Science.gov

Sample records for heat shock-induced three-dimensional-like

  1. Heat Shock-Induced Three-Dimensional-Like Proliferation of Normal Human Fibroblasts Mediated by Pressed Silk

    PubMed Central

    Hiragami, Fukumi; Motoda, Hirotoshi; Takezawa, Toshiaki; Takabayashi, Chiyuki; Inoue, Shigeki; Wakatake, Yuji; Kano, Yoshio

    2009-01-01

    The aim of this study was to determine the optimal heat treatment conditions for enhancement of pressed silk-mediated 3D-like proliferation of normal human dermal fibroblasts, as well as to determine the responses to heat shock of cells and intracellular signaling pathways. The beginning of 3D-like pattern formation of cells was observed in the second week after the start of the experiment. The mean rates of beginning of 3D-like pattern formation by cells heat-treated at 40 ºC and 43 ºC for 10 min were significantly higher (3.2- and 8.6-fold, respectively) than that of untreated cells. We found that apoptosis had occurred in 7.5% and 50.0% of the cells at one week after heat treatment for 10 min at 43 ºC and 45 ºC, respectively. Western blot analysis demonstrated that phosphorylation of p38 MAPK and that of Hsp27 were markedly increased by heat treatment at 43 ºC for 10 min. The results of an experiment using a p38 MAPK inhibitor and Hsp27 inhibitor suggest that activation of p38 MAPK by heat shock is associated with 3D-like cell proliferation and that Hsp27 contributes to the inhibition of apoptosis. The results of this study should be useful for further studies aimed at elucidation of the physiologic mechanisms underlying thermotherapy. PMID:20087471

  2. Heat shock induces barotolerance in Listeria monocytogenes.

    PubMed

    Hayman, Melinda M; Anantheswaran, Ramaswamy C; Knabel, Stephen J

    2008-02-01

    The aim of this study was to investigate the effect of heat shock on the resistance of Listeria monocytogenes to high pressure processing (HPP). L. monocytogenes ATCC 19115 was grown to stationary phase at 15 degrees C and inoculated into whole ultrahigh-temperature milk at approximately 10(7) CFU/ml. Milk samples (5 ml) were placed into plastic transfer pipettes, which were heat sealed and then heated in a water bath at 48 degrees C for 10 min. Immediately after heat shock, the milk was cooled in water (20 degrees C) for 25 min and then placed on ice. The samples were high pressure processed at ambient temperature (approximately 23 degrees C) at 400 MPa for various times up to 150 s. Following HPP, the samples were spread plated on tryptic soy agar supplemented with yeast extract. Heat shock significantly increased the D400 MPa-value of L. monocytogenes from 35 s in non-heat-shocked cells to 127 s in heat-shocked cells (P < 0.05). Addition of chloramphenicol before heat shock eliminated the protective effect of heat shock (P < 0.05). Heat shock for 5, 10, 15, or 30 min at 48 degrees C resulted in maximal barotolerance (P < 0.05); increasing the time to 60 min significantly decreased survival compared with that at 5, 10, 15, or 30 min (P < 0.05). These results indicate that prior heat shock significantly increases the barotolerance of L. monocytogenes and that de novo protein synthesis during heat shock is required for this enhanced barotolerance.

  3. Mechanical analysis of a heat-shock induced developmental defect

    NASA Astrophysics Data System (ADS)

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2014-03-01

    Embryonic development in Drosophila is a complex process involving coordinated movements of mechanically interacting tissues. Perturbing this system with a transient heat shock can result in a number of developmental defects. In particular, a heat shock applied during the earliest morphogenetic movements of gastrulation can lead to apparent recovery, but then subsequent morphogenetic failure 5-6 hours later during germ band retraction. The process of germ band retraction requires an intact amnioserosa - a single layered extra-embryonic epithelial tissue - and heat shock at gastrulation can induce the later opening of holes in the amnioserosa. These holes are highly correlated with failures of germ band retraction. These holes could be caused by a combination of mechanical weakness in the amnioserosa or local increases in mechanical stress. Here, we assess the role of mechanical stress using confocal imaging to compare cell and tissue morphology in the amnioserosa of normal and heat-shocked embryos and laser hole drilling to map the stress field around the times and locations at which heat-shock induced holes open.

  4. BH3-only protein BIM mediates heat shock-induced apoptosis.

    PubMed

    Mahajan, Indra M; Chen, Miao-Der; Muro, Israel; Robertson, John D; Wright, Casey W; Bratton, Shawn B

    2014-01-01

    Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax(-/-)Bak(-/-) cells and better than either Bid(-/-) or dominant-negative caspase-9-expressing cells. Only Bim(-/-) and Bax(-/-)Bak(-/-) cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid(-/-) cells, it readily did so in Bim(-/-) cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1(-/-) cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-X(L) with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members.

  5. BH3-Only Protein BIM Mediates Heat Shock-Induced Apoptosis

    PubMed Central

    Mahajan, Indra M.; Chen, Miao-Der; Muro, Israel; Robertson, John D.; Wright, Casey W.; Bratton, Shawn B.

    2014-01-01

    Acute heat shock can induce apoptosis through a canonical pathway involving the upstream activation of caspase-2, followed by BID cleavage and stimulation of the intrinsic pathway. Herein, we report that the BH3-only protein BIM, rather than BID, is essential to heat shock-induced cell death. We observed that BIM-deficient cells were highly resistant to heat shock, exhibiting short and long-term survival equivalent to Bax−/−Bak−/− cells and better than either Bid−/− or dominant-negative caspase-9-expressing cells. Only Bim−/− and Bax−/−Bak−/− cells exhibited resistance to mitochondrial outer membrane permeabilization and loss of mitochondrial inner membrane potential. Moreover, while dimerized caspase-2 failed to induce apoptosis in Bid−/− cells, it readily did so in Bim−/− cells, implying that caspase-2 kills exclusively through BID, not BIM. Finally, BIM reportedly associates with MCL-1 following heat shock, and Mcl-1−/− cells were indeed sensitized to heat shock-induced apoptosis. However, pharmacological inhibition of BCL-2 and BCL-XL with ABT-737 also sensitized cells to heat shock, most likely through liberation of BIM. Thus, BIM mediates heat shock-induced apoptosis through a BAX/BAK-dependent pathway that is antagonized by antiapoptotic BCL-2 family members. PMID:24427286

  6. Chromosome behavior of heat shock induced triploid in Fenneropenaeus chinensis

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojun; Li, Fuhua; Xiang, Jianhai

    2003-09-01

    Triploidy was induced in Chinese shrimp Fenneropenaeus chinensis by 30±0.5°C heat shock treatment (initiated at 20 min after fertilization) for 10 min to inhibit the release of PB2 at 18.0°C. The highest triploid rate obtained was 84.5% in nauplius stage. The effect of heat shock treatment on meiosis and cleavage of eggs was investigated in this work aimed to establish efficient procedures for triploid induction and to gain understanding of the mechanism of triploid production. Three pronuclei that could be observed in the treated eggs under fluorescence microscope developed into triploid embryos. Some abnormal chromosome behavior was observed in heat shocked eggs.

  7. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1.

    PubMed

    Kim, Hee-Jung; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jaeho; Park, A Young; Kang, Wonmo; Lee, Kong-Joo

    2017-08-04

    When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys(132) disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys(132) was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys(132) in hnRNP K is critical for this inhibition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. A thermochemical model for shock-induced reactions (heat detonations) in solids

    NASA Astrophysics Data System (ADS)

    Boslough, Mark B.

    1990-02-01

    Recent advances in studies of shock-induced chemistry in reactive solids have led to the recognition of a new class of energetic materials which are unique in their response to shock waves. Experimental work has shown that chemical energy can be released on a time scale shorter than shock-transit times in laboratory samples. However, for many compositions, the reaction products remain in the condensed state upon release from high pressure, and no sudden expansion takes place. Nevertheless, if such a reaction is sufficiently rapid, it can be modeled as a type of detonation, termed ``heat detonation'' in the present paper. It is shown that unlike an explosive detonation, an unsupported heat detonation will decay to zero unless certain conditions are met. An example of such a reaction is Fe2 O3 +2Al+shock→Al2 O3 +2Fe (the standard thermite reaction). A shock-wave equation of state is determined from a mixture theory for reacted and unreacted porous thermite. The calculated shock temperatures are compared to experimentally measured shock temperatures, demonstrating that a shock-induced reaction takes place. Interpretation of the measured temperature history in the context of the thermochemical model implies that the principal rate-controlling kinetic mechanism is dynamic mixing at the shock front. Despite the similarity in thermochemical modeling of heat detonations to explosive detonations, the two processes are qualitatively very different in reaction mechanism as well as in the form the energy takes upon release, with explosives producing mostly work and heat detonations producing mostly heat.

  9. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting.

    PubMed

    Dolan, E B; Haugh, M G; Tallon, D; Casey, C; McNamara, L M

    2012-12-07

    Severe heat-shock to bone cells caused during orthopaedic procedures can result in thermal damage, leading to cell death and initiating bone resorption. By contrast, mild heat-shock has been proposed to induce bone regeneration. In this study, bone cells are exposed to heat-shock for short durations occurring during surgical cutting. Cellular viability, necrosis and apoptosis are investigated immediately after heat-shock and following recovery of 12, 24 h and 4 days, in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cells, using flow cytometry. The regeneration capacity of heat-shocked Balb/c mesenchymal stem cells (MSCs) and MC3T3-E1s has been investigated following 7 and 14 day's recovery, by quantifying proliferation, differentiation and mineralization. An immediate necrotic response to heat-shock was shown in cells exposed to elevated temperatures (45°C, 47°C and most severe at 60°C). A longer-term apoptotic response is induced in MLO-Y4s and, to a lesser extent, in MC3T3-E1s. Heat-shock-induced differentiation and mineralization by MSCs. These findings indicate that heat-shock is more likely to induce apoptosis in osteocytes than osteoblasts, which might reflect their role as sensors detecting and communicating damage within bone. Furthermore, it is shown for the first time that mild heat-shock (less than equal to 47°C) for durations occurring during surgical cutting can positively enhance osseointegration by osteoprogenitors.

  10. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting

    PubMed Central

    Dolan, E. B.; Haugh, M. G.; Tallon, D.; Casey, C.; McNamara, L. M.

    2012-01-01

    Severe heat-shock to bone cells caused during orthopaedic procedures can result in thermal damage, leading to cell death and initiating bone resorption. By contrast, mild heat-shock has been proposed to induce bone regeneration. In this study, bone cells are exposed to heat-shock for short durations occurring during surgical cutting. Cellular viability, necrosis and apoptosis are investigated immediately after heat-shock and following recovery of 12, 24 h and 4 days, in osteocyte-like MLO-Y4 and osteoblast-like MC3T3-E1 cells, using flow cytometry. The regeneration capacity of heat-shocked Balb/c mesenchymal stem cells (MSCs) and MC3T3-E1s has been investigated following 7 and 14 day's recovery, by quantifying proliferation, differentiation and mineralization. An immediate necrotic response to heat-shock was shown in cells exposed to elevated temperatures (45°C, 47°C and most severe at 60°C). A longer-term apoptotic response is induced in MLO-Y4s and, to a lesser extent, in MC3T3-E1s. Heat-shock-induced differentiation and mineralization by MSCs. These findings indicate that heat-shock is more likely to induce apoptosis in osteocytes than osteoblasts, which might reflect their role as sensors detecting and communicating damage within bone. Furthermore, it is shown for the first time that mild heat-shock (less than equal to 47°C) for durations occurring during surgical cutting can positively enhance osseointegration by osteoprogenitors. PMID:22915633

  11. Development of a Heat-Shock Inducible Gene Expression System in the Red Alga Cyanidioschyzon merolae

    PubMed Central

    Sumiya, Nobuko; Fujiwara, Takayuki; Kobayashi, Yusuke; Misumi, Osami; Miyagishima, Shin-ya

    2014-01-01

    The cell of the unicellular red alga Cyanidioschyzon merolae contains a single chloroplast and mitochondrion, the division of which is tightly synchronized by a light/dark cycle. The genome content is extremely simple, with a low level of genetic redundancy, in photosynthetic eukaryotes. In addition, transient transformation and stable transformation by homologous recombination have been reported. However, for molecular genetic analyses of phenomena that are essential for cellular growth and survival, inducible gene expression/suppression systems are needed. Here, we report the development of a heat-shock inducible gene expression system in C. merolae. CMJ101C, encoding a small heat shock protein, is transcribed only when cells are exposed to an elevated temperature. Using a superfolder GFP as a reporter protein, the 200-bp upstream region of CMJ101C orf was determined to be the optimal promoter for heat-shock induction. The optimal temperature to induce expression is 50°C, at which C. merolae cells are able to proliferate. At least a 30-min heat shock is required for the expression of a protein of interest and a 60-min heat shock yields the maximum level of protein expression. After the heat shock, the mRNA level decreases rapidly. As an example of the system, the expression of a dominant negative form of chloroplast division DRP5B protein, which has a mutation in the GTPase domain, was induced. Expression of the dominant negative DRP5B resulted in the appearance of aberrant-shaped cells in which two daughter chloroplasts and the cells are still connected by a small DRP5B positive tube-like structure. This result suggests that the dominant negative DRP5B inhibited the final scission of the chloroplast division site, but not the earlier stages of division site constriction. It is also suggested that cell cycle progression is not arrested by the impairment of chloroplast division at the final stage. PMID:25337786

  12. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis.

    PubMed

    Xu, Yan-Hong; Liao, Yong-Cui; Zhang, Zheng; Liu, Juan; Sun, Pei-Wen; Gao, Zhi-Hui; Sui, Chun; Wei, Jian-He

    2016-02-23

    Agarwood, a highly valuable resinous and fragrant heartwood of Aquilaria plants, is widely used in traditional medicines, incense and perfume. Only when Aquilaria trees are wounded by external stimuli do they form agarwood sesquiterpene defensive compounds. Therefore, understanding the signaling pathway of wound-induced agarwood formation is important. Jasmonic acid (JA) is a well-characterized molecule that mediates a plant's defense response and secondary metabolism. However, little is known about the function of endogenous JA in agarwood sesquiterpene biosynthesis. Here, we report that heat shock can up-regulate the expression of genes in JA signaling pathway, induce JA production and the accumulation of agarwood sesquiterpene in A. sinensis cell suspension cultures. A specific inhibitor of JA, nordihydroguaiaretic acid (NDGA), could block the JA signaling pathway and reduce the accumulation of sesquiterpene compounds. Additionally, compared to SA and H2O2, exogenously supplied methyl jasmonate has the strongest stimulation effect on the production of sesquiterpene compounds. These results clearly demonstrate the central induction role of JA in heat-shock-induced sesquiterpene production in A. sinensis.

  13. Jasmonic acid is a crucial signal transducer in heat shock induced sesquiterpene formation in Aquilaria sinensis

    PubMed Central

    Xu, Yan-Hong; Liao, Yong-Cui; Zhang, Zheng; Liu, Juan; Sun, Pei-Wen; Gao, Zhi-Hui; Sui, Chun; Wei, Jian-He

    2016-01-01

    Agarwood, a highly valuable resinous and fragrant heartwood of Aquilaria plants, is widely used in traditional medicines, incense and perfume. Only when Aquilaria trees are wounded by external stimuli do they form agarwood sesquiterpene defensive compounds. Therefore, understanding the signaling pathway of wound-induced agarwood formation is important. Jasmonic acid (JA) is a well-characterized molecule that mediates a plant’s defense response and secondary metabolism. However, little is known about the function of endogenous JA in agarwood sesquiterpene biosynthesis. Here, we report that heat shock can up-regulate the expression of genes in JA signaling pathway, induce JA production and the accumulation of agarwood sesquiterpene in A. sinensis cell suspension cultures. A specific inhibitor of JA, nordihydroguaiaretic acid (NDGA), could block the JA signaling pathway and reduce the accumulation of sesquiterpene compounds. Additionally, compared to SA and H2O2, exogenously supplied methyl jasmonate has the strongest stimulation effect on the production of sesquiterpene compounds. These results clearly demonstrate the central induction role of JA in heat-shock-induced sesquiterpene production in A. sinensis. PMID:26902148

  14. Metacaspase-binding peptide inhibits heat shock-induced death in Leishmania (L.) amazonensis.

    PubMed

    Peña, Mauricio S; Cabral, Guilherme C; Fotoran, Wesley L; Perez, Katia R; Stolf, Beatriz S

    2017-03-02

    Leishmania (Leishmania) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. This parasite faces cell death in some situations during transmission to the vertebrate host, and this process seems to be dependent on the activity of metacaspase (MCA), an enzyme bearing trypsin-like activity present in protozoans, plants and fungi. In fact, the association between MCA expression and cell death induced by different stimuli has been demonstrated for several Leishmania species. Regulators and natural substrates of MCA are poorly known. To fulfill this gap, we have employed phage display over recombinant L. (L.) amazonensis MCA to identify peptides that could interact with the enzyme and modulate its activity. Four peptides were selected for their capacity to specifically bind to MCA and interfere with its activity. One of these peptides, similar to ecotin-like ISP3 of L. (L.) major, decreases trypsin-like activity of promastigotes under heat shock, and significantly decreases parasite heat shock-induced death. These findings indicate that peptide ligands identified by phage display affect trypsin-like activity and parasite death, and that an endogenous peptidase inhibitor is a possible natural regulator of the enzyme.

  15. Inhibition by polyols of the heat-shock-induced activation of trehalase in the yeast Zygosaccharomyces rouxii.

    PubMed

    Fernandez, J; Soto, T; Vicente-Soler, J; Cansado, J; Gacto, M

    1996-02-01

    Trehalase activity was markedly enhanced in Zygosaccharomyces rouxii upon exposure of the cells to a heat shock. The increase in trehalase was independent of rapid changes in the intracellular concentration of cAMP and was not blocked by inhibitors of protein synthesis. Trehalase activated in vivo by heat shock was deactivated in vitro by phosphatase, suggesting that heat stress triggers a cAMP-independent signalling pathway that includes the activation of trehalase by phosphorylation of the enzyme protein. The addition to these cells before heating of either glycerol or other polyols produced a significant decrease in the heat-shock induced activation of trehalase. However, the trehalose content in cells heat-shocked in the presence of polyols did not increase significantly, indicating that these compounds may also influence the synthesis of the disaccharide.

  16. Heat shock-induced HIKESHI protects cell viability via nuclear translocation of heat shock protein 70.

    PubMed

    Yanoma, Toru; Ogata, Kyoichi; Yokobori, Takehiko; Ide, Munenori; Mochiki, Erito; Toyomasu, Yoshitaka; Yanai, Mitsuhiro; Kogure, Norimichi; Kimura, Akiharu; Suzuki, Masaki; Nakazawa, Nobuhiro; Bai, Tuya; Oyama, Tetsunari; Asao, Takayuki; Shirabe, Ken; Kuwano, Hiroyuki

    2017-09-01

    Heat shock proteins (HSPs), particularly HSP70, help restore normal cellular function following damage caused by stressors. HSP expression in tumor tissues indicates cancer progression, and while the development of HSP inhibitors is progressing, these substances are not widely used to treat cancer. HIKESHI (C11orf73) does not control the intracellular movement of HSP70 at normal temperatures; however, it does regulate the function and movements of HSP70 during heat shock. In this study, we examined the intracellular movement of HSP70 during heat shock to investigate the significance of HIKESHI expression in gastric cancer (GC) and determine if HIKESHI inhibition has cytotoxic effects. We examined HIKESHI using GC cell lines and immunostaining in 207 GC tissue samples. HIKESHI expression in GC tissues was associated with the progression of lymphatic invasion. Suppressing HIKESHI using siRNA did not affect cell viability at normal temperatures. However, suppressing HIKESHI during heat shock inhibited HSP70 nuclear transport and suppressed cell viability. Our results suggest that HIKESHI is a marker of cancer progression and that the combination of HIKESHI inhibition and hyperthermia is a therapeutic tool for refractory GC.

  17. The L-type cyclin CYL-1 and the heat-shock-factor HSF-1 are required for heat-shock-induced protein expression in Caenorhabditis elegans.

    PubMed

    Hajdu-Cronin, Yvonne M; Chen, Wen J; Sternberg, Paul W

    2004-12-01

    In a screen for suppressors of activated GOA-1 (Galpha(o)) under the control of the hsp-16.2 heat-shock promoter, we identified three genetic loci that affected heat-shock-induced GOA-1 expression. The cyl-1 mutants are essentially wild type in appearance, while hsf-1 and sup-45 mutants have egg-laying defects. The hsf-1 mutation also causes a temperature-sensitive developmental arrest, and hsf-1 mutants have decreased life span. Western analysis indicated that mutations in all three loci suppressed the activated GOA-1 transgene by decreasing its expression. Heat-shock-induced expression of hsp-16.2 mRNA was reduced in cyl-1 mutants and virtually eliminated in hsf-1 and sup-45 mutants, as compared to wild-type expression. The mutations could also suppress other transgenes under heat-shock control. cyl-1 and sup-45, but not hsf-1, mutations suppressed a defect caused by a transgene not under heat-shock control, suggesting a role in general transcription or a post-transcriptional aspect of gene expression. hsf-1 encodes the C. elegans homolog of the human heat-shock factor HSF1, and cyl-1 encodes a cyclin most similar to cyclin L. We believe HSF-1 acts in heat-shock-inducible transcription and CYL-1 acts more generally in gene expression.

  18. Heat shock induces apoptosis through reactive oxygen species involving mitochondrial and death receptor pathways in corneal cells.

    PubMed

    Hsu, Ya-Ling; Yu, Hsin-Su; Lin, Hsien-Chung; Wu, Kwou-Yeung; Yang, Rei-Cheng; Kuo, Po-Lin

    2011-10-01

    Although many studies have been performed to elucidate the molecular consequences of ultraviolet irradiation, little is known about the effect of infrared radiation on ocular disease. In addition to photons, heat is generated as a consequence of infrared irradiation, and heat shock is widely considered to be an environmental stressor. Here, we are the first to investigate the biological effect of heat shock on Statens Seruminstitut Rabbit Cornea (SIRC) cells. Our results indicate that heat shock exhibits effective cell proliferation inhibition by inducing apoptosis. Heat shock triggers the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in caspase-9 activity. In addition, heat shock triggered the death receptor apoptotic pathway indicated by a change in Fas ligand expression, resulting in caspase-8 activity. Furthermore, we also found that generation of reactive oxygen species (ROS) is a critical mediator in heat shock-induced apoptosis. In addition, the antioxidant vitamin C significantly decreased heat shock-mediated apoptosis. Taken together, these findings suggest a critical role for ROS involving mitochondrial and death receptor pathways in heat shock-mediated apoptosis of cornea cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Gamma-effects on 2-dimensional transonic aerodynamics. [specific heat ratio due to shock induced separation

    NASA Technical Reports Server (NTRS)

    Tuzla, K.; Russell, D. A.; Wai, J. C.

    1976-01-01

    Nonlifting 10% biconvex airfoils are mounted in a 30 x 40 cm Ludwieg-tube-driven transonic test-section and the flow field recorded with a holographic interferometer. Nitrogen, argon, and carbon dioxide are used as the principal test gases. Experiments are conducted with Reynolds number based on chord of (0.5-3.5) x 10 to the 6th with Mach numbers of 0.70, 0.75, and 0.80. Supporting calculations use inviscid transonic small-disturbance and full-potential computer codes coupled with simple integral boundary-layer modeling. Systematic studies show that significant gamma-effects can occur due to shock-induced separation.

  20. Prediction and measurement of heat transfer rates for the shock-induced unsteady laminar boundary layer on a flat plate

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1972-01-01

    The unsteady laminar boundary layer induced by the flow-initiating shock wave passing over a flat plate mounted in a shock tube was theoretically and experimentally studied in terms of heat transfer rates to the plate for shock speeds ranging from 1.695 to 7.34 km/sec. The theory presented by Cook and Chapman for the shock-induced unsteady boundary layer on a plate is reviewed with emphasis on unsteady heat transfer. A method of measuring time-dependent heat-transfer rates using thin-film heat-flux gages and an associated data reduction technique are outlined in detail. Particular consideration is given to heat-flux measurement in short-duration ionized shocktube flows. Experimental unsteady plate heat transfer rates obtained in both air and nitrogen using thin-film heat-flux gages generally agree well with theoretical predictions. The experimental results indicate that the theory continues to predict the unsteady boundary layer behavior after the shock wave leaves the trailing edge of the plate even though the theory is strictly applicable only for the time interval in which the shock remains on the plate.

  1. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.

    PubMed

    Manwell, Laurie A; Heikkila, John J

    2007-11-01

    We examined the effect of quercetin (3,3',4',5,7-pentahydroxyflavon) and KNK437 (N-formyl-3,4-methylenedioxy-benzylidene-gamma-butyrolactam), a benzylidene lactam compound, on heat-induced heat shock protein (hsp) gene expression in Xenopus laevis A6 kidney epithelial cells. In previous studies, both quercetin and KNK437 inhibited heat shock factor activity resulting in a repression of hsp mRNA and protein accumulation in human cultured cells. In this first study of the effect of these hsp gene expression inhibitors in a non-mammalian cell line, we report that both quercetin and KNK437 reduced the heat shock-induced accumulation of hsp30, hsp47 and hsp70 mRNA in X. laevis cultured cells. However, these inhibitors had no effect on the relative level of a non-heat shock protein mRNA, ef1alpha, in either control or heat shocked cells. Western blot and immunocytochemical analyses revealed that quercetin partially inhibited HSP30 protein accumulation. In contrast, HSP30 protein was not detectable in KNK437-treated cells. Finally, treatment of A6 cells with KNK437 inhibited the heat shock-induced acquisition of thermotolerance, as determined by preservation of actin filaments and cellular morphology using immunocytochemistry and laser scanning confocal microscopy.

  2. Effect of patchouli alcohol on the regulation of heat shock-induced oxidative stress in IEC-6 cells.

    PubMed

    Liu, Xiaoxi; Jiang, Linshu; Liu, Fenghua; Chen, Yuping; Xu, Lei; Li, Deyin; Ma, Yunfei; Li, Huanrong; Xu, Jianqin

    2016-08-01

    Purpose Patchouli alcohol (PA) is used to treat gastrointestinal dysfunction. The purpose of this study was to ascertain the function of PA in the regulated process of oxidative stress in rat intestinal epithelial cells (IEC-6). Materials and methods Oxidative stress was stimulated by exposing IEC-6 cells to heat shock (42 °C for 3 h). IEC-6 cells in treatment groups were pretreated with various concentrations of PA (10, 40, and 80 ng/mL) for 3 h before heat shock. Results Heat shock caused damage to the morphology of IEC-6 cells, and increased reactive oxygen species (ROS) level and malondialdehyde (MDA) content. Moreover, mRNA and protein expression by target genes related to oxidative stress in heat shock were also altered. Specifically, the mRNA expression by HSP70, HSP90, GSH-px, NRF2 nd HO-1were all increased, and Nrf2 and Keap1 protein expression were increased after heat shock. However, pretreatment with PA weakened the level of damage to the cellular morphology, and decreased the MDA content caused by heat shock, indicating PA had cytoprotective activities. Pretreatment with PA at high dose significantly increased generation of intracellular ROS. Compared with the heat shock group alone, PA pretreatment significantly decreased the mRNA expression by HSP70, HSP90, SOD, CAT, GSH-px, KEAP1 and HO-1. Furthermore, the high dose of PA significantly increased Nrf2 protein expression, while both the intermediate and high dose of PA significantly increased HO-1 protein expression. Conclusion Heat-shock-induced oxidative stress in IEC-6 cells, and PA could alleviate the Nrf2-Keap1 cellular oxidative stress responses.

  3. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    SciTech Connect

    Pack, Chan-Gi; Ahn, Sang-Gun

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  4. Heat shock-induced degradation of Msn2p, a Saccharomyces cerevisiae transcription factor, occurs in the nucleus.

    PubMed

    Lallet, S; Garreau, H; Poisier, C; Boy-Marcotte, E; Jacquet, M

    2004-10-01

    In the yeast Saccharomyces cerevisiae, the zinc finger transcription factor Msn2p is a central component of the general stress response. It is activated in response to a wide variety of environmental changes, including physicochemical stresses as well as nutritional starvation, and induces the expression of a large set of genes required for cellular adaptation. The transcriptional activity of Msn2p in response to stresses is transient, and must therefore be strictly controlled. It is mainly regulated by reversible translocation from the cytoplasm to the nucleus upon the onset of stress, under the control of the cAMP-APK and the TOR pathways. In this report, we describe a new level of control: heat shock-induced degradation of Msn2p by the 26S proteasome. This degradation occurs in the nucleus and is further enhanced when Msn2p is fully active. Moreover, we show that the cyclin-dependent protein kinase Srb10p, a component of the transcription machinery, plays a role in the enhanced degradation of Msn2p upon heat shock. These findings provide new insights into the mechanisms by which Msn2p is transiently activated in response to stress.

  5. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes.

    PubMed Central

    Pagán, R; Condón, S; Sala, F J

    1997-01-01

    The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage. PMID:9251209

  6. Polyamine regulation of heat-shock-induced spermidine N1-acetyltransferase activity.

    PubMed Central

    Fuller, D J; Carper, S W; Clay, L; Chen, J R; Gerner, E W

    1990-01-01

    The enzyme spermidine/spermine N1-acetyltransferase (N1-SAT) is rapidly induced by heat shock in CHO and A549 cells, with activity declining by 24 h. Depletion of intracellular polyamines by alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, blocks this induction. Re-addition of putrescine to these cultures restores the response to heat shock, with a concomitant increase in intracellular N1-acetylspermidine. Diaminopropane is more than twice as effective as the naturally occurring diamine putrescine, suggesting that the propylamine moiety of spermidine is involved in the regulation of N1-SAT induction. Inhibitor studies indicate transcriptional activation and that the enzyme has an apparent half-life of 30-60 min. A second heat shock rapidly inhibits induced N1-SAT activity, which decays with a half-life of 2-3 min. Despite its induction by heat, N1-SAT is not a stable enzyme, suggesting that the activity observed is not due to a modification of an existing peptide, but is due to a transcriptional event, which may justify the inclusion of this enzyme in the family of heat-shock proteins. Images Fig. 2. PMID:2111132

  7. FTSJ2, a Heat Shock-Inducible Mitochondrial Protein, Suppresses Cell Invasion and Migration

    PubMed Central

    Lin, Ken-Yo; Liu, Fang-Chueh; Chong, Kowit-Yu; Cheng, Winston T. K.; Chen, Chuan-Mu

    2014-01-01

    Ribosomal RNA large subunit methyltransferase J (RrmJ), an Escherichia coli heat shock protein, is responsible for 2′-O-ribose methylation in 23S rRNA. In mammals, three close homologs of RrmJ have been identified and have been designated as FTSJ1, FTSJ2 and FTSJ3; however, little is known about these genes. In this study, we characterized the mammalian FTSJ2, which was the most related protein to RrmJ in a phylogenetic analysis that had similar amino acid sequence features and tertiary protein structures of RrmJ. FTSJ2 was first identified in this study as a nucleus encoded mitochondrial protein that preserves the heat shock protein character in mammals in which the mRNA expressions was increased in porcine lung tissues and A549 cells after heat shock treatment. In addition, a recent study in non-small cell lung cancer (NSCLC) suggested that the FTSJ2 gene is located in a novel oncogenic locus. However, our results demonstrate that the expression of FTSJ2 mRNA was decreased in the more invasive subline (CL1-5) of the lung adenocarcinoma cells (CL1) compared with the less invasive subline (CL1-0), and overexpression of FTSJ2 resulted in the inhibition of cell invasion and migration in the rhabdomyosarcoma cell (TE671). In conclusion, our findings indicate that mammalian FTSJ2 is a mitochondrial ortholog of E. coli RrmJ and conserves the heat shock protein properties. Moreover, FTSJ2 possesses suppressive effects on the invasion and migration of cancer cells. PMID:24595062

  8. Proteomic analysis of heat shock-induced protection in acute pancreatitis.

    PubMed

    Fetaud-Lapierre, Vanessa; Pastor, Catherine M; Farina, Annarita; Hochstrasser, Denis F; Frossard, Jean-Louis; Lescuyer, Pierre

    2010-11-05

    Acute pancreatitis is an inflammatory disease of the pancreas, which can result in serious morbidity or death. Acute pancreatitis severity can be reduced in experimental models by preconditioning animals with a short hyperthermia prior to disease induction. Heat shock proteins 27 and 70 are key effectors of this protective effect. In this study, we performed a comparative proteomic analysis using a combination of liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and isobaric tagging to investigate changes in pancreatic proteins expression that were associated with thermal stress, both in healthy rats and in a model of caerulein-induced pancreatitis. In agreement with previous studies, we observed modulation of heat shock and inflammatory proteins expression in response to heat stress or pancreatitis induction. We also identified numerous other proteins, whose pancreatic level changed following pancreatitis induction, when acute pancreatitis severity was reduced by prior thermal stress, or in healthy rats in response to hyperthermia. Interestingly, we showed that the expression of various proteins associated with the secretory pathway was modified in the different experimental models, suggesting that modulation of this process is involved in the protective effect against pancreatic tissue damage.

  9. Characterization of a heat-shock-inducible hsp70 gene of the green alga Volvox carteri.

    PubMed

    Cheng, Qian; Hallmann, Armin; Edwards, Lisseth; Miller, Stephen M

    2006-04-12

    The green alga Volvox carteri possesses several thousand cells, but just two cell types: large reproductive cells called gonidia, and small, biflagellate somatic cells. Gonidia are derived from large precursor cells that are created during embryogenesis by asymmetric cell divisions. The J domain protein GlsA (Gonidialess A) is required for these asymmetric divisions and is believed to function with an Hsp70 partner. As a first step toward identifying this partner, we cloned and characterized V. carteri hsp70A, which is orthologous to HSP70A of the related alga Chlamydomonas reinhardtii. Like HSP70A, V. carteri hsp70A contains multiple heat shock elements (HSEs) and is highly inducible by heat shock. Consistent with these properties, Volvox transformants that harbor a glsA antisense transgene that is driven by an hsp70A promoter fragment express Gls phenotypes that are temperature-dependent. hsp70A appears to be the only gene in the genome that encodes a cytoplasmic Hsp70, so we conclude that Hsp70A is clearly the best candidate to be the chaperone that participates with GlsA in asymmetric cell division.

  10. Heat shock induces mini-Cajal bodies in the Xenopus germinal vesicle.

    PubMed

    Handwerger, Korie E; Wu, Zheng'an; Murphy, Christine; Gall, Joseph G

    2002-05-15

    Cajal bodies are evolutionarily conserved nuclear organelles that are believed to play a central role in assembly of RNA transcription and processing complexes. Although knowledge of Cajal body composition and behavior has greatly expanded in recent years, little is known about the molecules and mechanisms that lead to the formation of these organelles in the nucleus. The Xenopus oocyte nucleus or germinal vesicle is an excellent model system for the study of Cajal bodies, because it is easy to manipulate and it contains 50-100 Cajal bodies with diameters up to 10 microm. In this study we show that numerous mini-Cajal bodies (less than 2 microm in diameter) form in the germinal vesicle after oocytes recover from heat shock. The mechanism for heat shock induction of mini-Cajal bodies is independent of U7 snRNA and does not require transcription or import of newly translated proteins from the cytoplasm. We suggest that Cajal bodies originate by self-organization of preformed components, preferentially on the surface of B-snurposomes.

  11. Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster.

    PubMed

    Singh, Anand K; Lakhotia, Subhash C

    2016-01-01

    A delayed organismic lethality was reported in Drosophila following heat shock when developmentally active and stress-inducible noncoding hsrω-n transcripts were down-regulated during heat shock through hs-GAL4-driven expression of the hsrω-RNAi transgene, despite the characteristic elevation of all heat shock proteins (Hsp), including Hsp70. Here, we show that hsrω-RNAi transgene expression prior to heat shock singularly prevents accumulation of Hsp70 in all larval tissues without affecting transcriptional induction of hsp70 genes and stability of their transcripts. Absence of the stress-induced Hsp70 accumulation was not due to higher levels of Hsc70 in hsrω-RNAi transgene-expressing tissues. Inhibition of proteasomal activity during heat shock restored high levels of the induced Hsp70, suggesting very rapid degradation of the Hsp70 even during the stress when hsrω-RNAi transgene was expressed ahead of heat shock. Unexpectedly, while complete absence of hsrω transcripts in hsrω (66) homozygotes (hsrω-null) did not prevent high accumulation of heat shock-induced Hsp70, hsrω-RNAi transgene expression in hsrω-null background blocked Hsp70 accumulation. Nonspecific RNAi transgene expression did not affect Hsp70 induction. These observations reveal that, under certain conditions, the stress-induced Hsp70 can be selectively and rapidly targeted for proteasomal degradation even during heat shock. In the present case, the selective degradation of Hsp70 does not appear to be due to down-regulation of the hsrω-n transcripts per se; rather, this may be an indirect effect of the expression of hsrω-RNAi transgene whose RNA products may titrate away some RNA-binding proteins which may also be essential for stability of the induced Hsp70.

  12. Heat shock induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway.

    PubMed

    Kano, Yoshio; Nakagiri, Sachiko; Nohno, Tsutomu; Hiragami, Fukumi; Kawamura, Kenji; Kadota, Michiyo; Numata, Keizo; Koike, Yoshihisa; Furuta, Tomohisa

    2004-11-12

    We investigated the role of the p38 mitogen-activated protein kinase (MAPK) pathway in heat-shock-induced neurite outgrowth of PC12 mutant cells in which nerve growth factor (NGF)-induced neurite outgrowth is impaired. When cultures of the PC12 mutant (PC12m3) cells were exposed to heat stress at 44 degrees C for 10 min, activity of p38 MAPK increased and neurite outgrowth was greatly enhanced. The neurite extension was inhibited by the p38 MAPK inhibitor BS203580. Longer heat treatment of PC12m3 cells provoked cell death, which was enhanced by SB203580. These findings suggest that heat-induced activation of p38 MAPK is responsible for the neurite outgrowth and survival of PC12m3 cells.

  13. Differential heat shock tolerance and expression of heat shock inducible proteins in two stored-product psocids

    USDA-ARS?s Scientific Manuscript database

    The recent recognition of psocid infestations as a major concern in stored products, where their management with fumigants and conventional insecticides has proven difficult, and also the recent reemergence of heat treatment as a potential tactic for control of stored-product insects led to the pres...

  14. Ultrastructural detection of nucleic acids within heat shock-induced perichromatin granules of HeLa cells by cytochemical and immunocytological methods.

    PubMed

    Charlier, Christine; Lamaye, Françoise; Thelen, Nicolas; Thiry, Marc

    2009-06-01

    The perichromatin granules (PGs) are enigmatic structures of the cell nucleus. The major drawbacks for a biological study are their rare occurrence and their small size in normal conditions. As heat shock has been shown to increase their number, we applied a hyperthermal shock on HeLa cells to investigate the nucleic acid content of PGs by means of cytochemical and immunocytological approaches. These heat shock-induced PGs (hsiPGs) appeared as clusters organized in the form of honeycomb structures and were always associated with some blocks of condensed chromatin, such as the perinucleolar chromatin shell. A stalk connecting the hsiPG to the chromatin could be observed. For the detection of RNA, we applied an immunocytological method involving two anti-RNA antibodies and quantified the gold labelling obtained. The results clearly revealed that hsiPGs contained RNA. Regarding to the detection of DNA, we used three different methods followed by quantitative analyses. The results seemed to indicate that a small amount of DNA was present in hsiPGs. Together, these findings suggest that hsiPGs might be RNP structures associated with particular regions of DNA.

  15. Heat shock-induced attenuation of hydroxyl radical generation and mitochondrial aconitase activity in cardiac H9c2 cells.

    PubMed

    Ilangovan, Govindasamy; Venkatakrishnan, C D; Bratasz, Anna; Osinbowale, Sola; Cardounel, Arturo J; Zweier, Jay L; Kuppusamy, Periannan

    2006-02-01

    A mild heat shock (hyperthermia) protects cells from apoptotic and necrotic deaths by inducing overexpression of various heat shock proteins (Hsps). These proteins, in combination with the activation of the nitric oxide synthase (NOS) enzyme, play important roles in the protection of the myocardium against a variety of diseases. In the present work we report that the generation of potent reactive oxygen species (ROS), namely *OH in cardiac H9c2 cells, is attenuated by heat shock treatment (2 h at 42 degrees C). Western blot analyses showed that heat shock treatment induced overexpression of Hsp70, Hsp60, and Hsp25. The observed *OH was found to be derived from the superoxide (O(2)(-)*) generated by the mitochondria. Whereas the manganese superoxide dismutase (MnSOD) activity was increased in the heat-shocked cells, the mitochondrial aconitase activity was reduced. The mechanism of O(2)(-)* conversion into *OH in mitochondria is proposed as follows. The O(2)(-)* leaked from the electron transport chain, oxidatively damages the mitochondrial aconitase, releasing a free Fe(2+). The aconitase-released Fe(2+) combines with H(2)O(2) to generate *OH via a Fenton reaction and the oxidized Fe(3+) recombines with the inactivated enzyme after being reduced to Fe(2+) by other cellular reductants, turning it over to be active. However, in heat-shocked cells, because of higher MnSOD activity, the excess H(2)O(2) causes irreversible damage to the mitochondrial aconitase enzyme, thus inhibiting its activity. In conclusion, we propose that attenuation of *OH generation after heat shock treatment might play an important role in reducing the myocardial ischemic injury, observed in heat shock-treated animals.

  16. Heat shock induces production of reactive oxygen species and increases inner mitochondrial membrane potential in winter wheat cells.

    PubMed

    Fedyaeva, A V; Stepanov, A V; Lyubushkina, I V; Pobezhimova, T P; Rikhvanov, E G

    2014-11-01

    Heat shock leads to oxidative stress. Excessive ROS (reactive oxygen species) accumulation could be responsible for expression of genes of heat-shock proteins or for cell death. It is known that in isolated mammalian mitochondria high protonic potential on the inner membrane actuates the production of ROS. Changes in viability, ROS content, and mitochondrial membrane potential value have been studied in winter wheat (Triticum aestivum L.) cultured cells under heat treatment. Elevation of temperature to 37-50°C was found to induce elevated ROS generation and increased mitochondrial membrane potential, but it did not affect viability immediately after treatment. More severe heat exposure (55-60°C) was not accompanied by mitochondrial potential elevation and increased ROS production, but it led to instant cell death. A positive correlation between mitochondrial potential and ROS production was observed. Depolarization of the mitochondrial membrane by the protonophore CCCP inhibited ROS generation under the heating conditions. These data suggest that temperature elevation leads to mitochondrial membrane hyperpolarization in winter wheat cultured cells, which in turn causes the increased ROS production.

  17. Shiga toxin-2 enhances heat-shock-induced apoptotic cell death in cultured and primary glial cells.

    PubMed

    Sugimoto, Naotoshi; Toma, Tomoko; Shimizu, Masaki; Kuroda, Mondo; Wada, Taizo; Yachie, Akihiro

    2014-10-01

    The blood-brain barrier (BBB) selectively controls the homeostasis of the central nervous system (CNS) environment using specific structural and biochemical features of the endothelial cells, pericytes, and glial limitans. Glial cells, which represent the cellular components of the mature BBB, are the most numerous cells in the brain and are indispensable for neuronal functioning. We investigated the effects of Shiga toxin on glial cells in vitro. Shiga toxin failed to inhibit cell proliferation but attenuated expression of heat shock protein 70, which is one of the chaperone proteins, in cultured and primary glial cells. Furthermore, the combination of Shiga toxin and a heat shock procedure induced cell apoptosis and decreased cell proliferation in both cells. Thus, we speculate that glial cell death in response to the combination of Shiga toxin and heat shock might weaken the BBB and induce central nervous system complications.

  18. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    PubMed Central

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  19. Turbulence measurements in shock induced flow using hot wire anemometry

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.; Duffy, Robert E.; Trolier, James W.

    1988-01-01

    Heat transfer measurements over various geometric shapes have been made by immersing models in shock-induced flows. The heat transfer to a body is strongly dependent on the turbulence level of the stream. The interpretation of such heat transfer measurements requires a knowledge of the turbulence intensity. Turbulence intensity measurements, using hot-wire anemometry, have been successfully carried out in shock-induced flows. The experimental procedures for making such measurements and the techniques required are discussed.

  20. Thermotolerance induced at a mild temperature of 40°C alleviates heat shock-induced ER stress and apoptosis in HeLa cells.

    PubMed

    Bettaieb, Ahmed; Averill-Bates, Diana A

    2015-01-01

    Hyperthermia (39-45°C) has emerged as an alternate prospect for cancer therapy in combination with radiation and chemotherapy. Despite promising progress in the clinic, molecular mechanisms involved in hyperthermia-induced cell death are not clear. Hyperthermia causes protein denaturation/aggregation, which results in cell death by apoptosis and/or necrosis. Hyperthermia also induces thermotolerance, which renders cells resistant to subsequent exposure to lethal heat shock. This study investigates the role of both lethal (42-43°C) and mild (40°C) hyperthermia in regulating ER stress and ER stress-induced apoptosis in HeLa cells. The ability of mild thermotolerance induced at 40°C to alleviate either or both of these processes is also determined. Hyperthermia (42-43°C) induced ER stress, revealed by phosphorylation of PERK, eIF2α and IRE1α, cleavage of ATF6 and increased expression of BiP and sXBP1. Real-time PCR revealed that mRNA levels of ATF6, ATF4, BiP, sXBP1 and CHOP increased in cells exposed to hyperthermia. Moreover, hyperthermia caused disruption of calcium homeostasis and activated the calpain-calpastatin proteolytic system and ER resident caspase 4. Pre-exposure to mild hyperthermia (40°C) alleviated the induction of cytotoxicity and ER stress by hyperthermia (42-43°C) and protected cells against ER stress-induced apoptosis. ShRNA-mediated depletion of Hsp72 abrogated protective effects of mild thermotolerance (40°C) against heat-shock induced ER stress and sensitized cells to ER stress-mediated apoptosis. Our findings show that Hsp72 contributes to the protective effects of mild hyperthermia (40°C) against hyperthermia-induced ER stress and apoptosis.

  1. Effect of heat-shock induced oxidative stress is suppressed in BcZAT12 expressing drought tolerant tomato.

    PubMed

    Shah, Kavita; Singh, Major; Rai, Avinash Chandra

    2013-11-01

    The transcription factor ZAT12 is a member of stress-responsive C2H2 type zinc finger protein (ZFP) reported to control the expression of stress-activated genes mediated via ROS in plants. BcZAT12-transformed tomato cv. H-86, var. Kashi vishesh (lines ZT1-ZT6) over-expressing the gene product is demonstrated herein to be tolerant to heat-shock (HS)-induced oxidative stress. Results reveal that the relative expression of ZAT12 as well as heat induced Hsp17.4 and Hsp21 gene transcripts increased in transgenic upon exposure to HS. The transformed tomato lines ZT1 and ZT5 had significantly lowered free radical formation, improved electrolyte leakage, relative water content and chlorophyll levels with an enhanced activities of antioxidant enzymes viz. superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase when exposed to HS. HS-induced oxidative stress by over-expression of the BcZAT12 gene transcripts in tomato as well as by largely enhancing the ROS-scavenging capacity and up regulation of Hsp transcripts. This enables the transgenic tomato plants to acquire a greater ability to counteract HS-induced oxidative stress, being endowed with more reduced antioxidant pools. The use of these HS-tolerant tomato lines could possibly be used for tomato cultivation in the areas affected by sudden temperature changes.

  2. Quasi-Static and Shock Induced Mechanical Response of an Aluminium-Zinc-Magnesium Alloy as a Function of Heat Treatment

    NASA Astrophysics Data System (ADS)

    Edwards, M. R.; Millett, J. C. F.; Bourne, N. K.

    2004-07-01

    Samples of an aluminium-zinc-magnesium alloy, typical of high strength weldable aluminium alloys, have been heat treated to produce two different microstructural conditions, these being peak-aged and under-aged. Mechanical tests have been performed, both at quasi-static strain rates and under shock loading conditions to determine how the mechanical properties change with heat treatment. Results indicate that the material has its highest strength when peak aged. Properties are discussed in relation to observed features within the microstructure, as recorded by optical and scanning electron microscopy.

  3. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    PubMed

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  4. Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system.

    PubMed

    Chong-Pérez, Borys; Kosky, Rafael G; Reyes, Maritza; Rojas, Luis; Ocaña, Bárbara; Tejeda, Marisol; Pérez, Blanca; Angenon, Geert

    2012-06-30

    Selectable marker genes are indispensable for efficient production of transgenic events, but are no longer needed after the selection process and may cause public concern and technological problems. Although several gene excision systems exist, few have been optimized for vegetatively propagated crops. Using a Cre-loxP auto-excision strategy, we obtained transgenic banana plants cv. Grande Naine (Musa AAA) devoid of the marker gene used for selection. We used T-DNA vectors with the cre recombinase gene under control of a heat shock promoter and selectable marker gene cassettes placed between two loxP sites in direct orientation, and a gene of interest inserted outside of the loxP sites. Heat shock promoters pGmHSP17.6-L and pHSP18.2, from soybean and Arabidopsis respectively, were tested. A transient heat shock treatment of primary transgenic embryos was sufficient for inducing cre and excising cre and the marker genes. Excision efficiency, as determined by PCR and Southern hybridization was 59.7 and 40.0% for the GmHSP17.6-L and HSP18.2 promoters, respectively. Spontaneous excision was not observed in 50 plants derived from untreated transgenic embryos. To our knowledge this is the first report describing an efficient marker gene removal system for banana. The method described is simple and might be generally applicable for the production of marker-free transgenic plants of many crop species.

  5. Heat shock-induced accumulation of 70-kDa stress protein (HSP70) can protect ATP-depleted tumor cells from necrosis.

    PubMed

    Kabakov, A E; Gabai, V L

    1995-03-01

    The phenomenon of cell resistance to prolonged energy deprivation after mild thermal stress was studied in vitro. Murine P3O1 myeloma and Ehrlich ascites carcinoma cells were treated with rotenone (an inhibitor of respiration) in glucose-free medium to block ATP generation. ATP rapidly decreased in these cells to 3-6% of the initial level that resulted in powerful aggregation of cytoskeletal proteins, blebbing, and necrotic death of 60-70% cells within 2 h. Prior heat shock (43 degrees C for 10 min) with a subsequent 3-h recovery in a rich medium considerably suppressed the rotenone-induced actin aggregation and rate of necrosis in the energy-deprived cells without effecting the ATP drop in them. Using [14C]leucine labeling, gel electrophoresis, and fluorography, stimulation of the heat-shock protein (HSP) synthesis and total suppression of any other translation were revealed in the cells during recovery after the heat pretreatment. Significantly elevated levels of HSP70 but not HSP90 and HSP27 were found by means of immunoblotting in both cell cultures rendered resistant to necrosis under ATP-depleting conditions. Inhibition of the thermo-induced HSP synthesis by cycloheximide fully prevented development of the tolerance to energy deprivation. A novel function of HSP70 consisting of protection of ATP-deprived cells from "lethal" aggregation of cytoskeletal proteins is suggested.

