influence of different heating types on the pumping performance of a bubble pump
NASA Astrophysics Data System (ADS)
Bierling, Bernd; Schmid, Fabian; Spindler, Klaus
2017-11-01
This study presents an experimental investigation of the influence of different heating types on the pumping performance of a bubble pump. A test rig was set up at the Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart. The vertical lift tube is made of copper with an inner diameter of 8 mm and a length of 1.91 m. The working fluid is demineralized water. The test rig offers the possibility to vary the supplied heat flow (0 W - 750 W), the resulting supplied heat flux and the location of the heating. Investigations were carried out using spot heating, partial-length heating and full-length heating. A Coriolis mass flowmeter was successfully implemented which measures the vapor mass flow rate continuously. The improvement of the vapor mass flow rate measurement by using the continuous measurement method compared to a discontinuous one is discussed. Furthermore, the influence of an unstable inlet temperature of the working fluid entering the lift tube on the pumping performance is investigated. The focus of this publication lies on the build-up of the test rig with the measurement setup and the analysis of the pumping performance for the three heating types. The measurement results show a big influence of the heating type on the pumping performance. The lower the relative length of the heating, the higher is the pumping ratio which is defined as the lifted liquid mass flow rate in relation to the generated vapor mass flow rate.
Vibrational pumping and heating under SERS conditions: fact or myth?
Le Ru, E C; Etchegoin, P G
2006-01-01
We address in this paper the long debated issue of the possibility of vibrational pumping under Surface Enhanced Raman Scattering (SERS) conditions, both theoretically and experimentally. We revisit with simple theoretical models the mechanisms of vibrational pumping and its relation to heating. This presentation provides a clear classification of the various regimes of heating/pumping, from simple global laser heating to selective pumping of a single vibrational mode. We also propose the possibility of extreme pumping driven by stimulated phonon emission, and we introduce and apply a new experimental technique to study these effects in SERS. Our method relies on correlations between Raman peak parameters, and cross-correlation for two Raman peaks. We find strong evidence for local and dynamical heating, but no convincing evidence for selective pumping under our specific experimental SERS conditions.
Thermal control systems for low-temperature heat rejection on a lunar base
NASA Technical Reports Server (NTRS)
Sridhar, K. R.; Gottmann, Matthias
1992-01-01
In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia-water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW. For the Rankine cycle, a search of several commonly used commercial refrigerants provided R11 and R717 as possible working fluids. Hence, the Rankine-cycle analysis has been performed for both R11 and R717. Two different configurations were considered for the system--one in which the heat pump is directly connected to the rejection loop and another in which a heat exchanger connects the heat pump to the rejection loop. For a marginal increase in mass, the decoupling of the rejection loop and the radiator from the heat pump provides greater reliability of the system and better control. Hence, the decoupled system is the configuration of choice. The optimal TCS mass for a 100 kW cooling load at 270 K was 5940 kg at a radiator temperature of 362 K. R11 was the working fluid in the heat pump, and R717 was the transport fluid in the rejection loop. Two TCS's based on an absorption-cycle heat pump were considered, one with an ammonia-water mixture and the other with a lithium bromide-water mixture as the working fluid. A complete cycle analysis was performed for these systems. The system components were approximated as heat exchangers with no internal pressure drop for the mass estimate. This simple approach underpredicts the mass of the systems, but is a good 'optimistic' first approximation to the TCS mass in the absence of reliable component mass data. The mass estimates of the two systems reveal that, in spite of this optimistic estimate, the absorption heat pumps are not competitive with the Rankine-cycle heat pumps. Future work at the systems level will involve similar analyses for the Brayton- and Stirling-cycle heat pumps. The analyses will also consider the operation of the pump under partial-load conditions. On the component level, a capillary evaporator will be designed, built, and tested in order to investigate its suitability in lunar base TCS and microgravity two-phase applications.
Assessment of solar-assisted gas-fired heat pump systems
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1981-01-01
As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.
Mathematical model development and simulation of heat pump fruit dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achariyaviriya, S.; Soponronnarit, S.; Terdyothin, A.
2000-01-01
A mathematical model of a heat pump fruit dryer was developed to study the performance of heat pump dryers. Using the moisture content of papaya glace drying, the refrigerant temperature at the evaporator and condenser and the performance, was verified. It was found that the simulated results using closed loop heat pump dryer were close to the experimental results. The criteria for evaluating the performance were specific moisture extraction rate and drying rate. The results showed that ambient conditions affected significantly on the performance of the open loop dryer and the partially closed loop dryer. Also, the fraction of evaporatormore » bypass air affected markedly the performance of all heat pump dryers. In addition, it was found that specific air flow rate and drying air temperature affected significantly the performance of all heat pump dryers.« less
Phased Retrofits in Existing Homes in Florida Phase II: Shallow Plus Retrofits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, K.; Parker, D.; Martin, E.
The BAPIRC team and Florida Power and Light (FPL) electric utility pursued a pilot phased energy-efficiency retrofit program in Florida by creating detailed data on the energy and economic performance of two levels of retrofit - simple and deep. For this Phased Deep Retrofit (PDR) project, a total of 56 homes spread across the utility partner's territory in east central Florida, southeast Florida, and southwest Florida were instrumented between August 2012 and January 2013, and received simple pass-through retrofit measures during the period of March 2013 - June 2013. Ten of these homes received a deeper package of retrofits duringmore » August 2013 - December 2013. A full account of Phase I of this project, including detailed home details and characterization, is found in Parker et al, 2015 (currently in draft). Phase II of this project, which is the focus of this report, applied the following additional retrofit measures to select homes that received a shallow retrofit in Phase I: a) Supplemental mini-split heat pump (MSHP) (6 homes); b) Ducted and space coupled Heat Pump Water Heater (8 homes); c) Exterior insulation finish system (EIFS) (1 homes); d) Window retrofit (3 homes); e) Smart thermostat (21 homes: 19 NESTs; 2 Lyrics); f) Heat pump clothes dryer (8 homes); g) Variable speed pool pump (5 homes).« less
Residential Photovoltaic/Thermal Energy System
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1987-01-01
Proposed system supplies house with both heat and electricity. Pair of reports describes concept for self-sufficient heating, cooling, and power-generating system for house. Panels on walls of house provide hot water, space heating, and heat to charge heat-storage system, and generate electricity for circulation pumps and fans. Roof panels generate electricity for household, operate heat pump for summer cooling, and provide supplementary winter heating via heat pump, using solar-cell cooling-fluid loop. Wall and roof panels used independently.
Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad
2015-01-01
This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.
Vapor compression heat pump system field tests at the TECH complex
NASA Astrophysics Data System (ADS)
Baxter, V. D.
1985-07-01
The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance. However, its high cost makes it unlikely that it will achieve widespread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.
Vapor compression heat pump system field tests at the tech complex
NASA Astrophysics Data System (ADS)
Baxter, Van D.
1985-11-01
The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.
Heat pump study: Tricks of the trade that can pump up efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, V.
Two years ago, many homeowners in an area near Auburn, California were unhappy with their heat pumps. The local utility, Pacific Gas Electric (PG E), received unusually large numbers of complaints from them of high electricity bills and poor system operation. PG E wanted to know whether correctable mechanical problems were to blame. It hired John Proctor, then of Building Resources Management Corp., to design and implement a study to address the heat pump customers' complaints. The Pacific Gas Electric Heat Pump Efficiency and Super Weatherization Pilot Project was the result. The first objective of the Pilot Project was tomore » identify the major problems and their prevalence in the existing residential heat pump installations. The second was to design a correction strategy that would cost PG E $400 or less per site. Participating homeowners would also share some of the costs. Project goals were improved homeowner comfort and satisfaction, increased energy efficiency of mechanical systems, and 10-20% space heating energy savings. By improving system operations, the project wished to increase customer acceptance of heat pumps in general.« less
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2010 CFR
2010-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line widths... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... conditioners and heat pumps. The waiver is specific to the Sanyo variable capacity ECO-i (commercial) multi... in this notice to test and rate its ECO-i multi-split products. DATES: This Decision and Order is..., Building Technologies Program, Mailstop EE-2J, 1000 Independence Avenue, SW., Washington, DC 20585-0121...
Solar-powered Rankine heat pump for heating and cooling
NASA Technical Reports Server (NTRS)
Rousseau, J.
1978-01-01
The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.
Steam ejector as an industrial heat pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, H.G.; Huntley, W.R.; Perez-Blanco, H.
1982-01-01
The steam ejector is analyzed for use in industrial heat recovery applications and compared to mechanical compressor heat pumps. An estimated ejector performance was analyzed using methods based on conservation of mass, momentum, and energy; using steam properties to account for continuity; and using appropriate efficiencies for the nozzle and diffuse performance within the ejector. A potential heat pump application at a paper plant in which waste water was available in a hot well downstream of the paper machine was used to describe use of the stream ejector. Both mechanical compression and jet ejector heat pumps were evaluated for recompressionmore » of flashed steam from the hot well. It is noted that another possible application of vapor recompression heat pumps is the recovery of waste heat from large facilities such as the gaseous diffusion plants. The economics of recovering waste heat in similar applications is analyzed. (MCW)« less
Refrigerant charge management in a heat pump water heater
Chen, Jie; Hampton, Justin W.
2016-07-05
Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.
Convergent strand array liquid pumping system
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr. (Inventor)
1989-01-01
A surface-tension liquid pumping system is provided by one or more arrays of converging solid monofilament fibers or metal wires (strands) spaced apart at an input end to gather liquid, and gathered close together at the opposite end where menisci forms between wetted strands to force liquid in the direction of convergence of the strands. The liquid pumping system is independent of gravity. It is illustrated as being used in a heat pump having a heating box to vaporize the liquid and a condensing chamber. Condensed liquid is returned by the pumping system to the heating box where it is again vaporized. A vapor tube carries the vapor to the condensing chamber. In that way, a closed system pumps heat from the heating box to the evaporating chamber and from there radiated to the atmosphere.
Experimental investigation on water quality standard of Yangtze River water source heat pump.
Qin, Zenghu; Tong, Mingwei; Kun, Lin
2012-01-01
Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrell, Mark
Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.
NASA Technical Reports Server (NTRS)
Erickson, Lisa R.; Ungar, Eugene K.
2013-01-01
Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.
Conservation and Renewable Energy Program: Bibliography, 1988 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.
Regenerative Hydride Heat Pump
NASA Technical Reports Server (NTRS)
Jones, Jack A.
1992-01-01
Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.
NASA Astrophysics Data System (ADS)
Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang
2014-01-01
In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check electricity power consumption while operating practically in light of electric motor efficiency (ηe) and ηad.
Two Phase Technology Development Initiatives
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
1999-01-01
Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.
Geothermal heat pumps for heating and cooling
NASA Astrophysics Data System (ADS)
Garg, Suresh C.
1994-03-01
Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building's energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.
Seasonal performance for Heat pump with vertical ground heat exchanger in Riga
NASA Astrophysics Data System (ADS)
Jaundālders, S.; Stanka, P.; Rusovs, D.
2017-10-01
Experimental measurements of Seasonal Coefficient of Performance (SCOP) for heating of 160 m2 household in Riga were conducted for operation of brine-water heat pump with vertical ground heat exchangers (GHE). Data regarding heat and electrical power consumption were recorded during three-year period from 2013 to 2016. Vapor compression heat pump has heat energy output of 8 kW. GHE consists of three boreholes. Each borehole is 60 m deep. Data regarding brine temperature for borehole input and output were presented and discussed. As far as house had floor heating, there were presented data about COP for B0/W35 and its dependence from room and outdoor temperature during heating season. Empirical equation was created. Average heat energy consumption during one year for heating was 72 kWh/m2 measured by heat meter. Detected primary energy consumption (electrical energy from grid) was 21 kWh/m2 which resulted in SCOP=3.8. These data were compared with SCOP for air-to-water heat pump in Latvia and available configuration software for heat pumps operation. Good agreement between calculated performance and reported experimental data were founded.
Augmentation of Performance of a Monogroove Heat Pipe with Electrohydrodynamic Conduction Pumping
NASA Astrophysics Data System (ADS)
Jeong, S. I.; Seyed-Yagoobi, J.
2002-11-01
The electrohydrodynamic (EHD) phenomena involve the interaction of electric fields and flow fields in a dielectric fluid medium. There are three types of EHD pumps; induction, ion-drag, and conduction. EHD conduction pump is a new concept which has been explored only recently. Net pumping is achieved by properly utilizing the heterocharge layers present in the vicinity of the electrodes. Several innovative electrode designs have been investigated. This paper presents an electrode design that generates pressure heads on the order of 600 Pa per one electrode pair at 20 kV with less than 0.08 W of electric power. The working fluid is the Refrigerant R-123. An EHD conduction pump consisting of six pairs of electrodes is installed in the liquid line of a mono-grove heat pipe. The heat transport capacity of the heat pipe is measured in the absence and presence of the EHD conduction pump. Significant enhancements in the heat transport capacity of the heat pipe is achieved with the EHD conduction pump operating. Furthermore, the EHD conduction pump provides immediate recovery from the dry-out condition. The EHD conduction pump has many advantages, especially in the micro-gravity environment. It is simple in design, non-mechanical, and lightweight. It provides a rapid control of heat transfer in single-phase and two-phase flows. The electric power consumption is minimal with the very low acoustic noise level.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... Wes.Anderson@ee.doe.gov . Mr. Eric Stas or Ms. Jennifer Tiedeman, U.S. Department of Energy, Office of.... Wesley Anderson (central air conditioners and heat pumps), U.S. Department of Energy, Office of Energy...
NASA Technical Reports Server (NTRS)
Liebert, B. E.
1986-01-01
A metal-hydride heat pump (HHP) has been proposed to provide an advanced regenerable nonventing thermal sink for the liquid-cooled garment worn during an extravehicular activity (EVA). The conceptual design indicates that there is a potential for significant advantages over the one presently being used by shuttle crew personnel as well as those that have been proposed for future use with the space station. Compared to other heat pump designs, a HHP offers the potential for extended use with no electrical power requirements during the EVA. In addition, a reliable, compact design is possible due to the absence of moving parts other than high-reliability check valves. Because there are many subtleties in the properties of metal hydrides for heat pump applications, it is essential that a prototype hydride heat pump be constructed with the selected materials before a committment is made for the final design. Particular care must be given to the evaporator heat exchanger worn by the astronaut since the performance of hydride heat pumps is generally heat transfer limited.
Verification of an analytic modeler for capillary pump loop thermal control systems
NASA Technical Reports Server (NTRS)
Schweickart, R. B.; Neiswanger, L.; Ku, J.
1987-01-01
A number of computer programs have been written to model two-phase heat transfer systems for space use. These programs support the design of thermal control systems and provide a method of predicting their performance in the wide range of thermal environments of space. Predicting the performance of one such system known as the capillary pump loop (CPL) is the intent of the CPL Modeler. By modeling two developed CPL systems and comparing the results with actual test data, the CPL Modeler has proven useful in simulating CPL operation. Results of the modeling effort are discussed, together with plans for refinements to the modeler.
Regenerative adsorbent heat pump
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
1991-01-01
A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.
NASA Astrophysics Data System (ADS)
Janovcová, Martina; Jandačka, Jozef; Malcho, Milan
2015-05-01
Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.
Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency
2016-11-21
This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid
Push pull microfluidics on a multi-level 3D CD.
Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc
2013-08-21
A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.
Push pull microfluidics on a multi-level 3D CD
Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc
2013-01-01
A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process levels, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping. PMID:23774994
Control of reactor coolant flow path during reactor decay heat removal
Hunsbedt, Anstein N.
1988-01-01
An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.
Zero-G Thermodynamic Venting System (TVS) Performance Prediction Program
NASA Technical Reports Server (NTRS)
Nguyen, Han
1994-01-01
This report documents the Zero-g Thermodynamic Venting System (TVS) performance prediction computer program. The zero-g TVS is a device that destratifies and rejects environmentally induced zero-g thermal gradients in the LH2 storage transfer system. A recirculation pump and spray injection manifold recirculates liquid throughout the length of the tank thereby destratifying both the ullage gas and liquid bulk. Heat rejection is accomplished by the opening of the TVS control valve which allows a small flow rate to expand to a low pressure thereby producing a low temperature heat sink which is used to absorb heat from the recirculating liquid flow. The program was written in FORTRAN 77 language on the HP-9000 and IBM PC computers. It can be run on various platforms with a FORTRAN compiler.
Jet pump assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1978-01-01
This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.
Development of a jet pump-assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1977-01-01
The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.
Experimental analysis of direct-expansion ground-coupled heat pump systems
NASA Astrophysics Data System (ADS)
Mei, V. C.; Baxter, V. D.
1991-09-01
Direct-expansion ground-coil-coupled (DXGC) heat pump systems have certain energy efficiency advantages over conventional ground-coupled heat pump (GCHP) systems. Principal among these advantages are that the secondary heat transfer fluid heat exchanger and circulating pump are eliminated. While the DXGC concept can produce higher efficiencies, it also produces more system design and environmental problems (e.g., compressor starting, oil return, possible ground pollution, and more refrigerant charging). Furthermore, general design guidelines for DXGC systems are not well documented. A two-pronged approach was adopted for this study: (1) a literature survey, and (2) a laboratory study of a DXGC heat pump system with R-22 as the refrigerant, for both heating and cooling mode tests done in parallel and series tube connections. The results of each task are described in this paper. A set of general design guidelines was derived from the test results and is also presented.
2009-06-09
ER D C/ CE R L TR -0 9 -1 0 Natural Gas Engine-Driven Heat Pump Demonstration at DoD Installations Performance and Reliability Summary...L ab or at or y Approved for public release; distribution is unlimited. ERDC/CERL TR-09-10 June 2009 Natural Gas Engine-Driven Heat Pump ...CERL TR-09-10 ii Abstract: Results of field testing natural gas engine-driven heat pumps (GHP) at six southwestern U.S. Department of Defense (DoD
Code of Federal Regulations, 2011 CFR
2011-01-01
..., packaged terminal air conditioners, and packaged terminal heat pumps. 431.96 Section 431.96 Energy... EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the... heating equipment, packaged terminal air conditioners, and packaged terminal heat pumps. (a) Scope. This...
Dynamic Performance of a Residential Air-to-Air Heat Pump.
ERIC Educational Resources Information Center
Kelly, George E.; Bean, John
This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…
Code of Federal Regulations, 2012 CFR
2012-01-01
..., packaged terminal air conditioners, and packaged terminal heat pumps. 431.96 Section 431.96 Energy... EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the... heating equipment, packaged terminal air conditioners, and packaged terminal heat pumps. (a) Scope. This...
Balke, Elizabeth C; Healy, William M; Ullah, Tania
2016-12-01
An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COP sys ) of 2.87. The heat pump water heater alone results in a COP sys of 1.9, while the baseline resistance water heater has a COP sys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COP sys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COP sys , the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning.
Balke, Elizabeth C.; Healy, William M.; Ullah, Tania
2016-01-01
An evaluation of a variety of efficient water heating strategies for an all-electric single family home located in a mixed-humid climate is conducted using numerical modeling. The strategies considered include various combinations of solar thermal, heat pump, and electric resistance water heaters. The numerical model used in the study is first validated against a year of field data obtained on a dual-tank system with a solar thermal preheat tank feeding a heat pump water heater that serves as a backup. Modeling results show that this configuration is the most efficient of the systems studied over the course of a year, with a system coefficient of performance (COPsys) of 2.87. The heat pump water heater alone results in a COPsys of 1.9, while the baseline resistance water heater has a COPsys of 0.95. Impacts on space conditioning are also investigated by considering the extra energy consumption required of the air source heat pump to remove or add heat from the conditioned space by the water heating system. A modified COPsys that incorporates the heat pump energy consumption shows a significant drop in efficiency for the dual tank configuration since the heat pump water heater draws the most heat from the space in the heating season while the high temperatures in the solar storage tank during the cooling season result in an added heat load to the space. Despite this degradation in the COPsys, the combination of the solar thermal preheat tank and the heat pump water heater is the most efficient option even when considering the impacts on space conditioning. PMID:27990058
NASA Astrophysics Data System (ADS)
Lin, Sheng-Hau; Li, Jia-Hsun; Hsu, Chih-Chen; Hsieh, Jing-Chzi; Liao, Pin-Chao
2018-04-01
This study utilizes consolidation investment theory to incorporate with business strategies and government subsidy to develop a strategic exercise of options model. This empirical investigation examines the ground source heat pump (GSHP) government subsidy program, which is part of China’s 12th Five Year Plan. The developed model is applied to explain the behaviours of business investment with regard to strategic investment timing, option values, and the influence of government subsidies in duopolistic real-world investment decisions. The results indicate that subsidy policy can reduce the differences of investment timing among GSHP investors and has clearly evidenced the positive benefit–cost ratio of government subsidy, which facilitates China’s GSHP industry development.
Mold heating and cooling microprocessor conversion. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, D.P.
Conversion of the microprocessors and software for the Mold Heating and Cooling (MHAC) pump package control systems was initiated to allow required system enhancements and provide data communications capabilities with the Plastics Information and Control System (PICS). The existing microprocessor-based control systems for the pump packages use an Intel 8088-based microprocessor board with a maximum of 64 Kbytes of program memory. The requirements for the system conversion were developed, and hardware has been selected to allow maximum reuse of existing hardware and software while providing the required additional capabilities and capacity. The new hardware will incorporate an Intel 80286-based microprocessormore » board with an 80287 math coprocessor, the system includes additional memory, I/O, and RS232 communication ports.« less
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred
1988-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred (Inventor)
1987-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Field Investigation of an Air-Source Cold Climate Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Abdelaziz, Omar; Rice, C Keith
In the U.S., there are approximately 2.6 million dwellings that use electricity for heating in cold and very cold regions with an annual energy consumption of 0.16 quads (0.17 EJ). A high performance cold climate heat pump (CCHP) would result in significant savings over current technologies (greater than 60% compared to electric resistance heating). We developed an air-source cold climate heat pump, which uses tandem compressors, with a single compressor rated for the building design cooling load, and running two compressors to provide, at -13 F (-25 C), 75% of rated heating capacity. The tandem compressors were optimized for heatingmore » operation and are able to tolerate discharge temperatures up to 280 F (138 C). A field investigation was conducted in the winter of 2015, in an occupied home in Ohio, USA. During the heating season, the seasonal COP was measured at 3.16, and the heat pump was able to operate down to -13 F (-25 C) and eliminate resistance heat use. The heat pump maintained an acceptable comfort level throughout the heating season. In comparison to a previous single-speed heat pump in the home, the CCHP demonstrated more than 40% energy savings in the peak heating load month. This paper illustrates the measured field performance, including compressor run time, frost/defrosting operations, distributions of building heating load and capacity delivery, comfort level, field measured COPs, etc.« less
Performance analysis on a large scale borehole ground source heat pump in Tianjin cultural centre
NASA Astrophysics Data System (ADS)
Yin, Baoquan; Wu, Xiaoting
2018-02-01
In this paper, the temperature distribution of the geothermal field for the vertical borehole ground-coupled heat pump was tested and analysed. Besides the borehole ground-coupled heat pump, the system composed of the ice storage, heat supply network and cooling tower. According to the operation data for nearly three years, the temperature constant zone is in the ground depth of 40m -120m with a temperature gradient of about 3.0°C/100m. The temperature of the soil dropped significantly in the heating season, increased significantly in the cooling season, and reinstated in the transitional season. With the energy balance design of the heating and cooling and the existence of the soil thermal inertia, the soil temperature stayed in a relative stable range and the ground source heat pump system was operated with a relative high efficiency. The geothermal source heat pump was shown to be applicable for large scale utilization.
Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps
NASA Astrophysics Data System (ADS)
Zhurmilova, I.; Shtym, A.
2017-11-01
For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Payne, W. Vance; Ling, Jiazhen
The IEA HPT Annex 40 "Heat pump concepts for Nearly Zero Energy Buildings" deals with the application of heat pumps as a core component of the HVAC system for Nearly or Net Zero energy buildings (nZEB). This report covers Task 2 on the system comparison and optimisation and Task 3 dedicated to the development of adapted technologies for nZEB and field monitoring results of heat pump systems in nZEB. In the US team three institutions are involved and have worked on the following projects: The Oak Ridge National Laboratory (ORNL) will summarize development activities through the field demonstration stage formore » several integrated heat pump (IHP) systems electric ground-source (GS-IHP) and air-source (AS-IHP) versions and an engine driven AS-IHP version. The first commercial GS-IHP product was just introduced to the market in December 2012. This work is a contribution to Task 3 of the Annex. The University of Maryland will contribute a software development project to Task 2 of the Annex. The software ThermCom evaluates occupied space thermal comfort conditions accounting for all radiative and convective heat transfer effects as well as local air properties. The National Institute of Standards and Technology (NIST) is working on a field study effort on the NIST Net Zero Energy Residential Test Facility (NZERTF). This residential building was constructed on the NIST campus and officially opened in summer 2013. During the first year, between July 2013 and June 2014, baseline performance of the NZERTF was monitored under a simulated occupancy protocol. The house was equipped with an air-to-air heat pump which included a dedicated dehumidification operating mode. Outdoor conditions, internal loads and modes of heat pump operation were monitored. Field study results with respect to heat pump operation will be reported and recommendations on heat pump optimization for a net zero energy building will be provided. This work is a contribution to Task 3 of the Annex.« less
Subcontracted activities related to TES for building heating and cooling
NASA Technical Reports Server (NTRS)
Martin, J.
1980-01-01
The subcontract program elements related to thermal energy storage for building heating and cooling systems are outlined. The following factors are included: subcontracts in the utility load management application area; life and stability testing of packaged low cost energy storage materials; and development of thermal energy storage systems for residential space cooling. Resistance storage heater component development, demonstration of storage heater systems for residential applications, and simulation and evaluation of latent heat thermal energy storage (heat pump systems) are also discussed. Application of thermal energy storage for solar application and twin cities district heating are covered including an application analysis and technology assessment of thermal energy storage.
Two simple models of classical heat pumps.
Marathe, Rahul; Jayannavar, A M; Dhar, Abhishek
2007-03-01
Motivated by recent studies of models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact solutions and unambiguous interpretation of results. We demonstrate that while both our models seem to be built on similar principles, one is able to function as a heat pump (or engine) while the other is not.
NASA Technical Reports Server (NTRS)
Erickson, Lisa R.; Ungar, Eugene K.
2012-01-01
Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.
10 CFR 431.95 - Materials incorporated by reference.
Code of Federal Regulations, 2014 CFR
2014-01-01
... INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.95 Materials... Packaged Terminal Air-Conditioners and Heat Pumps,” published September 2004 (AHRI 310/380-2004), IBR... Single Package Vertical Air-Conditioners and Heat Pumps,” dated 2003, (AHRI 390-2003), IBR approved for...
10 CFR 431.95 - Materials incorporated by reference.
Code of Federal Regulations, 2013 CFR
2013-01-01
... INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.95 Materials... Packaged Terminal Air-Conditioners and Heat Pumps,” published September 2004 (AHRI 310/380-2004), IBR... Single Package Vertical Air-Conditioners and Heat Pumps,” dated 2003, (AHRI 390-2003), IBR approved for...
Hydride heat pump with heat regenerator
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
1991-01-01
A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.
NASA Astrophysics Data System (ADS)
Armitage, D. M.; Bacon, D. J.; Massey-Norton, J. T.; Miller, J. M.
1980-11-01
Groundwater is attractive as a potential low temperature energy source in residential space conditioning applications. When used in conjunction with a heat pump, ground water can serve as both a heat source and a heat sink. Major hydrogeologic aspects that affect system use include groundwater temperature and availability at shallow depths as these factors influence operational efficiency. Ground water quality is considered as it affects the performance and life expectancy of the water side heat exchanger. Environmental impacts related to groundwater heat pump system use are most influenced by water use and disposal methods. In general, recharge to the subsurface is recommended. Legal restrictions on system use are often stricter at the municipal and county levels than at state and federal levels. Computer simulations indicate that under a variety of climatologic conditions, groundwater heat pumps use less energy than conventional heating and cooling equipment. Life cycle cost comparisons with conventional equipment depend on alternative system choices and well cost options included in the groundwater heat pump system.
Heat pump having improved defrost system
Chen, Fang C.; Mei, Viung C.; Murphy, Richard W.
1998-01-01
A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.
Heat pump having improved defrost system
Chen, F.C.; Mei, V.C.; Murphy, R.W.
1998-12-08
A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.
Corrosion protection of steel in ammonia/water heat pumps
Mansfeld, Florian B.; Sun, Zhaoli
2003-10-14
Corrosion of steel surfaces in a heat pump is inhibited by adding a rare earth metal salt to the heat pump's ammonia/water working fluid. In preferred embodiments, the rare earth metal salt includes cerium, and the steel surfaces are cerated to enhance the corrosion-inhibiting effects.
10 CFR 431.95 - Materials incorporated by reference.
Code of Federal Regulations, 2010 CFR
2010-01-01
... INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.95 Materials...) published in 2004, “Standard for Packaged Terminal Air-Conditioners and Heat Pumps,” IBR approved for § 431... for Commercial Air Conditioners and Heat Pumps,” Docket No. EE-RM/TP-99-460, 1000 Independence Avenue...
NASA Technical Reports Server (NTRS)
Schrage, Dean S. (Inventor)
1993-01-01
The present invention is directed to an augmented thermal bus. In the present design a plurity of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pump to maintain isothermality in the source.
NASA Technical Reports Server (NTRS)
Schrage, Dean S. (Inventor)
1996-01-01
The present invention is directed to an augmented thermal bus. In the present design a plurality of thermo-electric heat pumps are used to couple a source plate to a sink plate. Each heat pump is individually controlled by a model based controller. The controller coordinates the heat pumps to maintain isothermality in the source.
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, Benjamin A.; Zawacki, Thomas S.; Marsala, Joseph
1994-11-29
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.
NASA Astrophysics Data System (ADS)
Krockenberger, Kyle G.
A heat pump assisted solar thermal system was designed, commissioned, tested and analyzed over a period of two years. The unique system uses solar energy whenever it is available, but switches to heat pump mode at night or whenever there is a lack of solar energy. The solar thermal energy is added by a variety of flat plat solar collectors and an evacuated tube heat pipe solar collector. The working medium in the entire system is a 50% mixture of propylene glycol and water for freeze protection. During the design and evaluation the primary / secondary pumping system was the focus of the evaluation. Testing within this research focused on the operation modes, pump stability, and system efficiency. It was found that the system was in full operation, the pumps were stable and that the efficiency factor of the system was 1.95.
Grossman, G.
1982-06-16
The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.
Grossman, Gershon
1984-01-01
The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.
DOE Zero Energy Ready Home Case Study: Greenhill Contracting, Inc., Hickory Ridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacific Northwest National Laboratory
Greenhill Contracting built this 3,912-ft2 house in Gardiner, New York, to the high-performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A highly efficient air-source heat pump heats and cools the home’s interior, while the roof-mounted photovoltaic system offsets electricity usage to cut energy bills to nearly zero. Many months the home owners see a credit on their utility bill.
Spacecraft Heat Rejection Methods: Active and Passive Heat Transfer for Electronic Systems.
1986-08-29
Storage in avionics, spacecraft and electronics ,;"ters. Microencapsulated phase change materials (PCMs) in a two-component water SlUrrv- were useo with...capsules was observed in the pumping process. Inaddition, both microencapsulated and pure PCM were used to passively reduce tile tempera- tuo .tremes of...conducted as a Phase I Small Business Innovation Research (SBIR) program to explore the feasibility of using microencapsulated phase change materials (PCM) in
2014-05-01
utilizing buoyancy differences in vapor and liquid phases to pump the heat transfer fluid between the evaporator and condenser. In this particular...Virtual Instrumentation Engineering Workbench LHP Loop Heat Pipe LVDT Linear Voltage Displacement Transducer MACE Micro -technologies for Air...Bland 1992). This type of duty cycle lends itself to thermal energy storage, which when coupled with an effective heat transfer mechanism can
Thermal Analysis of the MC1 Engine Turbopump
NASA Technical Reports Server (NTRS)
Roman, Jose; Turner, Larry D. (Technical Monitor)
2001-01-01
The MC1 Engine turbopump supplied the propellants to the main injector. The turbopump consisted of four parts; lox pump, interpropellant seal package (IPS), RP pump and turbine. The thermal analysis was divided into two 2D finite element models; Housing or stationary parts and rotor or rotating parts. Both models were analyzed at the same boundary conditions using SINDA. The housing model consisted of, lox pump housing, ips housing, RP housing, turbine inlet housing, turbine housing, exit guide vane, heat shield and both bearing outer races. The rotor model consisted of the lox impeller; lox end bearing and id race, RP impeller, and RP bearing and id race, shaft and turbine disk. The objectives of the analysis were to: (1) verified the original design and recommend modifications to it, (2) submitted a thermal environment to support the structural analysis, (3) support the component and engine test program. and (4) to support the X34 vehicle program.
Thermal Analysis of the MCI Engine Turbopump
NASA Technical Reports Server (NTRS)
Roman, Jose
2002-01-01
The MCI Engine turbopump supplied the propellants to the main injector. The turbopump consisted of four parts; lox pump, interpropellant seal package (IPS), RP pump and turbine. The thermal analysis was divided into two 2D finite element models; Housing or stationary parts and rotor or rotating parts. Both models were analyzed at the same boundary conditions using SINDA. The housing model consisted of; lox pump housing, ips housing, RP housing, turbine inlet housing, turbine housing, exit guide vane, heat shield and both bearing outer races. The rotor model consisted of the lox impeller; lox end bearing and id race, RP impeller, and RP bearing and id race, shaft and turbine disk. The objectives of the analysis were to (1) verified the original design and recommend modifications to it, (2) submitted a thermal environment to support the structural analysis, (3) support the component and engine test program and (4) to support the X34 vehicle program.
Hemolysis and heat generation in six different types of centrifugal blood pumps.
Araki, K; Taenaka, Y; Masuzawa, T; Tatsumi, E; Wakisaka, Y; Watari, M; Nakatani, T; Akagi, H; Baba, Y; Anai, H
1995-09-01
What the most causative factor affecting hemolysis is still controversial. To resolve this problem, we investigated the relationship between hemolysis and heat generation in six types of centrifugal blood pumps (Bio-Pump, Delphin, Capiox, Nikkiso, Isoflow, and Toyobo). The analyzed parameters were index of hemolysis in fresh goat blood, pumping performance, and heat generation in a thermally isolated mock circuit. These parameters were analyzed at a flow rate of 5 L/min by changing the pressure head (100 mm Hg and 500 mm Hg). At 500 mm Hg of pressure head, the Bio-Pump needed the highest rotation number and showed the highest hemolytic rate and heat generation. The index of hemolysis is well correlated to heat generation (r2 = 0.721). Heat may originate from the motor by conduction, hydraulic energy loss, and mechanical friction between the shaft and seal. We strongly suspect that hemolysis was caused by a factor such as mechanical friction which generates heat locally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirrito, A.J.
Combustion jet pumps ingest waste heat gases from power plant engines and boilers to boost their pressure for the ultimate low temperature utilization of the captured heat for heating homes, full-year hot houses, sterilization purposes, recreational hot water, absorption refrigeration and the like. Jet pump energy is sustained from the incineration of solids, liquids and gases and vapors or simply from burning fuels. This is the energy needed to transport the reaction products to the point of heat utilization and to optimize the heat transfer to that point. Sequent jet pumps raise and preserve energy levels. Crypto-steady and special jetmore » pumps increase pumping efficiency. The distribution conduit accepts fluidized solids, liquids, gases and vapors in multiphase flow. Temperature modulation and flow augmentation takes place by water injection. Macro solids such as dried sewage waste are removed by cyclone separation. Micro particles remain entrained and pass out with waste condensate just beyond each point of final heat utilization to recharge the water table. The non-condensible gases separated at this point are treated for pollution control. Further, jet pump reactions are controlled to yield fuel gas as necessary to power jet pumps or other use. In all these effects introduced sequentially, the available energy necessary to provide the flow energy, for the continuously distributed heating medium, is first extracted from fuel and fuel-like additions to the stream. As all energy, any way, finally converts to heat, which in this case is retained or recaptured in the flow, the captured heat is practically 90% available at the point of low temperature utilization. The jet pump for coal gasification is also disclosed as are examples of coal gasification and hydrogen production.« less
Analysis of field test data on residential heating and cooling
NASA Astrophysics Data System (ADS)
Talbert, S. G.
1980-12-01
The computer program using field site data collected on 48 homes located in six cities in different climatic regions of the United States is discussed. In addition, a User's Guide was prepared for the computer program which is contained in a separate two-volume document entitled User's Guide for REAP: Residential Energy Analysis Program. Feasibility studies were conducted pertaining to potential improvements for REAP, including: the addition of an oil-furnace model; improving the infiltration subroutine; adding active and/or passive solar subroutines; incorporating a thermal energy storage model; and providing dual HVAC systems (e.g., heat pump-gas furnace). The purpose of REAP is to enable building designers and energy analysts to evaluate how such factors as building design, weather conditions, internal heat loads, and HVAC equipment performance, influence the energy requirements of residential buildings.
Impact on Water Heater Performance of Heating Methods that Promote Tank Temperature Stratification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R; BushPE, John D
2016-01-01
During heating of a water heater tank, the vertical temperature stratification of the water can be increased or decreased, depending on the method of heating. Methods that increase stratification during heating include (1) removing cold water from the tank bottom, heating it, and re-introducing it to the tank top at relatively low flow rate, (2) using a heat exchanger wrapped around the tank, through which heating fluid (with finite specific heat) flows from top to bottom, and (3) using an immersed heat element that is relatively high in the tank. Using such methods allows for improved heat pump water heatermore » (HPWH) cycle efficiencies when the heat pump can take advantage of the lower temperatures that exist lower in the tank, and accommodate the resulting glide. Transcritical cycles are especially well-suited to capitalize on this opportunity, and other HPWH configurations (that have been proposed elsewhere) may benefit as well. This work provides several stratification categories of heat pump water heater tank configurations relevant to their stratification potential. To illustrate key differences among categories, it also compiles available experimental data for (a) single pass pumped flow, (b) multi-pass pumped flow, and (c) top-down wrapped tank with transcritical refrigerant.« less
Modeling and design of a high efficiency hybrid heat pump clothes dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward; Butterfield, Andrew; Caldwell, Dustin
Computational modeling is used to design a hybrid heat pump clothes dryer capable of saving 50% of the energy used by residential clothes dryers with comparable drying times. The model represents the various stages of a drying cycle from warm-up through constant drying rate and falling drying rate phases and finishing with a cooldown phase. The model is fit to data acquired from a U.S. commercial standard vented electric dryer, and when a hybrid heat pump system is added, the energy factor increases from 3.0 lbs/kWh to 5.7-6.0 lbs/kWh, depending on the increase in blower motor power. The hybrid heatmore » pump system is designed from off-the-shelf components and includes a recuperative heat exchanger, an electric element, and an R-134a vapor compression heat pump. Parametric studies of element power and heating element use show a trade-off between energy savings and cycle time. Results show a step-change in energy savings from heat pump dryers currently marketed in the U.S. based on performance represented by Enery Star from standardized DOE testing.« less
Investigation of lunar base thermal control system options
NASA Technical Reports Server (NTRS)
Ewart, Michael K.
1993-01-01
Long duration human exploration missions to the Moon will require active thermal control systems which have not previously been used in space. The two technologies which are most promising for long term lunar base thermal control are heat pumps and radiator shades. Recent trade-off studies at the Johnson Space Center have focused development efforts on the most promising heat pump and radiator shade technologies. Since these technologies are in the early stages of development and many parameters used in the study are not well defined, a parametric study was done to test the sensitivity to each assumption. The primary comparison factor in these studies was the total mass system, with power requirements included in the form of a mass penalty for power. Heat pump technologies considered were thermally driven heat pumps such as metal hydride, complex compound, absorption and zeolite. Also considered were electrically driven Stirling and vapor compression heat pumps. Radiator shade concepts considered included step shaped, V-shaped and parabolic (or catenary) shades and ground covers. A further trade study compared the masses of heat pump and radiator shade systems.
The efficiency of the heat pump water heater, during DHW tapping cycle
NASA Astrophysics Data System (ADS)
Gużda, Arkadiusz; Szmolke, Norbert
2017-10-01
This paper discusses one of the most effective systems for domestic hot water (DHW) production based on air-source heat pump with an integrated tank. The operating principle of the heat pump is described in detail. Moreover, there is an account of experimental set-up and results of the measurements. In the experimental part, measurements were conducted with the aim of determining the energy parameters and measures of the economic efficiency related to the presented solution. The measurements that were conducted are based on the tapping cycle that is similar to the recommended one in EN-16147 standard. The efficiency of the air source heat pump during the duration of the experiment was 2.43. In the end of paper, authors conducted a simplified ecological analysis in order to determine the influence of operation of air-source heat pump with integrated tank on the environment. Moreover the compression with the different source of energy (gas boiler with closed combustion chamber and boiler fired by the coal) was conducted. The heat pump is the ecological friendly source of the energy.
NASA Astrophysics Data System (ADS)
Yokoyama, Ryohei; Kohno, Yasuhiro; Wakui, Tetsuya; Takemura, Kazuhisa
Air-to-water heat pumps using CO2 as a refrigerant have been developed. In addition, water heating systems each of which combines a CO2 heat pump with a hot water storage tank have been commercialized and widespread. They are expected to contribute to energy saving in residential hot water supply. It has become more and more important to enhance the system performance. In this paper, the performance of a CO2 heat pump water heating system is analyzed under a daily change in a simulated hot water demand by numerical simulation. A static model of a CO2 heat pump and a dynamic model of a storage tank result in a set of differential algebraic equations, and it is solved numerically by a hierarchical combination of Runge-Kutta and Newton-Raphson methods. Daily changes in the temperature distributions in the storage tank and the system performance criteria such as volumes of stored and unused hot water, coefficient of performance, and storage and system efficiencies are clarified under a series of daily hot water demands during a month.
Heat pump water heater and method of making the same
Mei, Viung C.; Tomlinson, John J.; Chen, Fang C.
2001-01-01
An improved heat pump water heater wherein the condenser assembly of the heat pump is inserted into the water tank through an existing opening in the top of the tank, the assembly comprising a tube-in-a-tube construction with an elongated cylindrical outer body heat exchanger having a closed bottom with the superheated refrigerant that exits the compressor of the heat pump entering the top of the outer body. As the refrigerant condenses along the interior surface of the outer body, the heat from the refrigerant is transferred to the water through the outer body. The refrigerant then enters the bottom of an inner body coaxially disposed within the outer body and exits the top of the inner body into the refrigerant conduit leading into the expansion device of the heat pump. The outer body, in a second embodiment of the invention, acts not only as a heat exchanger but also as the sacrificial anode in the water tank by being constructed of a metal which is more likely to corrode than the metal of the tank.
Insulated Concrete Homes Increase Durability and Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building America; Hendron, B.; Poole, L.
2001-06-05
New houses designed by Mercedes Homes in Melbourne, Florida, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by using energy efficient features such as a high performance heat pump and solar control glazing to reduce cooling costs.
ATES/heat pump simulations performed with ATESSS code
NASA Astrophysics Data System (ADS)
Vail, L. W.
1989-01-01
Modifications to the Aquifer Thermal Energy Storage System Simulator (ATESSS) allow simulation of aquifer thermal energy storage (ATES)/heat pump systems. The heat pump algorithm requires a coefficient of performance (COP) relationship of the form: COP = COP sub base + alpha (T sub ref minus T sub base). Initial applications of the modified ATES code to synthetic building load data for two sizes of buildings in two U.S. cities showed insignificant performance advantage of a series ATES heat pump system over a conventional groundwater heat pump system. The addition of algorithms for a cooling tower and solar array improved performance slightly. Small values of alpha in the COP relationship are the principal reason for the limited improvement in system performance. Future studies at Pacific Northwest Laboratory (PNL) are planned to investigate methods to increase system performance using alternative system configurations and operations scenarios.
Ground coupled solar heat pumps: analysis of four options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, J.W.
Heat pump systems which utilize both solar energy and energy withdrawn from the ground are analyzed using a simplified procedure which optimizes the solar storage temperature on a monthly basis. Four ways of introducing collected solar energy to the system are optimized and compared. These include use of actively collected thermal input to the heat pump; use of collected solar energy to heat the load directly (two different ways); and use of a passive option to reduce the effective heating load.
NASA Astrophysics Data System (ADS)
Martel, C. J.; Phetteplace, G. E.
1982-05-01
This report presents a five-step procedure for evaluating the technical and economic feasibility of using heat pumps to recover heat from treatment plant effluent. The procedure is meant to be used at the facility planning level by engineers who are unfamiliar with this technology. An example of the use of the procedure and general design information are provided. Also, the report reviews the operational experience with heat pumps at wastewater plants located in Fairbanks, Alaska, Madison, Wisconsin, and Wilton, Maine.
Thermal-powered reciprocating pump
NASA Technical Reports Server (NTRS)
Sabelman, E. E.
1972-01-01
Waste heat from radioisotope thermal generators in spacecraft is transported to keep instruments warm by two-cylinder reciprocating pump powered by energy from warm heat exchange fluid. Each cylinder has thermally nonconductive piston, heat exchange coil, and heat sink surface.
Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters
NASA Astrophysics Data System (ADS)
Morrison, L.; Swisher, J.
1980-12-01
The operation of a newly marketed dedicated heat pump water heater (HPWH) which utilizes an air to water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests, is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. A simulation was developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics were adapted (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas) and the system was simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. The water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio of the HPWH.
A prototype of volume-controlled tidal liquid ventilator using independent piston pumps.
Robert, Raymond; Micheau, Philippe; Cyr, Stéphane; Lesur, Olivier; Praud, Jean-Paul; Walti, Hervé
2006-01-01
Liquid ventilation using perfluorochemicals (PFC) offers clear theoretical advantages over gas ventilation, such as decreased lung damage, recruitment of collapsed lung regions, and lavage of inflammatory debris. We present a total liquid ventilator designed to ventilate patients with completely filled lungs with a tidal volume of PFC liquid. The two independent piston pumps are volume controlled and pressure limited. Measurable pumping errors are corrected by a programmed supervisor module, which modifies the inserted or withdrawn volume. Pump independence also allows easy functional residual capacity modifications during ventilation. The bubble gas exchanger is divided into two sections such that the PFC exiting the lungs is not in contact with the PFC entering the lungs. The heating system is incorporated into the metallic base of the gas exchanger, and a heat-sink-type condenser is placed on top of the exchanger to retrieve PFC vapors. The prototype was tested on 5 healthy term newborn lambs (<5 days old). The results demonstrate the efficiency and safety of the prototype in maintaining adequate gas exchange, normal acido-basis equilibrium, and cardiovascular stability during a short, 2-hour total liquid ventilator. Airway pressure, lung volume, and ventilation scheme were maintained in the targeted range.
Stainless Steel NaK-Cooled Circuit (SNaKC) Fabrication and Assembly
NASA Technical Reports Server (NTRS)
Godfroy, Thomas J.
2007-01-01
An actively pumped Stainless Steel NaK Circuit (SNaKC) has been designed and fabricated by the Early Flight Fission Test Facility (EFF-TF) team at NASA's Marshall Space Flight Center. This circuit uses the eutectic mixture of sodium and potassium (NaK) as the working fluid building upon the experience and accomplishments of the SNAP reactor program from the late 1960's The SNaKC enables valuable experience and liquid metal test capability to be gained toward the goal of designing and building an affordable surface power reactor. The basic circuit components include a simulated reactor core a NaK to gas heat exchanger, an electromagnetic (EM) liquid metal pump, a liquid metal flow meter, an expansion reservoir and a drain/fill reservoir To maintain an oxygen free environment in the presence of NaK, an argon system is utilized. A helium and nitrogen system are utilized for core, pump, and heat exchanger operation. An additional rest section is available to enable special component testing m an elevated temperature actively pumped liquid metal environment. This paper summarizes the physical build of the SNaKC the gas and pressurization systems, vacuum systems, as well as instrumentation and control methods.
The mechanical design of a vapor compressor for a heat pump to be used in space
NASA Technical Reports Server (NTRS)
Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.
1982-01-01
A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.
Investigation of an ejector heat pump by analytical methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, C.T.
1984-07-01
Using existing theories of ejector design, the optimum geometry of a high-efficiency ejector - including mixing section cross-sectional area, mass flow entrainment rate, ejector efficiency, and overall COP - for a heat pump cycle was determined. A parametric study was performed to evaluate the COP values for different operating conditions. A sensitivity study determined th effects of nozzle efficiency and diffuser efficiency on the overall ejector heat pump COP. The off-design study estimated the COP for an ejector heat pump operating at off-design conditions. Refrigerants 11, 113, and 114 are three of the halocarbons which best satisfy the criteria formore » an ejector heat pump system. The estimated COPs were 0.3 for the cooling mode and 1.3 for the heating mode at standard operating conditions: a boiler temperature of 93.3/sup 0/C (200/sup 0/F), a condenser temperature of 43.3/sup 0/C (110/sup 0/F), and an evaporator temperature of 10/sup 0/C (50/sup 0/F). Based on the same operating conditions, an optimum ejector geometry was estimated for each of the refrigerants R-11 and R-113. Since the COP values for heating obtained in this analysis are greater than unity, the performance of an ejector heat pump operating in the heating mode should be competitive with that of oil- or gas-fired furnaces or electrical resistance heaters.« less
Analysis of the efficiency of a hybrid foil tunnel heating system
NASA Astrophysics Data System (ADS)
Kurpaska, Sławomir; Pedryc, Norbert
2017-10-01
The paper analyzes the efficiency of the hybrid system used to heat the foil tunnel. The tested system was built on the basis of heat gain in a cascade manner. The first step is to heat the water in the storage tank using the solar collectors. The second stage is the use of a heat pump (HP) in order to heat the diaphragm exchangers. The lower HP heat source is a cascade first stage buffer. In the storage tank, diaphragm exchangers used for solar collectors and heat pumps are installed. The research was carried out at a research station located in the University of Agriculture in Cracow. The aim was to perform an analysis of the efficiency of a hybrid system for the heating of a foil tunnel in the months from May to September. The efficiency of the entire hybrid system was calculated as the relation of the effect obtained in reference to the electrical power used to drive the heat pump components (compressor drive, circulation pump), circulation pumps and fans installed in the diaphragm heaters. The resulting effect was the amount of heat supplied to the interior of the object as a result of the internal air being forced through the diaphragm exchangers.
Measured Performance of a Low Temperature Air Source Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R. K.
2013-09-01
A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system'smore » Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.« less
Testing of refrigerant mixtures in residential heat pumps. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judge, J.F.; Radermacher, R.
1995-08-01
To contribute to finding the proper substitute for R-22, a test facility was designed and built to measure the steady state and cyclic performance of two air-to-air heat pumps of 2 & 3 refrigeration-ton (RT) capacity. The performance of heat pumps is evaluated based on ASHRAE Standard 116-1983 {open_quotes}Method of Testing for Seasonal Efficiency of Unitary Air-conditioners and Heat Pumps{close_quotes} (47). This standard includes six steady-state tests; three cooling tests (A, B, and C) and three heating tests (High Temperature (47S), Frost Accumulation (35F), and Low Temperature (17L)). The standard also includes two cyclic tests; a cyclic cooling test (D)more » and a cyclic heating test (47C). The results of these tests are used to evaluate the seasonal performance of a heat pump. In the work presented here, two heat pumps (test units) are used. Test unit 1 is a 2 RT split heat pump system using a reciprocating compressor, a short tube, and a thermostatic expansion valve. Test unit 2 is a 3 RT split heat pump system using a scroll compressor and two thermostatic expansion valves. This study investigates four different possibilities for replacing R-22 with R-32/125/134a (30/10/60 wt.%) (Mixture 1) or R-32/125/134a (23/25/52 wt.%) (Mixture 2). The first and simplest scenario is the retrofit with no hardware modifications. The second possibility investigated is altering the refrigerant path to attain a near-counterflow configuration in the indoor coil for the heating mode. The third and most complex possibility is the soft optimization which consists of maximizing the COPs of R-22 and Mixture 2 in the heating and cooling modes by optimizing refrigerant charge and expansion devices. The fourth option investigated is the suction-line heat exchange (SLHX). In unit 1, the first, second, and third scenarios are investigated and in unit 2, the first, second, and fourth scenarios are investigated.« less
Enhanced absorption cycle computer model
NASA Astrophysics Data System (ADS)
Grossman, G.; Wilk, M.
1993-09-01
Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.
Capillary pumped loop body heat exchanger
NASA Technical Reports Server (NTRS)
Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)
1998-01-01
A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.
Code of Federal Regulations, 2013 CFR
2013-01-01
... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test...
Code of Federal Regulations, 2014 CFR
2014-01-01
... efficiency of commercial air conditioners and heat pumps. 431.96 Section 431.96 Energy DEPARTMENT OF ENERGY... Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the measurement of energy efficiency of commercial air conditioners and heat pumps. (a) Scope. This section contains test...
16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS... LABELING RULEâ) Pt. 305, App. D5 Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information Capacity...
16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...
16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump
Code of Federal Regulations, 2012 CFR
2012-01-01
... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...
Thermomechanical piston pump development
NASA Technical Reports Server (NTRS)
Sabelman, E. E.
1971-01-01
A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.
Heat pipe with embedded wick structure
Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald
1998-01-01
A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.
Heat pipe with embedded wick structure
Adkins, D.R.; Shen, D.S.; Tuck, M.R.; Palmer, D.W.; Grafe, V.G.
1998-06-23
A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas. 7 figs.
Heat pipe with embedded wick structure
Adkins, Douglas Ray; Shen, David S.; Tuck, Melanie R.; Palmer, David W.; Grafe, V. Gerald
1999-01-01
A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.
Update on specified European R and D efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
Information was collected for DOE on various European research programs of interest: Shell-Koppers coal gasification demonstration plant, fluidized-bed combustion pilot plant, a boiler super heat system, energy conservation on ships, waste heat utilization from large diesel engines and nuclear power plants and uranium enrichment plants, coal-water slurries with additive (CARBOGEL), electrostatic precipitators, radial inflow turbines, carbonization, heat pumps, heat exchangers, gas turbines, and research on heat resisting alloys and corrosion protection of these alloys. A number of organizations expressed a desire for creation of a formal interchange with DOE on specific subjects of mutual interest (one organization is unhappy aboutmore » furnishing information to DOE). (LTN)« less
10 CFR 431.97 - Energy efficiency standards and their effective dates.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...
10 CFR 431.97 - Energy efficiency standards and their compliance dates.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Energy efficiency standards and their compliance dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...
10 CFR 431.97 - Energy efficiency standards and their effective dates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...
10 CFR 431.97 - Energy efficiency standards and their compliance dates.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Energy efficiency standards and their compliance dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...
10 CFR 431.97 - Energy efficiency standards and their effective dates.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Energy efficiency standards and their effective dates. 431.97 Section 431.97 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Air Conditioners and Heat Pumps Energy Efficiency...
NASA Astrophysics Data System (ADS)
Miceli, R. J.; Hysell, D. L.; Munk, J.; McCarrick, M.; Huba, J. D.
2013-09-01
Artificial field-aligned plasma density irregularities (FAIs) were generated in the E region of the ionosphere above the High Frequency Active Auroral Research Program facility during campaigns in May and August of 2012 and observed using a 30 MHz coherent scatter radar imager in Homer, Alaska. The purpose of this ionospheric modification experiment was to measure the threshold pump power required to excite thermal parametric instabilities by O-mode heating and to investigate the suppression of the FAIs by simultaneous X-mode heating. We find that the threshold pump power for irregularity excitation was consistent with theoretical predictions and increased by approximately a factor of 2 when X-mode heating was present. A modified version of the Another Model of the Ionosphere (SAMI2) ionospheric model was used to simulate the threshold experiments and suggested that the increase was entirely due to enhanced D region absorption associated with X-mode heating. Additionally, a remarkable degree of fine structure possibly caused by natural gradient drift instability in the heater-modified volume was observed in experiments performed during geomagnetically active conditions.
Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia
NASA Technical Reports Server (NTRS)
1980-01-01
The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.
NASA Astrophysics Data System (ADS)
Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.
2018-04-01
A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.
Solar energy system performance evaluation report for Solaron-Duffield, Duffield, Virginia
NASA Astrophysics Data System (ADS)
1980-07-01
The Solaron Duffield Solar Energy System was designed to provide 51 percent of the space heating, and 49 percent of the domestic hot water (DHW) to a two story 1940 square foot area residence using air as the transport medium. The system consists of a 429 square foot collector array, a 265 cubic foot rock thermal storage bin, heat exchangers, an 80 gallon DHW preheat tank, pumps, blowers, controls, air ducting and associated plumbing. A air-to-liquid heat pump coupled with a 1,000gallon water storage tank provides for auxiliary space heating and can also be used for space cooling. A 52 gallon electric DHW tank using the solar preheated water provides domestic hot water to the residence. The solar system, which became operational July 1979, has the following modes of operation: First Stage: (1) collector to storage and DHW; (2)collector to space heating; (3) storage to load. Second Stage: (4) heat pump auxiliary direct; (5) auxiliary heat from heat pump storage. Third Stage: (6) electrical resistance (strip) heat.
Hybrid Geothermal Heat Pumps for Cooling Telecommunications Data Centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckers, Koenraad J; Zurmuhl, David P.; Lukawski, Maciej Z.
The technical and economic performance of geothermal heat pump (GHP) systems supplying year-round cooling to representative small data centers with cooling loads less than 500 kWth were analyzed and compared to air-source heat pumps (ASHPs). A numerical model was developed in TRNSYS software to simulate the operation of air-source and geothermal heat pumps with and without supplementary air cooled heat exchangers - dry coolers (DCs). The model was validated using data measured at an experimental geothermal system installed in Ithaca, NY, USA. The coefficient of performance (COP) and cooling capacity of the GHPs were calculated over a 20-year lifetime andmore » compared to the performance of ASHPs. The total cost of ownership (TCO) of each of the cooling systems was calculated to assess its economic performance. Both the length of the geothermal borehole heat exchangers (BHEs) and the dry cooler temperature set point were optimized to minimize the TCO of the geothermal systems. Lastly, a preliminary analysis of the performance of geothermal heat pumps for cooling dominated systems was performed for other locations including Dallas, TX, Sacramento, CA, and Minneapolis, MN.« less
Hourly simulation of a Ground-Coupled Heat Pump system
NASA Astrophysics Data System (ADS)
Naldi, C.; Zanchini, E.
2017-01-01
In this paper, we present a MATLAB code for the hourly simulation of a whole Ground-Coupled Heat Pump (GCHP) system, based on the g-functions previously obtained by Zanchini and Lazzari. The code applies both to on-off heat pumps and to inverter-driven ones. It is employed to analyse the effects of the inverter and of the total length of the Borehole Heat Exchanger (BHE) field on the mean seasonal COP (SCOP) and on the mean seasonal EER (SEER) of a GCHP system designed for a residential house with 6 apartments in Bologna, North-Center Italy, with dominant heating loads. A BHE field with 3 in line boreholes is considered, with length of each BHE either 75 m or 105 m. The results show that the increase of the BHE length yields a SCOP enhancement of about 7%, while the SEER remains nearly unchanged. The replacement of the on-off heat pump by an inverter-driven one yields a SCOP enhancement of about 30% and a SEER enhancement of about 50%. The results demonstrate the importance of employing inverter-driven heat pumps for GCHP systems.
Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Garrabrant; Roger Stout; Paul Glanville
2013-01-21
For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs ofmore » 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.« less
Thermal control systems for low-temperature heat rejection on a lunar base
NASA Technical Reports Server (NTRS)
Sridhar, K. R.; Gottmann, Matthias; Nanjundan, Ashok
1993-01-01
One of the important issues in the design of a lunar base is the thermal control system (TCS) used to reject low-temperature heat from the base. The TCS ensures that the base and the components inside are maintained within an acceptable temperature range. The temperature of the lunar surface peaks at 400 K during the 336-hour lunar day. Under these circumstances, direct dissipation of waste heat from the lunar base using passive radiators would be impractical. Thermal control systems based on thermal storage, shaded radiators, and heat pumps have been proposed. Based on proven technology, innovation, realistic complexity, reliability, and near-term applicability, a heat pump-based TCS was selected as a candidate for early missions. In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW.
Analysis of the performance and space conditioning impacts of dedicated heat pump water heaters
NASA Astrophysics Data System (ADS)
Morrison, L.; Swisher, J.
The development and testing of the newly-marketed dedicated heat pump water heater (HPWH) are described. This system utilizes an air-to-water heat pump, costs about $1,000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. To investigate HPWH performance and space conditioning impacts, a simulation was developed to mode the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three U.S. geographical areas (Madison, Wisconsin; Washington, D.C.; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. The thermal network includes both a house node and a basement node so that the water heating equipment can be simulated in an unconditioned basement in Northern cities and in a conditioned first-floor utility room in Southern cities.
Development of Passive Fuel Cell Thermal Management Technology
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony
2011-01-01
The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. The passive thermal management system relies on heat conduction within the cooling plate to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack rather than using a pumped loop cooling system to convectively remove the heat. Using the passive approach eliminates the need for a coolant pump and other cooling loop components which reduces fuel cell system mass and improves overall system reliability. Previous analysis had identified that low density, ultra-high thermal conductivity materials would be needed for the cooling plates in order to achieve the desired reductions in mass and the highly uniform thermal heat sink for each cell within a fuel cell stack. A pyrolytic graphite material was identified and fabricated into a thin plate using different methods. Also a development project with Thermacore, Inc. resulted in a planar heat pipe. Thermal conductivity tests were done using these materials. The results indicated that lightweight passive fuel cell cooling is feasible.
NASA Technical Reports Server (NTRS)
Ealker, David H.; Deming, Glenn
1991-01-01
Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, Benjamin A.; Zawacki, Thomas S.
1996-12-03
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.
Simulation and evaluation of latent heat thermal energy storage
NASA Technical Reports Server (NTRS)
Sigmon, T. W.
1980-01-01
The relative value of thermal energy storage (TES) for heat pump storage (heating and cooling) as a function of storage temperature, mode of storage (hotside or coldside), geographic locations, and utility time of use rate structures were derived. Computer models used to simulate the performance of a number of TES/heat pump configurations are described. The models are based on existing performance data of heat pump components, available building thermal load computational procedures, and generalized TES subsystem design. Life cycle costs computed for each site, configuration, and rate structure are discussed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters. [Reserved] 431.107 Section 431.107 Energy DEPARTMENT OF....107 Uniform test method for the measurement of energy efficiency of commercial heat pump water heaters...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... Refrigerant Flow (VRF) multi-split commercial heat pump models specified in Fujitsu's petition for waiver. As... to test and rate these AIRSTAGE V-II VRF multi-split commercial heat pumps. DATES: This Decision and...) Standard 1230-2010, ``Performance Rating of VRF Multi-Split Air-Conditioning and Heat Pump Equipment'' to...
Heat Pumps With Direct Expansion Solar Collectors
NASA Astrophysics Data System (ADS)
Ito, Sadasuke
In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.
Thermal management of high power space based systems
NASA Technical Reports Server (NTRS)
Hwangbo, H.; Mcever, W. S.
1985-01-01
Conventional techniques of using a portion of the spacecraft skin for radiation of waste heat will be inadequate for high powered payloads (50 to 100 kWe) due to the lack of sufficient area. A Shuttle type system using a pumped single phase fluid loop could be scaled up to higher power but this type of system would require excessive pump power and weight. A pumped two-phase heat transfer loop has a much lower pumping requirement due to the higher latent heat of vaporization of the fluid in comparison to the sensible heat it can absorb through a temperature change. Concepts for an evaporator and a condenser for a pumped two-phase system are described. The condenser uses capillary grooves and a separate pumped condensate return line to achieve high heat transfer coefficients and stable operation due to the separation of the vapor and liquid flows. The cold plate evaporator uses wicks to contain the liquid and transport it to the heated surface. It can also function as a condenser for warming components. Control concepts for the cold plate are discussed. Concepts for deployment or erection of large space radiators are also considered.
Performance analysis of solar-assisted chemical heat-pump dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fadhel, M.I.; Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450, Melaka; Sopian, K.
2010-11-15
A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH{sub 3}). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experimentmore » of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COP{sup h}) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying. (author)« less
Kim, Sung-Jin; Wang, Fang; Burns, Mark A; Kurabayashi, Katsuo
2009-06-01
Micromixing is a crucial step for biochemical reactions in microfluidic networks. A critical challenge is that the system containing micromixers needs numerous pumps, chambers, and channels not only for the micromixing but also for the biochemical reactions and detections. Thus, a simple and compatible design of the micromixer element for the system is essential. Here, we propose a simple, yet effective, scheme that enables micromixing and a biochemical reaction in a single microfluidic chamber without using any pumps. We accomplish this process by using natural convection in conjunction with alternating heating of two heaters for efficient micromixing, and by regulating capillarity for sample transport. As a model application, we demonstrate micromixing and subsequent polymerase chain reaction (PCR) for an influenza viral DNA fragment. This process is achieved in a platform of a microfluidic cartridge and a microfabricated heating-instrument with a fast thermal response. Our results will significantly simplify micromixing and a subsequent biochemical reaction that involves reagent heating in microfluidic networks.
A program for solar energy utilization in spain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perches-Escandell, J.; Lorsch, H.G.
1983-06-01
The Spanish Association of Electric Utilities (UNESA) and the state-owned industrial holding company (INI) have undertaken a 5-year program for the more efficient utilization of energy through solar energy and other energy conserving technologies. Among the tasks undertaken was the design of a solar collector particularly well suited to Spanish conditions. More than 28,000 m/sup 2/ of this collector have been installed, accounting for 42% of the Spanish market over the past three years. In cooperation with the Franklin Research Center of Philadelphia, PA, the UNESA-INI staff has carried out a binational program of solar energy utilization, funded under themore » U.S. -Spanish Treaty of Friendship and Cooperation. As a part of this program, five demonstration projects have been constructed or are under construction. Four of them provide space heating and cooling and service water heating by means of evacuated tube collectors, EPDM collectors, air heating collectors, a water-to-water heat pump, and an absorption chiller; a fifth generates electricity by means of photovoltaic cells.« less
Microgravity heat pump for space station thermal management.
Domitrovic, R E; Chen, F C; Mei, V C; Spezia, A L
2003-01-01
A highly efficient recuperative vapor compression heat pump was developed and tested for its ability to operate independent of orientation with respect to gravity while maximizing temperature lift. The objective of such a heat pump is to increase the temperature of, and thus reduce the size of, the radiative heat rejection panels on spacecrafts such as the International Space Station. Heat pump operation under microgravity was approximated by gravitational-independent experiments. Test evaluations include functionality, efficiency, and temperature lift. Commercially available components were used to minimize costs of new hardware development. Testing was completed on two heat pump design iterations--LBU-I and LBU--II, for a variety of operating conditions under the variation of several system parameters, including: orientation, evaporator water inlet temperature (EWIT), condenser water inlet temperature (CWIT), and compressor speed. The LBU-I system employed an ac motor, belt-driven scroll compressor, and tube-in-tube heat exchangers. The LBU-II system used a direct-drive AC motor compressor assembly and plate heat exchangers. The LBU-II system in general outperformed the LBU-I system on all accounts. Results are presented for all systems, showing particular attention to those states that perform with a COP of 4.5 +/- 10% and can maintain a temperature lift of 55 degrees F (30.6 degrees C) +/- 10%. A calculation of potential radiator area reduction shows that points with maximum temperature lift give the greatest potential for reduction, and that area reduction is a function of heat pump efficiency and a stronger function of temperature lift.
