Science.gov

Sample records for heat stress attenuates

  1. Heat stress attenuates the increase in arterial blood pressure during the cold pressor test.

    PubMed

    Cui, Jian; Shibasaki, Manabu; Low, David A; Keller, David M; Davis, Scott L; Crandall, Craig G

    2010-11-01

    The mechanisms by which heat stress impairs the control of blood pressure leading to compromised orthostatic tolerance are not thoroughly understood. A possible mechanism may be an attenuated blood pressure response to a given increase in sympathetic activity. This study tested the hypothesis that whole body heating attenuates the blood pressure response to a non-baroreflex-mediated sympathoexcitatory stimulus. Ten healthy subjects were instrumented for the measurement of integrated muscle sympathetic nerve activity (MSNA), mean arterial blood pressure (MAP), heart rate, sweat rate, and forearm skin blood flow. Subjects were exposed to a cold pressor test (CPT) by immersing a hand in an ice water slurry for 3 min while otherwise normothermic and while heat stressed (i.e., increase core temperature ~0.7°C via water-perfused suit). Mean responses from the final minute of the CPT were evaluated. In both thermal conditions CPT induced significant increases in MSNA and MAP without altering heart rate. Although the increase in MSNA to the CPT was similar between thermal conditions (normothermia: Δ14.0 ± 2.6; heat stress: Δ19.1 ± 2.6 bursts/min; P = 0.09), the accompanying increase in MAP was attenuated when subjects were heat stressed (normothermia: Δ25.6 ± 2.3, heat stress: Δ13.4 ± 3.0 mmHg; P < 0.001). The results demonstrate that heat stress can attenuate the pressor response to a sympathoexcitatory stimulus.

  2. Heat stress attenuates skeletal muscle atrophy of extensor digitorum longus in streptozotocin-induced diabetic rats.

    PubMed

    Nonaka, K; Une, S; Akiyama, J

    2015-09-01

    To investigate whether heat stress attenuates skeletal muscle atrophy of the extensor digitorum longus (EDL) muscle in streptozotocin-induced diabetic rats, 12-week-old male Wistar rats were randomly assigned to four groups (n = 6 per group): control (Con), heat stress (HS), diabetes mellitus (DM), and diabetes mellitus/heat stress (DM + HS). Diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg). Heat stress was induced in the HS and DM + HS groups by immersion of the lower half of the body in hot water at 42 °C for 30 min; it was initiated 7 days after injection of streptozotocin, and was performed once a day, five times a week for 3 weeks. The muscle fiber cross-sectional area of EDL muscles from diabetic and non-diabetic rats was determined; heat stress protein (HSP) 72 and HSP25 expression levels were also analyzed by western blotting. Diabetes-induced muscle fiber atrophy was attenuated upon heat stress treatment in diabetic rats. HSP72 and HSP25 expression was upregulated in the DM + HS group compared with the DM group. Our findings suggest that heat stress attenuates atrophy of the EDL muscle by upregulating HSP72 and HSP25 expression.

  3. Phenylephrine-induced elevations in arterial blood pressure are attenuated in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To test the hypothesis that phenylephrine-induced elevations in blood pressure are attenuated in heat-stressed humans, blood pressure was elevated via steady-state infusion of three doses of phenylephrine HCl in 10 healthy subjects in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature by 0.5 degrees C, muscle sympathetic nerve activity (MSNA), heart rate, and cardiac output and decreased total peripheral vascular resistance (TPR; all P < 0.005) but did not change mean arterial blood pressure (MAP; P > 0.05). At the highest dose of phenylephrine, the increase in MAP and TPR from predrug baselines was significantly attenuated during the heat stress [DeltaMAP 8.4 +/- 1.2 mmHg; DeltaTPR 0.96 +/- 0.85 peripheral resistance units (PRU)] compared with normothermia (DeltaMAP 15.4 +/- 1.4 mmHg, DeltaTPR 7.13 +/- 1.18 PRU; all P < 0.001). The sensitivity of baroreflex control of MSNA and heart rate, expressed as the slope of the relationship between MSNA and diastolic blood pressure, as well as the slope of the relationship between heart rate and systolic blood pressure, respectively, was similar between thermal conditions (each P > 0.05). These data suggest that phenylephrine-induced elevations in MAP are attenuated in heat-stressed humans without affecting baroreflex control of MSNA or heart rate.

  4. Phenylephrine-induced elevations in arterial blood pressure are attenuated in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    To test the hypothesis that phenylephrine-induced elevations in blood pressure are attenuated in heat-stressed humans, blood pressure was elevated via steady-state infusion of three doses of phenylephrine HCl in 10 healthy subjects in both normothermic and heat stress conditions. Whole body heating significantly increased sublingual temperature by 0.5 degrees C, muscle sympathetic nerve activity (MSNA), heart rate, and cardiac output and decreased total peripheral vascular resistance (TPR; all P < 0.005) but did not change mean arterial blood pressure (MAP; P > 0.05). At the highest dose of phenylephrine, the increase in MAP and TPR from predrug baselines was significantly attenuated during the heat stress [DeltaMAP 8.4 +/- 1.2 mmHg; DeltaTPR 0.96 +/- 0.85 peripheral resistance units (PRU)] compared with normothermia (DeltaMAP 15.4 +/- 1.4 mmHg, DeltaTPR 7.13 +/- 1.18 PRU; all P < 0.001). The sensitivity of baroreflex control of MSNA and heart rate, expressed as the slope of the relationship between MSNA and diastolic blood pressure, as well as the slope of the relationship between heart rate and systolic blood pressure, respectively, was similar between thermal conditions (each P > 0.05). These data suggest that phenylephrine-induced elevations in MAP are attenuated in heat-stressed humans without affecting baroreflex control of MSNA or heart rate.

  5. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury.

    PubMed

    Mei, Chen; He, Sha-Sha; Yin, Peng; Xu, Lei; Shi, Ya-Ran; Yu, Xiao-Hong; Lyu, An; Liu, Feng-Hua; Jiang, Lin-Shu

    2016-06-01

    Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.

  6. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury*

    PubMed Central

    Mei, Chen; He, Sha-sha; Yin, Peng; Xu, Lei; Shi, Ya-ran; Yu, Xiao-hong; Lyu, An; Liu, Feng-hua; Jiang, Lin-shu

    2016-01-01

    Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock. PMID:27256675

  7. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502.

    PubMed

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.

  8. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502

    PubMed Central

    Selby, Katja; Mascher, Gerald; Somervuo, Panu; Korkeala, Hannu

    2017-01-01

    Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism. PMID:28464023

  9. Epigenetic Regulation of Repetitive Elements Is Attenuated by Prolonged Heat Stress in Arabidopsis[W][OA

    PubMed Central

    Pecinka, Ales; Dinh, Huy Q.; Baubec, Tuncay; Rosa, Marisa; Lettner, Nicole; Scheid, Ortrun Mittelsten

    2010-01-01

    Epigenetic factors determine responses to internal and external stimuli in eukaryotic organisms. Whether and how environmental conditions feed back to the epigenetic landscape is more a matter of suggestion than of substantiation. Plants are suitable organisms with which to address this question due to their sessile lifestyle and diversification of epigenetic regulators. We show that several repetitive elements of Arabidopsis thaliana that are under epigenetic regulation by transcriptional gene silencing at ambient temperatures and upon short term heat exposure become activated by prolonged heat stress. Activation can occur without loss of DNA methylation and with only minor changes to histone modifications but is accompanied by loss of nucleosomes and by heterochromatin decondensation. Whereas decondensation persists, nucleosome loading and transcriptional silencing are restored upon recovery from heat stress but are delayed in mutants with impaired chromatin assembly functions. The results provide evidence that environmental conditions can override epigenetic regulation, at least transiently, which might open a window for more permanent epigenetic changes. PMID:20876829

  10. Antagonism of soluble guanylyl cyclase attenuates cutaneous vasodilation during whole body heat stress and local warming in humans.

    PubMed

    Kellogg, Dean L; Zhao, Joan L; Wu, Yubo; Johnson, John M

    2011-05-01

    We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVC(max)); DMSO, 14 ± 3% CVC(max); Ringer, 17 ± 6% CVC(max); P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVC(max); DMSO, 64 ± 4% CVC(max); Ringer, 63 ± 4% CVC(max); P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVC(max); DMSO, 18 ± 4% CVC(max); Ringer, 18 ± 3% CVC(max); P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVC(max); DMSO, 86 ± 4% CVC(max); Ringer, 90 ± 2% CVC(max); P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming.

  11. Heat stress attenuates new cell generation in the hypothalamus: a role for miR-138.

    PubMed

    Kisliouk, T; Cramer, T; Meiri, N

    2014-09-26

    The anterior hypothalamus (Ant Hyp) of the brain serves as the main regulator of numerous homeostatic functions, among them body temperature. Fine-tuning of the thermal-response set point during the critical postnatal sensory-developmental period involves neuronal network remodeling which might also be accompanied by alterations in hypothalamic cell populations. Here we demonstrate that heat stress during the critical period of thermal-control establishment interferes with generation of new cells in the chick hypothalamus. Whereas conditioning of the 3-day-old chicks under high ambient temperatures for 24h diminished the number of newborn cells in anterior hypothalamic structures 1 week after the treatment, mild heat stress did not influence the amount of new cells. Phenotypic analysis of these newborn cells indicated a predominant decrease in non-neuronal cell precursors, i.e. cells that do not express doublecortin (DCX). Furthermore, heat challenge of 10-day-old previously high-temperature-conditioned chicks abolished hypothalamic neurogenesis and significantly decreased the number of cells of non-neural origin. As a potential regulatory mechanism for the underlying generation of new cells in the hypothalamus, we investigated the role of the microRNA (miRNA) miR-138, previously reported by us to promote hypothalamic cell migration in vitro and whose levels are reduced during heat stress. Intracranial injection into the third ventricle of miR-138 led to an increase in the number of newborn cells in the Ant Hyp, an effect which might be partially mediated by inhibition of its direct target reelin. These data demonstrate the role of ambient temperature on the generation of new cells in the hypothalamus during the critical period of thermal-control establishment and highlight the long-term effect of severe heat stress on hypothalamic cell population. Moreover, miRNAs, miR-138 in particular, can regulate new cell generation in the hypothalamus. Copyright © 2014 IBRO

  12. Short-term exposure to heat stress attenuates appetite and intestinal integrity in growing pigs.

    PubMed

    Pearce, S C; Sanz-Fernandez, M V; Hollis, J H; Baumgard, L H; Gabler, N K

    2014-12-01

    Acute heat stress (HS) and heat stroke can be detrimental to the health, well-being, and performance of mammals such as swine. Therefore, our objective was to chronologically characterize how a growing pig perceives and initially copes with a severe heat load. Crossbred gilts (n=32; 63.8±2.9 kg) were subjected to HS conditions (37°C and 40% humidity) with ad libitum intake for 0, 2, 4, or 6 h (n=8/time point). Rectal temperature (Tr), respiration rates (RR), and feed intake were determined every 2 h. Pigs were euthanized at each time point and fresh ileum and colon samples were mounted into modified Ussing chambers to assess ex vivo intestinal integrity and function. Transepithelial electrical resistance (TER) and fluorescein isothiocyanate-labeled dextran (FD4) permeability were assessed. As expected, Tr increased linearly over time (P<0.001) with the highest temperature observed at 6 h of HS. Compared to the 0-h thermal-neutral (TN) pigs, RR increased (230%; P<0.001) in the first 2 h and remained elevated over the 6 h of HS (P<0.05). Feed intake was dramatically reduced due to HS and this corresponded with significant changes in plasma glucose, ghrelin, and glucose-dependent insulinotropic peptide (P<0.050). At as early as 2 h of HS, ileum TER linearly decreased (P<0.01), while FD4 linearly increased with time (P<0.05). Colon TER and FD4 changed due to HS in quadratic responses over time (P=0.050) similar to the ileum but were less pronounced. In response to HS, ileum and colon heat shock protein (HSP) 70 mRNA and protein abundance increased linearly over time (P<0.050). Altogether, these data indicated that a short duration of HS (2-6 h) compromised feed intake and intestinal integrity in growing pigs.

  13. Grape seed extract supplementation attenuates the heat stress-induced responses of jejunum epithelial cells in Simmental × Qinchuan steers.

    PubMed

    Li, Xiaomin; Yang, You; Liu, Shimin; Yang, Jing; Chen, Cheng; Sun, Zhihong

    2014-08-14

    Grape seed extract (GSE), a rich source of polyphenols, is reported to possess antioxidant, anti-inflammatory and immunomodulatory properties. The objective of the present study was to determine whether GSE could attenuate the heat stress-induced responses of jejunum epithelial cells (JEC) in cattle. The JEC of a steer (Simmental × Qinchuan) were exposed to heat stress for 2 h in the absence (0 μg/ml) or presence (10, 20, 40 and 80 μg/ml) of GSE in the culture medium. When cultured at 40°C, JEC supplemented with GSE exhibited increased glutathione peroxidase activity (P= 0·04), viability (P= 0·004), and mRNA expression of epidermal growth factor (EGF; P= 0·03) and EGF receptor (EGFR; P = 0·01). Under the same conditions, the cells exhibited decreased mRNA expression of IL-8 (P= 0·01) and TNF-α (P= 0·03) and decreased protein concentrations of IL-1β (P= 0·02), Toll-like receptor 4 (TLR4; P= 0·04) and heat shock protein 70 (HSP70; P< 0·001). When cultured at 43°C, JEC supplemented with GSE exhibited increased catalase activity (P= 0·04), viability (P< 0·001), and mRNA expression of EGF (P< 0·001) and EGFR (P< 0·001) and decreased protein concentrations of IL-1β (P< 0·001), TLR4 (P= 0·03) and HSP70 (P< 0·001), as well as mRNA expression of IL-8 (P< 0·001), TLR4 (P= 0·002) and TNF-α (P< 0·001). Temperature × GSE concentration interactions were also observed for the concentrations of IL-1β (P< 0·001), IL-8 (P< 0·001), TNF-α (P= 0·01) and HSP70 (P= 0·04) and viability (P< 0·001) of JEC. The results of the present study indicate that GSE can attenuate the responses of JEC induced by heat stress within a certain range of temperatures.

  14. A heat and moisture mask attenuates cardiovascular stress during cold air exposure.

    PubMed

    Seifert, John; McNair, Megan; Declercq, Patricia; St Cyr, John

    2013-06-01

    Exposure to cold has been shown to cause cardiovascular stress and increased morbidity and mortality. Inhalation of cold, dry air can increase blood pressure and induce myocardial ischemia, particularly in people with preexisting hypertensive cardiovascular disease. Face masks that can warm and humidify inhaled cold air may reduce these cold air pressor effects. We compared blood pressure measurements using a heat and moisture exchange mask (HME), a placebo mask (PL), and no mask (NM) in 53 patients with hypertension exposed to a cold chamber environment at -5°C for 1 h. Blood pressure and heart rate were recorded at baseline, and at 15 min intervals from 0 to 60 min of chamber exposure. All patients were taking antihypertensive medications with drug and dosage determined by their own physicians. Data were analyzed by a one-way analysis of variance test with repeated measures, and significant interactions were analyzed by Fisher's least significant differences tests. A post hoc subgroup analysis for the effect of age was performed using Wilcoxon matched-pair rank tests. Wearing the HME resulted in significantly lower systolic and mean arterial blood pressures than the PL and NM conditions. Diastolic blood pressures were significantly lower for the HME than the NM, but not the PL condition. Subgroup analyses suggested that the effect of the HME in mitigating systolic blood pressure increase from inhalation of cold air was significantly greater for patients aged 60 years or over than for those under 60 years.

  15. Dietary organic zinc attenuates heat stress-induced changes in pig intestinal integrity and metabolism.

    PubMed

    Pearce, S C; Sanz Fernandez, M-V; Torrison, J; Wilson, M E; Baumgard, L H; Gabler, N K

    2015-10-01

    Dietary zinc (inorganic and organic or zinc AA complex forms) is essential for normal intestinal barrier function and regeneration of intestinal epithelium. Given that heat stress (HS) exposure can negatively affect intestinal integrity and caloric intake, possible nutritional mitigation strategies are needed to improve health, performance, and well-being. Therefore, our objective was to evaluate 2 dietary zinc sources and reduced caloric intake on intestinal integrity in growing pigs subjected to 12 h of HS. A total of 36 pigs were fed 1 of 2 diets: 1) a control diet (CON; 120 mg/kg of zinc from zinc sulfate) or 2) 60 mg/kg from zinc sulfate and 60 mg/kg from zinc AA complex (ZnAA). After 17 d, the CON pigs were then exposed to thermal neutral (TN) conditions with ad libitum intake (TN-CON), HS (37°C) with ad libitum intake (HS-CON), or pair-fed to HS intake under TN conditions (PFTN); the ZnAA pigs were exposed to only HS (HS-ZnAA). All pigs were sacrificed after 12 h of environmental exposure, and blood and tissue bioenergetics stress markers and ex vivo ileum and colon integrity were assessed. Compared with TN-CON, HS significantly ( < 0.05) increased rectal temperatures and respiration rates. Ileum villus and crypt morphology was reduced by both pair-feeding and HS. Both PFTN and HS-CON pigs also had reduced ileum integrity (dextran flux and transepithelial resistance) compared with the TN-CON pigs. However, ZnAA tended to mitigate the HS-induced changes in ileum integrity. Ileum mucin 2 protein abundance was increased due to HS and pair-feeding. Colonic integrity did not differ due to HS or PFTN treatments. Compared with the HS-CON, HS-ZnAA pigs tended to have reduced blood endotoxin concentrations. In conclusion, HS and reduced feed intake compromised intestinal integrity in pigs, and zinc AA complex source mitigates some of these negative effects.

  16. Heat Stress

    MedlinePlus

    ... Work in the Heat: Why Acclimatization Matters The natural adaptation to the heat takes time, and from a management perspective, it may require careful planning. NIOSH Science Blog: Extreme Heat – Are you prepared for summer ...

  17. Touch Attenuates Infants' Physiological Reactivity to Stress

    ERIC Educational Resources Information Center

    Feldman, Ruth; Singer, Magi; Zagoory, Orna

    2010-01-01

    Animal studies demonstrate that maternal touch and contact regulate infant stress, and handling during periods of maternal deprivation attenuates the stress response. To measure the effects of touch on infant stress reactivity during simulated maternal deprivation, 53 dyads were tested in two paradigms: still-face (SF) and still-face with maternal…

  18. Touch Attenuates Infants' Physiological Reactivity to Stress

    ERIC Educational Resources Information Center

    Feldman, Ruth; Singer, Magi; Zagoory, Orna

    2010-01-01

    Animal studies demonstrate that maternal touch and contact regulate infant stress, and handling during periods of maternal deprivation attenuates the stress response. To measure the effects of touch on infant stress reactivity during simulated maternal deprivation, 53 dyads were tested in two paradigms: still-face (SF) and still-face with maternal…

  19. Saikosaponin-D attenuates heat stress-induced oxidative damage in LLC-PK1 cells by increasing the expression of anti-oxidant enzymes and HSP72.

    PubMed

    Zhang, Bao-Zhen; Guo, Xiao-Tong; Chen, Jian-Wei; Zhao, Yuan; Cong, Xia; Jiang, Zhong-Ling; Cao, Rong-Feng; Cui, Kai; Gao, Shan-Song; Tian, Wen-Ru

    2014-01-01

    Heat stress stimulates the production of reactive oxygen species (ROS), which cause oxidative damage in the kidney. This study clarifies the mechanism by which saikosaponin-d (SSd), which is extracted from the roots of Bupleurum falcatum L, protects heat-stressed pig kidney proximal tubular (LLC-PK1) cells against oxidative damage. SSd alone is not cytotoxic at concentrations of 1 or 3 μg/mL as demonstrated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To assess the effects of SSd on heat stress-induced cellular damage, LLC-PK1 cells were pretreated with various concentrations of SSd, heat stressed at 42°C for 1 h, and then returned to 37°C for 9 h. DNA ladder and MTT assays demonstrated that SSd helped to prevent heat stress-induced cellular damage when compared to untreated cells. Additionally, pretreatment with SSd increased the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) but decreased the concentration of malondialdehyde (MDA) in a dose-dependent manner when compared to controls. Furthermore, real-time PCR and Western blot analysis demonstrated that SSd significantly increased the expression of copper and zinc superoxide dismutase (SOD-1), CAT, GPx-1 and heat shock protein 72 (HSP72) at both the mRNA and protein levels. In conclusion, these results are the first to demonstrate that SSd ameliorates heat stress-induced oxidative damage by modulating the activity of anti-oxidant enzymes and HSP72 in LLC-PK1 cells.

  20. Stress and heat flow

    SciTech Connect

    Lachenbrunch, A.H.; McGarr, A.