  6. The antioxidant transcription factor Nrf2 contributes to the protective effect of mild thermotolerance (40°C) against heat shock-induced apoptosis.

    PubMed

    Glory, Audrey; Averill-Bates, Diana A

    2016-10-01

    The exposure of cells to low doses of stress induces adaptive survival responses that protect cells against subsequent exposure to toxic stress. The ability of cells to resist subsequent toxic stress following exposure to low dose heat stress at 40°C is known as mild thermotolerance. Mild thermotolerance involves increased expression of heat shock proteins and antioxidants, but the initiating factors in this response are not understood. This study aims to understand the role of the Nrf2 antioxidant pathway in acquisition of mild thermotolerance at 40°C, and secondly, whether the Nrf2 pathway could be involved in the protective effect of thermotolerance against heat-shock (42°C)-induced apoptosis. During cell preconditioning at 40°C, protein expression of the Nrf2 transcription factor increased after 15-60min. In addition, levels of the Nrf2 targets MnSOD, catalase, heme oxygenase-1, glutamate cysteine ligase and Hsp70 increased at 40°C. Levels of these Nrf2 targets were enhanced by Nrf2 activator oltipraz and decreased by shRNA targeting Nrf2. Levels of pro-oxidants increased after 30-60min at 40°C. Pro-oxidant levels were decreased by oltipraz and increased by knockdown of Nrf2. Increased Nrf2 expression and catalase activity at 40°C were inhibited by the antioxidant PEG-catalase and by p53 inhibitor pifithrin-α. These results suggest that mild thermotolerance (40°C) increases cellular pro-oxidant levels, which in turn activate Nrf2 and its target genes. Moreover, Nrf2 contributes to the protective effect of thermotolerance against heat-shock (42°C)-induced apoptosis, because Nrf2 activation by oltipraz enhanced thermotolerance, whereas Nrf2 knockdown partly reversed thermotolerance. Improved knowledge about the different protective mechanisms that mild thermotolerance can activate is crucial for the potential use of this adaptive survival response to treat stress-related diseases.

  7. Heat Shock-induced Phosphorylation of TAR DNA-binding Protein 43 (TDP-43) by MAPK/ERK Kinase Regulates TDP-43 Function.

    PubMed

    Li, Wen; Reeb, Ashley N; Lin, Binyan; Subramanian, Praveen; Fey, Erin E; Knoverek, Catherine R; French, Rachel L; Bigio, Eileen H; Ayala, Yuna M

    2017-03-24

    TAR DNA-binding protein (TDP-43) is a highly conserved and essential DNA- and RNA-binding protein that controls gene expression through RNA processing, in particular, regulation of splicing. Intracellular aggregation of TDP-43 is a hallmark of amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. This TDP-43 pathology is also present in other types of neurodegeneration including Alzheimer's disease. We report here that TDP-43 is a substrate of MEK, a central kinase in the MAPK/ERK signaling pathway. TDP-43 dual phosphorylation by MEK, at threonine 153 and tyrosine 155 (p-T153/Y155), was dramatically increased by the heat shock response (HSR) in human cells. HSR promotes cell survival under proteotoxic conditions by maintaining protein homeostasis and preventing protein misfolding. MEK is activated by HSR and contributes to the regulation of proteome stability. Phosphorylated TDP-43 was not associated with TDP-43 aggregation, and p-T153/Y155 remained soluble under conditions that promote protein misfolding. We found that active MEK significantly alters TDP-43-regulated splicing and that phosphomimetic substitutions at these two residues reduce binding to GU-rich RNA. Cellular imaging using a phospho-specific p-T153/Y155 antibody showed that phosphorylated TDP-43 was specifically recruited to the nucleoli, suggesting that p-T153/Y155 regulates a previously unappreciated function of TDP-43 in the processing of nucleolar-associated RNA. These findings highlight a new mechanism that regulates TDP-43 function and homeostasis through phosphorylation and, therefore, may contribute to the development of strategies to prevent TDP-43 aggregation and to uncover previously unexplored roles of TDP-43 in cell metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Subcellular imaging of RNA distribution and DNA replication in single mammalian cells with SIMS: the localization of heat shock induced RNA in relation to the distribution of intranuclear bound calcium.

    PubMed

    Chandra, S

    2008-10-01

    .50 mM total calcium in the nucleoplasm). These regions spatially correlated with depleted levels of BrU-RNA in (81)Br secondary ion mass spectrometry images. The remainder of intranuclear regions displayed the presence of BrU-RNA with heterogeneous distribution. These observations indicate that calcium in its bound form may play a fundamental role in processes such as transcription and/or processing and storage of RNA. The shape of intranuclear regions with elevated levels of bound calcium resembled the heat shock induced nuclear bodies in HeLa cells. The analysis of cryogenically prepared frozen freeze-dried cells provides an ideal sample type for further understanding of the role of bound calcium in transcription of genes under physiological and pathological conditions.

  9. Benjamin Franklin and Shock-Induced Amnesia

    ERIC Educational Resources Information Center

    Finger, Stanley; Zaromb, Franklin

    2006-01-01

    Shock-induced amnesia received considerable attention after Cerletti popularized electroconvulsive shock therapy in the late 1930s. Yet, often overlooked is the fact that Benjamin Franklin recognized that passing electricity through the head could affect memory for the traumatic event. Franklin described his findings on himself and others in…

  10. Benjamin Franklin and Shock-Induced Amnesia

    ERIC Educational Resources Information Center

    Finger, Stanley; Zaromb, Franklin

    2006-01-01

    Shock-induced amnesia received considerable attention after Cerletti popularized electroconvulsive shock therapy in the late 1930s. Yet, often overlooked is the fact that Benjamin Franklin recognized that passing electricity through the head could affect memory for the traumatic event. Franklin described his findings on himself and others in…

  11. Shock-induced chemistry in organic materials

    SciTech Connect

    Dattelbaum, Dana M; Sheffield, Steve; Engelke, Ray; Manner, Virginia; Chellappa, Raja; Yoo, Choong - Shik

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  12. Shock-induced defects in bulk materials

    SciTech Connect

    Gray, G.T.

    1998-03-01

    In this paper examples of the shock-induced defects produced during shock compression which correlate with microstructure/mechanical property changes induced in materials due to shock prestraining are discussed. The characteristics of the shock impulse(peak shock pressure, pulse duration, and rarefaction rate) imparted to the material under investigation and the shock-induced defects produced in numerous metals and alloys are compared with their deformation behavior at ordinary rates of deformation. Examples of the range of defects observed in shock-recovered metals and alloys, include: dislocations, deformation twins, point defects, and residual metastable remnants from pressure-induced phase transformations. Results concerning the influence of interstitial content on the propensity of {omega}-phase formation and its structure in high-purity and A-7O Ti are presented. The influence of shock-wave deformation on the phase stability and substructure evolution of high-purity (low-interstitial) titanium and A-7O (3,700 ppm oxygen) titanium were probed utilizing real-time velocity interferometry (VISAR) and soft shock-recovery techniques. Suppression of the {alpha}-{omega} pressure-induced phase transformation in A-70 Ti, containing a high interstitial oxygen content, is seen to simultaneously correspond with the suppression of deformation twinning.

  13. Observations on shock induced chemistry of cyclohexane.

    PubMed

    Akin, M C; Chau, R

    2013-07-14

    We use double pass absorption spectroscopy to examine shock induced reactions in situ in cyclohexane and benzene at pressures up to 33.1 GPa. Reactions in cyclohexane begin by 27 GPa and complete by 33.1 GPa. Reactions in benzene are observed to begin by 12 GPa and are complete by 18 GPa. Absorption spectra indicate that the first reaction in cyclohexane occurs within or near the shock front, and that a metastable local equilibrium is reached in the post-shock state. A second process may be observed upon reshock at the lower pressures, suggesting a new equilibrium is reached post-reshock as well. Absorption bands are consistent with the formation of short radicals or fragments upon decomposition; however, spectral resolution is too low to confirm this mechanism.

  14. Shock-induced devolatilization of calcite

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.; Vizgirda, J.; Becker, R. H.; Epstein, S.

    1982-01-01

    Experimental measurements of the release adiabats by Vizgirda (1981) indicate that substantial vaporization takes place upon release from shock pressures of 37 GPa for calcite and 14 GPa for aragonite. The present investigation includes the first controlled partial vaporization experiments on calcite. The experiments were conducted to test the predictions of the release adiabat experiments. The quantities of the gaseous species produced from shocked calcite and their carbon and oxygen isotopic compositions were determined, and the shock-induced effect on the Mn(2+) electron spin resonance spectrum in the shock-recovered calcite was observed. On the basis of the obtained results, it is concluded that shock stresses at the 17-18 GPa level give rise to volatilization of 0.03-0.3 (mole) percent of calcite to CO2 and CO. The devolatilization of calcite occurs at low pressure at significantly lower entropy densities than predicted on the basis of thermodynamic continuum models.

  15. Shock-induced arrhythmogenesis in the myocardium

    NASA Astrophysics Data System (ADS)

    Trayanova, Natalia; Eason, James

    2002-09-01

    The focus of this article is the investigation of the electrical behavior of the normal myocardium following the delivery of high-strength defibrillation shocks. To achieve its goal, the study employs a complex three-dimensional defibrillation model of a slice of the canine heart characterized with realistic geometry and fiber architecture. Defibrillation shocks of various strengths and electrode configurations are delivered to the model preparation in which a sustained ventricular tachycardia is induced. Instead of analyzing the post-shock electrical events as progressions of transmembrane potential maps, the study examines the evolution of the postshock phase singularities (PSs) which represent the organizing centers of reentry. The simulation results demonstrate that the shock induces numerous PSs the majority of which vanish before the reentrant wavefronts associated with them complete half of a single rotation. Failed shocks are characterized with one or more PSs that survive the initial period of PS annihilation to establish a new postshock arrhythmia. The increase in shock strength results in an overall decrease of the number of PSs that survive over 200 ms after the end of the shock; however, the exact behavior of the PSs is strongly dependent on the shock electrode configuration.

  16. Multiple-shocks induced nanocrystallization in iron

    SciTech Connect

    Matsuda, Tomoki; Hirose, Akio; Sano, Tomokazu; Arakawa, Kazuto

    2014-07-14

    We found that multiple shots of femtosecond laser-driven shock pulses changed coarse crystalline iron grains with a size of 140 μm into nanocrystals with a high density of dislocations, which had never been observed in conventional shock processes. We performed metallurgical microstructure observations using transmission electron microscopy (TEM) and hardness measurements using nanoindentation on cross-sections of shocked iron. TEM images showed that grains with sizes from 10 nm through 1 μm exist within 2 μm of the surface, where the dislocation density reached 2 × 10{sup 15 }m{sup −2}. Results of the hardness measurements showed a significant increase in hardness in the nanocrystallized region. We suggest that the formation of a high density of dislocations, which is produced by a single shock, induces local three-dimensional pile-up by the multiple-shocks, which causes grain refinement at the nanoscale.

  17. Benjamin Franklin and shock-induced amnesia.

    PubMed

    Finger, Stanley; Zaromb, Franklin

    2006-04-01

    Shock-induced amnesia received considerable attention after Cerletti popularized electroconvulsive shock therapy in the late 1930s. Yet, often overlooked is the fact that Benjamin Franklin recognized that passing electricity through the head could affect memory for the traumatic event. Franklin described his findings on himself and others in several letters from the mid-1700s, 2 of which were published in his lifetime. What he observed was confirmed in 1783 by physician Jan Ingenhousz, who was one of his correspondents. Although Ingenhousz had lost his memory for his electrical accident and was confused immediately afterward, he felt strangely elated and unusually sharp the next morning. Hence, he called for clinical trials with patients with melancholia who were not responding to more conventional therapies. After Franklin received Ingenhousz's letter, he also called for clinical trials. Neither man, however, tied the possible new cure for melancholia to the memory loss--nor did the operators that began to treat some patients with melancholia successfully with cranial shocks. Only much later would the amnesia be thought to be associated with the cure. 2006 APA, all rights reserved

  18. Shock induced crystallization of amorphous Nickel powders

    NASA Astrophysics Data System (ADS)

    Cherukara, Mathew; Strachan, Alejandro

    2015-06-01

    Recent experimental work has shown the efficacy of amorphous Ni/crystalline Al composites as energetic materials, with flame velocities twice that of a comparable crystalline Ni/crystalline Al system. Of further interest is the recrystallization mechanisms in the pure amorphous Ni powders, both thermally induced and mechanically induced. We present large-scale molecular dynamics simulations of shock-induced recrystallization in loosely packed amorphous Nickel powders. We study the time dependent nucleation and growth processes by holding the shocked samples at the induced pressures and temperatures for extended periods following the passage of the shock (up to 6 ns). We find that the nanostructure of the recrystallized Ni and time scales of recrystallization are dependent on the piston velocity. At low piston velocities, nucleation events are rare, leading to long incubation times and a relatively coarse nanostructure. At higher piston velocities, local variations in temperature due to jetting phenomena and void collapse, give rise to multiple nucleation events on time scales comparable to the passage of the shock wave, leading to the formation of a fine-grained nanostructure. Interestingly, we observe that the nucleation and growth process occurs in two steps, with the first nuclei crystallizing into the BCC structure, before evolving over time into the expected FCC structure. U.S. Defense Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi Peiris).

  19. Production of Reactive Oxygen Species, Alteration of Cytosolic Ascorbate Peroxidase, and Impairment of Mitochondrial Metabolism Are Early Events in Heat Shock-Induced Programmed Cell Death in Tobacco Bright-Yellow 2 Cells1

    PubMed Central

    Vacca, Rosa Anna; de Pinto, Maria Concetta; Valenti, Daniela; Passarella, Salvatore; Marra, Ersilia; De Gara, Laura

    2004-01-01

    To gain some insight into the mechanisms by which plant cells die as a result of abiotic stress, we exposed tobacco (Nicotiana tabacum) Bright-Yellow 2 cells to heat shock and investigated cell survival as a function of time after heat shock induction. Heat treatment at 55°C triggered processes leading to programmed cell death (PCD) that was complete after 72 h. In the early phase, cells undergoing PCD showed an immediate burst in hydrogen peroxide (H2O2) and superoxide (O2·-) anion production. Consistently, death was prevented by the antioxidants ascorbate (ASC) and superoxide dismutase (SOD). Actinomycin D and cycloheximide, inhibitors of transcription and translation, respectively, also prevented cell death, but with a lower efficiency. Induction of PCD resulted in gradual oxidation of endogenous ASC; this was accompanied by a decrease in both the amount and the specific activity of the cytosolic ASC peroxidase (cAPX). A reduction in cAPX gene expression was also found in the late PCD phase. Moreover, changes of cAPX kinetic properties were found in PCD cells. Production of ROS in PCD cells was accompanied by early inhibition of glucose (Glc) oxidation, with a strong impairment of mitochondrial function as shown by an increase in cellular NAD(P)H fluorescence, and by failure of mitochondria isolated from cells undergoing PCD to generate membrane potential and to oxidize succinate in a manner controlled by ADP. Thus, we propose that in the early phase of tobacco Bright-Yellow 2 cell PCD, ROS production occurs, perhaps because of damage of the cell antioxidant system, with impairment of the mitochondrial oxidative phosphorylation. PMID:15020761

  20. Study of Unsteady, Sphere-Driven, Shock-Induced Combustion for Application to Hypervelocity Airbreathing Propulsion

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2011-01-01

    A premixed, shock-induced combustion engine has been proposed in the past as a viable option for operating in the Mach 10 to 15 range in a single stage to orbit vehicle. In this approach, a shock is used to initiate combustion in a premixed fuel/air mixture. Apparent advantages over a conventional scramjet engine include a shorter combustor that, in turn, results in reduced weight and heating loads. There are a number of technical challenges that must be understood and resolved for a practical system: premixing of fuel and air upstream of the combustor without premature combustion, understanding and control of instabilities of the shock-induced combustion front, ability to produce sufficient thrust, and the ability to operate over a range of Mach numbers. This study evaluated the stability of the shock-induced combustion front in a model problem of a sphere traveling in a fuel/air mixture at high Mach numbers. A new, rapid analysis method was developed and applied to study such flows. In this method the axisymmetric, body-centric Navier-Stokes equations were expanded about the stagnation streamline of a sphere using the local similarity hypothesis in order to reduce the axisymmetric equations to a quasi-1D set of equations. These reduced sets of equations were solved in the stagnation region for a number of flow conditions in a premixed, hydrogen/air mixture. Predictions from the quasi-1D analysis showed very similar stable or unstable behavior of the shock-induced combustion front as compared to experimental studies and higher-fidelity computational results. This rapid analysis tool could be used in parametric studies to investigate effects of fuel rich/lean mixtures, non-uniformity in mixing, contaminants in the mixture, and different chemistry models.

  1. Investigation of shock-induced combustion past blunt projectiles

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, S. N.

    1996-01-01

    A numerical study is conducted to simulate shock-induced combustion in premixed hydrogen-air mixtures at various free-stream conditions and parameters. Two-dimensional axisymmetric, reacting viscous flow over blunt projectiles is computed to study shock-induced combustion at Mach 5.11 and Mach 6.46 in hydrogen-air mixture. A seven-species, seven reactions finite rate hydrogen-air chemical reaction mechanism is used combined with a finite-difference, shock-fitting method to solve the complete set of Navier-Stokes and species conservation equations. The study has allowed an improved understanding of the physics of shock-induced combustion over blunt projectiles and the numerical results can now be explained more readily with one-dimensional wave-interaction model.

  2. Intermittency and Topology of Shock Induced Mixing

    NASA Astrophysics Data System (ADS)

    Tellez, Jackson; Redondo, Jose M.; Ben Mahjoub, Otman; Malik, Nadeem; Vila, Teresa

    2016-04-01

    The advance of a Rayleigh-Taylor front is described in Linden & Redondo (1991),[1-3] and may be shown to follow a quadratic law in time where the width of the growing region of instability depends on the local mixing efficiency of the different density fluids that accelerate against each other g is the acceleration and A is the Atwood number defined as the diference of densities divided by their sum. This results show the independence of the large amplitude structures on the initial conditions the width of the mixing region depends also on the intermittency of the turbulence. Then dimensional analysis may also depend on the relevant reduced acceleration driven time and the molecular reactive time akin to Damkholer number and the fractal structure of the contact zone [2,4]. Detailed experiments and simulations on RT and RM shock induced fronts analized with respect to structure functions are able to determine which mechanisms are most effective in local mixing which increase the effective fractal dimension, as well as the effect of higher order geometrical parameters, such as the structure functions, in non-homogeneous fluids (Mahjoub et al 1998)[5]. The structure of a Mixing blob shows a relatively sharp head with most of the mixing taking place at the sides due to what seems to be shear instability very similar to the Kelvin-Helmholtz instabilities, but with sideways accelerations. The formation of the blobs and spikes with their secondary instabilities produces a turbulent cascade, evident just after about 1 non-dimensional time unit, from a virtual time origin that takes into account the linear growth phase, as can be seen by the growth of the fractal dimension for different volume fractions. Two-dimensional cuts of the 3D flow also show that vortex flows have closed or spiral streamlines around their core. Examples of such flows can be also seen in the laboratory, for example at the interface of atwo-layer stratified fluid in a tank in which case streamlines

  3. Shock Induced Starting of Gasdynamic Laser Nozzles.

    DTIC Science & Technology

    1977-12-01

    Operating Frequency, Hertz y Ratio of Specific Heat at Constant Pressure to Specific Heat at Constant Volume Hg Mercury hir Measured Mercury Manometer Column...Heraeus type E-70 vacuum pump and measured with a mercury manometer . Minimum attainable pressure was approximately 2.0 inches of mercury absolute. The...P4/ . Atm Pressurization P I Bleed Valve P Valve Gage Atm Shutoff P4 Bleed Valve Valve P Gage Shutoff Valve P4 Gage P 1 Mercury Manometer 0-30 in Hg

  4. Shock-induced damage in rocks: Application to impact cratering

    NASA Astrophysics Data System (ADS)

    Ai, Huirong

    Shock-induced damage beneath impact craters is studied in this work. Two representative terrestrial rocks, San Marcos granite and Bedford limestone, are chosen as test target. Impacts into the rock targets with different combinations of projectile material, size, impact angle, and impact velocity are carried out at cm scale in the laboratory. Shock-induced damage and fracturing would cause large-scale compressional wave velocity reduction in the recovered target beneath the impact crater. The shock-induced damage is measured by mapping the compressional wave velocity reduction in the recovered target. A cm scale nondestructive tomography technique is developed for this purpose. This technique is proved to be effective in mapping the damage in San Marcos granite, and the inverted velocity profile is in very good agreement with the result from dicing method and cut open directly. Both compressional velocity and attenuation are measured in three orthogonal directions on cubes prepared from one granite target impacted by a lead bullet at 1200 m/s. Anisotropy is observed from both results, but the attenuation seems to be a more useful parameter than acoustic velocity in studying orientation of cracks. Our experiments indicate that the shock-induced damage is a function of impact conditions including projectile type and size, impact velocity, and target properties. Combined with other crater phenomena such as crater diameter, depth, ejecta, etc., shock-induced damage would be used as an important yet not well recognized constraint for impact history. The shock-induced damage is also calculated numerically to be compared with the experiments for a few representative shots. The Johnson-Holmquist strength and failure model, initially developed for ceramics, is applied to geological materials. Strength is a complicated function of pressure, strain, strain rate, and damage. The JH model, coupled with a crack softening model, is used to describe both the inelastic response of

  5. Shock induced magnetic effects in fine particle iron dispersions

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.

    1979-01-01

    Magnetic effects associated with shock induced transformation of fcc antiferromagnetic iron precipitates in polycrystalline copper disks at levels up to 5 GPa in weak magnetic fields (H not greater than 0.5 Oe) were investigated. The demagnetization and anisotropy associated with second order transition, the effects of plastic deformation in imparting magnetic anisotropy and magnetic hardening, and the influence of post shock thermal transients on magnetization associated with recovery, recrystallization and grain growth were studied. It was found that on the microsecond time scale of the shock induced first order transformation, the field sense is recorded in the transformed iron particles. For a given particle size the degree of transformation of fcc iron depends on the level of the shock. For a given shock level the resultant magnetic properties depend on the particle size distribution, with maximum effects noted in specimens with 400 to 600 A particles.

  6. Electron beam control using shock-induced density downramp injection

    NASA Astrophysics Data System (ADS)

    Swanson, K.; Tsai, H.-E.; Barber, S.; Lehe, R.; Mao, H.-S.; Steinke, S.; van Tilborg, J.; Geddes, C. G. R.; Leemans, W. P.

    2017-03-01

    In these experiments, we improve the quality of electrons injected along a shock-induced density downramp. We demonstrate that beam ellipticity and steering are influenced by the shock front tilt, and we present simple models to explain these effects. By adjusting the shock front angle, we minimize the beam's off-axis steering and ellipticity, producing high-quality electron beams over a tunable energy range.

  7. Atomistic modeling of shock-induced void collapse in copper

    SciTech Connect

    Davila, L P; Erhart, P; Bringa, E M; Meyers, M A; Lubarda, V A; Schneider, M S; Becker, R; Kumar, M

    2005-03-09

    Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.

  8. [Twenty autopsy cases of anaphylactic shock induced by cephalosporins].

    PubMed

    Du, Zhong-bo; Zhu, Yu; Tan, Hong; Guan, Da-wei; Wu, Xu; Li, Ru-bo; Gao, Wei-min; Mao, Rui-ming; Zhu, Bao-li

    2011-04-01

    To explore the characteristics of autopsy cases of anaphylactic shock induced by cephalosporins and provide the evidences in forensic medicine. Twenty cases of anaphylactic shock induced by cephalosporins were collected from April 2005 to August 2009 in judicial expertise center of China Medical University, and the characteristics of the cases were analyzed retrospectively. The age of decedents ranged from 40 to 60 years. Ninety percent of cases were from local medical centers and private clinics. The symptoms of the shock appeared 30 s-150 min after the administration of the drug, and death occurred 10 min-210 min after the appearance of the shock symptoms. In all cases, various degrees of eosinophil infiltration were observed in trachea and the lungs. Serum IgE detected by ELISA method was normal value in 14 cases. In fatal anaphylactic cases, little specific findings are detected during postmortem and microscope examination. For this reason, the determination of cause of death in these cases requires comprehensive analysis combined with clinic information and excludes other diseases leading to the sudden death.

  9. Hypersonic mixed-compression inlet shock-induced combustion ramjets

    NASA Astrophysics Data System (ADS)

    Alexander, Derrick

    This study investigates the performance and flow field features of a mixed-compression inlet shock-induced combustion ramjet (shcramjet). In a shcramjet, oncoming air is compressed with shocks in the inlet and then further compressed and mixed with hydrogen fuel in a duct prior to shock-induced combustion and expansion of the combustion products through a divergent nozzle to provide thrust. Numerical studies are undertaken using the WARP code that solves the Favre-averaged Navier-Stokes equations closed by the Wilcox k-o turbulence model. Hydrogen/air combustion is solved via the twenty reaction, nine species combustion model of Jachimowski. Mixing augmentation through the use of cantilevered ramp injector arrays on opposite shcramjet inlet walls is studied and the influence of relative array locations is quantified. Increased spanwise distance between adjacent injectors on opposite walls allows for increased jet penetration and fuel distributions in the center of the engine duct. Chemically reacting studies verify an air buffer is created between the fuel and walls that suppresses premature ignition while still allowing for an air based mixing efficiency of up to 0.46-0.54. Combustion is produced over aerodynamic wedges with the spatial flow variation dictating both detonation and shock-induced combustion can be present over constant angle wedges. The initial inlet angle must be as high as possible, while avoiding premature ignition, to generate the pressure in the combustor needed for significant positive thrust. Thrust production from combustion is found to be insensitive to wedge angle if combustion is initiated across the cross-sectional area. Strong recirculation regions are formed via shock/boundary layer interactions in the confined engine duct. Mitigation of the recirculation is demonstrated with correct placement of the nozzle expansion in conjunction with air blowing in the boundary layer at a mass flow rate on the order of that of the fuel injection

  10. Shock-induced deformation phenomena in magnetite and their consequences on magnetic properties

    NASA Astrophysics Data System (ADS)

    Reznik, Boris; Kontny, Agnes; Fritz, Jörg; Gerhards, Uta

    2016-06-01

    This study investigates the effects of shock waves on magnetic and microstructural behavior of multidomain magnetite from a magnetite-bearing ore, experimentally shocked to pressures of 5, 10, 20, and 30 GPa. Changes in apparent crystallite size and lattice parameter were determined by X-ray diffraction, and grain fragmentation and defect accumulation were studied by scanning and transmission electron microscopy. Magnetic properties were characterized by low-temperature saturation isothermal remanent magnetization (SIRM), susceptibility measurements around the Verwey transition as well as by hysteresis parameters at room temperature. It is established that the shock-induced refinement of magnetic domains from MD to SD-PSD range is a result of cooperative processes including brittle fragmentation of magnetite grains, plastic deformation with shear bands and twins as well as structural disordering in form of molten grains and amorphous nanoclusters. Up to 10 GPa, a decrease of coherent crystallite size, lattice parameter, saturation magnetization (Ms), and magnetic susceptibility and an increase in coercivity, SIRM, and width of Verwey transition are mostly associated with brittle grain fragmentation. Starting from 20 GPa, a slight recovery is documented in all magnetic and nonmagnetic parameters. In particular, the recovery in SIRM is correlated with an increase of the lattice constant. The recovery effect is associated with the increasing influence of shock heating/annealing at high shock pressures. The strong decrease of Ms at 30 GPa is interpreted as a result of strong lattice damage and distortion. Our results unravel the microstructural mechanisms behind the loss of magnetization and the modification of magnetic properties of magnetite and contribute to our understanding of shock-induced magnetic phenomena in impacted rocks on earth and in meteorites.

  11. Active suppression of an 'apparent shock induced instability'

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Tiffany, Sherwood H.; Bardusch, Richard E.

    1987-01-01

    A control law was designed, using constrained optimization techniques, to suppress an apparent shock induced instability of a sweptback, aeroelastic wing with supercritical airfoil sections. The controller design was based on an approximate linear plant representation obtained using forced response data from a previous entry in the Langley Transonic Dynamics tunnel. During a second tunnel entry, it was found that there was not an instability in the uncontrolled case but there was a region of very low damping (high dynamic response) near a Mach number of 0.92. Controller performance was obtained during the test in near real-time and revealed that the controller attenuated the open-loop response and provided a small but significant amount of damping over a Mach number range from M = 0.70 to M = 0.92.

  12. Shock-induced synthesis of high temperature superconducting materials

    DOEpatents

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  13. Mechanisms of shock-induced reactions in high explosives

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey J.

    2017-01-01

    Understanding the mechanisms by which shock waves initiate chemical reactions in explosives is key to understanding their unique and defining property: the ability to undergo rapid explosive decomposition in response to mechanical stimulus. Although shock-induced reactions in explosives have been studied experimentally and computationally for decades, the nature of even the first chemical reactions that occur in response to shock remain elusive. To predictively understand how explosives respond to shock, the detailed sequence of events that occurs - mechanical deformation, energy transfer, bond breakage, and first chemical reactions - must be understood at the quantum-mechanical level. This paper reviews recent work in this field and ongoing experimental and theoretical work at Sandia National Laboratories in this important area of explosive science.

  14. Shock Interaction with Substrate in a Shock Induced Spray Process

    NASA Astrophysics Data System (ADS)

    Mrozinski, Kevin

    To further the knowledge of the Shock Induced Spray Process (SISP), an experimental apparatus which simulates Centerline's Waverider thermal spray gun was created which uses an unsteady flow to propel solid particles onto a substrate by the use of a shock wave to produce a coating. Experiments were conducted at a variety of operating supply pressures, firing frequencies, and stand off distances. A qualitative analysis was done using a custom Schlieren system along with a high speed camera. Insight into the flow behaviour in the SISP was established with the definition of six distinct phases. The formation of a bow shock, which is known to be detrimental to the SISP operation, is shown to be more prominent in the cases with higher supply pressure and close proximity of the apparatus exit to the substrate than with changes in firing frequency.

  15. Shock induced phase transition of water: Molecular dynamics investigation

    SciTech Connect

    Neogi, Anupam; Mitra, Nilanjan

    2016-02-15

    Molecular dynamics simulations were carried out using numerous force potentials to investigate the shock induced phenomenon of pure bulk liquid water. Partial phase transition was observed at single shock velocity of 4.0 km/s without requirement of any external nucleators. Change in thermodynamic variables along with radial distribution function plots and spectral analysis revealed for the first time in the literature, within the context of molecular dynamic simulations, the thermodynamic pathway leading to formation of ice VII from liquid water on shock loading. The study also revealed information for the first time in the literature about the statistical time-frame after passage of shock in which ice VII formation can be observed and variations in degree of crystallinity of the sample over the entire simulation time of 100 ns.

  16. Shock-induced changes in HgO powder

    SciTech Connect

    Venturini, E.L.; Newcomer, P.P.; Morosin, B.; Holman, G.T.; Dunn, R.G.; Graham, R.A.

    1995-10-01

    Powder compacts of HgO were subjected to explosively-generated shock-wave loading in Sandia Bear fixtures and recovered for analysis. Although XRD powder spectra show only the orthorhombic form of HgO in both the as-received and recovered samples, XRD line profiles and TEM indicate up to an order of magnitude increase in crystallite size. Magnetic data reveal a superconducting transition below 4.2 K that is attributed to metallic {alpha}-Hg formed by a partial, shock-induced decomposition of the HgO, consistent with TEM identification of {alpha}-Hg particles using a cold stage. In addition, paramagnetic impurities present in the as-received HgO powder appear to be partially converted to a ferromagnetic or ferrimagnetic phase that dominates the magnetic properties of the recovered powder. The amounts of both the superconducting and ferromagnetic phases vary strongly with position within the shock recovery capsules.

  17. Shock-Induced phase transition of single crystal copper

    NASA Astrophysics Data System (ADS)

    Neogi, Anupam; Mitra, Nilanjan

    2017-05-01

    We have carried out a series of multi-million atoms non-equilibrium molecular dynamics simulations to investigate the effect of crystal orientation over the shock induced plasticity and phase transformation in single crystal copper. Crystallographic orientation of [100], [110] and [111] has been studied for various intensity of shock ranging from 1.0 km/s to 3.0 km/s. During shock wave propagation along <100> and <110>, a FCC-to-BCC phase transformation has been observed to occur behind the shock front at higher intensity of shock. Nucleated body centered phase is identified through common neighbor analysis, polyhedral matching template method, radial distribution function and also from the energetic of the particles.

  18. Simulation of shock-induced melting of Ni using molecular dynamics coupled to a two-temperature model

    NASA Astrophysics Data System (ADS)

    Koči, L.; Bringa, E. M.; Ivanov, D. S.; Hawreliak, J.; McNaney, J.; Higginbotham, A.; Zhigilei, L. V.; Belonoshko, A. B.; Remington, B. A.; Ahuja, R.

    2006-07-01

    Using nonequilibrium molecular dynamics (MD) simulations we study shock-induced melting in Ni with an embedded atom method (EAM). Dynamic melting is probed by the pair correlation function, and we find a melting lattice temperature of Tmelt=6400±300K for a melting pressure of Pmelt=275±10GPa . When a combined MD+TTM (two-temperature model) approach is used to include electronic heat conduction and electron-phonon coupling, Pmelt and Tmelt change. For a given pressure, the temperature behind the shock decreases due to electronic heat diffusion into the cold, unshocked material. This cooling of the material behind the shock slightly increases the melting pressure compared to simulations without electronic heat conduction and electron-phonon coupling. The decrease in the temperature behind the shock front is enhanced if the electron-phonon coupling is artificially made larger. We also explore the feasibility of using x-ray diffraction to detect melting.

  19. Unraveling shock-induced chemistry using ultrafast lasers

    SciTech Connect

    Moore, David S

    2009-01-01

    The exquisite time synchronicity between shock and diagnostics needed to unravel chemical events occurring in picoseconds has been achieved using a shaped ultrafast laser pulse to both drive the shocks and interrogate the sample via a multiplicity of optical diagnostics. The shaped laser drive pulse can produce well-controlled shock states of sub-ns duration with sub-10 ps risetimes, sufficient for investigation of fast reactions or phase transformations in a thin layer with picosecond time resolution. The shock state is characterized using ultrafast dynamic ellipsometry (UDE) in either planar or Gaussian spatial geometries, the latter allowing measurements of the equation of state of materials at a range of stresses in a single laser pulse. Time-resolved processes in materials are being interrogated using UDE, ultrafast infrared absorption, ultrafast UV/visible absorption, and femtosecond stimulated Raman spectroscopy. Using these tools we showed that chemistry in an energetic thin film starts only after an induction time of a few tens of ps, an observation that allows differentiation between proposed shock-induced reaction mechanisms. These tools are presently being applied to a variety of energetic and reactive sample systems, from nitromethane and carbon disulfide, to micro-engineered interfaces in tunable energetic mixtures.

  20. Multiscale Modeling of Shock-Induced Phase Transitions in Iron

    NASA Astrophysics Data System (ADS)

    Carter, Emily; Caspersen, Kyle; Lew, Adrian; Ortiz, Michael

    2004-03-01

    Multiscale Modeling of Shock-Induced Phase Transitions in Iron Emily Carter, Kyle Caspersen, Adrian Lew and Michael Ortiz We investigate the bcc to hcp phase transition in iron under both pressure and shear. We use DFT to map out the energy landscape of uniformly deformed iron, including its equation of state and its elastic moduli as a function of volume. >From these data we construct a nonlinear-elastic energy density which gives the energy density for arbitrary - not necessarily small - deformations. The energy density contains two wells corresponding to the bcc and hcp phases. We take this multi-well energy density as a basis for the investigation of the effect of shear on the phase diagram of iron. We allow for mixed states consisting alternating lamellae of bcc and hcp phases, and, for each macroscopic deformation, we determine the optimal microstructure of the mixed state by energy minimization using a sequential-lamination algorithm. We find that the superposition of shearing deformation on a volume change has the effect of inducing mixed states of varying spatial complexity, and of markedly lowering the critical transformation pressure. Indeed, we find that shear must be taken into consideration in order to obtain agreement with measured transformation pressures. Finally, we demonstrate how the microstructure model can be integrated into large-scale finite element calculations of shocked iron.

  1. Modeling of shock-induced solid state chemistry

    NASA Astrophysics Data System (ADS)

    Horie, Y.; Kipp, M. E.

    1987-06-01

    This report, a sequel to Sandia Report 86-0922 entitled, Shock-Induced Solid State Chemistry: Theoretical Background, by Y. Horie, describes models of chemical reactions in inorganic powder mixtures under high pressure shock wave loading. In the present work, two mathematical models, one homogeneous and the other heterogeneous, were formulated based mostly upon existing results of observations on post-shock samples of Al-Ni, Al-Ti, and ZnO-Fe2O3 mixtures. Two basic mechanisms were isolated for the development of the initial models: (1) the creation of a nonequilibrium mixture by dynamic mass mixing, and (2) ensuing chemical reactions. The homogeneous model was evaluated under shock conditions using the one dimensional wave propagation code WONDY-V. We found that results of recent measurements can be rationalized by the model. The model also suggested requisite conditions for the thermal excursion of localized reactions: a localized initial peak temperature of 1000K to 2000K and reaction time constants of 1 microsec or less. Evidence that reactions occurred while the sample was under shock loading may also be rationalized by observations of post-shock samples.

  2. Prediction of shock-induced cavitation in water

    NASA Astrophysics Data System (ADS)

    Brundage, A.

    2014-05-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading have wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over preexisting CTH models such as the SESAME EOS for capturing cavitation.

  3. Prediction of Shock-Induced Cavitation in Water

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron

    2013-06-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading has wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over pre-existing CTH models such as the SESAME EOS for capturing cavitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy/NNSA under contract DE-AC04-94AL85000.

  4. Unraveling shock-induced chemistry using ultrafast lasers

    SciTech Connect

    Moore, David Steven

    2010-12-06

    The exquisite time synchronicity between shock and diagnostics needed to unravel chemical events occurring in picoseconds has been achieved using a shaped ultrafast laser pulse to both drive the shocks and interrogate the sample via a multiplicity of optical diagnostics. The shaped laser drive pulse can produce well-controlled shock states of sub-ns duration with sub-10 ps risetimes, sufficient for investigation offast reactions or phase transformations in a thin layer with picosecond time resolution. The shock state is characterized using ultrafast dynamic ellipsometry (UDE) in either planar or Gaussian spatial geometries, the latter allowing measurements of the equation of state of materials at a range of stresses in a single laser pulse. Time-resolved processes in materials are being interrogated using UDE, ultrafast infrared absorption, ultrafast UV/visible absorption, and femtosecond stimulated Raman spectroscopy. Using these tools we showed that chemistry in an energetic thin film starts only after an induction time of a few tens of ps, an observation that allows differentiation between proposed shock-induced reaction mechanisms. These tools are presently being applied to a variety of energetic and reactive sample systems, from nitromethane and carbon disulfide, to microengineered interfaces in tunable energetic mixtures. Recent results will be presented, and future trends outlined.

  5. Investigation of shock-induced and shock-assisted chemical reactions in molybdenum-silicon powder mixtures

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin Stewart

    1999-10-01

    In this research, chemical reactions occurring in molybdenum and silicon powder mixtures under "shock-induced" (those occurring during the high-pressure shock state) and "shock-assisted" (those occurring subsequent to the shock event, but due to bulk temperature increases) conditions were investigated. Differences in the densities and yield strengths of the two constituents, in addition to the large heat of reaction associated with molybdenum disilicide (MoSi2) formation can lead to shock-induced as well as shock-assisted reactions, which make this an ideal system to delineate the kinetics and mechanisms of reactions occurring in shock-compressed powder mixtures. Shock recovery experiments performed on Mo + 2 Si powder mixtures employing cylindrical implosion geometry showed thermally initiated reactions. A mixed phase eutectic type microstructure of MoSi2 and Mo 5Si3, resulting from reaction occurring due to melting of both reactants, was observed in axial regions of the cylindrical compacts. In regions surrounding the mach stem, melting of only silicon and reaction occurring via dissolution and re-precipitation forming MoSi2 spherules surrounding molybdenum particles in a melted and solidified silicon matrix was observed. The planar pressure shock recovery geometry showed a single phase MoSi2, microstructure formed due to a solid-state pressure-induced reaction process. The time-resolved instrumented experiments were performed using a single stage gas gun in the velocity range of 500 m/s to 1 km/s, and employed poly-vinyl di-flouride (PVDF) stress gauges placed at the front and rear surfaces of the powder to determine the crush strength, densification history, and reaction initiation threshold conditions. Time-resolved experiments performed on ˜58% dense Mo + 2 Si powder mixtures at input stresses less than 4 GPa, showed characteristics of powder densification and dispersed propagated wave stress profiles with rise time >˜40 nanoseconds. At input stress between

  6. Thermal Shock Induces Host Proteostasis Disruption and Endoplasmic Reticulum Stress in the Model Symbiotic Cnidarian Aiptasia.

    PubMed

    Oakley, Clinton A; Durand, Elysanne; Wilkinson, Shaun P; Peng, Lifeng; Weis, Virginia M; Grossman, Arthur R; Davy, Simon K

    2017-06-02

    Coral bleaching has devastating effects on coral survival and reef ecosystem function, but many of the fundamental cellular effects of thermal stress on cnidarian physiology are unclear. We used label-free liquid chromatography-tandem mass spectrometry to compare the effects of rapidly (33.5 °C, 24 h) and gradually (30 and 33.5 °C, 12 days) elevated temperatures on the proteome of the model symbiotic anemone Aiptasia. We identified 2133 proteins in Aiptasia, 136 of which were differentially abundant between treatments. Thermal shock, but not acclimation, resulted in significant abundance changes in 104 proteins, including those involved in protein folding and synthesis, redox homeostasis, and central metabolism. Nineteen abundant structural proteins showed particularly reduced abundance, demonstrating proteostasis disruption and potential protein synthesis inhibition. Heat shock induced antioxidant mechanisms and proteins involved in stabilizing nascent proteins, preventing protein aggregation and degrading damaged proteins, which is indicative of endoplasmic reticulum stress. Host proteostasis disruption occurred before either bleaching or symbiont photoinhibition was detected, suggesting host-derived reactive oxygen species production as the proximate cause of thermal damage. The pronounced abundance changes in endoplasmic reticulum proteins associated with proteostasis and protein turnover indicate that these processes are essential in the cellular response of symbiotic cnidarians to severe thermal stress.

  7. Shock-induced thermal history of an EH3 chondrite, Asuka 10164

    NASA Astrophysics Data System (ADS)

    Kimura, M.; Yamaguchi, A.; Miyahara, M.

    2017-01-01

    Shock-induced features are abundantly observed in meteorites. Especially, shock veins, including high-pressure minerals, characterize many kinds of heavily shocked meteorite. On the other hand, no high-pressure phases have been yet reported from enstatite chondrites. We studied a heavily shocked EH3 chondrite, Asuka 10164, containing a vein, which comprises fragments of fine-grained silicate and opaque minerals, and chondrules. In this vein, we found a silica polymorph, coesite. This is the first discovery of a high-pressure phase in enstatite chondrites. Other high-pressure polymorphs were not observed in the vein. The assemblages and chemical compositions of minerals, and the occurrence of coesite indicate that the vein was subjected to the high-pressure and temperature condition at about 3-10 GPa and 1000 °C. The host also experienced heating for a short time under lower temperature conditions, from 700 to 1000 °C, based on the opaque minerals typical of EH chondrites and textural features. Although the pressure condition of the vein in this chondrite is much lower than those in the other meteorites, our results suggest that all major meteorite groups contain high-pressure polymorphs. Heavy shock events commonly took place in the solar system.

  8. Shock-induced energy transfers in dense gases

    NASA Astrophysics Data System (ADS)

    Alferez, Nicolas; Touber, Emile

    2017-03-01

    Dense gases are characterised by molecules featuring large numbers of active degrees of freedom (quantified by the cv/R ratio). The isentropes in such gases have the distinct property of following rather closely the isotherms (the two become identical in the limit of cv/R going to infinity). Near the liquid-vapour critical point, this makes the isentropes very shallow and possibly concave (in the pressure-specific volume diagram). Whilst shallow isentropes are desirable when designing expanders (i.e. a large specific-volume increase may be achieved for virtually no pressure drop), could such extreme compressibility effects modify turbulence in a profound manner? This paper discusses two particularly interesting aspects: (i) shock-refraction properties (i.e. the way a shock can redistribute the energy of incoming perturbations), (ii) enstrophy production in homogeneous turbulence. A linear interaction analysis (LIA) is conducted on the shock configuration for which the incoming perturbation is decomposed into linear modes of the compressible Euler equations. The transmission coefficients relative to each eigen modes are solved analytically and results are compared against fully non-linear compressible direct numerical simulation reproducing the weak perturbation of an isolated two-dimensional compression shock wave. The linear analysis is found to be capable of predicting the shock-induced redistribution of the energy of the incoming perturbation between the different eigen modes. Non-ideal gas effects are observed both analytically and numerically with especially an unusual selective response for some particular choice of incoming Mach number. A two-dimensional isotropic turbulence configuration is then numerically investigated for the case of an inviscid compressible dense-gas flow close to the liquid-vapour critical point. Strong non-ideal-gas effects on enstrophy production are observed with the formation of eddy shocklets. In both cases non-convex isentropes

  9. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    NASA Technical Reports Server (NTRS)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  10. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    NASA Technical Reports Server (NTRS)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  11. Combining Observations of Shock-induced Minerals with Calculations to Constrain the Shock History of Meteorites.

    NASA Astrophysics Data System (ADS)

    de Carli, P. S.; Xie, Z.; Sharp, T. G.

    2007-12-01

    All available evidence from shock Hugoniot and release adiabat measurements and from shock recovery experiments supports the hypothesis that the conditions for shock-induced phase transitions are similar to the conditions under which quasistatic phase transitions are observed. Transitions that require high temperatures under quasistatic pressures require high temperatures under shock pressures. The high-pressure phases found in shocked meteorites are almost invariably associated with shock melt veins. A shock melt vein is analogous to a pseudotachylite, a sheet of locally melted material that was quenched by conduction to surrounding cooler material. The mechanism by which shock melt veins form is not known; possible mechanisms include shock collisions, shock interactions with cracks and pores, and adiabatic shear. If one assumes that the phases within the vein crystallized in their stability fields, then available static high-pressure data constrain the shock pressure range over which the vein solidified. Since the veins have a sheet-like geometry, one may use one-dimensional heat flow calculations to constrain the cooling and crystallization history of the veins (Langenhorst and Poirier, 2000). Although the formation mechanism of a melt vein may involve transient pressure excursions, pressure equilibration of a mm-wide vein will be complete within about a microsecond, whereas thermal equilibration will require seconds. Some of our melt vein studies have indicated that the highly-shocked L chondrite meteorites were exposed to a narrow range of shock pressures, e.g., 18-25 GPa, over a minimum duration of the order of a second. We have used the Autodyn(TM) wave propagation code to calculate details of plausible impacts on the L-chondrite parent body for a variety of possible parent body stratigraphies. We infer that some meteorites probably represent material that was shocked at a depth of >10 km in their parent bodies.

  12. Structure and dynamics of shock-induced nanobubble collapse in water.

    PubMed

    Vedadi, M; Choubey, A; Nomura, K; Kalia, R K; Nakano, A; Vashishta, P; van Duin, A C T

    2010-07-02

    Shock-induced collapse of nanobubbles in water is investigated with molecular dynamics simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1  km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results.

  13. Large-Amplitude Deformation and Bond Breakage in Shock-Induced Reactions of Explosive Molecules

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey

    The response of explosive molecules to large-amplitude mechanical deformation plays an important role in shock-induced reactions and the initiation of detonation in explosive materials. In this presentation, the response of a series of explosive molecules (nitromethane, 2,4,6-trinitrotoluene [TNT], and 2,4,6-triamino-1,3,5-trinitrobenzene [TATB]) to a variety of large-amplitude deformations are examined using ab initio quantum chemical calculations. Large-amplitude motions that result in bond breakage are described, and the insights these results provide into both previous experimental observations and previous theoretical predictions of shock-induced reactions are discussed.

  14. Cholinergic Modulation of the Hippocampus during Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    ERIC Educational Resources Information Center

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with…

  15. Cholinergic Modulation of the Hippocampus during Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    ERIC Educational Resources Information Center

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with…

  16. Preservation and detectability of shock-induced magnetization

    NASA Astrophysics Data System (ADS)

    Tikoo, Sonia M.; Gattacceca, Jérôme; Swanson-Hysell, Nicholas L.; Weiss, Benjamin P.; Suavet, Clément; Cournède, Cécile

    2015-09-01

    An understanding of the effects of hypervelocity impacts on the magnetization of natural samples is required for interpreting paleomagnetic records of meteorites, lunar rocks, and cratered planetary surfaces. Rocks containing ferromagnetic minerals have been shown to acquire shock remanent magnetization (SRM) due to the passage of a shock wave in the presence of an ambient magnetic field. In this study, we conducted pressure remanent magnetization (PRM) acquisition experiments on a variety of natural samples as an analog for SRM acquisition at pressures ranging up to 1.8 GPa. Comparison of the alternating field (AF) and thermal demagnetization behavior of PRM confirms that AF demagnetization is a more efficient method for removing SRM overprints than thermal demagnetization because SRM may persist to unblocking temperatures approaching the Curie temperatures of magnetic minerals. The blocking of SRM to high temperatures suggests that SRM could persist without being eradicated by viscous relaxation over geologic timescales. However, SRM has been rarely observed in natural samples likely because of two factors: (1) other forms of impact-related remanence (e.g., thermal remanent magnetization from impact-related heating or chemical remanent magnetization from postimpact hydrothermal activity) are often acquired by target rocks that overprint SRM, and (2) low SRM acquisition efficiencies may prevent SRM from being distinguished from the underlying primary remanence or other overprints due to its low magnetization intensity.