Im, Piljae; Liu, Xiaobing; Henderson, Hugh
2018-01-16
The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing; Henderson, Hugh
The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m 2 new addition. This recycled water heat pump (RWHP) system uses seven 105 kWmore » (cooling capacity) modular water-to-water heat pumps (WWHPs). Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW) or 7 °C chilled water (CHW) to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC) system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly), reduced CO 2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-07-01
This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model constructionmore » specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.« less
Ecker, Amir L.
1983-01-01
A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.
European Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vishaldeep; Shen, Bo; Keinath, Chris
2017-01-01
High efficiency gas-burning hot water heating takes advantage of a condensing heat exchanger to deliver improved combustion efficiency over a standard non-condensing configuration. The water heating is always lower than the gas heating value. In contrast, Gas Absorption Heat Pump (GAHP) hot water heating combines the efficiency of gas burning with the performance increase from a heat pump to offer significant gas energy savings. An ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. In comparison with air source electric heat pumps, the absorption system can maintain higher coefficients of performance in coldermore » climates. In this work, a GAHP commercial water heating system was compared to a condensing gas storage system for a range of locations and climate zones across Europe. The thermodynamic performance map of a single effect ammonia-water absorption system was used in a building energy modeling software that could also incorporate the changing ambient air temperature and water mains temperature for a specific location, as well as a full-service restaurant water draw pattern.« less
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Robertson, C. S.; Ehde, C. L.; Divakaruni, S. M.; Stacy, L. E.
1979-01-01
Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver.
Are Ducted Mini-Splits Worth It?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jonathan M; Maguire, Jeffrey B; Metzger, Cheryn E.
Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within themore » Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).« less
ETR HEAT EXCHANGER BUILDING, TRA644. FLOOR PLAN AND SECTIONS. PUMP ...
ETR HEAT EXCHANGER BUILDING, TRA-644. FLOOR PLAN AND SECTIONS. PUMP CUBICLES WITH PUMP MOTORS OUTSIDE CUBICLES. HEAT EXCHANGER EQUIPMENT. COOLANT PIPE TUNNEL ENTERS FROM REACTOR BUILDING. KAISER ETR-5582-MTR-644-A-3, 2/1956. INL INDEX NO. 532-0644-00-486-101294, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamankaradeniz, R.; Horuz, I.
In this study, the characteristics of solar assisted heat pump are investigated theoretically and experimentally for clear days during the seven months of the winter season in Istanbul/Turkey. A theoretical model was developed and a computer program was written on this basis. The characteristics such as: daily average collector efficiency and solar radiation, monthly average heat transfer at the condenser, monthly average cooling capacity, the mean COP and the mean COP for total system were examined. The theoretical results were found to be in good agreement with the experimental values.
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, B.A.; Zawacki, T.S.
1998-07-21
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration. 5 figs.
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, Benjamin A.; Zawacki, Thomas S.
1998-07-21
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.
Operation and maintenance of the Sol-Dance Building solar system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaultney, J.R.
1980-07-29
A 16,400 square foot general office facility has its primary heating provided by a flat plate solar system using hydronic storage and water-to-air transfer coils for distribution. Backup heat is provided by 10 individually controlled air source heat pumps ranging from 3 tons to 5 tons in capacity. These heat pumps also contain electric resistive elements for use during extremely low ambient temperatures. Cooling is also provided by the heat pumps. Each of the two buildings contains a separate domestic hot water system. Primary heat is provided by a closed loop solar unit with electric elements providing backup heat. Amore » 10,000 gallon black steel water tank provides heat storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, Donald R.; Looper, Marshall G.
1979-08-15
A study of the use of a low-to-moderate temperature hydrothermal resource for space heating a 140-home residential community has been undertake. The approach centers on use of the existing culinary/potable water supply system to supply heated water to the homes, the culinary water being heated at a single pumping station and then distributed throughout the community through uninsulated, buried water mains. The heated potable water is pumped through individual house water-to-air heat exchangers using sealed, magnetic-drive house pumps and returned to the street distribution lines. These house heat exchangers are either add-on, wall mounted, convective heating units or coils addedmore » to existing forced air heating systems.« less
NASA Technical Reports Server (NTRS)
Hoang, Triem T.; OConnell, Tamara; Ku, Jentung
2004-01-01
Loop Heat Pipes (LHPs) have proven themselves as reliable and robust heat transport devices for spacecraft thermal control systems. So far, the LHPs in earth-orbit satellites perform very well as expected. Conventional LHPs usually consist of a single capillary pump for heat acquisition and a single condenser for heat rejection. Multiple pump/multiple condenser LHPs have shown to function very well in ground testing. Nevertheless, the test results of a dual pump/condenser LHP also revealed that the dual LHP behaved in a complicated manner due to the interaction between the pumps and condensers. Thus it is redundant to say that more research is needed before they are ready for 0-g deployment. One research area that perhaps compels immediate attention is the analytical modeling of LHPs, particularly the transient phenomena. Modeling a single pump/single condenser LHP is difficult enough. Only a handful of computer codes are available for both steady state and transient simulations of conventional LHPs. No previous effort was made to develop an analytical model (or even a complete theory) to predict the operational behavior of the multiple pump/multiple condenser LHP systems. The current research project offered a basic theory of the multiple pump/multiple condenser LHP operation. From it, a computer code was developed to predict the LHP saturation temperature in accordance with the system operating and environmental conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
...: Public Meeting and Availability of the Framework Document for Packaged Terminal Air Conditioners and... document for packaged terminal air conditioners and heat pumps. This notice corrects the date of the public... announcement of a public meeting and availability of the framework document for packaged terminal air...
2012-01-01
Presents five chapters covering various aspects of the renewable energy marketplace, along with detailed data tables and graphics. Particular focus is given to renewable energy trends in consumption and electricity; manufacturing activities of solar thermal collectors, solar photovoltaic cells/modules, and geothermal heat pumps; and green pricing and net metering programs. The Department of Energy provides detailed offshore
40 CFR 147.2500 - State-administered program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov... Annotated (West 1974 and Supp. 1983); (4) Laws of 1981, Chapter 20, § 2038 (Re: heat pump injection); (5... Attorney General, State of Wisconsin, to EPA Region, “Re: Amendments to Attorney General's Statement-UIC...
40 CFR 147.2500 - State-administered program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov... Annotated (West 1974 and Supp. 1983); (4) Laws of 1981, Chapter 20, § 2038 (Re: heat pump injection); (5... Attorney General, State of Wisconsin, to EPA Region, “Re: Amendments to Attorney General's Statement-UIC...
40 CFR 147.2500 - State-administered program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov... Annotated (West 1974 and Supp. 1983); (4) Laws of 1981, Chapter 20, § 2038 (Re: heat pump injection); (5... Attorney General, State of Wisconsin, to EPA Region, “Re: Amendments to Attorney General's Statement-UIC...
40 CFR 147.2500 - State-administered program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov... Annotated (West 1974 and Supp. 1983); (4) Laws of 1981, Chapter 20, § 2038 (Re: heat pump injection); (5... Attorney General, State of Wisconsin, to EPA Region, “Re: Amendments to Attorney General's Statement-UIC...
40 CFR 147.2500 - State-administered program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov... Annotated (West 1974 and Supp. 1983); (4) Laws of 1981, Chapter 20, § 2038 (Re: heat pump injection); (5... Attorney General, State of Wisconsin, to EPA Region, “Re: Amendments to Attorney General's Statement-UIC...
Thermal lens elimination by gradient-reduced zone coupling of optical beams
Page, Ralph H.; Beach, Raymond J.
2000-01-01
A thermal gradient-reduced-zone laser includes a laser medium and an optically transparent plate with an index of refraction that is less than the index of refraction of the laser medium. The pump face of the laser medium is bonded to a surface of the optically transparent member. Pump light is directed through the transparent plate to optically pump the solid state laser medium. Heat conduction is mainly through the surface of the laser medium where the heat is introduced by the pump light. Heat flows in a direction opposite to that of the pump light because the side of the laser medium that is opposite to that of the pump face is not in thermal contact with a conductor and thus there is no heat flux (and hence, no temperature gradient), thus producing a thermal gradient-reduced zone. A laser cavity is formed around the laser medium such that laser light oscillating within the laser cavity reflects by total-internal-reflection from the interface between the pump face and the optically transparent plate and enters and exits through a thermal gradient-reduced zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore themore » small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements. Ultimately, the builder decided that adoption of these practices would be too disruptive midstream in the construction cycle. However, the townhomes met the ENERGY STAR Version 3.0 program requirements.« less
Comparative Cooling Season Performance of Air Distribution Systems in Multistory Townhomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poerschke, Andrew; Beach, Rob; Beggs, Timothy
2016-08-01
IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore themore » small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements. Ultimately, the builder decided that adoption of these practices would be too disruptive midstream in the construction cycle. However, the townhomes met the ENERGY STAR Version 3.0 program requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yavuzturk, C. C.; Chiasson, A. D.; Filburn, T. P.
This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance themore » ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is provided that is based on mathematically robust, validated models. An automated optimization tool is used to balance ground loads and incorporated into the simulation engine. With knowledge of the building loads, thermal properties of the ground, the borehole heat exchanger configuration, the heat pump peak hourly and seasonal COP for heating and cooling, the critical heat pump design entering fluid temperature, and the thermal performance of a solar collector, the total GHX length can be calculated along with the area of a supplemental solar collector array and the corresponding reduced GHX length. An economic analysis module allows for the calculation of the lowest capital cost combination of solar collector area and GHX length. ACKNOWLEDGMENTS This project was funded by the United States Department of Energy DOE-DE-FOA-0000116, Recovery Act Geothermal Technologies Program: Ground Source Heat Pumps. The lead contractor, The University of Hartford, was supported by The University of Dayton, and the Oak Ridge National Laboratories. All funding and support for this project as well as contributions of graduate and undergraduate students from the contributing institutions are gratefully acknowledged.« less
Energy 101: Geothermal Heat Pumps
None
2018-02-13
An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.
Ground-Source Heat Pumps | Climate Neutral Research Campuses | NREL
cooling requirements and heating loads. GSHPs take advantage of moderate soil temperatures available year Are ground-source heat pumps right for your campus? Are soil conditions suitable? Are heating and consider the following before undertaking an assessment or GSHP installation. Suitable Soil Conditions The
Multi-Function Gas Fired Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Heiba, Ahmad; Vineyard, Edward Allan
2015-11-01
The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibrationmore » reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.« less
Parametric sensitivity study for solar-assisted heat-pump systems
NASA Astrophysics Data System (ADS)
White, N. M.; Morehouse, J. H.
1981-07-01
The engineering and economic parameters affecting life-cycle costs for solar-assisted heat pump systems are investigted. The change in energy usage resulting from each engineering parameter varied was developed from computer simulations, and is compared with results from a stand-alone heat pump system. Three geographical locations are considered: Washington, DC, Fort Worth, TX, and Madison, WI. Results indicate that most engineering changes to the systems studied do not provide significant energy savings. The most promising parameters to ary are the solar collector parameters tau (-) and U/sub L/ the heat pump capacity at design point, and the minimum utilizable evaporator temperature. Costs associated with each change are estimated, and life-cycle costs computed for both engineering parameters and economic variations in interest rate, discount rate, tax credits, fuel unit costs and fuel inflation rates. Results indicate that none of the feasibile engineering changes for the system configuration studied will make these systems economically competitive with the stand-alone heat pump without a considerable tax credit.
A comparison of radioisotope Brayton and Stirling system for lunar surface mobile power
NASA Astrophysics Data System (ADS)
Harty, Richard B.
1991-01-01
A study was performed by the Rocketdyne Division of Rockwell 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The study indicated that the Stirling power module has 20% lower mass and 40% lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangment to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system.
The Design and Testing of the LSSIF Advanced Thermal Control System
NASA Technical Reports Server (NTRS)
Henson, Robert A.; Keller, John R.
1995-01-01
The Life Support Systems Integration Facility (LSSIF) provides a platform to design and evaluate advanced manned space systems at NASA Johnson Space Center (JSC). The LSSIF Early Human Testing Initiative requires the integration of such subsystems to enable human occupancy of the 6 meter chamber for a 90 day closed volume test. The Advanced Thermal Control System (TCS) is an important component of the integrated system by supplying coolant to the subsystems within the chamber, such as the Air Revitalization System. The TCS incorporates an advanced high efficiency, heat pump to reject waste heat from the chamber to an external sink or 'lift' temperature that emulates a Lunar environment. The heat pump is the High Lift Heat Pump, developed by Foster-Miller, Inc., and is the main test article of the TCS. The heat pump prototype utilizes a non-CFC refrigerant in a design where the thermal requirements exceed existing terrestrial technology. These operating requirements provide a unique opportunity to design and test an advanced integrated thermal system and the associated controls. The design, control, and systems integration of the heat pump and the TCS also have terrestrial technology application. This paper addresses the design of the TCS and the heat pump, along with the control scheme to fully test the heat pump. Design approaches utilized in the LSSIF TCS are promoted for implementation in terrestrial thermal systems. The results of the preliminary thermal and fluid analyses used to develop the control of the thermal systems will also be discussed. The paper includes objectives for the 90 day human test and the test setup. Finally, conclusions will be drawn and recommendations for Earth design application are submitted.
Zhu, Yan; Lu, Jianfei; Wang, Jing; Chen, Fu; Leng, Feifan; Li, Hongyu
2011-01-01
Thermogenesis is a process of heat production in living organisms. It is rare in plants, but it does occur in some species of angiosperm. The heat is generated via plant mitochondrial respiration. As possible involvement in thermogenesis of mitochondrial factors, alternative oxidases (AOXs) and plant uncoupling mitochondrial proteins (PUMPs) have been well studied. AOXs and PUMPs are ubiquitously present in the inner membrane of plant mitochondria. They serve as two major energy dissipation systems that balance mitochondrial respiration and uncoupled phosphorylation by dissipating the H+ redox energy and proton electrochemical gradient (ΔμH+) as heat, respectively. AOXs and PUMPs exert similar physiological functions during homeothermic heat production in thermogenic plants. AOXs have five isoforms, while PUMPs have six. Both AOXs and PUMPs are encoded by small nuclear multigene families. Multiple isoforms are expressed in different tissues or organs. Extensive studies have been done in the area of thermogenesis in higher plants. In this review, we focus on the involvement and regulation of AOXs and PUMPs in thermogenesis.
NASA Technical Reports Server (NTRS)
Benner, Steve M (Inventor); Martins, Mario S. (Inventor)
2000-01-01
A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.
Piezohydraulic Pump Development
NASA Technical Reports Server (NTRS)
Lynch, Christopher S.
2005-01-01
Reciprocating piston piezohydraulic pumps were developed originally under the Smart Wing Phase II program (Lynch) and later under the CHAP program (CSA, Kinetic Ceramics). These pumps focused on 10 cm scale stack actuators operating below resonance and, more recently, at resonance. A survey of commercially available linear actuators indicates that obtaining power density and specific power greater than electromagnetic linear actuators requires driving the stacks at frequencies greater than 1 KHz at high fields. In the case of 10 cm scale actuators the power supply signal conditioning becomes large and heavy and the soft PZT stack actuators generate a lot of heat due to internal losses. Reciprocation frequencies can be increased and material losses significantly decreased through use of millimeter scale single crystal stack actuators. We are presently targeting the design of pumps that utilize stacks at the 1-10 mm length scale and run at reciprocating frequencies of 20kHz or greater. This offers significant advantages over current approaches including eliminating audible noise and significantly increasing the power density and specific power of the system (including electronics). The pump currently under development will comprise an LC resonant drive of a resonant crystal and head mass operating against a resonant fluid column. Each of these resonant systems are high Q and together should produce a single high Q second order system.
The development of a performance-enhancing additive for vapor-compression heat pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzyll, L.R.; Scaringe, R.P.; Gottschlich, J.M.
1997-12-31
This paper describes the testing results of a vapor-compression heat pump operating with HFC-134a refrigerant and a performance-enhancing additive. Preliminary bench-top testing of this additive, when added to polyolester (POE) lubricant and HFC-134a refrigerant, showed surprising enhancements to system COP. To further investigate this finding, the authors designed and fabricated a vapor-compression heat pump test stand for the 3--5 ton range. The authors investigated the effect of different concentrations of this additive on various system performance parameters such as cooling capacity, compressor power requirement, pressure ratio, compressor pressure difference, compressor isentropic efficiency, refrigerant flow rate, and heat exchanger performance. Themore » authors investigated various heat source and heat sink conditions to simulate air-conditioning and heat pump operating conditions. To investigate the effect of this additive on compressor lubrication and life, the authors performed compressor life tests (with scroll and reciprocating compressors), and had lubrication wear tests performed with various concentrations of the additive in the POE lubricant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomquist, R.G.; Wegman, S.
1998-04-01
The purpose of the present work was to determine if existing heat pump systems based on municipal water systems meet existing water quality standards, to analyze water that has passed through a heat pump or heat exchanger to determine if corrosion products can be detected, to determine residual chlorine levels in municipal waters on the inlet as well as the outlet side of such installations, to analyses for bacterial contaminants and/or regrowth due to the presence of a heat pump or heat exchanger, to develop and suggest criteria for system design and construction, to provide recommendations and specifications for materialmore » and fluid selection, and to develop model rules and regulations for the installation, operation, and monitoring of new and existing systems. In addition, the Washington State University (WSU) has evaluated availability of computer models that would allow for water system mapping, water quality modeling and system operation.« less
The New S-RAM Air Variable Compressor/Expander for Heat Pump and Waste Heat to Power Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R; Jestings, Lee; Conde, Ricardo
S-RAM Dynamics (S-RAM) has designed an innovative heat pump system targeted for commercial and industrial applications. This new heat pump system is more efficient than anything currently on the market and utilizes air as the refrigerant instead of hydrofluorocarbon (HFC) refrigerants, leading to lower operating costs, minimal environmental costs or concerns, and lower maintenance costs. The heat pumps will be manufactured in the United States. This project was aimed at determining the feasibility of utilizing additive manufacturing to make the heat exchanger device for the new heat pump system. ORNL and S-RAM Dynamics collaborated on determining the prototype performance andmore » subsequently printing of the prototype using additive manufacturing. Complex heat exchanger designs were fabricated using the Arcam electron beam melting (EBM) powder bed technology using Ti-6Al-4V material. An ultrasonic welding system was utilized in order to remove the powder from the small openings of the heat exchanger. The majority of powder in the small chambers was removed, however, the amount of powder remaining in the heat exchanger was a function of geometry. Therefore, only certain geometries of heat exchangers could be fabricated. SRAM Dynamics evaluated a preliminary heat exchanger design. Although the results of the additive manufacturing of the heat exchanger were not optimum, a less complex geometry was demonstrated. A sleeve valve was used as a demonstration piece, as engine designs from S-RAM Dynamics require the engine to have a very high density. Preliminary designs of this geometry were successfully fabricated using the EBM technology.« less
Post-evaluation of a ground source heat pump system for residential space heating in Shanghai China
NASA Astrophysics Data System (ADS)
Lei, Y.; Tan, H. W.; Wang, L. Z.
2017-11-01
Residents of Southern China are increasingly concerned about the space heating in winter. The chief aim of the present work is to find a cost-effective way for residential space heating in Shanghai, one of the biggest city in south China. Economic and energy efficiency of three residential space heating ways, including ground source heat pump (GSHP), air source heat pump (ASHP) and wall-hung gas boiler (WHGB), are assessed based on Long-term measured data. The results show that the heat consumption of the building is 120 kWh/m2/y during the heating season, and the seasonal energy efficiency ratio (SEER) of the GSHP, ASHP and WHGB systems are 3.27, 2.30, 0.88 respectively. Compared to ASHP and WHGB, energy savings of GSHP during the heating season are 6.2 kgce/(m2.y) and 2.2 kgce/(m2.y), and the payback period of GSHP are 13.3 and 7.6 years respectively. The sensitivity analysis of various factors that affect the payback period is carried out, and the results suggest that SEER is the most critical factor affecting the feasibility of ground source heat pump application, followed by building load factor and energy price factor. These findings of the research have led the author to the conclusion that ground source heat pump for residential space heating in Shanghai is a good alternative, which can achieve significant energy saving benefits, and a good system design and operation management are key factors that can shorten the payback period.
Modeling of thermal storage systems in MILP distributed energy resource models
Steen, David; Stadler, Michael; Cardoso, Gonçalo; ...
2014-08-04
Thermal energy storage (TES) and distributed generation technologies, such as combined heat and power (CHP) or photovoltaics (PV), can be used to reduce energy costs and decrease CO 2 emissions from buildings by shifting energy consumption to times with less emissions and/or lower energy prices. To determine the feasibility of investing in TES in combination with other distributed energy resources (DER), mixed integer linear programming (MILP) can be used. Such a MILP model is the well-established Distributed Energy Resources Customer Adoption Model (DER-CAM); however, it currently uses only a simplified TES model to guarantee linearity and short run-times. Loss calculationsmore » are based only on the energy contained in the storage. This paper presents a new DER-CAM TES model that allows improved tracking of losses based on ambient and storage temperatures, and compares results with the previous version. A multi-layer TES model is introduced that retains linearity and avoids creating an endogenous optimization problem. The improved model increases the accuracy of the estimated storage losses and enables use of heat pumps for low temperature storage charging. Ultimately,results indicate that the previous model overestimates the attractiveness of TES investments for cases without possibility to invest in heat pumps and underestimates it for some locations when heat pumps are allowed. Despite a variation in optimal technology selection between the two models, the objective function value stays quite stable, illustrating the complexity of optimal DER sizing problems in buildings and microgrids.« less
CFD simulation of a screw compressor including leakage flows and rotor heating
NASA Astrophysics Data System (ADS)
Spille-Kohoff, Andreas, Dr.; Hesse, Jan; El Shorbagy, Ahmed
2015-08-01
Computational Fluid Dynamics (CFD) simulations have promising potential to become an important part in the development process of positive displacement (PD) machines. CFD delivers deep insights into the flow and thermodynamic behaviour of PD machines. However, the numerical simulation of such machines is more complex compared to dynamic pumps like turbines or fans. The fluid transport in size-changing chambers with very small clearances between the rotors, and between rotors and casing, demands complex meshes that change with each time step. Additionally, the losses due to leakage flows and the heat transfer to the rotors need high-quality meshes so that automatic remeshing is almost impossible. In this paper, setup steps and results for the simulation of a dry screw compressor are shown. The rotating parts are meshed with TwinMesh, a special hexahedral meshing program for gear pumps, gerotors, lobe pumps and screw compressors. In particular, these meshes include axial and radial clearances between housing and rotors, and beside the fluid volume the rotor solids are also meshed. The CFD simulation accounts for gas flow with compressibility and turbulence effects, heat transfer between gas and rotors, and leakage flows through the clearances. We show time- resolved results for torques, forces, interlobe pressure, mass flow, and heat flow between gas and rotors, as well as time- and space-resolved results for pressure, velocity, temperature etc. for different discharge ports and working points of the screw compressor. These results are also used as thermal loads for deformation simulations of the rotors.