    1990-01-01

    As the Pacific plate slides northward past the North American plate along the San Andreas fault, the frictional stress that resists plate motion there is overcome to cause earthquakes. However, the frictional heating predicted for the process has never been detected. Thus, in spite of its importance to an understanding of both plate motion and earthquakes, the size of this frictional stress is still uncertain, even in order of magnitude.

  1. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress.

    PubMed

    Sun, Xinbo; Sun, Chunyu; Li, Zhigang; Hu, Qian; Han, Liebao; Luo, Hong

    2016-06-01

    Heat shock proteins (HSPs) are molecular chaperones that accumulate in response to heat and other abiotic stressors. Small HSPs (sHSPs) belong to the most ubiquitous HSP subgroup with molecular weights ranging from 12 to 42 kDa. We have cloned a new sHSP gene, AsHSP17 from creeping bentgrass (Agrostis stolonifera) and studied its role in plant response to environmental stress. AsHSP17 encodes a protein of 17 kDa. Its expression was strongly induced by heat in both leaf and root tissues, and by salt and abscisic acid (ABA) in roots. Transgenic Arabidopsis plants constitutively expressing AsHSP17 exhibited enhanced sensitivity to heat and salt stress accompanied by reduced leaf chlorophyll content and decreased photosynthesis under both normal and stressed conditions compared to wild type. Overexpression of AsHSP17 also led to hypersensitivity to exogenous ABA and salinity during germination and post-germinative growth. Gene expression analysis indicated that AsHSP17 modulates expression of photosynthesis-related genes and regulates ABA biosynthesis, metabolism and ABA signalling as well as ABA-independent stress signalling. Our results suggest that AsHSP17 may function as a protein chaperone to negatively regulate plant responses to adverse environmental stresses through modulating photosynthesis and ABA-dependent and independent signalling pathways.

  2. Heat Stress Monitor

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The heavy, cumbersome body protection suits worn by members of hazardous materials response teams cause marked elevation of body temperatures, which can reduce effectiveness and lead to heat stress and injury. The CorTemp System, marketed by Human Technologies, Inc., provides the basis for a body temperature monitoring alarm system. Encased in a three-quarter-inch ingestible capsule, the system includes a mini-thermometer, miniature telemetry system, a microbattery and temperature sensor. It makes its way through the digestive system, continuously monitoring temperature. Findings are sent to the recorder by telemetry, and then displayed and stored for transfer to a computer.

  3. Protecting Workers from Heat Stress

    MedlinePlus

    ... temperatures are high and the job involves physical work. Risk Factors for Heat Illness • High temperature and humidity, ... heat or those that have been away from work to adapt to working in the heat (acclimatization). • Routinely check workers who are at risk of heat stress due to protective clothing and ...

  4. Oligonol supplementation attenuates body temperature and the circulating levels of prostaglandin E2 and cyclooxygenase-2 after heat stress in humans.

    PubMed

    Shin, Young Oh; Lee, Jeong Beom; Song, Young Ju; Min, Young Ki; Yang, Hun Mo

    2013-04-01

    Oligonol, a phenolic production from lychee, has been reported to exhibit anti-oxidative and anti-inflammatory effects. This study investigated the effect of Oligonol supplementation on circulating levels of prostaglandin E2 (PGE2) and cyclooxygenase (COX)-2, as well as body temperature, after heat stress in 17 healthy human male volunteers (age, 21.6±2.1 years). All experiments were performed in an automated climate chamber (26.0°C±0.5°C, relative humidity 60%±3.0%, air velocity less than 1 m/sec) between 2 and 5 p.m. Subjects ingested an Oligonol (100 mg)-containing beverage or placebo beverage before half-body immersion into hot water (42°C±0.5°C for 30 min). Tympanic and skin temperatures were measured and mean body temperatures were calculated. Serum concentrations of PGE2 and COX-2 were analyzed before, immediately after, and 60 min after immersion. Oligonol intake significantly prevented elevation of tympanic (temperature difference: 0.17°C at Post, P<.05; 0.17°C at Re-60, P<.05) and mean body temperatures (temperature difference: 0.18°C at Post, P<.05; 0.15°C at Re-60, P<.05), and lowered concentrations of serum PGE2 (increased by 13.3% vs. 29.6% at Post, P<.05) and COX-2 (increased by 15.6% vs. 21.8% at Post, P<.05), compared to placebo beverage. Our result suggests that Oligonol has the potential to suppress increases in body temperature under heat stress, and this is associated with decreases in serum levels of PGE2 and COX-2.

  5. Cardiovascular responses to heat stress in chronic heart failure

    PubMed Central

    Cui, Jian; Sinoway, Lawrence I.

    2014-01-01

    Clinical reports have suggested that patients with heart diseases may be particularly vulnerable to heat injury. This review examines the effects of heat stress on cardiovascular and autonomic functions in patients with chronic heart failure (CHF). Laboratory investigations have shown that cutaneous vasodilator responses to heating are impaired in patients, whereas activation of skin sympathetic nerve activation is not attenuated in CHF as compared to controls. Attenuated cutaneous vasodilation may increase the risk of a heat related illness when CHF subjects are exposed to hyperthermic conditions. PMID:24599558

  6. Improved Heat-Stress Algorithm

    NASA Technical Reports Server (NTRS)

    Teets, Edward H., Jr.; Fehn, Steven

    2007-01-01

    NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.

  7. Sensing the Heat Stress by Mammalian Cells

    PubMed Central

    2011-01-01

    Background The heat-shock response network controls the adaptation and survival of the cell against environmental stress. This network is highly conserved and is connected with many other signaling pathways. A key element of the heat-shock network is the heat-shock transcription factor-1 (HSF), which is transiently activated by elevated temperatures. HSF translocates to the nucleus upon elevated temperatures, forming homotrimeric complexes. The HSF homotrimers bind to the heat shock element on the DNA and control the expression of the hsp70 gene. The Hsp70 proteins protect cells from thermal stress. Thermal stress causes the unfolding of proteins, perturbing thus the pathways under their control. By binding to these proteins, Hsp70 allows them to refold and prevents their aggregation. The modulation of the activity of the hsp70-promoter by the intensity of the input stress is thus critical for cell's survival. The promoter activity starts from a basal level and rapidly increases once the stress is applied, reaches a maximum level and attenuates slowely back to the basal level. This phenomenon is the hallmark of many experimental studies and of all computational network analysis. Results The molecular construct used as a measure of the response to thermal stress is a Hsp70-GFP fusion gene transfected in Chinese hamster ovary (CHO) cells. The time profile of the GFP protein depends on the transient activity, Transient(t), of the heat shock system. The function Transient(t) depends on hsp70 promoter activity, transcriptional regulation and the translation initiation effects elicited by the heat stress. The GFP time profile is recorded using flow cytometry measurements, a technique that allows a quantitative measurement of the fluorescence of a large number of cells (104). The GFP responses to one and two heat shocks were measured for 261 conditions of different temperatures and durations. We found that: (i) the response of the cell to two consecutive shocks (i.e., no

  8. Effects of heat stress on mammalian reproduction

    PubMed Central

    Hansen, Peter J.

    2009-01-01

    Heat stress can have large effects on most aspects of reproductive function in mammals. These include disruptions in spermatogenesis and oocyte development, oocyte maturation, early embryonic development, foetal and placental growth and lactation. These deleterious effects of heat stress are the result of either the hyperthermia associated with heat stress or the physiological adjustments made by the heat-stressed animal to regulate body temperature. Many effects of elevated temperature on gametes and the early embryo involve increased production of reactive oxygen species. Genetic adaptation to heat stress is possible both with respect to regulation of body temperature and cellular resistance to elevated temperature. PMID:19833646

  9. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy.

    PubMed

    Ichinoseki-Sekine, Noriko; Yoshihara, Toshinori; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2014-09-01

    Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm. Copyright © 2014 the American Physiological Society.

  10. Wave speed propagation measurements on highly attenuative heated materials

    SciTech Connect

    Moore, David G.; Ober, Curtis C.; Rodacy, Phil J.; Nelson, Ciji L.

    2015-09-19

    Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) was also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. As a result, both experimental and analytical data are compared and presented.

  11. Sympathetic activity during passive heat stress in healthy aged humans

    PubMed Central

    Gagnon, Daniel; Schlader, Zachary J; Crandall, Craig G

    2015-01-01

    Abstract Cardiovascular adjustments during heat stress are generally attenuated in healthy aged humans, which could be due to lower increases in sympathetic activity compared to the young. We compared muscle sympathetic nerve activity (MSNA) between 11 young (Y: 28 ± 4 years) and 10 aged (A: 70 ± 5 years) subjects prior to and during passive heating. Furthermore, MSNA responses were compared when a cold pressor test (CPT) and lower body negative pressure (LBNP) were superimposed upon heating. Baseline MSNA burst frequency (Y: 15 ± 4 vs. A: 31 ± 3 bursts min−1, P ≤ 0.01) and burst incidence (Y: 26 ± 8 vs. A: 50 ± 7 bursts (100 cardiac cycles (CC))−1, P ≤ 0.01) were greater in the aged. Heat stress increased core temperature to a similar extent in both groups (Y: +1.2 ± 0.1 vs. A: +1.2 ± 0.0°C, P = 0.99). Absolute levels of MSNA remained greater in the aged during heat stress (burst frequency: Y: 47 ± 6 vs. A: 63 ± 11 bursts min−1, P ≤ 0.01; burst incidence: Y: 48 ± 8 vs. A: 67 ± 9 bursts (100 CC)−1, P ≤ 0.01); however, the increase in both variables was similar between groups (both P ≥ 0.1). The CPT and LBNP further increased MSNA burst frequency and burst incidence, although the magnitude of increase was similar between groups (both P ≥ 0.07). These results suggest that increases in sympathetic activity during heat stress are not attenuated in healthy aged humans. Key points Cardiovascular adjustments to heat stress are attenuated in healthy aged individuals, which could contribute to their greater prevalence of heat-related illnesses and deaths during heat waves. The attenuated cardiovascular adjustments in the aged could be due to lower increases in sympathetic nerve activity during heat stress. We examined muscle sympathetic nerve activity (MSNA) and plasma catecholamine concentrations in healthy young and aged individuals during whole-body passive heat stress. The main finding

  12. Cognitions about bodily purity attenuate stress perception

    PubMed Central

    Kaspar, Kai; Cames, Sarah

    2016-01-01

    Based on the assumption that physical purity is associated with a clean slate impression, we examined how cognitions about bodily cleanliness modulate stress perception. Participants visualized themselves in a clean or dirty state before reporting the frequency of stress-related situations experienced in the past. In Study 1 (n = 519) and Study 2 (n = 647) cleanliness versus dirtiness cognitions reliably reduced stress perception. Further results and a mediation analysis revealed that this novel effect was not simply driven by participants’ cognitive engagement in stress recall. Moreover, we found that participants’ temporal engagement in the recall of past stressful events negatively correlated with the amount of perceived stress, indicating an ease-of-retrieval phenomenon. However, a direct manipulation of the number of recalled stressful events in Study 3 (n = 792) showed the opposite effect: few versus many recalled events increased the perceived frequency of past stress-related situations. Overall, these novel results indicate an interesting avenue for future research on cognitively oriented stress reduction interventions, add to the literature on purity-related clean slate effects, and may help to better understand washing rituals in patients with obsessive-compulsive disorders. PMID:27934971

  13. Water Replacement Schedules in Heat Stress

    ERIC Educational Resources Information Center

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  14. Water Replacement Schedules in Heat Stress

    ERIC Educational Resources Information Center

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  15. Heat stress interaction with shade and cooling.

    PubMed

    Armstrong, D V

    1994-07-01

    Hot weather causes heat stress in dairy cattle. Although effects are more severe in hot climates, dairy cattle in areas with relatively moderate climates also are exposed to periods of heat stress. The resultant decrease in milk production and reproductive efficiency can be offset by implementation of a program consisting of cooling through shades, ventilation and spray, and fans. The economic benefit should be determined before installation of equipment to reduce heat stress.

  16. Caffeine attenuated ER stress-induced leptin resistance in neurons.

    PubMed

    Hosoi, Toru; Toyoda, Keisuke; Nakatsu, Kanako; Ozawa, Koichiro

    2014-05-21

    Exposing the endoplasmic reticulum (ER) to stress causes the accumulation of unfolded proteins, and subsequently results in ER stress. ER stress may be involved in various disorders such as obesity, diabetes, and neurodegenerative diseases. Leptin is an important circulating hormone, that inhibits food intake and accelerates energy consumption, which suppresses body weight gain. Recent studies demonstrated that leptin resistance is one of the main factors involved in the development of obesity. We and other groups recently reported the role of ER stress in the development of leptin resistance. Therefore, identifying drugs that target ER stress may be a promising fundamental strategy for the treatment of obesity. In the present study, we investigated whether caffeine could affect ER stress and the subsequent development of leptin resistance. We showed that caffeine exhibited chaperone activity, which attenuated protein aggregation. Caffeine also inhibited the ER stress-induced activation of IRE1 and PERK, which suggested the attenuation of ER stress. Moreover, caffeine markedly improved ER stress-induced impairments in the leptin-induced phosphorylation of STAT3. Therefore, these results suggest caffeine may have pharmacological properties that ameliorate leptin resistance by reducing ER stress.

  17. Melatonin attenuates the skin sympathetic nerve response to mental stress.

    PubMed

    Muller, Matthew D; Sauder, Charity L; Ray, Chester A

    2013-11-01

    Melatonin attenuates muscle sympathetic nerve responses to sympathoexcitatory stimuli, but it is unknown whether melatonin similarly attenuates reflex changes in skin sympathetic nerve activity (SSNA). In this double-blind, placebo-controlled, crossover study, we tested the hypothesis that melatonin (3 mg) would attenuate the SSNA response to mental stress (mental arithmetic). Twelve healthy subjects underwent experimental testing on two separate days. Three minutes of mental stress occurred before and 45 min after ingestion of melatonin (3 mg) or placebo. Skin temperature was maintained at 34°C. Reflex increases in SSNA (peroneal nerve), mean arterial pressure, and heart rate (HR) to mental stress before and after melatonin were determined. Melatonin lowered HR (pre, 66 ± 3 beats/min; and post, 62 ± 3 beats/min, P = 0.046) and SSNA (pre, 14,282 ± 3,706 arbitrary units; and post, 9,571 ± 2,609 arbitrary units, P = 0.034) at rest. In response to mental stress, SSNA increases were significantly attenuated following melatonin ingestion (second minute, 114 ± 30 vs. 74 ± 14%; and third minute, 111 ± 29 vs. 54 ± 12%, both P < 0.05). The mean arterial pressure increase to mental stress was blunted in the third minute (20 ± 2 vs. 17 ± 2 mmHg, P = 0.032), and the HR increase was blunted in the first minute (33 ± 3 vs. 29 ± 3 beats/min, P = 0.034) after melatonin. In summary, exogenous melatonin attenuates the SSNA response to mental stress.

  18. Human cardiovascular responses to passive heat stress.

    PubMed

    Crandall, Craig G; Wilson, Thad E

    2015-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. © 2015 American Physiological Society.

  19. Human Cardiovascular Responses to Passive Heat Stress

    PubMed Central

    Crandall, Craig G.; Wilson, Thad E.

    2016-01-01

    Heat stress increases human morbidity and mortality compared to normothermic conditions. Many occupations, disease states, as well as stages of life are especially vulnerable to the stress imposed on the cardiovascular system during exposure to hot ambient conditions. This review focuses on the cardiovascular responses to heat stress that are necessary for heat dissipation. To accomplish this regulatory feat requires complex autonomic nervous system control of the heart and various vascular beds. For example, during heat stress cardiac output increases up to twofold, by increases in heart rate and an active maintenance of stroke volume via increases in inotropy in the presence of decreases in cardiac preload. Baroreflexes retain the ability to regulate blood pressure in many, but not all, heat stress conditions. Central hypovolemia is another cardiovascular challenge brought about by heat stress, which if added to a subsequent central volumetric stress, such as hemorrhage, can be problematic and potentially dangerous, as syncope and cardiovascular collapse may ensue. These combined stresses can compromise blood flow and oxygenation to important tissues such as the brain. It is notable that this compromised condition can occur at cardiac outputs that are adequate during normothermic conditions but are inadequate in heat because of the increased systemic vascular conductance associated with cutaneous vasodilation. Understanding the mechanisms within this complex regulatory system will allow for the development of treatment recommendations and countermeasures to reduce risks during the ever-increasing frequency of severe heat events that are predicted to occur. PMID:25589263

  20. Geranylgeranylacetone preconditioning may attenuate heat-induced inflammation and multiorgan dysfunction in rats.

    PubMed

    Zhao, Yong-Qi; Gao, Jun-Tao; Liu, Shou-Hong; Wu, Yan; Lin, Mao-Tsun; Fan, Ming

    2010-01-01

    Geranylgeranylacetone, an acyclic isoprenoid, is a non-toxic inducer of heat shock protein (HSP)70. HSP70 overproduction is associated with heat tolerance in rats. This study aimed to investigate whether geranylgeranylacetone preconditioning of rats reduced heat-induced inflammation and multiple organ dysfunction. Anaesthetised rats were given vehicle or geranylgeranylacetone (800 mg/kg) orally. After 48 h they were exposed to ambient temperature of 43 degrees C for 70 min to induce heatstroke. Another group of rats kept at room temperature were used as normothermic controls. Vehicle-treated rats all succumbed to heat stress; their survival time was 25 +/- 4 min. Pretreatment with geranylgeranylacetone significantly increased survival time to 92 +/- 15 min. Compared with normothermic controls, all vehicle-treated heatstroke rats displayed hepatic and renal dysfunction (e.g. increased plasma levels of serum urea nitrogen, creatinine, aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase) and active inflammation (e.g. increased plasma and brain levels of interleukin-1 beta, tumour necrosis factor-alpha and interleukin-6). These heat-stress response indicators were all significantly suppressed by geranylgeranylacetone pretreatment. In addition, the plasma and brain levels of interleukin-10 (an anti-inflammatory cytokine) and brain levels of HSP70 were significantly increased after geranylgeranylacetone preconditioning during heatstroke. Geranylgeranylacetone preconditioning attenuates heat-induced inflammation and multiorgan dysfunction in rats.

  1. Wave speed propagation measurements on highly attenuative heated materials

    DOE PAGES

    Moore, David G.; Ober, Curtis C.; Rodacy, Phil J.; ...

    2015-09-19

    Ultrasonic wave propagation decreases as a material is heated. Two factors that can characterize material properties are changes in wave speed and energy loss from interactions within the media. Relatively small variations in velocity and attenuation can detect significant differences in microstructures. This paper discusses an overview of experimental techniques that document the changes within a highly attenuative material as it is either being heated or cooled from 25°C to 90°C. The experimental set-up utilizes ultrasonic probes in a through-transmission configuration. The waveforms are recorded and analyzed during thermal experiments. To complement the ultrasonic data, a Discontinuous-Galerkin Model (DGM) wasmore » also created which uses unstructured meshes and documents how waves travel in these anisotropic media. This numerical method solves particle motion travel using partial differential equations and outputs a wave trace per unit time. As a result, both experimental and analytical data are compared and presented.« less

  2. Impact of Heat Stress on Poultry Production.

    PubMed

    Lara, Lucas J; Rostagno, Marcos H

    2013-04-24

    Understanding and controlling environmental conditions is crucial to successful poultry production and welfare. Heat stress is one of the most important environmental stressors challenging poultry production worldwide. The detrimental effects of heat stress on broilers and laying hens range from reduced growth and egg production to decreased poultry and egg quality and safety. Moreover, the negative impact of heat stress on poultry welfare has recently attracted increasing public awareness and concern. Much information has been published on the effects of heat stress on productivity and immune response in poultry. However, our knowledge of basic mechanisms associated to the reported effects, as well as related to poultry behavior and welfare under heat stress conditions is in fact scarce. Intervention strategies to deal with heat stress conditions have been the focus of many published studies. Nevertheless, effectiveness of most of the interventions has been variable or inconsistent. This review focuses on the scientific evidence available on the importance and impact of heat stress in poultry production, with emphasis on broilers and laying hens.