  17. Shock-Induced Molecular Astrochemistry in Dense Clouds

    NASA Astrophysics Data System (ADS)

    Rho, Jeonghee; Hewitt, John; Reach, William; Andersen, Morten; Bernard, Jean-Philippe

    2011-06-01

    Supernovae have a formidable impact on the dynamics, chemistry and evolution of their local environments. Shocks carve into dense molecular clouds, radiatively cooling the remnant through strong molecular hydrogen and atomic lines. One of important postshock reaction is to convert atomic oxygen to molecular form such as CO, OH and water and these lines fall into THz. I will present observations of a dozen interacting remnants with prominent infrared lines detected by Spitzer, ISO, and ground-based IR telescopes, and show motivation of our granted Herschel and SOFIA observations. Supernovae provide simpler cases of impact of shock than other systems such as protoplanetary disks or protostellar jets where photoionization takes place. In the supernova remnants, the excitation of IR lines of molecular hydrogen requires both a slow shock through dense clumps, and a fast shock through interclump gas. The ortho-to-para ratio is typically much less than LTE, indicating shocks propagating into cold quiescent cloud cores. Evidence of dust grain heating and shattering by the shock is derived from black-body fits to the dust continuum. While radiative cooling and dust processing is beginning to be well understood, the observed oxygen chemistry deviates from equilibrium. We observe enhanced ionization in the shocked gas, which may be by cosmic rays as several of these interacting remnants are prominent GeV gamma-ray sources. The CO, OH and water have been detected from remnants by ISO and water is more than OH, but OH has still elevated abundance compared to theoretical predictions. Finally with Herschel and SOFIA provide opportunity to resolve complicated cooling and astrochemical networks of oxygen-bearing molecules and oxygen chemistry.

  18. The role of intrinsic apoptotic signaling in hemorrhagic shock-induced microvascular endothelial cell barrier dysfunction.

    PubMed

    Sawant, Devendra A; Tharakan, Binu; Hunter, Felicia A; Childs, Ed W

    2014-11-01

    Hemorrhagic shock leads to endothelial cell barrier dysfunction resulting in microvascular hyperpermeability. Hemorrhagic shock-induced microvascular hyperpermeability is associated with worse clinical outcomes in patients with traumatic injuries. The results from our laboratory have illustrated a possible pathophysiological mechanism showing involvement of mitochondria-mediated "intrinsic" apoptotic signaling in regulating hemorrhagic shock-induced microvascular hyperpermeability. Hemorrhagic shock results in overexpression of Bcl-2 family of pro-apoptotic protein, BAK, in the microvascular endothelial cells. The increase in BAK initiates "intrinsic" apoptotic signaling cascade with the release of mitochondrial cytochrome c in the cytoplasm and activation of downstream effector caspase-3, leading to loss of endothelial cell barrier integrity. Thus, this review article offers a brief overview of important findings from our past and present research work along with new leads for future research. The summary of our research work will provide information leading to different avenues in developing novel strategies against microvascular hyperpermeability following hemorrhagic shock.

  19. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    NASA Astrophysics Data System (ADS)

    Shan, Tzu-Ray; Thompson, Aidan P.

    2014-05-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N2 and H2O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  20. Shock-Induced Ordering in a Nano-segregated Network-Forming Ionic Liquid.

    PubMed

    Yang, Ke; Lee, Jaejun; Sottos, Nancy R; Moore, Jeffrey S

    2015-12-30

    Understanding shockwave-induced physical and chemical changes of impact-absorbing materials is an important step toward the rational design of materials that mitigate the damage. In this work, we report a series of network-forming ionic liquids (NILs) that possess an intriguing shockwave absorption property upon laser-induced shockwave. Microstructure analysis by X-ray scattering suggests nano-segregation of alkyl side chains and charged head groups in NILs. Further post-shock observations indicate changes in the low-Q region, implying that the soft alkyl domain in NILs plays an important role in absorbing shockwaves. Interestingly, we observe a shock-induced ordering in the NIL with the longest (hexyl) side chain, indicating that both nano-segregated structure and shock-induced ordering contribute to NIL's shockwave absorption performance.

  1. Numerical study of shock-induced combustion in methane-air mixtures

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye; Rabinowitz, Martin J.

    1993-01-01

    The shock-induced combustion of methane-air mixtures in hypersonic flows is investigated using a new reaction mechanism consisting of 19 reacting species and 52 elementary reactions. This reduced model is derived from a full kinetic mechanism via the Detailed Reduction technique. Zero-dimensional computations of several shock-tube experiments are presented first. The reaction mechanism is then combined with a fully implicit Navier-Stokes computational fluid dynamics (CFD) code to conduct numerical simulations of two-dimensional and axisymmetric shock-induced combustion experiments of stoichiometric methane-air mixtures at a Mach number of M = 6.61. Applications to the ram accelerator concept are also presented.

  2. Effect of Shock Induced Shear on Spall Strength of SiC-N

    SciTech Connect

    Dandekar, D. P.; Prakash, V.

    2006-07-28

    Spall strength of a hot-pressed silicon carbide marketed as SiC-N is determined to 16 GPa under both normal shock wave and under shock induced simultaneous compression-shear wave propagation. The preliminary results of this investigation suggest that shock induced shear under compression-shear wave propagation: (i) does bring about a decrease in the spall strength of SiC-N compared to under normal shock wave propagation and (ii) does seem to induce propagation of a failure front in SiC-N as evident from re-acceleration in the free surface velocity profiles in SiC-N prior to expected arrival of pull-back i.e., spall signal.

  3. Shock induced shear strength in an HMX based plastic bonded explosive

    NASA Astrophysics Data System (ADS)

    Millett, J. C. F.; Taylor, P.; Appleby-Thomas, G.

    2017-01-01

    The shock induced mechanical response of an HMX based plastic bonded explosive (PBX) has been investigated in terms of the shear strength. Results show that shear strength increases with impact stress. However comparison with the calculated elastic response of both the PBX and pure HMX suggests that the overall mechanical response is controlled by the HMX crystals, with the near liquid like nature of the binder phase having a minimal contribution.

  4. Proof-of-Principle Experiment of a Shock-Induced Combustion Ramjet

    DTIC Science & Technology

    2010-09-01

    air intake is not compromised while at the same time preventing premature ignition of the mixture. Since at hypersonic flight speeds the...step in demonstrating the feasibility of a shock-induced combustion ramjet as a future hypersonic propulsion system. 1.0 INTRODUCTION In weapon...supersonic range while technologies for hypersonic weapon systems are currently under development. Due to its superior propulsive efficiency, airbreathing

  5. Experimental Investigation of Upstream Boundary Layer Acceleration on Unsteadiness of Shock-Induced Separation

    DTIC Science & Technology

    2007-11-02

    Experimental Study of the Driving Mechanism and Control of the Unsteady Shock Induced Turbulent Separation in a Mach 5 compression Corner Flow...University of Tokyo, Hongo Bunkyo-ku, Tokyo 113, Japan, Oct. 25-29, 1987. 12 Figure 1. Schematic diagram of the test section with compression...ramp. Seeding System Optics FLOW CCD Cameras Dual-Cavity Nd: Yag Laser Photodiode Beam Splitter Timing Electronics ``` FLC Shutter Controller

  6. Shock-induced spall in copper: the effects of anisotropy, temperature, loading pulse and defect

    SciTech Connect

    Luo, Shengnian; Germann, Timothy C; An, Qi; Han, Li - Bo

    2009-07-28

    Shock-induced spall in Cu is investigated with molecular dynamics simulations. We examine spallation in initially perfect crystals and defective solids with grain boundaries (columnar bicrystals), stacking faults or vacancies, as well as the effect of temperature and loading pulses. Spall in single crystal Cu is anisotropic, and defects and high temperature may reduce the spall strength. Taylor-wave (triangular shock-release wave) loading is explored in comparison with square wave shock loading.

  7. Some Observations of Shock-induced Turbulent Separation on Supersonic Diffusers

    NASA Technical Reports Server (NTRS)

    Nussdorfer, Theodore J

    1954-01-01

    A survey of experimental data at supersonic speed indicated that shock-induced separation of a turbulent boundary layer will result for Mach numbers of approximately 1.33 or greater when a theoretical stream static-pressure-rise ratio of approximately 1.89 occurs across a shock interacting with the boundary layer. The significance of this tentative criterion for turbulent boundary-layer separation is discussed with respect to the design of supersonic diffusers.

  8. MINKOWSKI FUNCTIONALS FOR QUANTITATIVE ASSESSMENTS OF SHOCK-INDUCED MIXING FLOWS

    SciTech Connect

    STRELITZ, RICHARD A.; KAMM, JAMES R.

    2007-01-22

    We describe the morphological descriptors known as Minkowski Functionals (MFs) on a shock-induced mixing problem. MFs allow accurate and compact characterization of complex images. MFs characterize connectivity, size, and shape of disordered structures. They possess several desirable properties, such as additivity, smoothness, and a direct relationship to certain physical properties. The scalar MFs that we describe can be extended to a moment-based tensor form that allows more thorough image descriptions. We apply MFs to experimental data for shock-induced mixing experiments conducted at the LANL shock tube facility. Those experiments, using low Mach number shock waves in air to induce the Richtmyer-Meshkov instability on air-SF{sub 6} interfaces, provide high-resolution, quantitative planar laser-induced fluorescence (PLIF) images. We describe MFs and use them to quantify experimental PLIF images of shock-induced mixing. This method can be used as a tool fo r validation, i.e., the quantitative comparison of simulation results against experimental data.

  9. Shock-induced decomposition of high energy materials: A ReaxFF molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tiwari, Subodh; Mishra, Ankit; Nomura, Ken-Ichi; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    Atomistic simulations of shock-induced detonation provide critical information about high-energy (HE) materials such as sensitivity, crystallographic anisotropy, detonation velocity, and reaction pathways. However, first principles methods are unable to handle systems large enough to describe shock appropriately. We report reactive-force-field ReaxFF simulations of shock-induced decomposition of 1, 3, 5-triamino-2, 3, 6-trinitrobenzene (TATB) and 1,1-diamino 2-2-dinitroethane (FOX-7) crystal. A flyer acts as mechanical stimuli to introduce a shock, which in turn initiated chemical reactions. Our simulation showed a shock speed of 9.8 km/s and 8.23 km/s for TATB and FOX-7, respectively. Reactivity analysis proves that FOX-7 is more reactive than TATB. Chemical reaction pathways analysis revealed similar pathways for the formation of N2 and H2O in both TATB and FOX-7. However, abundance of NH3 formation is specific to FOX-7. Large clusters formed during the reactions also shows different compositions between TATB and FOX-7. Carbon soot formation is much more pronounced in TATB. Overall, this study provides a detailed comparison between shock induced reaction pathway between FOX-7 and TATB. This work was supported by the Office of Naval Research Grant No. N000014-12-1-0555.

  10. Structure and Dynamics of Shock-Induced Nanobubble Collapse in Water

    NASA Astrophysics Data System (ADS)

    Vedadi, Mohammad; Choubey, Amit; Nomura, Ken-Ichi; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; van Duin, Adri

    2011-03-01

    Structure of water under shock and shock-induced collapse of nanobubbles in water are investigated with molecular dynamics simulations based on a reactive force field. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. In the presence of a nanobubble, we observe a focused nanojet at the onset of nanobubble shrinkage and a secondary shock wave upon nanobubble collapse. The secondary shock wave propagates spherically backwards and induces high pressure as it propagates. Both the propagation velocity and the induced pressure are larger than those of the primary shock. We explored effects of nanobubble radius and shock amplitude on nanojet formation. The nanojet size increases by increasing particle velocity but the effect of increasing radius is more significant. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock-induced collapse of a nanobubble in the vicinity of a cell membrane creates a transient nanopore when the nanojet impacts the membrane. Transient cell poration has potential applications in drug delivery.

  11. Control of Shock-Induced Boundary Layer Separation by using Pulsed Plasma Jets

    NASA Astrophysics Data System (ADS)

    Greene, Benton R.; Clemens, Noel T.; Micka, Daniel

    2012-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic flow including flow instability, fatigue of structural panels, and unstart in supersonic inlets. Pulsed plasma jets (or ``spark jets''), which are characterized by high bandwidth and the ability to direct momentum into the flow, are one promising method of reducing shock-induced separation. The current study is focused on investigating the efficacy of plasma jets to reduce the separated flow induced by a compression ramp in a Mach 3 flow. Three different 3-jet actuator configurations are tested: 20° pitched, 45° pitched, and 22° pitched and 45° skewed. The jets are pulsed at frequencies between 2 kHz and 4 kHz with duty cycles between 5 and 15%. The shock wave is generated using a 20° compression ramp, and the location of the shock-induced separation is visualized using surface oil streak visualization as well as particle image velocimetry. The results of the study show that of the three configurations, the plasma jets pitched at 20° from the streamwise direction cause the greatest reduction in separation, and when pulsed at a frequency of 3.2 kHz and 12% duty cycle can reduce the size of the separation region by up to 40%. This work is supported by AFRL under SBIR contract.

  12. Use of insulin to decrease septic shock-induced myocardial depression in a porcine model.

    PubMed

    Levenbrown, Yosef; Penfil, Scott; Rodriguez, Elena; Zhu, Yan; Hossain, Jobayer; Bhat, A Majeed; Hesek, Anne; O'Neil, Karen B; Tobin, Kelly; Shaffer, Thomas H

    2013-12-01

    Insulin is known to attenuate septic shock-induced myocardial depression. Possible mechanisms include an anti-inflammatory or inotropic effect of insulin. The objective of this study was to determine whether the mechanism of action of insulin in attenuating septic shock-induced myocardial depression is through an immunomodulatory effect. Fourteen pigs were assigned to one of two groups. Both groups received a 4-h infusion of lipopolysaccharide endotoxin from Escherichia coli 0111:B4. Group 2 additionally received insulin at 1.5 U/kg/h with infusions of D50 normal saline and KCl to maintain normal serum glucose and potassium levels. Cardiac function was measured with shortening fraction using transthoracic echocardiogram. Plasma TNF-α, IL-1β, and IL-6 levels were obtained every 30 min. Postmortem cytokine analysis and histomorphology were performed on the heart tissue. Although insulin attenuated septic shock-induced myocardial depression, this was not due to an anti-inflammatory effect and, therefore, likely resulted from an inotropic effect of insulin.

  13. Evolution of shock-induced pressure on a flat-face/flat-base body and afterbody flow separation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.; Wray, A. A.

    1982-01-01

    The time-dependent, compressible Reynolds-averaged, Navier-Stokes equations are applied to solve an axisymmetric supersonic flow around a flat-face/flat-base body with and without a sting support. Important transient phenomena, not yet well understood, are investigated, and the significance of the present solution to the phenomena is discussed. The phenomena, described in detail, are as follows: the transient formation of the bow and recompression shock waves; the evolution of a pressure buildup due to diffraction of the incident shock wave in the forebody and afterbody regions, including the luminosity accompanying the pressure buildup; the separation of the flow as influenced by pressure buildup; the location of the separation and the reattachment points; and the transient period of the shock-induced base flow. The important influence of the nonsteady (transient) and steady flow on the aerodynamic characteristics, radiative heat transfer, and, thus, on the survivability or safeguard problems for an aircraft fuselage, missile, or planetary entry probe at very high flight speeds is described.

  14. Shock-induced collapse of a bubble inside a deformable vessel.

    PubMed

    Coralic, Vedran; Colonius, Tim

    2013-07-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a (10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy.

  15. Shock-induced collapse of a bubble inside a deformable vessel

    PubMed Central

    Coralic, Vedran; Colonius, Tim

    2013-01-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

  16. Shock Induced Shear Strength in Two HMX Based Polymer Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Millett, Jeremy; Taylor, Peter; Appleby-Thomas, Gareth

    2015-06-01

    The response of energetic materials to shock loading has largely concentrated on their detonation behaviour. However, they can also be considered to be structural materials in their own right, and hence their response to a purely mechanical shock loading is also of interest. Therefore we present results from two HMX based polymer bonded explosives, EDC37 and EDC32, where we investigate the shock induced shear strength behind the shock front. Results are discussed in terms of microstructure and differences of the binder phases.

  17. Use of hot-wire anemometry for turbulence measurements in shock induced flows

    NASA Technical Reports Server (NTRS)

    Hartung, L. C.; Duffy, R. E.; Troller, J. W.

    1986-01-01

    A research program is currently being conducted with the aim to investigate the operating environment of future gas turbines. The present paper provides a description of the experimental methods which have been employed in performing turbulence intensity measurements in shock-induced flows. In a discussion of the instrumentation, attention is given to the employed low pressure shock tube, the hot-wire probe, the anemometer, the test facility, the experimental setup, the Kistler pressure transducer, and silicon piezoresistive gages. Aspects of instrumentation calibration are considered along with data corrections, experimental data, and data processing.

  18. Impact-shocked zircons: Discovery of shock-induced textures reflecting increasing degrees of shock metamorphism

    NASA Technical Reports Server (NTRS)

    Bohor, B. F.; Betterton, W. J.; Krogh, T. E.

    1993-01-01

    Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows scanning electron microscope (SEM) visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the U-Pb isotopic system.

  19. A Study of Premixed, Shock-Induced Combustion With Application to Hypervelocity Flight

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik L.

    2013-01-01

    One of the current goals of research in hypersonic, airbreathing propulsion is access to higher Mach numbers. A strong driver of this goal is the desire to integrate a scramjet engine into a transatmospheric vehicle airframe in order to improve performance to low Earth orbit (LEO) or the performance of a semiglobal transport. An engine concept designed to access hypervelocity speeds in excess of Mach 10 is the shock-induced combustion ramjet (i.e. shcramjet). This dissertation presents numerical studies simulating the physics of a shcramjet vehicle traveling at hypervelocity speeds with the goal of understanding the physics of fuel injection, wall autoignition mitigation, and combustion instability in this flow regime.

  20. Impact-shocked zircons: Discovery of shock-induced textures reflecting increasing degrees of shock metamorphism

    NASA Technical Reports Server (NTRS)

    Bohor, B. F.; Betterton, W. J.; Krogh, T. E.

    1993-01-01

    Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows scanning electron microscope (SEM) visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the U-Pb isotopic system.

  1. Molecular dissociation and shock-induced cooling in fluid nitrogen at high densities and temperatures

    NASA Technical Reports Server (NTRS)

    Radousky, H. B.; Nellis, W. J.; Ross, M.; Hamilton, D. C.; Mitchell, A. C.

    1986-01-01

    Radiative temperatures and electrical conductivities were measured for fluid nitrogen compressed dynamically to pressures of 18-90 GPa, temperatures of 4000-14,000 K, and densities of 2-3 g/cu cm. The data show a continuous phase transition above 30 GPa shock pressure and confirm that (delta-P/delta-T)v is less than 0, as indicated previously by Hugoniot equation-of-state experiments. The first observation of shock-induced cooling is also reported. The data are interpreted in terms of molecular dissociation, and the concentration of dissociated molecules is calculated as a function of density and temperature.

  2. Shock induced ignition and DDT in the presence of mechanically driven fluctuations

    NASA Astrophysics Data System (ADS)

    Wang, Wentian; McDonald, James G.; Radulescu, Matei I.

    2015-11-01

    The present study addresses the problem of shock induced ignition and transition to detonation in the presence of mechanical and thermal fluctuations. These departures from a homogeneous medium are of significant importance in practical situations, where such fluctuations may promote hot-spot ignition and favor the flame transition to detonation. The problem is studied in 1D, where a piston-induced shock ignites the gas. The fluctuations in the shock-compressed medium are controlled by allowing the piston's speed to oscillate around a mean, with controllable frequency and amplitude. A Lagrangian numerical formulation is used, which allows to treat exactly the transient boundary condition at the piston head. The hydrodynamic solver is coupled with the reactive dynamics of the gas using Cantera. The code was verified by comparison with steady state ZND solutions and previous shock induced ignition results in homogeneous media. Results obtained for different fuels illustrate the strong relation of the DDT amplification length to mechanical fluctuations in systems with a high effective activation energy and fast rate of energy deposition, consistent with experiments performed on fast flame acceleration in the presence of strong mechanical perturbations. Financial support from NSERC and Shell, with A. Pekalski and M. Levin as technical monitors, are greatly acknowledged.

  3. Shock-induced fine-grained recrystallization of olivine - Evidence against subsolidus reduction of Fe/2+/

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Tsay, F.-D.; Live, D. H.

    1976-01-01

    Electron spin resonance (ESR) studies have been carried out on three single grains of terrestrial olivine (Fo90) shock loaded along the 010 line to peak pressures of 280, 330, and 440 kbar. The results indicate that neither metallic Fe similar to that observed in returned lunar soils nor paramagnetic Fe(3+) caused by oxidation of Fe(2+) has been produced in these shock experiments. Trace amounts of Mn (2+) have been detected in both shocked and unshocked olivine. The ESR signals of Mn(2+) show spectral features which are found to correlate with the degree of shock-induced recrystallization observed petrographically. The increasing mass fraction of recrystallized olivine correlates with increasing shock pressures. This phenomenon is modelled assuming it results from the progressive effect of the shock-induced transformation of the olivine to a yet unknown high-pressure phase and its subsequent reversion to the low-pressure olivine phase. The mass fraction of recrystallized material is predicted to be nearly linear with shock pressure.

  4. Shock-induced fine-grained recrystallization of olivine - Evidence against subsolidus reduction of Fe/2+/

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Tsay, F.-D.; Live, D. H.

    1976-01-01

    Electron spin resonance (ESR) studies have been carried out on three single grains of terrestrial olivine (Fo90) shock loaded along the 010 line to peak pressures of 280, 330, and 440 kbar. The results indicate that neither metallic Fe similar to that observed in returned lunar soils nor paramagnetic Fe(3+) caused by oxidation of Fe(2+) has been produced in these shock experiments. Trace amounts of Mn (2+) have been detected in both shocked and unshocked olivine. The ESR signals of Mn(2+) show spectral features which are found to correlate with the degree of shock-induced recrystallization observed petrographically. The increasing mass fraction of recrystallized olivine correlates with increasing shock pressures. This phenomenon is modelled assuming it results from the progressive effect of the shock-induced transformation of the olivine to a yet unknown high-pressure phase and its subsequent reversion to the low-pressure olivine phase. The mass fraction of recrystallized material is predicted to be nearly linear with shock pressure.

  5. Numerical simulation of shock-induced combustion past blunt bodies using shock-fitting technique

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Singh, D. J.; Tiwari, S. N.

    1994-01-01

    Two-dimensional axisymmetric, reacting viscous flow over blunt projectiles is computed to study shock-induced combustion at Mach 5.11 and Mach 6.46 in hydrogen-air mixture. A finite-difference, shock-fitting method is used to solve the complete set of Navier-Stokes and species conservation equations. In this approach, the bow shock represents a boundary of the computational domain and is treated as a discontinuity across which Rankine-Hugoniot conditions are applied. All interior details of the flow such as compression waves, reaction front, and the wall boundary layer are captured automatically in the solution. Since shock-fitting approach reduces the amount of artificial dissipation, all the intricate details of the flow are captured much more clearly than has been possible with the shock-capturing approach. This has allowed an improved understanding of the physics of shock-induced combustion over blunt projectiles and the numerical results can now be explained more readily with one-dimensional wave-interaction model than before.

  6. New model for the shock-induced. alpha. -quartz r arrow stishovite phase transition in silica

    SciTech Connect

    Boettger, J.C. )

    1992-12-01

    A new model has been developed to describe the {alpha}-quartz to stishovite phase transition in silica under shock-loading conditions. During hydrodynamic simulations, individual global equations of state for the {alpha}-quartz and stishovite phases of silica are mixed in accordance with process-dependent constraints on the Gibbs free energy difference between the phases ({Delta}{ital G}). For the shock-induced transition, {Delta}{ital G} is required to equal a simple two parameter function of the mass fraction of stishovite. Unlike previous models, the new constraint equation assumes that the shock induced phase transition begins at the equilibrium phase boundary, but is not completed unless peak stresses on the order of 40 GPa are achieved. On release, the reverse transition is required to satisfy the usual thermodynamic equilibrium condition ({Delta}{ital G}=0). It is shown that hydrodynamic simulations combining this hysteretic phase transition model with a strength model that assumes partial softening after yielding are capable of reproducing experimental Hugoniot and release data for crystalline silica in the mixed-phase region.

  7. Investigation of the shock-induced chemical reaction (SICR) in Ni + Al nanoparticle mixtures.

    PubMed

    Xiong, Yongnan; Xiao, Shifang; Deng, Huiqiu; Zhu, Wenjun; Hu, Wangyu

    2017-07-21

    Molecular dynamics (MD) simulations are used to investigate the shock-compression response of Ni + Al spherical nanoparticles arranged in a NaCl-like structure. The deformation and reaction characteristics are studied from the particle level to the atomic scale at various piston velocities. Shock-induced chemical reactions (SICRs) occur during non-equilibrium processes, accompanied by a sharp rise in temperature and rapid mixing of atoms. The preferentially deformed Al particles form a high-speed mass flow relative to the Ni at the shock front, which impinges on the Ni particles, and mixing of Ni and Al atoms occurs immediately at the interface. The particle velocity dispersion (PVD) that appears at the shock front has important implications for the initiation of shock-induced chemical reactions. We show that dislocations are mainly generated at the beginning of particle deformation or at the shock front, and do not directly affect the occurrence of SICRs. The intimate contact of the molten Al and the amorphous Ni is found to be critical to the subsequent reactions for the extensive mixing of Ni and Al. We conclude that the mechanisms of SICRs involve mechanochemical processes near the shock front and subsequent interdiffusion processes.

  8. Cholinergic Modulation of the Hippocampus During Encoding and Retrieval of Tone/Shock-Induced Fear Conditioning

    PubMed Central

    Rogers, Jason L.; Kesner, Raymond P.

    2004-01-01

    We investigated the role of acetylcholine (ACh) during encoding and retrieval of tone/shock-induced fear conditioning with the aim of testing Hasselmo's cholinergic modulation model of encoding and retrieval using a task sensitive to hippocampal disruption. Lesions of the hippocampus impair acquisition and retention of contextual conditioning with no effect on tone conditioning. Cholinergic antagonists also impair acquisition of contextual conditioning. Saline, scopolamine, or physostigmine was administered directly into the CA3 subregion of the hippocampus 10 min before rats were trained on a tone/shock-induced fear conditioning paradigm. Freezing behavior was used as the measure of learning. The scopolamine group froze significantly less during acquisition to the context relative to controls. The scopolamine group also froze less to the context test administered 24 h posttraining. A finer analysis of the data revealed that scopolamine disrupted encoding but not retrieval. The physostigmine group initially froze less during acquisition to the context, although this was not significantly different from controls. During the context test, the physostigmine group froze less initially but quickly matched the freezing levels of controls. A finer analysis of the data indicated that physostigmine disrupted retrieval but not encoding. These results suggest that increased ACh levels are necessary for encoding new spatial contexts, whereas decreased ACh levels are necessary for retrieving previously learned spatial contexts. PMID:14747523

  9. Effects of porosity on shock-induced melting of honeycomb-shaped Cu nanofoams

    NASA Astrophysics Data System (ADS)

    Zhao, Fengpeng

    Metallic foams are of fundamental and applied interests in various areas, including structure engineering (e.g., lightweight structural members and energy absorbers), and shock physics (e.g., as laser ablators involving shock-induced melting and vaporization).Honeycomb-shaped metallic foams consist of regular array of hexagonal cells in two dimensions and have extensive applications and represent a unique, simple yet useful model structure for exploring mechanisms and making quantitative assessment. We investigate shock-induced melting in honeycomb-shaped Cu nanofoams with extensive molecular dynamics simulations. A total of ten porosities (phi) are explored, ranging from 0 to 0.9 at an increment of 0.1. Upon shock compression, void collapse induces local melting followed by supercooling for sufficiently high porosity at low shock strengths. While superheating of solid remnants occurs for sufficiently strong shocks at phi<0.1. Both supercooling of melts and superheating of solid remnants are transient, and the equilibrated shock states eventually fall on the equilibrium melting curve for partial melting. However, phase equilibrium has not been achieved on the time scale of simulations in supercooled Cu liquid (from completely melted nanofoams). The temperatures for incipient and complete melting are related to porosity via a power law and approach the melting temperature at zero pressure as phi tends to 1.

  10. Shock-induced phase transition in systems of hard spheres with internal degrees of freedom

    NASA Astrophysics Data System (ADS)

    Taniguchi, Shigeru; Mentrelli, Andrea; Zhao, Nanrong; Ruggeri, Tommaso; Sugiyama, Masaru

    2010-06-01

    Shock waves and shock-induced phase transitions are theoretically and numerically studied on the basis of the system of Euler equations with caloric and thermal equations of state for a system of hard spheres with internal degrees of freedom. First, by choosing the unperturbed state (the state before the shock wave) in the liquid phase, the Rankine-Hugoniot conditions are studied and their solutions are classified on the basis of the phase of the perturbed state (the state after the shock wave), being a shock-induced phase transition possible under certain conditions. With this regard, the important role of the internal degrees of freedom is shown explicitly. Second, the admissibility (stability) of shock waves is studied by means of the results obtained by Liu in the theory of hyperbolic systems. It is shown that another type of instability of a shock wave can exist even though the perturbed state is thermodynamically stable. Numerical calculations have been performed in order to confirm the theoretical results in the case of admissible shocks and to obtain the actual evolution of the wave profiles in the case of inadmissible shocks (shock splitting phenomena).

  11. ILES for mechanism of ramp-type MVG reducing shock induced flow separation

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Yan, YongHua; Liu, ChaoQun

    2016-12-01

    A high order implicit large eddy simulation (ILES) is carried out to study the mechanism of shock induced flow separation reduction under ramp-type MVG control. The mechanism was originally considered as that MVG can generate streamwise vortices which strongly mix boundary layer and the boundary layer becomes more capable to resist strong adverse pressure gradient caused by shock and to keep the boundary layer attached. However, according to our ILES, a chain of ring-like vortices is generated behind the ramp-type MVG and goes further to interact with the shock. When the ring-like vortices pass through the shock, the shock wave is weakened and altered while the vortex structures are quite stable. The instantaneous simulation shows that the spanwise ring-like vortex, not the streamwise vortex, plays a key role to weaken the shock and reduce the shock-induced separation. Detailed investigation on ring-like vortices and shock interaction will be given in this paper.

  12. Ursolic Acid Inhibits Superoxide Production in Activated Neutrophils and Attenuates Trauma-Hemorrhage Shock-Induced Organ Injury in Rats

    PubMed Central

    Hwang, Tsong-Long; Shen, Hsin-I; Liu, Fu-Chao; Tsai, Hsin-I; Wu, Yang-Chang; Chang, Fang-Rong; Yu, Huang-Ping

    2014-01-01

    Neutrophil activation is associated with the development of organ injury after trauma–hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma–hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma–hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma–hemorrhagic shock-induced organ injury in rats. PMID:25360589

  13. Morphology and growth speed of hcp domains during shock-induced phase transition in iron.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-01-10

    Emergence and time evolution of micro-structured new-phase domains play a crucial role in determining the macroscopic physical and mechanical behaviors of iron under shock compression. Here, we investigate, through molecular dynamics simulations and theoretical modelings, shock-induced phase transition process of iron from body-centered-cubic (bcc) to hexagonal-close-packed (hcp) structure. We present a central-moment method and a rolling-ball algorithm to calculate and analyze the morphology and growth speed of the hcp phase domains, and then propose a phase transition model to clarify our derived growth law of the phase domains. We also demonstrate that the new-phase evolution process undergoes three distinguished stages with different time scales of the hcp phase fraction in the system.

  14. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  15. Mineralogy and Microstructures of Shock-Induced Melt Veins in Chondrites

    NASA Technical Reports Server (NTRS)

    Sharp, Thomas G.

    2000-01-01

    The applicability of phase equilibrium data to the interpretation of shock-induced melt veins can only be tested by a detailed study of melt- vein mineralogy to see how high-pressure assemblages vary as a function of shock conditions inferred from other indicators. We have used transmission electron microscopy (TEM), analytical electron microscopy (AEM), scanning electron microscopy (SEM), electron microprobe analysis (EMA) and optical petrography to characterize the mineralogy, microstructures, and compositions of melt veins and associated high-pressure minerals in shocked chondrites and SNC meteorites. In the processes, we have gained a better understanding of what melt veining can tell us about shock conditions and we have discovered new mineral phases in chondritic and SNC meteorites.

  16. An investigation of passive control methods for shock-induced separation at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Rallo, R.; Walsh, M.; Van Leer, Bram

    1992-01-01

    The effectiveness of several passive control techniques on shock-induced boundary-layer separation at hypersonic speed was investigated. Two approaches for alleviating the turbulent separation losses were examined: porous surface mass transfer and surface grooving. A total of four perforated surfaces with varying porosities were evaluated, and three groove orientations with respect to the freestream direction were studied. A comparison of the results from passive control techniques with those from an 'uncontrolled' shock impingement showed that the porous surface with the greatest porosity provided the greatest reduction in the pressure rise across the oblique shock wave. The grooved surface tested were found to be not effective; each of the grooved configurations examined increased the peak pressure value.

  17. Shear wave measurements in shock-induced, high-pressure phases

    SciTech Connect

    Aidun, J.B.

    1993-01-01

    Structural phase transformations under shock loading are of considerable interest for understanding the response of solids under nonhydrostatic stresses and at high strain-rates. Examining shock-induced transformations from continuum level measurements is fundamentally constrained by the inability to directly identify microscopic processes, and also by the limited number of material properties that can be directly measured. ne latter limitation can be reduced by measuring both shear and compression waves using Lagrangian gauges in combined, compression and shear loading. The shear wave serves as an important, real-time probe of the shocked state and unloading response. Using results from a recent study of CaCO[sub 3], the unique information obtained from the shear wave speed and the detailed structure of the shear wave are shown to be useful for distinguishing the effects of phase transformations from yielding, as well as in characterizing the high-pressure phases and the yielding process under shock loading.

  18. Shear wave measurements in shock-induced, high-pressure phases

    SciTech Connect

    Aidun, J.B.

    1993-07-01

    Structural phase transformations under shock loading are of considerable interest for understanding the response of solids under nonhydrostatic stresses and at high strain-rates. Examining shock-induced transformations from continuum level measurements is fundamentally constrained by the inability to directly identify microscopic processes, and also by the limited number of material properties that can be directly measured. ne latter limitation can be reduced by measuring both shear and compression waves using Lagrangian gauges in combined, compression and shear loading. The shear wave serves as an important, real-time probe of the shocked state and unloading response. Using results from a recent study of CaCO{sub 3}, the unique information obtained from the shear wave speed and the detailed structure of the shear wave are shown to be useful for distinguishing the effects of phase transformations from yielding, as well as in characterizing the high-pressure phases and the yielding process under shock loading.

  19. Injection slot location for boundary-layer control in shock-induced separation

    NASA Technical Reports Server (NTRS)

    Viswanath, P. R.; Sankaran, L.; Sagdeo, P. M.; Narasimha, R.; Prabhu, A.

    1978-01-01

    An experimental investigation of the effect of tangential air injection, when the injection slot is located inside of what would otherwise have been the dead air zone in a separated flow, in controlling shock-induced turbulent boundary layer separation is presented. The experiments were carried out at a free-stream Mach number of 2.5 in the separated flow induced by a compression corner with a 20 deg angle. The observations made were wall static pressures, pitot profiles, and schlieren visualizations of the flow. The results show that the present location for injection is more effective in suppressing boundary-layer separation than the more conventional one, where the slot is located upstream of where separation would occur in the absence of injection.

  20. Shock-induced migration of Σ3 <110 > grain boundaries in Cu

    NASA Astrophysics Data System (ADS)

    Long, X. J.; Wang, L.; Li, B.; Zhu, J.; Luo, S. N.

    2017-01-01

    Using molecular dynamics simulations, we systematically investigate shock-induced migration of a set of Σ3 <110 >70.53 ° tilt grain boundaries in Cu, including coherent twin boundary, 15 asymmetric tilt grain boundaries (ATGBs), and symmetric incoherent twin boundary (SITB), with inclination angle ( Φ) increasing from 0° to 90°. Grain boundary migration occurs only in ATGBs, via faceting for Φ≤70.53 ° and translation for Φ>70.53 ° (with the 9R phase). Migration magnitude increases with increasing Φ for ATGBs. Migration mode and magnitude depend on the grain boundary structure including SITB orientation and length fraction, and the symmetry of resolved shear stress distribution across a grain boundary.

  1. Effect of prenatal diazepam, phenobarbital, haloperidol and fluoxetine exposure on foot shock induced aggression in rats.

    PubMed

    Singh, Y; Jaiswal, A K; Singh, M; Bhattacharya, S K

    1998-10-01

    Different groups of pregnant rats were treated with diazepam (10 mg/kg), phenobarbital (10 mg/kg), haloperidol (0.1 mg/kg), fluoxetine (10 mg/kg) and vehicle (normal saline) intraperitoneally once a day during gestation days 13 to 21. After birth these pups were culled to 8 pups/dam and foster-nursed by lactating mothers for 3 weeks and were reared in colony cages thereafter. Sex and weight matched pairs of rat offsprings were subjected to foot shock induced aggression test at 8 weeks of age. Two parameters of aggressive behaviour were recorded namely, the latency to fight and total number of fighting bouts. The results indicate that prenatal exposure to diazepam, phenobarbital, haloperidol and fluoxetine caused significantly enhanced aggression in terms of number of fighting bouts.

  2. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  3. Dynamics of the shock-induced transition from graphite to warm dense diamond and liquid carbon

    NASA Astrophysics Data System (ADS)

    Kraus, D.; Barbrel, B.; Frydrych, S.; Helfrich, J.; Schaumann, G.; Vorberger, J.; Gericke, D. O.; Fletcher, L. B.; Gauthier, M.; Goede, S.; Granados, E.; Lee, H. J.; Nagler, B.; Gamboa, E.; Ravasio, A.; Schumaker, W.; Doeppner, T.; Bachmann, B.; Neumayer, P.; Gregori, G.; Roth, M.; Glenzer, S. H.; Falcone, R. W.

    2015-03-01

    We present novel experimental observations of the ion structure in warm dense carbon at pressures from 20 to 220 GPa and temperatures of several thousand Kelvins. Our experiments employ x-ray sources at kilo-joule class laser facilities and at the Linac Coherent Light Source to perform spectrally and angularly resolved x-ray scattering from shock-compressed graphite samples. Using different types of graphite and varying drive laser intensity, we were able to probe conditions below and above the melting line, resolving the shock-induced graphite-to-diamond and graphite-to-liquid transitions on nanosecond time scale. Moreover, we have observed the dynamic formation of hexagonal diamond by shock-compression of highly oriented graphite samples. This work was supported SSAA program Contract No. DEFG52- 06NA26212.

  4. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    NASA Astrophysics Data System (ADS)

    Tukhvatullina, R. R.; Frolov, S. M.

    2017-07-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  5. Shock-Induced Transformation Exsolution Lamellae in Olivine in Black Veins of the Mbale Meteorite

    NASA Astrophysics Data System (ADS)

    Chen, M.; Wopenka, B.; El Goresy, A.

    1995-09-01

    Mbale is a shocked L6 chondrite [1]. Some shock-induced veins of 0.1 to 2 mm width intersect the meteorite. The veins consist of diaplectic plagioclase glass, unmelted silicate fragments including olivines and pyroxenes, and the shock-induced melt materials consisting of metal-troilite intergrowths, microcrystalline pyroxene and olivine, and silicate glass. Here we report the first finding of shock-induced exsolutions in olivine that appear as compositionally different lamellae which presumably formed at high pressure by inversion of olivine (alpha) to the beta+gamma polymorphs. Olivine compositions in the chondritic part of Mbale range from Fa(sub)22.5 to Fa(sub)26 (average Fa(sub)24). In contrast, the exsolved olivines in the shock-induced veins (30 to 100 mm in diameter) consist of alternating Fe-rich (Fa(sub)22-32) and Fe-poor (Fa(sub)9.9-18.5) lamellae that range in width from less than 0.5 micrometers to up to 10 micrometers. Each individual lamella actually consists of microcrystals of less than 0.5 micrometers in diameter with rather diffuse borders within the lamella. The lamellae occur in ~30 micrometer segments which were formed by faulting and displacement. Micro-Raman spectroscopy confirms that both types of exsolution lamellae currently have the olivine (alpha) structure. The partially melted veins of Mbale may have reached a post-shock peak temperature of 1473 K >= T <= 1873 K. Based on the phase diagrams of the olivine(alpha)-wadsleyite(beta)-ringwoodite(gamma) transformations in the system Mg(sub)2SiO(sub)4-Fe(sub)2SiO(sub)4 at 1473 K [2], olivine of composition ~Fa(sub)24 should exsolve at equilibrium conditionsins to beta- + gamma-phases at P >12.7 GPa, and transform to a single gamma-phase at >15 GPa. Figure 1 shows that the determined compositions of the Fe-rich and Fe-poor lamellae in Mbale match perfectly the compositions at the beta + gamma/gamma and the beta + gamma/beta phase boundaries, respectively. Since these grains depict well ordered

  6. Investigation of Shock-Induced Chemical Reactions in Mo-Si Powder Mixtures Using Instrumented Experiments with PVDF Stress Gauges

    SciTech Connect

    Vandersall, K S; Thadhani, N N

    2001-05-29

    Shock-induced chemical reactions in {approx}58% dense Mo+2Si powder mixtures were investigated using time-resolved instrumented experiments, employing PVDF-piezoelectric stress gauges placed at the front and rear surfaces of the powders to measure the input and propagated stresses, and wave speed through the powder mixture. Experiments performed on the powders at input stresses less than 4 GPa, showed characteristics of powder densification and dispersed propagated wave stress profiles with rise time > {approx}40 nanoseconds. At input stress between 4-6 GPa, the powder mixtures showed a sharp rise time (<{approx}10 ns) of propagated wave profile and an expanded state of products revealing evidence of shock-induced chemical reaction. At input stresses greater than 6 GPa, the powder mixtures showed a slower propagated-stress-wave rise time and transition to a low-compressibility (melt) state indicating lack of shock-induced reaction. The results illustrate that premature melting of Si, at input stresses less than the crush-strength of the powder mixtures, restricts mixing between reactants and inhibits ''shock-induced'' reaction initiation.

  7. Shock-induced deformation of Shergottites: Shock-pressures and perturbations of magmatic ages on Mars

    NASA Astrophysics Data System (ADS)

    El Goresy, Ahmed; Gillet, Ph.; Miyahara, M.; Ohtani, E.; Ozawa, S.; Beck, P.; Montagnac, G.

    2013-01-01

    Shergottites and Chassignites practiced major deformation effects whose nature, magnitude and relevance were controversially evaluated and disputatively debated. Our studies of many shocked shergottites present, contrary to numerous previous reports, ample evidence for pervasive shock-induced melting amounting of at least 23 vol.% of the shergottite consisting of maskelynite and pyrrhotite, partial melting of pyroxene, titanomagnetite, ilmenite and finding of several high-pressure polymorphs and pressure-induced dissociation reactions. Our results cast considerable doubt on using the refractive index (RI) or cathodoluminescence (CL) spectra of maskelynite, in estimating the magnitudes of peak-shock pressure in both shergottites and ordinary chondrites. RI of maskelynite was set after quenching of the feldspar liquid before decompression to maskelynite glass followed by glass relaxation after decompression at the closure temperature of relaxation. The RI procedure widely practiced in the past 38 years revealed unrealistic very high-pressure estimates discrepant with the high-pressure mineral inventory in shocked shergottites and ordinary chondrites and with results obtained by robust laboratory static experiments. Shergottites contain the silica high-pressure polymorphs: the scrutinyite-structured polymorph seifertite, a monoclinic ultra dense polymorph of silica with ZrO2-structure, stishovite, a dense liquidus assemblage consisting of stishovite + Na-hexa-aluminosilicate (Na-CAS) and both K-lingunite and Ca-lingunite. Applying individual high-pressure silica polymorphs alone like stishovite, to estimate the equilibrium shock pressure, is inadequate due to the considerable shift of their nominal upper pressure bounds intrinsically induced by spatially variable absorptions of minor oxides like Al2O3, Na2O, FeO, MgO and TiO2. This practice revealed variable pressure estimates even within the same shergottite subjected to the same peak-shock pressure. Occurrence of Na

  8. On the fundamental unsteady fluid dynamics of shock-induced flows through ducts

    NASA Astrophysics Data System (ADS)

    Mendoza, Nicole Renee

    Unsteady shock wave propagation through ducts has many applications, ranging from blast wave shelter design to advanced high-speed propulsion systems. The research objective of this study was improved fundamental understanding of the transient flow structures during unsteady shock wave propagation through rectangular ducts with varying cross-sectional area. This research focused on the fluid dynamics of the unsteady shock-induced flow fields, with an emphasis placed on understanding and characterizing the mechanisms behind flow compression (wave structures), flow induction (via shock waves), and enhanced mixing (via shock-induced viscous shear layers). A theoretical and numerical (CFD) parametric study was performed, in which the effects of these parameters on the unsteady flow fields were examined: incident shock strength, area ratio, and viscous mode (inviscid, laminar, and turbulent). Two geometries were considered: the backward-facing step (BFS) geometry, which provided a benchmark and conceptual framework, and the splitter plate (SP) geometry, which was a canonical representation of the engine flow path. The theoretical analysis was inviscid, quasi-1 D and quasi-steady; and the computational analysis was fully 2D, time-accurate, and VISCOUS. The theory provided the wave patterns and primary wave strengths for the BFS geometry, and the simulations verified the wave pattems and quantified the effects of geometry and viscosity. It was shown that the theoretical wave patterns on the BFS geometry can be used to systematically analyze the transient, 20, viscous flows on the SP geometry. This work also highlighted the importance and the role of oscillating shock and expansion waves in the development of these unsteady flows. The potential for both upstream and downstream flow induction was addressed. Positive upstream flow induction was not found in this study due to the persistent formation of an upstream-moving shock wave. Enhanced mixing was addressed by examining

  9. On the Micromechanisms of Shock-Induced Martensitic Transformation in Tantalum

    SciTech Connect

    Hsiung, L L

    2005-12-07

    Shock-induced twinning and martensitic transformation in tantalum, which exhibits no solid-state phase transformation under hydrostatic pressures up to 100 GPa, have been further investigated. Since the volume fraction and size of twin and phase domains are small in scale, they are considered foming by heterogeneous nucleation that is catalyzed by high density lattice dislocations. A dynamic dislocation mechanism is accordingly proposed based upon the observation of dense dislocation clustering within shock-recovered tantalum. The dense dislocation clustering can cause a significant increase of strain energy in local regions of {beta} (bcc) matrix, which renders mechanical instability and initiates the nucleation of twin and phase domains through the spontaneous reactions of dislocation dissociation within the dislocation clusters. That is, twin domains can be nucleated within the clusters through the homogeneous dissociation of 1/2<111> dislocations into 1/6<111> partial dislocations, and {omega} phase domains can be nucleated within the closters through the inhomogeneous dissociation of 1/2<111> dislocations into 1/12<111>, 1/3<111> and 1/12<111> partial dislocations.

  10. The role of shock induced trailing-edge separation in limit cycle oscillations

    NASA Technical Reports Server (NTRS)

    Cunningham, Atlee M., Jr.

    1989-01-01

    The potential role of shock induced trailing edge separation (SITES) in limit cycle oscillations (LCO) was established. It was shown that the flip-flop characteristics of transition to and from SITES as well as its hysteresis could couple with wing modes with torsional motion and low damping. This connection led to the formulation of a very simple nonlinear math model using the linear equations of motion with a nonlinear step forcing function with hysteresis. A finite difference solution with time was developed and calculations were made for the F-111 TACT were used to determine the step forcing function due to SITES transition. Since no data were available for the hysteresis, a parameter study was conducted allowing the hysteresis effect to vary. Very small hysteresis effects, which were within expected bounds, were required to obtain reasonable response levels that essentially agreed with flight test results. Also in agreement with wind tunnel tests, LCO calculations for the 1/6 scale F-111 model showed that the model should have not experienced LCO.

  11. Shock-induced bubble collapse in a vessel: Implications for vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran; Colonius, Tim

    2014-11-01

    In shockwave lithotripsy, shocks are repeatedly focused on kidney stones so to break them. The process leads to cavitation in tissue, which leads to hemorrhage. We hypothesize that shock-induced collapse (SIC) of preexisting bubbles is a potential mechanism for vascular injury. We study it numerically with an idealized problem consisting of the three-dimensional SIC of an air bubble immersed in a cylindrical water column embedded in gelatin. The gelatin is a tissue simulant and can be treated as a fluid due to fast time scales and small spatial scales of collapse. We thus model the problem as a compressible multicomponent flow and simulate it with a shock- and interface-capturing numerical method. The method is high-order, conservative and non-oscillatory. Fifth-order WENO is used for spatial reconstruction and an HLLC Riemann solver upwinds the fluxes. A third-order TVD-RK scheme evolves the solution. We evaluate the potential for injury in SIC for a range of pressures, bubble and vessel sizes, and tissue properties. We assess the potential for injury by comparing the finite strains in tissue, obtained by particle tracking, to ultimate strains from experiments. We conclude that SIC may contribute to vascular rupture and discuss the smallest bubble sizes needed for injury. This research was supported by NIH Grant No. 2PO1DK043881 and utilized XSEDE, which is supported by NSF Grant No. OCI-1053575.

  12. Shock-induced devolatilization of calcium sulfate and implications for K-T extinctions

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Tyburczy, James A.; Ahrens, Thomas J.

    1994-01-01

    The devolatilization of calcium sulfate, which is present in the target rock of the Chicxulub, Mexico impact structure, and dispersal in the stratosphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the Cretaceous-Tertiary extinctions. We measured the amount of SO2 produced from two shock-induced devolatilization reactions of calcium sulfate up to 42 GPa in the laboratory. We found both to proceed to a much lower extent than calculated by equilibrium thermodynamic calculations. Reaction products are found to be approx. 10(exp -2) times those calculated for equilibrium. Upon modeling the quantity of sulfur oxides degassed into the atmosphere from shock devolatilization of CaSO4 in the Chicxulub lithographic section, the resulting 9 x 10(exp 16) to 6 x 10(exp 17) g (in sulfur mass) is lower by a factor of 10-100 than previous upper limit estimates, the related environmental stress arising from the resultant global cooling and fallout of acid rain is insufficient to explain the widespread K-T extinctions.

  13. Shock-induced devolatization of calcium sulfate and implications for K-T extinctions

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Tyburczy, James A.; Ahrens, Thomas J.

    1993-01-01

    Calcium sulfate devolatization during the impact at Chicxulub, Mexico and dispersal in the stratosphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the Cretaceous-Tertiary extinctions. In this paper, we investigated two shock-induced devolatization reactions of calcium sulfate up to 42 GPa in the laboratory: CaSO4 + SiO2 yields CaSiO3 + SO3(degassed) and CaSO4 yields CaO + SO2(degassed) + 1/2 O2(degassed). We found both to proceed to a much less extent than calculated by equilibrium thermodynamic calculations. Reaction products are found to be 10(exp -2) times those calculated for equilibrium. Consequently our estimate of the amount of sulfur oxides degassed into the atmosphere from shock devolatization of CaS04 in the Chicxulub lithographic section (6x10(exp 15)-2x10(exp 16)g in sulfur mass) is lower by a factor of 70 to 400 than previous estimates; the related environmental stress arising from the resultant global cooling of approximately 4 K and fallout of acid rain does not appear to suffice to explain the widespread K-T extinctions.