A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment
NASA Technical Reports Server (NTRS)
Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.
1992-01-01
A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.
An analytical study of hybrid ejector/internal combustion engine-driven heat pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, R.W.
1988-01-01
Because ejectors can combine high reliability with low maintenance cost in a package requiring little capital investment, they may provide attractive heat pumping capability in situations where the importance of their inefficiencies is minimized. One such concept, a hybrid system in which an ejector driven by engine reject heat is used to increase the performance of an internal combustion engine-driven heat pump, was analyzed by modifying an existing ejector heat pump model and combining it with generic compressor and internal combustion engine models. Under the model assumptions for nominal cooling mode conditions, the results showed that hybrid systems could providemore » substantial performance augmentation/emdash/up to 17/percent/ increase in system coefficient of performance for a parallel arrangement of an enhanced ejector with the engine-driven compressor. 4 refs., 4 figs., 4 tabs.« less
Solar hot water system installed at Day's Inn Motel, Dallas, Texas (Valley View)
NASA Technical Reports Server (NTRS)
1980-01-01
The solar system was designed to provide 65 percent of the total domestic hot water (DHW) demand. A liquid (water) flat plate collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank when the solar pump is not running. Heat is transferred from the DHW tanks through a shell and tube heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up standby losses. All pumps are controlled by differential temperature controllers.
Solar hot water system installed at Days Inn Motel, Jacksonville, Florida
NASA Technical Reports Server (NTRS)
1980-01-01
The solar system was designed to provide 65 percent of the hot water demand. Water in the liquid flat plate collector (900 square feet) system automatically drains into the 1000 gallon lined and vented steel storage tank when the pump is not running. Heat is transferred from storage to Domestic Hot Water (DHW) tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and heat exchanger enables solar heated water to help make up DHW standby losses. All pumps are controlled by differential temperature.
NASA Astrophysics Data System (ADS)
Kunugi, Yoshifumi; Kashiwagi, Takao
Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.
Optimizing the performance of a solar liquid piston pump
NASA Astrophysics Data System (ADS)
Murphy, C. L.
Utilization of solar energy for pumping water for irrigation or storage is discussed. Oscillations of a Freon 113 liquid column are generated in a working tube when a continuous flow of hot water, and cooling water, are supplied to heated and cooling coils located in the tube. The oscillations are converted into a pump (SLPP) model exhibited self starting, stable operation over a wide range of conditions, provides the inlet hot water heat source and inlet cooling water heat sink are above and below the critical values for stalling at a given pump head. The operation of the SLPP model, is primarily affected by the heating coil position within the working tube, and the geometries of the inlet and outlet water tubes.
Residential Variable-Capacity Heat Pumps Sized to Heating Loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale
2014-01-01
Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in themore » cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.« less
A new technique for pumping hydrogen gas
Friedman, I.; Hardcastle, K.
1970-01-01
A system for pumping hydrogen gas without isotopic fractionation has been developed. The pump contains uranium metal, which when heated to about 80??C reacts with hydrogen to form UH3. The UH3 is heated to above 500??C to decompose the hydride and regenerate the hydrogen. ?? 1970.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, D.R.
1980-09-30
A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heatedmore » culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.« less
NASA Technical Reports Server (NTRS)
Wu, S. T. (Editor); Christensen, D. L.; Head, R. R.
1978-01-01
Demonstration projects, systems-subsystems simulation programs, applications (heating, cooling, agricultural, industrial), and climatic data testing (standards, economics, institutional) are the topics of the book. Economics of preheating water for commercial use and collecting, processing, and dissemination of data for the national demonstration program are discussed. Computer simulation of a solar energy system and graphical representation of solar collector performance are considered. Attention is given to solar driven heat pumps, solar cooling equipment, hybrid passive/active solar systems, and solar farm buildings. Evaluation of a thermographic scanning device for solar energy and conservation applications, use of meteorological data in system evaluation, and biomass conversion potential are presented.
Diesel-fired self-pumping water heater
NASA Astrophysics Data System (ADS)
Gertsmann, Joseph
1994-07-01
The object of this project was to study the feasibility of pumping and heating water by sustained oscillatory vaporization and condensation in a fired heat exchanger. Portable field liquid fueled water heaters would facilitate heating water for sanitation, personal hygiene, food service, laundry, equipment maintenance, and decontamination presently available only from larger, less portable, motorized pumping units. The technical tasks consisted of: development of an analytical model, operation of proof-of-principal prototypes, and determination of the thermal and mechanical relationships to evaluate operating range and control characteristics. Four successive pump models were analyzed and tested. The final analytical model gave reasonable agreement with the experimental results, indicating that the actual pumping effect was an order of magnitude lower than originally anticipated. It was concluded that a thermally-activated self pumping water heater based on the proposed principle is not feasible.
High power diode pumped solid state (DPSS) laser systems active media robust modeling and analysis
NASA Astrophysics Data System (ADS)
Kashef, Tamer M.; Mokhtar, Ayman M.; Ghoniemy, Samy A.
2018-02-01
Diode side-pumped solid-state lasers have the potential to yield high quality laser beams with high efficiency and reliability. This paper summarizes the results of simulation of the most predominant active media that are used in high power diode pumped solid-state (DPSS) laser systems. Nd:YAG, Nd:glass, and Nd:YLF rods laser systems were simulated using the special finite element analysis software program LASCAD. A performance trade off analysis for Nd:YAG, Nd:glass, and Nd:YLF rods was performed in order to predict the system optimized parameters and to investigate thermally induced thermal fracture that may occur due to heat load and mechanical stress. The simulation results showed that at the optimized values Nd:YAG rod achieved the highest output power of 175W with 43% efficiency and heat load of 1.873W/mm3. A negligible changes in laser output power, heat load, stress, and temperature distributions were observed when the Nd:YAG rod length was increased from 72 to 80mm. Simulation of Nd:glass at different rod diameters at the same pumping conditions showed better results for mechanical stress and thermal load than that of Nd:YAG and Nd:YLF which makes it very suitable for high power laser applications especially for large rod diameters. For large rod diameters Nd:YLF is mechanically weaker and softer crystal compared to Nd:YAG and Nd:glass due to its poor thermomechanical properties which limits its usage to only low to medium power systems.
NASA Technical Reports Server (NTRS)
Wetch, J. R.
1988-01-01
A study was conducted by NASA Lewis Research Center for the Triagency SP-100 program office. The objective was to determine which reactor, conversion and radiator technologies would best fulfill future Megawatt Class Nuclear Space Power System Requirements. The requirement was 10 megawatts for 5 years of full power operation and 10 years system life on orbit. A variety of liquid metal and gas cooled reactors, static and dynamic conversion systems, and passive and dynamic radiators were considered. Four concepts were selected for more detailed study: (1) a gas cooled reactor with closed cycle Brayton turbine-alternator conversion with heatpipe and pumped tube fin rejection, (2) a Lithium cooled reactor with a free piston Stirling engine-linear alternator and a pumped tube-fin radiator,(3) a Lithium cooled reactor with a Potassium Rankine turbine-alternator and heat pipe radiator, and (4) a Lithium cooled incore thermionic static conversion reactor with a heat pipe radiator. The systems recommended for further development to meet a 10 megawatt long life requirement are the Lithium cooled reactor with the K-Rankine conversion and heat pipe radiator, and the Lithium cooled incore thermionic reactor with heat pipe radiator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1980-07-01
This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heatmore » exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.« less
Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions
NASA Astrophysics Data System (ADS)
Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards
2014-12-01
Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the experimental stand is equipped with sensors which provide measurements for electricity consumption and gained heat energy.
Vapor-Compression Heat Pumps for Operation Aboard Spacecraft
NASA Technical Reports Server (NTRS)
Ruemmele, Warren; Ungar, Eugene; Cornwell, John
2006-01-01
Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.
Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messmer, Craig S.
2016-09-30
This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series.more » Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.« less
Solid-state semiconductor optical cryocooler based on CdS nanobelts.
Li, Dehui; Zhang, Jun; Wang, Xinjiang; Huang, Baoling; Xiong, Qihua
2014-08-13
We demonstrate the laser cooling of silicon-on-insulator (SOI) substrate using CdS nanobelts. The local temperature change of the SOI substrate exactly beneath the CdS nanobelts is deduced from the ratio of the Stokes and anti-Stokes Raman intensities from the Si layer on the top of the SOI substrate. We have achieved a 30 and 20 K net cooling starting from 290 K under a 3.8 mW 514 nm and a 4.4 mW 532 nm pumping, respectively. In contrast, a laser heating effect has been observed pumped by 502 and 488 nm lasers. Theoretical analysis based on the general static heat conduction module in the Ansys program package is conducted, which agrees well with the experimental results. Our investigations demonstrate the laser cooling capability of an external thermal load, suggesting the applications of II-VI semiconductors in all-solid-state optical cryocoolers.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential central air conditioners and heat pumps. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more-stringent, amended standards for these products would be technologically feasible and economically justified, and would save a significant amount of energy. In this direct final rule, DOE adopts amended energy conservation standards for residential furnaces and for residential central air conditioners and heat pumps. A notice of proposed rulemaking that proposes identical energy efficiency standards is published elsewhere in this issue of the Federal Register. If DOE receives adverse comment and determines that such comment may provide a reasonable basis for withdrawing the direct final rule, this final rule will be withdrawn, and DOE will proceed with the proposed rule.
Comparative Cooling Season Performance of Air Distribution Systems in Multistory Townhomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Poerschke; Beach, R.; Beggs, T.
2016-08-26
IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore themore » small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
...The Energy Policy and Conservation Act of 1975 (EPCA), as amended, prescribes energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential central air conditioners and heat pumps. EPCA also requires the U.S. Department of Energy (DOE) to determine whether more-stringent, amended standards for these products would be technologically feasible and economically justified, and would save a significant amount of energy. In this notice, DOE proposes energy conservation standards for residential furnaces and for residential central air conditioners and heat pumps identical to those set forth in a direct final rule published elsewhere in today's Federal Register. If DOE receives adverse comment and determines that such comment may provide a reasonable basis for withdrawing the direct final rule, DOE will publish a notice withdrawing the direct final rule and will proceed with this proposed rule.
Code of Federal Regulations, 2010 CFR
2010-01-01
... efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water... PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers... of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial...
DOE Zero Energy Ready Home Case Study: Amaris Homes, Afton Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacific Northwest National Laboratory
Amaris Homes built this 3,734-ft2 home in Afton, Minnesota, to the performance criteria of the DOE Zero Energy Ready Home (ZERH) program. A high-efficiency gas boiler provides hot water for the zoned radiant floor system as well as for faucets and showers. A high-efficiency heat pump provides zoned cooling.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... specific to the Carrier Super Modular Multi-System (SMMSi) variable refrigerant flow (VRF) multi-split... in this notice to test and rate its SMMSi VRF multi-split commercial heat pumps. DATES: This Decision... its SMMSi VRF multi-split products. Carrier must use the alternate test procedure provided in this...
Absorption heat pump for space applications
NASA Technical Reports Server (NTRS)
Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun
1993-01-01
In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.
Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D
2015-01-01
Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presentsmore » two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.« less
Low-temperature thermal control for a lunar base
NASA Technical Reports Server (NTRS)
Swanson, Theodore D.; Radermacher, Reinhard; Costello, Frederick A.; Moore, James S., Jr.; Mengers, David R.
1990-01-01
The generic problem of rejecting low- to moderate-temperature heat from space facilities located in a hot thermal sink environment is studied, and the example of a lunar base located near the equator is described. The effective thermal sink temperature is often above or near nominal room temperature. A three heat pump assisted thermal bus concept appears to be the most viable as they are the least sensitive to environmental conditions. Weight estimates are also developed for each of the five thermal control concepts studied: (1) 149kg/kW for a central thermal loop with unitary heat pumps; (2) 133 kg/kW for a conventional bus connected to large, central heat pumps at the radiator; (3) 134 kg/kW for a central, dual loop heat pump concept; (4) 95 kg/kW for the selective field-of-view radiator; and (5) 126 kg/kW for the regolith concept.
Modelling and experimental performance analysis of solar-assisted ground source heat pump system
NASA Astrophysics Data System (ADS)
Esen, Hikmet; Esen, Mehmet; Ozsolak, Onur
2017-01-01
In this study, slinky (the slinky-loop configuration is also known as the coiled loop or spiral loop of flexible plastic pipe)type ground heat exchanger (GHE) was established for a solar-assisted ground source heat pump system. System modelling is performed with the data obtained from the experiment. Artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used in modelling. The slinky pipes have been laid horizontally and vertically in a ditch. The system coefficient of performance (COPsys) and the heat pump coefficient of performance (COPhp) have been calculated as 2.88 and 3.55, respectively, at horizontal slinky-type GHE, while COPsys and COPhp were calculated as 2.34 and 2.91, respectively, at vertical slinky-type GHE. The obtained results showed that the ANFIS is more successful than that of ANN for forecasting performance of a solar ground source heat pump system.
Thermal Analysis of the PediaFlow pediatric ventricular assist device.
Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E
2007-01-01
Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.
Numerical calculation of a sea water heta exchanger using Simulink softwear
NASA Astrophysics Data System (ADS)
Preda, A.; Popescu, L. L.; Popescu, R. S.
2017-08-01
To highlight the heat exchange taking place between seawater as primary agent and the working fluid (water, glycol or Freon) as secondary agent, I have used the Simulink softwear in order to creat a new sequence for numerical calculation of heat exchanging. For optimum heat transfer we opted for a counter movement. The model developed to view the dynamic behavior of the exchanger consists of four interconnected levelsess. In the simulations was found that a finer mesh of the whole exchanger lead to results much closer to reality. There have been various models meshing, starting from a single cell and then advancing noticed an improvement in resultsSimulations were made in both the summer and the winter, using as a secondary agent process water and glycol solution. Studying heat transfer that occurs in the primary exchanger of a heat pump, having the primary fluid sea water with this program, we get the data plausible and worthy of consideration. Inserting into the program, the seasonal water temperatures of Black Sea water layers, we get a encouraging picture about storage capacity and heat transfer of sea water.
Solar assisted heat pump for a swine nursery barn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havard, P.L.
1981-01-01
The raising of hogs in Canada and Northern United States may require heating year round in the nursery area of the operation. The use of a solar assisted heat pump system can lead to substantial energy savings. The heat system and the computer simulation output for a demonstration project built in this area are summarized.
19. Heat Pump, view to the southwest. This system provides ...
19. Heat Pump, view to the southwest. This system provides ventilation air heating and cooling throughout the powerhouse. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT
A pumped, two-phase flow heat transport system for orbiting instrument payloads
NASA Technical Reports Server (NTRS)
Fowle, A. A.
1981-01-01
A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.
NASA Technical Reports Server (NTRS)
2000-01-01
Hydro Dynamics, Inc. received a technical helping hand from NASA that made their Hydrosonic Pump (HPump) a reality. Marshall engineers resolved a bearing problem in the rotor of the pump and recommended new bearings, housings and mounting hardware as a solution. The resulting HPump is able to heat liquids with greater energy efficiency using shock waves to generate heat.
Heat pumping in nanomechanical systems.
Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B
2011-04-01
We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society
Solar hot water system installed at Days Inn Motel, Dallas, Texas (Forrest Lane)
NASA Technical Reports Server (NTRS)
1980-01-01
The solar system was designed to provide 65 percent of the total Domestic Hot Water (DHW) demand. The liquid flat plate (water) collector (1,000 square feet) system automatically drains into the 1,000 gallon steel storage tank located in the mechanical room when the pump is not running. Heat is transferred from the storage tank to DHW tanks through a tube and shell heat exchanger. A circulating pump between the DHW tanks and the heat exchanger enables solar heated water to help make DHW tank standby losses. All pumps are controlled by differential temperature.
Solair heater program: solair applications study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-12-01
General Electric has designed and tested a low-cost solar system using a vacuum tube solar air heater under ERDA Contract E(11-1)-2705. This contract extension has been provided to evaluate various applications of this solar collector. The evaluation identified attractive applications, evaluated corresponding control procedures, estimated system performance, compared economically insolation and insulation, and evaluated the repackaging of off-the-shelf equipment for improved cost effectiveness. The results of this study prompted General Electric's marketing group to do a detailed commercialization study of a residential domestic water heating system using the Solair concept which has been selected as the most attractive application. Othermore » attractive applications are space/domestic water heating and a heat pump assisted solar system/domestic water heating where the heat pump and the solar system function in parallel. A prime advantage of heated air solar systems over liquid systems is cost and longer life which results in higher BTU's/dollar. Other air system advantages are no liquid leakage problems, no toxicity of freezing problems, and less complicated equipment. A hybrid solar system has been identified that can improve the market penetration of solar energy. This system would use the existing mass of the house for energy storage thereby reducing solar cost and complexity. Adequate performance can be obtained with house temperature swings comparable to those used in nighttime setback of the thermostat. Details of this system are provided.« less
Multistage quantum absorption heat pumps.
Correa, Luis A
2014-04-01
It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N-2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.
Heat pumps could inject life into solar energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, P.
1977-07-14
Prospects for the use of solar energy in Great Britain are discussed. The only economically feasible solar system is considered to be a solar assisted heat pump. One of the factors included in an economic assessment of the solar system include the degree to which the house is insulated. Government incentives were suggested to increase solar consumerism. Detailed calculations showed that solar collectors on small British houses were currently uneconomical. The most promising market for solar collectors is outside the domestic market. The lack of standardization of solar collectors also is a hindrance to public acceptance of solar. Heat pumpsmore » with a coefficient of performance of 3:1 and giving a heat output of 3 kW for every 1 kW of electricity are considered economically feasible. Wind powered heat pumps are considered. Estimates of future heat pump use are as high as 30% of the domestic heating market. The US is considered technically more advanced than Britain for many types of solar applications. Technology of solar cells in the United States as opposed to Britain is also discussed.« less
Space power reactor in-core thermionic multicell evolutionary (S-prime) design
NASA Astrophysics Data System (ADS)
Determan, William R.; Van Hagan, Tom H.
1993-01-01
A 5- to 40-kWe moderated in-core thermionic space nuclear power system (TI-SNPS) concept was developed to address the TI-SNPS program requirements. The 40-kWe baseline design uses multicell Thermionic Fuel Elements (TFEs) in a zirconium hydride moderated reactor to achieve a specific mass of 18.2 We/kg and a net end-of-mission (EOM) efficiency of 8.2%. The reactor is cooled with a single NaK-78 pumped loop, which rejects the heat through a 24 m2 heat pipe space radiator.
Thermosyphon coil arrangement for heat pump outdoor unit
Draper, R.
1984-05-22
For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement there for which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil has a feed portion and an exit portion leading to a separator drum from which liquid refrigerant is returned through downcomer line for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation. 9 figs.
Thermosyphon coil arrangement for heat pump outdoor unit
Draper, Robert
1984-01-01
For a heat pump, the outdoor unit is provided with a coil and a refrigerant flow arrangement therefor which is such that in the heating mode of operation of the heat pump they operate in a thermosyphon fashion. The coil 32 has a feed portion 30 and an exit portion 34 leading to a separator drum 36 from which liquid refrigerant is returned through downcomer line 42 for recirculation to the feed portion. The coil is tilted upwardly from entry to exit by the angle alpha to enhance the clearance of the two phases of refrigerant from each other in the heating mode of operation. There is no thermosyphon function in the cooling mode of operation.
Geothermal energy control system and method
Matthews, Hugh B.
1976-01-01
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.
Spacecraft radiators for advanced mission requirements
NASA Technical Reports Server (NTRS)
Leach, J. W.
1980-01-01
Design requirements for spacecraft heat rejection systems are identified, and their impact on the construction of conventional pumped fluid and hybrid heat pipe/pumped fluid radiators is evaluated. Heat rejection systems to improve the performance or reduce the cost of the spacecraft are proposed. Heat rejection requirements which are large compared to those of existing systems and mission durations which are relatively long, are discussed.
Scaling of an Optically Pumped Mid-Infrared Rubidium Laser
2015-03-26
v AFIT-ENP-MS-15-M-104 Abstract An optically pumped mid-infrared rubidium (Rb) pulsed laser has been demonstrated in a heat pipe ... Heat Pipe Assembly ........................................................................................12 Figure 3.3. Rb Number Density vs. Heat ...the first experiments that used a heat pipe as the gain cell. This experiment would influence the work of Sharma (Sharma, 1981:210). 9 Krupke
NASA Astrophysics Data System (ADS)
Chemekov, V. V.; Kharchenko, V. V.
2013-03-01
Matters concerned with setting up environmentally clean supply of heat to dwelling houses in the resort zone of the Russian Black Sea coast on the basis of air-water type heat pumps powered from wind power installations are discussed. The investigations were carried out as applied to the system supplying heat for an individual dwelling house with an area of around 300 m2 situated in the Tuapse city. The design heat load of the building's heating system is around 8.3 kW. The Viessmann Vitocal 300 AW pump is chosen as the main source of heat supply, and a 4-kW electric heater built into a storage tank is chosen as a standby source. The selected wind power installation (the EuroWind 10 unit) has a power capacity of 13 kWe.
Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers.
Tu, Y D; Wang, R Z; Ge, T S; Zheng, X
2017-01-12
Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8-3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump's efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.
10 CFR 431.91 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...
10 CFR 431.91 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...
10 CFR 431.91 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...
10 CFR 431.91 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...
10 CFR 431.91 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EQUIPMENT Commercial Air Conditioners and Heat Pumps § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant...
Capillary Pump Loop (CPL) heat pipe development status report
NASA Technical Reports Server (NTRS)
1982-01-01
The capillary pump loop (CPL) was re-introduced as a potential candidate for the management of large heat loads. It is currently being evaluated for application in the thermal management of large space structures. Test efforts were conducted to establish the feasibility of the CPL heat pipe design.
40 CFR 63.4081 - Am I subject to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and electric heat pumps. Specifically excluded are heat transfer coils and large commercial and... high as the rates specified in paragraph (a) of this section. (3) The surface coating of heat transfer...) or by automated means (e.g., transfer through pipes using pumps); and (9) Handling and conveying of...
Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance
NASA Astrophysics Data System (ADS)
Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.
2014-12-01
It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.
A new concept for solar pumped lasers
NASA Technical Reports Server (NTRS)
Christiansen, W. H.