  3. Effect of whole body heat stress on peripheral vasoconstriction during leg dependency

    PubMed Central

    Brothers, R. Matthew; Wingo, Jonathan E.; Hubing, Kimberly A.; Del Coso, Juan

    2009-01-01

    The venoarteriolar response (VAR) increases vascular resistance upon increases in venous transmural pressure in cutaneous, subcutaneous, and muscle vascular beds. During orthostasis, it has been proposed that up to 45% of the increase in systemic vascular tone is due to VAR-related local mechanism(s). The objective of this project was to test the hypothesis that heat stress attenuates VAR-mediated cutaneous and whole leg vasoconstriction. During normothermic conditions, measurements of cutaneous blood flow (laser-Doppler flowmetry) and femoral artery blood flow (Doppler ultrasound) were obtained from both legs during supine and leg-dependent conditions. These measurements were repeated following a whole body heat stress (increase in internal temperature of 1.4 ± 0.2°C). Before leg dependency, cutaneous (CVC) and femoral vascular conductances (FVC) were significantly elevated in both legs during heat stress relative to normothermia (P < 0.001). During leg dependency the absolute decrease in CVC was attenuated during heat stress (P < 0.01) while the absolute decrease in FVC was unaffected (P = 0.90). When CVC and FVC data were analyzed as a relative change from their respective baseline values, heat stress significantly attenuated the magnitude of vasoconstriction due to leg dependency in the cutaneous and femoral circulations (P < 0.001 for both variables). These data suggest that an attenuated local vasoconstriction, evoked via the venoarteriolar response, may contribute to reduced blood pressure control and thus reduced orthostatic tolerance that occurs in heat-stressed individuals. PMID:19815719

  4. Role of the Red Ginseng in Defense against the Environmental Heat Stress in Sprague Dawley Rats.

    PubMed

    Kim, Kui-Jin; Yoon, Kye-Yoon; Hong, Hee-Do; Lee, Boo-Yong

    2015-11-10

    Global temperature change causes heat stress related disorders in humans. A constituent of red ginseng has been known the beneficial effect on the resistance to many diseases. However, the mechanism of red ginseng (RG) against heat stress still remains unclear. To determine the effect of RG on heat stress, we examined the effect of the RG on the gene expression profiles in rats subjected to environmental heat stress. We evaluated the transcripts associated with hepatic lipid accumulation and oxidative stress in rats subjected to heat stress. We also analyzed the reactive oxygen species (ROS) contents. Our results suggested RG inhibited heat stress mediated altering mRNA expressions include HSPA1, DEAF1, HMGCR, and FMO1. We also determined RG attenuated fat accumulation in the liver by altering C/EBPβ expression. RG promoted to repress the heat stress mediated hepatic cell death by inhibiting of Bcl-2 expression in rats subjected to heat stress. Moreover, RG administered group during heat stress dramatically decreased the malondialdehyde (MDA) contents and ROS associated genes compared with the control group. Thus, we suggest that RG might influence inhibitory effect on environmental heat stress induced abnormal conditions in humans.

  5. Mechanisms of orthostatic intolerance during heat stress.

    PubMed

    Schlader, Zachary J; Wilson, Thad E; Crandall, Craig G

    2016-04-01

    Heat stress profoundly and unanimously reduces orthostatic tolerance. This review aims to provide an overview of the numerous and multifactorial mechanisms by which this occurs in humans. Potential causal factors include changes in arterial and venous vascular resistance and blood distribution, and the modulation of cardiac output, all of which contribute to the inability to maintain cerebral perfusion during heat and orthostatic stress. A number of countermeasures have been established to improve orthostatic tolerance during heat stress, which alleviate heat stress induced central hypovolemia (e.g., volume expansion) and/or increase peripheral vascular resistance (e.g., skin cooling). Unfortunately, these countermeasures can often be cumbersome to use with populations prone to syncopal episodes. Identifying the mechanisms of inter-individual differences in orthostatic intolerance during heat stress has proven elusive, but could provide greater insights into the development of novel and personalized countermeasures for maintaining or improving orthostatic tolerance during heat stress. This development will be especially impactful in occuational settings and clinical situations that present with orthostatic intolerance and/or central hypovolemia. Such investigations should be considered of vital importance given the impending increased incidence of heat events, and associated cardiovascular challenges that are predicted to occur with the ensuing changes in climate. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Mechanisms of orthostatic intolerance during heat stress

    PubMed Central

    Schlader, Zachary J.; Wilson, Thad E.; Crandall, Craig G.

    2017-01-01

    Heat stress profoundly and unanimously reduces orthostatic tolerance. This review aims to provide an overview of the numerous and multifactorial mechanisms by which this occurs in humans. Potential causal factors include changes in arterial and venous vascular resistance and blood distribution, and the modulation of cardiac output, all of which contribute to the inability to maintain cerebral perfusion during heat and orthostatic stress. A number of countermeasures have been established to improve orthostatic tolerance during heat stress, which alleviate heat stress induced central hypovolemia (e.g., volume expansion) and/or increase peripheral vascular resistance (e.g., skin cooling). Unfortunately, these countermeasures can often be cumbersome to use with populations prone to syncopal episodes. Identifying the mechanisms of inter-individual differences in orthostatic intolerance during heat stress has proven elusive, but could provide greater insights into the development of novel and personalized countermeasures for maintaining or improving orthostatic tolerance during heat stress. This development will be especially impactful in occuational settings and clinical situations that present with orthostatic intolerance and/or central hypovolemia. Such investigations should be considered of vital importance given the impending increased incidence of heat events, and associated cardiovascular challenges that are predicted to occur with the ensuing changes in climate. PMID:26723547

  7. Drivers and barriers to heat stress resilience.

    PubMed

    Hatvani-Kovacs, Gertrud; Belusko, Martin; Skinner, Natalie; Pockett, John; Boland, John

    2016-11-15

    Heatwaves are the most dangerous natural hazard to health in Australia. The frequency and intensity of heatwaves will increase due to climate change and urban heat island effects in cities, aggravating the negative impacts of heatwaves. Two approaches exist to develop population heat stress resilience. Firstly, the most vulnerable social groups can be identified and public health services can prepare for the increased morbidity. Secondly, the population level of adaptation and the heat stress resistance of the built environment can be increased. The evaluation of these measures and their efficiencies has been fragmented across research disciplines. This study explored the relationships between the elements of heat stress resilience and their potential demographic and housing drivers and barriers. The responses of a representative online survey (N=393) about heat stress resilience at home and work from Adelaide, South Australia were analysed. The empirical findings demonstrate that heat stress resistant buildings increased adaptation capacity and decreased the number of health problems. Air-conditioning increased dependence upon it, limited passive adaptation and only people living in homes with whole-house air-conditioning had less health problems during heatwaves. Tenants and respondents with pre-existing health conditions were the most vulnerable, particularly as those with health conditions were not aware of their vulnerability. The introduction of an Energy Performance Certificate is proposed and discussed as an effective incentive to increase the heat stress resistance of and the general knowledge about the built environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Stress wave attenuation in shock-damaged rock

    NASA Astrophysics Data System (ADS)

    Liu, Cangli; Ahrens, Thomas J.

    1997-03-01

    The velocity and attenuation of ultrasonic stress waves in gabbroic rock samples (San Marcos, California) subjected to shock loading in the 2 GPa range were studied. Prom P wave velocity measurements we determined the damage parameter Dp and crack density ɛ of the samples and related these to the attenuation coefficient (quality factor) under dynamic strains of 2×10-7 and at a frequency of 2 MHz using the ultrasonic pulse-echo method. A fit to the data yields the P wave spatial attenuation coefficient at a frequency of 2 MHz, αp(Dp) = 1.1 + 28.2DP (decibels per centimeter). From the relation between the attenuation coefficient and quality factor, the quality factor Q is given by Q-1 = 0.011(1 + 25.6Dp)(1 - Dp)½. Using O'Connell-Budiansky theory relating crack density to velocity, the parameter in Walsh's theory was determined based on experimental data. An approximate method is also proposed to estimate the average half-length of cracks based on the attenuation measurements.

  9. Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

    PubMed Central

    So, Mi Jung; Cho, Eun Ju

    2014-01-01

    The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions (O2−), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, O2−, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide (H2O2)-induced SIPS. Phloroglucinol treatment attenuated H2O2-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS. PMID:25320709

  10. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    PubMed

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (Tc ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (Pa ) of 2.57 kPa followed by incremental steps in Pa of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (Pcrit ) at which an upward inflection in Tc occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The Tc , mean skin temperature (Tsk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDFmean ), mean local sweat rate (forearm and thigh; LSRmean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDFmean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL, 186 ± 22

  11. Heat Stress in Older Adults

    MedlinePlus

    ... Centers Extreme Heat PSAs Related Links MMWR Bibliography Floods Flood Readiness Personal Hygiene After a Disaster Reentering Your Flooded Home Cleanup of Flood Water After a Flood Worker Safety Educational Materials ...

  12. Yoga practice improves executive function by attenuating stress levels.

    PubMed

    Gothe, Neha P; Keswani, Rahul K; McAuley, Edward

    2016-12-01

    Prolonged activation of the hypothalamus-pituitary-adrenal system is thought to have deleterious effects on brain function. Neuroendocrine studies suggest that brain exposure to higher cortisol concentrations contribute to cognitive deficits as we age. Mind-body techniques such as yoga have shown to improve stress levels by restoring the body's sympathetic-parasympathetic balance. The objective of this study was to determine whether yoga practice moderated the stress response resulting in improved executive function. Sedentary community dwelling older adults (N=118, Mean age=62.02) were randomized to an 8-week yoga intervention or a stretching control group. At baseline and following 8 weeks, all participants completed measures of executive function, self-reported stress and anxiety and provided saliva samples before and after cognitive testing to assess cortisol. Yoga participants showed improved accuracy on executive function measures and an attenuated cortisol response compared to their stretching counterparts who showed increased cortisol levels and poor cognitive performance at follow up. The change in cortisol levels as well as self-reported stress and anxiety levels predicted performance on the running span task, n-back working memory and task switching paradigm (β's=0.27-0.38, p's≤0.05 for yoga and β's=-0.37-0.47, p's≤0.01 for stretching control). Eight weeks of regular yoga practice resulted in improved working memory performance that was mediated by an attenuated response to stress as measured by self-report stress and objective salivary cortisol measurements. This trial offers evidence for non-traditional physical activity interventions such as yoga that may be helpful in restoring HPA balance in older adults, thereby preventing cognitive decline. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    PubMed

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse

  14. Stress preconditioning attenuates oxidative injury to the alveolar epithelium of the lung following haemorrhage in rats

    PubMed Central

    Pittet, J F; Lu, L N; Geiser, T; Lee, H; Matthay, M A; Welch, W J

    2002-01-01

    Inhibition of cAMP-dependent stimulation of vectorial fluid transport across the alveolar epithelium following haemorrhagic shock is mediated by reactive nitrogen species released within the airspaces of the lung. We tested here the hypothesis that the prior activation of the cellular heat shock or stress response, via exposure to either heat or geldanamycin, would attenuate the release of airspace nitric oxide (NO) responsible for the shock-mediated failure of the alveolar epithelium to respond to catecholamines in rats. Rats were haemorrhaged to a mean arterial pressure of 30–35 mmHg for 60 min, and then resuscitated with a 4 % albumin solution. Alveolar fluid clearance was measured by change in concentration of a protein solution instilled into the airspaces 5 h after the onset of haemorrhage. Stress preconditioning restored the cAMP-mediated upregulation of alveolar liquid clearance after haemorrhage. The protective effect of stress preconditioning was mediated in part by a decrease in the expression of iNOS in the lung. Specifically, stress preconditioning decreased the production of nitrite by endotoxin-stimulated alveolar macrophages removed from haemorrhaged rats or by A549 and rat alveolar epithelial type II cell monolayers stimulated with cytomix (a mixture of TNF-α, IL-1β and IFN-γ) for 24 h. In summary, these results provide the first in vivo evidence that stress preconditioning restores a normal fluid transport capacity of the alveolar epithelium in the early phase following haemorrhagic shock by attenuating NO-mediated oxidative stress to the lung epithelium. PMID:11790821

  15. AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress.

    PubMed

    Ma, Yuedong; Huang, Huiling; Jiang, Jingzhou; Wu, Lingling; Lin, Chunxi; Tang, Anli; Dai, Gang; He, Jiangui; Chen, Yili

    2016-06-10

    AVE 0991, the nonpeptide angiotensin-(1-7) (Ang-(1-7)) analog, is recognized as having beneficial cardiovascular effects. However, the mechanisms have not been fully elucidated. This study was designed to investigate the effects of AVE 0991 on cardiac hypertrophy and the mechanisms involved. Mice were underwent aortic banding to induce cardiac hypertrophy followed by the administration of AVE 0991 (20 mg kg·day (-1)) for 4 weeks. It was shown that AVE 0991 reduced left ventricular hypertrophy and improved heart function, characterized by decreases in left ventricular weight and left ventricular end-diastolic diameter, and increases in ejection fraction. Moreover, AVE 0991 significantly down-regulated mean myocyte diameter and attenuate the gene expression of the hypertrophic markers. Furthermore, AVE 0991 inhibited the expression of NOX 2 and NOX 4, meaning that AVE 0991 reduced oxidative stress of cardiac hypertrophy mice. Our data showed that AVE 0991 treatment could attenuate cardiac hypertrophy and improve heart function, which may be due to reduce oxidative stress. Copyright © 2016. Published by Elsevier Inc.

  16. Heat Stress Effects on Growing-Finishing Swine

    USDA-ARS?s Scientific Manuscript database

    Understanding the factors that create heat stress, the response of the animals while under heat stress, and the signs of heat-stressed swine are essential to making rational decisions for the selection, design, and management of their environments. Heat stressors include combinations of environment...

  17. Occupational heat stress in Australian workplaces

    PubMed Central

    Jay, Ollie; Brotherhood, John R.

    2016-01-01

    ABSTRACT The aim of this review was to summarize the current state of knowledge on heat stress risk within typical Australian occupational settings. We assessed identified occupations (mining, agriculture, construction, emergency services) for heat production and heat loss potential, and resultant levels of physiological heat strain. A total of 29 reports were identified that assessed in-situ work settings in Northern Territory, South Australia, Western Australia, Queensland, New South Wales and Victoria, that measured physiological responses and characterized the thermal environment. Despite workers across all industries being regularly exposed to high ambient temperatures (32–42°C) often coupled with high absolute humidity (max: 33 hPa), physiological strain is generally low in terms of core temperature (<38°C) and dehydration (<1 % reduction in mass) by virtue of the low energy demands of many tasks, and self-regulated pacing of work possible in most jobs. Heat stress risk is higher in specific jobs in agriculture (e.g. sheep shearing), deep underground mining, and emergency services (e.g., search/rescue and bushfire fighting). Heat strain was greatest in military-related activities, particularly externally-paced marching with carried loads which resulted in core temperatures often exceeding 39.5°C despite being carried out in cooler environments. The principal driver of core temperature elevations in most jobs is the rate of metabolic heat production. A standardized approach to evaluating the risk of occupational heat strain in Australian workplaces is recommended defining the individual parameters that alter human heat balance. Future research should also more closely examine female workers and occupational activities within the forestry and agriculture/horticulture sector. PMID:28349081

  18. Occupational heat stress in Australian workplaces.

    PubMed

    Jay, Ollie; Brotherhood, John R

    2016-01-01

    The aim of this review was to summarize the current state of knowledge on heat stress risk within typical Australian occupational settings. We assessed identified occupations (mining, agriculture, construction, emergency services) for heat production and heat loss potential, and resultant levels of physiological heat strain. A total of 29 reports were identified that assessed in-situ work settings in Northern Territory, South Australia, Western Australia, Queensland, New South Wales and Victoria, that measured physiological responses and characterized the thermal environment. Despite workers across all industries being regularly exposed to high ambient temperatures (32-42°C) often coupled with high absolute humidity (max: 33 hPa), physiological strain is generally low in terms of core temperature (<38°C) and dehydration (<1 % reduction in mass) by virtue of the low energy demands of many tasks, and self-regulated pacing of work possible in most jobs. Heat stress risk is higher in specific jobs in agriculture (e.g. sheep shearing), deep underground mining, and emergency services (e.g., search/rescue and bushfire fighting). Heat strain was greatest in military-related activities, particularly externally-paced marching with carried loads which resulted in core temperatures often exceeding 39.5°C despite being carried out in cooler environments. The principal driver of core temperature elevations in most jobs is the rate of metabolic heat production. A standardized approach to evaluating the risk of occupational heat strain in Australian workplaces is recommended defining the individual parameters that alter human heat balance. Future research should also more closely examine female workers and occupational activities within the forestry and agriculture/horticulture sector.

  19. The role of cardiac sympathetic innervation and skin thermoreceptors on cardiac responses during heat stress

    PubMed Central

    Umemoto, Yasunori; Kinoshita, Tokio; Kouda, Ken; Ito, Tomoyuki; Nakamura, Takeshi; Crandall, Craig G.; Tajima, Fumihiro

    2015-01-01

    The mechanism(s) for the changes in cardiac function during heat stress remain unknown. This study tested two unique hypotheses. First, sympathetic innervation to the heart is required for increases in cardiac systolic function during heat stress. This was accomplished by comparing responses during heat stress between paraplegics versus tetraplegics, with tetraplegics having reduced/absent cardiac sympathetic innervation. Second, stimulation of skin thermoreceptors contributes to cardiovascular adjustments that occur during heat stress in humans. This was accomplished by comparing responses during leg only heating between paraplegic versus able-bodied individuals. Nine healthy able-bodied, nine paraplegics, and eight tetraplegics participated in this study. Lower body (i.e., nonsensed area for para/tetraplegics) was heated until esophageal temperature had increased by ∼1.0°C. Echocardiographic indexes of diastolic and systolic function were performed before and at the end of heat stress. The heat stress increased cardiac output in all groups, but the magnitude of this increase was attenuated in the tetraplegics relative to the able-bodied (1.3 ± 0.4 vs. 2.3 ± 1.0 l/min; P < 0.05). Diastolic function was maintained in all groups. Indexes of left atrial and ventricular systolic function were enhanced in the able-bodied, but did not change in tetraplegics, while these changes in paraplegics were attenuated relative to the able-bodied. These data suggest that the cardiac sympathetic innervation is required to achieve normal increases in cardiac systolic function during heat stress but not required to maintain diastolic function during this exposure. Second, elevated systolic function during heat stress primarily occurs as a result of increases in internal temperature, although stimulation of skin thermoreceptors may contribute. PMID:25795714

  20. Protective effects of ectoine on heat-stressed Daphnia magna.

    PubMed

    Adam, Bownik; Zofia, Stępniewska; Tadeusz, Skowroński

    2014-12-01

    Ectoine (ECT) is an amino acid produced and accumulated by halophilic bacteria in stressful conditions in order to prevent the loss of water from the cell. There is a lack of knowledge on the effects of ECT in heat-stressed aquatic animals. The purpose of our study was to determine the influence of ECT on Daphnia magna subjected to heat stress with two temperature gradients: 1 and 0.1 °C/min in the range of 23-42 °C. Time to immobilisation, survival during recovery, swimming performance, heart rate, thoracic limb movement and the levels of heat shock protein 70 kDa 1A (HSP70 1A), catalase (CAT) and nitric oxide species (NOx) were determined in ECT-exposed and unexposed daphnids; we showed protective effects of ECT on Daphnia magna subjected to heat stress. Time to immobilisation of daphnids exposed to ECT was longer when compared to the unexposed animals. Also, survival rate during the recovery of daphnids previously treated with ECT was higher. ECT significantly attenuated a rapid increase of mean swimming velocity which was elevated in the unexposed daphnids. Moreover, we observed elevation of thoracic limb movement and modulation of heart rate in ECT-exposed animals. HSP70 1A and CAT levels were reduced in the presence of ECT. On the other hand, NOx level was slightly elevated in both ECT-treated and unexposed daphnids, however slightly higher NOx level was found in ECT-treated animals. We conclude that the exposure to ectoine has thermoprotective effects on Daphnia magna, however their mechanisms are not associated with the induction of HSP70 1A.

  1. N-acetylcysteine attenuates dimethylnitrosamine induced oxidative stress in rats.

    PubMed

    Sathish, Priya; Paramasivan, Vijayalakshmi; Palani, Vivekanandan; Sivanesan, Karthikeyan

    2011-03-05

    Oxidative stress has been implicated in the pathogenesis and progression of various hepatic disorders and hence screening for a good hepatoprotective and antioxidant agent is the need of the hour. The present study was aimed to investigate the hepatoprotective and antioxidant property of N-acetylcysteine (NAC) against dimethylnitrosamine (DMN) induced oxidative stress and hepatocellular damage in male Wistar albino rats. Administration of single dose of DMN (5mg/kg b.w.; i.p.) resulted in significant elevation in the levels of serum aspartate transaminase and alanine transaminase, indicating hepatocellular damage. Oxidative stress induced by DMN treatment was confirmed by an elevation in the status of lipid peroxidation (LPO) and reduction in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase and in the levels of non-enzymic antioxidants, reduced glutathione, vitamin-C and vitamin-E in the liver tissue. DMN induced oxidative stress and hepatocellular membrane instability was further substantiated by a decline in the status of the membrane bound ATPases in the liver tissue. Post-treatment with NAC (50mg/kg b.w.; p.o.) for 7days effectively protected against the DMN induced insult to liver by preventing the elevation in the status of the serum marker enzymes and LPO, and restoring the activities of both the enzymic and non-enzymic antioxidants and membrane bound ATPases towards normalcy. These results demonstrate that NAC acts as a good hepatoprotective and antioxidant agent in attenuating DMN induced oxidative stress and hepatocellular damage.