  14. Solution and shock-induced exsolution of argon in vitreous carbon

    NASA Technical Reports Server (NTRS)

    Gazis, Carey; Ahrens, Thomas J.

    1991-01-01

    To add to the knowledge of noble gas solution and exsolution in carbonaceus material, experiments were performed on vitreous carbon. Ar-rich vitreous carbon samples were prepared under vapor-saturated conditions using argon as the pressurizing medium. Solubility data were obtained for temperatures of 773 to 973 K and pressures of 250 to 1500 bars. Up to 7 wt pct Ar was dissolved in the carbon. The solubility data were compared to a thermodynamic model of argon atoms dissolving into a fixed population of 'holes' in the carbon. Two variations of the model yielded estimates of the enthalpy of solution of Ar in vitreous carbon equal to about -4700 cal/mole. Preliminary shock experiments showed that 28 percent of the total argon was released by driving 4 GPa shocks into the argon-rich carbon. It was demonstrated that shock-induced argon loss is not simply caused by the impact-induced diminution of grain size. The present value of shock pressure required for partial impact devolatilization of Ar from carbon is below the range (5-30 GPa) at which H2O is released from phyllosilicates.

  15. Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain

    SciTech Connect

    Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; DeMauro, Edward Paisley; Pruett, Brian Owen Matthew

    2015-11-23

    The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.

  16. Flash X-Ray measurements on the shock-induced dispersal of a dense particle curtain

    DOE PAGES

    Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; ...

    2015-11-23

    The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas–solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer–Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using amore » load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. Furthermore, the bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.« less

  17. Solution and shock-induced exsolution of argon in vitreous carbon

    NASA Technical Reports Server (NTRS)

    Gazis, Carey; Ahrens, Thomas J.

    1991-01-01

    To add to the knowledge of noble gas solution and exsolution in carbonaceus material, experiments were performed on vitreous carbon. Ar-rich vitreous carbon samples were prepared under vapor-saturated conditions using argon as the pressurizing medium. Solubility data were obtained for temperatures of 773 to 973 K and pressures of 250 to 1500 bars. Up to 7 wt pct Ar was dissolved in the carbon. The solubility data were compared to a thermodynamic model of argon atoms dissolving into a fixed population of 'holes' in the carbon. Two variations of the model yielded estimates of the enthalpy of solution of Ar in vitreous carbon equal to about -4700 cal/mole. Preliminary shock experiments showed that 28 percent of the total argon was released by driving 4 GPa shocks into the argon-rich carbon. It was demonstrated that shock-induced argon loss is not simply caused by the impact-induced diminution of grain size. The present value of shock pressure required for partial impact devolatilization of Ar from carbon is below the range (5-30 GPa) at which H2O is released from phyllosilicates.

  18. Flash X-ray measurements on the shock-induced dispersal of a dense particle curtain

    NASA Astrophysics Data System (ADS)

    Wagner, Justin L.; Kearney, Sean P.; Beresh, Steven J.; DeMauro, Edward P.; Pruett, Brian O.

    2015-12-01

    The interaction of a Mach 1.67 shock wave with a dense particle curtain is quantified using flash radiography. These new data provide a view of particle transport inside a compressible, dense gas-solid flow of high optical opacity. The curtain, composed of 115-µm glass spheres, initially spans 87 % of the test section width and has a streamwise thickness of about 2 mm. Radiograph intensities are converted to particle volume fraction distributions using the Beer-Lambert law. The mass in the particle curtain, as determined from the X-ray data, is in reasonable agreement with that given from a simpler method using a load cell and particle imaging. Following shock impingement, the curtain propagates downstream and the peak volume fraction decreases from about 23 to about 4 % over a time of 340 µs. The propagation occurs asymmetrically, with the downstream side of the particle curtain experiencing a greater volume fraction gradient than the upstream side, attributable to the dependence of particle drag on volume fraction. Bulk particle transport is quantified from the time-dependent center of mass of the curtain. The bulk acceleration of the curtain is shown to be greater than that predicted for a single 115-µm particle in a Mach 1.67 shock-induced flow.

  19. A molecular dynamic investigation for shock induced phase transition of water

    NASA Astrophysics Data System (ADS)

    Mitra, Nilanjan; Neogi, Anupam

    2015-06-01

    Atomistic equilibrium molecular dynamics (EMD) was carried out to investigate shock induced phase transition of bulk liquid water. Multi-scale shock technique (MSST) was utilized to investigate low (US = 2 . 5km /s) to strong (US = 6 . 5km /s) intensity shock response on an extended flexible three point model up to 100 ns. The thermodynamic pathway of phase transition from liquid water to ice VII was investigated using temporal variation of thermodynamic state variables, power spectrum analyses of O-H bond vibration along with temporal evolution of pair correlation function between O-O, O-H and H-H atoms. Static structure factor along with pair-distribution function extended up to 20 Å was calculated and compared against the ideal ice VII to get information regarding long range ordering. Bragg reflection at different crystal planes were evaluated to investigate percentage of crystallinity of the shocked sample. Specific questions answered in this work involves: What is the exact time frame after the passage of shock at certain intensity in which nucleation of solid phase can be observed? Is it a complete or partial phase transition? Are external nucleators essential for this transformation? What is the percentage of crystallinity of the nucleated phase?

  20. Shock induced phase transition of different TiO2 precursors

    NASA Astrophysics Data System (ADS)

    Chen, Pengwan; Gao, Xiang; Liu, Jianjun; Zhou, Qiang

    2011-06-01

    To investigate the effects of phase composition and particle size on shock-induced phase transition of TiO2, different TiO2 precursors including MC-150 TiO2(pure anatase,5nm), P25 TiO2(85% anatase/15% rutile,15nm), T2 TiO2(pure anatase,35nm) and T1 TiO2(pure rutile, 24nm) were impacted by detonation-driven high velocity flyers. Powder X-ray diffraction(XRD) was used to characterize the phase composition of recovered samples. Two types of phase transition were observed, including anatase to rutile transition and anatase to high pressure phase of srilankite transition. The phase transition mechanisms and effects of shock conditions, initial phase composition and particle size were analyzed. Complete transition from anatase to srilankite can be obtained by adjusting the shock conditions. In the case of impacting pure P25 TiO2, anatase to srilankite transition was hardly observed, which may be due to the restraint of initial phase of thermodynamically stable rutile. However, in the case of impacting a mixture of P25 TiO2 and dicyandiamide(C2N4H4) , it is interesting to observe anatase to srilankite transition and the mechanisms was analyzed. National Natural Science Foundation of China

  1. Formation of a disordered solid via a shock-induced transition in a dense particle suspension.

    PubMed

    Petel, Oren E; Frost, David L; Higgins, Andrew J; Ouellet, Simon

    2012-02-01

    Shock wave propagation in multiphase media is typically dominated by the relative compressibility of the two components of the mixture. The difference in the compressibility of the components results in a shock-induced variation in the effective volume fraction of the suspension tending toward the random-close-packing limit for the system, and a disordered solid can take form within the suspension. The present study uses a Hugoniot-based model to demonstrate this variation in the volume fraction of the solid phase as well as a simple hard-sphere model to investigate the formation of disordered structures within uniaxially compressed model suspensions. Both models are discussed in terms of available experimental plate impact data in dense suspensions. Through coordination number statistics of the mesoscopic hard-sphere model, comparisons are made with the trends of the experimental pressure-volume fraction relationship to illustrate the role of these disordered structures in the bulk properties of the suspensions. A criterion for the dynamic stiffening of suspensions under high-rate dynamic loading is suggested as an analog to quasi-static jamming based on the results of the simulations.

  2. Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran

    Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused at the location of kidney stones in order to pulverize them. Stone comminution is thought to be the product of two mechanisms: the propagation of stress waves within the stone and cavitation erosion. However, the latter mechanism has also been implicated in vascular injury. In the present work, shock-induced bubble collapse is studied in order to understand the role that it might play in inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside a vessel phantom. The primary contributions of the numerical study are the characterization of the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates are made of the smallest injurious bubbles in the microvasculature during both the collapse and jetting phases of the bubble's life cycle. The present results suggest that bubbles larger than one micrometer in diameter could rupture blood vessels under clinical SWL conditions.

  3. Septic Shock Induced by Bacterial Prostatitis with Morganella morganii subsp. morganii in a Posttransplantation Patient

    PubMed Central

    Li, Xiaofan; Chen, Jianhui

    2015-01-01

    Bacterial infection is a common complication after Hematopoietic Stem Cell Transplantation (HSCT). Morganella morganii is ubiquitous Gram-negative facultative anaerobe, which may cause many kinds of opportunistic infection. Herein we report a case of a 55-year-old man who presented with frequent urination, urgency, and mild pain that comes and goes low in the abdomen and around the anus. The patient had a medical history of chronic prostatitis for 4 years. He received HLA-matched sibling allo-HSCT because of angioimmunoblastic T-cell lymphoma 29 months ago. The routine examination of prostatic fluid showed increased leukocytes and the culture of prostatic fluid showed Morganella morganii subsp. morganii. The patient developed chills and fever 18 hours after examination. Both urine culture and blood culture showed Morganella morganii subsp. morganii. The patient was successfully treated with antibiotic therapy and septic shock management. Taken together, Morganella morganii should be considered a possible pathogen when immunocompromised patients develop prostatitis. Also, prostatic massage could be a possible trigger of septic shock induced by Morganella morganii subsp. morganii in a posttransplantation patient. PMID:26798544

  4. Phase-field modeling of shock-induced α- γ phase transformation of RDX

    NASA Astrophysics Data System (ADS)

    Rahul, -; de, Suvranu

    2015-06-01

    A thermodynamically consistent continuum phase field model has been developed to investigate the role of shock-induced α- γ phase transition in the sensitivity of RDX. Dislocations and phase transformations are distinguished and modeled within a crystal plasticity framework. The Landau potential is derived for the finite elastic deformation analysis. The response of the shock loaded RDX crystal is obtained by solving the continuum momentum equation along with phase evolution equation using a Helmholtz free energy functional, which consists of elastic potential energy and local interfacial energy that follows from the Cahn-Hilliard formalism. We observe that the orientations for which there is a resolved shear stress along the slip direction, the material absorbs large shear strain through plastic deformation, allowing it to be less sensitive as less mechanical work is available for temperature rise. Therefore, plastic slip should be associated with greater shear relaxation and, hence, decreased sensitivity. For elastic orientations, large shear stress arises from steric hindrance that may provides much more mechanical work to increase the temperature and hence more sensitive to detonation. Our simulations suggest that the α- γ phase transformation in RDX may be associated with the increased temperature rise and hence the shock sensitivity. The authors gratefully acknowledge the support of this work through Office of Naval Research (ONR) Grants N000140810462 and N000141210527 with Dr. Clifford Bedford as the cognizant Program Manager.

  5. Shock-induced deformation of nanocrystalline Al: Characterization with orientation mapping and selected area electron diffraction

    NASA Astrophysics Data System (ADS)

    Wang, L.; E, J. C.; Cai, Y.; Zhao, F.; Fan, D.; Luo, S. N.

    2015-02-01

    We investigate shock-induced deformation of columnar nanocrystalline Al with large-scale molecular dynamics simulations and implement orientation mapping (OM) and selected area electron diffraction (SAED) for microstructural analysis. Deformation mechanisms include stacking fault formation, pronounced twinning, dislocation slip, grain boundary (GB) sliding and migration, and lattice or partial grain rotation. GBs and GB triple junctions serve as the nucleation sites for crystal plasticity including twinning and dislocations, due to GB weakening, and stress concentrations. Grains with different orientations exhibit different densities of twins or stacking faults nucleated from GBs. GB migration occurs as a result of differential deformation between two grains across the GB. High strain rates, appropriate grain orientation and GBs contribute to deformation twinning. Upon shock compression, intra-grain dislocation and twinning nucleated from GBs lead to partial grain rotation and the formation of subgrains, while whole grain rotation is not observed. During tension, stress gradients associated with the tensile pulse give rise to intra-grain plasticity and then partial grain rotation. The simulated OM and SAED are useful to describe lattice/grain rotation, the formation of subgrains, GB migration and other microstructures.

  6. A time-dependent Ginzburg-Landau phase field formalism for shock-induced phase transitions

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Belof, Jonathan L.; Benedict, Lorin X.

    2017-01-01

    Phase-field models have become popular in the last two decades to describe a host of free-boundary problems. The strength of the method relies on implicitly describing the dynamics of surfaces and interfaces by a continuous scalar field that enters the global grand free energy functional of the system. Here we explore the potential utility of this method in order to describe shock-induced phase transitions. To this end we make use of the Multiphase Field Theory (MFT) to account for the existence of multiple phases during the transition, and we couple MFT to a hydrodynamic model in the context of a new LLNL code for phase transitions, SAMSA. As a demonstration of this approach, we apply our code to the α - ɛ-Fe phase transition under shock wave loading conditions and compare our results with experiments of Jensen et. al. [J. Appl. Phys., 105:103502 (2009)] and Barker and Hollenbach [J. Appl. Phys., 45:4872 (1974)].

  7. Computation of unsteady shock-induced combustion using logarithmic species conservation equations

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.; Sussman, Myles A.

    1993-01-01

    Numerical simulations are used to investigate periodic combustion instabilities observed in ballistic-range experiments of blunt bodies flying at supersonic speeds through hydrogen-air mixtures. The computations are validated by comparing experimental shadowgraphs with shadowgraphs created from the computed flowfields and by comparing the experimentally measured instability frequencies with computed frequencies. The numerical simulations use a logarithmic transformation of the species conservation equations as a way to reduce the grid requirements for computing shock-induced combustion. The transformation is applied to the Euler equations coupled to a detailed hydrogen-air chemical reaction mechanism with 13 species and 33 reactions. The resulting differential equations are solved using a finite volume formulation and a two-step predictor-corrector scheme to advance the solution in time. Results are presented and compared for both a flux-vector splitting scheme and an upwind TVD scheme. The computations add insight to the physical processes observed in the experiments and the numerical methods needed to simulate them. The usefulness of the ballistic-range experiments for the validation of numerical techniques and chemical kinetic models is also demonstrated.

  8. Multiscale dislocation dynamics simulations of shock-induced plasticity in small volumes

    NASA Astrophysics Data System (ADS)

    Shehadeh, Mutasem A.

    2012-04-01

    Multiscale dislocation dynamics plasticity (MDDP) was used to investigate shock-induced deformation in monocrystalline copper. In order to enhance the numerical simulations, a periodic boundary condition was implemented in the continuum finite element (FE) scale so that the uniaxial compression of shocks could be attained. Additionally, lattice rotation was accounted for by modifying the dislocation dynamics (DD) code to update the dislocations' slip systems. The dislocation microstructures were examined in detail and a mechanism of microband formation is proposed for single- and multiple-slip deformation. The simulation results show that lattice rotation enhances microband formation in single slip by locally reorienting the slip plane. It is also illustrated that both confined and periodic boundary conditions can be used to achieve uniaxial compression; however, a periodic boundary condition yields a disturbed wave profile due to edge effects. Moreover, the boundary conditions and the loading rise time show no significant effects on shock-dislocations interaction and the resulting microstructures. MDDP results of high strain rate calculations are also compared with the predictions of the Armstrong-Zerilli model of dislocation generation and movement. This work confirms that the effect of resident dislocations on the strain rate can be neglected when a homogeneous nucleation mechanism is included.

  9. Structure related modification of the shock induced excitation in Guinea pig papillary muscle.

    PubMed

    Windisch, Herbert; Platzer, Dieter

    2007-01-01

    Here, we present our recent findings from mapping experiments in field stimulated guinea pig papillary muscle. We monitored the developing local excitation during applied shocks (2.5-10 V/cm, 5 or 10 ms) with very high spatial and temporal resolution. Time maps, based on the occurrence of the maximal upstroke velocities, on exceeding 50% of the signal amplitudes, and on exceeding a presumed excitation threshold of -60 mV were constructed. The local, micro-structure related modulation of the excitation process was gained by subtracting a first-order fit (representing the general tendencies) of these time maps from the original ones. The resulting local time maps show the small, locally appearing temporal deviations related to local tissue discontinuities. In general, structure related modulations were found during the whole excitation phase, even during complex signal developments. In regions with positive shock induced polarizations, with increasing shock strength, the local temporal deviations were diminished; in negatively polarized regions, increased, respectively.

  10. Dynamic behaviour and shock-induced martensite transformation in near-beta Ti-5553 alloy under high strain rate loading

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Wang, Yangwei; Xu, Xin; Liu, Chengze

    2015-09-01

    Ti-5553 alloy is a near-beta titanium alloy with high strength and high fracture toughness. In this paper, the dynamic behaviour and shock-induced martensite phase transformation of Ti-5553 alloy with alpha/beta phases were investigated. Split Hopkinson Pressure Bar was employed to investigate the dynamic properties. Microstructure evolutions were characterized by Scanning Electronic Microscopy and Transmission Electron Microscope. The experimental results have demonstrated that Ti-5553 alloy with alpha/beta phases exhibits various strain rate hardening effects, both failure through adiabatic shear band. Ti-5553 alloy with Widmannstatten microstructure exhibit more obvious strain rate hardening effect, lower critical strain rate for ASB nucleation, compared with the alloy with Bimodal microstructures. Under dynamic compression, shock-induced beta to alpha" martensite transformation occurs.

  11. Distraction speeds the decay of shock-induced hypoalgesia: evidence for the contribution of memory systems in affective pain modulation.

    PubMed

    Grimes, Jeffrey S; Creech, Suzannah K; Young, Erin E; Vichaya, Elisabeth G; Meagher, Mary W

    2009-03-01

    Previous research indicates that exposure to shock decreases thermal pain sensitivity in humans. This hypoalgesia has been attributed to a centrally mediated fear state that activates descending inhibitory pathways. Animal research suggests that distraction alters the activation of these hypoalgesic systems. To determine whether the pain memory alters the activation of hypoalgesic systems in humans, the present study examined whether a post-shock distractor attenuates shock-induced hypoalgesia. If fear-inducing shocks are represented by a limited capacity working memory system, then a distractor should speed the decay of the hypoalgesia. Healthy men were randomly assigned to 1 of 4 groups: shock-distraction, shock-no distraction, no shock-distraction, and no shock-no distraction. Following baseline pain tests, participants in the shock groups were presented with 3 brief shocks. Immediately following shock, an unexpected vibration stimulus was presented to participants in the distraction groups. Both self-report and physiological (SCL, HR) measures indicated that shock exposure resulted in fear, arousal, and decreased pain sensitivity. Consistent with prior animal studies, presentation of a post-shock distractor sped the decay of shock-induced hypoalgesia. Specifically, the distraction group exhibited significantly less shock-induced hypoalgesia compared to the no-distraction group. These findings provide additional evidence for the involvement of memory processes in the activation of descending pain inhibitory pathways. This study demonstrated that the presentation of a distracting stimulus immediately following 3 brief shocks attenuated shock-induced hypoalgesia in healthy human subjects. Understanding the impact of post-pain distraction on pain processing may have important clinical implications because it may influence patients' willingness to undergo future painful medical procedures.

  12. Explosion Source Model Development in Support of Seismic Monitoring Technologies: New Models Accounting for Shock-Induced Tensile Failure

    DTIC Science & Technology

    2008-09-01

    source model for long-period seismic waves from nuclear explosions consists of a monopole releasing tectonic strain. Tectonic release has been studied...containment conditions that facilitated shock-induced, deep-seated tensile failure. A new source model, which is a superposition of monopole + tectonic ...symmetry. This CLVD source does not excite Love waves. I draw upon the Toksöz-Kehrer (1972) model for tectonic release where F is an index measuring

  13. A Previously Unrecognized Example of the Shock-Induced Breakdown of Biotite to Garnet from the Steen River Impact Structure, Canada

    NASA Astrophysics Data System (ADS)

    Walton, E. L.; Sharp, T. G.; Hu, J.; Tschauner, O.

    2016-08-01

    The novel shock-induced transformation of biotite to almandine garnet accompanied by fluid release and Fe-oxidation is reported from those grains adjacent to shock veins in crystalline basement rocks of the Steen River impact structure.

  14. An analytical and computational investigation of shock-induced vortical flows with applications to supersonic combustion

    NASA Astrophysics Data System (ADS)

    Yang, Joseph

    The motivation for study of shock-induced vortical flows is the problem of achieving rapid and efficient mixing of fuel and oxidizer in a supersonic combustion ramjet engine. In particular, the interaction of a shock wave with a jet of light gas generates vorticity which can be used to stir and mix the fluids. This investigation consists of two parts. The first part is a characterization of the basic fluid mechanics of the interaction. The canonical problem is a shock wave passing over a circular light gas inhomogeneity to deposit vorticity around the perimeter. As time goes on, the structure rolls up into a pair of counter-rotating vortices. This flow is simulated numerically by integrating the governing equations subject to specified initial conditions. From first principles, analytical models are developed to predict the circulation, spacing, and characteristic time for development as a function of initial conditions. From perturbation analysis, another model is developed to predict the vortex pair velocity as a function of the geometrical parameters, vortex size/vortex spacing, and vortex spacing/channel spacing. The second part is an investigation of mixing efficiencies for various initial configurations. In the canonical flow, stabilization of the vortex pair eventually impairs the mixing. Various initial configurations are considered with the goal of improving the mixing. The mixing is quantified by an asymptotic stretching rate of a material element. Single jet shape perturbations yield little improvement in mixing, but multiple jet arrays do, especially through the phenomenon of entrainment. Another way to improve the mixing is to hit a vortex pair with a reflected shock. Finally, a mathematical correspondence is exhibited between the unsteady 2-D flows considered here and the corresponding 3-D steady flows that may be more typical of real combustor designs.

  15. Tomography Study of Shock-Induced Damage Beneath Craters by Normal and Oblique Impacts

    NASA Astrophysics Data System (ADS)

    Ai, H.; Ahrens, T.

    2004-12-01

    Comparisons of laboratory impact craters produced in rock and planetary-scale impact structures, indicate that the observed reductions in elastic wave velocities by shock-induced damage of rock beneath impact craters can be used to constrain the impact history. A series of small-scale normal and oblique impact experiments were conducted on 20x20x15 cm samples of San Marcos granite by a 1.2 km/s, 2 kJ impactor. The resulting largely circular (8 cm in diameter) crater dimensions agrees closely with previous data. By conducting a multiple source-receiver ultrasonic survey of the shocked rock beneath laboratory craters (sampled by 290 ray paths beneath the crater) we have tomographically mapped the in-situ P-wave velocity beneath craters and find measurable damage, as defined by > 0.1 km/s velocity reduction, are induced to depths of 7 cm beneath the crater for normal impacts. However, oblique impacts produce shallower damage zone ( ˜ 3 cm deep) that are asymmetric along the plane containing the impact trajectory. The downrange shows more damage than the uprange. Since the extent of the shock-damage region depends on impact velocity and impact energy, the extent of damage in our laboratory impact structures , and we presume also planetary scale impact structures, carries both impact velocity and direction of impact information not previously recognized or sought. Hence damage zone dimensions are expected to constrain planetary impacts parameters. Oblique impacts, where the tracjectory is ≥ 15° relative to the impacted surface, yields approximately circular craters, can in principle, provide information on impactor trajectory. For planetary impacts, the damage profile, as measured by seismic velocity deficit, beneath craters allow some statistical constraint on impacts produced by low-inclination orbit objects (asteroids and Jupiter-family comets), versus, high-inclination orbit objects (long-period and new comets).

  16. Shock-induced phase transformation in the Sixiangkou chondrite (L6): Ringwoodite, majorite?

    NASA Astrophysics Data System (ADS)

    Chen, M.; El Goresy, A.

    1994-07-01

    The Sixiangkou chondrite (L6) is a rare example of heavily shocked chondrites. The meteorite is intersected by black silicate melt veins containing isotropic phases formed by shock transformation of silicates. Grains of olivine and pyroxene compositions in the veins are either isotropic mineral glass or ringwoodite or majorite respectively. Plagioclase has been transformed to isotropic glass. The phase tentatively identified as ringwoodite occures as isotropic and colorless large grains up to 300 microns in length usually with rounded outlines. Several sets of regular fractures dissect the grains. These structural features are considered to be related to the deformation process of olivine induced by the impact event. Numerous microprobe analyses indicate that the phase has the same composition as the birefringent olivine in the neighboring unmolten material. Three types compositional of the phase suspected to be majorite were encountered. Type 1 is colorless to yellowish brown and consists of isotropic polycrystalline aggregates ranging in size from approximately 20 to 150 microns. This type has the same composition as the low-Ca pyroxene of the chondrite mass. Type 2 has comparable optical properties to type 1, but the grains are smaller in size, ranging from approximately 5 to 20 microns. The main compositional difference between type 1 and type 2 is that the second one has higher Na2O contents. Type 3 consists of isolated yellowish brown microcrystals ranging in size from 1-3 microns. This phase occurs as subhedral or euhedral crystals in the matrix of veins, and is usually surrounded by fine-grained troilite and FeNi metal or plagioclase glass. Microprobe analyses indicate that this type is relatively rich in Al, Ca, Na, and Cr. Based on the mineralogical features of the veins, we conclude that the shock-induced phase transformation of minerals may have been produced in different stages of a shock event.

  17. Effect of methylguanidine in a model of septic shock induced by LPS.

    PubMed

    Marzocco, Stefania; Di Paola, Rosanna; Ribecco, Maria Teresa; Sorrentino, Raffaella; Domenico, Britti; Genesio, Massimini; Pinto, Aldo; Autore, Giuseppina; Cuzzocrea, Salvatore

    2004-11-01

    Septic shock, a severe form of sepsis, is characterized by cardiovascular collapse following microbial invasion of the body. The progressive hypotension, hyporeactivity to vasopressor agents and vascular leak leads to circulatory failure with multiple organ dysfunction and death. Many inflammatory mediators (e.g. TNF-alpha, IL-1 and IL-6) are involved in the pathogenesis of shock and, among them, nitric oxide (NO). The overproduction of NO during septic shock has been demonstrated to contribute to circulatory failure, myocardial dysfunction, organ injury and multiple organ failure. We have previously demonstrated with in vitro and in vivo studies that methylguanidine (MG), a guanidine compound deriving from protein catabolism, significantly inhibits iNOS activity, TNF-alpha release and carrageenan-induced acute inflammation in rats. The aim of the present study was to evaluate the possible anti-inflammatory activity of MG in a model of septic shock induced by lipopolysaccharide (LPS) in mice. MG was administered intraperitoneally (i.p.) at the dose of 30 mg/kg 1 h before and at 1 and 6 h after LPS-induced shock. LPS injection (10 mg/kg in 0.9% NaCl; 0.1 ml/mouse; i.p.) in mouse developed a shock syndrome with enhanced NO release and liver, kidney and pancreatic damage 18 h later. NOx levels, evaluated as nitrite/nitrate serum levels, was significantly reduced in MG-treated rats (78.6%, p < 0.0001; n = 10). Immunohistochemistry revealed, in the lung tissue of LPS-treated group, a positive staining for nitrotyrosine and poly(adenosine diphosphate [ADP] ribose) synthase, both of which were reduced in MG-treated mice. Furthermore, enzymatic evaluation revealed a significant reduction in liver, renal and pancreatic tissue damage and MG treatment also improved significantly the survival rate. This study provides evidence that MG attenuates the degree of inflammation and tissue damage associated with endotoxic shock in mice. The mechanisms of the anti-inflammatory effect

  18. Shock priming enhances the efficacy of SSRIs in the foot shock-induced ultrasonic vocalization test.

    PubMed

    Kassai, Ferenc; Gyertyán, István

    2012-01-10

    Data on the effect of acutely administered serotonin reuptake inhibitors (SSRIs) in animal anxiety models have been inconsistent. In some of the models these compounds showed anxiolytic properties, while in others they were ineffective or even anxiogenic. In the foot shock-induced ultrasonic vocalization (USV) test in the adult rat, SSRIs were reported to be effective, however, they were only tested with protocols using multiple shocking design. In the present study, anxiolytic effects of various SSRI compounds (sertraline, fluoxetine, paroxetine, escitalopram) were tested in three distinct USV test protocols in comparison with alprazolam and 8-OH-DPAT. In the single shocking protocol, animals were exposed to one shocking session after the drug treatment. In the multiple shocking protocol, rats went through a foot shock priming session before each drug test. On priming days animals received foot shocks without drug treatment. On the test day (the day after), rats received drug treatment and then were shocked again. In the context conditioning protocol animals were exposed to foot shocks on two consecutive days before the drug test. On the third, test day, after drug treatment animals were replaced to the shocking chamber, but this time shocks were not delivered. SSRIs were ineffective using the single shocking protocol. In the context conditioned protocol, all SSRIs showed linear dose-response relationship with ED50 values of 8.5, 2.2, 0.77 and 0.93 mg/kg i.p. for fluoxetine, sertraline, paroxetine and escitalopram, respectively. Using the multiple shocking protocol, SSRIs were only partially effective with maximum inhibitions ranging between 44% and 62%. In contrast to SSRIs, the benzodiazepine anxiolytics, alprazolam showed anxiolytic activity with linear dose-response relationship in all of the test protocols, with ED50 values varying from 1.3 to 4.0 mg/kg i.p. The serotonin 5HT1A receptor antagonist 8-OH-DPAT also showed linear dose-response relationship in all

  19. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    NASA Astrophysics Data System (ADS)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  20. A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A

    USGS Publications Warehouse

    Jackson, J.C.; Horton, J.W.; Chou, I.-Ming; Belkin, H.E.

    2006-01-01

    A shock-induced polymorph (TiO2II) of anatase and rutile has been identified in breccias from the late Eocene Chesapeake Bay impact structure. The breccia samples are from a recent, partially cored test hole in the central uplift at Cape Charles, Virginia. The drill cores from 744 to 823 m depth consist of suevitic crystalline-clast breccia and brecciated cataclastic gneiss in which the TiO2 phases anatase and rutile are common accessory minerals. Electron-microprobe imaging and laser Raman spectroscopy of TiO2 crystals, and powder X-ray diffraction (XRD) of mineral concentrates, confirm that a high-pressure, ??-PbO2 structured polymorph of TiO2 (TiO2II) coexists with anatase and rutile in matrix-hosted crystals and in inclusions within chlorite. Raman spectra of this polymorph include strong bands at wavenumbers (cm-1) 175, 281, 315, 342, 356, 425, 531, 571, and 604; they appear with anatase bands at 397, 515, and 634 cm-1, and rutile bands at 441 and 608 cm-1. XRD patterns reveal 12 lines from the polymorph that do not significantly interfere with those of anatase or rutile, and are consistent with the TiO2II that was first reported to occur naturally as a shock-induced phase in rutile from the Ries crater in Germany. The recognition here of a second natural shock-induced occurrence of TiO2II suggests that its presence in rocks that have not been subjected to ultrahigh-pressure regional metamorphism can be a diagnostic indicator for confirmation of suspected impact structures.

  1. Time-dependent Ginzburg-Landau type Multiphase Field for description of shock-induced Phase Transition

    NASA Astrophysics Data System (ADS)

    Haxhimali, Tomorr; Belof, Jonathan; Benedict, Lorin

    2015-06-01

    Phase-field models have become popular in last two decades to describe a host of free-boundary problems. The strength of the method relies on implicitly describing the dynamics of surfaces and interfaces by continuous scalar field that enter in the global grand free energy functional of the system. We adapt this method in order to describe shock-induced phase transition. To this end we make use of the Multiphase Field Theory (MFT) to account for the existence of multiple phases during the transition. In this talk I will initially describe the constitutive equations that couple the dynamic of the phase field with that of the thermodynamic fields like T, P, c etc. I will then give details on developing a thermodynamically consistent phase-field interpolation function for multiple-phase system in the context of shock-induced phase-transition. At the end I will briefly comment on relating the dynamics of the interfaces in the shock/ramp compression to the Kardar-Parisi-Zhang equation. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Numerical Simulation of Shock-Induced Combustion Past Blunt Bodies Using Shock-Fitting Technique. Appendix A

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Kumar, A.; Singh, D. J.; Tiwari, S. N.

    1994-01-01

    Two-dimensional axisymmetric, reacting viscous flow over blunt projectiles is computed to study shock induced combustion at Mach 5.11 and Mach 6.46 in hydrogen-air mixture. A finite-difference, shock-fitting method is used to solve the complete set of Navier Stokes and species conservation equations. In this approach, the bow shock represents a boundary of the computational domain and is treated as a discontinuity across which Rankine-Hugoniot conditions are applied. All interior details of the flow such as compression waves, reaction front, and the wall boundary layer are captured automatically in the solution. Since shock-fitting approach reduces the amount of artificial dissipation, all the intricate details of the flow are captured much more clearly than has been possible with the shock-capturing approach. This has allowed an improved understanding of the physics of shock-induced combustion over blunt projectiles and the numerical results can now be explained more readily with one dimensional wave-interaction model than before.

  3. Numerical Simulation of Shock-Induced Combustion Past Blunt Bodies Using Shock-Fitting Technique. Appendix A

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Kumar, A.; Singh, D. J.; Tiwari, S. N.

    1994-01-01

    Two-dimensional axisymmetric, reacting viscous flow over blunt projectiles is computed to study shock induced combustion at Mach 5.11 and Mach 6.46 in hydrogen-air mixture. A finite-difference, shock-fitting method is used to solve the complete set of Navier Stokes and species conservation equations. In this approach, the bow shock represents a boundary of the computational domain and is treated as a discontinuity across which Rankine-Hugoniot conditions are applied. All interior details of the flow such as compression waves, reaction front, and the wall boundary layer are captured automatically in the solution. Since shock-fitting approach reduces the amount of artificial dissipation, all the intricate details of the flow are captured much more clearly than has been possible with the shock-capturing approach. This has allowed an improved understanding of the physics of shock-induced combustion over blunt projectiles and the numerical results can now be explained more readily with one dimensional wave-interaction model than before.

  4. Shock-induced temperatures of CaMgSi2O6. [relevant to earth mantle composition

    NASA Technical Reports Server (NTRS)

    Svendsen, Bob; Ahrens, Thomas J.

    1990-01-01

    Results are presented from experiments on CaMgSi2O6 (diopside) single crystal, an end-member pyroxene relevant to studies of the composition of the earth's mantle. Also, experiments were conducted on diopside glass with a density 86 percent that of the diopside crystal. The shock-induced radiation from diopside is used to constrain the temperature of its shock-compressed (Hugoniot) states. The results are combined with other data to place constraints on the high-pressure phase relations in the CaMgSi2O6 system. These constraints are compared with existing models for the earth's mantle. The results imply that the temperature of the D-double prime region must be less than 3000 K.

  5. Shock temperatures in silica glass - Implications for modes of shock-induced deformation, phase transformation, and melting with pressure

    NASA Technical Reports Server (NTRS)

    Schmitt, Douglas R.; Ahrens, Thomas J.

    1989-01-01

    Observations of shock-induced radiative thermal emissions are used to determine the gray body temperatures and emittances of silica glass under shock compression between 10 and 30 GPa. The results suggest that fused quartz deforms heterogeneously in this shock pressure range. It is shown that the 10-16 GPa range coincides with the permanent densification region, while the 16-30 GPa range coincides with the inferred mixed phase region along the silica glass Hugoniot. Low emittances in the mixed phase region are thought to represent the melting temperature of the high-pressure phase, stishovite. Also, consideration is given to the effects of pressure on melting relations for the system SiO2-Mg2SiO4.

  6. High-pressure phases in shock-induced melt of the unique highly shocked LL6 chondrite Northwest Africa 757

    NASA Astrophysics Data System (ADS)

    Hu, Jinping; Sharp, Thomas G.

    2016-07-01

    Northwest Africa 757 is unique in the LL chondrite group because of its abundant shock-induced melt and high-pressure minerals. Olivine fragments entrained in the melt transform partially and completely into ringwoodite. Plagioclase and Ca-phosphate transform to maskelynite, lingunite, and tuite. Two distinct shock-melt crystallization assemblages were studied by FIB-TEM analysis. The first melt assemblage, which includes majoritic garnet, ringwoodite plus magnetite-magnesiowüstite, crystallized at pressures of 20-25 GPa. The other melt assemblage, which consists of clinopyroxene and wadsleyite, solidified at ~15 GPa, suggesting a second veining event under lower pressure conditions. These shock features are similar to those in S6 L chondrites and indicate that NWA 757 experienced an intense impact event, comparable to the impact event that disrupted the L chondrite parent body at 470 Ma.

  7. Melatonin prevents hemorrhagic shock-induced liver injury in rats through an Akt-dependent HO-1 pathway.

    PubMed

    Hsu, Jun-Te; Kuo, Chia-Jung; Chen, Tsung-Hsing; Wang, Frank; Lin, Chun-Jun; Yeh, Ta-Sen; Hwang, Tsann-Long; Jan, Yi-Yin

    2012-11-01

    Although melatonin treatment following trauma-hemorrhage or ischemic reperfusion prevents organs from dysfunction and injury, the precise mechanism remains unknown. This study tested whether melatonin prevents liver injury following trauma-hemorrhage involved the protein kinase B (Akt)-dependent heme oxygenase (HO)-1 pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure approximately 40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), or melatonin plus phosphoinositide 3-kinase (PI3K) inhibitor wortmannin (1 mg/kg). At 2 hr after trauma-hemorrhage, the liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and aspartate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the Akt activation in comparison with the shams (relative density, 0.526 ± 0.031 versus 1.012 ± 0.066). Administration of melatonin following trauma-hemorrhage normalized liver Akt phosphorylation (0.993 ± 0.061), further increased mammalian target of rapamycin (mTOR) activation (5.263 ± 0.338 versus 2.556 ± 0.225) and HO-1 expression (5.285 ± 0.325 versus 2.546 ± 0.262), and reduced cleaved caspase-3 levels (2.155 ± 0.297 versus 5.166 ± 0.309). Coadministration of wortmannin abolished the melatonin-mediated attenuation of the shock-induced liver injury markers. Our results collectively suggest that melatonin prevents hemorrhagic shock-induced liver injury in rats through an Akt-dependent HO-1 pathway.

  8. Shock-Induced Melting and Vaporization of MgO by Multi-Mbar Shock and Release Experiments

    NASA Astrophysics Data System (ADS)

    Kraus, R. G.; Root, S.; Desjarlais, M. P.; Stewart, S. T.; Shulenburger, L.; Knudson, M. D.; Lemke, R.; Dolan, D. H.; Seagle, C. T.; Jacobsen, S. B.; Flicker, D. G.; Mattsson, T.

    2012-12-01

    The thermal state of the Earth after the final giant impact event is uncertain due to the lack of accurate wide-ranging equations of state for mantle minerals. In particular, current models for shock-induced melting and vaporization of the refractory phases within the Earth's mantle are poorly constrained due to the difficulty in reaching and measuring states in the relevant regions of the phase diagram. Using the Z-machine at Sandia National Laboratory, we performed high velocity (15-25 km/s) planar impact experiments onto MgO. We use a novel shock, release, and stagnation technique to determine the density of MgO along the liquid branch of the liquid-vapor dome. This region of the phase diagram is inaccessible to most static techniques and these experiments represent the first measurements of their kind. We will present our measurements of the temperature and density along the liquid-vapor dome of MgO and discuss the utility of these measurements in developing wide-ranging multi-phase equation of state models. We will also present a new model for the entropy along the principal Hugoniot of MgO, which we use to derive the criteria for shock-induced melting and vaporization and to address the commonly made assumption that the Moon-forming impact event melted Earth's entire mantle. We acknowledge support from NNSA SSGF, NNSA HEDLP, and the Z Fundamental Science User Program. We also thank the Z facility staff and technicians. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  9. Laser shock-induced mechanical and microstructural modification of welded maraging steel

    SciTech Connect

    Banas, G. ); Elsayed-Ali, H.E. ); Lawrence, F.V. Jr. ); Rigsbee, J.M. )

    1990-03-01

    The effect of laser-induced high-intensity stress waves on the hardness, fatigue resistance, and microstructure in the heat affected zone of welded 18 Ni(250) maraging steel was investigated. Laser-shock processing increased the hardness and fatigue strength of the weldments. Some melting of the surface was involved during laser-shock hardening which produced the reverted austenite phase. Microscopic analyses showed an increased dislocation density in the laser-shocked area.

  10. Numerical study on the suppression of shock induced separation on the non-adiabatic wall

    NASA Astrophysics Data System (ADS)

    Lee, Doug-Bong

    2000-12-01

    A numerical model is constructed to simulate the interaction of supersonic ( M=2.4) oblique shock wave / turbulent boundary layer on a strongly heated wall. The heated wall temperature is two times higher than the adiabatic wall temperature and the shock wave is strong enough to induce boundary layer separation. The turbulence model is Spalart-Allmaras model. The comparison of the wall pressure distribution with the experimental data ensures the validity of this numerical model. The effect of strong wall heating enlarges the separation region upstream and downstream. In order to eliminate the separation, wall bleeding is applied at the shock foot position. As a result of the parametric study, the best position of the bleeding slot is selected. The position of the bleeding is very important for the separation suppression. If the bleeding is applied upstream of shock foot, then separation reoccurs after the bleeding slot. If the bleeding is applied downstream of shock foot, the upstream boundary layer is little influenced and still separated. The bleeding vent width is about same as the upstream boundary layer thickness and suction mass flow is 20 to 80 % of the flow rate in the upstream boundary layer. The bleeding mass flow rate is very sensitive to the bleeding vent position if we fix the vent outlet pressure. The final configuration of the shock reflection pattern approaches to the non-viscous value when wall bleeding is applied at the shock impinging point.

  11. Shock-induced chemical reactions in titanium{endash}silicon powder mixtures of different morphologies: Time-resolved pressure measurements and materials analysis

    SciTech Connect

    Thadhani, N.N.; Graham, R.A.; Royal, T.; Dunbar, E.; Anderson, M.U.; Holman, G.T.

    1997-08-01

    The response of porous titanium (Ti) and silicon (Si) powder mixtures with small, medium, and coarse particle morphologies is studied under high-pressure shock loading, employing postshock materials analysis as well as nanosecond, time-resolved pressure measurements. The objective of the work was to provide an experimental basis for development of models describing shock-induced solid-state chemistry. The time-resolved measurements of stress pulses obtained with piezoelectric polymer (poly-vinyl-di-flouride) pressure gauges provided extraordinary sensitivity for determination of rate-dependent shock processes. Both techniques showed clear evidence for shock-induced chemical reactions in medium-morphology powders, while fine and coarse powders showed no evidence for reaction. It was observed that the medium-morphology mixtures experience simultaneous plastic deformation of both Ti and Si particles. Fine morphology powders show particle agglomeration, while coarse Si powders undergo extensive fracture and entrapment within the plastically deformed Ti; such processes decrease the propensity for initiation of shock-induced reactions. The change of deformation mode between fracture and plastic deformation in Si powders of different morphologies is a particularly critical observation. Such a behavior reveals the overriding influence of the shock-induced, viscoplastic deformation and fracture response, which controls the mechanochemical nature of shock-induced solid-state chemistry. The present work in conjunction with our prior studies, demonstrates that the initiation of chemical reactions in shock compression of powders is controlled by solid-state mechanochemical processes, and cannot be qualitatively or quantitatively described by thermochemical models. {copyright} {ital 1997 American Institute of Physics.}

  12. Shock-induced chemical reactions in titanium-silicon powder mixtures of different morphologies: Time-resolved pressure measurements and materials analysis

    NASA Astrophysics Data System (ADS)

    Thadhani, N. N.; Graham, R. A.; Royal, T.; Dunbar, E.; Anderson, M. U.; Holman, G. T.

    1997-08-01

    The response of porous titanium (Ti) and silicon (Si) powder mixtures with small, medium, and coarse particle morphologies is studied under high-pressure shock loading, employing postshock materials analysis as well as nanosecond, time-resolved pressure measurements. The objective of the work was to provide an experimental basis for development of models describing shock-induced solid-state chemistry. The time-resolved measurements of stress pulses obtained with piezoelectric polymer (poly-vinyl-di-flouride) pressure gauges provided extraordinary sensitivity for determination of rate-dependent shock processes. Both techniques showed clear evidence for shock-induced chemical reactions in medium-morphology powders, while fine and coarse powders showed no evidence for reaction. It was observed that the medium-morphology mixtures experience simultaneous plastic deformation of both Ti and Si particles. Fine morphology powders show particle agglomeration, while coarse Si powders undergo extensive fracture and entrapment within the plastically deformed Ti; such processes decrease the propensity for initiation of shock-induced reactions. The change of deformation mode between fracture and plastic deformation in Si powders of different morphologies is a particularly critical observation. Such a behavior reveals the overriding influence of the shock-induced, viscoplastic deformation and fracture response, which controls the mechanochemical nature of shock-induced solid-state chemistry. The present work in conjunction with our prior studies, demonstrates that the initiation of chemical reactions in shock compression of powders is controlled by solid-state mechanochemical processes, and cannot be qualitatively or quantitatively described by thermochemical models.

  13. Cold Shock Induces qnrA Expression in Shewanella algae ▿

    PubMed Central

    Kim, Hong Bin; Park, Chi Hye; Gavin, Mariah; Jacoby, George A.; Hooper, David C.

    2011-01-01

    Plasmid-carried quinolone resistance genes, like qnrA, are widespread in Enterobacteriaceae. To gain insight into its little-understood native functions, we studied the effect of environmental conditions on chromosomal qnrA expression in Shewanella algae. Among conditions of DNA damage, oxidative and osmotic stress, starvation, heat, and cold, only cold shock increased gene expression, as measured by quantitative reverse transcription-PCR (qRT-PCR). Induction was graded and occurred during growth arrest, suggesting that qnrA may contribute to the adaptation of Shewanella to low temperatures. PMID:21078945

  14. Shock-induced star formation in IC2153 - A colliding pair of galaxies

    NASA Astrophysics Data System (ADS)

    Olofsson, K.; Bergvall, N.; Ekman, A.

    1984-08-01

    Direct photographic, photometric and spectroscopic observations of the interacting galaxy-pair IC2153 = ESO 364-IG 22 are reported. The observations were performed with the ESO 3.6-m, 1.5 m and 1-m telescopes at La Silla, Chile. The mean radial velocity of the system is 2630 km/s ( = or 30 km/s), corresponding to a distance of 35 Mpc. The system is aobut nine kpc across, and its UBV colors are consistent with those found in irregular galaxies. The absolute magnitude of the system is -18.4 mag. Spectral tracings of the main components show an early-type absorption spectrum and an emission spectrum. Spectra in the intermediate region of the pair have pure emission-line characteristics. Evidence of shock-heating in the galactic H-II regions, and it is estimated that about 7 percent of the light in H-beta originates from shock-heating and that the remainder arises from photoionization by hot stars. From a stellar population model, it is found that the UBV Johnson colors in the pair represent a burst of star formation with an age of 150 million years.

  15. Extended Lagrangian Born-Oppenheimer molecular dynamics simulations of the shock-induced chemistry of phenylacetylene

    SciTech Connect

    Cawkwell, M. J. Niklasson, Anders M. N.; Dattelbaum, Dana M.

    2015-02-14

    The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.

  16. Chemical studies of L chondrites. II - Shock-induced trace element mobilization

    NASA Technical Reports Server (NTRS)

    Walsh, T. M.; Lipschutz, M. E.

    1982-01-01

    Data for 13 trace elements in 14 L4-6 chondrites of established shock history are reported and discussed. These data are combined with data for an additional 13 L4-6 chondrites to delineate the full extent of losses by shock. Trace element contents vary with petrologic type, S/Fe subgroup, and shock history, the last dominating strongly. Absolute abundances and interelement relationships for the six or seven most mobile elements vary with degree of shock-loading established from mineralogic and petrologic study. Shock-heating, previously known to have affected radiogenic Ar-40 and/or He-4 in meteorites but not other elements, apparently was at least as effective as other open-system processes in establishing mobile trace element contents of L chondrites and probably others.

  17. Chemical studies of L chondrites. II - Shock-induced trace element mobilization

    NASA Technical Reports Server (NTRS)

    Walsh, T. M.; Lipschutz, M. E.

    1982-01-01

    Data for 13 trace elements in 14 L4-6 chondrites of established shock history are reported and discussed. These data are combined with data for an additional 13 L4-6 chondrites to delineate the full extent of losses by shock. Trace element contents vary with petrologic type, S/Fe subgroup, and shock history, the last dominating strongly. Absolute abundances and interelement relationships for the six or seven most mobile elements vary with degree of shock-loading established from mineralogic and petrologic study. Shock-heating, previously known to have affected radiogenic Ar-40 and/or He-4 in meteorites but not other elements, apparently was at least as effective as other open-system processes in establishing mobile trace element contents of L chondrites and probably others.

  18. The Effect of Shock Stress and Field Strength on Shock-Induced Depoling of Normally Poled PZT 95/5

    SciTech Connect

    CHHABILDAS,LALIT C.; FURNISH,MICHAEL D.; MONTGOMERY,STEPHEN T.; SETCHELL,ROBERT E.

    1999-09-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 is utilized in a number of pulsed power devices. Several experimental and theoretical efforts are in progress in order to improve numerical simulations of these devices. In this study we have examined the shock response of normally poled PZT 95/5 under uniaxial strain conditions. On each experiment the current produced in an external circuit and the transmitted waveform at a window interface were recorded. The peak electrical field generated within the PZT sample was varied through the choice of external circuit resistance. Shock pressures were varied from 0.6 to 4.6 GPa, and peak electrical fields were varied from 0.2 to 37 kV/cm. For a 2.4 GPa shock and the lowest peak field, a nearly constant current governed simply by the remanent polarization and the shock velocity was recorded. Both decreasing the shock pressure and increasing the electrical field resulted in reduced current generation, indicating a retardation of the depoling kinetics.