1978-01-01
A new approach is proposed in which an intermediate body heated by sunlight is used as the pumping source for IR systems, i.e., concentration solar radiation is absorbed and reradiated via an intermediate blackbody. This body is heated by focused sunlight to a high temperature and its heat losses are engineered to be small. The cooled laser tube (or tubes) is placed within the cavity and is pumped by it. The advantage is that the radiation spectrum is like a blackbody at the intermediate temperature and the laser medium selectively absorbs this light. Focusing requirements, heat losses, and absorption bandwidths of laser media are examined, along with energy balance and potential efficiency. The results indicate that for lasers pumped through an IR absorption spectrum, the use of an intermediate blackbody offers substantial and important advantages. The loss in radiative intensity for optical pumping by a lower-temperature body is partly compensated by the increased solid angle of exposure to the radiative environment.
A Superfluid Pulse Tube Refrigerator Without Moving Parts for Sub-Kelvin Cooling
NASA Technical Reports Server (NTRS)
Miller, Franklin K.
2012-01-01
A report describes a pulse tube refrigerator that uses a mixture of He-3 and superfluid He-4 to cool to temperatures below 300 mK, while rejecting heat at temperatures up to 1.7 K. The refrigerator is driven by a novel thermodynamically reversible pump that is capable of pumping the He-3 He-4 mixture without the need for moving parts. The refrigerator consists of a reversible thermal magnetic pump module, two warm heat exchangers, a recuperative heat exchanger, two cold heat exchangers, two pulse tubes, and an orifice. It is two superfluid pulse tubes that run 180 out of phase. All components of this machine except the reversible thermal pump have been demonstrated at least as proof-of-concept physical models in previous superfluid Stirling cycle machines. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters.
NASA Technical Reports Server (NTRS)
1975-01-01
A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.
Jet pump-drive system for heat removal
NASA Technical Reports Server (NTRS)
French, James R. (Inventor)
1987-01-01
The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.
Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lienau, P.
1997-04-01
This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct usemore » Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.« less
Code of Federal Regulations, 2010 CFR
2010-04-01
... dealer's cost of purchasing and installing a central air conditioning system or heat pump, if not... cost of purchasing and installing a central air conditioning system or heat pump, if not installed by...
NASA Astrophysics Data System (ADS)
Liu, Jianwei; Liu, Jiaquan; Wang, Fengyin; Wang, Cuiping
2018-03-01
The thermal environment parameters, like the temperature and air velocity, are measured to investigate the heat comfort status of metro staff working area in winter in Qingdao. The temperature is affected obviously by the piston wind from the train and waiting hall in the lower Hall, and the temperature is not satisfied with the least heat comfort temperature of 16 °C. At the same time, the heat produced by the electrical and control equipments is brought by the cooling air to atmosphere for the equipment safety. Utilizing the water-circulating heat pump, it is feasible to transfer the emission heat to the staff working area to improve the thermal environment. Analyzed the feasibility from the technique and economy when using the heat pump, the water-circulating heat pump could be the best way to realize the waste heat recovery and to help the heat comfort of staff working area in winter in the underground metro station in north China.
Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Richard W; Rice, C Keith; Baxter, Van D
2007-09-01
The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 dependingmore » on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).« less
NASA Astrophysics Data System (ADS)
Salehin, Musfequs; Ehsan, Mohammad Monjurul; Islam, A. K. M. Sadrul
2017-06-01
Heat transfer enhancement by corrugation in fluid domain is a popular method. The rate of improvement is more when it is used highly thermal conductive fluid as heating or cooling medium. In this present study, heat transfer augmentation was investigated numerically by implementing corrugation in the fluid domain and nanofluid as the base fluid in the turbulent forced convection regime. Finite volume method (FVM) was applied to solve the continuity, momentum and energy equations. All the numerical simulations were considered for single phase flow. A rectangle corrugated pipe with 5000 W/m2 constant heat flux subjected to the corrugated wall was considered as the fluid domain. In the range of Reynolds number 15000 to 40000, thermo-physical and hydrodynamic behavior was investigated by using CuO-water nanofluid from 1% to 5% volume fraction as the base fluid through the corrugated fluid domain. Corrugation justification was performed by changing the amplitude of the corrugation and the corrugation wave length for obtaining the increased heat transfer rate with minimum pumping power. For using CuO-water nanofluid, augmentation was also found more in the rectangle corrugated pipe both in heat transfer and pumping power requirement with the increase of Reynolds number and the volume fraction of nanofluid. For the increased pumping power, optimization of pumping power by using nanofluid was also performed for economic finding.
NASA Technical Reports Server (NTRS)
Baker, David (Inventor)
1998-01-01
A spacecraft includes heat-generating payload equipment, and a heat transport system with a cold plate thermally coupled to the equipment and a capillary-wick evaporator, for evaporating coolant liquid to cool the equipment. The coolant vapor is coupled to a condenser and in a loop back to the evaporator. A heated coolant reservoir is coupled to the loop for pressure control. If the wick is not wetted, heat transfer will not begin or continue. A pair of check valves are coupled in the loop, and the heater is cycled for augmentation pumping of coolant to and from the reservoir. This augmentation pumping, in conjunction with the check valves, wets the wick. The wick liquid storage capacity allows the augmentation pump to provide continuous pulsed liquid flow to assure continuous vapor transport and a continuously operating heat transport system. The check valves are of the ball type to assure maximum reliability. However, any type of check valve can be used, including designs which are preloaded in the closed position. The check valve may use any ball or poppet material which resists corrosion. For optimum performance during testing on Earth, the ball or poppet would have neutral buoyancy or be configured in a closed position when the heat transport system is not operating. The ball may be porous to allow passage of coolant vapor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie
Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. Themore » Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2(53:35:12). And for an H2O2 distillation process, the two promising fluids are Trifluoroethanol (TFE) + Triethylene Glycol Dimethyl ether (DMETEG) and Ammonia+ Water. Thermo-physical properties calculated by Aspen+ are reasonably accurate. Documentation of the installation of pilot-plants or full commercial units were not found in the literature for validating thermo-physical properties in an operating unit. Therefore, it is essential to install a pilot-scale unit to verify thermo-physical properties of working fluid pairs and validate the overall efficiency of the thermal heat pump at temperatures typical of distillation processes. For an HO2 process, the ammonia-water heat pump system is more compact and preferable than the TFE-DMETEG heat pump. The ammonia-water heat pump is therefore recommended for the H2O2 process. Based on the complex nature of the heat recovery system, we anticipated that capital costs could make investments financially unattractive where steam costs are low, especially where co-generation is involved. We believe that the enhanced heat transfer equipment has the potential to significantly improve the performance of TEE crystallizers, independent of the absorption heat-pump recovery system. Where steam costs are high, more detailed design/cost engineering will be required to verify the economic viability of the technology. Due to the long payback period estimated for the TEE open system, further studies on the TEE system are not warranted unless there are significant future improvements to heat pump technology. For the H2O2 distillation cycle heat pump waste heat recovery system, there were no significant process constraints and the estimated 5 years payback period is encouraging. We therefore recommend further developments of application of the thermal heat pump in the H2O2 distillation process with the focus on the technical and economic viability of heat exchangers equipped with the state-of-the-art enhancements. This will require additional funding for a prototype unit to validate enhanced thermal performances of heat transfer equipment, evaluate the fouling characteristics in field testing, and remove the uncertainty factors included in the estimated payback period for the H2O2 distillation system.« less
NASA Astrophysics Data System (ADS)
Karas, Kristoffer Jason
Phase change materials (PCMs) are being used increasingly in a variety of thermal transfer and thermal storage applications. This thesis presents the results of a laboratory study into the feasibility of improving the performance of hydronic heating and cooling systems by adding microcapsules filled with a PCM to the water used as heat transport media in these systems. Microencapsulated PCMs (MPCMs) increase the heat carrying capacity of heat transport liquids by absorbing or releasing heat at a constant temperature through a change of phase. Three sequences of tests and their results are presented: 1) Thermal cycling tests conducted to determine the melting temperatures and extent of supercooling associated with the MPCMs tested. 2) Hydronic performance tests in which MPCM slurries were pumped through a fin-and-tube, air-to-liquid heat exchanger and their thermal transfer performance compared against that of ordinary water. 3) Mechanical stability tests in which MPCM slurries were pumped in a continuous loop in order to gauge the extent of rupture due to pumping. It is shown that slurries consisting of water and MPCMs ˜ 14-24 mum in diameter improve thermal performance and offer the potential for power savings in the form of reduced pumping requirements. In addition, it is shown that while slurries of MPCMs 2-5 mum in diameter appear to exhibit better mechanical stability than slurries of larger diameter MPCMs, the smaller MPCMs appear to reduce the thermal performance of air-to-liquid heat exchangers.
Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.
Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie
2017-09-01
Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.
NASA Astrophysics Data System (ADS)
Sahoo, Rashmi R.; Sarkar, Jahar
2017-06-01
Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.
Development of High Efficiency Carbon Dioxide Commercial Heat Pump Water Heater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael PETERSEN; Chad D. BOWERS; Stefan ELBEL
Although heat pump water heaters are today widely accepted in both Japan and Europe, where energy costs are high and government incentives for their use exist, acceptance of such products in the US has been limited. While this trend is slowly changing with the introduction of heat pump water heaters into the residential market, but acceptance remains low in the commercial sector. The objective of the presented work is the development of a high efficiency R744 heat pump water heater for commercial applications with effective utilization of the cooling capability for air conditioning and/or refrigeration. The ultimate goal is tomore » achieve total system COP of up to 8. This unit will be targeted at commercial use where some cooling load is typically needed year round, such as restaurants, hotels, nursing homes, and hospitals. This paper presents the performance results from the development of four R744 commercial heat pump water heater packages of approximately 35 kW and comparison to a commercially available baseline R134a unit of the same capacity and footprint. In addition, the influences of an internal heat exchanger and an enhanced evaporator on the system performance are described and recommendations are made for further improvements of the R744 system.« less
Evaluation of a large capacity heat pump concept for active cooling of hypersonic aircraft structure
NASA Technical Reports Server (NTRS)
Pagel, L. L.; Herring, R. L.
1978-01-01
Results of engineering analyses assessing the conceptual feasibility of a large capacity heat pump for enhancing active cooling of hypersonic aircraft structure are presented. A unique heat pump arrangement which permits cooling the structure of a Mach 6 transport to aluminum temperatures without the aid of thermal shielding is described. The selected concept is compatible with the use of conventional refrigerants, with Freon R-11 selected as the preferred refrigerant. Condenser temperatures were limited to levels compatible with the use of conventional refrigerants by incorporating a unique multipass condenser design, which extracts mechanical energy from the hydrogen fuel, prior to each subsequent pass through the condenser. Results show that it is technically feasible to use a large capacity heat pump in lieu of external shielding. Additional analyses are required to optimally apply this concept.
NASA Astrophysics Data System (ADS)
Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor
Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved “steam” parameters (outlet temperatures up to 625°C and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600°C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the “nuclear” heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of the combined system comprising a SCW nuclear power generation plant and a chemical heat pump, which provides high-temperature heat to a thermochemical water splitting cycle for hydrogen production. It is concluded that the proposed chemical heat pump permits the utilization efficiency of nuclear energy to be improved by at least 2% without jeopardizing nuclear reactor safety. Based on this analysis, further research appears to be merited on the proposed advanced design of a nuclear power generation plant combined with a chemical heat pump, and implementation in appropriate applications seems worthwhile.
Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT
NASA Astrophysics Data System (ADS)
Fu, H. Y.; Scales, W. A.; Bernhardt, P. A.; Briczinski, S. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.; Ruohoniemi, J. M.
2015-08-01
Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT) heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.
Fission fragment assisted reactor concept for space propulsion: Foil reactor
NASA Technical Reports Server (NTRS)
Wright, Steven A.
1991-01-01
The concept is to fabricate a reactor using thin films or foils of uranium, uranium oxide and then to coat them on substrates. These coatings would be made so thin as to allow the escaping fission fragments to directly heat a hydrogen propellant. The idea was studied of direct gas heating and direct gas pumping in a nuclear pumped laser program. Fission fragments were used to pump lasers. In this concept two substrates are placed opposite each other. The internal faces are coated with thin foil of uranium oxide. A few of the advantages of this technology are listed. In general, however, it is felt that if one look at all solid core nuclear thermal rockets or nuclear thermal propulsion methods, one is going to find that they all pretty much look the same. It is felt that this reactor has higher potential reliability. It has low structural operating temperatures, very short burn times, with graceful failure modes, and it has reduced potential for energetic accidents. Going to a design like this would take the NTP community part way to some of the very advanced engine designs, such as the gas core reactor, but with reduced risk because of the much lower temperatures.
Generalized Fluid System Simulation Program, Version 6.0
NASA Technical Reports Server (NTRS)
Majumdar, A. K.; LeClair, A. C.; Moore, R.; Schallhorn, P. A.
2016-01-01
The Generalized Fluid System Simulation Program (GFSSP) is a general purpose computer program for analyzing steady state and time-dependent flow rates, pressures, temperatures, and concentrations in a complex flow network. The program is capable of modeling real fluids with phase changes, compressibility, mixture thermodynamics, conjugate heat transfer between solid and fluid, fluid transients, pumps, compressors, and external body forces such as gravity and centrifugal. The thermofluid system to be analyzed is discretized into nodes, branches, and conductors. The scalar properties such as pressure, temperature, and concentrations are calculated at nodes. Mass flow rates and heat transfer rates are computed in branches and conductors. The graphical user interface allows users to build their models using the 'point, drag, and click' method; the users can also run their models and post-process the results in the same environment. Two thermodynamic property programs (GASP/WASP and GASPAK) provide required thermodynamic and thermophysical properties for 36 fluids: helium, methane, neon, nitrogen, carbon monoxide, oxygen, argon, carbon dioxide, fluorine, hydrogen, parahydrogen, water, kerosene (RP-1), isobutene, butane, deuterium, ethane, ethylene, hydrogen sulfide, krypton, propane, xenon, R-11, R-12, R-22, R-32, R-123, R-124, R-125, R-134A, R-152A, nitrogen trifluoride, ammonia, hydrogen peroxide, and air. The program also provides the options of using any incompressible fluid with constant density and viscosity or ideal gas. The users can also supply property tables for fluids that are not in the library. Twenty-four different resistance/source options are provided for modeling momentum sources or sinks in the branches. These options include pipe flow, flow through a restriction, noncircular duct, pipe flow with entrance and/or exit losses, thin sharp orifice, thick orifice, square edge reduction, square edge expansion, rotating annular duct, rotating radial duct, labyrinth seal, parallel plates, common fittings and valves, pump characteristics, pump power, valve with a given loss coefficient, Joule-Thompson device, control valve, heat exchanger core, parallel tube, and compressible orifice. The program has the provision of including additional resistance options through User Subroutines. GFSSP employs a finite volume formulation of mass, momentum, and energy conservation equations in conjunction with the thermodynamic equations of state for real fluids as well as energy conservation equations for the solid. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. The application and verification of the code has been demonstrated through 30 example problems.
Preliminary design package for solar heating and cooling systems
NASA Technical Reports Server (NTRS)
1978-01-01
Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R.; Abdelaziz, Omar; Patel, Viral K.
2017-05-01
The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO 2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.
Chemical heat pump and chemical energy storage system
Clark, Edward C.; Huxtable, Douglas D.
1985-08-06
A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.
Thermal modeling of a cryogenic turbopump for space shuttle applications.
NASA Technical Reports Server (NTRS)
Knowles, P. J.
1971-01-01
Thermal modeling of a cryogenic pump and a hot-gas turbine in a turbopump assembly proposed for the Space Shuttle is described in this paper. A model, developed by identifying the heat-transfer regimes and incorporating their dependencies into a turbopump system model, included heat transfer for two-phase cryogen, hot-gas (200 R) impingement on turbine blades, gas impingement on rotating disks and parallel plate fluid flow. The ?thermal analyzer' program employed to develop this model was the TRW Systems Improved Numerical Differencing Analyzer (SINDA). This program uses finite differencing with lumped parameter representation for each node. Also discussed are model development, simulations of turbopump startup/shutdown operations, and the effects of varying turbopump parameters on the thermal performance.
Cottingham, James G.
1977-01-01
Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.
Active thermal control systems for lunar and Martian exploration
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Petete, Patricia A.; Dzenitis, John
1990-01-01
Several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and Martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and Martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators. The lunar and Martian excursion vehicles incorporate internal single-phase water acquisition, which is connected via heat exchangers to external body-mounted single-phase radiators. A water evaporation system is used for the transfer vehicles during periods of high heating.
Heat pump/refrigerator using liquid working fluid
Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.
1982-01-01
A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1981-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
Greiner, Leonard
1984-01-01
A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar
This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less
Control system for, and a method of, heating an operator station of a work machine
Baker, Thomas M.; Hoff, Brian D.; Akasam, Sivaprasad
2005-04-05
There are situations in which an operator remains in an operator station of a work machine when an engine of the work machine is inactive. The present invention includes a control system for, and a method of, heating the operator station when the engine is inactive. A heating system of the work machine includes an electrically-powered coolant pump, a power source, and at least one piece of warmed machinery. An operator heat controller is moveable between a first and a second position, and is operable to connect the electrically-powered coolant pump to the power source when the engine is inactive and the operator heat controller is in the first position. Thus, by deactivating the engine and then moving the operator heat controller to the first position, the operator may supply electrical energy to the electrically-powered coolant pump, which is operably coupled to heat the operator station.
Cooling devices and methods for use with electric submersible pumps
Jankowski, Todd A; Hill, Dallas D
2014-12-02
Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.
Cooling devices and methods for use with electric submersible pumps
Jankowski, Todd A.; Hill, Dallas D.
2016-07-19
Cooling devices for use with electric submersible pump motors include a refrigerator attached to the end of the electric submersible pump motor with the evaporator heat exchanger accepting all or a portion of the heat load from the motor. The cooling device can be a self-contained bolt-on unit, so that minimal design changes to existing motors are required.
Variable temperature seat climate control system
Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.
1997-05-06
A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.
Experimental Evaluation of High Performance Integrated Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, William A; Berry, Robert; Durfee, Neal
2016-01-01
Integrated heat pump (IHP) technology provides significant potential for energy savings and comfort improvement for residential buildings. In this study, we evaluate the performance of a high performance IHP that provides space heating, cooling, and water heating services. Experiments were conducted according to the ASHRAE Standard 206-2013 where 24 test conditions were identified in order to evaluate the IHP performance indices based on the airside performance. Empirical curve fits of the unit s compressor maps are used in conjunction with saturated condensing and evaporating refrigerant conditions to deduce the refrigerant mass flowrate, which, in turn was used to evaluate themore » refrigerant side performance as a check on the airside performance. Heat pump (compressor, fans, and controls) and water pump power were measured separately per requirements of Standard 206. The system was charged per the system manufacturer s specifications. System test results are presented for each operating mode. The overall IHP performance metrics are determined from the test results per the Standard 206 calculation procedures.« less
Geothermal Systems for School.
ERIC Educational Resources Information Center
Dinse, David H.
1998-01-01
Describes an award-winning school heating and cooling system in which two energy-efficient technologies, variable-flow pumping and geothermal heat pumps, were combined. The basic system schematic and annual energy use and cost savings statistics are provided. (GR)
Performance of a solar augmented heat pump
NASA Astrophysics Data System (ADS)
Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.
Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.
Dual-stroke heat pump field performance
NASA Astrophysics Data System (ADS)
Veyo, S. E.
1984-11-01
Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.
Low-Cost Gas Heat Pump for Building Space Heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrabrant, Michael; Keinath, Christopher
2016-10-11
Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiencymore » encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation, which will allow for improved load matching. In addition, the energy savings analysis showed that a house in Albany, NY, Chicago, IL and Minneapolis, MN would save roughly 32, 28.5 and 36.5 MBtu annually when compared to a 100% efficient boiler, respectively. The gas absorption heat pump achieves this performance by using high grade heat from the combustion of natural gas in combination with low grade heat extracted from the ambient to produce medium grade heat suitable for space and water heating. Expected product features include conventional outdoor installation practices, 4:1 modulation, and reasonable economic payback. These factors position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions for residential space heating.« less
Acoustical heat pumping engine
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1983-08-16
The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.
Acoustical heat pumping engine
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1983-08-16
The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.
TeGrotenhuis, Ward Evan
2013-11-05
A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.
Heat pump system with selective space cooling
Pendergrass, J.C.
1997-05-13
A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.
Heat pump system with selective space cooling
Pendergrass, Joseph C.
1997-01-01
A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.
Design, development and test of a capillary pump loop heat pipe
NASA Technical Reports Server (NTRS)
Kroliczek, E. J.; Ku, J.; Ollendorf, S.
1984-01-01
The development of a capillary pump loop (CPL) heat pipe, including computer modeling and breadboard testing, is presented. The computer model is a SINDA-type thermal analyzer, combined with a pressure analyzer, which predicts the transients of the CPL heat pipe during operation. The breadboard is an aluminum/ammonia transport system which contains multiple parallel evaporator and condenser zones within a single loop. Test results have demonstrated the practicality and reliability of such a design, including heat load sharing among evaporators, liquid inventory/temperature control feature, and priming under load. Transport capability for this system is 65 KW-M with individual evaporator pumps managing up to 1.7 KW at a heat flux of 15 W/sq cm. The prediction of the computer model for heat transport capabilities is in good agreement with experimental results.
District heating with geothermally heated culinary water supply systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitts, D.R.; Schmitt, R.C.
1979-09-01
An initial feasibility study of using existing culinary water supply systems to provide hot water for space heating and air conditioning to a typical residential community is reported. The Phase I study has centered on methods of using low-to-moderate temperature water for heating purposes including institutional barriers, identification and description of a suitable residential commnity water system, evaluation of thermal losses in both the main distribution system and the street mains within the residential district, estimation of size and cost of the pumping station main heat exchanger, sizing of individual residential heat exchangers, determination of pumping and power requirements duemore » to increased flow through the residential area mains, and pumping and power requirements from the street mains through a typical residence. All results of the engineering study of Phase I are encouraging.« less
Heat pump assisted geothermal heating system for Felix Spa, Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosca, Marcel; Maghiar, Teodor
1996-01-24
The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.
Heat pump assisted geothermal heating system for Felix Spa, Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosca, M.; Maghiar, T.
1996-12-31
The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Baxter, Van D.; Rice, C. Keith
For this study, we authored a new air source integrated heat pump (AS-IHP) model in EnergyPlus, and conducted building energy simulations to demonstrate greater than 50% average energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, based on the EnergyPlus quick-service restaurant template building. We also assessed water heating energy saving potentials using ASIHP versus gas heating, and pointed out climate zones where AS-IHPs are promising.
Energy Factor Analysis for Gas Heat Pump Water Heaters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R
2016-01-01
Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basismore » energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.« less
Hot Topics! Heat Pumps and Geothermal Energy
ERIC Educational Resources Information Center
Roman, Harry T.
2009-01-01
The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.