  2. Effect of heat stress on oxidative stress, lipid peroxidation and some stress parameters in broilers.

    PubMed

    Altan, O; Pabuçcuoğlu, A; Altan, A; Konyalioğlu, S; Bayraktar, H

    2003-09-01

    1. This study was conducted to determine the effects of heat stress on fearfulness, leucocyte components, oxidative stress and lipid peroxidation in two commercial broiler strains, Cobb (C) and Ross (R). 2. At 36 and 37 d of age birds were exposed to 38 +/- 1 degree C for 3 h. Rectal temperatures, duration of tonic immobility (TI), haematocrit values, proportions of leucocyte components (heterophil, lymphocyte, basophil, eosinophil, monocyte), malondialdehyde (MDA) concentrations and antioxidant enzyme activities (CAT, SOD, GPx) of all the birds were determined, before and after heat treatment. 3. Rectal temperatures increased and haematocrit values decreased in birds exposed to heat stress. Heat stress caused a significant increase in heterophil/lymphocyte and in basophil ratios. 4. Exposing birds to heat stress increased duration of TI, suggesting heat-stressed birds tended to be more fearful. 5. Heat stress resulted in a significant Genotype x Treatment interaction for MDA concentration. CAT, SOD and GPx activities; MDA concentrations in heat-stressed R strain birds were greater than in heat-stressed C strain birds.

  3. 4-Phenylbutyrate Benefits Traumatic Hemorrhagic Shock in Rats by Attenuating Oxidative Stress, Not by Attenuating Endoplasmic Reticulum Stress.

    PubMed

    Yang, Guangming; Peng, Xiaoyong; Hu, Yi; Lan, Dan; Wu, Yue; Li, Tao; Liu, Liangming

    2016-07-01

    -phenylbutyrate increased the nuclear levels of nuclear factor-E2-related factor 2, and decreased the nuclear levels of nuclear factor κB in hypoxic vascular smooth muscle cells. 4-phenylbutyrate has beneficial effects for traumatic hemorrhagic shock including improving animal survival and protecting organ function. These beneficial effects of 4-phenylbutyrate in traumatic hemorrhagic shock result from its vascular function protection via attenuation of the oxidative stress and mitochondrial permeability transition pore opening. Nuclear factor-E2-related factor 2 and nuclear factor-κB may be involved in 4-phenylbutyrate-mediated inhibition of oxidative stress.

  4. Heat shock transcription factor 1-deficiency attenuates overloading-associated hypertrophy of mouse soleus muscle.

    PubMed

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (p<0.05). Significant up-regulations of interleukin (IL)-1β and tumor necrosis factor mRNAs were observed in HSF1-null, but not in wild-type, mice following 2 weeks of overloading. Overloading-related increases of IL-6 and AFT3 mRNA expressions seen after 2 weeks of overloading tended to decrease after 4 weeks in both types of mice. In HSF1-null mice, however, the significant overloading-related increase in the expression of IL-6, not ATF3, mRNA was noted even at 4th week. Inhibition of muscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy.

  5. Heat Shock Transcription Factor 1-Deficiency Attenuates Overloading-Associated Hypertrophy of Mouse Soleus Muscle

    PubMed Central

    Koya, Tomoyuki; Nishizawa, Sono; Ohno, Yoshitaka; Goto, Ayumi; Ikuta, Akihiro; Suzuki, Miho; Ohira, Tomotaka; Egawa, Tatsuro; Nakai, Akira; Sugiura, Takao; Ohira, Yoshinobu; Yoshioka, Toshitada; Beppu, Moroe; Goto, Katsumasa

    2013-01-01

    Hypertrophic stimuli, such as mechanical stress and overloading, induce stress response, which is mediated by heat shock transcription factor 1 (HSF1), and up-regulate heat shock proteins (HSPs) in mammalian skeletal muscles. Therefore, HSF1-associated stress response may play a key role in loading-associated skeletal muscle hypertrophy. The purpose of this study was to investigate the effects of HSF1-deficiency on skeletal muscle hypertrophy caused by overloading. Functional overloading on the left soleus was performed by cutting the distal tendons of gastrocnemius and plantaris muscles for 4 weeks. The right muscle served as the control. Soleus muscles from both hindlimbs were dissected 2 and 4 weeks after the operation. Hypertrophy of soleus muscle in HSF1-null mice was partially inhibited, compared with that in wild-type (C57BL/6J) mice. Absence of HSF1 partially attenuated the increase of muscle wet weight and fiber cross-sectional area of overloaded soleus muscle. Population of Pax7-positive muscle satellite cells in HSF1-null mice was significantly less than that in wild-type mice following 2 weeks of overloading (p<0.05). Significant up-regulations of interleukin (IL)-1β and tumor necrosis factor mRNAs were observed in HSF1-null, but not in wild-type, mice following 2 weeks of overloading. Overloading-related increases of IL-6 and AFT3 mRNA expressions seen after 2 weeks of overloading tended to decrease after 4 weeks in both types of mice. In HSF1-null mice, however, the significant overloading-related increase in the expression of IL-6, not ATF3, mRNA was noted even at 4th week. Inhibition of muscle hypertrophy might be attributed to the greater and prolonged enhancement of IL-6 expression. HSF1 and/or HSF1-mediated stress response may, in part, play a key role in loading-induced skeletal muscle hypertrophy. PMID:24167582

  6. Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle.

    PubMed

    Berman, A; Horovitz, T

    2012-06-01

    Reducing thermal radiation on shaded animals reduces heat stress independently of other means of stress relief. Radiant heat exchange was estimated as a function of climate, shade structure, and animal density. Body surface portion exposed to radiant sources in shaded environments was determined by geometrical relations to determine angles of view of radiation sources (roof underside, sky, sun-exposed ground, shaded ground) on the animal's surface. The relative representation of environment radiation sources on the body surface was determined. Animal thermal radiation balance was derived from radiant heat gained from radiation sources (including surrounding animals) and that lost from the animal surface. The animal environment was assumed to have different shade dimensions and temperatures. These were summed to the radiant heat balance of the cow. The data formed served to estimate the effect of changes in intensity of radiation sources, roof and shaded surface dimensions, and animal density on radiant heat balance (Rbal) of cattle. Roof height effect was expressed by effect of roof temperature on Rbal. Roof underside temperature (35 to 75°C) effect on Rbal was reduced by roof height. If roof height were 4m, an increase in its underside temperature from 35 to 75°C would increase mean Rbal from -63 to -2 W·m⁻², whereas if roof height were 10 m, Rbal would only increase from -99 to -88 W·m⁻². A hot ground temperature increase from 35 to 65°C reduced mean Rbal heat loss from -45 to 3 W·m⁻². Increasing the surface of the shaded area had only a minor effect on Rbal and on the effect of hot ground on Rbal. Increasing shade roof height reduced the effect of roof temperature on Rbal to minor levels when height was > 8m. Increasing the roof height from 4 to 10 m decreased Rbal from -32 to -94 W·m⁻². Increasing indirect radiation from 100 to 500 W·m⁻² was associated with an increase in Rbal from -135 to +23 W·m⁻². Their combined effects were lower

  7. Acute volume expansion preserves orthostatic tolerance during whole-body heat stress in humans

    PubMed Central

    Keller, David M; Low, David A; Wingo, Jonathan E; Brothers, R Matthew; Hastings, Jeff; Davis, Scott L; Crandall, Craig G

    2009-01-01

    Whole-body heat stress reduces orthostatic tolerance via a yet to be identified mechanism(s). The reduction in central blood volume that accompanies heat stress may contribute to this phenomenon. The purpose of this study was to test the hypothesis that acute volume expansion prior to the application of an orthostatic challenge attenuates heat stress-induced reductions in orthostatic tolerance. In seven normotensive subjects (age, 40 ± 10 years: mean ±s.d.), orthostatic tolerance was assessed using graded lower-body negative pressure (LBNP) until the onset of symptoms associated with ensuing syncope. Orthostatic tolerance (expressed in cumulative stress index units, CSI) was determined on each of 3 days, with each day having a unique experimental condition: normothermia, whole-body heating, and whole-body heating + acute volume expansion. For the whole-body heating + acute volume expansion experimental day, dextran 40 was rapidly infused prior to LBNP sufficient to return central venous pressure to pre-heat stress values. Whole-body heat stress alone reduced orthostatic tolerance by ∼80% compared to normothermia (938 ± 152 versus 182 ± 57 CSI; mean ±s.e.m., P < 0.001). Acute volume expansion during whole-body heating completely ameliorated the heat stress-induced reduction in orthostatic tolerance (1110 ± 69 CSI, P < 0.001). Although heat stress results in many cardiovascular and neural responses that directionally challenge blood pressure regulation, reduced central blood volume appears to be an underlying mechanism responsible for impaired orthostatic tolerance in the heat-stressed human. PMID:19139044

  8. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings

    PubMed Central

    Gao, Guizhen; Li, Jun; Li, Hao; Li, Feng; Xu, Kun; Yan, Guixin; Chen, Biyun; Qiao, Jiangwei; Wu, Xiaoming

    2014-01-01

    DNA methylation is responsive to various biotic and abiotic stresses. Heat stress is a serious threat to crop growth and development worldwide. Heat stress results in an array of morphological, physiological and biochemical changes in plants. The relationship between DNA methylation and heat stress in crops is relatively unknown. We investigated the differences in methylation levels and changes in the cytosine methylation patterns in seedlings of two rapeseed genotypes (heat-sensitive and heat-tolerant) under heat stress. Our results revealed that the methylation levels were different between a heat-tolerant genotype and a heat-sensitive one under control conditions. Under heat treatment, methylation increased more in the heat-sensitive genotype than in the heat-tolerant genotype. More DNA demethylation events occurred in the heat-tolerant genotype, while more DNA methylation occurred in the heat-sensitive genotype. A large and diverse set of genes were affected by heat stress via cytosine methylation changes, suggesting that these genes likely play important roles in the response and adaption to heat stress in Brassica napus L. This study indicated that the changes in DNA methylation differed between heat-tolerant and heat-sensitive genotypes of B. napus in response to heat stress, which further illuminates the molecular mechanisms of the adaption to heat stress in B. napus. PMID:24987298

  9. Prompt protein glycosylation during acute heat stress.

    PubMed

    Henle, K J; Kaushal, G P; Nagle, W A; Nolen, G T

    1993-08-01

    Constitutive patterns of protein synthesis and protein glycosylation are severely disrupted by acute heat stress. Stressed cells respond by preferential synthesis of specific proteins, e.g., the well-known family of heat shock proteins. We observed another response that rapidly occurs during heating periods as short as 10 min at 45 degrees C. During that period, CHO cells began to glycosylate specific proteins, designated as "prompt" stress glycoproteins (P-SG), while constitutive protein glycosylation ceased. Labeling of P-SGs showed a dose response with time and with temperature and appeared regardless of the label used (D-[3H]mannose or D-[3H]glucose). On SDS-PAGE, the major P-SG was characterized by M(r) approximately 67 kDa (P-SG67) and pI = 5.1. Other less prominent P-SGs appeared at M(r) 160, 100, 64, 60, and 47 kDa; incorporated label showed little turnover during 24 h at 37 degrees C. Prompt glycosylation was inhibited by tunicamycin, and label incorporated into P-SGs was sensitive to N-glycosidase F, but not to O-glycosidase. Analysis of enzymatically digested P-SG67 indicated that label had been incorporated into both high-mannose (Man9GlcNAc) and complex-type oligosaccharides. Brefeldin A did not eliminate P-SG67 labeling, but caused the further appearance of novel, Brefeldin-associated P-SGs. Labeling of P-SG67 oligosaccharides occurred without significant concomitant protein synthesis, suggesting that addition of labeled oligosaccharides largely occurred on mature, rather than nascent proteins. The functional significance of prompt glycosylation remains to be defined, but we propose that this novel phenomenon is an integral part of the cellular heat stress response.

  10. Tank waste remediation system heat stress control program report, 1995

    SciTech Connect

    Carls, D.R.

    1995-09-28

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it`s inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  11. Osmotic and Heat Stress Effects on Segmentation

    PubMed Central

    Weiss, Julian

    2016-01-01

    During vertebrate embryonic development, early skin, muscle, and bone progenitor populations organize into segments known as somites. Defects in this conserved process of segmentation lead to skeletal and muscular deformities, such as congenital scoliosis, a curvature of the spine caused by vertebral defects. Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals. Here we show that a brief exposure to a high osmolarity solution causes reproducible segmentation defects in developing zebrafish (Danio rerio) embryos. Both osmotic shock and heat shock produce border defects in a dose-dependent manner, with an increase in both frequency and severity of defects. We also show that osmotic treatment has a delayed effect on somite development, similar to that observed in heat shocked embryos. Our results establish osmotic shock as an alternate experimental model for stress, affecting segmentation in a manner comparable to other known environmental stressors. The similar effects of these two distinct environmental stressors support a model in which a variety of cellular stresses act through a related response pathway that leads to disturbances in the segmentation process. PMID:28006008

  12. Heat shock protein 90 inhibition by 17-DMAG attenuates abdominal aortic aneurysm formation in mice

    PubMed Central

    Qi, Jia; Yang, Ping; Yi, Bing; Huo, Yan; Chen, Ming; Zhang, Jian

    2015-01-01

    Abdominal aortic aneurysm (AAA) is a common degenerative vascular disease whose pathogenesis is associated with activation of multiple signaling pathways including Jun NH2-terminal kinases (JNK) and NF-κB. It is now well recognized that these pathways are chaperoned by the heat shock protein 90 (Hsp90), suggesting that inhibition of Hsp90 may be a novel strategy for inhibiting AAAs. The aim of this study is to investigate whether inhibition of Hsp90 by 17-DMAG (17-dimethyl-aminothylamino-17-demethoxy-geldanamycin) attenuates ANG II-induced AAA formation in mice, and, if so, to elucidate the mechanisms involved. Apolipoprotein E-null mice were infused with ANG II to induce AAA formation and simultaneously treated by intraperitoneal injection with either vehicle or 17-DMAG for 4 wk. ANG II infusion induced AAA formation in 80% of mice, which was accompanied by increased matrix metalloproteinase (MMP) activity, enhanced tissue inflammation, oxidative stress, and neovascularization. Importantly, these effects were inhibited by 17-DMAG treatment. Mechanistically, we showed that 17-DMAG prevented the formation and progression of AAA through its inhibitory effects on diverse biological pathways including 1) by blocking ANG II-induced phosphorylation of ERK1/2 and JNK that are critically involved in the regulation of MMPs in vascular smooth muscle cells, 2) by inhibiting IκB kinase expression and expression of MCP-1, and 3) by attenuating ANG II-stimulated angiogenic processes critical to AAA formation. Our results demonstrate that inhibition of Hsp90 by 17-DMAG effectively attenuates ANG II-induced AAA formation by simultaneously inhibiting vascular inflammation, extracellular matrix degradation, and angiogenesis, which are critical in the formation and progression of AAAs. PMID:25637544

  13. Investigation of Urban Heat Stress from Satellite Atmospheric Profiles

    NASA Astrophysics Data System (ADS)

    Hu, L.; Brunsell, N. A.

    2014-12-01

    Heat stress is the leading cause of weather-related human mortality in the United States and in many countries world-wide. Heat stress is usually enhanced by the urban heat island effect. Here, we investigate the ability to use remotely sensed atmospheric profiles to detect and monitor heat stress in the urban environment. MODIS atmospheric profiles at 5 km are used to quantify the spatial distribution of heat stress across Chicago during summer periods from 2003-2013. Four heat stress indices are investigated (Discomfort Index (DI), NWS Heat Index (HI), Humidex, and Simplified Wet Bulb Globe Temperature (SWBGT)) from the near-surface temperature and humidity observed at ground sites and retrieved from satellite atmospheric profiles. The heat stress climatology indicates that the urban effects are similar to the heat stress in top 5% hot days and 11 summers during the daytime. There is a lack of relationship between urban fraction and the heat stress on the warmest nights. The nighttime heat stress in the hottest 5% suggests a larger stress compared to the normal conditions during 11 summers. A case study of the heat wave in 2012 is assessed to identify the key pre-heat wave spatial patterns, which may potentially apply to predict future high heat-stress events. In addition, the role of the temporal persistence on the spatial dynamics of the heat wave is also examined. This research illustrates the spatial heat pattern under normal and heat wave conditions, which may help to make public heat health protection strategies. Also, the remotely sensed temperature and humidity information are invaluable to assess urban heat island impact spatially and temporally.

  14. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K.; Chouhan, Vikrant Singh; Maurya, V. P.; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups ( n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest ( P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest ( P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  15. Expression of HSPs: an adaptive mechanism during long-term heat stress in goats (Capra hircus).

    PubMed

    Dangi, Satyaveer Singh; Gupta, Mahesh; Dangi, Saroj K; Chouhan, Vikrant Singh; Maurya, V P; Kumar, Puneet; Singh, Gyanendra; Sarkar, Mihir

    2015-08-01

    Menacing global rise in surface temperature compelled more focus of research over understanding heat stress response mechanism of animals and mitigation of heat stress. Twenty-four goats divided into four groups (n = 6) such as NHS (non-heat-stressed), HS (heat-stressed), HS + VC (heat-stressed administered with vitamin C), and HS + VE + Se (heat-stressed administered with vitamin E and selenium). Except NHS group, other groups were exposed to repeated heat stress (42 °C) for 6 h on 16 consecutive days. Blood samples were collected at the end of heat exposure on days 1, 6, 11, and 16. When groups compared between days, expression of all heat shock proteins (HSPs) showed a similar pattern as first peak on day 1, reached to basal level on the sixth day, and followed by second peak on day 16. The relative messenger RNA (mRNA) and protein expression of HSP 60, HSP70, and HSP90 was observed highest (P < 0.05) in HS group, followed by antioxidant-administered group on days 1 and 16, which signifies that antioxidants have dampening effect on HSP expression. HSP105/110 expression was highest (P < 0.05) on day 16. We conclude that HSP expression pattern is at least two-peak phenomenon, i.e., primary window of HSP protection on the first day followed by second window of protection on day 16. HSP60, HSP70, and HSP90 play an important role during the initial phase of heat stress acclimation whereas HSP105/110 joins this cascade at later phase. Antioxidants may possibly attenuate the HSP expression by reducing the oxidative stress.

  16. Differential effects of heat stress on fibre capillarisation in tenotomised soleus and plantaris muscles.

    PubMed

    Hirunsai, Muthita; Srikuea, Ratchakrit

    2017-07-18

    Capillary regression is commonly observed in response to disuse muscle atrophy. Heat stress is known to alleviate muscle atrophy, while effect of heat exposure on capillary adaptation following disuse atrophy is not defined. Here, we examined the effect of heat treatment on capillarisation and the associated signalling in slow-oxidative soleus and fast-glycolytic plantaris muscles following Achilles tendon ablation (tenotomy). Male Wistar rats were assigned into control (CON), control with heat stress (CON + HEAT), tenotomy (TEN) and tenotomy with heat stress (TEN + HEAT) groups. Tenotomy was induced for 8 days in TEN and TEN + HEAT groups. Heat stress was maintained at 40.5-41.5 °C, 30 min for 7 days. Tenotomy resulted in reduction of capillary-to-fibre ratio, decreased VEGFR-2 and increased TSP-1 in soleus muscle, whereas VEGF protein expression remained unaffected. Tenotomy had no effect on capillary distribution and angiogenic signalling in plantaris muscle. These results were concomitant with larger reduction of cross-sectional area (CSA) in MHC type I and II myofibres of soleus compared to plantaris muscles. Interestingly, heat stress increased VEGFR-2 and attenuated TSP-1 protein expression in tenotomised soleus, but not plantaris muscles. Additionally, CSA of both type I and type II myofibres was greater in tenotomised soleus than plantaris muscles after heat treatment. Heat stress mitigated effect of tenotomy-induced capillary regression in a fibre-type-specific response, in part, by shifting the balance between angiogenic and angiostatic regulators. These results suggest beneficial effect of heat treatment for maintaining microcirculation in disuse muscle atrophy.