  19. Effects of IgM-enriched immunoglobulin therapy in septic-shock-induced multiple organ failure: pilot study.

    PubMed

    Toth, Ildiko; Mikor, Andras; Leiner, Tamas; Molnar, Zsolt; Bogar, Lajos; Szakmany, Tamas

    2013-08-01

    Mortality due to septic-shock-induced respiratory failure remains high. A recent meta-analysis suggested that IgM-enriched immunoglobulin treatment may be beneficial in these patients. In this prospective randomised controlled pilot study we investigated the effects of IgM-enriched immunoglobulin treatment in patients with early septic shock accompanied by severe respiratory failure. 33 patients were randomly allocated to receive 5 ml/kg (predicted body weight) IgM-enriched immunoglobulin (16 patients) or placebo (17 patients), respectively, via 8 h IV-infusion for three consecutive days. Daily Multiple Organ Dysfunction Scores (MODS) were calculated. Serum C-reactive protein (CRP) and procalcitonin (PCT) levels were monitored daily. For statistical analysis two-way ANOVA was used. Daily MODS showed ongoing multiple system organ failure without significant resolution during the 8 days. Median length of ICU stay, mechanical ventilation, vasopressor support during the ICU stay and 28-day mortality were nearly identical in the two groups. Serum PCT levels showed no significant difference between the two groups, however, CRP levels were significantly lower in the IgM-enriched immunoglobulin group on days 4, 5 and 6, respectively. In this study the use of IgM-enriched immunoglobulin preparation failed to produce any improvement in the organ dysfunction as compared to standard sepsis therapy.

  20. An indirect method of measuring gas- and particulate-phase velocities of shock-induced dusty-gas flows

    NASA Astrophysics Data System (ADS)

    Gottlieb, James J.

    1992-03-01

    A method of indirectly measuring the temporally varying velocities of both the particulate and gas phases in the nonequilibrium region of a shock wave moving at constant speed in a dusty-gas mixture is described. This method is implemented by using experimental data from shock-induced air flows containing glass beads 40 microns in diameter in a dusty-gas shock-tube facility featuring a large horizontal channel 197 mm high by 76 mm wide with a special dust-injection device. Simultaneous measurements of the shock-front speed with time-of-arrival gauges, particulate concentration by light extinctiometry, and combined particulate concentration and gas density by beta-ray absorption are used in conjunction with two mass conservation laws to provide these indirect two-phase velocity measurements. Direct measurements of the particulate-phase velocity by laser-Doppler velocimetry are also presented for comparison, and the capability of the indirect velocity-measurement method is assessed.

  1. On the method of indirectly measuring gas and particulate phase velocities in shock induced dusty-gas flows

    NASA Astrophysics Data System (ADS)

    Lock, G. D.

    A method of indirectly measuring the temporally varying velocities of the gas and particulate phases in the nonequilibrium region of a shock wave moving at constant speed in a dusty-gas flow is described, and this method is assessed by using experimental data from shock-induced air flows containing 40-micron-diameter glass beads in a dusty-gas shock-tube facility featuring a large horizontal channel (19.7-cm by 7.6-cm in cross section). Simultaneous measurements of the shock-front speed with time-of-arrival gauges, particle concentration by light extinctiometry, and gas-particle mixture density by beta-ray absorption are used in conjunction with two mass conservation laws to obtain the indirect velocity measurements of both phases. A second indirect measurement of the gas-phase velocity is obtained when the gas pressure is simultaneously recorded along with the particle concentration and shock-front speed when used in conjunction with the conservation of mixture momentum. Direct measurements of the particulate-phase velocity by laser-Doppler velocimetry are also presented as a means of assessing the indirect velocity measurement method.

  2. Hypo-osmotic shock-induced subclinical inflammation of skin in a rat model of disrupted skin barrier function.

    PubMed

    Kishi, Chihiro; Minematsu, Takeo; Huang, Lijuan; Mugita, Yuko; Kitamura, Aya; Nakagami, Gojiro; Yamane, Takumi; Yoshida, Mikako; Noguchi, Hiroshi; Funakubo, Megumi; Mori, Taketoshi; Sanada, Hiromi

    2015-03-01

    Aging disrupts skin barrier function and induces xerosis accompanied by pruritus. In many cases, elderly patients complain of pruritus during skin hygiene care, a condition called aquagenic pruritus of the elderly (APE). To date, the pathophysiology and mechanism of action of APE have not been elucidated. We conducted the present study to test the hypothesis that hypo-osmotic shock of epidermal cells induces skin inflammation and elongation of C-fibers by nerve growth factor β (NGFβ) as a basic mechanism of APE. The dorsal skin of HWY rats, which are a model for disrupted skin barrier function, was treated with distilled water (hypotonic treatment [Hypo] group) or normal saline (isotonic treatment [Iso] group) by applying soaked gauze for 7 days. Untreated rats were used as a control (no-treatment [NT] group). Histochemical and immunohistochemical analyses revealed inflammatory responses in the epidermis and the dermal papillary layer in the Hypo group, while no alterations were observed in the Iso or NT groups. Induction of expression and secretion of NGFβ and elongation of C-fibers into the epidermis were found in the Hypo group. In contrast, secretion of NGFβ was significantly lower and elongation of C-fibers was not observed in the Iso group. These results suggest that hypo-osmotic shock-induced inflammatory reactions promote hypersensitivity to pruritus in skin with disrupted barrier function.

  3. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain.

    PubMed

    Wu, Yuan-Ting; Adnan, Ashfaq

    2017-07-13

    The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.

  4. Shock-Induced Transformation and Melting of Lower Mantle Minerals: Implications for Earth Evolution

    NASA Astrophysics Data System (ADS)

    Ahrens, T. J.; Mosenfelder, J. L.; Asimow, P. D.

    2008-12-01

    than expected isentropic rises in temperature with depth in model magma oceans encompassing the entire mantle. Taking into account our interpretation of the shock melting data and a critically evaluated subset of the published database of equation of state determinations from static (multi-anvil and diamond anvil) methods, we construct a proposed deep mantle and core geotherm. We note the similarity of our resulting magma ocean model [Asimow, 2008] and that of Labrosse et al. [2007]. The notion put forward by Labrosse et al. that the present ULVZ is a very thin remnant of the ancient magma ocean, which initially started to crystallize at mid-lower mantle depths, deserves further study. Evidently, if the ULVZ is indeed a dynamically stable, partially molten remnant of the primordial magma ocean, it is a candidate for hosting the deep Earth's hidden reservoir of incompatible elements,including both a substantial portion of the global inventory of heat-producing elements and the missing primordial noble gas isotopes. The density of such melts contributes to this reservoir being effectively unsampled by either solid-state mantle convection or magmatic fluids derived from the very deep Earth. Asimow, P.D., 2007. Magmatism and the evolution of the Earth's interior. Geochimica Et Cosmochimica Acta, 71(15): A40. Labrosse, S., Hernlund, J.W. and Coltice, N., 2007. A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 450(7171): 866-869.

  5. Computational study of inlet injection for a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine

    NASA Technical Reports Server (NTRS)

    Gonzalez, D. E.

    1995-01-01

    A computational simulation of reacting 2-D and 3-D flowfields in a model inlet section of a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine concept was performed. LARCK, a multi-dimensional Navier-Stokes code with finite-rate kinetics chemistry developed at NASA LaRC by J.A. White, was adapted for this simulation. The flow conditions in the simulation match those envisioned for the PM/SIC engine experiments currently planned at LaRC. The reacting flowfields were Mach 6.3 freestream air and Mach 2 hydrogen at various pressure and temperature conditions injected through a slot injector at the base of the inlet section. In the PM/SIC engine, fuel is injected at the inlet section upstream of the combustor, and reaction is initiated by the shock wave at the inlet which increases the gas temperature and pressure beyond the kinetic limits for reaction. Many challenges exist prior to establishing shock-controlled combustion as a practical engine concept. These challenges include fuel injection schemes that can provide proper fuel-air mixing without creating large losses in the inlet section, and control of the combustion process so that early ignition or combustion propagation through the inlet boundary layer does not occur. For this project, a parametrics study was carried out to model the fuel injection of hydrogen at different flow conditions. It was found that, as the fuel temperature and pressure were increased, the potential for pre-ignition was high at a short distance downstream of the slot injector. The next stage of this work will investigate injection techniques for enhancing mixing of fuel and air in a manner that prevents or reduces the potential for premature ignition observed numerically.

  6. The magnetic field of IRAS 16293-2422 as traced by shock-induced H2O masers

    NASA Astrophysics Data System (ADS)

    Alves, F. O.; Vlemmings, W. H. T.; Girart, J. M.; Torrelles, J. M.

    2012-06-01

    Context. Shock-induced H2O masers are important magnetic field tracers of very high density gas. Water masers are found in both high- and low-mass star-forming regions, and are a powerful tool for comparing magnetic field morphologies in both mass regimes. Aims: We present one of the first magnetic field determinations for the low-mass protostellar core IRAS 16293-2422 at volume densities as high as 108-10 cm-3. Our goal is to determine wether the collapsing regime of this source is controlled by magnetic fields or other factors such as turbulence. Methods: We used the Very Large Array (VLA) to carry out spectropolarimetric observations of the 22 GHz Zeeman emission from H2O masers. From the Stokes V line profile, we are then able to estimate the magnetic field strength in the dense regions around the protostar. Results: A blend of at least three maser features can be inferred from our relatively high spatial resolution data set (~0.1''), which is reproduced as a clear non-Gaussian line profile. The emission is very stable in terms of polarization fraction and position angle across the channels. The maser spots are aligned with some components of the complex outflow configuration of IRAS 16293-2422, and are excited in zones of compressed gas produced by shocks. The post-shock particle density is in the range of 1-3 × 109 cm-3, consistent with typical water-maser pumping densities. Zeeman emission is produced by a very strong line-of-sight magnetic field (B ~ 113 mG). Conclusions: The magnetic field pressure derived from our data is comparable to the ram pressure of the outflow dynamics. This indicates that the magnetic field is energetically important to the dynamical evolution of IRAS 16293-2422.

  7. Role of p38 MAPK pathway in 17β-estradiol-mediated attenuation of hemorrhagic shock-induced hepatic injury.

    PubMed

    Hsu, Jun-Te; Chen, Tsung-Hsing; Chiang, Kun-Chun; Kuo, Chia-Jung; Lin, Chun-Jung; Yeh, Ta-Sen

    2015-01-15

    Although 17β-estradiol (E2) treatment following hemorrhagic shock or ischemic reperfusion prevents organs from dysfunction and injury, the precise mechanism remains unknown. We hypothesize that the E2-mediated attenuation of liver injury following hemorrhagic shock and fluid resuscitation occurs via the p38 mitogen-activated protein kinase (MAPK)-dependent heme oxygenase (HO)-1 pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure ∼40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg) alone, or E2 plus p38 MAPK inhibitor SB-203580 (2 mg/kg), HO-1 inhibitor chromium mesoporphyrin-IX chloride (2.5 mg/kg) or estrogen receptor antagonist ICI 182,780 (3 mg/kg). At 2 h after hemorrhagic shock and fluid resuscitation, the liver injury markers were significantly increased compared with sham-operated control. Hemorrhagic shock resulted in a significant decrease in p38 MAPK phosphorylation compared with the shams. Administration of E2 following hemorrhagic shock normalized liver p38 MAPK phosphorylation, further increased HO-1 expression, and reduced cleaved caspase-3 levels. Coadministration of SB-203580 abolished the E2-mediated attenuation of the shock-induced liver injury markers. In addition, administration of chromium mesoporphyrin-IX chloride or ICI 182,780 abolished E2-mediated increases in liver HO-1 expression or p38 MAPK activation following hemorrhagic shock. Our results collectively suggest that the salutary effects of E2 on hepatic injury following hemorrhagic shock and resuscitation are in part mediated through an estrogen-receptor-related p38 MAPK-dependent HO-1 upregulation.

  8. Hemorrhagic shock-induced cerebral bioenergetic imbalance is corrected by pharmacologic treatment with EF24 in a rat model.

    PubMed

    Rao, Geeta; Xie, Jun; Hedrick, Andria; Awasthi, Vibhudutta

    2015-12-01

    Maintenance of cerebral viability and function is an important goal of critical care in victims of injury due to ischemia and hypovolemia. As part of the multiple organ dysfunction syndrome, the brain function after trauma is influenced by the systemic inflammatory response. We investigated the effect of EF24, an anti-inflammatory bis-chalcone, on cerebral bioenergetics in a rat model of 45% hemorrhagic shock. The rats were treated with EF24 (0.4 mg/kg) or EF24 with an artificial oxygen carrier liposome-encapsulated hemoglobin (LEH). The volume of LEH administered was equal to the shed blood. The brain was collected after 6 h of shock for biochemical assays. EF24 treatment showed significant recovery of ATP, phosphocreatine, and NAD/NADH ratio. It also increased citrate synthase activity and cytochrome c oxidase subunit IV expression which were reduced in shock brain. Furthermore, it reduced the shock-induced accumulation of pyruvate and pyruvate dehydrogenase kinase-1 expression, suggesting that EF24 treatment improves cerebral energetics by restoring perturbed pyruvate metabolism in the mitochondria. These effects of EF24 were associated with reduced poly(ADP-ribose) polymerase cleavage and a significant improvement in the levels of nerve growth factor and brain-derived neurotrophic factor in shock brain. Co-administration of LEH with EF24 was only marginally more effective as compared to the treatment with EF24 alone. These results show that EF24 treatment sets up a pro-survival phenotype in shock by resurrecting cerebral bioenergetics. Since EF24 was effective in the absence of accompanying fluid resuscitation, it has potential utility as a pre-hospital pharmacotherapy in shock due to accidental blood loss.

  9. Computational study of inlet injection for a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine

    NASA Technical Reports Server (NTRS)

    Gonzalez, D. E.

    1995-01-01

    A computational simulation of reacting 2-D and 3-D flowfields in a model inlet section of a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine concept was performed. LARCK, a multi-dimensional Navier-Stokes code with finite-rate kinetics chemistry developed at NASA LaRC by J.A. White, was adapted for this simulation. The flow conditions in the simulation match those envisioned for the PM/SIC engine experiments currently planned at LaRC. The reacting flowfields were Mach 6.3 freestream air and Mach 2 hydrogen at various pressure and temperature conditions injected through a slot injector at the base of the inlet section. In the PM/SIC engine, fuel is injected at the inlet section upstream of the combustor, and reaction is initiated by the shock wave at the inlet which increases the gas temperature and pressure beyond the kinetic limits for reaction. Many challenges exist prior to establishing shock-controlled combustion as a practical engine concept. These challenges include fuel injection schemes that can provide proper fuel-air mixing without creating large losses in the inlet section, and control of the combustion process so that early ignition or combustion propagation through the inlet boundary layer does not occur. For this project, a parametrics study was carried out to model the fuel injection of hydrogen at different flow conditions. It was found that, as the fuel temperature and pressure were increased, the potential for pre-ignition was high at a short distance downstream of the slot injector. The next stage of this work will investigate injection techniques for enhancing mixing of fuel and air in a manner that prevents or reduces the potential for premature ignition observed numerically.

  10. A SOFIA / FORCAST Picture of Shock-Induced Dust Formation and Evolution in the Classical Nova V5668 Sgr

    NASA Astrophysics Data System (ADS)

    Helton, L. Andrew; Calvén, Emilia; Sankrit, Ravi; Gehrz, Robert D.; Woodward, Charles E.; Wagner, R. Mark

    2017-06-01

    Conditions in the ejecta of classical novae are often suitable for the production of copious amounts of dust. Evidence for dust condensation is typically revealed by an inflection in the light curve due to obscuration of the central source by dust that can result in up to 6-8 magnitudes of extinction. The dust condensation timescale is quite brief with the transition from the onset of formation to maximum extinction taking only a few days. In many nova systems, there is evidence for simultaneous production of both carbonaceous and oxygen-rich dust species in the ejecta. Recent theoretical work by Derdzinki et al. (2017 MNRAS, submitted) suggests that the observational evidence for both rapid dust condensation and mixed chemistry can potentially be explained by shocks in the ejecta outflow.The classical nova V5668 Sgr (Nova Sagittarii 2015 No. 2) was discovered on 2015 March 15.6 UT. Carbon monoxide, typically a harbinger of dust formation in novae, was detected in the system only 12 days later (Banerjee et al. 2015) with dust in evidence shortly thereafter. Here we present spectra of V5668 Sgr obtained with the FORCAST mid-infrared instrument on-board the Stratospheric Observatory For Infrared Astronomy (SOFIA) and the Near-Infrared Camera/Spectrograph (NICS) on the 1.2-m Mt. Abu Infrared Observatory. These data include observations from the very start of dust condensation, from the epoch of maximum extinction, and from two epochs at the late stages of evolution as the ejecta were dispersed. We identify the mixed chemistry dust species in the ejecta, assess the conditions in the ejecta giving rise to the dust, and analyze the abundances in the ejecta to understand the processes of dust formation and evolution in the context of the shock-induced dust formation model.

  11. RNA-Seq-Based Analysis of the Physiologic Cold Shock-Induced Changes in Moraxella catarrhalis Gene Expression

    PubMed Central

    Spaniol, Violeta; Wyder, Stefan; Aebi, Christoph

    2013-01-01

    Background Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. The prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis is greatest in winter. We investigated how M. catarrhalis uses the physiologic exposure to cold air to regulate pivotal survival systems that may contribute to M. catarrhalis virulence. Results In this study we used the RNA-seq techniques to quantitatively catalogue the transcriptome of M. catarrhalis exposed to a 26°C cold shock or to continuous growth at 37°C. Validation of RNA-seq data using quantitative RT-PCR analysis demonstrated the RNA-seq results to be highly reliable. We observed that a 26°C cold shock induces the expression of genes that in other bacteria have been related to virulence a strong induction was observed for genes involved in high affinity phosphate transport and iron acquisition, indicating that M. catarrhalis makes a better use of both phosphate and iron resources after exposure to cold shock. We detected the induction of genes involved in nitrogen metabolism, as well as several outer membrane proteins, including ompA, m35-like porin and multidrug efflux pump (acrAB) indicating that M. catarrhalis remodels its membrane components in response to downshift of temperature. Furthermore, we demonstrate that a 26°C cold shock enhances the induction of genes encoding the type IV pili that are essential for natural transformation, and increases the genetic competence of M. catarrhalis, which may facilitate the rapid spread and acquisition of novel virulence-associated genes. Conclusion Cold shock at a physiologically relevant temperature of 26°C induces in M. catarrhalis a complex of adaptive mechanisms that could convey novel pathogenic functions and may contribute to enhanced colonization and virulence. PMID:23844181

  12. Shock Induced Cavitation

    DTIC Science & Technology

    1991-02-01

    Rehak, Margareta L, Frank L. DiMaggio and Ivan S. Sandler, "Interactive Ap- proximations for a Cavitating Fluid around a Floating Structure...INC ATTN: LIBRARY ATTN: R FRANK DEPARTMENT OF THE AIR FORCE BDM INTERNATIONAL INC ATTN: E DORCHAK AIR FORCE INSTITUTE OF TECHNOLOGY/EN ATTN: COMMANDER...F SHELTON ATTN: LIBRARY B KINSLOW SCIENCE APPLICATIONS INTL CORP ATTN: J R BRITT KAMAN SCIENCES CORP ATTN: DASIAC SRI INTERNATIONAL ATTN: E CONRAD

  13. Shock induced cavity collapse

    NASA Astrophysics Data System (ADS)

    Skidmore, Jonathan; Doyle, Hugo; Tully, Brett; Betney, Matthew; Foster, Peta; Ringrose, Tim; Ramasamy, Rohan; Parkin, James; Edwards, Tom; Hawker, Nicholas

    2016-10-01

    Results from the experimental investigation of cavity collapse driven by a strong planar shock (>6km/s) are presented. Data from high speed framing cameras, laser backlit diagnostics and time-resolved pyromety are used to validate the results of hydrodynamic front-tracking simulations. As a code validation exercise, a 2-stage light gas gun was used to accelerate a 1g Polycarbonate projectile to velocities exceeding 6km/s; impact with a PMMA target containing a gas filled void results in the formation of a strong shockwave with pressures exceeding 1Mbar. The subsequent phenomena associated with the collapse of the void and excitation of the inert gas fill are recorded and compared to simulated data. Variation of the mass density and atomic number of the gas fill is used to alter the plasma parameters furthering the extent of the code validation.

  14. Shock-induced microdeformations in quartz and other mineralogical indications of an impact event at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Bohor, B.F.

    1990-01-01

    The event terminating the Cretaceous period and the Mesozoic era caused massive extinctions of flora and fauna worldwide. Theories of the nature of this event can be classed as endogenic (volcanic, climatic, etc.) or exogenic (extraterrestrial causes). Mineralogical evidence from the boundary clays and claystones strongly favor the impact of an extraterrestrial body as the cause of this event. Nonmarine KT boundary claystones are comprised of two separate layers-an upper layer composed of high-angle ejecta material (shocked quartz, altered glass and spinel) and a basal kaolinitic layer containing spherules, clasts, and altered glass, together with some shocked grains. Recognition of this dual-layered nature of the boundary clay is important for the determination of the timing and processes involved in the impact event and in the assignment and interpretation of geochemical signatures. Multiple sets of shock-induced microdeformations (planar features) in quartz grains separated from KT boundary clays provide compelling evidence of an impact event. This mineralogical manifestation of shock metamorphism is associated worldwide with a large positive anomaly of iridium in these boundary clays, which has also been considered indicative of the impact of a large extraterrestrial body. Global distributions of maximum sizes of shocked quartz grains from the boundary clays and the mineralogy of the ejecta components favor an impact on or near the North American continent. Spinel crystals (magnesioferrite) occur in the boundary clays as micrometer-sized octahedra or skeletal forms. Their composition differs from that of spinels found in terrestrial oceanic basalts. Magnesioferrite crystals are restricted to the high-angle ejecta layer of the boundary clays and their small size and skeletal morphology suggest that they are condensation products of a vaporized bolide. Hollow spherules ranging up to 1 mm in size are ubiquitously associated with the boundary clays. In nonmarine

  15. High Reynolds number tests of a C-141A aircraft semispan model to investigate shock-induced separation. [boundary layer separation

    NASA Technical Reports Server (NTRS)

    Blackerby, W. T.; Cahill, J. F.

    1975-01-01

    Results from a high Reynolds number transonic wind tunnel investigation are presented. Wing chordwise pressure distributions were measured over a matrix of Mach numbers and angles-of-attack for which shock-induced separations are known to exist. The range of Reynolds number covered by these data nearly spanned the gap between previously available wind tunnel and flight test data. The results are compared with both flight and low Reynolds number data, and show that use of the semispan test technique produced good correlation with the prior data at both ends of the Reynolds number range, but indicated strong sensitivity to details of the test setup.

  16. CD44-Deficiency Attenuates the Immunologic Responses to LPS and Delays the Onset of Endotoxic Shock-Induced Renal Inflammation and Dysfunction

    PubMed Central

    Rampanelli, Elena; Dessing, Mark C.; Claessen, Nike; Teske, Gwendoline J. D.; Joosten, Sander P. J.; Pals, Steven T.; Leemans, Jaklien C.; Florquin, Sandrine

    2013-01-01

    Acute kidney injury (AKI) is a common complication during systemic inflammatory response syndrome (SIRS), a potentially deadly clinical condition characterized by whole-body inflammatory state and organ dysfunction. CD44 is a ubiquitously expressed cell-surface transmembrane receptor with multiple functions in inflammatory processes, including sterile renal inflammation. The present study aimed to assess the role of CD44 in endotoxic shock-induced kidney inflammation and dysfunction by using CD44 KO and WT mice exposed intraperitoneally to LPS for 2, 4, and 24 hours . Upon LPS administration, CD44 expression in WT kidneys was augmented at all time-points. At 2 and 4 hours, CD44 KO animals showed a preserved renal function in comparison to WT mice. In absence of CD44, the pro-inflammatory cytokine levels in plasma and kidneys were lower, while renal expression of the anti-inflammatory cytokine IL-10 was higher. The cytokine levels were associated with decreased leukocyte influx and endothelial activation in CD44 KO kidneys. Furthermore, in vitro assays demonstrated a role of CD44 in enhancing macrophage cytokine responses to LPS and leukocyte migration. In conclusion, our study demonstrates that lack of CD44 impairs the early pro-inflammatory cytokine response to LPS, diminishes leukocyte migration/chemotaxis and endothelial activation, hence, delays endotoxic shock-induced AKI. PMID:24376813

  17. Effects of Early Continuous Venovenous Hemofiltration on E-Selectin, Hemodynamic Stability, and Ventilatory Function in Patients with Septic-Shock-Induced Acute Respiratory Distress Syndrome

    PubMed Central

    2016-01-01

    Objective. To investigate the effects of 72-hour early-initiated continuous venovenous hemofiltration (ECVVH) treatment in patients with septic-shock-induced acute respiratory distress syndrome (ARDS) (not acute kidney injury, AKI) with regard to serum E-selectin and measurements of lung function and hemodynamic stability. Methods. This prospective nonblinded single institutional randomized study involved 51 patients who were randomly assigned to receive or not receive ECVVH, an ECVVH group (n = 24) and a non-ECVVH group (n = 27). Besides standard therapies, patients in ECVVH group underwent CVVH for 72 h. Results. At 0 and 24 h after initiation of treatment, arterial partial pressure of oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio, extravascular lung water index (EVLWI), and E-selectin level were not significantly different between groups (all P > 0.05). Compared to non-ECVVH group, PaO2/FiO2 is significantly higher and EVLWI and E-selectin level are significantly lower in ECVVH group (all P < 0.05) at 48 h and 72 h after initiation of treatment. The lengths of mechanical ventilation and stay in intensive care unit (ICU) were shorter in ECVVH group (all P < 0.05), but there was no difference in 28-day mortality between two groups. Conclusions. In patients with septic-shock-induced ARDS (not AKI), treatment with ECVVH in addition to standard therapies improves endothelial function, lung function, and hemodynamic stability and reduces the lengths of mechanical ventilation and stay in ICU. PMID:28044135

  18. Suppressor of sable [Su(s)] and Wdr82 down-regulate RNA from heat-shock-inducible repetitive elements by a mechanism that involves transcription termination.

    PubMed

    Brewer-Jensen, Paul; Wilson, Carrie B; Abernethy, John; Mollison, Lonna; Card, Samantha; Searles, Lillie L

    2016-01-01

    Although RNA polymerase II (Pol II) productively transcribes very long genes in vivo, transcription through extragenic sequences often terminates in the promoter-proximal region and the nascent RNA is degraded. Mechanisms that induce early termination and RNA degradation are not well understood in multicellular organisms. Here, we present evidence that the suppressor of sable [su(s)] regulatory pathway of Drosophila melanogaster plays a role in this process. We previously showed that Su(s) promotes exosome-mediated degradation of transcripts from endogenous repeated elements at an Hsp70 locus (Hsp70-αβ elements). In this report, we identify Wdr82 as a component of this process and show that it works with Su(s) to inhibit Pol II elongation through Hsp70-αβ elements. Furthermore, we show that the unstable transcripts produced during this process are polyadenylated at heterogeneous sites that lack canonical polyadenylation signals. We define two distinct regions that mediate this regulation. These results indicate that the Su(s) pathway promotes RNA degradation and transcription termination through a novel mechanism. © 2015 Brewer-Jensen et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Suppressor of sable [Su(s)] and Wdr82 down-regulate RNA from heat-shock-inducible repetitive elements by a mechanism that involves transcription termination

    PubMed Central

    Brewer-Jensen, Paul; Wilson, Carrie B.; Abernethy, John; Mollison, Lonna; Card, Samantha

    2016-01-01

    Although RNA polymerase II (Pol II) productively transcribes very long genes in vivo, transcription through extragenic sequences often terminates in the promoter-proximal region and the nascent RNA is degraded. Mechanisms that induce early termination and RNA degradation are not well understood in multicellular organisms. Here, we present evidence that the suppressor of sable [su(s)] regulatory pathway of Drosophila melanogaster plays a role in this process. We previously showed that Su(s) promotes exosome-mediated degradation of transcripts from endogenous repeated elements at an Hsp70 locus (Hsp70-αβ elements). In this report, we identify Wdr82 as a component of this process and show that it works with Su(s) to inhibit Pol II elongation through Hsp70-αβ elements. Furthermore, we show that the unstable transcripts produced during this process are polyadenylated at heterogeneous sites that lack canonical polyadenylation signals. We define two distinct regions that mediate this regulation. These results indicate that the Su(s) pathway promotes RNA degradation and transcription termination through a novel mechanism. PMID:26577379

  20. Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Choubey, Amit

    Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes. We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by

  1. The use of methylene blue in the treatment of anaphylactic shock induced by compound 48/80: experimental studies in rabbits.

    PubMed

    Buzato, Marcelo A S; Viaro, Fernanda; Piccinato, Carlos E; Evora, Paulo R B

    2005-06-01

    In this study, the isolated use of methylene blue (MB) in the treatment of anaphylactic shock induced by Compound 48/80 (C48/80), a potent histamine releaser, was examined, and the study of the effects of MB on the function of the aorta artery endothelium was accomplished in vitro. MB was used in a single 3.0 mg/kg dose, and C48/80 was used in a single 4.5 mg/kg dose. The study protocol included the following experimental groups, containing six animals each: group I (control), animals in the absence of any drug action; group II (MB), MB infusion; Group III (C48/80), anaphylactic shock induced by using C48/80; group IV (C48/80 + MB), anaphylactic shock treated with MB infusion at the moment of major hypotension; and group V (MB + C48/80), prevention of anaphylactic shock with MB by means of MB infusion minutes before the 4.5 mg/kg C48/80 infusion. Nitric oxide plasma levels were measured in each of the experimental groups. After the in vivo studies were performed, an in vitro study was conducted using segments of the abdominal aortas of the rabbits to determine the effect of MB on the arterial endothelium. The results obtained in the present investigation have shown that MB intravenous infusion does not change the mean arterial pressure when compared with the control group (n = 6 in each group, P < 0.05); that C48/80 is effective in producing experimental anaphylactic shock (n = 6, P < 0.05); that the attempt to prevent anaphylactic shock with MB results in a mean prolongation of animal survival ranging from 17 to 34 min (n = 6 in each group, P < 0.05); that MB is effective in reversing anaphylactic shock in all the studied rabbits (n = 6, P < 0.05); that absolute and percentage plasma nitrate values obtained with the experimental groups do not differ (n = 6, each group, P < 0.05); and that the in vitro study of segments of abdominal aorta has shown that there has not been endothelial dysfunction in any of the groups (n = 6 in each group, P < 0.05). The good results

  2. Analysis of critical dynamics for shock-induced adiabatic explosions by means of the Cauchy problem for the shock transformation

    NASA Astrophysics Data System (ADS)

    Vidal, P.; Khasainov, B. A.

    We present a theoretical and numerical study on the induction of adiabatic explosions by accelerated curved shocks in homogeneous explosives, and pay a special attention to critical conditions for initiation. We characterize the first stage of the decomposition process, or induction, as an initial-value problem. During induction, the reaction progress-variable remains small; the induction time is given by the runaway of the dependent variables and corresponds to a logarithmic singularity in theirs material distributions. We express these distributions as first-order expansions in the progress variable about the shock. Then, the framework of our procedure is the formal Cauchy problem for quasi-linear hyperbolic sets of first-order differential equations, such as the balance laws for adiabatic flows of inviscid fluids considered in this study. When a shock front is used as data surface, the solution to the Cauchy problem yields the flow derivatives at the shock, then the induction time, as functions of the shock normal velocity and acceleration, Dn and δ Dn/δ t, and the shock total curvature C. We next derive a necessary condition for explosion as a constraint among Dn, δ Dn/δ t and C that ensures bounded values of the induction time. This criterion is akin to Semenov's, in the sense that the critical condition for explosion is that the heat-production rate must just exceed the heat-loss rate, here given by the volumetric expansion rate at the shock. The violation of the criterion defines a critical shock dynamics as a relationship among Dn, δ Dn/δ t and C that generates infinite induction times. Depending on the rear-boundary conditions, which determine the shock dynamics, this event can be interpreted as either a non-initiation, or the decoupling of the shock and of the flame front induced by the shock. We illustrate our approach by a simple solution to the problem of the initiation by impact of a noncompressible piston. From the continuity constraint in the

  3. Cold shock induces the insertion of a cryptic exon in the neurofibromatosis type 1 (NF1) mRNA.

    PubMed

    Ars, E; Serra, E; de la Luna, S; Estivill, X; Lázaro, C

    2000-03-15

    Alternative splicing is a regulatory process of gene expression based on the flexibility in the selection of splice sites. In this manuscript we present the characterisation of an alternative splicing of the NF1 pre-mRNA induced by cold-shock conditions. We demonstrate that the accuracy of the splicing mechanism was perturbed after keeping samples for a short period of time at room temperature, resulting in the insertion of a 31-bp cryptic exon between exons 4a and 4b of the NF1 mRNA. This alternative splicing is not cell type specific and is not induced by other stress conditions such as heat shock or hyper-osmolarity. The alternative spliced mRNA is efficiently transported to the cytoplasm and it is proven to belong to the poly A(+)mRNA fraction. Previous misleading interpretations about this transcript, together with our finding relating its presence to cold shock and not to the NF1 disease, strongly indicate that this phenomenon should be taken into account in genetic testing when RNA methodology is used for mutation detection. This is the first description of an alternative splicing induced by cold shock in a human pre-mRNA and should provide further insights into the factors that control alternative splicing.

  4. A study of the effects of Reynolds number and Mach number on constant pressure coefficient jump for shock-induced trailing-edge separation

    NASA Technical Reports Server (NTRS)

    Cunningham, Atlee M., Jr.; Spragle, Gregory S.

    1987-01-01

    The influence of Mach and Reynolds numbers as well as airfoil and planform geometry on the phenomenon of constant shock jump pressure coefficient for conditions of shock induced trailing edge separation (SITES) was studied. It was demonstrated that the phenomenon does exist for a wide variety of two and three dimensional flow cases and that the influence of free stream Mach number was not significant. The influence of Reynolds number was found to be important but was not strong. Airfoil and planform geometric characteristics were found to be very important where the pressure coefficient jump was shown to vary with the sum of: (1) airfoil curvature at the upper surface crest, and (2) camber surface slope at the trailing edge. It was also determined that the onset of SITES could be defined as a function of airfoil geometric parameters and Mach number normal to the leading edge. This onset prediction was shown to predict the angle of onset to within + or - 1 deg accuracy or better for about 90% of the cases studied.

  5. Shock induced reaction in Chicxulub target materials (CaSO4 and SiO2) and their relation to extinctions

    NASA Astrophysics Data System (ADS)

    Chen, Guangqing; Ahrens, Thomas J.

    1993-03-01

    The global platinum element rich layer, the presence of shocked quartz grains (in some cases with stishovite), and the observation of a tektite-rich layer, precisely at the K-T boundary, are the three major arguments for the extinction bolide impact hypothesis of Alvarez et al. Tektites (spherules) from Beloc in Haiti and Mimbral in Mexico received particular interest because of their geological proximity to the Chicxulub impact structure, which is a leading candidate for at least one of the K-T impact craters. Although in most localities the original glass has weathered to clay minerals, some shock-induced glass is found in outcrops and drill cores which is used for Ar-38/Ar-39 dating. The glassy tektites were found to be chemically similar and coeval at 65.0 Ma with Chicxulub melt rock. Two kinds of K-T spherules were discovered: (1) a silic black glass; and (2) a yellow glass, enriched in Ca, Mg, and S. The high sulfur content of the glass and the abundance of anhydrite (CaSO4) in the carbonate-evaporite sequence observed in Drill Holes Y-1 and Y-2 at Chicxulub prompted studies of calcium sulfate devolatization. Further discussion of our experiments is presented.

  6. Shock induced reaction in Chicxulub target materials (CaSO4 and SiO2) and their relation to extinctions

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Ahrens, Thomas J.

    1993-01-01

    The global platinum element rich layer, the presence of shocked quartz grains (in some cases with stishovite), and the observation of a tektite-rich layer, precisely at the K-T boundary, are the three major arguments for the extinction bolide impact hypothesis of Alvarez et al. Tektites (spherules) from Beloc in Haiti and Mimbral in Mexico received particular interest because of their geological proximity to the Chicxulub impact structure, which is a leading candidate for at least one of the K-T impact craters. Although in most localities the original glass has weathered to clay minerals, some shock-induced glass is found in outcrops and drill cores which is used for Ar-38/Ar-39 dating. The glassy tektites were found to be chemically similar and coeval at 65.0 Ma with Chicxulub melt rock. Two kinds of K-T spherules were discovered: (1) a silic black glass; and (2) a yellow glass, enriched in Ca, Mg, and S. The high sulfur content of the glass and the abundance of anhydrite (CaSO4) in the carbonate-evaporite sequence observed in Drill Holes Y-1 and Y-2 at Chicxulub prompted studies of calcium sulfate devolatization. Further discussion of our experiments is presented.

  7. Modeling of shock-induced solid state chemistry. [Al-Ni, Al-Ti, and ZnO-Fe/sub 2/O/sub 3/

    SciTech Connect

    Horie, Y.; Kipp, M.E.

    1987-06-01

    This report, a sequel to Sandia Report 86-0922 entitled ''Shock-Induced Solid State Chemistry: Theoretical Background'' by Y. Horie, describes models of chemical reactions in inorganic powder mixtures under high pressure shock wave loading. In the present work, two mathematical models, one homogeneous and the other heterogeneous, were formulated based mostly upon existing results of observations on post-shock samples of Al-Ni, Al-Ti, and ZnO-Fe/sub 2/O/sub 3/ mixtures. Two basic mechanisms were isolated for the development of the initial models: (1) the creation of a nonequilibrium mixture by dynamic mass mixing, and (2) ensuing chemical reactions. The homogeneous model was evaluated under shock conditions using the one dimensional wave propagation code WONDY-V. We found that results of recent measurements can be rationalized by the model. The model also suggested requisite conditions for the thermal excursion of localized reactions: a localized initial peak temperature of 1000K to 2000K and reaction time constants of 1 ..mu..sec or less. Evidence that reactions occurred while the sample was under shock loading may also be rationalized by observations of post-shock samples.

  8. Stimulation of glycogen synthesis by heat shock in L6 skeletal-muscle cells: regulatory role of site-specific phosphorylation of glycogen-associated protein phosphatase 1.

    PubMed Central

    Moon, Byoung; Duddy, Noreen; Ragolia, Louis; Begum, Najma

    2003-01-01

    Recent evidence suggests that glycogen-associated protein phosphatase 1 (PP-1(G)) is essential for basal and exercise-induced glycogen synthesis, which is mediated in part by dephosphorylation and activation of glycogen synthase (GS). In the present study, we examined the potential role of site-specific phosphorylation of PP-1(G) in heat-shock-induced glycogen synthesis. L6 rat skeletal-muscle cells were stably transfected with wild-type PP-1(G) or with PP-1(G) mutants in which site-1 (S1) Ser(48) and site-2 (S2) Ser(67) residues were substituted with Ala. Cells expressing wild-type and PP-1(G) mutants, S1, S2 and S1/S2, were examined for potential alterations in glycogen synthesis after a 60 min heat shock at 45 degrees C, followed by analysis of [(14)C]glucose incorporation into glycogen at 37 degrees C. PP-1(G) S1 mutation caused a 90% increase in glycogen synthesis on heat-shock treatment, whereas the PP-1(G) S2 mutant was not sensitive to heat stress. The S1/S2 double mutant was comparable with wild-type, which showed a 30% increase over basal. Heat-shock-induced glycogen synthesis was accompanied by increased PP-1 and GS activities. The highest activation was observed in S1 mutant. Heat shock also resulted in a rapid and sustained Akt/ glycogen synthase kinase 3 beta (GSK-3 beta) phosphorylation. Wortmannin blocked heat-shock-induced Akt/GSK-3 beta phosphorylation, prevented 2-deoxyglucose uptake and abolished the heat-shock-induced glycogen synthesis. Muscle glycogen levels regulate GS activity and glycogen synthesis and were found to be markedly depleted in S1 mutant on heat-shock treatment, suggesting that PP-1(G) S1 Ser phosphorylation may inhibit glycogen degradation during thermal stimulation, as S1 mutation resulted in excessive glycogen synthesis on heat-shock treatment. In contrast, PP-1(G) S2 Ser phosphorylation may promote glycogen breakdown under stressful conditions. Heat-shock-induced glycogenesis appears to be mediated via phosphoinositide 3

  9. Shock induced dissociation of polyethylene

    SciTech Connect

    Morris, C.E.; Loughran, E.D.; Mortensen, G.F.; Gray, G.T. III; Shaw, M.S.

    1989-01-01

    To identify the physical processes occurring on the Hugoniot, shock-recovery experiments were performed. Cylindrical recovery systems were used that enabled a wide range of single-shock Hugoniot states to be examined. Mass spectroscopy was used to examine the gaseous dissociation products. X-ray and TEM measurements were made to characterize the post-shock carbon structures. A dissociation product equation of state is presented to interpret the observed results. Polyethylene (PE) samples that were multiply shocked to their final states dissociated at much higher pressures than single-shocked samples. 5 refs., 2 figs., 1 tab.

  10. Effects of cycloheximide on thermotolerance expression, heat shock protein synthesis, and heat shock protein mRNA accumulation in rat fibroblasts.

    PubMed Central

    Widelitz, R B; Magun, B E; Gerner, E W

    1986-01-01

    A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis. Images PMID:3785158

  11. Influence of heat shock on glycerol production in alcohol fermentation.

    PubMed

    Berovic, Marin; Pivec, Aleksandra; Kosmerl, Tatjana; Wondra, Mojmir; Celan, Stefan

    2007-02-01

    The influence of single and double heat shocks induced during the exponential growth phase of the Saccharomyces cerevisiae fermentation of cultivar Sauvignon Blanc grape must was examined. Rapid temperature changes from 18 degrees C to 34 degrees C have been applied. The effect of the duration of exposure to a high temperature has been analyzed. By the applications of a single heat shock and a double heat shock, up to 8.2 g l(-1) and 11.0 g l(-1) glycerol have been produced, respectively. To prevent the evaporation of fine wine bouquet compounds during the temperature changes, reflux coolers on the top of bioreactors have been employed. By using this method, glycerol production was increased by up to 65%.

  12. Heat Shock Partially Dissociates the Overlapping Modules of the Yeast Protein-Protein Interaction Network: A Systems Level Model of Adaptation

    PubMed Central

    Mihalik, Ágoston; Csermely, Peter

    2011-01-01

    Network analysis became a powerful tool giving new insights to the understanding of cellular behavior. Heat shock, the archetype of stress responses, is a well-characterized and simple model of cellular dynamics. S. cerevisiae is an appropriate model organism, since both its protein-protein interaction network (interactome) and stress response at the gene expression level have been well characterized. However, the analysis of the reorganization of the yeast interactome during stress has not been investigated yet. We calculated the changes of the interaction-weights of the yeast interactome from the changes of mRNA expression levels upon heat shock. The major finding of our study is that heat shock induced a significant decrease in both the overlaps and connections of yeast interactome modules. In agreement with this the weighted diameter of the yeast interactome had a 4.9-fold increase in heat shock. Several key proteins of the heat shock response became centers of heat shock-induced local communities, as well as bridges providing a residual connection of modules after heat shock. The observed changes resemble to a ‘stratus-cumulus’ type transition of the interactome structure, since the unstressed yeast interactome had a globally connected organization, similar to that of stratus clouds, whereas the heat shocked interactome had a multifocal organization, similar to that of cumulus clouds. Our results showed that heat shock induces a partial disintegration of the global organization of the yeast interactome. This change may be rather general occurring in many types of stresses. Moreover, other complex systems, such as single proteins, social networks and ecosystems may also decrease their inter-modular links, thus develop more compact modules, and display a partial disintegration of their global structure in the initial phase of crisis. Thus, our work may provide a model of a general, system-level adaptation mechanism to environmental changes. PMID:22022244

  13. Thermal inactivation of Listeria monocytogenes during rapid and slow heating in sous vide cooked beef.

    PubMed

    Hansen, T B; Knøchel, S

    1996-06-01

    Heating at slowly rising temperatures is suspected to enhance thermotolerance in Listeria monocytogenes and, since anaerobic environments have been shown to facilitate resuscitation of heat-injured cells of this micro-organism, concern may arise about the possibility of L. monocytogenes surviving in minimally preserved products. The effect of rapid ( > 10 degrees C min-1) and slow (0.3 and 0.6 degrees C min-1) heating on survival of L. monocytogenes in sous vide cooked beef was therefore examined at mild processing temperatures of 56 degrees, 60 degrees and 64 degrees C. No statistically significant difference (P = 0.70) was observed between the tested heating regimes. Since the average pH of beef was low (5.6), and little or no effect was observed, a pH-dependency of heat shock-induced thermotolerance in L. monocytogenes is suggested to account for this result.

  14. Racemization of Valine by Impact-Induced Heating

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshihiro; Takase, Atsushi; Sekine, Toshimori; Kakegawa, Takeshi; Kobayashi, Takamichi

    2017-05-01

    Homochirality plays an important role in all living organisms but its origin remains unclear. It also remains unclear whether such chiral molecules survived terrestrial heavy impact events. Impacts of extraterrestrial objects on early oceans were frequent and could have affected the chirality of oceanic amino acids when such amino acids accumulated during impacts. This study investigated the effects of shock-induced heating on enantiomeric change of valine with minerals such as olivine ([Mg0.9, Fe0.1]2SiO4), hematite (Fe2O3), and calcite (CaCO3). With a shock wave generated by an impact at 0.8 km/s, both uc(d)- and uc(l)-enriched valine were significantly decomposed and partially racemized under all experimental conditions. Different minerals had different shock impedances; therefore, they provided different P-T conditions for identical impacts. Furthermore, the high pH of calcite promoted the racemization of valine. The results indicate that in natural hypervelocity impacts, amino acids in shocked oceanic water would have decomposed completely, since impact velocity and the duration of shock compression and heating are typically greater in hypervelocity impact events than those in experiments. Even with the shock wave by the impact of small and decelerated projectiles in which amino acids survive, the shock heating may generate sufficient heat for significant racemization in shocked oceanic water. However, the duration of shock induced heating by small projectiles is limited and the population of such decelerated projectiles would be limited. Therefore, even though impacts of asteroids and meteorites were frequent on the prebiotic Earth, impact events would not have significantly changed the ee of proteinogenic amino acids accumulated in the entire ocean.

  15. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  16. Homologous recombination preferentially repairs heat-induced DNA double-strand breaks in mammalian cells.

    PubMed

    Takahashi, Akihisa; Mori, Eiichiro; Nakagawa, Yosuke; Kajihara, Atsuhisa; Kirita, Tadaaki; Pittman, Douglas L; Hasegawa, Masatoshi; Ohnishi, Takeo

    2016-11-13

    Heat shock induces DNA double-strand breaks (DSBs), but the precise mechanism of repairing heat-induced damage is unclear. Here, we investigated the DNA repair pathways involved in cell death induced by heat shock. B02, a specific inhibitor of human RAD51 (homologous recombination; HR), and NU7026, a specific inhibitor of DNA-PK (non-homologous end-joining; NHEJ), were used for survival assays of human cancer cell lines with different p53-gene status. Mouse embryonic fibroblasts (MEFs) lacking Lig4 (NHEJ) and/or Rad54 (HR) were used for survival assays and a phosphorylated histone H2AX at Ser139 (γH2AX) assay. MEFs lacking Rad51d (HR) were used for survival assays. SPD8 cells were used to measure HR frequency after heat shock. Human cancer cells were more sensitive to heat shock in the presence of B02 despite their p53-gene status, and the effect of B02 on heat sensitivity was specific to the G2 phase. Rad54-deficient MEFs were sensitive to heat shock and showed prolonged γH2AX signals following heat shock. Rad51d-deficient MEFs were also sensitive to heat shock. Moreover, heat shock-stimulated cells had increased HR. The HR pathway plays an important role in the survival of mammalian cells against death induced by heat shock via the repair of heat-induced DNA DSBs.

  17. Heat shock protein synthesis and trehalose accumulation are not required for induced thermotolerance in depressed Saccharomyces cerevisiae.

    PubMed

    Gross, C; Watson, K

    1996-03-27

    Intrinsic and heat shock induced thermotolerance of Saccharomyces cerevisiae was investigated in cells grown on glucose and acetate supplemented media. Heat shocked cells (37 degrees C/30 min), in either medium, exhibited induced synthesis of heat shock proteins (hsp) and trehalose. In all cases, with the notable exception of repressed cells of a relatively thermosensitive strain, heat shock acquisition of thermotolerance also occurred in the absence of protein synthesis and coincident decrease in trehalose accumulation. Results indicted that the marked increase in thermotolerance exhibited by non-fermenting (acetate) cells compared with fermenting (glucose) cells was not closely correlated with levels of hsp or trehalose. It was concluded that mechanisms for intrinsic and induced thermotolerance appear to be different and that growth on acetate endows cells with a biochemical predisposition, other than hsp or trehalose, that confers intrinsic tolerance, a factor which may be subject to heat induced modification.

  18. Heat Islands

    EPA Pesticide Factsheets

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  19. Transcription Regulation of HYPK by Heat Shock Factor 1

    PubMed Central

    Das, Srijit; Bhattacharyya, Nitai Pada

    2014-01-01

    HYPK (Huntingtin Yeast Partner K) was originally identified by yeast two-hybrid assay as an interactor of Huntingtin, the protein mutated in Huntington's disease. HYPK was characterized earlier as an intrinsically unstructured protein having chaperone-like activity in vitro and in vivo. HYPK has the ability of reducing rate of aggregate formation and subsequent toxicity caused by mutant Huntingtin. Further investigation revealed that HYPK is involved in diverse cellular processes and required for normal functioning of cells. In this study we observed that hyperthermia increases HYPK expression in human and mouse cells in culture. Expression of exogenous Heat Shock Factor 1 (HSF1), upon heat treatment could induce HYPK expression, whereas HSF1 knockdown reduced endogenous as well as heat-induced HYPK expression. Putative HSF1-binding site present in the promoter of human HYPK gene was identified and validated by reporter assay. Chromatin immunoprecipitation revealed in vivo interaction of HSF1 and RNA polymerase II with HYPK promoter sequence. Additionally, acetylation of histone H4, a known epigenetic marker of inducible HSF1 binding, was observed in response to heat shock in HYPK gene promoter. Overexpression of HYPK inhibited cells from lethal heat-induced death whereas knockdown of HYPK made the cells susceptible to lethal heat shock-induced death. Apart from elevated temperature, HYPK was also upregulated by hypoxia and proteasome inhibition, two other forms of cellular stress. We concluded that chaperone-like protein HYPK is induced by cellular stress and under transcriptional regulation of HSF1. PMID:24465598

  20. Genome-wide chromatin remodeling modulates the Alu heat shock response.

    PubMed

    Kim, C; Rubin, C M; Schmid, C W

    2001-10-03

    During heat shock recovery in Hela cells, the level of Alu RNA transiently increases with kinetics that approximately parallel the transient expression of heat shock protein mRNAs. Coincidentally, there is a transient increase in the accessibility of Alu chromatin to restriction enzyme cleavage suggesting that an opening and re-closing of chromatin regulates the Alu stress response. Similar changes occur in alpha satellite and LINE1 chromatin showing that heat shock induces a genome-wide remodeling of chromatin structure which is independent of transcription. The increased accessibility of restriction sites within these repetitive sequences is inconsistent with a simple lengthening of the nucleosome linker region but instead suggests a scrambling of nucleosome positions. Chromatin structure and its dynamics account for many of the principal features of SINE transcriptional regulation potentially providing a functional rationale for the dispersion and high copy number of SINEs.