Yamazaki, K; Mori, T; Tomioka, J; Litwak, P; Antaki, J F; Tagusari, O; Koyanagi, H; Griffith, B P; Kormos, R L
1997-01-01
A critical issue facing the development of an implantable, rotary blood pump is the maintenance of an effective seal at the rotating shaft. Mechanical seals are the most versatile type of seal in wide industrial applications. However, in a rotary blood pump, typical seal life is much shorter than required for chronic support. Seal failure is related to adhesion and aggregation of heat denatured blood proteins that diffuse into the lubricating film between seal faces. Among the blood proteins, fibrinogen plays an important role due to its strong propensity for adhesion and low transition temperature (approximately 50 degrees C). Once exposed to temperature exceeding 50 degrees C, fibrinogen molecules fuse together by multi-attachment between heat denatured D-domains. This quasi-polymerized fibrin increases the frictional heat, which proliferates the process into seal failure. If the temperature of the seal faces is maintained well below 50 degrees C, a mechanical seal would not fail in blood. Based on this "Cool-Seal" concept, we developed a miniature mechanical seal made of highly thermally conductive material (SiC), combined with a recirculating purge system. A large supply of purge fluid is recirculated behind the seal face to augment convective heat transfer to maintain the seal temperature below 40 degrees C. It also cools all heat generating pump parts (motor coil, bearing, seal). The purge consumption has been optimized to virtually nil (< 0.5 cc/day). An ultrafiltration unit integrated in the recirculating purge system continuously purifies and sterilizes the purge fluid for more than 5 months without filter change. The seal system has now been incorporated into our intraventricular axial flow blood pump (IVAP) and newly designed centrifugal pump. Ongoing in vivo evaluation of these systems has demonstrated good seal integrity for more than 160 days. The Cool-Seal system can be applied to any type of rotary blood pump (axial, diagonal, centrifugal, etc.) and offers a practical solution to the shaft seal problem and heat related complications, which currently limit the use of implantable rotary blood pumps.
Radiance limits of ceramic phosphors under high excitation fluxes
NASA Astrophysics Data System (ADS)
Lenef, Alan; Kelso, John; Zheng, Yi; Tchoul, Maxim
2013-09-01
Ceramic phosphors, excited by high radiance pump sources, offer considerable potential for high radiance conversion. Interestingly, thermodynamic arguments suggest that the radiance of the luminescent spot can even exceed that of the incoming light source. In practice, however, thermal quenching and (non-thermal) optical saturation limit the maximum attainable radiance of the luminescent source. We present experimental data for Ce:YAG and Ce:GdYAG ceramics in which these limits have been investigated. High excitation fluxes are achieved using laser pumping. Optical pumping intensities exceeding 100W/mm2 have been shown to produce only modest efficiency depreciation at low overall pump powers because of the short Ce3+ lifetime, although additional limitations exist. When pump powers are higher, heat-transfer bottlenecks within the ceramic and heat-sink interfaces limit maximum pump intensities. We find that surface temperatures of these laser-pumped ceramics can reach well over 150°C, causing thermal-quenching losses. We also find that in some cases, the loss of quantum efficiency with increasing temperature can cause a thermal run-away effect, resulting in a rapid loss in converted light, possibly over-heating the sample or surrounding structures. While one can still obtain radiances on the order of many W/mm2/sr, temperature quenching effects ultimately limit converted light radiance. Finally, we use the diffusion-approximation radiation transport models and rate equation models to simulate some of these nonlinear optical pumping and heating effects in high-scattering ceramics.
10 CFR 434.404 - Building service systems and equipment.
Code of Federal Regulations, 2013 CFR
2013-01-01
... specification. 404.1.2Unfired Storage Tanks. The heat loss of the tank surface area Btu/(h·ft2) shall be based... the potential benefit of using an electric heat pump water heater(s) instead of an electric resistance water heater(s). The analysis shall compare the extra installed costs of the heat pump unit with the...
NASA Technical Reports Server (NTRS)
Clarke, V. C., Jr.
1977-01-01
Solar collectors on mountainside collect thermal energy for mountaintop powerplant. Sloped arrangement reduces heat-transport problem of level ground-based collector field. Heated air rises without mechanical pumps and buoyancy force supplies pumping power without further cost. Precision tracking requirement of power towers eliminated by butted-together Winston-type concentrator troughs. Low-cost native rock is used for heat storage.
ETR HEAT EXCHANGER BUILDING, TRA644. A PRIMARY COOLANT PUMP AND ...
ETR HEAT EXCHANGER BUILDING, TRA-644. A PRIMARY COOLANT PUMP AND 24-INCH CHECK VALVE ARE MOUNTED IN A SHIELDED CUBICLE. NOTE CONNECTION AT RIGHT THROUGH SHIELD WALL TO PUMP MOTOR ON OTHER SIDE. INL NEGATIVE NO. 56-4177. Jack L. Anderson, Photographer, 12/21/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
1981-06-01
shutdown. Before start up the hot oil would be pumped ( auxillary pump) back through the engine on the high pressure side of the engine’ s oil pump. This...insulation heating was applied. Temperature plots Figure 14* to Figure 16* show the battery cooling curves for auxillary heating when 37mm of medium
Air source integrated heat pump simulation model for EnergyPlus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; New, Joshua; Baxter, Van
An Air Source Integrated Heat Pump (AS-IHP) is an air source, multi-functional spacing conditioning unit with water heating function (WH), which can lead to great energy savings by recovering the condensing waste heat for domestic water heating. This paper summarizes development of the EnergyPlus AS-IHP model, introducing the physics, sub-models, working modes, and control logic. Based on the model, building energy simulations were conducted to demonstrate greater than 50% annual energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, using the EnergyPlus quick-service restaurant template building. We assessed water heating energy savingmore » potentials using AS-IHP versus both gas and electric baseline systems, and pointed out climate zones where AS-IHPs are promising. In addition, a grid integration strategy was investigated to reveal further energy saving and electricity cost reduction potentials, via increasing the water heating set point temperature during off-peak hours and using larger water tanks.« less
Optimization and thermoeconomics research of a large reclaimed water source heat pump system.
Zhang, Zi-ping; Du, Fang-hui
2013-01-01
This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS.
Application of sorption heat pumps for increasing of new power sources efficiency
NASA Astrophysics Data System (ADS)
Vasiliev, L.; Filatova, O.; Tsitovich, A.
2010-07-01
In the 21st century the way to increase the efficiency of new sources of energy is directly related with extended exploration of renewable energy. This modern tendency ensures the fuel economy needs to be realized with nature protection. The increasing of new power sources efficiency (cogeneration, trigeneration systems, fuel cells, photovoltaic systems) can be performed by application of solid sorption heat pumps, regrigerators, heat and cold accumulators, heat transformers, natural gas and hydrogen storage systems and efficient heat exchangers.
Super energy saver heat pump with dynamic hybrid phase change material
Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN
2010-07-20
A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.
NASA Astrophysics Data System (ADS)
Liu, Yefeng; Meng, Deren; Chen, Shen
2018-02-01
In food processing, there are significant simultaneous demands of cooling, warm water and hot water. Most of the heated water is used only once rather than recycled. Current heating and cooling systems consume much energy and emit lots of greenhouse gases. In order to reduce energy consumption and greenhouse gases emission, a transcritical CO2 heat pump system is proposed that can supply not only cooling, but also warm water and hot water simultaneously to meet the thermal demands of food processing. Because the inlet water temperature from environment varies through a year, the energy-saving performance for different seasons is simulated. The results showed that the potential primary energy saving rate of the proposed CO2 heat pump is 50% to 60% during a year.
Apparatus for generating coherent infrared energy of selected wavelength
Stevens, C.G.
A tunable source of coherent infrared energy includes a heat pipe having an intermediate region at which cesium is heated to vaporizing temperature and end regions at which the vapor is condensed and returned to the intermediate region for reheating and recirculation. Optical pumping light is directed along the axis of the heat pipe through a first end window to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window. A porous walled tubulation extends along the axis of the heat pipe and defines a region in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light. Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedewa, Andrew
A system is disclosed comprising an engine having coolant passages defined therethrough, a first coolant pump, and a first radiator. The system additionally comprises a second coolant pump, a second radiator, and a liquid-to-air heat exchanger configured to condition the temperature of intake air to the engine. The system further includes a coolant valve means. For a first configuration of the coolant valve means the first coolant pump is configured to urge coolant through the coolant passages in the engine and through the first radiator, and the second coolant pump is configured to urge coolant through the liquid-to-air heat exchangermore » and through the second radiator. For a second configuration of the coolant valve means the second coolant pump is configured to urge coolant through the coolant passages in the engine and through the liquid-to-air heat exchanger. A method for controlling the system is also disclosed.« less
Thermal Control Utilizing an Thermal Control Utilizing an Two-Phase Loop with High Heat Flux Source
NASA Technical Reports Server (NTRS)
Jeong, Seong-Il; Didion, Jeffrey
2004-01-01
The electric field applied in dielectric fluids causes an imbalance in the dissociation-recombination reaction generated free space charges. The generated charges are redistributed by the applied electric field resulting in the heterocharge layers in the Vicinity of the electrodes. Proper design of the electrodes generates net axial flow motion pumping the fluid. The electrohydrodynamic (EHD) conduction pump is a new device that pumps dielectric fluids utilizing heterocharge layers formed by imposition of electrostatic fields. This paper evaluates the experimental performance of a two-phase breadboard thermal control loop consisting of an EHD conduction pump, condenser, pre-heater, high heat flux evaporator (HE), transport lines, and reservoir (accumulator). The generated pressure head and the maximum applicable heat flux are experimentally determined at various applied voltages and sink temperatures. Recovery from dryout condition by increasing the applied voltage to the pump is also demonstrated.
Climate Adaptivity and Field Test of the Space Heating Used Air-Source Transcritical CO2 Heat Pump
NASA Astrophysics Data System (ADS)
Song, Yulong; Ye, Zuliang; Cao, Feng
2017-08-01
In this study, an innovation of air-sourced transcritical CO2 heat pump which was employed in the space heating application was presented and discussed in order to solve the problem that the heating performances of the transcritical CO2 heat pump water heater deteriorated sharply with the augment in water feed temperature. An R134a cycle was adopted as a subcooling device in the proposed system. The prototype of the presented system was installed and supplied hot water for three places in northern China in winter. The field test results showed that the acceptable return water temperature can be increased up to 55°C, while the supply water temperature was raised rapidly by the presented prototype to up to 70°C directly, which was obviously appropriate to the various conditions of heating radiator in space heating application. Additionally, though the heating capacity and power dissipation decreased with the decline in ambient temperature or the augment in water temperature, the presented heat pump system performed efficiently whatever the climate and water feed temperature were. The real time COP of the presented system was generally more than 1.8 in the whole heating season, while the seasonal performance coefficient (SPC) was also appreciable, which signified that the economic efficiency of the presented system was more excellent than other space heating approaches such as fuel, gas, coal or electric boiler. As a result, the novel system will be a promising project to solve the energy issues in future space heating application.
Heat Load Sharing in a Capillary Pumped Loop with Multiple Evaporators and Multiple Condensers
NASA Technical Reports Server (NTRS)
Ku, Jentung
2005-01-01
This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instruments is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed. Some constraints of heat load sharing are also addressed.
Ally, Moonis Raza; Sharma, Vishaldeep
2017-11-02
Natural gas-driven absorption heat pumps are under renewed scrutiny as a viable technology for space conditioning and water heating for residential and commercial applications because of natural gas production trends, pricing, and the speculation that it might be a “bridge fuel” in the global transition towards energy sustainability. Since any level of natural gas combustion contributes to atmospheric carbon dioxide accumulation, the merits of natural gas consuming absorption technology are re-examined in this paper from the point of view of expected efficiency throughout the United States using a time-weighted bin temperature analysis. Such analyses are necessary because equipment standards formore » rated performance is restricted to one set ambient condition, whereas in actual practice, the absorption heat pump (AHP) must perform over a considerably wider range of external conditions, where its efficiency may be vastly different from that at the rated condition. Quantification of variation in efficiency and system performance are imperative to address how to provide the desired utility with the least environmental impact. In this paper, we examine limiting features in absorption heat pumps and relate it to systemic performances in sixteen cities across all eight climate zones in the U.S, each containing fifteen bin temperatures. The results indicate that the true expectation of performance of an AHP is significantly less than what might be optimized for the rated condition. Statistical measures of the variation in water heating COPs show that for most cities, the COP at the rated conditions is outside the 95% Confidence Interval. Moreover, it is concluded that deployment of absorption heat pump water heaters (AHPWH) may be restricted geographically by outdoor temperature constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ally, Moonis Raza; Sharma, Vishaldeep
Natural gas-driven absorption heat pumps are under renewed scrutiny as a viable technology for space conditioning and water heating for residential and commercial applications because of natural gas production trends, pricing, and the speculation that it might be a “bridge fuel” in the global transition towards energy sustainability. Since any level of natural gas combustion contributes to atmospheric carbon dioxide accumulation, the merits of natural gas consuming absorption technology are re-examined in this paper from the point of view of expected efficiency throughout the United States using a time-weighted bin temperature analysis. Such analyses are necessary because equipment standards formore » rated performance is restricted to one set ambient condition, whereas in actual practice, the absorption heat pump (AHP) must perform over a considerably wider range of external conditions, where its efficiency may be vastly different from that at the rated condition. Quantification of variation in efficiency and system performance are imperative to address how to provide the desired utility with the least environmental impact. In this paper, we examine limiting features in absorption heat pumps and relate it to systemic performances in sixteen cities across all eight climate zones in the U.S, each containing fifteen bin temperatures. The results indicate that the true expectation of performance of an AHP is significantly less than what might be optimized for the rated condition. Statistical measures of the variation in water heating COPs show that for most cities, the COP at the rated conditions is outside the 95% Confidence Interval. Moreover, it is concluded that deployment of absorption heat pump water heaters (AHPWH) may be restricted geographically by outdoor temperature constraints.« less
Solar assisted heat pumps: A possible wave of the future
NASA Technical Reports Server (NTRS)
Smetana, F. O.
1976-01-01
With the higher costs of electric power and the widespread interest to use solar energy to reduce the national dependence on fossil fuels, heat pumps are examined to determine their suitability for use with solar energy systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Uniform test method for the measurement of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Uniform test method for the measurement of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Uniform test method for the measurement of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Uniform test method for the measurement of energy efficiency of commercial water heaters and hot water supply boilers (other than commercial heat pump water heaters). 431.106 Section 431.106 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY EFFICIENCY PROGRAM FOR CERTAIN COMMERCIAL AND INDUSTRIAL...
Jet pump-drive system for heat removal
NASA Technical Reports Server (NTRS)
French, J. R. (Inventor)
1985-01-01
A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachman, Gary
The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.
Indoor unit for electric heat pump
Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.
1984-05-22
An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.
Stationary Engineers Apprenticeship. Related Training Modules. 13.1-13.7 Pumps.
ERIC Educational Resources Information Center
Lane Community Coll., Eugene, OR.
This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with pumps. Addressed in the individual instructional packages included in the module are the following topics: types, classifications, and applications of pumps; pump construction; procedures for calculating pump heat and pump flow;…
Case Study of The ARRA-Funded GSHP Demonstration at the Natural Sources Building, Montana Tech
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, Mini; Liu, Xiaobing
Under the American Recovery and Reinvestment Act (ARRA), 26 ground source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects was proposed by Montana Tech of the University of Montana for a 56,000 sq ft, newly constructed, on-campus research facility – the Natural Resources Building (NRB) located in Butte, Montana. This demonstrated GSHP system consists of a 50 ton water-to-water heat pump and a closed-loop ground heat exchanger with two redundant 7.5 hp constant-speed pumps to use watermore » in the nearby flooded mines as a heat source or heat sink. It works in conjunction with the originally installed steam HX and an aircooled chiller to provide space heating and cooling. It is coupled with the existing hot water and chilled water piping in the building and operates in the heating or cooling mode based on the outdoor air temperature. The ground loop pumps operate in conjunction with the existing pumps in the building hot and chilled water loops for the operation of the heat pump unit. The goal of this demonstration project is to validate the technical and economic feasibility of the demonstrated commercial-scale GSHP system in the region, and illustrate the feasibility of using mine waters as the heat sink and source for GSHP systems. Should the demonstration prove satisfactory and feasible, it will encourage similar GSHP applications using mine water, thus help save energy and reduce carbon emissions. The actual performance of the system is analyzed with available measured data for January through July 2014. The annual energy performance is predicted and compared with a baseline scenario, with the heating and cooling provided by the originally designed systems. The comparison is made in terms of energy savings, operating cost savings, cost-effectiveness, and environmental benefits. Finally, limitations in conducting the analysis are identified and recommendations for improvement in the control and operation of such systems are made.« less
Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.
Pei, Guihong; Zhang, Liyin
2016-01-01
Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).
Field Performance of Heat Pump Water Heaters in the Northeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapiro, Carl; Puttagunta, Srikanth
2016-02-05
Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumptionmore » for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).« less
Bizarro, João P S; Rodrigues, Paulo
2012-11-01
For work-producing heat engines, or work-consuming refrigerators and heat pumps, the percentage decrease caused by friction in their efficiencies, or coefficients of performance (COP's), is approximately given by the ratio W(fric)/W between the work spent against friction forces and the work performed by, or delivered to, the working fluid. This universal scaling, which applies in the limit of small friction (W(fric)/W ~ 20%) and when the engine's figures of merit (FOM's, either efficiencies or COP's) do not come too close to unity (no higher than, say, 0.5 in the case of heat-engine efficiencies), allows a simple and quick estimate of the impact that friction losses can have on the FOM's of thermal engines and plants, or of the level of those losses from the observed and predicted FOM's. In the case of refrigerators and heat pumps, if W(fric)/W ~ 20% is not ensured (actually a condition that can be largely relaxed for heat engines), the COP percentage decrease due to friction approaches asymptotically (W(fric)/W)/(1+W(fric)/W) instead of W(fric)/W. Estimates for the level of frictional losses using the Carnot (or, for heat engines and power plants only, the Curzon-Ahlborn) predictions and observed FOM's of real power plants, heat engines, refrigerators, and heat pumps show that they usually operate in domains where these behaviors are valid.
Transformations, Inc.: Partnering to Build Net-Zero Energy Houses in Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Bergey, D.; Wytrykowska, H.
Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ('Devens'), The Homes at Easthampton Meadow ('Easthampton') andPhase II of the Coppersmith Way Development ('Townsend'). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers tomore » specific research questions for homes with high R double stud walls and high efficiency ductlessair source heat pump systems ('mini-splits'); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less
Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Bergey, D.; Wytrykowska, H.
Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answersmore » to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less
Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump?
Kjelstrup, Signe; de Meis, Leopoldo; Bedeaux, Dick; Simon, Jean-Marc
2008-11-01
We calculate, using the first law of thermodynamics, the membrane heat fluxes during active transport of Ca(2+) in the Ca(2+)-ATPase in leaky and intact vesicles, during ATP hydrolysis or synthesis conditions. The results show that the vesicle interior may cool down during hydrolysis and Ca(2+)-uptake, and heat up during ATP synthesis and Ca(2+)-efflux. The heat flux varies with the SERCA isoform. Electroneutral processes and rapid equilibration of water were assumed. The results are consistent with the second law of thermodynamics for the overall processes. The expression for the heat flux and experimental data, show that important contributions come from the enthalpy of hydrolysis for the medium in question, and from proton transport between the vesicle interior and exterior. The analysis give quantitative support to earlier proposals that certain, but not all, Ca(2+)-ATPases, not only act as Ca(2+)-pumps, but also as heat pumps. It can thus help explain why SERCA 1 type enzymes dominate in tissues where thermal regulation is important, while SERCA 2 type enzymes, with their lower activity and better ability to use the energy from the reaction to pump ions, dominate in tissues where this is not an issue.
Performance of a hybrid chemical/mechanical heat pump
NASA Technical Reports Server (NTRS)
Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.
1990-01-01
The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.
Design and testing of a high power spacecraft thermal management system
NASA Technical Reports Server (NTRS)
Mccabe, Michael E., Jr.; Ku, Jentung; Benner, Steve
1988-01-01
The design and test results are presented of an ammonia hybrid capillary pumped loop thermal control system which could be used for heat acquisition and transport on future large space platforms and attached payloads, such as those associated with the NASA Space Station. The High Power Spacecraft Thermal Management System (HPSTM) can operate as either a passive, capillary pumped two phase thermal control system, or, when additional pressure head is required, as a mechanically pumped loop. Testing has shown that in the capillary mode, the HPSTM evaporators can acquire a total heat load of between 600 W and 24 kW, transported over 10 meters, at a maximum heat flux density of 4.3 W/sq cm. With the mechanical pump circulating the ammonia, a heat acquisition potential of 52 kW was demonstrated for 15 minutes without an evaporator failure. These results represent a significant improvement over the maximum transport capability previously displayed in other capillary systems. The HPSTM system still retains the proven capillary capabilities of heat load sharing and flow control between evaporator plates, rapid power cycling, and nonuniform heating in both the capillary and hybrid operating modes.
NASA Astrophysics Data System (ADS)
Wiryadinata, Steven
Service life modeling was performed to gage the viability of unitary 3.5 kWt, ground-source terminal heat pumps (GTHP) employing horizontal directionally drilled geothermal heat exchangers (GHX) over air-source terminal heat pumps (PTHP) in hotels and motels and residential apartment building sectors in California's coastal and inland climates. Results suggest the GTHP can reduce hourly peak demand for the utility by 7%-25% compared to PTHP, depending on the climate and building type. The annual energy savings, which range from -1% to 5%, are highly dependent on the GTHP pump energy use relative to the energy savings attributed to the difference in ground and air temperatures (DeltaT). In mild climates with small ?T, the pump energy use may overcome any advantage to utilizing a GHX. The majority of total levelized cost savings - ranging from 0.18/ft2 to 0.3/ft 2 - are due to reduced maintenance and lifetime capital cost normally associated with geothermal heat pump systems. Without these reductions (not validated for the GTHP system studied), the GTHP technology does not appear to offer significant advantages over PTHP in the climate zones studied here. The GTHP levelized cost was most sensitive to variations in installed cost and in some cases, energy use (influenced by climate zone choice), which together highlights the importance of climate selection for installation, and the need for larger market penetration of ground-source systems in order to bring down installed costs as the technology matures.
NASA Technical Reports Server (NTRS)
Hagedorn, N. H.; Prokipius, P. R.
1977-01-01
A test program was conducted to evaluate the design of a heat and product-water removal system to be used with fuel cell having static water removal and evaporative cooling. The program, which was conducted on a breadboard version of the system, provided a general assessment of the design in terms of operational integrity and transient stability. This assessment showed that, on the whole, the concept appears to be inherently sound but that in refining this design, several facets will require additional study. These involve interactions between pressure regulators in the pumping loop that occur when they are not correctly matched and the question of whether an ejector is necessary in the system.