  17. Salvianolate Protects Hepatocytes from Oxidative Stress by Attenuating Mitochondrial Injury

    PubMed Central

    Zhao, Qiang; Peng, Yuan; Huang, Kai; Lei, Yang; Liu, Hong-Liang; Tao, Yan-Yan

    2016-01-01

    Salvianolate is widely used to treat angiocardiopathy in clinic in China, but its application in liver diseases remains unclear. Our study aims to investigate the effect of Salvianolate on rat hepatic injury by protecting hepatocyte mitochondria. To evaluate the effects of Salvianolate on injured hepatocytes, alpha mouse liver 12 (AML-12) cells were induced with hydrogen peroxide (H2O2) and treated with Salvianolate. Cell viability and MitoTracker Green for mitochondria and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazole-carbocyanide iodine (JC-1) levels and cytochrome C (Cyto-C) expressions were detected in vitro. To identify the effect of Salvianolate on protecting against mitochondria injury, male Wistar rats were injected with carbon tetrachloride (CCl4) and treated with Salvianolate (40 mg·kg−1). Serum liver function, parameters for peroxidative damage, hematoxylin and eosin (H&E) staining, and transmission electron microscope (TEM) of hepatocyte mitochondria were assayed. Our results showed that Salvianolate effectively protected hepatocytes, increased mitochondria vitality, and decreased Cyto-C expressions in vitro. Besides, Salvianolate alleviated the liver function, attenuated the indicators of peroxidation, and relieved the mitochondria injury in vivo. In conclusion, Salvianolate is effective in protecting hepatocytes from injury in vitro and in vivo, and the mechanism might be related to its protective effect on hepatocyte mitochondria against oxidative stress. PMID:27340417

  18. Salvianolate Protects Hepatocytes from Oxidative Stress by Attenuating Mitochondrial Injury.

    PubMed

    Zhao, Qiang; Peng, Yuan; Huang, Kai; Lei, Yang; Liu, Hong-Liang; Tao, Yan-Yan; Liu, Cheng-Hai

    2016-01-01

    Salvianolate is widely used to treat angiocardiopathy in clinic in China, but its application in liver diseases remains unclear. Our study aims to investigate the effect of Salvianolate on rat hepatic injury by protecting hepatocyte mitochondria. To evaluate the effects of Salvianolate on injured hepatocytes, alpha mouse liver 12 (AML-12) cells were induced with hydrogen peroxide (H2O2) and treated with Salvianolate. Cell viability and MitoTracker Green for mitochondria and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazole-carbocyanide iodine (JC-1) levels and cytochrome C (Cyto-C) expressions were detected in vitro. To identify the effect of Salvianolate on protecting against mitochondria injury, male Wistar rats were injected with carbon tetrachloride (CCl4) and treated with Salvianolate (40 mg·kg(-1)). Serum liver function, parameters for peroxidative damage, hematoxylin and eosin (H&E) staining, and transmission electron microscope (TEM) of hepatocyte mitochondria were assayed. Our results showed that Salvianolate effectively protected hepatocytes, increased mitochondria vitality, and decreased Cyto-C expressions in vitro. Besides, Salvianolate alleviated the liver function, attenuated the indicators of peroxidation, and relieved the mitochondria injury in vivo. In conclusion, Salvianolate is effective in protecting hepatocytes from injury in vitro and in vivo, and the mechanism might be related to its protective effect on hepatocyte mitochondria against oxidative stress.

  19. The contribution of activated processes to Q. [stress corrosion cracking in seismic wave attenuation

    NASA Technical Reports Server (NTRS)

    Spetzler, H. A.; Getting, I. C.; Swanson, P. L.

    1980-01-01

    The possible role of activated processes in seismic attenuation is investigated. In this study, a solid is modeled by a parallel and series configuration of dashpots and springs. The contribution of stress and temperature activated processes to the long term dissipative behavior of this system is analyzed. Data from brittle rock deformation experiments suggest that one such process, stress corrosion cracking, may make a significant contribution to the attenuation factor, Q, especially for long period oscillations under significant tectonic stress.

  20. The contribution of activated processes to Q. [stress corrosion cracking in seismic wave attenuation

    NASA Technical Reports Server (NTRS)

    Spetzler, H. A.; Getting, I. C.; Swanson, P. L.

    1980-01-01

    The possible role of activated processes in seismic attenuation is investigated. In this study, a solid is modeled by a parallel and series configuration of dashpots and springs. The contribution of stress and temperature activated processes to the long term dissipative behavior of this system is analyzed. Data from brittle rock deformation experiments suggest that one such process, stress corrosion cracking, may make a significant contribution to the attenuation factor, Q, especially for long period oscillations under significant tectonic stress.

  1. Contrasting urban and rural heat stress responses to climate change

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Oleson, K. W.; Lawrence, D. M.

    2012-02-01

    Hot temperatures in combination with high humidity cause human discomfort and may increase morbidity and mortality. A global climate model with an embedded urban model is used to explore the urban-rural contrast in the wet-bulb globe temperature, a heat stress index accounting for temperature and humidity. Wet-bulb globe temperatures are calculated at each model time step to resolve the heat stress diurnal cycle. The model simulates substantially higher heat stress in urban areas compared to neighbouring rural areas. Urban humidity deficit only weakly offsets the enhanced heat stress due to the large night-time urban heat island. The urban-rural contrast in heat stress is most pronounced at night and over mid-latitudes and subtropics. During heatwaves, the urban heat stress amplification is particularly pronounced. Heat stress strongly increases with doubled CO2 concentrations over both urban and rural surfaces. The tropics experience the greatest increase in number of high-heat-stress nights, despite a relatively weak ˜2°C warming. Given the lack of a distinct annual cycle and high relative humidity, the modest tropical warming leads to exceedance of the present-day record levels during more than half of the year in tropical regions, where adaptive capacity is often low. While the absolute urban and rural heat stress response to 2 × CO2 is similar, the occurrence of nights with extremely high heat stress increases more in cities than surrounding rural areas.

  2. Controlled Heat Stress Promotes Myofibrillogenesis during Myogenesis.

    PubMed

    Guo, Qiongyu; Miller, Devin; An, Hongying; Wang, Howard; Lopez, Joseph; Lough, Denver; He, Ling; Kumar, Anand

    2016-01-01

    Hyperthermia therapy has recently emerged as a clinical modality used to finely tune heat stress inside the human body for various biomedical applications. Nevertheless, little is known regarding the optimal timing or temperature of heat stress that is needed to achieve favorable results following hyperthermia therapy for muscle regeneration purposes. The regeneration of skeletal muscle after injury is a highly complex and coordinated process that involves a multitude of cellular mechanisms. The main objective of this study was to characterize the effects of hyperthermal therapy on the overall behavior of myoblasts during myogenic differentiation. Various cellular processes, including myogenesis, myofibrillogenesis, hypertrophy/atrophy, and mitochondrial biogenesis, were studied using systematic cellular, morphological, and pathway-focused high-throughput gene expression profiling analyses. We found that C2C12 myoblasts exhibited distinctive time and temperature-dependence in biosynthesis and regulatory events during myogenic differentiation. Specifically, we for the first time observed that moderate hyperthermia at 39°C favored the growth of sarcomere in myofibrils at the late stage of myogenesis, showing universal up-regulation of characteristic myofibril proteins. Characteristic myofibrillogenesis genes, including heavy polypeptide 1 myosin, heavy polypeptide 2 myosin, alpha 1 actin, nebulin and titin, were all significantly upregulated (p<0.01) after C2C12 cells differentiated at 39°C over 5 days compared with the control cells cultured at 37°C. Furthermore, moderate hyperthermia enhanced myogenic differentiation, with nucleus densities per myotube showing 2.2-fold, 1.9-fold and 1.6-fold increases when C2C12 cells underwent myogenic differentiation at 39°C over 24 hours, 48 hours and 72 hours, respectively, as compared to the myotubes that were not exposed to heat stress. Yet, atrophy genes were sensitive even to moderate hyperthermia, indicating that

  3. Controlled Heat Stress Promotes Myofibrillogenesis during Myogenesis

    PubMed Central

    Guo, Qiongyu; Miller, Devin; An, Hongying; Wang, Howard; Lopez, Joseph; Lough, Denver; He, Ling; Kumar, Anand

    2016-01-01

    Hyperthermia therapy has recently emerged as a clinical modality used to finely tune heat stress inside the human body for various biomedical applications. Nevertheless, little is known regarding the optimal timing or temperature of heat stress that is needed to achieve favorable results following hyperthermia therapy for muscle regeneration purposes. The regeneration of skeletal muscle after injury is a highly complex and coordinated process that involves a multitude of cellular mechanisms. The main objective of this study was to characterize the effects of hyperthermal therapy on the overall behavior of myoblasts during myogenic differentiation. Various cellular processes, including myogenesis, myofibrillogenesis, hypertrophy/atrophy, and mitochondrial biogenesis, were studied using systematic cellular, morphological, and pathway-focused high-throughput gene expression profiling analyses. We found that C2C12 myoblasts exhibited distinctive time and temperature-dependence in biosynthesis and regulatory events during myogenic differentiation. Specifically, we for the first time observed that moderate hyperthermia at 39°C favored the growth of sarcomere in myofibrils at the late stage of myogenesis, showing universal up-regulation of characteristic myofibril proteins. Characteristic myofibrillogenesis genes, including heavy polypeptide 1 myosin, heavy polypeptide 2 myosin, alpha 1 actin, nebulin and titin, were all significantly upregulated (p<0.01) after C2C12 cells differentiated at 39°C over 5 days compared with the control cells cultured at 37°C. Furthermore, moderate hyperthermia enhanced myogenic differentiation, with nucleus densities per myotube showing 2.2-fold, 1.9-fold and 1.6-fold increases when C2C12 cells underwent myogenic differentiation at 39°C over 24 hours, 48 hours and 72 hours, respectively, as compared to the myotubes that were not exposed to heat stress. Yet, atrophy genes were sensitive even to moderate hyperthermia, indicating that

  4. Human Adaptations to Heat and Cold Stress

    DTIC Science & Technology

    2002-04-01

    Heat and Cold Stress Michael N. Sawka, Ph.D. US Army Research Institute of Environmental Medicine 42 Kansas Street Natick, MA 01760-5007, USA John W...Castellani, Ph.D. US Army Research Institute of Environmental Medicine 42 Kansas Street Natick, MA 01760-5007, USA Kent B. Pandolf, Ph.D. US Army...Research Institute of Environmental Medicine 42 Kansas Street Natick, MA 01760-5007, USA Andrew J. Young, Ph.D. US Army Research Institute of Environmental

  5. Healthy aging does not compromise the augmentation of cardiac function during heat stress.

    PubMed

    Gagnon, Daniel; Romero, Steven A; Ngo, Hai; Sarma, Satyam; Cornwell, William K; Poh, Paula Y S; Stoller, Douglas; Levine, Benjamin D; Crandall, Craig G

    2016-10-01

    During heat stress, stroke volume is maintained in young adults despite reductions in cardiac filling pressures. This is achieved by a general augmentation of cardiac function, highlighted by a left and upward shift of the Frank-Starling relation. In contrast, healthy aged adults are unable to maintain stroke volume during heat stress. We hypothesized that this would be associated with a lack of shift in the Frank-Starling relation. Frank-Starling relations were examined in 11 aged [69 ± 4 (SD) yr, 4 men/7 women] and 12 young (26 ± 5 yr, 6 men/6 women) adults during normothermic and heat stress (1.5°C increase in core temperature) conditions. During heat stress, increases in cardiac output were attenuated in aged adults (+2.5 ± 0.3 (95% CI) vs. young: +4.5 ± 0.5 l/min, P < 0.01) because of an attenuated chronotropic response (+30 ± 4 vs. young: +42 ± 5 beats/min, P < 0.01). In contrast to our hypothesis, a leftward shift of the Frank-Starling relation maintained stroke volume during heat stress in aged adults (76 ± 8 vs. normothermic: 74 ± 8 ml, P = 0.38) despite reductions in cardiac filling pressure (6.6 ± 1.0 vs. normothermic: 8.9 ± 1.1 mmHg, P < 0.01). In a subset of participants, volume loading was used to return cardiac filling pressure during heat stress to normothermic values, which resulted in a greater stroke volume for a given cardiac filling pressure in both groups. These results demonstrate that the Frank-Starling relation shifts during heat stress in healthy young and aged adults, thereby preserving stroke volume despite reductions in cardiac filling pressures. Copyright © 2016 the American Physiological Society.

  6. Protective Effects of Ferulic Acid against Heat Stress-Induced Intestinal Epithelial Barrier Dysfunction In Vitro and In Vivo.

    PubMed

    He, Shasha; Liu, Fenghua; Xu, Lei; Yin, Peng; Li, Deyin; Mei, Chen; Jiang, Linshu; Ma, Yunfei; Xu, Jianqin

    2016-01-01

    Heat stress is important in the pathogenesis of intestinal epithelial barrier dysfunction. Ferulic acid (FA), a phenolic acid widely found in fruits and vegetables, can scavenge free radicals and activate cell stress responses. This study is aimed at investigating protective effects of FA on heat stress-induced dysfunction of the intestinal epithelial barrier in vitro and in vivo. Intestinal epithelial (IEC-6) cells were pretreated with FA for 4 h and then exposed to heat stress. Heat stress caused decreased transepithelial electrical resistance (TER) and increased permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran (FD4). Both effects were inhibited by FA in a dose-dependent manner. FA significantly attenuated the decrease in occludin, ZO-1 and E-cadherin expression observed with heat stress. The distortion and redistribution of occludin, ZO-1 and E-cadherin proteins were also effectively prevented by FA pretreatment. Moreover, heat stress diminished electron-dense material detected in tight junctions (TJs), an effect also alleviated by FA in a dose-dependent manner. In an in vivo heat stress model, FA (50 mg/kg) was administered to male Sprague-Dawley rats for 7 consecutive days prior to exposure to heat stress. FA pretreatment significantly attenuated the effects of heat stress on the small intestine, including the increased FD4 permeability, disrupted tight junctions and microvilli structure, and reduced occludin, ZO-1 and E-cadherin expression. Taken together, our results demonstrate that FA pretreatment is potentially protective against heat stress-induced intestinal epithelial barrier dysfunction.

  7. Sprint performance under heat stress: A review.

    PubMed

    Girard, O; Brocherie, F; Bishop, D J

    2015-06-01

    Training and competition in major track-and-field events, and for many team or racquet sports, often require the completion of maximal sprints in hot (>30 °C) ambient conditions. Enhanced short-term (<30 s) power output or single-sprint performance, resulting from transient heat exposure (muscle temperature rise), can be attributed to improved muscle contractility. Under heat stress, elevations in skin/core temperatures are associated with increased cardiovascular and metabolic loads in addition to decreasing voluntary muscle activation; there is also compelling evidence to suggest that large performance decrements occur when repeated-sprint exercise (consisting of brief recovery periods between sprints, usually <60 s) is performed in hot compared with cool conditions. Conversely, poorer intermittent-sprint performance (recovery periods long enough to allow near complete recovery, usually 60-300 s) in hotter conditions is solely observed when exercise induces marked hyperthermia (core temperature >39 °C). Here we also discuss strategies (heat acclimatization, precooling, hydration strategies) employed by "sprint" athletes to mitigate the negative influence of higher environmental temperatures.

  8. Effects of heat stress on baroreflex function in humans

    NASA Technical Reports Server (NTRS)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  9. Effects of heat stress on baroreflex function in humans

    NASA Technical Reports Server (NTRS)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  10. Effect of human skin grafts on whole-body heat loss during exercise heat stress: a case report.

    PubMed

    Ganio, Matthew S; Gagnon, Daniel; Stapleton, Jill; Crandall, Craig G; Kenny, Glen P

    2013-01-01

    When exposed to heat stress, increases in cutaneous blood flow and sweating in well-healed grafted skin are severely attenuated, which could impair whole-body heat loss if skin grafts cover a large portion of total body surface area (TBSA). It is unknown to what extent whole-body heat loss is impaired when skin grafts cover a significant (eg, >50%) proportion of TBSA. The authors examined whole-body heat exchange during and after 60 min of cycling exercise in the heat (35°C; 25% relative humidity), at a fixed rate of metabolic heat production (~400 W) in a woman (age, 36 years; mass, 78.2 kg) with well-healed (17+ years) skin grafts covering 75% of TBSA. Her responses were compared with two noninjured control subjects. Whole-body evaporative and dry heat exchange were measured by direct calorimetry. While exercising in the same ambient conditions and at the same rate of heat production, relative evaporative heat loss of nongrafted skin in the grafted subject (ie, evaporative heat loss per m) was nearly twice that of the control subjects. However, total rate of evaporative heat loss reached only 59% of the amount required for heat balance in the skin-grafted subject compared with 92 ± 3% in controls. Thus, the increase in core temperature was 2-fold greater for the grafted (1.22°C) vs control (0.61 ± 0.19°C) individuals. This case study demonstrates that a large area of grafted skin greatly diminishes maximum evaporative heat loss during exercise in the heat, making a compensable environment for control subjects uncompensable for skin-grafted individuals.

  11. Human recombinant factor VIIa may improve heat intolerance in mice by attenuating hypothalamic neuronal apoptosis and damage.

    PubMed

    Hsu, Chuan-Chih; Chen, Sheng-Hsien; Lin, Cheng-Hsien; Yung, Ming-Chi

    2014-10-01

    Intolerance to heat exposure is believed to be associated with hypothalamo-pituitary-adrenocortical (HPA) axis impairment [reflected by decreases in blood concentrations of both adrenocorticotrophic-hormone (ACTH) and corticosterone]. The purpose of this study was to determine the effect of human recombinant factor VIIa (rfVIIa) on heat intolerance, HPA axis impairment, and hypothalamic inflammation, ischemic and oxidative damage, and apoptosis in mice under heat stress. Immediately after heat stress (41.2 °C for 1 h), mice were treated with vehicle (1 mL/kg of body weight) or rfVIIa (65-270 µg/kg of body weight) and then returned to room temperature (26 °C). Mice still alive on day 4 of heat exposure were considered survivors. Cellular ischemia markers (e.g., glutamate, lactate-to-pyruvate ratio), oxidative damage markers (e.g., nitric oxide metabolite, hydroxyl radials), and pro-inflammatory cytokines (e.g., interleukin-6, interleukin-1β, tumor necrosis factor-α) in hypothalamus were determined. In addition, blood concentrations of both ACTH and corticosterone were measured. Hypothalamic cell damage was assessed by determing the neuronal damage scores, whereas the hypothalamic cell apoptosis was determined by assessing the numbers of cells stained with terminal deoxynucleotidyl transferase-mediated αUTP nick-end labeling, caspase-3-positive cells, and platelet endothelial cell adhesion molecula-1-positive cells in hypothalamus. Compared with vehicle-treated heated mice, rfVIIa-treated heated mice had significantly higher fractional survival (8/10 vs 1/10), lesser thermoregulatory deficit (34.1 vs 24.8 °C), lesser extents of ischemic, oxidative, and inflammatory markers in hypothalamus, lesser neuronal damage scores and apoptosis in hypothalamus, and lesser HPA axis impairment. Human recombinant factor VIIa appears to exert a protective effect against heatstroke by attenuating hypothalamic cell apoptosis (due to ischemic, inflammatory, and oxidative damage

  12. Heat stress-induced life span extension in yeast.

    PubMed

    Shama, S; Lai, C Y; Antoniazzi, J M; Jiang, J C; Jazwinski, S M

    1998-12-15

    The yeast Saccharomyces cerevisiae has a limited life span that can be measured by the number of times individual cells divide. Several genetic manipulations have been shown to prolong the yeast life span. However, environmental effects that extend longevity have been largely ignored. We have found that mild, nonlethal heat stress extended yeast life span when it was administered transiently early in life. The increased longevity was due to a reduction in the mortality rate that persisted over many cell divisions (generations) but was not permanent. The genes RAS1 and RAS2 were necessary to observe this effect of heat stress. The RAS2 gene is consistently required for maintenance of life span when heat stress is chronic or in its extension when heat stress is transient or absent altogether. RAS1, on the other hand, appears to have a role in signaling life extension induced by transient, mild heat stress, which is distinct from its life-span-curtailing effect in the absence of stress and its lack of involvement in the response to chronic heat stress. This distinction between the RAS genes may be partially related to their different effects on growth-promoting genes and stress-responsive genes. The ras2 mutation clearly hindered resumption of growth and recovery from stress, while the ras1 mutation did not. The HSP104 gene, which is largely responsible for induced thermotolerance in yeast, was necessary for life extension induced by transient heat stress. An interaction between mitochondrial petite mutations and heat stress was found, suggesting that mitochondria may be necessary for life extension by transient heat stress. The results raise the possibility that the RAS genes and mitochondria may play a role in the epigenetic inheritance of reduced mortality rate afforded by transient, mild heat stress.

  13. Cold drink attenuates heat strain during work-rest cycles.

    PubMed

    Lee, J K W; Yeo, Z W; Nio, A Q X; Koh, A C H; Teo, Y S; Goh, L F; Tan, P M S; Byrne, C

    2013-12-01

    There is limited information on the ingestion of cold drinks after exercise. We investigated the thermoregulatory effects of ingesting drinks at 4°C (COLD) or 28°C (WARM) during work-rest cycles in the heat. On 2 separate occasions, 8 healthy males walked on the treadmill for 2 cycles (45 min work; 15 min rest) at 5.5 km/h with 7.5% gradient. Two aliquots of 400 mL of plain water at either 4°C or 28°C were consumed during each rest period. Rectal temperature (T re ), skin temperature (T sk ), heart rate and subjective ratings were measured. Mean decrease in T re at the end of the final work-rest cycle was greater after the ingestion of COLD drinks (0.5±0.2°C) than WARM drinks (0.3±0.2°C; P<0.05). Rate of decrease in T sk was greater after ingestion of COLD drinks during the first rest period (P<0.01). Mean heart rate was lower after ingesting COLD drinks (P<0.05). Ratings of thermal sensation were lower during the second rest phase after ingestion of COLD drinks (P<0.05). The ingestion of COLD drinks after exercise resulted in a lesser than expected reduction of T re . Nevertheless, the reduction in T re implies a potential for improved work tolerance during military and occupational settings in the heat.