  1. Heat accumulator

    SciTech Connect

    Bracht, A.

    1981-09-29

    A heat accumulator comprises a thermally-insulated reservoir full of paraffin wax mixture or other flowable or meltable heat storage mass, heat-exchangers immersed in the mass, a heat-trap connected to one of the heat-exchangers, and a heat user connected to the other heat-exchanger. Pumps circulate fluids through the heat-trap and the heat-using means and the respective heat-exchangers, and a stirrer agitates and circulates the mass, and the pumps and the stirrer and electric motors driving these devices are all immersed in the mass.

  2. Widespread regulation of translation by elongation pausing in heat shock.

    PubMed

    Shalgi, Reut; Hurt, Jessica A; Krykbaeva, Irina; Taipale, Mikko; Lindquist, Susan; Burge, Christopher B

    2013-02-07

    Global repression of protein synthesis is a hallmark of the cellular stress response and has been attributed primarily to inhibition of translation initiation, although this mechanism may not always explain the full extent of repression. Here, using ribosome footprinting, we show that 2 hr of severe heat stress triggers global pausing of translation elongation at around codon 65 on most mRNAs in both mouse and human cells. The genome-wide nature of the phenomenon, its location, and features of protein N termini suggested the involvement of ribosome-associated chaperones. After severe heat shock, Hsp70's interactions with the translational machinery were markedly altered and its association with ribosomes was reduced. Pretreatment with mild heat stress or overexpression of Hsp70 protected cells from heat shock-induced elongation pausing, while inhibition of Hsp70 activity triggered elongation pausing without heat stress. Our findings suggest that regulation of translation elongation in general, and by chaperones in particular, represents a major component of cellular stress responses.

  3. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  4. Heat Without Heat

    NASA Astrophysics Data System (ADS)

    Lubkin, Elihu

    1997-04-01

    Logic of the Second Law of Thermodynamics demands acquisition of naked entropy. Accordingly, the leanest liaison between systems is not a diathermic membrane, it is a purely informational tickler, leaking no appreciable energy. The subsystem here is a thermodynamic universe, which gets `heated' entropically, yet without gaining calories. Quantum Mechanics graciously supports that(Lubkin, E. and Lubkin, T., International Journal of Theoretical Physics,32), 933-943 (1993) (at a cost of about 1 bit) through entanglement---across this least permeable of membranes---with what is beyond that universe. Heat without heat(Also v. forthcoming Proceedings of the 4th Drexel University Conference of September 1994) is the aspirin for Boltzmann's headache, conserving entropy in mechanical isolation, even while increasing entropy in thermodynamic isolation.

  5. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT).

    PubMed

    Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton; Wechsler, Steven L

    2015-10-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) blocks apoptosis and inhibits caspase-3 activation. We previously showed that serum starvation (removal of serum from tissue culture media), which takes several days to induce apoptosis, results in decreased levels of both AKT (protein kinase B) and phosphorylated AKT (pAKT) in cells not expressing LAT. In contrast in mouse neuroblastoma cells expressing LAT, AKT, and pAKT levels remained high. AKT is a serine/threonine protein kinase that promotes cell survival. To examine the effect of LAT on AKT-pAKT using a different and more rapid method of inducing apoptosis, a stable cell line expressing LAT was compared to non-LAT expressing cells as soon as 15 min following recovery from cold-shock-induced apoptosis. Expression of LAT appeared to inhibit dephosphorylation of pAKT. This protection correlated with blocking numerous pro-apoptotic events that are inhibited by pAKT. These results support the hypothesis that inhibiting dephosphorylation of pAKT may be one of the pathways by which LAT protects cells against apoptosis.

  6. The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) protects cells against cold-shock-induced apoptosis by maintaining phosphorylation of protein kinase B (AKT)

    PubMed Central

    Carpenter, Dale; Hsiang, Chinhui; Jiang, Xianzhi; Osorio, Nelson; BenMohamed, Lbachir; Jones, Clinton

    2017-01-01

    The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) blocks apoptosis and inhibits caspase-3 activation. We previously showed that serum starvation (removal of serum from tissue culture media), which takes several days to induce apoptosis, results in decreased levels of both AKT (protein kinase B) and phosphorylated AKT (pAKT) in cells not expressing LAT. In contrast in mouse neuroblastoma cells expressing LAT, AKT, and pAKT levels remained high. AKT is a serine/threonine protein kinase that promotes cell survival. To examine the effect of LAT on AKT-pAKT using a different and more rapid method of inducing apoptosis, a stable cell line expressing LAT was compared to non-LAT expressing cells as soon as 15 min following recovery from cold-shock-induced apoptosis. Expression of LAT appeared to inhibit dephosphorylation of pAKT. This protection correlated with blocking numerous pro-apoptotic events that are inhibited by pAKT. These results support the hypothesis that inhibiting dephosphorylation of pAKT may be one of the pathways by which LAT protects cells against apoptosis. PMID:26071090

  7. Heat Pipes

    ERIC Educational Resources Information Center

    Lewis, J.

    1975-01-01

    Describes the construction, function, and applications of heat pipes. Suggests using the heat pipe to teach principles related to heat transfer and gives sources for obtaining instructional kits for this purpose. (GS)

  8. Heat Stress

    MedlinePlus

    ... Work in the Heat: Why Acclimatization Matters The natural adaptation to the heat takes time, and from a management perspective, it may require careful planning. NIOSH Science Blog: Extreme Heat – Are you prepared for summer ...

  9. Effect of sequential heat and cold shocks on nuclear phenotypes of the blood-sucking insect, Panstrongylus megistus (Burmeister) (Hemiptera, Reduviidae).

    PubMed

    Garcia, Simone L; Pacheco, Raquel M; Rodrigues, Vera L C C; Mello, Maria Luiza S

    2002-12-01

    Thermal shocks induce changes in the nuclear phenotypes that correspond to survival (heterochromatin decondensation, nuclear fusion) or death (apoptosis, necrosis) responses in the Malpighian tubules of Panstrongylus megistus. Since thermal tolerance increased survival and molting rate in this species following sequential shocks, we investigated whether changes in nuclear phenotypes accompanied the insect survival response to sequential thermal shocks. Fifth instar nymphs were subjected to a single heat (35 or 40 degrees C, 1 h) or cold (5 or 0 degrees C, 1 h) shock and then subjected to a second shock for 12 h at 40 or 0 degrees C, respectively, after 8, 18, 24 and 72 h at 28 degrees C (control temperature). As with specimen survival, sequential heat and cold shocks induced changes in frequency of the mentioned nuclear phenotypes although their patterns differed. The heat shock tolerance involved decrease in apoptosis simultaneous to increase in cell survival responses. Sequential cold shocks did not involve cell/nuclear fusion and even elicited increase in necrosis with advancing time after shocks. The temperatures of 40 and 0 degrees C were more effective than the temperatures of 35 and 5 degrees C in eliciting the heat and cold shock tolerances, respectively, as shown by cytological analysis of the nuclear phenotypes. It is concluded that different sequential thermal shocks can trigger different mechanisms of cellular protection against stress in P. megistus, favoring the insect to adapt to various ecotopes.

  10. Application of the cis-regulatory region of a heat-shock protein 70 gene to heat-inducible gene expression in the ascidian Ciona intestinalis.

    PubMed

    Kawaguchi, Akane; Utsumi, Nanami; Morita, Maki; Ohya, Aya; Wada, Shuichi

    2015-01-01

    Temporally controlled induction of gene expression is a useful technique for analyzing gene function. To make such a technique possible in Ciona intestinalis embryos, we employed the cis-regulatory region of the heat-shock protein 70 (HSP70) gene Ci-HSPA1/6/7-like for heat-inducible gene expression in C. intestinalis embryos. We showed that Ci-HSPA1/6/7-like becomes heat shock-inducible by the 32-cell stage during embryogenesis. The 5'-upstream region of Ci-HSPA1/6/7-like, which contains heat-shock elements indispensable for heat-inducible gene expression, induces the heat shock-dependent expression of a reporter gene in the whole embryo from the 32-cell to the middle gastrula stages and in progressively restricted areas of embryos in subsequent stages. We assessed the effects of heat-shock treatments in different conditions on the normality of embryos and induction of transgene expression. We evaluated the usefulness of this technique through overexpression experiments on the well-characterized, developmentally relevant gene, Ci-Bra, and showed that this technique is applicable for inferring the gene function in C. intestinalis.

  11. Discovery of Ahrensite γ-Fe2SiO4 and Tissintite (Ca,Na,[])AlSi2O6, Two New Shock-induced Minerals from the Tissint Martian Meteorite: a Nanomineralogy Investigation

    NASA Astrophysics Data System (ADS)

    Ma, C.; Tschauner, O. D.; Liu, Y.; Sinogeikin, S. V.; Zhuravlev, K. K.; Prakapenka, V.; Dera, P. K.; Taylor, L. A.

    2013-12-01

    The recent Martian meteorite fall, Tissint, is a fresh olivine-phyric shergottite, with strong shock features. During our nano-mineralogy investigation of the Tissint meteorite with a combined analytical scanning electron microscope and synchrotron diffraction approach, two new shock-induced minerals have been discovered; these provide new insights into understanding shock conditions and impact processes on Mars. Ahrensite (IMA 2013-028), the Fe-analogue (γ-Fe2SiO4) of ringwoodite, is a new high-pressure mineral identified in Tissint. Both ahrensite and ringwoodite occur in Tissint as fine-grained polycrystalline aggregates in the rims of olivines around some shock-melt pockets. The morphology and texture of these silicate-spinels suggest formation by a solid-state transformation from Fe-rich olivine. Associated with the ahrensite and ringwoodite, inside melt pockets, often resides a thin layer of vitrified silicate-perovskite and magnesio-wüstite or wüstite. Such transitions represent a unique pressure and temperature gradient. Tissintite (IMA 2013-027), (Ca,Na,[])AlSi2O6 with the C2/c clinopyroxene structure, is a new jadeite-like mineral in Tissint. It appears as fine-grained aggregates within plagioclase glass, inside many shock-melt pockets. Both ahrensite and tissintite are high-pressure minerals formed by shock during the impact event(s) on Mars that excavated and ejected the rock off Mars. We will discuss the path of structure analysis for both new-mineral cases. Such novel methodology be utilized for many cases of mineralogical phase identification or structure analysis; this demonstrates how nano-mineralogy can be addressed and how it may play a unique role in meteorite and Mars rock research, in general.

  12. Cytotoxic and Genotoxic Consequences of Heat Stress Are Dependent on the Presence of Oxygen in Saccharomyces cerevisiae

    PubMed Central

    Davidson, John F.; Schiestl, Robert H.

    2001-01-01

    Lethal heat stress generates oxidative stress in Saccharomyces cerevisiae, and anaerobic cells are several orders of magnitude more resistant than aerobic cells to a 50°C heat shock. Here we characterize the oxidative effects of this heat stress. The thermoprotective effect in anaerobic cells was not due to expression of HSP104 or any other heat shock gene, raising the possibility that the toxicity of lethal heat shock is due mainly to oxidative stress. Aerobic but not anaerobic heat stress caused elevated frequencies of forward mutations and interchromosomal DNA recombination. Oxidative DNA repair glycosylase-deficient strains under aerobic conditions showed a powerful induction of forward mutation frequencies compared to wild-type cells, which was completely abolished under anaerobiosis. We also investigated potential causes for this oxygen-dependent heat shock-induced genetic instability. Levels of sulfhydryl groups, dominated mainly by the high levels of the antioxidant glutathione (reduced form) and levels of vitamin E, decreased after aerobic heat stress but not after anaerobic heat stress. Aerobic heat stress also led to an increase in mitochondrial membrane disruption of several hundredfold, which was 100-fold reduced under anaerobic conditions. PMID:11443093

  13. Capsaicin partially mimics heat in mouse fibroblast cells in vitro.

    PubMed

    Sugimoto, Naotoshi; Katakura, Masanori; Matsuzaki, Kentaro; Nakamura, Hiroyuki; Yachie, Akihiro; Shido, Osamu

    2017-03-01

    Capsaicin activates transient receptor potential vanilloid 1 (TRPV1), a cation channel in the transient receptor potential family, resulting in the transient entry of Ca(2+) and Mg(2+) and a warm sensation. However, the effects of capsaicin on cells have not fully elucidated in fibroblasts. In this study, we investigated whether capsaicin could induce signal transduction in mouse fibroblast cells and compared the effect with that of heat-induced signal transduction. The activation of the mitogen-activated protein kinases (MAPKs) ERK and p38 MAPK, expression levels of heat shock protein 70 (HSP70) and HSP90, actin assembly, and cell proliferation were analyzed in NIH3T3 mouse fibroblast cells. A 15-min stimulation with capsaicin (∼100 μM) phosphorylated ERK and p38 MAPK and induced actin assembly. A 2-day stimulation with capsaicin increased the level of HSP70, but not HSP90, and the 2-day stimulation with capsaicin (∼100 μM) did not affect cell proliferation. A 15-min exposure to moderate heat (39.5 °C) phosphorylated both ERK and p38 MAPK and induced actin assembly to similar degrees as stimulation with capsaicin. A 2-day exposure to moderate heat increased the levels of both HSP70 and HSP90 and prevented cell proliferation. However, the 2-day stimulation with capsaicin (100 μM) failed to prevent heat shock-induced cell death. Thus, our results suggest that the effects of capsaicin on fibroblast cells partially differ from those of heat. Notably, the 2-day stimulation with capsaicin was not sufficient to develop heat tolerance in fibroblast cells.

  14. Forkhead Box M1 Is Regulated by Heat Shock Factor 1 and Promotes Glioma Cells Survival under Heat Shock Stress*

    PubMed Central

    Dai, Bingbing; Gong, Aihua; Jing, Zhitao; Aldape, Kenneth D.; Kang, Shin-Hyuk; Sawaya, Raymond; Huang, Suyun

    2013-01-01

    The forkhead box M1 (FoxM1) is a key transcription factor regulating multiple aspects of cell biology. Prior studies have shown that FoxM1 is overexpressed in a variety of human tumors, including brain tumor, and plays a critical role in cancer development and progression. In this study we found that FoxM1 was up-regulated by heat shock factor 1 (HSF1) under heat shock stress condition in multiple cell lines. Knockdown of HSF1 with HSF1 siRNA or inhibition of HSF1 with a HSF1 inhibitor abrogated heat shock-induced expression of FoxM1. Genetic deletion of HSF1 in mouse embryo fibroblast cells also abolished heat shock stress-induced FoxM1 expression. Moreover, we showed that HSF1 directly bound to FoxM1 promoter and increased FoxM1 promoter activity. Furthermore, we demonstrated that FoxM1 was required for the G2-M phase progression through regulating Cdc2, Cdc20, and Cdc25B under a mild heat shock stress but enhanced cell survival under lethal heat shock stress condition. Finally, in human glioblastoma specimens, FoxM1 overexpression correlated with elevated HSF1 expression. Our results indicate that FoxM1 is regulated by HSF1 and is critical for HSF1-mediated heat shock response. We demonstrated a novel mechanism of stress resistance controlled by HSF1 and a new HSF-FoxM1 connection that mediates cellular thermotolerance. PMID:23192351

  15. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  16. Tonic Shock Induces Detachment of Giardia lamblia

    PubMed Central

    Hansen, Wendy R.; Fletcher, Daniel A.

    2008-01-01

    Background The parasite Giardia lamblia must remain attached to the host small intestine in order to proliferate and subsequently cause disease. However, little is known about the factors that may cause detachment in vivo, such as changes in the aqueous environment. Osmolality within the proximal small intestine can vary by nearly an order of magnitude between host fed and fasted states, while pH can vary by several orders of magnitude. Giardia cells are known to regulate their volume when exposed to changes in osmolality, but the short-timescale effects of osmolality and pH on parasite attachment are not known. Methodology and Principal Findings We used a closed flow chamber assay to test the effects of rapid changes in media osmolality, tonicity, and pH on Giardia attachment to both glass and C2Bbe-1 intestinal cell monolayer surfaces. We found that Giardia detach from both surfaces in a tonicity-dependent manner, where tonicity is the effective osmolality experienced by the cell. Detachment occurs with a characteristic time constant of 25 seconds (SD = 10 sec, n = 17) in both hypo- and hypertonic media but is otherwise insensitive to physiologically relevant changes in media composition and pH. Interestingly, cells that remain attached are able to adapt to moderate changes in tonicity. By exposing cells to a timed pattern of tonicity variations and adjustment periods, we found that it is possible to maximize the tonicity change experienced by the cells, overcoming the adaptive response and resulting in extensive detachment. Conclusions and Significance These results, conducted with human-infecting Giardia on human intestinal epithelial monolayers, highlight the ability of Giardia to adapt to the changing intestinal environment and suggest new possibilities for treatment of giardiasis by manipulation of tonicity in the intestinal lumen. PMID:18270543

  17. Novel Approaches to Shock Induced Acute MODS

    DTIC Science & Technology

    2014-05-01

    ORGANIZATION: University of Medicine & Dentistry of New Jersey Newark, NJ 07103 REPORT DATE: May 2014 TYPE OF REPORT: Annual PREPARED FOR: U.S... Dentistry of New Jersey AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Newark, NJ 07103 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS

  18. Laser Shock-Induced Spalling in Tantalum

    NASA Astrophysics Data System (ADS)

    Remington, Tane; Wehrenberg, Christopher; Maddox, Brian; Remington, Bruce; Meyers, Marc; LLNL UCSD Team

    2014-10-01

    The process of dynamic failure by spalling was established in nano, poly, and mono crystalline tantalum in recovery experiments following laser compression and release. Samples were compressed over a range of pressures between 5-13 GPa. The waves were allowed to reflect at the back surface (specimen thickness ranged from 50-250 μm) and the process of separation was characterized by SEM. Spall strength was measured by the shock breakout and pull back signal using VISAR. The spall strength increases with increasing strain rate and grain size. In the nano and polycrystals, spalling occurred by ductile fracture favoring grain boundaries. In the monocrystals, the process was of ductile failure by void initiation, growth and coalescence. Work performed at the Jupiter Laser Facility (JLF), Lawrence Livermore National Laboratory (LLNL). This research is funded by the UC Research Laboratories Grant (09-LR-06-118456-MEYM) and the National Laser Users Facility (NLUF) Grant (PE-FG52-09NA-29043).

  19. Laser Shock-Induced Spalling in Tantalum

    NASA Astrophysics Data System (ADS)

    Remington, Tane; Wehrenberg, Christopher; Maddox, Brian; Swift, Damien; Remington, Bruce; Meyers, Marc; UCSD Collaboration; LLNL Collaboration

    2013-06-01

    The processes of dynamic failure by spalling were established in nano, poly, and mono crystalline tantalum in recovery experiments following laser compression and release. Samples were compressed over a range of energies varying from 50 to 120 J/mm2 and initial duration of 3 ns. The waves were allowed to reflect at the back surface (specimen thickness: 250 um) and the process of separation was characterized by different techniques: optical microscopy, SEM, and microcomputerized tomography. Additionally, the pull back signal was measured by VISAR and the pressure decay compared with HYADES simulations. There are clear differences in the microscopic fracture mechanisms, dictated by the grain sizes. In the nano and polycrystals, spalling occurred by ductile fracture favoring grain boundaries. In the monocrystals, these are absent, and the process was of ductile failure by void initiation, growth and coalescence. The spall strengths in laser experiments are compared with those in experiments at much larger durations (us regime). Work performed at the Jupiter Laser Facility (JLF), Lawrence Livermore National Laboratory (LLNL). This research is funded by the UC Research Laboratories Grant (09-LR-06-118456-MEYM) and the National Laser Users Facility (NLUF) Grant (PE-FG52-09NA-29043).

  20. Shock-induced melting and rapid solidification

    SciTech Connect

    Nellis, W.J.; Gourdin, W.H.; Maple, M.B.

    1987-08-01

    Model calculations are presented to estimate that approx.50 GPa is required to completely shock melt metal powders with quenching at rates up to 10/sup 8/ K/s. Experiments are discussed for powders of a Cu-Zr alloy compacted in the usual way at 16 GPa and melted by shocking to 60 GPa. 12 refs.

  1. Shock-induced activation of acrylamide polymerization

    SciTech Connect

    Dodson, B.W.; Arnold, C. Jr.

    1983-08-04

    We have subjected polycrystalline acrylamide to planar impact loading to peak pressures of 4.8 and 6.7 GPa using an air-driven projectile. In contrast to previous experiments involving explosive loading, postshock chemical analysis shows no formation of polyacrylamide associated with the shock loading. However, the impact shocked acrylamide spontaneously polymerizes when dissolved in tetrahydrofuran. This result implies that the stress history produced by the impact experiment results in the formation of a large density of stable active centers, which become mobile in solution. ESR measurements of the shocked acrylamide samples confirms the presence of substantial densities of free radicals. 2 figures.

  2. Shock induced equation of state of polyvinylchloride

    SciTech Connect

    Butler, S.; Millett, J. C. F.; Bourne, N. K.

    2007-12-12

    The shock response of polyvinylchloride has been measured using manganin stress gauges, and compared to those of polyethylene. Results show that this polymer, with the replacement of a hydrogen atom with chlorine, has significantly lower shock velocities and release velocities. We have suggested that the presence of the highly electronegative chlorine atom may reduce the stiffness of the carbon-carbon backbone by drawing charge towards itself.

  3. Shock Induced Molecular Excitation in Solids.

    DTIC Science & Technology

    1983-04-06

    Atomistic Relations in Physics and Chemistry of Solids," in Optical Properties of Solids , ed. by S. Nudelman and S. S. Mitra, Plenum, New York... Properties of Solids , S. Nudelman and S. S. Mitra, eds., • Plenum, New York (1969), p. 310 ff. K • J 9 1 • 1...lOf) I • * - ’Plendl, J. Mi, "New Spectral and Atomistic Relations in Physics and Chemistry • t< ot Solids," in Optical

  4. Shock-Induced Reaction in Carbon Disulfide.

    DTIC Science & Technology

    1980-04-01

    and gore on Tc nedesicn tne absorption experiment to overcome two prie-i-paproblems. One was the inade- quacy of the light source being used. The...Target and projectile design to provide suitable control of temperature and pressure histories in a geometry which car, be adapted to absorption ...continuous time measurement of broad band spectral absorption . Initial measurements must be continuous in both time and wavelength because, in general, the

  5. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  6. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  7. Synthesis of calmodulin-binding proteins during heat shock in tobacco cells

    SciTech Connect

    Lu, Yingtang; Harrington, M. )

    1990-05-01

    Heat shock treatment induces the synthesis of heat shock proteins (HSPs), but little is known about the functions of these proteins in the heat shock response. Here we report isolation and analysis of heat-shock induced or enhanced calmodulin-binding proteins (CaMBPs) from cultured tobacco cells (Nicotiana tabacum cv. Wisconsin-38) using CaM-sepharose affinity chromatography. Analyses of {sup 35}S-methionine-labeled proteins by SDS-PAGE indicate that at least 12 HSP bands with apparent molecular weights ranging from 105 to 17 kD exhibit Ca{sup 2+}-dependent binding to CaM sepharose even in the presence of 0.3M NaCl. Thee proteins do not bind to sepharose 4B suggesting a specific interaction with CaM. Gel overlay analysis of HSPs binding to CaM-sepharose indicates that not all of these peptides bind to {sup 125}I-CaM in this assay. This may be due to the structural modification of {sup 125}I-CaM, the resolution of the assay, or the small amount of the CaMBPs synthesized during heat shock. An alternative approach is being employed using {sup 35}S-labeled CaM made from a synthetic CaM gene (VUC-1) to confirm the CaMBP/HSP by overlay analysis and to screen a heat shock cDNA expression library.

  8. Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones.

    PubMed

    Udan-Johns, Maria; Bengoechea, Rocio; Bell, Shaughn; Shao, Jieya; Diamond, Marc I; True, Heather L; Weihl, Conrad C; Baloh, Robert H

    2014-01-01

    TDP-43 aggregation in the cytoplasm or nucleus is a key feature of the pathology of amyotrophic lateral sclerosis and frontotemporal dementia and is observed in numerous other neurodegenerative diseases, including Alzheimer's disease. Despite this fact, the inciting events leading to TDP-43 aggregation remain unclear. We observed that endogenous TDP-43 undergoes reversible aggregation in the nucleus after the heat shock and that this behavior is mediated by the C-terminal prion domain. Substitution of the prion domain from TIA-1 or an authentic yeast prion domain from RNQ1 into TDP-43 can completely recapitulate heat shock-induced aggregation. TDP-43 is constitutively bound to members of the Hsp40/Hsp70 family, and we found that heat shock-induced TDP-43 aggregation is mediated by the availability of these chaperones interacting with the inherently disordered C-terminal prion domain. Finally, we observed that the aggregation of TDP-43 during heat shock led to decreased binding to hnRNPA1, and a change in TDP-43 RNA-binding partners suggesting that TDP-43 aggregation alters its function in response to misfolded protein stress. These findings indicate that TDP-43 shares properties with physiologic prions from yeast, in that self-aggregation is mediated by a Q/N-rich disordered domain, is modulated by chaperone proteins and leads to altered function of the protein. Furthermore, they indicate that TDP-43 aggregation is regulated by chaperone availability, explaining the recurrent observation of TDP-43 aggregates in degenerative diseases of both the brain and muscle where protein homeostasis is disrupted.

  9. Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones

    PubMed Central

    Udan-Johns, Maria; Bengoechea, Rocio; Bell, Shaughn; Shao, Jieya; Diamond, Marc I.; True, Heather L.; Weihl, Conrad C.; Baloh, Robert H.

    2014-01-01

    TDP-43 aggregation in the cytoplasm or nucleus is a key feature of the pathology of amyotrophic lateral sclerosis and frontotemporal dementia and is observed in numerous other neurodegenerative diseases, including Alzheimer's disease. Despite this fact, the inciting events leading to TDP-43 aggregation remain unclear. We observed that endogenous TDP-43 undergoes reversible aggregation in the nucleus after the heat shock and that this behavior is mediated by the C-terminal prion domain. Substitution of the prion domain from TIA-1 or an authentic yeast prion domain from RNQ1 into TDP-43 can completely recapitulate heat shock-induced aggregation. TDP-43 is constitutively bound to members of the Hsp40/Hsp70 family, and we found that heat shock-induced TDP-43 aggregation is mediated by the availability of these chaperones interacting with the inherently disordered C-terminal prion domain. Finally, we observed that the aggregation of TDP-43 during heat shock led to decreased binding to hnRNPA1, and a change in TDP-43 RNA-binding partners suggesting that TDP-43 aggregation alters its function in response to misfolded protein stress. These findings indicate that TDP-43 shares properties with physiologic prions from yeast, in that self-aggregation is mediated by a Q/N-rich disordered domain, is modulated by chaperone proteins and leads to altered function of the protein. Furthermore, they indicate that TDP-43 aggregation is regulated by chaperone availability, explaining the recurrent observation of TDP-43 aggregates in degenerative diseases of both the brain and muscle where protein homeostasis is disrupted. PMID:23962724

  10. Heating apparatus

    SciTech Connect

    Woo, C.G.

    1991-07-30

    This patent describes a heating apparatus. It comprises a housing, means for introducing water to a plurality of water conduits of the housing, a fireplace compartment disposed within the housing, the fireplace compartment being provided with a burner, a fin coil member disposed in the upper portion of the housing and communicating with the room environment for heat emitting, the fin coil member containing a serpentine configured fin coils disposed therein for absorbing heat from the water disposed in the water conduits, a heat chamber containing the water conduits, the heat chamber connected at one end to the fireplace compartment and at the other end to a chimney disposed at the middle of the the fireplace compartment for circulating hot combustion gases therethrough and for heating the water disposed in the water conduits, the combustion gases being vented from the chimney, and at least four turbo fans communicating with the heat chamber for blowing air across the fin coil member so as to heat the air and discharge it to the room environment, and reduce noise pollution of the heating apparatus.

  11. Heat Problems.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Heat problems and heat cramps related to jogging can be caused by fluid imbalances, medications, dietary insufficiency, vomiting or diarrhea, among other factors. If the condition keeps reoccurring, the advice of a physician should be sought. Some preventive measures that can be taken include: (1) running during the cooler hours of the day; (2)…

  12. Heat Problems.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Heat problems and heat cramps related to jogging can be caused by fluid imbalances, medications, dietary insufficiency, vomiting or diarrhea, among other factors. If the condition keeps reoccurring, the advice of a physician should be sought. Some preventive measures that can be taken include: (1) running during the cooler hours of the day; (2)…

  13. Heat transfer in microwave heating

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei

    Heat transfer is considered as one of the most critical issues for design and implement of large-scale microwave heating systems, in which improvement of the microwave absorption of materials and suppression of uneven temperature distribution are the two main objectives. The present work focuses on the analysis of heat transfer in microwave heating for achieving highly efficient microwave assisted steelmaking through the investigations on the following aspects: (1) characterization of microwave dissipation using the derived equations, (2) quantification of magnetic loss, (3) determination of microwave absorption properties of materials, (4) modeling of microwave propagation, (5) simulation of heat transfer, and (6) improvement of microwave absorption and heating uniformity. Microwave heating is attributed to the heat generation in materials, which depends on the microwave dissipation. To theoretically characterize microwave heating, simplified equations for determining the transverse electromagnetic mode (TEM) power penetration depth, microwave field attenuation length, and half-power depth of microwaves in materials having both magnetic and dielectric responses were derived. It was followed by developing a simplified equation for quantifying magnetic loss in materials under microwave irradiation to demonstrate the importance of magnetic loss in microwave heating. The permittivity and permeability measurements of various materials, namely, hematite, magnetite concentrate, wüstite, and coal were performed. Microwave loss calculations for these materials were carried out. It is suggested that magnetic loss can play a major role in the heating of magnetic dielectrics. Microwave propagation in various media was predicted using the finite-difference time-domain method. For lossy magnetic dielectrics, the dissipation of microwaves in the medium is ascribed to the decay of both electric and magnetic fields. The heat transfer process in microwave heating of magnetite

  14. Monitoring heat energy transfer in condensed phases using ultrafast transient spectroscopies

    NASA Astrophysics Data System (ADS)

    Dang, Nhan; Gottfried, Jennifer

    2015-06-01

    The primary motivation for this work is the desire to observe the initial evolution of temperature transfer into a solid explosive on the picosecond timescale following indirect ultrafast flash heating, which may provide insight the role of temperature in the shock-induced initiation mechanism in explosives. In this presentation, we describe the methods of indirect flash heating on glass-gold-sample substrates using femtosecond laser pulses; and the methods of monitoring the sample response under the influence of the heat transferred from the heated gold layer through the sample using time-resolved visible transient absorption (TA) spectroscopy and coherent Raman spectroscopies. Data presented here are the evolution of heat energy transfer in a drop-cast thin film of unreacted cyclotrimethylene trinitramine (RDX) monitored using visible TA and surface-enhanced coherent anti-Stokes Raman spectroscopy. The method of nonequilibrium temperature measurement using femtosecond-stimulated Raman spectroscopy reported in will be also discussed here for the application of monitoring and measuring temperature in real-time.

  15. Heat-adaptation induced thermotolerance in Staphylococcus aureus: Influence of the alternative factor sigmaB.

    PubMed

    Cebrián, G; Condón, S; Mañas, P

    2009-11-15

    The role of sigmaB in the Staphylococcus aureus heat-shock induced thermotolerance was investigated. Survival curves at 58 degrees C of S. aureus strain Newman and its isogenic DeltasigB mutant were obtained for native and heat-shocked cells (45 degrees C for 5-120 min) in exponential and stationary phase of growth. The magnitude of the acquisition of thermotolerance at 58 degrees C depended on the growth phase and on the duration of the heat shock. Stationary growth phase cells were always more heat tolerant than exponentially growing cells and thermotolerance increased with heat-shock duration up to 120 min. S. aureus cells were able to increase their heat tolerance in the absence of the sigma(B) factor. In stationary phase, whereas in the parental strain the thermotolerance was increased by a factor of 12 after a heat shock of 120 min at 45 degrees C (delta values at 58 degrees C for native and heat-shocked cells were 0.63 and 7.22 min, respectively), in the mutant strain it increased 43 fold (delta values 0.09 and 3.87 min). The addition of chloramphenicol to the adaptation medium resulted in a lower increase in heat tolerance but did not prevent it completely, suggesting that S. aureus can partially increase its thermotolerance without "de novo" protein synthesis. Both the number of non-damaged cells and the proportion of cells able to repair sublethal damage were higher for heat-shocked cells.

  16. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin.

    PubMed

    Christou, Anastasis; Filippou, Panagiota; Manganaris, George A; Fotopoulos, Vasileios

    2014-02-05

    Temperature extremes represent an important limiting factor to plant growth and productivity. The present study evaluated the effect of hydroponic pretreatment of strawberry (Fragaria x ananassa cv. 'Camarosa') roots with an H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48 h), on the response of plants to acute heat shock treatment (42°C, 8 h). Heat stress-induced phenotypic damage was ameliorated in NaHS-pretreated plants, which managed to preserve higher maximum photochemical PSII quantum yields than stressed plants. Apparent mitigating effects of H2S pretreatment were registered regarding oxidative and nitrosative secondary stress, since malondialdehyde (MDA), H2O2 and nitric oxide (NO) were quantified in lower amounts than in heat-stressed plants. In addition, NaHS pretreatment preserved ascorbate/glutathione homeostasis, as evidenced by lower ASC and GSH pool redox disturbances and enhanced transcription of ASC (GDH) and GSH biosynthetic enzymes (GS, GCS), 8 h after heat stress imposition. Furthermore, NaHS root pretreatment resulted in induction of gene expression levels of an array of protective molecules, such as enzymatic antioxidants (cAPX, CAT, MnSOD, GR), heat shock proteins (HSP70, HSP80, HSP90) and aquaporins (PIP). Overall, we propose that H2S root pretreatment activates a coordinated network of heat shock defense-related pathways at a transcriptional level and systemically protects strawberry plants from heat shock-induced damage.

  17. Heat collector

    DOEpatents

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  18. Heat collector

    DOEpatents

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  19. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  20. Resistance heating elements with specific heating profiles

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.

    1976-01-01

    Bundled, interrupted, resistance heating elements provide specific heating profiles. Design allows for easily tailored lengths and locations of "hot sections" and larger surface areas for heat radiation.

  1. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  2. Modular Heat Exchanger With Integral Heat Pipe

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    1992-01-01

    Modular heat exchanger with integral heat pipe transports heat from source to Stirling engine. Alternative to heat exchangers depending on integrities of thousands of brazed joints, contains only 40 brazed tubes.

  3. Proteasome inhibition leads to the activation of all members of the heat-shock-factor family.

    PubMed

    Kawazoe, Y; Nakai, A; Tanabe, M; Nagata, K

    1998-07-15

    Heat-shock proteins and molecular chaperones are involved in various cellular metabolic processes including protein synthesis and degradation. These expressions are elevated at the level of transcription by the accumulation of abnormal proteins when these metabolic processes are disturbed. Recent works suggest the induction of heat-shock proteins by the inhibiton of proteasome. To elucidate the mechanism of this induction, we examined the activation of heat-shock transcription factors by proteasome inhibitors in avian cells. Activation of the two heat-shock-inducible factors, HSF1 and HSF3, was produced by the treatment of cells with proteasome inhibitors. This activation was not produced by treatment with various other protease inhibitors. The HSF activation by proteasome inhibitors was completely blocked in the presence of the protein synthesis inhibitor cycloheximide. Unexpectedly, the development-related factor HSF2 was also activated by proteasome inhibitors, with an increase in its protein level. These results suggest that the ubiqutin-proteasome pathway may regulate all of the three HSFs by controlling the level of some regulatory factor for HSF or HSF itself, as well as controlling abnormal proteins.

  4. Increase in UV mutagenesis by heat stress on UV-irradiated E. coli cells.

    PubMed

    Saha, Swati; Basu, Tarakdas

    2012-06-01

    When leu- auxotrophs of Escherichia coli, after UV irradiation, were grown at temperatures between 30 and 47°C, the frequency of UV-induced mutation from leu- to leu+ revertant increased as the UV dose and the temperature increased. For cells exposed to a UV dose of 45 J/m2, the mutation frequency at 47°C was 1.9 times that at 30°C; for a dose of 90 J/m2, it was 3.25 times; and for 135 J/m2, it was 4.8 times. Similar enhancement of reversion frequency was observed when the irradiated cells were grown at 30°C in the presence of a heat shock inducer, ethanol (8% v/v). Heat shock-mediated enhancement of UV mutagenesis did not occur in an E. coli mutant sigma 32 (heat shock regulator protein), but sigma 32 overexpression in the mutant strain (transformed with a sigma 32-bearing plasmid) increased the UV-induced mutation frequency. These results suggest that heat stress alone has no mutagenic property, but when applied to UV-damaged cells, it enhances the UV-induced frequency of cell mutation.

  5. The central role of heat shock factor 1 in synaptic fidelity and memory consolidation.

    PubMed

    Hooper, Philip L; Durham, Heather D; Török, Zsolt; Hooper, Paul L; Crul, Tim; Vígh, László

    2016-09-01

    Networks of neuronal synapses are the fundamental basis for making and retaining memory. Reduced synapse number and quality correlates with loss of memory in dementia. Heat shock factor 1 (HSF1), the major transcription factor regulating expression of heat shock genes, plays a central role in proteostasis, in establishing and sustaining synaptic fidelity and function, and in memory consolidation. Support for this thesis is based on these observations: (1) heat shock induces improvements in synapse integrity and memory consolidation; (2) synaptic depolarization activates HSF1; (3) activation of HSF1 alone (independent of the canonical heat shock response) augments formation of essential synaptic elements-neuroligands, vesicle transport, synaptic scaffolding proteins, lipid rafts, synaptic spines, and axodendritic synapses; (4) HSF1 coalesces and activates memory receptors in the post-synaptic dendritic spine; (5) huntingtin or α-synuclein accumulation lowers HSF1 while HSF1 lowers huntingtin and α-synuclein aggregation-a potential vicious cycle; and (6) HSF1 agonists (including physical activity) can improve cognitive function in dementia models. Thus, via direct gene expression of synaptic elements, production of HSPs that assure high protein fidelity, and activation of other neuroprotective signaling pathways, HSF1 agonists could provide breakthrough therapy for dementia-associated disease.

  6. Chromospheric Heating

    NASA Astrophysics Data System (ADS)

    Musielak, Z. E.

    2002-05-01

    It is now well-established that the Sun and all other late-type stars show chromospheric activity, which is typically identified with the presence of emission in the cores of Ca II and Mg II spectral lines. This activity varies significantly for a given spectral type and a star is more active when a larger portion of its surface is covered by magnetic fields. For stars of very low activity, a minimum core emission flux ("basal flux") has been observed. To explain the required heating and the observed range of activity, two classes of heating mechanisms have been considered: (1) dissipation of acoustic and magnetic waves generated in stellar convection zones; and (2) dissipation of currents generated by photospheric motions of surface magnetic fields. I will review both classes of heating mechanisms and discuss recent results which demonstrate that theoretical models of stellar chromospheres based on the wave heating (1) can explain the "basal flux" and the observed Ca II emission in most stars but cannot account for the observed Mg II emission in active stars. I will also present theoretical arguments which imply that the base of stellar chromospheres is heated by acoustic waves, the heating of the middle and upper chromospheric layers is dominated by magnetic waves associated with magnetic flux tubes, and that other non-wave (2) heating mechanisms are required to explain the structure of the highest layers of stellar chromospheres in active stars. This work was supported by NSF under grant ATM-0087184, NATO under grant CRG-910058 and The Alexander von Humboldt Foundation.

  7. Magnetar Heating

    NASA Astrophysics Data System (ADS)

    Beloborodov, Andrei M.; Li, Xinyu

    2016-12-01

    We examine four candidate mechanisms that could explain the high surface temperatures of magnetars. (1) Heat flux from the liquid core heated by ambipolar diffusion. It could sustain the observed surface luminosity {{\\mathscr{L}}}s≈ {10}35 erg s-1 if core heating offsets neutrino cooling at a temperature {T}{core}\\gt 6× {10}8 K. This scenario is viable if the core magnetic field exceeds 1016 G and the heat-blanketing envelope of the magnetar has a light-element composition. However, we find that the lifetime of such a hot core should be shorter than the typical observed lifetime of magnetars. (2) Mechanical dissipation in the solid crust. This heating can be quasi-steady, powered by gradual (or frequent) crustal yielding to magnetic stresses. We show that it obeys a strong upper limit. As long as the crustal stresses are fostered by the field evolution in the core or Hall drift in the crust, mechanical heating is insufficient to sustain persistent {{\\mathscr{L}}}s≈ {10}35 erg s-1. The surface luminosity is increased in an alternative scenario of mechanical deformations triggered by external magnetospheric flares. (3) Ohmic dissipation in the crust, in volume or current sheets. This mechanism is inefficient because of the high conductivity of the crust. Only extreme magnetic configurations with crustal fields B\\gt {10}16 G varying on a 100 meter scale could provide {{\\mathscr{L}}}s≈ {10}35 erg s-1. (4) Bombardment of the stellar surface by particles accelerated in the magnetosphere. This mechanism produces hot spots on magnetars. Observations of transient magnetars show evidence of external heating.

  8. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than $57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was $28,706, and that figures out to a cost reduction.

  9. Heat Pipes

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.

  10. Heat shock factor 1 binds to and transcribes satellite II and III sequences at several pericentromeric regions in heat-shocked cells

    SciTech Connect

    Eymery, Angeline; Souchier, Catherine; Vourc'h, Claire; Jolly, Caroline

    2010-07-01

    Cells respond to stress by activating the synthesis of heat shock proteins (HSPs) which protect the cells against the deleterious effects of stress. This mechanism is controlled by the heat shock factor 1 (HSF1). In parallel to HSP gene transcription, in human cells, HSF1 also binds to and transcribes satellite III repeated sequences present in numerous copies in the 9q12 pericentromeric region of chromosome 9. These HSF1 accumulation sites are termed nuclear stress bodies (nSBs). In tumor cells, however, the number of nSBs is higher than the number of 9q12 copies, suggesting the existence of other HSF1 targets. In this paper, we were interested in characterizing these other HSF1 binding sites. We show that HSF1 indeed binds to the pericentromeric region of 14 chromosomes, thereby directing the formation of 'secondary nSBs'. The appearance of secondary nSBs depends on the number of satellite sequences present in the target locus, and on the cellular amount of HSF1 protein. Moreover, secondary nSBs also correspond to transcription sites, thus demonstrating that heat shock induces a genome-wide transcription of satellite sequences. Finally, by analyzing published transcriptomic data, we show that the derepression of these large heterochromatic blocks does not significantly affect the transcription of neighboring genes.

  11. HEAT GENERATION

    DOEpatents

    Imhoff, D.H.; Harker, W.H.

    1963-12-01

    Heat is generated by the utilization of high energy neutrons produced as by nuclear reactions between hydrogen isotopes in a blanket zone containing lithium, a neutron moderator, and uranium and/or thorium effective to achieve multtplicatton of the high energy neutron. The rnultiplied and moderated neutrons produced react further with lithium-6 to produce tritium in the blanket. Thermal neutron fissionable materials are also produced and consumed in situ in the blanket zone. The heat produced by the aggregate of the various nuclear reactions is then withdrawn from the blanket zone to be used or otherwise disposed externally. (AEC)

  12. Chromospheric heating

    NASA Technical Reports Server (NTRS)

    Kalkofen, Wolfgang

    1989-01-01

    The solar chromosphere is identified with the atmosphere inside magnetic flux tubes. Between the temperature minimum and the 7000 K level, the chromosphere in the bright points of the quiet sun is heated by large-amplitude, long-period, compressive waves with periods mainly between 2 and 4 minutes. These waves do not observe the cutoff condition according to which acoustic waves with periods longer than 3 minutes do not propagate vertically in the upper solar photosphere. It is concluded that the long-period waves probably supply all the energy required for the heating of the bright points in the quiet solar chromosphere.

  13. Renewable Heating and Cooling

    EPA Pesticide Factsheets

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  14. Infrared heating

    USDA-ARS?s Scientific Manuscript database

    IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...

  15. Heat exchanger

    DOEpatents

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  16. Flash Heating

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2000-03-01

    Meteorites contain millimeter-sized objects called chondrules. They were melted in the solar nebula, the cloud of gas and dust in which the Sun and planets formed. Numerous experiments on rock powders have been done to understand the melting process and the cooling rates chondrules experienced. Most meteorite specialists believe that chondrules formed by flash heating, with almost instantaneous melting, though the length of time they remained molten is uncertain. Can conventional laboratory furnaces heat rock powders rapidly enough to flash melt them? Susan Maharaj and Roger Hewins (Rutgers University, New Brunswick) tested this idea by inserting tiny wires of pure elements (which have precise melting temperatures) into compressed rock powders about 3.5 mm in diameter, and placing the samples into a furnace heated to a range of temperatures. They found that at 1600 C, a sample took only six seconds to reach 1538 C. When placed into a furnace at 1500 C, samples took ten seconds to reach 1495 C. This shows that the flash heating process can be studied in conventional laboratory furnaces.

  17. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  18. Antioxidant enzymes and DPPH-radical scavenging activity in chilled and heat-shocked rice (Oryza sativa L.) seedlings radicles.

    PubMed

    Kang, Ho-Min; Saltveit, Mikal E

    2002-01-30

    Chilling whole rice seedlings at 5 degrees C significantly increased the time needed to recover linear growth and reduced the subsequent linear rate of radicle growth. Subjecting nonchilled seedlings to a 45 degrees C heat shock for up to 20 min did not alter subsequent growth, whereas a 3 min heat shock was optimal in reducing growth inhibition caused by 2 days of chilling. The activity of five antioxidant enzymes [superoxide dismutase (EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), glutathione reductase (GR; EC 1.6.4.2), and guaiacol peroxidase (GPX; EC 1.11.1.7)] and DPPH (1,1-diphenyl-2-picrylhydrazyl)-radical scavenging activity were measured in heat-shocked and/or chilled radicles. Heat shock slightly increased the activity of CAT, APX, and GR and suppressed the increase of GR and GPX activity during recovery from chilling. Increased CAT, APX, GR, and DPPH-radical scavenging activity and protection of CAT activity during chilling appear to be correlated with heat shock-induced chilling tolerance.

  19. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant

    PubMed Central

    Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869

  20. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant.

    PubMed

    Plesofsky, Nora; Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies.

  1. Lysosomal responses to heat-shock of seasonal temperature extremes in Cd-exposed mussels.

    PubMed

    Múgica, M; Izagirre, U; Marigómez, I

    2015-07-01

    The present study was aimed at determining the effect of temperature extremes on lysosomal biomarkers in mussels exposed to a model toxic pollutant (Cd) at different seasons. For this purpose, temperature was elevated 10°C (from 12°C to 22°C in winter and from 18°C to 28°C in summer) for a period of 6h (heat-shock) in control and Cd-exposed mussels, and then returned back to initial one. Lysosomal membrane stability and lysosomal structural changes in digestive gland were investigated. In winter, heat-shock reduced the labilisation period (LP) of the lysosomal membrane, especially in Cd-exposed mussels, and provoked transient lysosomal enlargement. LP values recovered after the heat-shock cessation but lysosomal enlargement prevailed in both experimental groups. In summer, heat-shock induced remarkable reduction in LP and lysosomal enlargement (more markedly in Cd-exposed mussels), which recovered within 3 days. Besides, whilst heat-shock effects on LP were practically identical for Cd-exposed mussels in winter and summer, the effects were longer-lasting in summer than in winter for control mussels. Thus, lysosomal responsiveness after heat-shock was higher in summer than in winter but recovery was faster as well, and therefore the consequences of the heat shock seem to be more decisive in winter. In contrast, inter-season differences were attenuated in the presence of Cd. Consequently, mussels seem to be better prepared in summer than in winter to stand short periods of abrupt temperature change; this is, however, compromised when mussels are exposed to pollutants such as Cd.

  2. Geothermal district heating systems

    NASA Astrophysics Data System (ADS)

    Budney, G. S.; Childs, F.

    1982-06-01

    Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

  3. Geothermal heating

    SciTech Connect

    Aureille, M.

    1982-01-01

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  4. Heat pump

    SciTech Connect

    Apte, A.J.

    1982-11-30

    A single working fluid heat pump system having a turbocompressor with a first fluid input for the turbine and a second fluid input for the compressor, and a single output volute or mixing chamber for combining the working fluid output flows of the turbine and the compressor. The system provides for higher efficiency than single fluid systems whose turbine and compressor are provided with separate output volutes.

  5. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  6. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  7. Heat-Exchanger/Heat-Pipe Interface

    NASA Technical Reports Server (NTRS)

    Snyder, H. J.; Van Hagan, T. H.

    1987-01-01

    Monolithic assembly reliable and light in weight. Heat exchanger and evaporator ends of heat pipes integrated in monolithic halves welded together. Interface assembly connects heat exchanger of furnace, reactor, or other power source with heat pipes carrying heat to radiator or power-consuming system. One of several concepts proposed for nuclear power supplies aboard spacecraft, interface useful on Earth in solar thermal power systems, heat engines, and lightweight cooling systems.

  8. Heat-Transfer Coupling For Heat Pipes

    NASA Technical Reports Server (NTRS)

    Nesmith, Bill J.

    1991-01-01

    Proposed welded heat-transfer coupling joins set of heat pipes to thermoelectric converter. Design avoids difficult brazing operation. Includes pair of mating flanged cups. Upper cup integral part of housing of thermoelectric converter, while lower cup integral part of plate supporting filled heat pipes. Heat pipes prefilled. Heat of welding applied around periphery of coupling, far enough from heat pipes so it would not degrade working fluid or create excessive vapor pressure in the pipes.