Study of a heat rejection system using capillary pumping
NASA Technical Reports Server (NTRS)
Neal, L. G.; Wanous, D. J.; Clausen, O. W.
1971-01-01
Results of an analytical study investigating the application of capillary pumping to the heat rejection loop of an advanced Rankine cycle power conversion system are presented. The feasibility of the concept of capillary pumping as an alternate to electromagnetic pumping is analytically demonstrated. Capillary pumping is shown to provide a potential for weight and electrical power saving and reliability through the use of redundant systems. A screen wick pump design with arterial feed lines was analytically developed. Advantages of this design are high thermodynamic and hydrodynamic efficiency, which provide a lightweight easily packaged system. Operational problems were identified which must be solved for successful application of capillary pumping. The most important are the development of start up and shutdown procedures, and development of a means of keeping noncondensibles from the system and of earth-bound testing procedures.
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Makinen, Janice; Le, Hung V.
2016-01-01
The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.
NASA Technical Reports Server (NTRS)
1979-01-01
Hardware and controls developed for an electrolysis demonstration unit for use with the life sciences payload program and in NASA's regenerative life support evaluation program are described. Components discussed include: the electrolysis module; power conditioner; phase separator-pump and hydrogen differential regulator; pressure regulation of O2, He, and N2; air-cooled heat exchanger; water accumulator; fluid flow sight gage assembly; catalytic O2/H2 sensor; gas flow sensors; low voltage power supply; 100 Amp DC contactor assembly; and the water purifier design.
High efficiency vapor-fed AMTEC system for direct conversion. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, W.G.; Bland, J.J.
1997-05-23
The Alkali Metal Thermal to Electric Converter (AMTEC) is a high temperature, high efficiency system for converting thermal to electrical energy, with no moving parts. It is based on the unique properties of {beta}{double_prime}-alumina solid electrolyte (BASE), which is an excellent conductor of sodium ions, but an extremely poor conductor of electrons. When the inside of the BASE is maintained at a higher temperature and pressure, a concentration gradient is created across the BASE. Electrons and sodium atoms cannot pass through the BASE. However, the sodium atoms are ionized, and the sodium ions move through the BASE to the lowermore » potential (temperature) region. The electrons travel externally to the AMTEC cell, providing power. There are a number of potential advantages to a wick-pumped, vapor-fed AMTEC system when compared with other designs. A wick-pumped system uses capillary forces to passively return liquid to the evaporator, and to distribute the liquid in the evaporator. Since the fluid return is self-regulating, multiple BASE tubes can use a single remote condenser, potentially improving efficiency in advanced AMTEC designs. Since the system is vapor-fed, sodium vapor is supplied at a uniform temperature and flux to the BASE tube, even with non-uniform heat fluxes and temperatures at the evaporator. The primary objective of the Phase 2 program was to develop wick-pumped AMTEC cells. During the program, procedures to fabricate wicks with smaller pore sizes were developed, to allow operation of an AMTEC cell at 800 C. A revised design was made for a High-Temperature, Wick-Fed AMTEC cell. In addition to the smaller wick pore size, several other changes were made to increase the cell efficiency: (1) internal artery return of condensate; (2) high temperature electrical feedthrough; and (3) separate heat pipe for providing heat to the BASE.« less
Ballistic induced pumping of hypersonic heat current in DNA nano wire
NASA Astrophysics Data System (ADS)
Behnia, Sohrab; Panahinia, Robabe
2016-12-01
Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.
Magnetic heat pumping near room temperature
NASA Technical Reports Server (NTRS)
Brown, G. V.
1976-01-01
It is shown that magnetic heat pumping can be made practical at room temperature by using a ferromagnetic material with a Curie point at or near operating temperature and an appropriate regenerative thermodynamic cycle. Measurements are performed which show that gadolinium is a resonable working material and it is found that the application of a 7-T magnetic field to gadolinium at the Curie point (293 K) causes a heat release of 4 kJ/kg under isothermal conditions or a temperature rise of 14 K under adiabatic conditions. A regeneration technique can be used to lift the load of the lattice and electronic heat capacities off the magnetic system in order to span a reasonable temperature difference and to pump as much entropy per cycle as possible
Thermally conductive cementitious grout for geothermal heat pump systems
Allan, Marita
2001-01-01
A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.
Ductless Mini-Split Heat Pump Comfort Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, K.; Sehgal, N.; Akers, C.
2013-03-01
Field tests were conducted in two homes in Austin, TX, to evaluate the comfort performance of ductless minisplit heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.
Ductless Mini-Split Heat Pump Comfort Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, K.; Sehgal, N.; Akers, C.
2013-03-01
Field tests were conducted in two homes in Austin, TX to evaluate the comfort performance of ductless mini-split heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.
Baxter, Van D.; Munk, Jeffrey D.
2017-11-08
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Munk, Jeffrey D.
By integrating multiple functions into a single system it offers potential efficiency and cost reduction benefits. Oak Ridge National Laboratory (ORNL) and its partners have designed, developed, and tested two air-source heat pump designs that not only provide space heating and cooling, but also water heating, dehumidification, and ventilation functions. Some details on the design, simulated performance, prototype field test, measured performance, and lessons learned are provided.
A comparison of radioisotope Brayton and Stirling systems for lunar surface mobile power
NASA Astrophysics Data System (ADS)
Harty, Richard B.
A study was performed by the Rocketdyne Division of Rockwell International on a 2.5-kWe modular dynamic isotope power system (DIPS) using a Stirling power conversion system. The results of this study were compared with similar results performed under the DIPS program using a Brayton power conversion system. The application considered was for lunar mobile power sources in the power range of 2.5 kWe to 15 kWe. The study indicated that the Stirling power module has 20 percent lower mass and 40 percent lower radiator area than the Brayton module. However, the study also revealed that because the Stirling power module requires a complex heat pipe arrangement to transport heat from the isotope to the Stirling heater head and a pumped NaK heat rejection loop, the Stirling module is much more difficult to integrate with the isotope heat source and heat rejection system.
NASA Astrophysics Data System (ADS)
Yang, J.; Mauzerall, D. L.
2017-12-01
During periods of high pollution in winter, household space heating can contribute more than half of PM2.5 concentrations in China's Beijing-Tianjin-Hebei (BTH) region. The majority of rural households and some urban households in the region still heat with small stoves and solid fuels such as raw coal, coal briquettes and biomass. Thus, reducing emissions from residential space heating has become a top priority of the Chinese government's air pollution mitigation plan. Electrified space heating is a promising alternative to solid fuel. However, there is little analysis of the air quality and climate implications of choosing various electrified heating devices and utilizing different electricity sources. Here we conduct an integrated assessment of the air quality, human health and climate implications of various electrified heating scenarios in the BTH region using the Weather Research and Forecasting model with Chemistry. We use the Multi-resolution Emission Inventory for China for the year 2012 as our base case and design two electrification scenarios in which either direct resistance heaters or air source heat pumps are installed to replace all household heating stoves. We initially assume all electrified heating devices use electricity from supercritical coal-fired power plants. We find that installing air source heat pumps reduces CO2 emissions and premature deaths due to PM2.5 pollution more than resistance heaters, relative to the base case. The increased health and climate benefits of heat pumps occur because they have a higher heat conversion efficiency and thus require less electricity for space heating than resistance heaters. We also find that with the same heat pump installation, a hybrid electricity source (40% of the electricity generated from renewable sources and the rest from coal) further reduces both CO2 emissions and premature deaths than using electricity only from coal. Our study demonstrates the air pollution and CO2 mitigation potential and public health benefits of using electrified space heating. In particular, we find air source heat pumps could bring more climate and health benefits than direct resistance heaters. Our results also support policies to integrate renewable energy sources with the reduction of solid fuel combustion for residential space heating.
Grossman, Gershon; Perez-Blanco, Horacio
1984-01-01
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
Grossman, G.; Perez-Blanco, H.
1983-06-16
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
Practical demonstration of heat pumps for utilization of animal-generated heat
NASA Astrophysics Data System (ADS)
Amberg, H. U.
1980-09-01
Airconditioning of pigpens to eliminate effects of temperature extremes is reported. A stall air conditioner was installed as heat pump in a pigpen for final fattening. The heat, recovered from the exhaust air, is supplied to the outside air so that heated fresh air is blown into the stall. The test was accomplished on a farm with intensive pig breeding with 120 preliminary fattening places and 240 final fattening places. The stall air conditioner offers the possibility to attenuate the extreme temperature variations during the year.
Geothermal energy control system and method
Matthews, Hugh B.
1977-01-01
A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.
Organic absorption gas-fired residential heat pump
NASA Astrophysics Data System (ADS)
Murphy, K. P.
The development program of a system utilizing a new absorption pair, R133a (CF3CH2Cl) as the refigerant, and ETFE (ethyletra-hydrofurfury lether) as the absorber fluid, is described. A diagram of the basic configuration is shown. The cooling mode and the heating mode are discussed. Six units of an early hardware design were constructed and tested. Two of these units were placed in home heating service during the 1980-81 season. A market evaluation of the business potential of the absorption system was made, identifying location and size of the likely market for such a system. A performance simulation analysis was performed for seven cities in the US. From these, general characteristics of the areas having the greatest performance benefits were established.
Heat Pump Water Heater Durabliltiy Testing - Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, VAND.
2004-05-29
Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10more » years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed significantly higher efficiencies than conventional electric water heaters (EWH). DOE Simulated Use Tests conducted prior to starting the durability testing resulted in energy factors (EF) of about 2.3 for the integral design and 1.4 for the add-on design compared to the minimum value of 0.86 prescribed for EWHs. Based on the experience from this and the previous durability testing, there is no evidence that strongly suggests that any of the HPWHs suffered significant performance degradation after undergoing over 7000 water heat cycles.« less
NASA Astrophysics Data System (ADS)
Sabanskis, A.; Virbulis, J.
2016-04-01
Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.
Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin
NASA Astrophysics Data System (ADS)
Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong
2017-04-01
The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy, the heat demands of oilfield, and the exploration and development technologies, we discussed the potential of the oilfield geothermal energy development for the industrial and the civil applications in the future.
Research on heating, instabilities, turbulence and RF emission from electric field dominated plasmas
NASA Astrophysics Data System (ADS)
Roth, J. R.; Alexeff, Igor
1989-07-01
This contract has supported four research programs: (1) a program of research on plasma turbulence; (2) a program of research on plasma heating by collisional magnetic pumping; (3) a research program on the Orbitron submillimeter maser; and (4) the initial phase of a program on plasma cloaking of military targets for protection against radar and directed microwave energy weapons. Progress in these areas is documented in the text of this final report and in the twenty archival publications included in the appendices to this report. In addition to the above four research areas, work was continued on plasma diagnostic development, and the development of new state-of-the-art data analysis and reduction methods, including software development for online reduction of Langmuir probe, capacitive probe, and other diagnostic information. Also being developed is the capability to analyze electrostatic potential fluctuations by the methods of nonlinear dynamics. An important part of the research program was the training of graduate and undergraduate research assistants in state-of-the-art methods in the fields of high temperature plasma physics, plasma diagnostics, communications, and related areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetherington Jr, G Randall; Vineyard, Edward Allan; Mahderekal, Isaac
A preliminary evaluation of the performance of a consumer-based control system was conducted by the Oak Ridge National Laboratory (ORNL) and Southwest Gas as part of a cooperative research and development agreement (CRADA) authorized by the Department of Energy (DOE) (Mahderekal et al. (2013). The goal of the research was to evaluate the low-cost approach as a solution for implementing a supervisory control system for a residential gas-operated heat pump. The design incorporated two consumer-based micro-controllers; the Arduino Mega-2650 and the BeagleBone (white). Ten five-ton heat pump systems were designed, fabricated, and operationally tested in the Las Vega NV region.more » A robust data set was produced that allowed detailed assessment of the reliability and the operational perfromance of the newly developed control system. Experiences gained from the test provided important points of improvement for subsequent evolution of the heat pump technology.« less
NASA Astrophysics Data System (ADS)
Wang, Pao-Lien
1992-09-01
This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.
Pumping liquid metal at high temperatures up to 1,673 kelvin
NASA Astrophysics Data System (ADS)
Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.
2017-10-01
Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.
NASA Technical Reports Server (NTRS)
Wang, Pao-Lien
1992-01-01
This report describes the fabrication, design of flow director, fluid flow direction analysis and testing of flow director of a magnetic heat pump. The objectives of the project are: (1) to fabricate a demonstration magnetic heat pump prototype with flow directors installed; and (2) analysis and testing of flow director and to make sure working fluid loops flow through correct directions with minor mixing. The prototype was fabricated and tested at the Development Testing Laboratory of Kennedy Space Center. The magnetic heat pump uses rear earth metal plates rotate in and out of a magnetic field in a clear plastic housing with water flowing through the rotor plates to provide temperature lift. Obtaining the proper water flow direction has been a problem. Flow directors were installed as flow barriers between separating point of two parallel loops. Function of flow directors were proven to be excellent both analytically and experimentally.
Optimization and Thermoeconomics Research of a Large Reclaimed Water Source Heat Pump System
Zhang, Zi-ping; Du, Fang-hui
2013-01-01
This work describes a large reclaimed water source heat pump system (RWSHPS) and elaborates on the composition of the system and its design principles. According to the characteristics of the reclaimed water and taking into account the initial investment, the project is divided into two stages: the first stage adopts distributed heat pump heating system and the second adopts the combination of centralized and decentralized systems. We analyze the heating capacity of the RWSHPS, when the phase II project is completed, the system can provide hydronic heating water with the supply and return water temperature of 55°C/15°C and meet the hydronic heating demand of 8 million square meters of residential buildings. We make a thermal economics analysis by using Thermal Economics theory on RWSHPS and gas boiler system, it is known that the RWSHPS has more advantages, compared with the gas boiler heating system; both its thermal efficiency and economic efficiency are relatively high. It provides a reference for future applications of the RWSHPS. PMID:24089607
Modeling combined heat transfer in an all solid state optical cryocooler
NASA Astrophysics Data System (ADS)
Kuzhiveli, Biju T.
2017-12-01
Attaining cooling effect by using laser induced anti-Stokes fluorescence in solids appears to have several advantages over conventional mechanical systems and has been the topic of recent analysis and experimental work. Using anti-Stokes fluorescence phenomenon to remove heat from a glass by pumping it with laser light, stands as a pronouncing physical basis for solid state cooling. Cryocooling by fluorescence is a feasible solution for obtaining compactness and reliability. It has a distinct niche in the family of small capacity cryocoolers and is undergoing a revolutionary advance. In pursuit of developing laser induced anti-Stokes fluorescent cryocooler, it is required to develop numerical tools that support the thermal design which could provide a thorough analysis of combined heat transfer mechanism within the cryocooler. The paper presents the details of numerical model developed for the cryocooler and the subsequent development of a computer program. The program has been used for the understanding of various heat transfer mechanisms and is being used for thermal design of components of an anti-Stokes fluorescent cryocooler.
Hybrid Vapor Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group
2011-08-01
Compression Ejector Cycle: Presentation to IAPG Mechanical Working Group Parmesh Verma and Tom Radcliff, United Technologies Research Center UNCLASSIFIED... Ejector Cycle Presentation to IAPG Mechanical Working Group 5a. CONTRACT NUMBER W909MY-10-C-0005 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...hybrid vapor compression ejector heat pump cycle developed under an American Recovery and Reinvestment Act funded contract is provided. 15. SUBJECT
Chiarotti, Ugo; Moroli, Valerio; Menchetti, Fernando; Piancaldini, Roberto; Bianco, Loris; Viotto, Alberto; Baracchini, Giulia; Gaspardo, Daniele; Nazzi, Fabio; Curti, Maurizio; Gabriele, Massimiliano
2017-03-01
A 39-W thermoelectric generator prototype has been realized and then installed in industrial plant for on-line trials. The prototype was developed as an energy harvesting demonstrator using low temperature cooling water waste heat as energy source. The objective of the research program is to measure the actual performances of this kind of device working with industrial water below 90 °C, as hot source, and fresh water at a temperature of about 15 °C, as cold sink. The article shows the first results of the research program. It was verified, under the tested operative conditions, that the produced electric power exceeds the energy required to pump the water from the hot source and cold sink to the thermoelectric generator unit if they are located at a distance not exceeding 50 m and the electric energy conversion efficiency is 0.33%. It was calculated that increasing the distance of the hot source and cold sink to the thermoelectric generator unit to 100 m the produced electric energy equals the energy required for water pumping, while reducing the distance of the hot source and cold sink to zero meters the developed unit produces an electric energy conversion efficiency of 0.61%.
Lyophilization for Water Recovery From Solid Waste
NASA Technical Reports Server (NTRS)
Flynn, Michael; Litwiller, Eric; Reinhard, Martin
2003-01-01
This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.
TEM Pump With External Heat Source And Sink
NASA Technical Reports Server (NTRS)
Nesmith, Bill J.
1991-01-01
Proposed thermoelectric/electromagnetic (TEM) pump driven by external source of heat and by two or more heat pipe radiator heat sink(s). Thermoelectrics generate electrical current to circulate liquid metal in secondary loop of two-fluid-loop system. Intended for use with space and terrestrial dual loop liquid metal nuclear reactors. Applications include spacecraft on long missions or terrestrial beacons or scientific instruments having to operate in remote areas for long times. Design modified to include multiple radiators, converters, and ducts, as dictated by particular application.
Indoor unit for electric heat pump
Draper, Robert; Lackey, Robert S.; Fagan, Jr., Thomas J.; Veyo, Stephen E.; Humphrey, Joseph R.
1984-01-01
An indoor unit for an electric heat pump is provided in modular form including a refrigeration module 10, an air mover module 12, and a resistance heat package module 14, the refrigeration module including all of the indoor refrigerant circuit components including the compressor 36 in a space adjacent the heat exchanger 28, the modules being adapted to be connected to air flow communication in several different ways as shown in FIGS. 4-7 to accommodate placement of the unit in various orientations.
Stimulated electromagnetic emission polarization under different polarizations of pump waves
NASA Astrophysics Data System (ADS)
Tereshchenko, E. D.; Yurik, R. Y.; Baddeley, L.
2015-03-01
The results of investigations into the stimulated electromagnetic emission (SEE) polarization under different modes of the pump wave polarization are presented. The present results were obtained in November 2012 during a heating campaign utilizing the SPEAR (Space Plasma Exploration by Active Radar) heating facility, transmitting in both O- and X-mode polarization, and a PGI (Polar Geophysical Institute) radio interferometer capable of recording the polarization of the received radiation. The polarization ellipse parameters of the SEE DM (downshifted maximum) components were determined under both O-mode and X-mode polarization of the pump waves. The polarization direction of the SEE DM component was preserved under different polarizations of the pump waves. Different polarizations of the pump waves have a different SEE generation efficiency. The intensity of the DM component is observed to be greater during O-mode pumping. In addition, the numbers of observed SEE features are also greater during O-mode pumping.
Feasibility study on an energy-saving desiccant wheel system with CO2 heat pump
NASA Astrophysics Data System (ADS)
Liu, Yefeng; Meng, Deren; Chen, Shen
2018-02-01
In traditional desiccant wheel, air regeneration process occurs inside an open loop, and lots of energy is consumed. In this paper, an energy-saving desiccant wheel system with CO2 heat pump and closed loop air regeneration is proposed. The general theory and features of the desiccant wheel are analysed. The main feature of the proposed system is that the air regeneration process occurs inside a closed loop, and a CO2 heat pump is utilized inside this loop for the air regeneration process as well as supplying cooling for the process air. The simulation results show that the proposed system can save significant energy.
NASA Technical Reports Server (NTRS)
Morton, Richard D.; Jurick, Matthew; Roman, Ruben; Adamson, Gary; Bui, Chinh T.; Laliberte, Yvon J.
2011-01-01
The International Space Station (ISS) contains two Active Thermal Control Sub-systems (ATCS) that function by using a liquid ammonia cooling system collecting waste heat and rejecting it using radiators. These subsystems consist of a number of heat exchangers, cold plates, radiators, the Pump and Flow Control Subassembly (PFCS), and the Pump Module (PM), all of which are Orbital Replaceable Units (ORU's). The PFCS provides the motive force to circulate the ammonia coolant in the Photovoltaic Thermal Control Subsystem (PVTCS) and has been in operation since December, 2000. The Pump Module (PM) circulates liquid ammonia coolant within the External Active Thermal Control Subsystem (EATCS) cooling the ISS internal coolant (water) loops collecting waste heat and rejecting it through the ISS radiators. These PM loops have been in operation since December, 2006. This paper will discuss the original reliability analysis approach of the PFCS and Pump Module, comparing them against the current operational performance data for the ISS External Thermal Control Loops.
LD side-pumped Nd:YAG Q-switched laser without water cooling
NASA Astrophysics Data System (ADS)
Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu
2009-07-01
A novel LD side-pumped Nd:YAG Q-switched solid-state laser, which made use of the special pumping strcture with conductive cooling instead of water cooling, was investigated.After selecting an appropriate length and diameter of Nd:YAG laser crystal rod and using three groups of laser diode centimeter bar which was composed by 12 laser diodes and uniformly arranged according to the angle of 120°,side-pumping structure of laser was accomplished.Adopting plano-concave resonator ,mending double end face of laser crystal and designing heat-stability resonator made the resonator steadily oscillate.Laser crystal rod which was tight fastened by copper net was conductively cooled and radiation block was furnished on the external of copper net for increasing the radiation capacity.High reflection gold film was plated on the cooling wall in the opposite way of pumping light, so that the laser crystal was uniformly pumped and the laser with low order mode output.Making the use of pillar lens focus and ray trace computing, reasonable parameters were caculated to couple pumping light to laser with high-efficiency.It was the electrooptic Q-switched which was made to be micro-integration eliminating voltage by KD*P crystal that improved the ratio between acting and unacting.Inner heat radiated from laser in good time with TE cooler and the laser ran at constant temperature with water cooling when the big external heat sink emanated a steady heat to periphery. Experiments revealed that the syetem pumping efficiency riseed by 18% and the laser threshold energy was 192 mJ under the condition of this novel pumping structure. The low mode output of 10-12ns pulse width and the maximum output energy of 98 mJ was achieved with an incident pump energy of 720 mJ in 1064nm.The optical-to-optical conversion efficiency was up to 13. 6 %,and the power instability in 24 h was better than +/-1. 7 %.
2013-08-01
SAR) 18. NUMBER OF PAGES 50 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE unclassified...26 7.0 COST ASSESSMENT ...................................................................................................... 29 7.1 COST MODEL ...12. Data set 7 – energy consumption of heat pump and furnace ................................ 22 Figure 13. Experimentally adjusted TRNSYS model