  14. Nutritional interventions to alleviate the negative consequences of heat stress.

    PubMed

    Rhoads, Robert P; Baumgard, Lance H; Suagee, Jessica K; Sanders, Sara R

    2013-05-01

    Energy metabolism is a highly coordinated process, and preferred fuel(s) differ among tissues. The hierarchy of substrate use can be affected by physiological status and environmental factors including high ambient temperature. Unabated heat eventually overwhelms homeothermic mechanisms resulting in heat stress, which compromises animal health, farm animal production, and human performance. Various aspects of heat stress physiology have been extensively studied, yet a clear understanding of the metabolic changes occurring at the cellular, tissue, and whole-body levels in response to an environmental heat load remains ill-defined. For reasons not yet clarified, circulating nonesterified fatty acid levels are reduced during heat stress, even in the presence of elevated stress hormones (epinephrine, glucagon, and cortisol), and heat-stressed animals often have a blunted lipolytic response to catabolic signals. Either directly because of or in coordination with this, animals experiencing environmental hyperthermia exhibit a shift toward carbohydrate use. These metabolic alterations occur coincident with increased circulating basal and stimulated plasma insulin concentrations. Limited data indicate that proper insulin action is necessary to effectively mount a response to heat stress and minimize heat-induced damage. Consistent with this idea, nutritional interventions targeting increased insulin action may improve tolerance and productivity during heat stress. Further research is warranted to uncover the effects of heat on parameters associated with energy metabolism so that more appropriate and effective treatment methodologies can be designed.

  15. Novel regulatory factors of HSF-1 activation: facts and perspectives regarding their involvement in the age-associated attenuation of the heat shock response.

    PubMed

    Shamovsky, Ilya; Gershon, David

    2004-01-01

    An attenuated response to stress is characteristic of senescence. Heat shock (HS), a significant form of stress, is delayed and reduced in aging organisms. In the response to heat shock, heat shock factor 1 (HSF-1) is activated by trimerization of its monomeric subunits. This then initiates the transcription of a series of heat shock genes (hsp genes) that encode chaperone proteins protective against heat stress. Using a promoter binding electromobility shift assay (EMSA), we have found no activation of this transcription factor in the brains of old (36 months) rats in response to exposure to 41 degrees C for 1h while strong activation is elicited in young (6 months) animals. Since brains of young and old rats had approximately the same amount of HSF-1 subunits, we anticipated the presence of auxiliary regulatory factors essential for the activation of HSF-1 and the initiation of heat shock gene transcription. We describe three novel auxiliary factors--the proteins I-HSF [HSF inhibitor] and elongation factor-1 alpha (EF-1alpha) and a large non-coding RNA (HSR)--that participate in regulation and activation of HSF-1 in early stages of heat shock gene transcription. I-HSF inhibits trimerization of HSF-1 at normal temperatures. HSR and EF-1alpha form a complex with HSF-1 and facilitate its trimerization and binding to heat shock element (HSE) in the promoters of hsps. It is proposed that structural changes in any one or a combination of these factors in response to heat shock may contribute to the age-associated attenuation in the response to stress.

  16. Autophagy decreases alveolar macrophage apoptosis by attenuating endoplasmic reticulum stress and oxidative stress

    PubMed Central

    Fan, Tao; Chen, Lei; Huang, Zhixin; Mao, Zhangfan; Wang, Wei; Zhang, Boyou; Xu, Yao; Pan, Shize; Hu, Hao; Geng, Qing

    2016-01-01

    To study the impact of autophagy on alveolar macrophage apoptosis and its mechanism in the early stages of hypoxia, we established a cell hypoxia-reoxygenation model and orthotopic left lung ischemia-reperfusion model. Rat alveolar macrophages stably expressing RFP-LC3 were treated with autophagy inhibitor (3-methyladenine, 3-MA) or autophagy promoter (rapamycin), followed by hypoxia-reoxygenation treatment 2 h, 4 h or 6 h later. Twenty Sprague-Dawley male rats were randomly divided into four different groups: no blocking of left lung hilum (model group), left lung hilum blocked for 1h with DMSO lavage (control group), left lung hilum blocked for 1 h with 100 ml/kg 3-MA (5 μmol/L) lavage (3-MA group), and left lung hilum blocked for 1 h with 100 ml/kg rapamycin (250 nmol/L) lavage (rapamycin group). Rapamycin decreased the unfolded protein response, which reduced endoplasmic reticulum stress-mediated apoptosis in the presence of oxygen deficiency. Rapamycin increased superoxide dismutase activities and decreased malondialdehyde levels, whereas 3-MA decreased superoxide dismutase activities and increased malondialdehyde levels. Thus, autophagy decreases alveolar macrophage apoptosis by attenuating endoplasmic reticulum stress and oxidative stress in the early stage of hypoxia in vitro and in vivo. This could represent a new approach to protecting against lung ischemia-reperfusion injury. PMID:27888631

  17. Management of heat stress in the livestock industry

    USDA-ARS?s Scientific Manuscript database

    Heat stress costs the animal industry over $1.7 billion annually. Annual losses average $369 million in the beef cattle industry and $299 million in the swine industry. The impacts of a single heat stress event on individual animals are quite varied. Brief events often cause little or no effect. ...

  18. Rubisco activase and wheat productivity under heat stress conditions

    USDA-ARS?s Scientific Manuscript database

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  19. Re-evaluating Occupational Heat Stress in a Changing Climate

    PubMed Central

    Spector, June T.; Sheffield, Perry E.

    2014-01-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. PMID:25261455

  20. Re-evaluating occupational heat stress in a changing climate.

    PubMed

    Spector, June T; Sheffield, Perry E

    2014-10-01

    The potential consequences of occupational heat stress in a changing climate on workers, workplaces, and global economies are substantial. Occupational heat stress risk is projected to become particularly high in middle- and low-income tropical and subtropical regions, where optimal controls may not be readily available. This commentary presents occupational heat stress in the context of climate change, reviews its impacts, and reflects on implications for heat stress assessment and control. Future efforts should address limitations of existing heat stress assessment methods and generate economical, practical, and universal approaches that can incorporate data of varying levels of detail, depending on resources. Validation of these methods should be performed in a wider variety of environments, and data should be collected and analyzed centrally for both local and large-scale hazard assessments and to guide heat stress adaptation planning. Heat stress standards should take into account variability in worker acclimatization, other vulnerabilities, and workplace resources. The effectiveness of controls that are feasible and acceptable should be evaluated. Exposure scientists are needed, in collaboration with experts in other areas, to effectively prevent and control occupational heat stress in a changing climate. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  1. Quantifying Livestock Heat Stress Impacts in the Sahel

    NASA Astrophysics Data System (ADS)

    Broman, D.; Rajagopalan, B.; Hopson, T. M.

    2014-12-01

    Livestock heat stress, especially in regions of the developing world with limited adaptive capacity, has a largely unquantified impact on food supply. Though dominated by ambient air temperature, relative humidity, wind speed, and solar radiation all affect heat stress, which can decrease livestock growth, milk production, reproduction rates, and mortality. Indices like the thermal-humidity index (THI) are used to quantify the heat stress experienced from climate variables. Livestock experience differing impacts at different index critical thresholds that are empirically determined and specific to species and breed. This lack of understanding has been highlighted in several studies with a limited knowledge of the critical thresholds of heat stress in native livestock breeds, as well as the current and future impact of heat stress,. As adaptation and mitigation strategies to climate change depend on a solid quantitative foundation, this knowledge gap has limited such efforts. To address the lack of study, we have investigated heat stress impacts in the pastoral system of Sub-Saharan West Africa. We used a stochastic weather generator to quantify both the historic and future variability of heat stress. This approach models temperature, relative humidity, and precipitation, the climate variables controlling heat stress. Incorporating large-scale climate as covariates into this framework provides a better historical fit and allows us to include future CMIP5 GCM projections to examine the climate change impacts on heat stress. Health and production data allow us to examine the influence of this variability on livestock directly, and are considered in conjunction with the confounding impacts of fodder and water access. This understanding provides useful information to decision makers looking to mitigate the impacts of climate change and can provide useful seasonal forecasts of heat stress risk. A comparison of the current and future heat stress conditions based on

  2. Attenuation of sensory and affective responses to heat pain: evidence for contralateral mechanisms.

    PubMed

    Gallez, Ariane; Albanese, Marie-Claire; Rainville, Pierre; Duncan, Gary H

    2005-11-01

    Attenuation of responses to repeated sensory events has been thoroughly studied in many modalities; however, attenuation of pain perception has not yet benefitted from such extensive investigation. Described here are two psychophysical studies that examined the effects of repeated exposure to thermal stimuli, assessing potential attenuation of the perception of pain and its possible spatial specificity. Twenty-two subjects were presented thermal stimuli to the volar surface of the right and left forearms. Twelve subjects in study 1 received the same stimuli and conditions on each of five daily experimental sessions, whereas 10 subjects in study 2 received thermal stimuli, which were restricted to one side for four daily sessions and then applied to the other side on the fifth session. Ratings of warmth intensity, pain intensity, and pain unpleasantness were recorded while the subjects performed a thermal sensory discrimination task. Results of study 1 demonstrate that repeated stimulation with noxious heat can lead to long-term attenuation of pain perception; results of study 2 extend these findings of attenuation to both pain intensity and unpleasantness and show that this effect is highly specific to the exposed body side for both aspects of the pain experience. We suggest that the functional plasticity underlying this attenuation effect lies in brain areas with a strong contralateral pattern of pain-related activation.

  3. A systems biology approach to heat stress, heat injury, and heat stroke

    NASA Astrophysics Data System (ADS)

    Stallings, Jonathan D.; Ippolito, Danielle L.

    2015-05-01

    Heat illness is a major source of injury for military populations in both deployed and training settings. Developing tools to help leaders enhance unit performance while reducing the risk of injury is of paramount importance to the military. Here, we review our recent systems biology approaches to heat stress in order to develop a 3-dimensional (3D) realistic thermoregulation model, identify the molecular basis and mediators of injury, and characterize associated biomarkers. We discuss the implications of our work, future directions, and the type of tools necessary to enhance force health protection in the future.

  4. Effects of heat stress on day-old broiler chicks.

    PubMed

    Ernst, R A; Weathers, W W; Smith, J

    1984-09-01

    Short-term heat stress can occur when chicks are transported from the hatchery to growing facilities. Two experiments were conducted to determine the possible effects of short-term heat stress on growth and feed conversion of broiler (Hubbard X Hubbard) chicks. The heat stress was accomplished by placing chicks in Jamesway 252 incubators at dry bulb temperatures ranging from 40 to 45 C for variable times. Growth, feed consumption, and mortality were measured for 16 days following the heat stress. Short sublethal heat stress significantly reduced growth rate to 16 days in these experiments without any effect on feed conversion ratio. The results indicate that the hatchery industry should avoid overheating chicks even for periods as short as 1 hr.

  5. Practices for Alleviating Heat Stress of Dairy Cows in Humid Continental Climates: A Literature Review

    PubMed Central

    Fournel, Sébastien; Ouellet, Véronique; Charbonneau, Édith

    2017-01-01

    Simple Summary The severity of heat stress issues on dairy cows will increase as global warming progresses. Fortunately, major advances in environmental management, including fans, misters, sprinklers, and cooled waterbeds, can attenuate the effects of thermal stress on cow health, production, and reproduction. These cooling systems were, however, tested in subtropical areas and their efficiency in northern regions is uncertain. This article assesses the potential of existing technologies to cool cows in humid continental climates through calculation of heat stress indices. Abstract Heat stress negatively affects the health and performance of dairy cows, resulting in considerable economic losses for the industry. In future years, climate change will exacerbate these losses by making the climate warmer. Physical modification of the environment is considered to be the primary means of reducing adverse effects of hot weather conditions. At present, to reduce stressful heat exposure and to cool cows, dairy farms rely on shade screens and various forms of forced convection and evaporative cooling that may include fans and misters, feed-line sprinklers, and tunnel- or cross-ventilated buildings. However, these systems have been mainly tested in subtropical areas and thus their efficiency in humid continental climates, such as in the province of Québec, Canada, is unclear. Therefore, this study reviewed the available cooling applications and assessed their potential for northern regions. Thermal stress indices such as the temperature-humidity index (THI) were used to evaluate the different cooling strategies. PMID:28468329

  6. Effect of acute heat stress on plant nutrient metabolism proteins

    USDA-ARS?s Scientific Manuscript database

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  7. Heat Stress Modulates Both Anabolic and Catabolic Signaling Pathways Preventing Dexamethasone-Induced Muscle Atrophy In Vitro.

    PubMed

    Tsuchida, Wakako; Iwata, Masahiro; Akimoto, Takayuki; Matsuo, Shingo; Asai, Yuji; Suzuki, Shigeyuki

    2017-03-01

    It is generally recognized that synthetic glucocorticoids induce skeletal muscle weakness, and endogenous glucocorticoid levels increase in patients with muscle atrophy. It is reported that heat stress attenuates glucocorticoid-induced muscle atrophy; however, the mechanisms involved are unknown. Therefore, we examined the mechanisms underlying the effects of heat stress against glucocorticoid-induced muscle atrophy using C2C12 myotubes in vitro, focusing on expression of key molecules and signaling pathways involved in regulating protein synthesis and degradation. The synthetic glucocorticoid dexamethasone decreased myotube diameter and protein content, and heat stress prevented the morphological and biochemical glucocorticoid effects. Heat stress also attenuated increases in mRNAs of regulated in development and DNA damage responses 1 (REDD1) and Kruppel-like factor 15 (KLF15). Heat stress recovered the dexamethasone-induced inhibition of PI3K/Akt signaling. These data suggest that changes in anabolic and catabolic signals are involved in heat stress-induced protection against glucocorticoid-induced muscle atrophy. These results have a potentially broad clinical impact because elevated glucocorticoid levels are implicated in a wide range of diseases associated with muscle wasting. J. Cell. Physiol. 232: 650-664, 2017. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.

  8. Molecular mechanisms of the plant heat stress response

    SciTech Connect

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong; Zhu, Cheng

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  9. Occupational Heat Stress Profiles in Selected Workplaces in India

    PubMed Central

    Venugopal, Vidhya; Chinnadurai, Jeremiah S.; Lucas, Rebekah A. I.; Kjellstrom, Tord

    2015-01-01

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers’ perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses. PMID:26729144

  10. Occupational Heat Stress Profiles in Selected Workplaces in India.

    PubMed

    Venugopal, Vidhya; Chinnadurai, Jeremiah S; Lucas, Rebekah A I; Kjellstrom, Tord

    2015-12-29

    Health and productivity impacts from occupational heat stress have significant ramifications for the large workforce of India. This study profiled occupational heat stress impacts on the health and productivity of workers in select organized and unorganized Indian work sectors. During hotter and cooler seasons, Wet Bulb Globe Temperatures (WBGT) were used to quantify the risk of heat stress, according to International workplace guidelines. Questionnaires assessed workers' perceived health and productivity impacts from heat stress. A total of 442 workers from 18 Indian workplaces participated (22% and 78% from the organized and unorganized sector, respectively). Overall 82% and 42% of workers were exposed to higher than recommended WBGT during hotter and cooler periods, respectively. Workers with heavy workloads reported more heat-related health issues (chi square = 23.67, p ≤ 0.001) and reduced productivity (chi square = 15.82, p ≤ 0.001), especially the outdoor workers. Heat-rashes, dehydration, heat-syncope and urinogenital symptoms were self-reported health issues. Cited reasons for productivity losses were: extended-work hours due to fatigue/exhaustion, sickness/hospitalization and wages lost. Reducing workplace heat stress will benefit industries and workers via improving worker health and productivity. Adaptation and mitigation measures to tackle heat stress are imperative to protect the present and future workforce as climate change progresses.

  11. Perceived heat stress and health effects on construction workers

    PubMed Central

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Introduction: Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. Materials and Methods: This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. Results: The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. Conclusion: This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure

  12. Perceived heat stress and health effects on construction workers.

    PubMed

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure.

  13. Salicylic acid and heat acclimation pretreatment protects Laminaria japonica sporophyte (Phaeophyceae) from heat stress

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Tang, Xuexi; Wang, You

    2010-07-01

    Possible mediatory roles of heat acclimation and salicylic acid in protecting the sporophyte of marine macroalga Laminaria japonica (Phaeophyceae) from heat stress were studied. Heat stress resulted in oxidative injury in the kelp blades. Under heat stress significant accumulation of hydrogen peroxide (H2O2) and malonaldehyde (MDA), a membrane lipid peroxidation product, and a drastic decrease in chlorophyll a content were recorded. Activity of the enzymatic antioxidant system was drastically affected by heat stress. The activity of superoxide dismutase (SOD) was significantly increased while peroxidase (POD), catalase (CAT) and glutathione peroxidase (GPX) were greatly inhibited and, simultaneously, phenylalanine ammonia-lyase was activated while polyphenol oxidase (PPO) was inhibited. Both heat acclimation pretreatment and exogenous application of salicylic acid alleviated oxidative damage in kelp blades. Blades receiving heat acclimation pretreatment and exogenous salicylic acid prior to heat stress exhibited a reduced increase in H2O2 and MDA content, and a lower reduction in chlorophyll a content. Pretreatment with heat acclimation and salicylic acid elevated activities of SOD, POD, CAT, GPX and PPO. Considering these results collectively, we speculate that the inhibition of antioxidant enzymes is a possible cause of the heat-stress-induced oxidative stress in L. japonica, and enhanced thermotolerance may be associated, at least in part, with the elevated activity of the enzymatic antioxidant system.

  14. Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance.

    PubMed

    Xu, Chenping; Huang, Bingru

    2008-01-01

    Protein metabolism plays an important role in plant adaptation to heat stress. This study was designed to identify heat-responsive proteins in roots associated with thermotolerance for two C3 grass species contrasting in heat tolerance, thermal Agrostis scabra and heat-sensitive Agrostis stolonifera L. Plants were exposed to 20 degrees C (control), 30 C (moderate heat stress), or 40 degrees C (severe heat stress) in growth chambers. Roots were harvested at 2 d and 10 d after temperature treatment. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis. Seventy protein spots were regulated by heat stress in at least one species. Under both moderate and severe heat stress, more proteins were down-regulated than were up-regulated, and thermal A. scabra roots had more up-regulated proteins than A. stolonifera roots. The sequences of 66 differentially expressed protein spots were identified using mass spectrometry. The results suggested that the up-regulation of sucrose synthase, glutathione S-transferase, superoxide dismutase, and heat shock protein Sti (stress-inducible protein) may contribute to the superior root thermotolerance of A. scabra. In addition, phosphoproteomic analysis indicated that two isoforms of fructose-biphosphate aldolase were highly phosphorylated under heat stress, and thermal A. scabra had greater phosphorylation than A. stolonifera, suggesting that the aldolase phosphorylation might be involved in root thermotolerance.

  15. Comparison of heat and cold stress to assess thermoregulatory dysfunction in hypothyroid rats.

    PubMed

    Gordon, C J; Becker, P; Padnos, B

    2000-12-01

    How borderline impairment of thyroid function can affect thermoregulation is an important issue because of the antithyroidal properties of a many environmental toxicants. This study compared the efficacy of heat and cold stress to identify thermoregulatory deficits in rats subjected to borderline and overt hypothyroidism via subchronic exposure to propylthiouracil (PTU). After 3 wk of exposure to PTU in the drinking water (0, 2.5, 5, 10, and 25 mg/l), rats were subjected to a heat stress challenge (34 degrees C for 2.5 h). After one more week of PTU treatment, the same rats were subjected to a cold stress challenge (7 degrees C for 2.5 h). Core temperature (T(c)) was monitored by radiotelemetry. Baseline T(c) during the light phase was reduced by treatment with 25 mg/l PTU. The rate of rise and overall increase in T(c) during heat stress was attenuated by PTU doses of 10 and 25 mg/l. Cold stress resulted in a 1.0 degrees C increase in T(c) regardless of PTU treatment. The rate of rise in T(c) during the cold stress challenge was similar in all PTU treatment groups. There was a dose-related decrease in serum thyroxine (T(4)) at PTU doses >/=5 mg/l. Serum triiodothyronine (T(3)) was reduced at PTU doses of 5 and 25 mg/l. Serum thyroid-stimulating hormone (TSH) was marginally elevated by PTU treatment. Overall, heat stress was more effective than cold stress for detecting a thermoregulatory deficit in borderline (i.e., 10 mg/l PTU) and overtly hypothyroid rats (i.e., 25 mg/l PTU). A significant thermoregulatory deficit is manifested with a 78% decrease in serum T(4). A thermoregulatory deficit is more correlated with a reduction in serum T(4) compared with T(3). Serum levels of TSH are unrelated to thermoregulatory response to heat and cold stress.