  9. Heat shock increases oxidative stress to modulate growth and physico-chemical attributes in diverse maize cultivars

    NASA Astrophysics Data System (ADS)

    Hussain, Iqbal; Ashraf, Muhammad Arslan; Rasheed, Rizwan; Iqbal, Muhammad; Ibrahim, Muhammad; Ashraf, Shamila

    2016-10-01

    The present investigation was conducted to appraise the physiochemical adjustments in contrasting maize cultivars, namely, PakAfgoi (tolerant) and EV-5098 (sensitive) subjected to heat shock. Seven-day-old seedlings were exposed to heat shock for different time intervals (1, 3, 6, 24, 48 and 72 h) and data for various physiochemical attributes determined to appraise time course changes in maize. After 72 h of heat shock, the plants were grown under normal conditions for 5 d and data for different growth attributes and photosynthetic pigments recorded. Exposure to heat shock reduced growth and photosynthetic pigments in maize cultivars. The plants exposed to heat shock for up to 3 h recovered growth and photosynthetic pigments when stress was relieved. A time course rise in the relative membrane permeability, hydrogen peroxide (H2O2) and malondialdehyde contents was recorded particularly in the EV-5098 indicating that heat shock-induced oxidative stress. Activities of different enzymatic antioxidants greatly altered due to heat shock. For instance, an increase in superoxide dismutase activity was recorded in both maize cultivars. The activity of ascorbate peroxidase was greater in Pak-Afgoi. However, the peroxidase and catalase activities were higher in plants of EV-5098. Heat shock caused a significant rise in the proline and decline in the total free amino acids. Overall, the performance of Pak-Afgoi was better in terms of having lesser oxidative damage and greater cellular levels of proline. The results suggested that oxidative stress indicators (relative membrane permeability, H2O2 and malondialdehyde) and proline can be used as markers for heat shock tolerant plants.

  10. Hydride heat pump with heat regenerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  11. Heat pipe waste heat recovery boilers

    NASA Astrophysics Data System (ADS)

    Littwin, D. A.; McCurley, J.

    The use of heat pipes as transport devices in waste heat recovery boilers is examined. Test results show that heat pipes can efficiently extract heat from the hot gas stream and transfer it inside the pressure vessel for the steam generation process. The benefits of incorporating heat pipes into the design of waste heat recovery boilers include a highly compact package, a significant reduction in thermally induced stresses, double isolation of the steam from the heat source, an extended surface for improved efficiency in heat extraction, improved circulation and stability in the boiling regime, easy cleaning, individually replaceable tubes, and low flue gas pressure drop.

  12. Heating systems for heating subsurface formations

    DOEpatents

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  13. Towards Understanding the Fluid Dynamic Phenomenon of Interest to Rocket Base Heating: A Review

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Park, C.; Palmer, G.; Arnold, James O. (Technical Monitor)

    1994-01-01

    capture such phenomenon as shock induced base separation and base-burning phenomenon. A survey of experimental, theoretical and computational work that details the fluid dynamics of the base flow environment will be presented in the proposed paper. CFD simulations of rocket base flows using standard CFD codes such as OVERFLOW or GASP will be explored to capture these phenomenon accurately. Merits and limitations of these codes for base flow environment predictions will be explored.

  14. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  15. Regenerative Hydride Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  16. The inactivation of RNase G reduces the Stenotrophomonas maltophilia susceptibility to quinolones by triggering the heat shock response

    PubMed Central

    Bernardini, Alejandra; Corona, Fernando; Dias, Ricardo; Sánchez, Maria B.; Martínez, Jose L.

    2015-01-01

    Quinolone resistance is usually due to mutations in the genes encoding bacterial topoisomerases. However, different reports have shown that neither clinical quinolone resistant isolates nor in vitro obtained Stenotrophomonas maltophilia mutants present mutations in such genes. The mechanisms so far described consist on efflux pumps’ overexpression. Our objective is to get information on novel mechanisms of S. maltophilia quinolone resistance. For this purpose, a transposon-insertion mutant library was obtained in S. maltophilia D457. One mutant presenting reduced susceptibility to nalidixic acid was selected. Inverse PCR showed that the inactivated gene encodes RNase G. Complementation of the mutant with wild-type RNase G allele restored the susceptibility to quinolones. Transcriptomic and real-time RT-PCR analyses showed that several genes encoding heat-shock response proteins were expressed at higher levels in the RNase defective mutant than in the wild-type strain. In agreement with this situation, heat-shock reduces the S. maltophilia susceptibility to quinolone. We can then conclude that the inactivation of the RNase G reduces the susceptibility of S. maltophilia to quinolones, most likely by regulating the expression of heat-shock response genes. Heat-shock induces a transient phenotype of quinolone resistance in S. maltophilia. PMID:26539164

  17. Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster

    SciTech Connect

    Holdridge, C.; Dorsett, D. )

    1991-04-01

    The suppressor of hairy-wing [su(Hw)] locus of Drosophila melanogaster encodes a zinc finger protein that binds a repeated motif in the gypsy retroposon. Mutations of su(Hw) suppress the phenotypes associated with mutations caused by gypsy insertions. To examine the mechanisms by which su(Hw) alters gene expression, a fragment of gypsy containing multiple su(Hw) protein-binding sites was inserted into various locations in the well-characterized Drosophila hsp70 heat shock gene promoter. The authors found no evidence for activation of basal hsp70 transcription by su(Hw) protein in cultured Drosophila cells but observed that it can repress heat shock-induced transcription. Repression occurred only when su(Hw) protein-binding sites were positioned between binding sites for proteins required for heat shock transcription. They propose that su(Hw) protein interferes nonspecifically with protein-protein interactions required for heat shock transcription, perhaps sterically, or by altering the ability of DNA to bend or twist.

  18. Heat pipe methanator

    DOEpatents

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  19. Latent Heat in Soil Heat Flux Measurements

    USDA-ARS?s Scientific Manuscript database

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  20. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  1. Dual source heat pump

    DOEpatents

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  2. Heat recovery method

    SciTech Connect

    Richarts, F.

    1985-04-16

    Heat is recovered by combining a heat transfer system including heat exchangers interconnected in a circulatory system, with a heat pump system. The heat pump system is preferably operated in accordance with the Lorenz-Principle. It is not necessary to divide the heat carrier circuit of the heat pump into two or three separate circulatory circuits. The heat carrier circuit of the heat pump can thus continue to operate unchanged even if the heat pump is switched off. For this purpose the warm heat carrier coming from a discharge fluid cooler, is heated further in a condenser of the heat pump and the cold heat carrier coming from a preheater or cooler group, is cooled further in an evaporator of the heat pump.

  3. Tissue-specific induction of Hsp90 mRNA and plasma cortisol response in chinook salmon following heat shock, seawater challenge, and handling challenge

    USGS Publications Warehouse

    Palmisano, Aldo N.; Winton, J.R.; Dickhoff, Walton W.

    2000-01-01

    In studying the whole-body response of chinook salmon (Oncorhynchus tshawytscha) to various stressors, we found that 5-hour exposure to elevated temperature (mean 21.6??C; + 10.6??C over ambient) induced a marked increase in Hsp90 messenger RNA accumulation in heart, brain, gill, muscle, liver, kidney, and tail fin tissues. The most vital tissues (heart, brain, gill, and muscle) showed the greatest Hsp90-mRNA response, with heart tissue increasing approximately 35-fold, Heat shock induced no increase in plasma cortisol. In contrast, a standard handling challenge induced high plasma cortisol levels, but no elevation in Hsp90 mRNA in any tissue, clearly separating the physiological and cellular stress responses. We saw no increase either in tissue Hsp90 mRNA levels or in plasma cortisol concentrations after exposing the fish to seawater overnight.

  4. Integrative analysis of the heat shock response in Aspergillus fumigatus

    PubMed Central

    2010-01-01

    upstream of some heat shock induced genes. Until now, this factor has only been found in vertebrates. Conclusions Our newly established DIGE data analysis workflow yields improved data quality and is widely applicable for other DIGE datasets. Our findings suggest that the heat shock response in A. fumigatus differs from already well-studied yeasts and other filamentous fungi. PMID:20074381

  5. Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells

    PubMed Central

    Finka, Andrija; Mattoo, Rayees U. H.

    2010-01-01

    Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases. Electronic supplementary material The online version of this article (doi:10.1007/s12192-010-0216-8) contains supplementary material, which is available to authorized users. PMID:20694844

  6. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    PubMed Central

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  7. Small heat shock proteins can release light dependence of tobacco seed during germination.

    PubMed

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia; Hong, Choo Bong

    2015-03-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination.

  8. Shock compression and flash-heating of molecular adsorbates on the picosecond time scale

    NASA Astrophysics Data System (ADS)

    Berg, Christopher Michael

    An ultrafast nonlinear coherent laser spectroscopy termed broadband multiplex vibrational sum-frequency generation (SFG) with nonresonant suppression was employed to monitor vibrational transitions of molecular adsorbates on metallic substrates during laser-driven shock compression and flash-heating. Adsorbates were in the form of well-ordered self-assembled monolayers (SAMs) and included molecular explosive simulants, such as nitroaromatics, and long chain-length alkanethiols. Based on reflectance measurements of the metallic substrates, femtosecond flash-heating pulses were capable of producing large-amplitude temperature jumps with DeltaT = 500 K. Laser-driven shock compression of SAMs produced pressures up to 2 GPa, where 1 GPa ≈ 1 x 104 atm. Shock pressures were estimated via comparison with frequency shifts observed in the monolayer vibrational transitions during hydrostatic pressure measurements in a SiC anvil cell. Molecular dynamics during flash-heating and shock loading were probed with vibrational SFG spectroscopy with picosecond temporal resolution and sub-nanometer spatial resolution. Flash-heating studies of 4-nitrobenzenethiolate (NBT) on Au provided insight into effects from hot-electron excitation of the molecular adsorbates at early pump-probe delay times. At longer delay times, effects from the excitation of SAM lattice modes and lower-energy NBT vibrations were shown. In addition, flash-heating studies of alkanethiolates demonstrated chain disordering behaviors as well as interface thermal conductances across the Au-SAM junction, which was of specific interest within the context of molecular electronics. Shock compression studies of molecular explosive simulants, such as 4-nitrobenzoate (NBA), demonstrated the proficiency of this technique to observe shock-induced molecular dynamics, in this case orientational dynamics, on the picosecond time scale. Results validated the utilization of these refined shock loading techniques to probe the shock

  9. Handbook on heat exchangers

    NASA Astrophysics Data System (ADS)

    Bazhan, Pavel I.; Kanevets, Georgii E.; Seliverstov, Vladimir M.

    Essential data on heat exchange equipment used in ship, locomotive, automotive, and aircraft powerplants are presented in a systematic manner. The data cover the principal types and technical and performance characteristics of heat exchangers, fundamentals of the theory of heat exchange, calculation of heat transfer coefficients for different types of heat exchange apparatus, optimization of heat exchangers, computer-aided design of heat exchange equipment, testing techniques, and test result processing.

  10. Thulium-170 heat source

    SciTech Connect

    Walter, C.E.; Van Konynenburg, R.; Van Sant, J.H.

    1992-01-21

    This patent describes an isotopic heat source. It comprises; at least one isotopic fuel stack, comprising alternating layers of: thulium oxide; and a low atomic weight diluent for thulium oxide; a heat block defining holes into which the fuel stacks can be placed; at least one heat pipe for heat removal, with the heat pipe being positioned in the heat block in thermal connection with the fuel stack; and a structural container surrounding the heat block.

  11. Nonazeotropic Heat Pump

    NASA Technical Reports Server (NTRS)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  12. High heat flux single phase heat exchanger

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.; Izenson, Michael G.

    1990-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  13. High heat flux single phase heat exchanger

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.; Izenson, Michael G.

    1990-01-01

    This paper presents the results obtained to date in a program to develop a high heat flux, single-phase heat exchanger for spacecraft thermal management. The intended application is a net generation interface heat exchanger to couple the crew module water thermal bus to the two-phase ammonia main thermal bus in the Space Station Freedom. The large size of the interface heat exchanger is dictated by the relatively poor water-side heat transfer characteristics. The objective of this program is to develop a single-phase heat transfer approach which can achieve heat fluxes and heat transfer coefficients comparable to those of the evaporation ammonia side. A new heat exchanger concept has been developed to meet these objecties. The main feature of this heat exchanger is that it can achieve very high heat fluxes with a pressure drop one to two orders of magnitude lower than those of previous microchannel or jet impingement high heat flux heat exchangers. This paper describes proof-of-concept experiments performed in air and water and presents analytical model of the heat exchanger.

  14. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock

    PubMed Central

    Hazra, Joyita; Mukherjee, Pooja; Ali, Asif; Poddar, Soumita; Pal, Mahadeb

    2017-01-01

    An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1. PMID:28099440

  15. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock.

    PubMed

    Hazra, Joyita; Mukherjee, Pooja; Ali, Asif; Poddar, Soumita; Pal, Mahadeb

    2017-01-01

    An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1.

  16. Spermatocyte-specific expression of constitutively active heat shock factor 1 induces HSP70i-resistant apoptosis in male germ cells.

    PubMed

    Vydra, N; Malusecka, E; Jarzab, M; Lisowska, K; Glowala-Kosinska, M; Benedyk, K; Widlak, P; Krawczyk, Z; Widlak, W

    2006-02-01

    Spermatocytes, the most sensitive male germ cells to heat-induced apoptosis, do not respond to hyperthermia by inducing heat shock proteins (HSPs), including HSP70i, which has been previously shown to confer resistance to apoptosis in somatic cells. To dissect the mechanism of heat-induced apoptosis and to determine if we could protect spermatocytes by expressing HSP70i, we engineered transgenic mice that express in spermatocytes constitutively active heat shock transcription factor (HSF)1. Such HSF1 expression did not lead to transcription of inducible Hsp70 genes, but instead induced caspase-dependent apoptosis that mimicked heat shock-induced death of spermatogenic cells. Both mitochondria-dependent and death receptor-dependent pathways appear to be involved in such HSF1-induced apoptosis: the levels of Bcl-2 family proteins became increased, p53 protein accumulated and expression levels of caspase-8 and death-receptor-interacting proteins (including Fas-associated death domain protein and TNF receptor associated death domain protein) became elevated. Surprisingly, the constitutive spermatocyte-specific expression of HSP70i in double-transgenic males did not protect against such HSF1-induced apoptosis.

  17. Solar heating

    SciTech Connect

    Resnick, M.; Startevant, R.C.

    1985-01-22

    A solar heater has an outlet conduit above an inlet conduit intercoupling a solar heating chamber with the inside of a building through a window opening. In one form the solar collecting chamber is outside the building below the window and the outlet conduit and inlet conduit are contiguous and pass through the window opening between the windowsill and the lower sash. In another form of the invention the solar collecting chambers are located beside each side of the window and joined at the top by the outlet conduit that passes through an opening between the upper window sash and the top of the window frame and at the bottom by an inlet conduit that passes through an opening between the lower sash and the windowsill. The outlet conduit carries photoelectric cells that provide electrical energy for driving a squirrel-cage fan in the outlet conduit through a mercury switch seated on a damper actuated by a bimetallic coil that closes the damper when the temperature in the outlet conduit goes below a predetermined temperature.

  18. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  19. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin

    PubMed Central

    2014-01-01

    Background Temperature extremes represent an important limiting factor to plant growth and productivity. The present study evaluated the effect of hydroponic pretreatment of strawberry (Fragaria x ananassa cv. ‘Camarosa’) roots with an H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48 h), on the response of plants to acute heat shock treatment (42°C, 8 h). Results Heat stress-induced phenotypic damage was ameliorated in NaHS-pretreated plants, which managed to preserve higher maximum photochemical PSII quantum yields than stressed plants. Apparent mitigating effects of H2S pretreatment were registered regarding oxidative and nitrosative secondary stress, since malondialdehyde (MDA), H2O2 and nitric oxide (NO) were quantified in lower amounts than in heat-stressed plants. In addition, NaHS pretreatment preserved ascorbate/glutathione homeostasis, as evidenced by lower ASC and GSH pool redox disturbances and enhanced transcription of ASC (GDH) and GSH biosynthetic enzymes (GS, GCS), 8 h after heat stress imposition. Furthermore, NaHS root pretreatment resulted in induction of gene expression levels of an array of protective molecules, such as enzymatic antioxidants (cAPX, CAT, MnSOD, GR), heat shock proteins (HSP70, HSP80, HSP90) and aquaporins (PIP). Conclusion Overall, we propose that H2S root pretreatment activates a coordinated network of heat shock defense-related pathways at a transcriptional level and systemically protects strawberry plants from heat shock-induced damage. PMID:24499299

  20. Heat powered refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Goad, R. R.

    This prototype will be of similar capacity as the compressor that will eventually be commercially produced. This unit can operate on almost any moderate temperature water heat source. This heat source could include such applications as industrial waste heat, solar, wood burning stove, resistance electrical heat produced by a windmill, or even perhaps heat put out by the condenser of another refrigeration system.

  1. Heat pipe technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A bibliography of heat pipe technology to provide a summary of research projects conducted on heat pipes is presented. The subjects duscussed are: (1) heat pipe applications, (2) heat pipe theory, (3) design and fabrication, (4) testing and operation, (5) subject and author index, and (6) heat pipe related patents.

  2. Heated tool for autoclaves

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Vanucci, R. D.; Cavano, P. J.; Winters, W. E.

    1980-01-01

    Components made of composite materials are heated in autoclaves by employing electrical resistance heating blankets, thus avoiding need to heat entire autoclave volume. Method provides not only significant energy savings compared to heating entire pressure vessel but offers time savings in accelerated heat-up and cool-down cycles.

  3. Impact on the deuterium retention of simultaneous exposure of tungsten to a steady state plasma and transient heat cycling loads

    NASA Astrophysics Data System (ADS)

    Huber, A.; Sergienko, G.; Wirtz, M.; Steudel, I.; Arakcheev, A.; Brezinsek, S.; Burdakov, A.; Dittmar, T.; Esser, H. G.; Kreter, A.; Linke, J.; Linsmeier, Ch; Mertens, Ph; Möller, S.; Philipps, V.; Pintsuk, G.; Reinhart, M.; Schweer, B.; Shoshin, A.; Terra, A.; Unterberg, B.

    2016-02-01

    The impact on the deuterium retention of simultaneous exposure of tungsten to a steady-state plasma and transient cyclic heat loads has been studied in the linear PSI-2 facility with the main objective of qualifying tungsten (W) as plasma-facing material. The transient heat loads were applied by a high-energy laser, a Nd:YAG laser (λ = 1064 nm) with an energy per pulse of up to 32 J and a duration of 1 ms. A pronounced increase in the D retention by a factor of 13 has been observed during the simultaneous transient heat loads and plasma exposure. These data indicate that the hydrogen clustering is enhanced by the thermal shock exposures, as seen on the increased blister size due to mobilization and thermal production of defects during transients. In addition, the significant increase of the D retention during the simultaneous loads could be explained by an increased diffusion of D atoms into the W material due to strong temperature gradients during the laser pulse exposure and to an increased mobility of D atoms along the shock-induced cracks. Only 24% of the retained deuterium is located inside the near-surface layer (d<4 μm). Enhanced blister formation has been observed under combined loading conditions at power densities close to the threshold for damaging. Blisters are not mainly responsible for the pronounced increase of the D retention.

  4. Energy Corner: Heat Reclamation Rescues Wasted Heat.

    ERIC Educational Resources Information Center

    Daugherty, Thomas

    1982-01-01

    Heat reclamation systems added to pre-existing central heating systems provide maximum savings at minimum cost. The benefits of a particular appliance marketed under the brand name "Energizer" are discussed. (Author/MLF)

  5. Energy Corner: Heat Reclamation Rescues Wasted Heat.

    ERIC Educational Resources Information Center

    Daugherty, Thomas

    1982-01-01

    Heat reclamation systems added to pre-existing central heating systems provide maximum savings at minimum cost. The benefits of a particular appliance marketed under the brand name "Energizer" are discussed. (Author/MLF)

  6. Effects of Heat Shock on Amino Acid Metabolism of Cowpea Cells 1

    PubMed Central

    Mayer, Randall R.; Cherry, Joe H.; Rhodes, David

    1990-01-01

    When cowpea (Vigna unguiculata) cells maintained at 26°C are transferred to 42°C, rapid accumulation of γ-aminobutyrate (>10-fold) is induced. Several other amino acids (including β-alanine, alanine, and proline) are also accumulated, but less extensively than γ-aminobutyrate. Total free amino acid levels are increased approximately 1.5-fold after 24 hours at 42°C. Heat shock also leads to release of amino acids into the medium, indicating heat shock damage to the integrity of the plasmalemma. Some of the changes in metabolic rates associated with heat shock were estimated by monitoring the 15N labeling kinetics of free intracellular, extracellular and protein-bound amino acids of cultures supplied with 15NH4+, and analyzing the labeling data by computer simulation. Preliminary computer simulation models of nitrogen flux suggest that heat shock induces an increase in the γ-aminobutyrate synthesis rate from 12.5 nanomoles per hour per gram fresh weight in control cells maintained at 26°C, to as high as 800 nanomoles per hour per gram fresh weight within the first 2 hours of heat shock. This 64-fold increase in the γ-aminobutyrate synthesis rate greatly exceeds the expected (Q10) change of metabolic rate of 2.5- to 3-fold due to a 16°C increase in temperature. We suggest that this metabolic response may in part involve an activation of glutamate decarboxylase in vivo, perhaps mediated by a transient cytoplasmic acidification. Proline appears to be synthesized from glutamate and not from ornithine in cowpea cells. Proline became severalfold more heavily labeled than ornithine, citrulline and arginine in both control and heat-shocked cultures. Proline synthesis rate was increased 2.7-fold by heat shock. Alanine, β-alanine, valine, leucine, and isoleucine synthesis rates were increased 1.6-, 3.5-, 2.0-, 5.0-, and 6.0-fold, respectively, by heat shock. In contrast, the phenylalanine synthesis rate was decreased by 50% in response to heat shock. The

  7. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  8. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  9. Heat Wave Safety Checklist

    MedlinePlus

    ... heat has caused more deaths than all other weather events, including floods. A heat wave is a ... care for heat- related emergencies … ❏ Listen to local weather forecasts and stay aware of upcoming temperature changes. ❏ ...

  10. Extreme Heat Guidebook

    EPA Pesticide Factsheets

    The 'Climate Change and Extreme Heat: What You Can Do to Prepare' handbook explains the connection between climate change and extreme heat events, and outlines actions citizens can take to protect their health during extreme heat.

  11. Babies and heat rashes

    MedlinePlus

    Heat rashes and babies; Prickly heat rash; Red miliaria ... To avoid heat rash , keep your baby cool and dry during warm weather. Some helpful suggestions: During the hot season, dress your baby in lightweight, soft, cotton clothing. Cotton ...

  12. Heat pump systems

    SciTech Connect

    Sauer, H.J.; Howell, R.H.

    1983-01-01

    This book was written as a reference and textbook on heat pumps. Economics, thermodynamics, heat transfer, design, selection, and operating practices are covered in detail. Specific methods, and solutions rather than broad generalizations are emphasized. Includes problems, bibliographies, and a subject index. For applied science collections in public, college and appropriate special libraries. Contents: Thermodynamics, Heat pump systems and applications. Heat pump components. Heating and cooling loads. Energy use determination. Reliability, maintenance, and service. Advances in heat pumps. Appendices. Index.

  13. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  14. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  15. Equation of state of heated glassy carbon

    NASA Technical Reports Server (NTRS)

    Sekine, Toshimori; Ahrens, Thomas J.

    1991-01-01

    New Hugoniot data are presented for glassy carbon preheated to 1550 K and shocked to 20 GPa. The high-temperature Hugoniot is very similar to the principal Hugoniot. This results argues against the diffusional mechanism for the shock-induced transformaton of amorphous carbon to diamond, although the present results are obviously limited to below 20 GPa. This study provides the first Higoniot data for carbon preheated to significantly high temperatures.

  16. Decrease in penicillin susceptibility due to heat shock protein ClpL in Streptococcus pneumoniae.

    PubMed

    Tran, Thao Dang-Hien; Kwon, Hyog-Young; Kim, Eun-Hye; Kim, Ki-Woo; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-06-01

    Antibiotic resistance and tolerance are increasing threats to global health as antibiotic-resistant bacteria can cause severe morbidity and mortality and can increase treatment cost 10-fold. Although several genes contributing to antibiotic tolerance among pneumococci have been identified, we report here that ClpL, a major heat shock protein, could modulate cell wall biosynthetic enzymes and lead to decreased penicillin susceptibility. On capsular type 1, 2, and 19 genetic backgrounds, mutants lacking ClpL were more susceptible to penicillin and had thinner cell walls than the parental strains, whereas a ClpL-overexpressing strain showed a higher resistance to penicillin and a thicker cell wall. Although exposure of Streptococcus pneumoniae D39 to penicillin inhibited expression of the major cell wall synthesis gene pbp2x, heat shock induced a ClpL-dependent increase in the mRNA levels and protein synthesized by pbp2x. Inducible ClpL expression correlated with PBP2x expression and penicillin susceptibility. Fractionation and electron micrograph data revealed that ClpL induced by heat shock is localized at the cell wall, and the ΔclpL showed significantly reduced net translocation of PBP2x into the cell wall. Moreover, coimmunoprecipitation with either ClpL or PBP2x antibody followed by reprobing with ClpL or PBP2x antibody showed an interaction between ClpL and PBP2x after heat stress. This interaction was confirmed by His tag pulldown assay with either ClpLHis₆ or PBP2xHis₆. Thus, ClpL stabilized pbp2x expression, interacted with PBP2x, and facilitated translocation of PBP2x, a key protein of cell wall synthesis process, contributing to the decrease of antibiotic susceptibility in S. pneumoniae.

  17. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles.

    PubMed

    Heikkila, John J

    2017-01-01

    Small heat shock proteins (sHSPs) are a superfamily of molecular chaperones with important roles in protein homeostasis and other cellular functions. Amphibians, reptiles, fish and birds have a shsp gene called hsp30, which was also referred to as hspb11 or hsp25 in some fish and bird species. Hsp30 genes, which are not found in mammals, are transcribed in response to heat shock or other stresses by means of the heat shock factor that is activated in response to an accumulation of unfolded protein. Amino acid sequence analysis revealed that representative HSP30s from different classes of non-mammalian vertebrates were distinct from other sHSPs including HSPB1/HSP27. Studies with amphibian and fish recombinant HSP30 determined that they were molecular chaperones since they inhibited heat- or chemically-induced aggregation of unfolded protein. During non-mammalian vertebrate development, hsp30 genes were differentially expressed in selected tissues. Also, heat shock-induced stage-specific expression of hsp30 genes in frog embryos was regulated at the level of chromatin structure. In adults and/or tissue culture cells, hsp30 gene expression was induced by heat shock, arsenite, cadmium or proteasomal inhibitors, all of which enhanced the production of unfolded/damaged protein. Finally, immunocytochemical analysis of frog and chicken tissue culture cells revealed that proteotoxic stress-induced HSP30 accumulation co-localized with aggresome-like inclusion bodies. The congregation of damaged protein in aggresomes minimizes the toxic effect of aggregated protein dispersed throughout the cell. The current availability of probes to detect the presence of hsp30 mRNA or encoded protein has resulted in the increased use of hsp30 gene expression as a marker of proteotoxic stress in non-mammalian vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Long-term effects of prior heat shock on neuronal potassium currents recorded in a novel insect ganglion slice preparation.

    PubMed

    Ramirez, J M; Elsen, F P; Robertson, R M

    1999-02-01

    Brief exposure to high temperatures (heat shock) induces long-lasting adaptive changes in the molecular biology of protein interactions and behavior of poikilotherms. However, little is known about heat shock effects on neuronal properties. To investigate how heat shock affects neuronal properties we developed an insect ganglion slice from locusts. The functional integrity of neuronal circuits in slices was demonstrated by recordings from rhythmically active respiratory neurons and by the ability to induce rhythmic population activity with octopamine. Under these "functional" in vitro conditions we recorded outward potassium currents from neurons of the ventral midline of the A1 metathoracic neuromere. In control neurons, voltage steps to 40 mV from a holding potential of -60 mV evoked in control neurons potassium currents with a peak current of 10.0 +/- 2.5 nA and a large steady state current of 8.5 +/- 2.6 nA, which was still activated from a holding potential of -40 mV. After heat shock most of the outward current inactivated rapidly (peak amplitude: 8.4 +/- 2.4 nA; steady state: 3.6 +/- 2.0 nA). This current was inactivated at a holding potential of -40 mV. The response to temperature changes was also significantly different. After changing the temperature from 38 to 42 degrees C the amplitude of the peak and steady-state current was significantly lower in neurons obtained from heat-shocked animals than those obtained from controls. Our study indicates that not only heat shock can alter neuronal properties, but also that it is possible to investigate ion currents in insect ganglion slices.

  19. Non-Lethal Heat Shock of the Asian Green Mussel, Perna viridis, Promotes Hsp70 Synthesis, Induces Thermotolerance and Protects Against Vibrio Infection.

    PubMed

    Aleng, Nor Afiqah; Sung, Yeong Yik; MacRae, Thomas H; Abd Wahid, Mohd Effendy

    2015-01-01

    Mild heat stress promotes thermotolerance and protection against several different stresses in aquatic animals, consequences correlated with the accumulation of heat shock protein 70 (Hsp70). The purpose of this study was to determine if non-lethal heat shock (NLHS) of the Asian green mussel, Perna viridis, an aquatic species of commercial value, promoted the production of Hsp70 and enhanced its resistance to stresses. Initially, the LT50 and LHT for P. viridis were determined to be 42°C and 44°C, respectively, with no heat shock induced death of mussels at 40°C or less. Immunoprobing of western blots revealed augmentation of constitutive (PvHsp70-1) and inducible (PvHsp70-2) Hsp70 in tissue from adductor muscle, foot, gill and mantel of P. viridis exposed to 38°C for 30 min followed by 6 h recovery, NLHS conditions for this organism. Characterization by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that PvHsp70-1 and PvHsp70-2 respectively corresponded most closely to Hsp70 from P. viridis and Mytilus galloprovincialis. Priming of adult mussels with NLHS promoted thermotolerance and increased resistance to V. alginolyticus. The induction of Hsp70 in parallel with enhanced thermotolerance and improved protection against V. alginolyticus, suggests Hsp70 functions in P. viridis as a molecular chaperone and as a stimulator of the immune system.

  20. Non-Lethal Heat Shock of the Asian Green Mussel, Perna viridis, Promotes Hsp70 Synthesis, Induces Thermotolerance and Protects Against Vibrio Infection

    PubMed Central

    Aleng, Nor Afiqah; Sung, Yeong Yik; MacRae, Thomas H.; Abd Wahid, Mohd Effendy

    2015-01-01

    Mild heat stress promotes thermotolerance and protection against several different stresses in aquatic animals, consequences correlated with the accumulation of heat shock protein 70 (Hsp70). The purpose of this study was to determine if non-lethal heat shock (NLHS) of the Asian green mussel, Perna viridis, an aquatic species of commercial value, promoted the production of Hsp70 and enhanced its resistance to stresses. Initially, the LT50 and LHT for P. viridis were determined to be 42°C and 44°C, respectively, with no heat shock induced death of mussels at 40°C or less. Immunoprobing of western blots revealed augmentation of constitutive (PvHsp70-1) and inducible (PvHsp70-2) Hsp70 in tissue from adductor muscle, foot, gill and mantel of P. viridis exposed to 38°C for 30 min followed by 6 h recovery, NLHS conditions for this organism. Characterization by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that PvHsp70-1 and PvHsp70-2 respectively corresponded most closely to Hsp70 from P. viridis and Mytilus galloprovincialis. Priming of adult mussels with NLHS promoted thermotolerance and increased resistance to V. alginolyticus. The induction of Hsp70 in parallel with enhanced thermotolerance and improved protection against V. alginolyticus, suggests Hsp70 functions in P. viridis as a molecular chaperone and as a stimulator of the immune system. PMID:26288319

  1. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  2. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  3. Solar Heating Equipment

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Solar Unlimited, Inc.'s suncatcher line includes a variety of solar arrays, derived from NASA's satellite program: water heating only, partial home heating, or water and whole house central heating. Solar Unlimited developed a set of vigorous requirements to avoid problems common to solar heating technologies.

  4. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  5. Nature's Heat Exchangers.

    ERIC Educational Resources Information Center

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  6. Solar heat pump

    NASA Astrophysics Data System (ADS)

    Hermanson, R.

    Brief discussions of the major components of a solar powered, chemical ground source heat pump are presented. The components discussed are the solar collectors and the chemical heat storage battery. Sodium sulfide is the medium used for heat storage. Catalog information which provides a description of all of the heat pump systems is included.

  7. Nature's Heat Exchangers.

    ERIC Educational Resources Information Center

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  8. REACH. Heating Units.

    ERIC Educational Resources Information Center

    Stanfield, Carter; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized units in the area of heating. The instructional units focus on electric heating systems, gas heating systems, and oil burning systems. Each unit follows a typical format that includes a unit…

  9. REACH. Heating Units.

    ERIC Educational Resources Information Center

    Stanfield, Carter; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized units in the area of heating. The instructional units focus on electric heating systems, gas heating systems, and oil burning systems. Each unit follows a typical format that includes a unit…

  10. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  11. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  12. Heat Pipe Planets

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Simon, Justin I.; Webb, A. Alexander G.

    2014-01-01

    When volcanism dominates heat transport, a terrestrial body enters a heat-pipe mode, in which hot magma moves through the lithosphere in narrow channels. Even at high heat flow, a heat-pipe planet develops a thick, cold, downwards-advecting lithosphere dominated by (ultra-)mafic flows and contractional deformation at the surface. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an episode of heat-pipe cooling early in their histories.

  13. Thulium-170 heat source

    DOEpatents

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  14. Heat Treating Apparatus

    DOEpatents

    De Saro, Robert; Bateman, Willis

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  15. Integrated heat pump system

    SciTech Connect

    Reedy, W.R.

    1988-03-01

    An integrated heat pump and hot water system is described that includes: a heat pump having an indoor heat exchanger and an outdoor heat exchanger that are selectively connected to the suction line and the discharge line respectively of a compressor by a flow reversing means, and to each other by a liquid line having an expansion device mounted therein, whereby heating and cooling is provided to an indoor comfort zone by cycling the flow reversing means, a refrigerant to water heat exchanger having a hot water flow circuit in heat transfer relation with a first refrigerant condensing circuit and a second refrigerant evaporating circuit, a connection mounted in the liquid between the indoor heat exchanger and the expansion device, control means for regulating the flow of refrigerant through the refrigerant to water heat exchanger to selectively transfer heat into and out of the hot water flow circuit.

  16. Activation of the p38 signaling pathway by heat shock involves the dissociation of glutathione S-transferase Mu from Ask1.

    PubMed

    Dorion, Sonia; Lambert, Herman; Landry, Jacques

    2002-08-23

    Despite the importance of the stress-activated protein kinase pathways in cell death and survival, it is unclear how stressful stimuli lead to their activation. In the case of heat shock, the existence of a specific mechanism of activation has been evidenced, but the molecular nature of this pathway is undefined. Here, we found that Ask1 (apoptosis signal-regulating kinase 1), an upstream activator of the stress-activated protein kinase p38 during exposure to oxidative stress and other stressful stimuli, was also activated by heat shock. Ask1 activity was required for p38 activation since overexpression of a kinase dead mutant of Ask1, Ask1(K709M), inhibited heat shock-induced p38 activation. The activation of Ask1 by oxidative stress involves the oxidation of thioredoxin, an endogenous inhibitor of Ask1. A different activation mechanism takes place during heat shock. In contrast to p38 induction by H(2)O(2), induction by heat shock was not antagonized by pretreatment with the antioxidant N-acetyl-l-cysteine or by overexpressing thioredoxin and was not accompanied by the dissociation of thioredoxin from Ask1. Instead, heat shock caused the dissociation of glutathione S-transferase Mu1-1 (GSTM1-1) from Ask1 and overexpression of GSTM1-1-inhibited induction of p38 by heat shock. We concluded that because of an alternative regulation by the two distinct repressors thioredoxin and GSTM1-1, Ask1 constitutes the converging point of the heat shock and oxidative stress-sensing pathways that lead to p38 activation.

  17. Industrial heat exchangers

    SciTech Connect

    Hayes, A.J.; Liang, W.W.; Richlen, S.L.; Tabb, E.S.

    1985-01-01

    This book presents the papers given at a symposium on the use of heat exchangers in the industrial plants. Topics considered include the US DOE and GRI research programs, advanced fixed boundary heat exchanger technology, commercial heat exchanger applications, thermo-hydraulic performance of heat-transfer equipment, field tests, the corrosion of heat exchanger materials, economics, cost benefit analysis, payback, and advanced assembly and materials.

  18. Thermoelectric heat exchange element

    DOEpatents

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  19. Fundamentals of heat measurement. [heat flux transducers

    NASA Technical Reports Server (NTRS)

    Gerashchenko, O. A.

    1979-01-01

    Various methods and devices for obtaining experimental data on heat flux density over wide ranges of temperature and pressure are examined. Laboratory tests and device fabrication details are supplemented by theoretical analyses of heat-conduction and thermoelectric effects, providing design guidelines and information relevant to further research and development. A theory defining the measure of correspondence between transducer signal and the measured heat flux is established for individual (isolated) heat flux transducers subject to space and time-dependent loading. An analysis of the properties of stacked (series-connected) transducers of various types (sandwich-type, plane, and spiral) is used to derive a similarity theory providing general governing relationships. The transducers examined are used in 36 types of derivative devices involving direct heat loss measurements, heat conduction studies, radiation pyrometry, calorimetry in medicine and industry and nuclear reactor dosimetry.

  20. Heat cascading regenerative sorption heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  1. ULTRAFAST MEASUREMENT OF THE OPTICAL PROPERTIES OF SHOCKED NICKEL AND LASER HEATED GOLD

    SciTech Connect

    Funk, D. J.; Reho, J. H.; Moore, David S.; Gahagan, K. A.; Rabie, R. L.; McGrane, S.

    2001-01-01

    We have used high-resolution Frequency Domain Interferometry (FDI) to make the first ultrafast measurement of shock-induced changes in the optical properties of thin nickel ({approx}500 nm) targets. Data taken at several angles of incidence allowed the separation of optical effects from material motion, yielding an effective complex index for the shocked material. In contrast to our previous studies of aluminum, measurements with an 800 nm probe wavelength found a phase shift attributable to optical property changes with the same sign as that due to surface motion, during an 11.5 GPa shock breakout. A similar experiment was attempted with thin gold films ({approx}180 nm) using Ultrafast Spatial Interferometry (USI). However, since the electron-phonon coupling in gold is extremely weak, a shock is observed as it 'forms'. Ballistic electrons and electron-electron equilibrium cause fast heating of the electrons in the entire thickness of the thin film, followed by lattice excitation through electron-phonon coupling, eventually leading to melt and frustrated thermal expansion yielding the observed surface motion. We suggest that these experiments offer a new path for observation of phase changes or for temperature measurements, by allowing a determination of the complex index under dynamic loading conditions and comparing the measured values to those obtained under static conditions.

  2. Glioma progression through the prism of heat shock protein mediated extracellular matrix remodeling and epithelial to mesenchymal transition.

    PubMed

    Rajesh, Y; Biswas, Angana; Mandal, Mahitosh

    2017-10-15

    Glial tumor is one of the intrinsic brain tumors with high migratory and infiltrative potential. This essentially contributes to the overall poor prognosis by circumvention of conventional treatment regimen in glioma. The underlying mechanism in gliomagenesis is bestowed by two processes- Extracellular matrix (ECM) Remodeling and Epithelial to mesenchymal transition (EMT). Heat Shock Family of proteins (HSPs), commonly known as "molecular chaperons" are documented to be upregulated in glioma. A positive correlation also exists between elevated expression of HSPs and invasive capacity of glial tumor. HSPs overexpression leads to mutational changes in glioma, which ultimately drive cells towards EMT, ECM modification, malignancy and invasion. Differential expression of HSPs - a factor providing cytoprotection to glioma cells, also contributes towards its radioresistance /chemoresistance. Various evidences also display upregulation of EMT and ECM markers by various heat shock inducing proteins e.g. HSF-1. The aim of this review is to study in detail the role of HSPs in EMT and ECM leading to radioresistance/chemoresistance of glioma cells. The existing treatment regimen for glioma could be enhanced by targeting HSPs through immunotherapy, miRNA and exosome mediated strategies. This could be envisaged by better understanding of molecular mechanisms underlying glial tumorigenesis in relation to EMT and ECM remodeling under HSPs influence. Our review might showcase fresh potential for the development of next generation therapeutics for effective glioma management. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Heat pump augmentation of nuclear process heat

    SciTech Connect

    Koutz, S.L.

    1986-03-18

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid.

  4. Heat Pipe Technology

    NASA Astrophysics Data System (ADS)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  5. Enhancement of heat transfer

    NASA Astrophysics Data System (ADS)

    Nakayama, W.

    Recent publications on enhancement of heat transfer are reviewed, emphasizing the effects of roughness elements, fins, and porous surfaces. Enhancement of forced convective heat transfer on roughened surfaces, performance evaluation of enhanced surfaces, viscous flows in cooled tubes and tubes with swirlers, and active methods of enhancement are addressed. Aspects of pool boiling heat transfer are considered, including nucleate boiling heat transfer on rough surfaces and porous surfaces, and maximum and minimum heat fluxes. Evaporative heat transfer is discussed for thin-film evaporation on structured surfaces and liquid spray cooling of a heated surface. Condensation heat transfer on external surfaces is covered, including filmwise condensation on vertical finned and fluted surfaces and on horizontal tubes. In-tube boiling and condensation are treated, discussing their enhancement by fins and inserts, as well as critical heat flux in coiled, rifled, and corrugated tubes.

  6. Heat Pipe Technology

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The heat pipe, a sealed chamber whose walls are lined with a "wick," a thin capillary network containing a working fluid in liquid form was developed for a heat distribution system for non-rotating satellites. Use of the heat pipe provides a continuous heat transfer mechanism. "Heat tubes" that improve temperature control in plastics manufacturing equipment incorporated the heat pipe technology. James M. Stewart, an independent consultant, patented the heat tubes he developed and granted a license to Kona Corporation. The Kona Nozzle for heaterless injection molding gets heat for its operation from an external source and has no internal heating bands, reducing machine maintenance and also eliminating electrical hazards associated with heater bands. The nozzles are used by Eastman Kodak, Bic Pen Corporation, Polaroid, Tupperware, Ford Motor Company, RCA, and Western Electric in the molding of their products.

  7. Heat transfer system

    DOEpatents

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  8. Heat transfer system

    DOEpatents

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  9. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  10. Flexible Heating Head

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Johnson, Samuel D.; Coultrip, Robert H.; Phillips, W. Morris

    1994-01-01

    United States Air Force is investigating method of repairing aircraft by use of adhesive bonding with induction heating to cure adhesive. Fast-acting and reliable induction heating device that is lightweight, portable, and easy to use needed for such applications. Newly developed flexible heating head lightweight and conforms to complex, curved surfaces. Incorporates principles and circuitry of toroid joining gun described in "Toroid Joining Gun for Fittings and Couplings" (LAR-14278). Concentrates heat in local area through induction heating. Flexible heating head contains tank circuit, connected via cable to source of power.

  11. Flexible Heating Head

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Johnson, Samuel D.; Coultrip, Robert H.; Phillips, W. Morris

    1994-01-01

    United States Air Force is investigating method of repairing aircraft by use of adhesive bonding with induction heating to cure adhesive. Fast-acting and reliable induction heating device that is lightweight, portable, and easy to use needed for such applications. Newly developed flexible heating head lightweight and conforms to complex, curved surfaces. Incorporates principles and circuitry of toroid joining gun described in "Toroid Joining Gun for Fittings and Couplings" (LAR-14278). Concentrates heat in local area through induction heating. Flexible heating head contains tank circuit, connected via cable to source of power.

  12. Microscale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2006-01-01

    The device described herein is designed primarily for use as a regenerative heat exchanger in a miniature Stirling engine or Stirling-cycle heat pump. A regenerative heat exchanger (sometimes called, simply, a "regenerator" in the Stirling-engine art) is basically a thermal capacitor: Its role in the Stirling cycle is to alternately accept heat from, then deliver heat to, an oscillating flow of a working fluid between compression and expansion volumes, without introducing an excessive pressure drop. These volumes are at different temperatures, and conduction of heat between these volumes is undesirable because it reduces the energy-conversion efficiency of the Stirling cycle.

  13. Radial heat flux transformer

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Buzzard, R. J.

    1971-01-01

    Unit moves heat radially from small diameter shell to larger diameter shell, or vice versa, with negligible temperature drop, making device useful wherever heating or cooling of concentrically arranged materials, substances, and structures is desired.

  14. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  15. An electrohydrodynamic heat pipe

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1972-01-01

    Dielectric liquid for transfer of heat provides liquid flow from the condenser section to the evaporator section in conventional heat pipes. Working fluid is guided or pumped by an array of wire electrodes connected to a high-voltage source.

  16. Fusion heating technology

    SciTech Connect

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  17. Cold Climate Heat Pump

    DTIC Science & Technology

    2013-08-01

    central heating , cooling, and air conditioning (HVAC) system . Both buildings had two zones for heating and cooling, which allowed for a direct...section calls for improved efficiency of mechanical systems as well as an increase of renewable resource usage. Current heating technologies in cold... heated refrigerant is injected into a mixing chamber between the two compressors. The injection leads to a gain in performance of the system through

  18. Compact, super heat exchanger

    NASA Technical Reports Server (NTRS)

    Fortini, A.; Kazaroff, J. M.

    1980-01-01

    Heat exchanger uses porous media to enhance heat transfer through walls of cooling channels, thereby lowering wall temperature. Porous media within cooling channel increases internal surface area from which heat can be transferred to coolant. Comparison data shows wall has lower temperature and coolant has higher temperature when porous medium is used within heat exchanger. Media can be sintered powedered metal, metal fibers, woven wire layers, or any porous metal having desired permeability and porosity.

  19. Compact, super heat exchanger

    NASA Technical Reports Server (NTRS)

    Fortini, A.; Kazaroff, J. M.

    1980-01-01

    Heat exchanger uses porous media to enhance heat transfer through walls of cooling channels, thereby lowering wall temperature. Porous media within cooling channel increases internal surface area from which heat can be transferred to coolant. Comparison data shows wall has lower temperature and coolant has higher temperature when porous medium is used within heat exchanger. Media can be sintered powedered metal, metal fibers, woven wire layers, or any porous metal having desired permeability and porosity.

  20. Solar heat receiver

    DOEpatents

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  1. Solar heat receiver

    DOEpatents

    Hunt, Arlon J.; Hansen, Leif J.; Evans, David B.

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  2. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  3. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  4. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  5. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  6. Heat pipes. [technology utilization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development and use of heat pipes are described, including space requirements and contributions. Controllable heat pipes, and designs for automatically maintaining a selected constant temperature, are discussed which would add to the versatility and usefulness of heat pipes in industrial processing, manufacture of integrated circuits, and in temperature stabilization of electronics.

  7. Heat-related illness.

    PubMed

    Atha, Walter F

    2013-11-01

    Environmental exposure to high temperatures can result in abnormalities ranging from mild heat exhaustion to heat stroke with multiorgan system failure. An understanding of the mechanisms of thermoregulation and how those mechanisms fail with extreme heat stress is critical for management of the patient with elevated body temperature in the emergency department.

  8. Heat Recovery System

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  9. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  10. HEAT TRANSFER MEANS

    DOEpatents

    Fraas, A.P.; Wislicenus, G.F.

    1961-07-11

    A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

  11. Electric heating pad burns.

    PubMed

    Bill, T J; Edlich, R F; Himel, H N

    1994-01-01

    Patients with sensory deficits are especially prone to heating pad burns. Two cases are reported of patients with anesthetic skin who received partial and full-thickness burns of their feet from an electric heating pad. These burn injuries could have been prevented if the patients understood the potential hazard of heating pads.

  12. Orion Heat Shield

    NASA Image and Video Library

    2015-05-06

    ENGINEERS FROM AMES RESEARCH CENTER AND MARSHALL SPACE FLIGHT CENTER REMOVE AVCOAT SEGMENTS FROM THE SURFACE OF THE ORION HEAT SHIELD, THE PROTECTIVE SHELL DESIGNED TO HELP THE NEXT GENERATION CREW MODULE WITHSTAND THE HEAT OF ATMOSPHERIC REENTRY. THE HEAT SHIELD FLEW TO SPACE DURING THE EFT-1 FULL SCALL FLIGHT TEST OF ORION IN DECEMBER 2014

  13. Geothermal heat in a heat pump use

    NASA Astrophysics Data System (ADS)

    Pavlova, A.; Hansen, J.; Obermeyer, H.; Pavlova, I.

    2016-09-01

    The considered innovative technology proposes to use alternative energy sources for the process efficiency in low-height construction. The world economy depends on price rises for energy sources and the danger of environmental pollution increases. Geothermal energy is the basic resource saving and environmentally safe renewable heat source that is characterized by inexhaustibility, permanent all the-year-round use, universal prevalence of resources and the ability to replace considerable volumes of traditional energy carriers. The expediency and power efficiency to apply a heat pump with the use of geothermal heat is proved for low-height construction.

  14. Heat pipes for industrial waste heat recovery

    SciTech Connect

    Merrigan, M.A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes have been investigated. Economic studies of the use of heat-pipe based recuperators in industrial furnaces have been conducted and payback periods determined as a function of material, fabrication, and installation cost.

  15. High heat flux loop heat pipes

    NASA Technical Reports Server (NTRS)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  16. A corrosive resistant heat exchanger

    DOEpatents

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  17. Shock-Induced Martensite Reversal in Fe/30%Ni.

    DTIC Science & Technology

    1980-02-14

    Reed (1961) (88) 95 8.032 2016 -- Graham et al. (1967) 95 8.020±.003 2315 541 1594 Present work 5 8.158 HuOoniot modulus: 1163 Graham et al. (1967) 95...stress deviators (Subroutine DEVIAT). h h T h AV Vh ,S Z At are transferred from F- subroutine EXSTAT2 a. - x h )a,, + xh bo = (1-x )b,, + xhb112 h hcp

  18. Shock-Induced Turbulence and Acoustic Loading on Aerospace Structures

    DTIC Science & Technology

    2015-08-22

    Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person...considered here comprise of the Monotone-Upstream Central Scheme for Conservation Laws (MUSCL) and Weighted Essentially Non-Oscillatory (WENO) schemes...the Monotone-Upstream Central Scheme for Conservation Laws (MUSCL) and Weighted Essentially Non-Oscillatory (WENO) schemes, 2nd to 9th order

  19. Computational considerations for the simulation of shock-induced sound

    NASA Technical Reports Server (NTRS)

    Casper, Jay; Carpenter, Mark H.

    1996-01-01

    The numerical study of aeroacoustic problems places stringent demands on the choice of a computational algorithm, because it requires the ability to propagate disturbances of small amplitude and short wavelength. The demands are particularly high when shock waves are involved, because the chosen algorithm must also resolve discontinuities in the solution. The extent to which a high-order-accurate shock-capturing method can be relied upon for aeroacoustics applications that involve the interaction of shocks with other waves has not been previously quantified. Such a study is initiated in this work. A fourth-order-accurate essentially nonoscillatory (ENO) method is used to investigate the solutions of inviscid, compressible flows with shocks in a quasi-one-dimensional nozzle flow. The design order of accuracy is achieved in the smooth regions of a steady-state test case. However, in an unsteady test case, only first-order results are obtained downstream of a sound-shock interaction. The difficulty in obtaining a globally high-order-accurate solution in such a case with a shock-capturing method is demonstrated through the study of a simplified, linear model problem. Some of the difficult issues and ramifications for aeroacoustics simulations of flows with shocks that are raised by these results are discussed.

  20. Survival of fossils under extreme shocks induced by hypervelocity impacts

    PubMed Central

    Burchell, M. J.; McDermott, K. H.; Price, M. C.; Yolland, L. J.

    2014-01-01

    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s−1, corresponding to mean peak pressures of 0.2–19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon. PMID:25071234

  1. Numerical calculation of shock-induced initiation of detonations

    NASA Technical Reports Server (NTRS)

    Cort, G. E.; Fu, J. H. M.

    1980-01-01

    Results of numerical calculations of the impact of steel cylinders and spheres on the plastic bonded high explosive PBX 9501 are described. The calculations were carried out by a reactive, multicomponent, two dimensional, Eulerian hydrodynamic computer code, 2DE. The 2DE computer code is a finite difference code that uses the donor acceptor cell method to compute mixed cell fluxes. The parameters in the Forest Fire burn model are developed from experiments where the induced shock approximates a plane wave and are applied, in this case, to a situation where the induced shock is a divergent wave with curvature that depends on the size and shape of the projectile. The calculated results are compared with results from experiments involving instrumented mock and live high explosives, with projectiles of varying size, shapes, and velocities.

  2. The Shock Induced Equation of State of Two Ferroelectric Ceramics

    SciTech Connect

    Deas, D.; Millett, J. C. F.; Bourne, N. K.

    2006-07-28

    Manganin stress gauges have been used to determine the Hugoniots of two ferroelectric ceramics, lead zirconium titanate (PZT) and a similar material modified with tin (PSZT). Comparison with previously published data shows close agreement between our results for PZT and earlier work. The Hugoniot Elastic Limit has been determined, and also agrees with previous data. In the case of PSZT, the Hugoniot in terms of stress and particle velocity is similar to PZT. In terms of elastic wave velocity - particle velocity, results show an overall increase, in contrast to PZT, where wave speed was observed to decrease with increasing particle velocity.

  3. Shock induced melting in aluminum: Wave profile measurements

    NASA Astrophysics Data System (ADS)

    Chhabildas, Lalit C.; Furnish, Michael D.; Reinhart, William D.

    2000-04-01

    We have developed launch capabilities that can propel macroscopic plates to hypervelocities (8 to 16 km/s). This capability has been used to determine the first time-resolved wave-profile measurements unsing velocity interferometry techniques at impact velocities of 10 km/s. These measurements show that aluminum continues to exhibit normal release behavior to 161 GPa with complete loss of strength in the shocked state. Results of these experiments are discussed and compared with the results of lower-pressure experiments conducted at lower impact velocities.

  4. Studies of shock induced flows in strengthless materials on Pegasus

    SciTech Connect

    Oro, D.M.; Fulton, R.D.; Stokes, J.; Guzik, J.A.; Adams, P.J.; Morgan, D.; Platts, D.; Obst, A.W.; Fell, M.

    1998-12-31

    Experiments on the Pegasus II pulsed power facility at Los Alamos are being conducted to study the evolution and flow of strengthless materials as a result of being shocked. Of particular interest is vorticity and mixing that is induced in the materials by a shock-wave passing through a non-uniform boundary. The experiments provide an important benchmark for hydrodynamic codes, and are a precursor to experiments planned on Atlas in which the materials will be pre-ionized before being shocked. For these experiments, flash radiography is used to image the position of the target boundaries at specific times. In these experiments 3 radiographs along target radii and 2 radiographs along the target axis are taken at independent times. The central cavity of the target is imaged with visible framing cameras. The Xe in this cavity radiates when shocked, and therefore the shape and timing of the shock front in the Xe can be determined from the images. Other diagnostics employed for this work include electric and magnetic field probes that are used to determine the current through the liner and when the liner impacts the target. Both the 1-d magnetohydrodynamics code RAVEN, and the 2-d/3-d adaptive grid eulerian code RAGE are used for pre-shot calculations. In this talk the authors will discuss the motivation for these experiments, compare calculations with radiographs and visible images and discuss future experiments on Pegasus and Atlas.

  5. Sequential shock induced switch tests for Eglin Air Force Base

    SciTech Connect

    Cech, R.D.

    1994-08-11

    Tests were performed at EG&G Mound Applied Technologies to investigate the effect of using the tangential shock wave from detonating Extex explosive to cause shock conduction of a Kapton dielectric. Two voltages (600 and 4000) were switched from a 600 pF capacitor. Timing between four shock switches and four pin switches was found and compared during a single detonation event. Electrical conduction was observed between shock switches and the current paths were found.

  6. Shock-induced defects in HgO

    SciTech Connect

    Morosin, B.; Venturini, E.L.; Holman, G.T.; Newcomer, P.N.; Dunn, R.G.; Graham, R.A.

    1995-09-01

    Powder compacts of HgO have been subjected to shock-loading and preserved for postshock analysis to understand its reactivity and stability under transient temperature-pressure excursions. Recovered samples indicate several solid state reactions which are dependent on shock conditions. Metallic Hg is recovered in small amounts in the HgO compact as well as an as-yet unidentified ferromagnetic impurity not present in the as-received HgO powder. Further, there is evidence of reaction with the Cu capsule, forming an intermetallic alloy.

  7. HE Simulation of Ground Shock-Induced MX Trench Collapse.

    DTIC Science & Technology

    1980-10-18

    Trench 20 12. Views of Explosive Setup 21 13. Candle Being Lowered Into Test Bed 23 14. Gauge Setup 24 15. Post-Shot Views of Test Bed 29 16. Framing...Camera Photos of Pipe Blow-in (4. Ps Between Frames) 30 17. Framing Camera Photos of Pipe Blow-in Showing Low-Density Material Obscuring Candle 31 18...Framing Camera Photos of Pipe Blow-in and Complete Obscuration of Candle at 314 us 32 2 LIST OF ILLUSTRATIONS (CONTINUED) Figure Page 19. Frame 20

  8. Shock-induced turbulent flow in baffle systems

    SciTech Connect

    Kuhl, A.L.; Reichenbach, H.

    1993-07-01

    Experiments are described on shock propagation through 2-D aligned and staggered baffle systems. Flow visualization was provided by shadow and schlieren photography, recorded by the Cranz-Schardin camera. Also single-frame, infinite-fringe, color interferograms were used. Intuition suggests that this is a rather simple 2-D shock diffraction problem. However, flow visualization reveals that the flow rapidly evolved into a complex 3-D turbulent mixing problem. Mushroom-shaped mixing regions blocked the flow into the next baffle orifice. Thus energy was transferred from the directed kinetic energy (induced by the shock) to rotational energy of turbulent mixing, and then dissipated by molecular effects. These processes dramatically dissipate the strength of the shock wave. The experiments provide an excellent test case that could be used to assess the accuracy of computer code calculations of such problems.

  9. Shock induced by spontaneous rupture of a giant thymoma.

    PubMed

    Santoprete, Stefano; Ragusa, Mark; Urbani, Moira; Puma, Francesco

    2007-04-01

    Spontaneous bleeding of thymoma is a very rare event. We report the case of a 73-year-old woman who was referred to our hospital for acute onset of chest pain followed by shock. Chest computed tomographic scanning showed a huge mediastinal tumor with abundant left pleural effusion and contralateral shift of the mediastinum. Emergency surgical treatment was carried out through a clamshell incision. At the opening of the left pleura 1,600 mL of fresh blood was found, originating from a rupture of the tumor's capsular veins. The lesion was completely resected, en-bloc with a wide pericardial excision. The postoperative course was uneventful. The pathology report classified the lesion as thymoma AB.

  10. Experimental study on shock-induced doping of titania photocatalysts

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Liu, Jianjun; Chen, Pengwan

    2009-06-01

    Titania is a most effective photo-functional material and is widely used. But since the band gap of titania is large (Eg=3.2 eV), it is only active in the ultraviolet region, which accouts only 3%-5% of the overall solar intensity. Therefore, it is very important to enhance the visible light activity of the titania photocatalyst. In this study, the nitrogen-doping of titania photocatalysts were induced by shock waves, which were generated through detonation-driven flyer impact. The samples were shocked at different flyer impact velocities and recovered successfully. Two nitrogen resources containing hexamethylene tetramine(HMT) and dicyandiamide were considered. The phase composition, light absorption spectra and N doping status of the recovered samples under different shock conditions were characterized. The absorption edge of the N-doped titania photocatalysts by shock wave was extended to 450nm corresponding to visible light region. The photocatalytic degradation to rhodamine B of the samples doped with dicyandiamide increased with the increase of the flyer velocity due to the higher N doping concentration and wider response to visible light.

  11. Shock-induced mix across an ideal interface

    NASA Astrophysics Data System (ADS)

    Bellei, C.; Amendt, P. A.

    2017-04-01

    According to particle-in-cell and multi fluid simulations, as a planar shock propagates across an unperturbed classical interface, significant amounts of rearward shocked material are predicted to advect with the shock front over distances that are much larger than an ion-ion collisional mean free path of a shocked ion. This novel mechanism of interface mixing is found to scale strongly with the Mach number (˜M4) and produces an ion population bunch that penetrates the upstream material at nearly the shock speed. Possible implications for ignition capsule designs are conjectured.

  12. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    NASA Technical Reports Server (NTRS)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  13. Shock-induced transition of quartz to stishovite.

    NASA Technical Reports Server (NTRS)

    Kleeman, J. D.; Ahrens, T. J.

    1973-01-01

    The transformation of quartz to stishovite has been studied by X-ray and optical examination of a series of experimentally shock-loaded specimens of a quartz-copper mixture. Shock pressures of 68 to 260 kb and peak temperatures of 320 to 870 K were achieved. Stishovite was identified from quartz shock-loaded above 90 kb; the quantity increases with increasing pressure, but is not dependent on temperature. The formation of stishovite under shock conditions appears to be intimately related to a short-range order phase.

  14. Computation of shock induced noise in imperfectly expanded supersonic jets

    NASA Astrophysics Data System (ADS)

    Imamoglu, Bulent

    Screech noise exists only in imperfectly expanded jets. The exit pressure of imperfectly expanded jets does not match ambient pressure, so expansion or compression waves appear out of the nozzle and generate shock cell patterns. Screech is generated by the interaction of shock cells and instability waves. Many experiments and computations have been done to model screech noise, but it is not yet a very well known subject. A numerical study is performed to understand screech generation mechanisms and to compare with latest experiments. A supersonic underexpanded jet of 25.4 mm diameter is modeled for cases of Mach numbers of 1.19 and 1.43 in axisymmetric two-dimensions. Then the computation is extended to three-dimensions, and Mach numbers of 1.43 again and 1.80 are solved. Full Navier-Stokes equations are solved in cylindrical coordinates, and large eddy simulation (LES) turbulence modeling is added for axisymmetric cases. For spatial discretizations, fifth order Weighted Essentially Non Oscillatory (WENO) scheme is used because it is a suitable method for capturing shocks. Time discretization is third order time total variation diminishing (TVD) scheme, which is accurate enough, and needs considerably lower storage than fourth order schemes. These methods do not require any artificial viscosity or tune up parameters. The experimental results have predicted that the solution is in axisymmetric mode for Mach 1.19 and in helical (three-dimensional) mode for 1.43. However, our solution for Mach 1.43 has produced satisfactory results. Frequency analysis has been done by taking fast Fourier transforms of pressure history data. The experimental screech frequencies of 8400 Hz for Mach 1.19 and 5400 Hz for Mach 1.43 have been verified with computational results. Computed shock cell structure is in agreement with experiments and other computations in all cases. The screech waves emerge from the second and third shock cells, like in the experiments. The screech wavelength can be roughly estimated as 1.5 D, which is close to other computational studies. In Mach 1.80 case, barrel shock concept is observed as in the experiments. Three dimensional effects are investigated by creating an animation of planes of varying azimuth angles. This study has been a good verification of existing experimental results. It has also made a contribution, since it is a method to calculate screech frequencies without artificial damping or other tune-up parameters. Also, the visual data obtained by the animations has been useful to see shock generation locations.

  15. Shock-induced behavior of cubic gauche polymeric nitrogen

    NASA Astrophysics Data System (ADS)

    Mattson, William D.; Balu, Radhakrishnan

    2011-05-01

    Quantum-mechanical calculations based on density functional theory are used to study the shock response of the polymeric cubic gauche phase of nitrogen (cg-N), proposed as an alternative energetic ingredient to those used in conventional explosive formulations. The shocked polymeric nitrogen undergoes multiple complex phase transformations and spontaneously forms defects. The occurrence of these dynamic phenomena absorbs the shock energy which subsequently slows the compression wave. Additionally, no reaction occurs immediately behind the shock front; rather reactions result from the unraveling of the material at the free edge of the filament opposite to shock propagation. As the material unravels, numerous polyatomic transients are formed, including five-membered rings and polymeric chains, which subsequently undergo secondary reactions to form the final diatomic products. The speed at which these reactions propagate through the material is much slower than the sound speed, and combined with the slowing compression wave, indicates that the material may not detonate under these conditions.

  16. Survival of fossils under extreme shocks induced by hypervelocity impacts.

    PubMed

    Burchell, M J; McDermott, K H; Price, M C; Yolland, L J

    2014-08-28

    Experimental data are shown for survival of fossilized diatoms undergoing shocks in the GPa range. The results were obtained from hypervelocity impact experiments which fired fossilized diatoms frozen in ice into water targets. After the shots, the material recovered from the target water was inspected for diatom fossils. Nine shots were carried out, at speeds from 0.388 to 5.34 km s(-1), corresponding to mean peak pressures of 0.2-19 GPa. In all cases, fragmented fossilized diatoms were recovered, but both the mean and the maximum fragment size decreased with increasing impact speed and hence peak pressure. Examples of intact diatoms were found after the impacts, even in some of the higher speed shots, but their frequency and size decreased significantly at the higher speeds. This is the first demonstration that fossils can survive and be transferred from projectile to target in hypervelocity impacts, implying that it is possible that, as suggested by other authors, terrestrial rocks ejected from the Earth by giant impacts from space, and which then strike the Moon, may successfully transfer terrestrial fossils to the Moon.

  17. TEM Investigation of Shock-Induced Polymorphic Transformation of Olivine

    NASA Astrophysics Data System (ADS)

    Pittarello, L.; Ji, G.; Schryvers, D.; Yamaguchi, A.; Debaille, V.; Claeys, Ph.

    2014-09-01

    In a shock vein crosscutting a L6 chondrite, olivine clasts with a Fe-rich ringwoodite rim and with core consisting of Mg-rich wadsleyite and olivine domains and Fe-rich olivine veinlets were observed. The formation process is discussed.

  18. Shock-Induced Separated Structures in Symmetric Corner Flows

    NASA Technical Reports Server (NTRS)

    DAmbrosio, Domenic; Marsilio, Roberto

    1995-01-01

    Three-dimensional supersonic viscous laminar flows over symmetric corners are considered in this paper. The characteristic features of such configurations are discussed and an historical survey on the past research work is presented. A new contribution based on a numerical technique that solves the parabolized form of the Navier-Stokes equations is presented. Such a method makes it possible to obtain very detailed descriptions of the flowfield with relatively modest CPU time and memory storage requirements. The numerical approach is based on a space-marching technique, uses a finite volume discretization and an upwind flux-difference splitting scheme (developed for the steady flow equations) for the evaluation of the inviscid fluxes. Second order accuracy is reached following the guidelines of the ENO schemes. Different free-stream conditions and geometrical configurations are considered. Primary and secondary streamwise vortical structures embedded in the boundary layer and originated by the interaction of the latter with shock waves are detected and studied. Computed results are compared with experimental data taken from literature.

  19. Role of plastic deformation in shock-induced phase transitions

    NASA Astrophysics Data System (ADS)

    Ghimire, Punam; Germann, T. C.; Ravelo, R.

    2015-06-01

    Non-equilibrium molecular dynamics (NEMD) simulations of shock-wave propagation in fcc single crystals exhibit high elastic limits and large anisotropies in the yield strength. They can be used to explore the role of plastic deformation in the morphology and kinetics of solid-solid phase transformations. We report on large-scale atomistic simulations of defect-mediated phase transformations under shock and quasi-isentropic compression (QIC). An analytical embedded atom method (EAM) description is used to model a fcc-bcc phase transition (PT) boundary fitted to occur below or above the elastic-plastic threshold in order to model systems undergoing a PT with and without plasticity. For cases where plastic deformation precedes the phase transformation, the defect-mediated PT proceeds at faster rates than the defect-free ones. The bcc fraction growth rate can be correlated with a sharp decrease in the dislocation densities originally present in the parent phase. This work was supported by the Air Force Office of Scientific Research under AFOSR Award FA9550-12-1-0476. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy (DOE) under Contract No. DE-AC52-06NA25396.

  20. Spallation in starphire under normal shock and shock induced shear

    NASA Astrophysics Data System (ADS)

    Dandekar, Dattatraya

    2013-06-01

    Starphire is a brand name used by PPG Industries for their clear glass. Its composition primarily differs from that of soda lime glass /float glass in terms of low MgO and Fe2O3 content. The densities of soda lime glass and starphire are identical i.e., 2.49 Mg/m3. Their elastic constants similarly are also identical: Young's and shear modulus of soda lime glass and starphire are 73 GPa, and 29 GPa, respectively. Current work was undertaken to investigate the effect of normal shock compression and simultaneous shock compression and shear on the spall strength of starphire. Simultaneous compression-shear was generated at an obliquity of 14 degrees. Starphire was shocked to a maximum stress of 6 GPa. The preliminary results of experiments performed on starphire indicate that: (a) spall strength of starphire is not altered significantly when it is subjected to normal shock compression or simultaneous compression shear, and (b) spall strengths of starphire at a given stress is strongly dependent on compression pulse width.

  1. Shock-Induced Chemical Reactions in Condensed Matter.

    DTIC Science & Technology

    1982-08-01

    Technical, 4/1/78 - 6/30/82 Matter 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S. CONTRACT OR GRANT NUMUER(e) George E. Duvall, Principal Investigator...CHEMICAL REACTIONS IN CONDENSED MATTER George E. Duvall, Principal Investigator Stephen A. Sheffield* Kendal M. OgilvieT 4 C. Robert Wilson Paul...Temperture," in Sixth Symposium (International on Detonation (Office of Naval Research, Arlington, 1976), ACR-Z21, p. 36. 24. G. Gamow , "Tentative

  2. Shock-induced modifications of magnetic minerals from impact structures

    NASA Astrophysics Data System (ADS)

    Kontny, A. M.

    2013-05-01

    Meteorite impact structures are an important feature of most planetary surfaces. The effects of shock waves on the intrinsic magnetic properties of minerals and rocks are therefore essential for the understanding of magnetization processes related to impact events on Earth and other planetary bodies. Despite numerous observations on natural settings (Carporzen et al. 2005; Mang et al. 2012), and experimental studies (Louzada et al. 2010, 2011; Gattacecca et al 2007; Gilder et al. 2004; Mang et al. 2013) there remain uncertainties concerning the rock magnetic properties and the magnetization process related to natural impact structures on Earth. In general, the magnetic signature of terrestrial impact structures is a combined effect between disrupted main regional magnetic trends due to shock and / or thermal demagnetization and high-amplitude, short-wavelength magnetic anomalies in the centre of intermediate to large impact structures. Some large structures (>40 km) are reported to exhibit central high-amplitude anomalies but the dominant magnetic feature is a magnetic low (Pilkington and Grieve 1992). The latter observation is especially important for the giant non-magnetized impact basins on Mars. Therefore numerous studies focused on the understanding of the demagnetization processes during shock pressure (Gilder et al. 2004; Louzada et al. 2010, 2011; Rochette et al. 2003). Many investigations of terrestrial impact structures, however, demonstrated that a natural remanent magnetization (NRM), which is imprinted into terrestrial rocks by the Earth magnetic field, is the main cause of the observed magnetic anomalies. Magnetic signatures of impact structures on Earth are therefore thought to be a combination of three parameters: (1) composition and magnetic properties of the target rocks, (2) modification of rocks and magnetic minerals (fracturing and melting) due to impact-related p-T conditions, (3) acquisition of new natural remanent magnetization (TRM, SRM or CRM). This contribution is focussed on the modification of the magnetic behavior by shock of pyrrhotite and magnetite, the two most important magnetic minerals in the Earth crust. Microstructural features and magnetic properties from shock experiments between 3 and 30 GPa conducted on a pyrrhotite ore will be compared with observations from naturally shocked lithologies from the Chesapeake Bay Impact Structure, USA. It will be shown, that especially magnetic minerals strongly react on post-impact hydrothermal alteration, which significantly masks original impact-related features. References Carporzen L. et al. (2005) Nature, 435, 198-201. Gattacceca J. et al. (2007) Physics of the Earth and Planetary Interiors, 162, 85-98. Gilder S.A. et al. (2004) Geophys. Res. Lett., 31, L10612, doi:10.1029/2004GL019844. Louzada K. L. et al. (2011) Earth Planetary Science Letters, 305, 257- 269. Louzada K.L. et al. (2010) Earth Planetary Science Letters, 290, 90-101. Mang C. et al. (2013) G-cubed, doi: 10.1029/2012GC004242 Mang, C. et al. (2012) Meteoritics and Planetary Sciences 47, 277-295, doi: 10.1111/j.1945-5100.2012.01329.x. Pilkington M. and Grieve R.A.F. (1992) Reviews of Geophysics, 30, 161-181. Rochette P. et al. (2003) Geophys. Res. Lett., 30 (13), 1683, doi:10.1029/2003GL017359.

  3. Reflectance Changes during Shock-induced Phase Transformations in Metals

    SciTech Connect

    Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Jensen, B. J.; Rigg, P. A.

    2010-06-01

    In performing shock wave experiments to study the characteristics of metals at high pressures, wave profiles (i.e., velocity measurements of the surface of the sample) are an established and useful way to study phase transformations. For example, a sudden change in the velocity or its slope can occur when the phase transformation induces a large volume change leading to a change in particle velocity. Allowing the shock to release into a transparent window that is in contact with the sample surface allows the study of conditions away from the shock Hugoniot. However, in cases where the wave profile is not definitive an additional phase-transformation diagnostic would be useful. Changes in the electronic structure of the atoms in the crystal offer opportunities to develop new phase-change diagnostics. We have studied optical reflectance changes for several phase transformations to see whether reflectance changes might be a generally applicable phase-transformation diagnostic. Shocks were produced by direct contact with explosives or with impacts from guns. Optical wavelengths for the reflectance measurements ranged from 355 to 700 nm. We studied samples of tin, iron, gallium, and cerium as each passed through a phase transformation during shock loading and, if observable, a reversion upon unloading. For solid-solid phase changes in tin and iron we saw small changes in the surface scattering characteristics, perhaps from voids or rough areas frozen into the surface of the sample as it transformed to a new crystal structure. For melt in gallium and cerium we saw changes in the wavelength dependence of the reflectance, and we surmise that these changes may result from changes in the crystal electronic structure. It appears that reflectance measurements can be a significant part of a larger suite of diagnostics to search for difficult-to-detect phase transformations.

  4. Shock-Induced Effect on Chathodoluminesence of Experimentally Shocked Quartz

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Kayama, M.; Tajika, E.; Sekine, Y.; Sekine, T.; Nishido, H.; Kobayashi, T.

    2015-07-01

    We conducted a series of shock recovery experiments on single crystals of natural and synthetic quartz. In the presentation, we show the results of the variation of Cathodoluminescence (CL) spectral features with increasing shock pressure.

  5. Shock induced multi-mode damage in depleted uranium

    SciTech Connect

    Koller, Darcie D; Cerreta, Ellen K; Gray, Ill, George T

    2009-01-01

    Recent dynamic damage studies on depleted uranium samples have revealed mixed mode failure mechanisms leading to incipient cracking as well as ductile failure processes. Results show that delamination of inclusions upon compression may provide nucleation sites for damage initiation in the form of crack tip production. However, under tension the material propagates cracks in a mixed shear localization and mode-I ductile tearing and cracking. Cracks tips appear to link up through regions of severe, shear dominated plastic flow. Shock recovery experiments were conducted on a 50 mm single stage light gas gun. Serial metallographic sectioning was conducted on the recovered samples to characterize the bulk response of the sample. Experiments show delaminated inclusions due to uniaxial compression without damage propagation. Further results show the propagation of the damage through tensile loading to the incipient state, illustrating ductile processes coupled with mixed mode-I tensile ductile tearing, shear localization, and mode-I cracking in depleted uranium.

  6. Shock-induced effects in calcite from Cactus Crater

    NASA Technical Reports Server (NTRS)

    Vizgirda, J.; Ahrens, T. J.; Tsay, F.-D.

    1980-01-01

    The paper discusses shock metamorphism of calcite from coralline limestone samples retrieved from a borehole drilled into rocks beneath Cactus Crater, a nuclear explosion crater at Eniwetok Atoll. The metamorphism was detected and quantified using electron spin resonance (ESR); the ESR spectra of Mn(+) present as a trace constituent in the coral samples, show a consistent decrease in hyperfine peak splitting with decreasing depth of sample. It is suggested that the decrease in hyperfine peak splitting reflects a decrease in crystal field splitting, and therefore, small increases on cation-anion distances produced by mechanical energy input during the shock process. Two alternative crater models suggested by the ESR results are a depiction of a steady decay of the shock wave, and a delineation of a breccia lens with a breccia-bedrock interface at 20 plus or minus 5 m.

  7. Characterization of Surfaces and the Estimation of Shock Induced Vorticity

    SciTech Connect

    Jameson, L; Ray, J; Peyser, T

    2002-09-17

    When shocks impinge on a surface separating fluids of two different densities, one observes the development and growth of various vortical structures. The flow induced by this Richtmyer-Meshkov (RM) instability depends on a variety of factors such as the shock strength, the density ratio of the fluids and the exact form of the surface perturbation. The most common way to model the form of the surface perturbation is through Fourier analysis which is suitable for large-scale sinusoidal structures and is straightforward mathematically. In surfaces of practical interest, however, to a wide range of application, there may also be a broad spectrum of high frequency modes in addition to the lower frequency modes described by Fourier methods. We propose here that these high frequency modes can be efficiently quantified in terms of wavelet analysis. From a numerical point of view, the scale that the roughness occurs at is far to small to numerically resolve and thus we propose that our new methodology can be used to model the subgrid scale generation of vorticity. Thus the combination of wavelet analysis and Fourier analysis will be used to model the generation of vorticity for the RM instability.

  8. Direct simulation of shock-induced mixing layer

    SciTech Connect

    Greenough, J.A.; Bell, J.B.

    1993-03-01

    The interaction of a shock wave with a dense fluid layer in three dimensions is investigated using direct numerical simulations. The underlying numerical method is a second-order Godunov scheme. This is coupled to an implementation of Adaptive Mesh Refinement which is used to manage the hierarchical grid structure. An anomalous shock refraction is formed as the initiating shock wave impinges on a quiescent thin dense gas layer. One of the two resulting centered waves from the refraction, the contact surface, serves as the site for initial deposition of primarily spanwise vorticity and represents the primary mixing layer instability. The other wave, the transmitted shock wave, through repeated interactions with the free-surface, forms a cellular structure within the dense layer. The initial interaction introduces three dimensional perturbations onto the slip surface. These perturbations are selectively enhanced, due to favorable velocity gradients over part of the cellular structures, and form large-scale counter-rotating streamwise vertical structures. The structures characterize the secondary instability of this mixing layer. These vortices are quite unstable and transition to small-scales within a distance spanned by two of the cellular structures behind the initiating shock. The transition location has been verified in physical experiments. The fine-scale structure contains evidence of hairpin vortices. The evolution of a conserved scalar is used to monitor mixing progress. Increases in the rate of mixing are directly tied to intensification events associated with the streamwise vortices. Overall the large-scale streamwise structures provide an efficient mechanism for mixing the light and dense fluids. Analysis of time-series data from the calculation shows evidence of what are termed energetic smallscales. This is the characteristic signature of the hairpin vortices undergoing intensification.

  9. Hypervelocity-Impact Shock-Induced Damage to Steel Armor

    DTIC Science & Technology

    1976-04-01

    21005 1 Technical Director MICOM ATTN: Dr. Post Hallowes Dir Phys Sci Directorate Redstone Arsenal, AL 35809 3 Commander Picatinny Arsenal ATTN...1 Director Earth Physics Program Code 463 Office of Naval Research Arlington, VA 22217 3 Commander Naval Research Laboratories ATTN: Walter

  10. Shock induced polymorphic transition in quartz, carbon, and boron nitride

    NASA Technical Reports Server (NTRS)

    Tan, Hua; Ahrens, Thomas J.

    1990-01-01

    The model proposed by Ahrens (1988) to explain the mechanism of the polymorphism in silicates is revised, and the revised model is applied to the quartz/stishovite, graphite/diamond, and graphite-boron nitride (g-BN) phase transformations. In this model, a key assumption is that transformation to a high-density amorphous or possibly liquid phase which rapidly crystallized to the high-pressure phase is triggered by the high temperatures in the shear band and upon crossing the metastable extension of a melting curve. Good agreement between the calcualted results and published data is obtained. The present theory predicts the standard entropy for cubic BN to be 0.4-0.5 J/g K.

  11. Shock induced deformation substructures in a copper bicrystal

    SciTech Connect

    Cao, Fang; Beyerlein, Irene J; Cerreta, Ellen K; Trujillo, Carl P; Gray Ill, George T; Sencer, Bulent H

    2008-01-01

    Controlled shock recovery experiments have been conducted to assess the role of shock pressure and orientation dependence on the substructure evolution of a [100]/[01{ovr 1}] copper bicrystal. Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) were utilized to characterize orientation variation and substructure evolution of the post-shock specimens. Well defined dislocation cell structures were displayed in both grains and the average cell size was observed to decrease with increasing shock pressure. Twinning was occasionally observed in the 5 GPa shocked [100] grain and became the dominant substructure at higher shock pressure. The stress and directional dependence of twinning in the bicrystal was analyzed with consideration of the energetically favorable dissociation of dislocations into Shockley partials and the stress-orientation effect on the partial width. Moreover, a critical 'tear apart' stress is proposed and a good agreement is obtained between the calculated value and the experimental observations.

  12. Shock-induced explosive chemistry in a deterministic sample configuration.

    SciTech Connect

    Stuecker, John Nicholas; Castaneda, Jaime N.; Cesarano, Joseph, III; Trott, Wayne Merle; Baer, Melvin R.; Tappan, Alexander Smith

    2005-10-01

    Explosive initiation and energy release have been studied in two sample geometries designed to minimize stochastic behavior in shock-loading experiments. These sample concepts include a design with explosive material occupying the hole locations of a close-packed bed of inert spheres and a design that utilizes infiltration of a liquid explosive into a well-defined inert matrix. Wave profiles transmitted by these samples in gas-gun impact experiments have been characterized by both velocity interferometry diagnostics and three-dimensional numerical simulations. Highly organized wave structures associated with the characteristic length scales of the deterministic samples have been observed. Initiation and reaction growth in an inert matrix filled with sensitized nitromethane (a homogeneous explosive material) result in wave profiles similar to those observed with heterogeneous explosives. Comparison of experimental and numerical results indicates that energetic material studies in deterministic sample geometries can provide an important new tool for validation of models of energy release in numerical simulations of explosive initiation and performance.

  13. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  14. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  15. Urban heat island

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.

    1991-01-01

    The phenomenon of urban heat island was investigated by the use of LANDSAT Thematic Mapper data sets collected over the metropolitan area of Washington DC (U.S.). By combining the retrieved spectral albedos and temperatures, urban modification on radiation budgets of five surface categories were analyzed. The surface radiation budget imagery of the area show that urban heating is attributable to a large heat flux from the rapidly heating surfaces of asphalt, bare soil and short grass. In summer, symptoms of diurnal heating begin to appear by mid morning and can be about 10 degrees warmer than nearby woodlands in summer.

  16. Urban heat island

    NASA Technical Reports Server (NTRS)

    Kim, Hongsuk H.

    1991-01-01

    The phenomenon of urban heat island was investigated by the use of LANDSAT Thematic Mapper data sets collected over the metropolitan area of Washington DC (U.S.). By combining the retrieved spectral albedos and temperatures, urban modification on radiation budgets of five surface categories were analyzed. The surface radiation budget imagery of the area show that urban heating is attributable to a large heat flux from the rapidly heating surfaces of asphalt, bare soil and short grass. In summer, symptoms of diurnal heating begin to appear by mid morning and can be about 10 degrees warmer than nearby woodlands in summer.

  17. Practical heat treating

    SciTech Connect

    Boyer, H.E.

    1984-01-01

    This book presents the heat treating technology. Fundamental information is provided by first explaining briefly the principles of the heat treatment of steel and the concepts of hardness and hardenability. Next, consideration is given to furnaces and related equipment. The major portion of the book, however, is devoted to a discussion of the commonly used heat treatments for carbon and alloy steels, tool steels, stainless steels and cast irons. Sample treatments are given in detail for many of the commercially important and commonly specified grades. Chapters on case hardening procedures, flame and induction heating and the heat treating of non-ferrous alloys complete the book.

  18. "E" Heating Head

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Coultrip, Robert H.; Phillips, W. Morris; Copeland, Carl E.

    1994-01-01

    Two separate areas heated inductively for adhesive bonding in single operation. "E" heating head developed to satisfy need for fast-acting and reliable induction heating device. Used in attaching "high-hat" stiffeners to aircraft panels. Incorporates principles and circuitry of toroid joining gun. Width and length configured to provide variously sized heat zones, depending on bonding requirements. Lightweight, portable and provides rapid, reliable heating of dual areas in any environment. Well suited for flight-line and depot maintenance, and battlefield repair. Also useful in automotive assembly lines to strengthen automobile panels.

  19. Heat pipe investigations

    NASA Technical Reports Server (NTRS)

    Marshburn, J. P.

    1972-01-01

    The OAO-C spacecraft has three circular heat pipes, each of a different internal design, located in the space between the spacecraft structural tube and the experiment tube, which are designed to isothermalize the structure. Two of the pipes are used to transport high heat loads, and the third is for low heat loads. The test problems deal with the charging of the pipes, modifications, the mobile tilt table, the position indicator, and the heat input mechanisms. The final results showed that the techniques used were adequate for thermal-vacuum testing of heat pipes.

  20. "E" Heating Head

    NASA Technical Reports Server (NTRS)

    Fox, Robert L.; Swaim, Robert J.; Johnson, Samuel D.; Coultrip, Robert H.; Phillips, W. Morris; Copeland, Carl E.

    1994-01-01

    Two separate areas heated inductively for adhesive bonding in single operation. "E" heating head developed to satisfy need for fast-acting and reliable induction heating device. Used in attaching "high-hat" stiffeners to aircraft panels. Incorporates principles and circuitry of toroid joining gun. Width and length configured to provide variously sized heat zones, depending on bonding requirements. Lightweight, portable and provides rapid, reliable heating of dual areas in any environment. Well suited for flight-line and depot maintenance, and battlefield repair. Also useful in automotive assembly lines to strengthen automobile panels.

  1. Heat Rash (Prickly Heat or Miliaria)

    MedlinePlus

    ... dressed too warmly or has a fever. Tropical climates. Hot, humid weather can cause heat rash. Physical ... rash include: Age. Newborns are most susceptible. Tropical climates. People living in the tropics are far more ...

  2. Decrease in Penicillin Susceptibility Due to Heat Shock Protein ClpL in Streptococcus pneumoniae▿†

    PubMed Central

    Tran, Thao Dang-Hien; Kwon, Hyog-Young; Kim, Eun-Hye; Kim, Ki-Woo; Briles, David E.; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-01-01

    Antibiotic resistance and tolerance are increasing threats to global health as antibiotic-resistant bacteria can cause severe morbidity and mortality and can increase treatment cost 10-fold. Although several genes contributing to antibiotic tolerance among pneumococci have been identified, we report here that ClpL, a major heat shock protein, could modulate cell wall biosynthetic enzymes and lead to decreased penicillin susceptibility. On capsular type 1, 2, and 19 genetic backgrounds, mutants lacking ClpL were more susceptible to penicillin and had thinner cell walls than the parental strains, whereas a ClpL-overexpressing strain showed a higher resistance to penicillin and a thicker cell wall. Although exposure of Streptococcus pneumoniae D39 to penicillin inhibited expression of the major cell wall synthesis gene pbp2x, heat shock induced a ClpL-dependent increase in the mRNA levels and protein synthesized by pbp2x. Inducible ClpL expression correlated with PBP2x expression and penicillin susceptibility. Fractionation and electron micrograph data revealed that ClpL induced by heat shock is localized at the cell wall, and the ΔclpL showed significantly reduced net translocation of PBP2x into the cell wall. Moreover, coimmunoprecipitation with either ClpL or PBP2x antibody followed by reprobing with ClpL or PBP2x antibody showed an interaction between ClpL and PBP2x after heat stress. This interaction was confirmed by His tag pulldown assay with either ClpLHis6 or PBP2xHis6. Thus, ClpL stabilized pbp2x expression, interacted with PBP2x, and facilitated translocation of PBP2x, a key protein of cell wall synthesis process, contributing to the decrease of antibiotic susceptibility in S. pneumoniae. PMID:21422206

  3. The effect of age on the synthesis of two heat shock proteins in the hsp70 family.

    PubMed

    Wu, B; Gu, M J; Heydari, A R; Richardson, A

    1993-03-01

    Hepatocytes isolated from male F344 rats were exposed to elevated temperatures (40 degrees C to 45 degrees C), and the incorporation of [35S]-L-methionine into proteins was measured from fluorograms of two-dimensional polyacrylamide gels. The synthesis of two proteins was induced by temperatures of 40 degrees C to 42.5 degrees C; however, 45 degrees C inhibited the synthesis of all proteins. Based on their apparent molecular weights and pI values and their recognition by a monoclonal antibody to the HSP70 gene family, the two proteins induced by hyperthermia were found to be the highly heat-inducible hsp70 and the constitutive hsc70. Because a heat shock of 42.5 degrees C for 30 minutes had very little effect on cell viability and induced the synthesis of hsp70 and hsc70, this heat shock was used to study the effect of age on the ability of hepatocytes to respond to the stress of hyperthermia. Neither hepatocytes isolated from young adult (5-7 months) nor old (25-27 months) rats synthesized detectable amounts of hsp70 when incubated at 37 degrees C. However, heat shock induced the synthesis of both hsp70 and hsc70 in hepatocytes isolated from young adult and old rats. The induction of hsp70 synthesis was significantly lower (37%) for hepatocytes isolated from old rats compared to hepatocytes isolated from young adult rats. However, neither the basal level nor the induced level of hsc70 synthesis changed significantly with age. Thus, aging resulted in a decrease in the ability of hepatocytes to synthesize hsp70 in response to hyperthermia; this effect, however, was specific for hsp70.

  4. The thermal performance of heat pipes with localized heat input

    NASA Technical Reports Server (NTRS)

    Cao, Yiding; Faghri, Amir; Mahefkey, E. T.

    1989-01-01

    The performance of heat pipes with localized heat input including the effects of axial and circumferential heat conduction under high and low working temperatures is investigated. The numerical results show that when heat pipes are spot heated, the peak temperature of the wall is greatly reduced and the surface can be protected from being burned out by the high heat flux. The boiling limitation becomes the most important limitation for this type of heat pipe. Numerical results for block heating a heat pipe with low working temperatures indicate a good agreement with existing experimental data. It is also shown that most of the input heat passes through the wall beneath the heated block.

  5. Flexible heating head for induction heating

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Johnson, Samuel D. (Inventor); Coultrip, Robert H. (Inventor); Phillips, W. Morris (Inventor)

    1993-01-01

    An induction heating head includes a length of wire having first and second opposite ends and being wound in a flat spiral shape to form an induction coil, a capacitor connected to the first and second ends of the wire, the induction coil and capacitor defining a tank circuit, and a flexible, elastomeric body molded to encase the induction coil. When a susceptor is placed in juxtaposition to the body, and the tank circuit is powered, the susceptor is inductively heated.

  6. Heat pipe cooling system with sensible heat sink

    NASA Technical Reports Server (NTRS)

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  7. Heat pump apparatus

    DOEpatents

    Nelson, Paul A.; Horowitz, Jeffrey S.

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  8. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  9. Nanofluid heat capacities

    NASA Astrophysics Data System (ADS)

    Starace, Anne K.; Gomez, Judith C.; Wang, Jun; Pradhan, Sulolit; Glatzmaier, Greg C.

    2011-12-01

    Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes, but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work, nano- and micron-sized particles were added to five base fluids (poly-α olefin, mineral oil, ethylene glycol, a mixture of water and ethylene glycol, and calcium nitrate tetrahydrate), and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here, we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

  10. Deployable Heat Pipe Radiator

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    A 1.2- by 1.8-m variable conductance heat pipe radiator was designed, built, and tested. The radiator has deployment capability and can passively control Freon-21 fluid loop temperatures under varying loads and environments. It consists of six grooved variable conductance heat pipes attached to a 0.032-in. aluminum panel. Heat is supplied to the radiator via a fluid header or a single-fluid flexible heat pipe header. The heat pipe header is an artery design that has a flexible section capable of bending up to 90 degrees. Radiator loads as high as 850 watts were successfully tested. Over a load variation of 200 watts, the outlet temperature of the Freon-21 fluid varied by 7 F. An alternate control system was also investigated which used a variable conductance heat pipe header attached to the heat pipe radiator panel.

  11. Miniature Heat Pipes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.

  12. Active microchannel heat exchanger

    DOEpatents

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  13. Ceramic heat recuperators for industrial heat recovery

    SciTech Connect

    Not Available

    1980-05-01

    Results are presented from a continuing program whose purpose is to demonstrate the technical and economic feasibility of using ceramic heat recuperators for industrial heat recovery. The information presented can be used by engineers in industry to evaluate their specific furnace applications and to estimate the technical requirements and economic benefits from the use of ceramic heat recuperators. Chapter 2 presents methods that can be used to estimate the amount of energy savings by recuperation. Chapter 3 gives a brief background in heat exchanger design theory so that the reader can understand the procedures involved in designing and sizing heat exchangers for a given application. The specific GTE core design and the recuperator fabrication, housing and installation are discussed in Chapter 4. The demonstration project results are presented in Chapter 5. Each demonstration is described and the results, economics and problem areas discussed. The Appendices provide details that will allow the engineer in industry to select a core, size a heat exchanger, calculate the performance, determine energy saved and estimate the economics of using a ceramic recuperator for a specific industrial application. (LCL)

  14. Absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  15. 24 CFR 3280.506 - Heat loss/heat gain.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined in...

  16. 24 CFR 3280.506 - Heat loss/heat gain.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined in...

  17. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.

    PubMed Central

    Lu, Q; Wallrath, L L; Granok, H; Elgin, S C

    1993-01-01

    Previous analysis of the hsp26 gene of Drosophila melanogaster has shown that in addition to the TATA box and the proximal and distal heat shock elements (HSEs) (centered at -59 and -340, relative to the start site of transcription), a segment of (CT)n repeats at -135 to -85 is required for full heat shock inducibility (R.L. Glaser, G.H. Thomas, E.S. Siegfried, S.C.R. Elgin, and J.T. Lis, J. Mol. Biol. 211:751-761, 1990). This (CT)n element appears to contribute to formation of the wild-type chromatin structure of hsp26, an organized nucleosome array that leaves the HSEs in nucleosome-free, DNase I-hypersensitive (DH) sites (Q. Lu, L.L. Wallrath, B.D. Allan, R.L. Glaser, J.T. Lis, and S.C.R. Elgin, J. Mol. Biol. 225:985-998, 1992). Inspection of the sequences upstream of hsp26 has revealed an additional (CT)n element at -347 to -341, adjacent to the distal HSE. We have analyzed the contribution of this distal (CT)n element (-347 to -341), the proximal (CT)n element (-135 to -85), and the two HSEs both to the formation of the chromatin structure and to heat shock inducibility. hsp26 constructs containing site-directed mutations, deletions, substitutions, or rearrangements of these sequence elements have been fused in frame to the Escherichia coli lacZ gene and reintroduced into the D. melanogaster genome by P-element-mediated germ line transformation. Chromatin structure of the transgenes was analyzed (prior to gene activation) by DNase I or restriction enzyme treatment of isolated nuclei, and heat-inducible expression was monitored by measuring beta-galactosidase activity. The results indicate that mutations, deletions, or substitutions of either the distal or the proximal (CT)n element affect the chromatin structure and heat-inducible expression of the transgenes. These (CT)n repeats are associated with a nonhistone protein(s) in vivo and are bound by a purified Drosophila protein, the GAGA factor, in vitro. In contrast, the HSEs are required for heat

  18. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  19. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  20. Heat pump system

    DOEpatents

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  1. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  2. Heat strain in cold.

    PubMed

    Rintamäki, Hannu; Rissanen, Sirkka

    2006-07-01

    In spite of increased environmental cold stress, heat strain is possible also in a cold environment. The body heat balance depends on three factors: environmental thermal conditions, metabolic heat production and thermal insulation of clothing and other protective garments. As physical exercise may increase metabolic heat production from rest values by ten times or even more, the required thermal insulation of clothing may vary accordingly. However, in most outdoor work, and often in indoor cold work, too, the thermal insulation of clothing is impractical, difficult or impossible to adjust according to the changes in physical activity. This is especially true with whole body covering garments like chemical protective clothing. As a result of this imbalance, heat strain may develop. In cold all the signs of heat strain (core temperature above 38 degrees C, warm or hot thermal sensations, increased cutaneous circulation and sweating) may not be present at the same time. Heat strain in cold may be whole body heat strain or related only to torso or core temperature. Together with heat strain in torso or body core, there can be at the same time even cold strain in peripheral parts and/or superficial layers of the body. In cold environment both the preservation of insulation and facilitation of heat loss are important. Development of clothing design is still needed to allow easy adjustments of thermal insulation.

  3. Optimization of Heat Exchangers

    SciTech Connect

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  4. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  5. "Bottle-Brush" Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Tward, E.; Gatewood, J. R.

    1982-01-01

    Heat exchanger consists of a metal tube with wires extending inward from wall. Conduction of heat along wires improves heat transfer to gas or other filling. Fluid is heated throughout the cross section of tube. Suggested applications are refrigerators, heat engines, thermal instrumentation, and heat switches.

  6. Heat transfer from oriented heat exchange areas

    NASA Astrophysics Data System (ADS)

    Vantuch, Martin; Huzvar, Jozef; Kapjor, Andrej

    2014-03-01

    This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for "n" horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified. At presence a sum of criterion equations exists for simple geometrical shapes of individual oriented geometrical areas but the criterion equation which would consider interaction of fluxional field generated by free convection from multiple oriented areas is not mentioned in standardly accessible technical literature and other magazine publications.

  7. Fluidized bed heat treating system

    DOEpatents

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  8. Heat pipe development

    NASA Technical Reports Server (NTRS)

    Bienart, W. B.

    1973-01-01

    The objective of this program was to investigate analytically and experimentally the performance of heat pipes with composite wicks--specifically, those having pedestal arteries and screwthread circumferential grooves. An analytical model was developed to describe the effects of screwthreads and screen secondary wicks on the transport capability of the artery. The model describes the hydrodynamics of the circumferential flow in triangular grooves with azimuthally varying capillary menisci and liquid cross-sections. Normalized results were obtained which give the influence of evaporator heat flux on the axial heat transport capability of the arterial wick. In order to evaluate the priming behavior of composite wicks under actual load conditions, an 'inverted' glass heat pipe was designed and constructed. The results obtained from the analysis and from the tests with the glass heat pipe were applied to the OAO-C Level 5 heat pipe, and an improved correlation between predicted and measured evaporator and transport performance were obtained.

  9. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  10. Water-heating dehumidifier

    DOEpatents

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  11. Specific heat revisited

    NASA Astrophysics Data System (ADS)

    Pizarro, C. A.; Condat, C. A.; Lamberti, P. W.; Prato, D. P.

    1996-06-01

    The correlation between potential shape and specific heat is generally absent from textbook discussions. We present a detailed analysis of the specific heat contribution due to independent particles subject to one-dimensional classical and quantum model potentials. For the classical models, we use phase space concepts to develop a clear physical interpretation of the temperature dependence of the specific heat. For the quantum models, we make the interpretation in terms of the differences in quantum levels.

  12. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  13. Heat Loss Imagery

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Infrared scanning devices are being used to produce images that show, by color or black-and-white shading differences, which buildings and homes are losing heat to the outdoors, and how much. Heat loss surveys done by Texas Instruments, Daedalus Enterprises, Inc. and other companies have growing acceptance of their services among industrial firms, utilities, local governments, and state and federal agencies interested in promoting heat loss awareness and inspiring corrective actions.

  14. Laser Processed Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  15. Induction Heating Systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Induction heating technology, a magnetic non-deforming process, was developed by Langley researchers to join plastic and composite components in space. Under NASA license, Inductron Corporation uses the process to produce induction heating systems and equipment for numerous applications. The Torobonder, a portable system, comes with a number of interchangeable heads for aircraft repair. Other developments are the E Heating Head, the Toroid Joining Gun, and the Torobrazer. These products perform bonding applications more quickly, safely and efficiently than previous methods.

  16. Hydride heat pump

    DOEpatents

    Cottingham, James G.

    1977-01-01

    Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

  17. Saturn base heating handbook

    NASA Technical Reports Server (NTRS)

    Mullen, C. R.; Bender, R. L.; Bevill, R. L.; Reardon, J.; Hartley, L.

    1972-01-01

    A handbook containing a summary of model and flight test base heating data from the S-1, S-1B, S-4, S-1C, and S-2 stages is presented. A review of the available prediction methods is included. Experimental data are provided to make the handbook a single source of Saturn base heating data which can be used for preliminary base heating design predictions of launch vehicles.

  18. Radioisotopic heat source

    DOEpatents

    Sayell, E.H.

    1973-10-23

    A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)

  19. NCSX Plasma Heating Methods

    SciTech Connect

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  20. Estimating heat capacity and heat content of rocks

    USGS Publications Warehouse

    Robertson, Eugene C.; Hemingway, Bruch S.

    1995-01-01

    Our measured heat-capacity values for rocks and other measurements of heat capacity or heat content of rocks found in the literature have been compared with estimated rock heat capacities calculated from the summation of heat capacities of both minerals and oxide components. The validity of calculating the heat content or heat capacity of rocks to better than about ± 3% from its mineral or chemical composition is well demonstrated by the data presented here.