  16. Stress attenuates the flexible updating of aversive value.

    PubMed

    Raio, Candace M; Hartley, Catherine A; Orederu, Temidayo A; Li, Jian; Phelps, Elizabeth A

    2017-10-02

    In a dynamic environment, sources of threat or safety can unexpectedly change, requiring the flexible updating of stimulus-outcome associations that promote adaptive behavior. However, aversive contexts in which we are required to update predictions of threat are often marked by stress. Acute stress is thought to reduce behavioral flexibility, yet its influence on the modulation of aversive value has not been well characterized. Given that stress exposure is a prominent risk factor for anxiety and trauma-related disorders marked by persistent, inflexible responses to threat, here we examined how acute stress affects the flexible updating of threat responses. Participants completed an aversive learning task, in which one stimulus was probabilistically associated with an electric shock, while the other stimulus signaled safety. A day later, participants underwent an acute stress or control manipulation before completing a reversal learning task during which the original stimulus-outcome contingencies switched. Skin conductance and neuroendocrine responses provided indices of sympathetic arousal and stress responses, respectively. Despite equivalent initial learning, stressed participants showed marked impairments in reversal learning relative to controls. Additionally, reversal learning deficits across participants were related to heightened levels of alpha-amylase, a marker of noradrenergic activity. Finally, fitting arousal data to a computational reinforcement learning model revealed that stress-induced reversal learning deficits emerged from stress-specific changes in the weight assigned to prediction error signals, disrupting the adaptive adjustment of learning rates. Our findings provide insight into how stress renders individuals less sensitive to changes in aversive reinforcement and have implications for understanding clinical conditions marked by stress-related psychopathology.

  17. Telmisartan attenuates cognitive impairment caused by chronic stress in rats.

    PubMed

    Wincewicz, Dominik; Braszko, Jan J

    2014-06-01

    The potential effect of chronic treatment with telmisartan, an angiotensin type 1 receptor blocker (ARB) and partial agonist of peroxisome proliferator--activated receptor γ (PPARγ), on stress-related disorders is a matter of considerable interest. The existing data suggest that angiotensin II (Ang II) plays a major role in exaggerated sympathetic and hormonal response to stress. Enhanced formation of Ang II and increased AT1 receptor activity is associated with devastating impact of stress on central nervous system, which may trigger many psychiatric disorders such as depression, schizophrenia or post-traumatic stress disorder. Some of the anti-stress effects of ARBs have already been proven but these on the stress-induced cognitive impairment were examined only for candesartan. In this study, we tested a hypothesis that blockade of stress response by another ARB telmisartan alleviates the negative effect of prolonged restraint stress on cognitive functions of male Wistar rats. The preventive action of long-lasting treatment with telmisartan (1mg/kg body weight) against impairment caused by chronic stress (2h daily for 21 days) on recall was evaluated in a passive avoidance (PA) situation and object recognition test (ORT). Locomotor activity and anxiety behavior were tested respectively, in an open field and an elevated plus-maze. The results of this study indicate that telmisartan diminishes deleterious effects of chronic restraint stress on memory in a statistically significant manner (p<0.01) in both, PA situation and ORT. It appears that telmisartan may constitute a new therapeutic option in a stress-related cognitive impairment. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  18. [Attenuation of chronic stress-induced hippocampal damages following physical exercise].

    PubMed

    Ma, Qiang; Wang, Jing; Liu, Hong-Tao; Chao, Fu-Huan

    2002-10-25

    The long-term potentiation (LTP) in the hippocampal dentate gyrus and the plasma glucocorticoids level were observed in rats to study the effects of physical exercise on chronic stress-induced hippocampal damages. Eight-week spontaneous wheel running exercise could attenuate the suppression of LTP induced by 21-day restraint stress, and maintain the normal plasma glucocorticoids levels. It is suggested that long-term physical exercise may protect the hippocampus from stress-induced damages.

  19. Heat stress and societal impacts in the 21st century

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R. M.; de Sherbinin, A. M.

    2015-12-01

    Heat is the number-one weather related killer in the US and around the world. As a result of rising temperatures and steady or slightly rising levels of specific humidity, heat stress is projected to become increasingly severe. Here we show that heat stress as measured by two common indices -- the heat index and the wet-bulb temperature -- is projected to rapidly and dramatically increase, and that by mid-century crippling summertime conditions are possible across some of the most densely populated regions of the planet. Many of these regions are places where cooling infrastructure is scarce, adaptive capacity is low, and populations are rapidly rising. We find that by the end of the 21st century, the habitability of some regions of the planet may be questionable due to heat stress alone, and in many other regions severe impacts to human health, infrastructure, agriculture, and economic performance will create significant societal stress and necessitate rapid adaptation.

  20. Climate change and occupational heat stress: methods for assessment

    PubMed Central

    Holmér, Ingvar

    2010-01-01

    Background Presumed effects of global warming on occupational heat stress aggravate conditions in many parts of the world, in particular in developing countries. In order to assess and evaluate conditions, heat stress must be described and measured correctly. Objective Assessment of heat stress using internationally recognized methods. Design Two such methods are wet bulb globe temperature (WBGT; ISO 7243) and predicted heat strain (PHS; ISO 7933). Both methods measure relevant climatic factors and provide recommendations for limit values in terms of time when heat stress becomes imminent. The WBGT as a heat stress index is empirical and widely recognized. It requires, however, special sensors for the climatic factors that can introduce significant measurement errors if prescriptions in ISO 7243 are not followed. The PHS (ISO 7933) is based on climatic factors that can easily be measured with traditional instruments. It evaluates the conditions for heat balance in a more rational way and it applies equally to all combinations of climates. Results Analyzing similar climatic conditions with WBGT and PHS indicates that WBGT provides a more conservative assessment philosophy that allows much shorter working time than predicted with PHS. Conclusions PHS prediction of physiological strain appears to fit better with published data from warm countries. Both methods should be used and validated more extensively worldwide in order to give reliable and accurate information about the actual heat stress. PMID:21139697

  1. Heat stress intervention research in construction: gaps and recommendations.

    PubMed

    Yang, Yang; Chan, Albert Ping-Chuen

    2017-06-08

    Developing heat stress interventions for construction workers has received mounting concerns in recent years. However, limited efforts have been exerted to elaborate the rationale, methodology, and practicality of heat stress intervention in the construction industry. This study aims to review previous heat stress intervention research in construction, to identify the major research gaps in methodological issues, and to offer detailed recommendations for future studies. A total of 35 peer-reviewed journal papers have been identified to develop administrative, environmental or personal engineering interventions to safeguard construction workers. It was found that methodological limitations, such as arbitrary sampling methods and unreliable instruments, could be the major obstacle in undertaking heat stress intervention research. To bridge the identified research gaps, this study then refined a research framework for conducting heat stress intervention studies in the construction industry. The proposed research strategy provides researchers and practitioners with fresh insights into expanding multidisciplinary research areas and solving practical problems in the management of heat stress. The proposed research framework may foster the development of heat stress intervention research in construction, which further aids researchers, practitioners, and policymakers in formulating proper intervention strategies.

  2. Heat stress intervention research in construction: gaps and recommendations

    PubMed Central

    YANG, Yang; CHAN, Albert Ping-chuen

    2017-01-01

    Developing heat stress interventions for construction workers has received mounting concerns in recent years. However, limited efforts have been exerted to elaborate the rationale, methodology, and practicality of heat stress intervention in the construction industry. This study aims to review previous heat stress intervention research in construction, to identify the major research gaps in methodological issues, and to offer detailed recommendations for future studies. A total of 35 peer-reviewed journal papers have been identified to develop administrative, environmental or personal engineering interventions to safeguard construction workers. It was found that methodological limitations, such as arbitrary sampling methods and unreliable instruments, could be the major obstacle in undertaking heat stress intervention research. To bridge the identified research gaps, this study then refined a research framework for conducting heat stress intervention studies in the construction industry. The proposed research strategy provides researchers and practitioners with fresh insights into expanding multidisciplinary research areas and solving practical problems in the management of heat stress. The proposed research framework may foster the development of heat stress intervention research in construction, which further aids researchers, practitioners, and policymakers in formulating proper intervention strategies. PMID:28111405

  3. Seismic velocities and attenuation in an underground granitic waste repository subjected to heating

    SciTech Connect

    Paulsson, B.N.P.; King, M.S.

    1984-03-01

    The behavior of a granitic rock mass subjected to thermal load has been studied by an acoustic cross-hole technique between four boreholes, over a period of some two years. Velocities between boreholes were obtained from the times-of-flight of pulses of acoustic waves between transducers clamped to the borehole wall. The attenuation was obtained by a spectral ratios technique. When the heater was turned on, the velocities increased rapidly to an asymptotic value. When the heater was turned off, the velocities decreased rapidly to their original values or below. Velocities along a particular profile were found to increase linearly with the mean temperature in the profile tested. The attenuation showed little correlation with changes in temperature or the associated thermal stresses, but there was a good correlation of attenuation with water content and the related changes in pore pressure. 18 references, 7 figures.

  4. Seed set, pollen morphology and pollen surface composition response to heat stress in field pea.

    PubMed

    Jiang, Yunfei; Lahlali, Rachid; Karunakaran, Chithra; Kumar, Saroj; Davis, Arthur R; Bueckert, Rosalind A

    2015-11-01

    Pea (Pisum sativum L.) is a major legume crop grown in a semi-arid climate in Western Canada, where heat stress affects pollination, seed set and yield. Seed set and pod growth characteristics, along with in vitro percentage pollen germination, pollen tube growth and pollen surface composition, were measured in two pea cultivars (CDC Golden and CDC Sage) subjected to five maximum temperature regimes ranging from 24 to 36 °C. Heat stress reduced percentage pollen germination, pollen tube length, pod length, seed number per pod, and the seed-ovule ratio. Percentage pollen germination of CDC Sage was greater than CDC Golden at 36 °C. No visible morphological differences in pollen grains or the pollen surface were observed between the heat and control-treated pea. However, pollen wall (intine) thickness increased due to heat stress. Mid-infrared attenuated total reflectance (MIR-ATR) spectra revealed that the chemical composition (lipid, proteins and carbohydrates) of each cultivar's pollen grains responded differently to heat stress. The lipid region of the pollen coat and exine of CDC Sage was more stable compared with CDC Golden at 36 °C. Secondary derivatives of ATR spectra indicated the presence of two lipid types, with different amounts present in pollen grains from each cultivar. © 2015 John Wiley & Sons Ltd.

  5. Rubisco activase and wheat productivity under heat-stress conditions.

    PubMed

    Ristic, Zoran; Momcilovic, Ivana; Bukovnik, Urska; Prasad, P V Vara; Fu, Jianming; Deridder, Benjamin P; Elthon, Thomas E; Mladenov, Novica

    2009-01-01

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperatures (heat stress). Endogenous levels of RCA could serve as an important determinant of plant productivity under heat-stress conditions. Thus, in this study, the possible relationship between expression levels of RCA and plant yield in 11 European cultivars of winter wheat following prolonged exposure to heat stress was investigated. In addition, the effect of a short-term heat stress on RCA expression in four genotypes of wheat, five genotypes of maize, and one genotype of Arabidopsis thaliana was examined. Immunoblots prepared from leaf protein extracts from control plants showed three RCA cross-reacting bands in wheat and two RCA cross-reacting bands in maize and Arabidopsis. The molecular mass of the observed bands was in the range between 40 kDa and 46 kDa. Heat stress affected RCA expression in a few genotypes of wheat and maize but not in Arabidopsis. In wheat, heat stress slightly modulated the relative amounts of RCA in some cultivars. In maize, heat stress did not seem to affect the existing RCA isoforms (40 kDa and 43 kDa) but induced the accumulation of a new putative RCA of 45-46 kDa. The new putative 45-46 kDa RCA was not seen in a genotype of maize (ZPL 389) that has been shown to display an exceptional sensitivity to heat stress. A significant, positive, linear correlation was found between the expression of wheat 45-46 kDa RCA and plant productivity under heat-stress conditions. Results support the hypothesis that endogenous levels of RCA could play an important role in plant productivity under supraoptimal temperature conditions.

  6. Heat stress and protection from permanent acoustic injury in mice.

    PubMed

    Yoshida, N; Kristiansen, A; Liberman, M C

    1999-11-15

    The inner ear can be permanently damaged by overexposure to high-level noise; however, damage can be decreased by previous exposure to moderate level, nontraumatic noise (). The mechanism of this "protective" effect is unclear, but a role for heat shock proteins has been suggested. The aim of the present study was to directly test protective effects of heat stress in the ear. For physiological experiments, CBA/CaJ mice were exposed to an intense octave band of noise (8-16 kHz) at 100 dB SPL for 2 hr, either with or without previous whole-body heat stress (rectal temperature to 41. 5 degrees C for 15 min). The interval between heat stress and sound exposure varied in different groups from 6 to 96 hr. One week later, inner ear function was assessed in each animal via comparison of compound action potential thresholds to mean values from unexposed controls. Permanent threshold shifts (PTSs) were approximately 40 dB in the group sound-exposed without previous heat stress. Heat-stressed animals were protected from acoustic injury: mean PTS in the group with 6 hr heat-stress-trauma interval was reduced to approximately 10 dB. This heat stress protection disappeared when the treatment-trauma interval surpassed 24 hr. A parallel set of quantitative PCR experiments measured heat-shock protein mRNA in the cochlea and showed 100- to 200-fold increase over control 30 min after heat treatment, with levels returning to baseline at 6 hr after treatment. Results are consistent with the idea that upregulation of heat shock proteins protects the ear from acoustic injury.

  7. Effect of indomethacin on hyperthermia induced by heat stress in broiler chickens

    NASA Astrophysics Data System (ADS)

    Furlan, R. L.; Macari, M.; Malheiros, E. B.; Secato, E. R.; Guerreiro, J. R.

    An investigation was carried out to verify whether the heat stress hyperthermia response of broilers is prostaglandin-dependent. Male broiler chickens of the Hubbard-Petterson strain, aged 35-49 days, were used. Chickens were injected with indomethacin (1 mg/kg intraperitoneally ) 15 min before or 2 h after heat exposure (at 35°C for 4 h), and rectal temperature was measured before injection and up to 4 h thereafter. Birds were separated into two groups with and without access to water during heat stress. The increase in rectal temperature was lower (P<0.05) in birds with access to drinking water during heat exposure. All birds injected with indomethacin exhibited an increase in rectal temperature, irrespective of whether indomethacin was administered before or in the course of the rise in temperature. The results revealed that the increase in rectal temperature during heat exposure is not prostaglandin-dependent, and that the use of cyclooxigenase inhibitors is not recommended to attenuate heat stress hyperthermia in broiler chickens.

  8. Heat Stress Modulates Both Anabolic and Catabolic Signaling Pathways Preventing Dexamethasone‐Induced Muscle Atrophy In Vitro

    PubMed Central

    Tsuchida, Wakako; Iwata, Masahiro; Akimoto, Takayuki; Matsuo, Shingo; Asai, Yuji

    2016-01-01

    It is generally recognized that synthetic glucocorticoids induce skeletal muscle weakness, and endogenous glucocorticoid levels increase in patients with muscle atrophy. It is reported that heat stress attenuates glucocorticoid‐induced muscle atrophy; however, the mechanisms involved are unknown. Therefore, we examined the mechanisms underlying the effects of heat stress against glucocorticoid‐induced muscle atrophy using C2C12 myotubes in vitro, focusing on expression of key molecules and signaling pathways involved in regulating protein synthesis and degradation. The synthetic glucocorticoid dexamethasone decreased myotube diameter and protein content, and heat stress prevented the morphological and biochemical glucocorticoid effects. Heat stress also attenuated increases in mRNAs of regulated in development and DNA damage responses 1 (REDD1) and Kruppel‐like factor 15 (KLF15). Heat stress recovered the dexamethasone‐induced inhibition of PI3K/Akt signaling. These data suggest that changes in anabolic and catabolic signals are involved in heat stress‐induced protection against glucocorticoid‐induced muscle atrophy. These results have a potentially broad clinical impact because elevated glucocorticoid levels are implicated in a wide range of diseases associated with muscle wasting. J. Cell. Physiol. 232: 650–664, 2017. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc. PMID:27649272

  9. Nitric oxide during ischemia attenuates oxidant stress and cell death during ischemia and reperfusion in cardiomyocytes.

    PubMed

    Iwase, Hirotaro; Robin, Emmanuel; Guzy, Robert D; Mungai, Paul T; Vanden Hoek, Terry L; Chandel, Navdeep S; Levraut, Jacques; Schumacker, Paul T

    2007-08-15

    Nitric oxide (NO) has been implicated as a cardioprotective agent during ischemia/reperfusion (I/R), but the mechanism of protection is unknown. Oxidant stress contributes to cell death in I/R, so we tested whether NO protects by attenuating oxidant stress. Cardiomyocytes and murine embryonic fibroblasts were administered NO (10-1200 nM) during simulated ischemia, and cell death was assessed during reperfusion without NO. In each case, NO abrogated cell death during reperfusion. Cells overexpressing endothelial NO synthase (NOS) exhibited a similar protection, which was abolished by the NOS inhibitor N(omega)-nitro-l-arginine methyl ester. Protection was not mediated by guanylate cyclase or the mitochondrial K(ATP) channel, as inhibitors of these systems failed to abolish protection. NO did not prevent decreases in mitochondrial potential, but cells protected with NO demonstrated recovery of potential at reperfusion. Measurements using C11-BODIPY reveal that NO attenuates lipid peroxidation during ischemia and reperfusion. Measurements of oxidant stress using the ratiometric redox sensor HSP-FRET demonstrate that NO attenuates protein oxidation during ischemia. These findings reveal that physiological levels of NO during ischemia can attenuate oxidant stress both during ischemia and during reperfusion. This response is associated with a remarkable attenuation of cell death, suggesting that ischemic cell death may be a regulated event.

  10. Glutamine induces heat-shock protein-70 and glutathione expression and attenuates ischemic damage in rat islets.

    PubMed

    Jang, H J; Kwak, J H; Cho, E Y; We, Y M; Lee, Y H; Kim, S C; Han, D J

    2008-10-01

    The transplantation of isolated islets is believed to be an attractive approach for cure of diabetes mellitus. Heat-shock protein (HSP70), which plays a vital role in cellular protection, has been detected in various tissues subjected to stress. Glutamine (GLN) is an important cellular fuel and an essential precursor for the antioxidant glutathione (GSH). It is believed to enhance cellular survival against a variety of stressful stimuli through HSP70. Thus, we performed this study to examine the hypothesis that preoperative GLN administration induces HSP70 and GSH expression before islet transplantation attenuating ischemic damage to rat islets. Adult male Sprague-Dawley (SD) rats were randomly divided into two groups according to the administration of GLN after islet isolation. Group A served as the controls, receiving no GLN. Group B islet cells were cultured with L-GLN (10 mmol/L) supplementation for 24 hours. The GSH levels were measured in islet cells. Both HSP70 and proteins related to apoptosis were analyzed in islet cells by Western blots. Isolated rat islets were cultured with interleukin (IL)-1beta. Nitrite production was measured using the Griess reagent. The GSH levels were significantly elevated in the glutamine-treated group. HSP70 expression in islets treated with GLN was markedly stronger compared with the control group. The basal Bcl-2 expression was markedly increased by GLN treatment. The GLN-treated group showed attenuated IL-1beta-induced injury in association with NO production. These results suggested that preoperative GLN administration induced HSP70 and GSH expressions before islet transplantation, thus attenuating IL-1beta-induced injury in association with NO production and apoptosis, which might be potential tool to mitigate the ischemic damage to islet cells and the early inflammation at the site of implantation through a self-protective mechanism.

  11. Heat shock protein response in phosphorus-deficient heat-stressed broiler chickens.

    PubMed

    Edens, F W; Hill, C H; Wang, S

    1992-12-01

    1. During acute in vivo heat stress, a normal heat shock protein (HSP) response was not inducible in chickens deficient in inorganic phosphorus (P(i)-deficient). 2. Small quantities of HSP 70 and HSP 90 were induced, but little or no HSP 23 was induced in P(i)-deficient chickens compared to P(i)-adequate chickens. 3. Increased susceptibility of P(i)-deficient chickens to acute heat stress was attributed to their inability to produce an adequate HSP response.

  12. Apparent latent heat of evaporation from clothing: attenuation and "heat pipe" effects.

    PubMed

    Havenith, George; Richards, Mark G; Wang, Xiaoxin; Bröde, Peter; Candas, Victor; den Hartog, Emiel; Holmér, Ingvar; Kuklane, Kalev; Meinander, Harriet; Nocker, Wolfgang

    2008-01-01

    Investigating claims that a clothed person's mass loss does not always represent their evaporative heat loss (EVAP), a thermal manikin study was performed measuring heat balance components in more detail than human studies would permit. Using clothing with different levels of vapor permeability and measuring heat losses from skin controlled at 34 degrees C in ambient temperatures of 10, 20, and 34 degrees C with constant vapor pressure (1 kPa), additional heat losses from wet skin compared with dry skin were analyzed. EVAP based on mass loss (E(mass)) measurement and direct measurement of the extra heat loss by the manikin due to wet skin (E(app)) were compared. A clear discrepancy was observed. E(mass) overestimated E(app) in warm environments, and both under and overestimations were observed in cool environments, depending on the clothing vapor permeability. At 34 degrees C, apparent latent heat (lambda(app)) of pure evaporative cooling was lower than the physical value (lambda; 2,430 J/g) and reduced with increasing vapor resistance up to 45%. At lower temperatures, lambda(app) increases due to additional skin heat loss via evaporation of moisture that condenses inside the clothing, analogous to a heat pipe. For impermeable clothing, lambda(app) even exceeds lambda by four times that value at 10 degrees C. These findings demonstrate that the traditional way of calculating evaporative heat loss of a clothed person can lead to substantial errors, especially for clothing with low permeability, which can be positive or negative, depending on the climate and clothing type. The model presented explains human subject data on EVAP that previously seemed contradictive.

  13. Biophysical aspects of human thermoregulation during heat stress.

    PubMed

    Cramer, Matthew N; Jay, Ollie

    2016-04-01

    Humans maintain a relatively constant core temperature through the dynamic balance between endogenous heat production and heat dissipation to the surrounding environment. In response to metabolic or environmental disturbances to heat balance, the autonomic nervous system initiates cutaneous vasodilation and eccrine sweating to facilitate higher rates of dry (primarily convection and radiation) and evaporative transfer from the body surface; however, absolute heat losses are ultimately governed by the properties of the skin and the environment. Over the duration of a heat exposure, the cumulative imbalance between heat production and heat dissipation leads to body heat storage, but the consequent change in core temperature, which has implications for health and safety in occupational and athletic settings particularly among certain clinical populations, involves a complex interaction between changes in body heat content and the body's morphological characteristics (mass, surface area, and tissue composition) that collectively determine the body's thermal inertia. The aim of this review is to highlight the biophysical aspects of human core temperature regulation by outlining the principles of human energy exchange and examining the influence of body morphology during exercise and environmental heat stress. An understanding of the biophysical factors influencing core temperature will enable researchers and practitioners to better identify and treat individuals/populations most vulnerable to heat illness and injury during exercise and extreme heat events. Further, appropriate guidelines may be developed to optimize health, safety, and work performance during heat stress.

  14. Stress Potentiates Early and Attenuates Late Stages of Visual Processing

    DTIC Science & Technology

    2011-01-19

    A.J.S.). We thank K. Berling, S. Blume, D. Cole, I. Dolski, L. Friedman, J. Koger, J. Nichols, and A. Teche for assistance; and A. Fox, A. Heller , J...monkey. J Neurosci 9:81–93. Qin S, Hermans EJ, van Marle HJ, Luo J, Fernández G (2009) Acute psycho- logical stress reduces working memory-related...Neurosci 11:843– 850. van Marle HJ, Hermans EJ, Qin S, Fernández G (2009) From specificity to sensitivity: how acute stress affects amygdala processing of

  15. Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury.

    PubMed

    Teng, Ru-Jeng; Jing, Xigang; Michalkiewicz, Teresa; Afolayan, Adeleye J; Wu, Tzong-Jin; Konduri, Girija G

    2017-05-01

    Rodent pups exposed to hyperoxia develop lung changes similar to bronchopulmonary dysplasia (BPD) in extremely premature infants. Oxidative stress from hyperoxia can injure developing lungs through endoplasmic reticulum (ER) stress. Early caffeine treatment decreases the rate of BPD, but the mechanisms remain unclear. We hypothesized that caffeine attenuates hyperoxia-induced lung injury through its chemical chaperone property. Sprague-Dawley rat pups were raised either in 90 (hyperoxia) or 21% (normoxia) oxygen from postnatal day 1 (P1) to postnatal day 10 (P10) and then recovered in 21% oxygen until P21. Caffeine (20 mg/kg) or normal saline (control) was administered intraperitoneally daily starting from P2. Lungs were inflation-fixed for histology or snap-frozen for immunoblots. Blood caffeine levels were measured in treated pups at euthanasia and were found to be 18.4 ± 4.9 μg/ml. Hyperoxia impaired alveolar formation and increased ER stress markers and downstream effectors; caffeine treatment attenuated these changes at P10. Caffeine also attenuated the hyperoxia-induced activation of cyclooxygenase-2 and markers of apoptosis. In conclusion, hyperoxia-induced alveolar growth impairment is mediated, in part, by ER stress. Early caffeine treatment protects developing lungs from hyperoxia-induced injury by attenuating ER stress. Copyright © 2017 the American Physiological Society.

  16. Change in spontaneous baroreflex control of pulse interval during heat stress in humans.

    PubMed

    Lee, Kichang; Jackson, Dwayne N; Cordero, Douglas L; Nishiyasu, Takeshi; Peters, Jochen K; Mack, Gary W

    2003-11-01

    Spontaneous baroreflex control of pulse interval (PI) was assessed in healthy volunteers under thermoneutral and heat stress conditions. Subjects rested in the supine position with their lower legs in a water bath at 34 degrees C. Heat stress was imposed by increasing the bath temperature to 44 degrees C. Arterial blood pressure (Finapres), PI (ECG), esophageal and skin temperature, and stroke volume were continuously collected during each 5-min experimental stage. Spontaneous baroreflex function was evaluated by multiple techniques, including 1) the mean slope of the linear relationship between PI and systolic blood pressure (SBP) with three or more simultaneous increasing or decreasing sequences, 2) the linear relationship between changes in PI and SBP (deltaPI/DeltaSBP) derived by using the first differential equation, 3) the linear relationship between changes in PI and SBP with simultaneously increasing or decreasing sequences (+deltaPI/+deltaSBP or -deltaPI/-deltaSBP), and 4) transfer function analysis. Heat stress increased esophageal temperature by 0.6 +/- 0.1 degrees C, decreased PI from 1,007 +/- 43 to 776 +/- 37 ms and stroke volume by 16 +/- 5 ml/beat. Heat stress reduced baroreflex sensitivity but increased the incidence of baroreflex slopes from 5.2 +/- 0.8 to 8.6 +/- 0.9 sequences per 100 heartbeats. Baroreflex sensitivity was significantly correlated with PI or vagal power (r2 = 0.45, r2 = 0.71, respectively; P < 0.05). However, the attenuation in baroreflex sensitivity during heat stress appeared related to a shift in autonomic balance (shift in resting PI) rather than heat stress per se.

  17. Attenuation thermal energy storage in sensible-heat solar-dynamic receivers

    SciTech Connect

    O`ferrall Lund, K.

    1994-12-31

    Solar dynamic receiver designs are investigated and evaluated for possible use with sensible energy storage in single-phase materials. The designs are similar to previous receivers having axial distribution of concentrated solar input influx, but differ in utilizing axial conduction in the storage material for attenuation of the solar flux `signal`, and in having convective heat removal at the base of the receiver. One-dimensional, time-dependent heat transfer equations are formulated for the storage material temperature field, including radiative losses to the environment, and a general heat exchange effectiveness boundary condition at the base. The orbital periodic input solar flux is represented as the sum of steady and oscillating components, with the steady component solved numerically subject to specified receiver thermal efficiency. For the oscillating components the Fast Fourier Transform algorithm (FFT) is applied, and the complex transfer function of the receiver is obtained in the amplitudes and mode shapes of the oscillating temperatures. By adjustment of design parameters, the amplitude of the oscillating component of the outlet gas temperature is limited to an acceptable magnitude. The overall results of the investigation is the dependence of the receiver M-c product (mass times specific heat) on the conduction transfer units, which leads to lower weight designs than comparable previous single- and two-phase designs, when all constraints are included. As these attenuation designs also offer improvements in cost reduction and reliability they warrant further detailed investigation.

  18. Oxytocin administration attenuates stress reactivity in borderline personality disorder: a pilot study.

    PubMed

    Simeon, D; Bartz, J; Hamilton, H; Crystal, S; Braun, A; Ketay, S; Hollander, E

    2011-10-01

    Oxytocin has known stress-reducing and attachment-enhancing effects. We thus hypothesized that oxytocin would attenuate emotional and hormonal responses to stress in borderline personality disorder (BPD). Fourteen BPD and 13 healthy control (HC) adults received 40 IU intranasal oxytocin or placebo in double-blind randomized order followed by the Trier Social Stress Test. Subjective dysphoria (Profile of Mood Changes) and plasma cortisol levels were measured. Childhood trauma history, attachment style, and self-esteem were also rated. A significant "Group × Drug × Time" interaction effect for dysphoria (p=.04) reflected a proportionately greater attenuation of stress-induced dysphoria in the BPD group after oxytocin administration. Additionally, a marginally significant "Group × Drug" interaction effect for cortisol (p=.10) reflected a tendency toward greater attenuation of the stress-induced cortisol surge in the BPD group after oxytocin administration. In the combined sample, the oxytocin-placebo difference in the emotional stress reactivity was significantly predicted by childhood trauma alone (p=.037) and combined with self-esteem (p=.030), whereas the oxytocin-placebo difference in cortisol stress reactivity was predicted only by insecure attachment (p=.013). Results suggest that oxytocin may have a beneficial impact on emotional regulation in BPD, which merits further investigation and could have important treatment implications.

  19. Telemetric heat stress monitor (THSM) spin-offs

    SciTech Connect

    Berkbigler, L.; Bradley, O.; Lopez, R.; Martinez, D.; Stampfer, J.

    1996-07-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to investigate spin-offs of the telemetric heat stress monitoring system (THSM) developed at LANL. Hazardous-materials workers and firefighters wear clothing that protects them from external hazards, but the sealed environment of a protective suit makes its wearer susceptible to heat stress. Heat stress occurs when the body`s natural cooling mechanisms fail: it can cause collapse and death. The THSM warns both workers and remote monitoring personnel of incipient heat stress by monitoring and responding to elevations of workers` skin temperatures and heart rates. The technology won a 1994 R & D 100 award.

  20. Proteomics Analysis of Alfalfa Response to Heat Stress

    PubMed Central

    Li, Weimin; Wei, Zhenwu; Qiao, Zhihong; Wu, Zinian; Cheng, Lixiang; Wang, Yuyang

    2013-01-01

    The proteome responses to heat stress have not been well understood. In this study, alfalfa (Medicago sativa L. cv. Huaiyin) seedlings were exposed to 25°C (control) and 40°C (heat stress) in growth chambers, and leaves were collected at 24, 48 and 72 h after treatment, respectively. The morphological, physiological and proteomic processes were negatively affected under heat stress. Proteins were extracted and separated by two-dimensional polyacrylamide gel electrophoresis (2-DE), and differentially expressed protein spots were identified by mass spectrometry (MS). Totally, 81 differentially expressed proteins were identified successfully by MALDI-TOF/TOF. These proteins were categorized into nine classes: including metabolism, energy, protein synthesis, protein destination/storage, transporters, intracellular traffic, cell structure, signal transduction and disease/defence. Five proteins were further analyzed for mRNA levels. The results of the proteomics analyses provide a better understanding of the molecular basis of heat-stress responses in alfalfa. PMID:24324825

  1. Daily heat stress treatment rescues denervation-activated mitochondrial clearance and atrophy in skeletal muscle

    PubMed Central

    Tamura, Yuki; Kitaoka, Yu; Matsunaga, Yutaka; Hoshino, Daisuke; Hatta, Hideo

    2015-01-01

    Traumatic nerve injury or motor neuron disease leads to denervation and severe muscle atrophy. Recent evidence indicates that loss of mitochondria and the related reduction in oxidative capacity could be key mediators of skeletal muscle atrophy. As our previous study showed that heat stress increased the numbers of mitochondria in skeletal muscle, we evaluated whether heat stress treatment could have a beneficial impact on denervation-induced loss of mitochondria and subsequent muscle atrophy. Here, we report that daily heat stress treatment (mice placed in a chamber with a hot environment; 40°C, 30 min day−1, for 7 days) rescues the following parameters: (i) muscle atrophy (decreased gastrocnemius muscle mass); (ii) loss of mitochondrial content (decreased levels of ubiquinol–cytochrome c reductase core protein II, cytochrome c oxidase subunits I and IV and voltage-dependent anion channel protein); and (iii) reduction in oxidative capacity (reduced maximal activities of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase) in denervated muscle (produced by unilateral sciatic nerve transection). In order to gain a better understanding of the above mitochondrial adaptations, we also examined the effects of heat stress on autophagy-dependent mitochondrial clearance (mitophagy). Daily heat stress normalized denervation-activated induction of mitophagy (increased mitochondrial microtubule-associated protein 1A/1B-light chain3-II (LC3-II) with and without blocker of autophagosome clearance). The molecular basis of this observation was explained by the results that heat stress attenuated the denervation-induced increase in key proteins that regulate the following steps: (i) the tagging step of mitochondrial clearance (increased mitochondrial Parkin, ubiquitin-conjugated, P62/sequestosome 1 (P62/SQSTM1)); and (ii) the elongation step of autophagosome formation (increased Atg5–Atg12 conjugate and Atg16L). Overall, our results contribute to the better

  2. Naltrexone attenuates endoplasmic reticulum stress induced hepatic injury in mice.

    PubMed

    Moslehi, A; Nabavizadeh, F; Nabavizadeh, Fatemeh; Dehpour, A R; Dehpou, A R; Tavanga, S M; Hassanzadeh, G; Zekri, A; Nahrevanian, H; Sohanaki, H

    2014-09-01

    Endoplasmic reticulum (ER) stress provides abnormalities in insulin action, inflammatory responses, lipoprotein B100 degradation and hepatic lipogenesis. Excess accumulation of triglyceride in hepatocytes may also lead to disorders such as non-alcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Opioid peptides are involved in triglyceride and cholesterol dysregulation, inflammation and cell death. In this study, we evaluated Naltrexone effects on ER stress induced liver injury. To do so, C57/BL6 mice received saline, DMSO and Naltrexone, as control groups. ER stress was induced by tunicamycin (TM) injection. Naltrexone was given before TM administration. Liver blood flow and biochemical serum analysis were measured. Histopathological evaluations, TNF-α measurement and Real-time RT-PCR were also performed. TM challenge provokes steatosis, cellular ballooning and lobular inflammation which significantly reduced in Naltrexone treated animals. ALT, AST and TNF-α increased in the TM group and improved in the Naltrexone plus TM group. Triglyceride and cholesterol levels decreased in TM treated mice with no increase in Naltrexone treated animals. In the Naltrexone plus TM group, gene expression of Bax/Bcl-2 ratio and caspase3 significantly lowered compared with the TM group. In this study, we found that Naltrexone had a notable alleviating role in ER stress induced steatosis and liver injury.

  3. The effects of heat stress on morphological properties and intracellular signaling of denervated and intact soleus muscles in rats.

    PubMed

    Ohira, Takashi; Higashibata, Akira; Seki, Masaya; Kurata, Yoichi; Kimura, Yayoi; Hirano, Hisashi; Kusakari, Yoichiro; Minamisawa, Susumu; Kudo, Takashi; Takahashi, Satoru; Ohira, Yoshinobu; Furukawa, Satoshi

    2017-08-01

    The effects of heat stress on the morphological properties and intracellular signaling of innervated and denervated soleus muscles were investigated. Heat stress was applied to rats by immersing their hindlimbs in a warm water bath (42°C, 30 min/day, every other day following unilateral denervation) under anesthesia. During 14 days of experimental period, heat stress for a total of seven times promoted growth-related hypertrophy in sham-operated muscles and attenuated atrophy in denervated muscles. In denervated muscles, the transcription of ubiquitin ligase, atrogin-1/muscle atrophy F-box (Atrogin-1), and muscle RING-finger protein-1 (MuRF-1), genes was upregulated and ubiquitination of proteins was also increased. Intermittent heat stress inhibited the upregulation of Atrogin-1, but not MuRF-1 transcription. And the denervation-caused reduction in phosphorylated protein kinase B (Akt), 70-kDa heat-shock protein (HSP70), and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which are negative regulators of Atrogin-1 and MuRF-1 transcription, was mitigated. In sham-operated muscles, repeated application of heat stress did not affect Atrogin-1 and MuRF-1 transcription, but increased the level of phosphorylated Akt and HSP70, but not PGC-1α Furthermore, the phosphorylation of Akt and ribosomal protein S6, which is known to stimulate protein synthesis, was increased immediately after a single heat stress particularly in the sham-operated muscles. The effect of a heat stress was suppressed in denervated muscles. These results indicated that the beneficial effects of heat stress on the morphological properties of muscles were brought regardless of innervation. However, the responses of intracellular signaling to heat stress were distinct between the innervated and denervated muscles. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. Invited review: Effects of heat stress on dairy cattle welfare.

    PubMed

    Polsky, Liam; von Keyserlingk, Marina A G

    2017-09-13

    The effects of high ambient temperatures on production animals, once thought to be limited to tropical areas, has extended into northern latitudes in response to the increasing global temperature. The number of days where the temperature-humidity index (THI) exceeds the comfort threshold (>72) is increasing in the northern United States, Canada, and Europe. Compounded by the increasing number of dairy animals and the intensification of production, heat stress has become one of the most important challenges facing the dairy industry today. The objectives of this review were to present an overview of the effects of heat stress on dairy cattle welfare and highlight important research gaps in the literature. We will also briefly discuss current heat abatement strategies, as well as the sustainability of future heat stress management. Heat stress has negative effects on the health and biological functioning of dairy cows through depressed milk production and reduced reproductive performance. Heat stress can also compromise the affective state of dairy cows by inducing feelings of hunger and thirst, and we have highlighted the need for research efforts to examine the potential relationship between heat stress, frustration, aggression, and pain. Little work has examined how heat stress affects an animal's natural coping behaviors, as well as how the animal's evolutionary adaptations for thermoregulation are managed in modern dairy systems. More research is needed to identify improved comprehensive cow-side measurements that can indicate real-time responses to elevated ambient temperatures and that could be incorporated into heat abatement management decisions. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  5. Heat stress and sudden infant death syndrome--stress gene expression after exposure to moderate heat stress.

    PubMed

    Rohde, Marianne Cathrine; Corydon, Thomas Juhl; Hansen, Jakob; Pedersen, Christina Bak; Schmidt, Stinne P; Gregersen, Niels; Banner, Jytte

    2013-10-10

    The aim of the present study was to investigate stress gene expression in cultured primary fibroblasts established from Achilles tendons collected during autopsies from sudden infant death syndrome (SIDS) cases, and age-matched controls (infants dying in a traumatic event). Expression of 4 stress responsive genes, HSPA1B, HSPD1, HMOX1, and SOD2, was studied by quantitative reverse transcriptase PCR analysis of RNA purified from cells cultured under standard or various thermal stress conditions. The expression of all 4 genes was highly influenced by thermal stress in both SIDS and control cells. High interpersonal variance found in the SIDS group indicated that they represented a more heterogeneous group than controls. The SIDS group responded to thermal stress with a higher expression of the HSPA1B and HSPD1 genes compared to the control group, whereas no significant difference was observed in the expression of SOD2 and HMOX1 between the two groups. The differences were related to the heat shock treatment as none of the genes were expressed significantly different in SIDS at base levels at 37 °C. SOD2 and HMOX1 were up regulated in both groups, for SOD2 though the expression was lower in SIDS at all time points measured, and may be less related to heat stress. Being found dead in the prone position (a known risk factor for SIDS) was related to a lower HSPA1B up-regulation in SIDS compared to SIDS found on their side or back. The study demonstrates the potential usefulness of gene expression studies using cultured fibroblasts established from deceased individuals as a tool for molecular and pathological investigations in forensic and biomedical sciences. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Camelid heat stress: 15 cases (2003–2011)

    PubMed Central

    Norton, Piper L.; Gold, Jenifer R.; Russell, Karen E.; Schulz, Kara L.; Porter, Brian F.

    2014-01-01

    This case series describes novel findings associated with heat stress in 15 cases in South American camelids that had no pre-existing illnesses and which had clinical signs of illness after exposure to a warm environment. Novel findings include decreased packed cell volume and albumin concentration and mild spinal axonal degeneration. Heat stress should be considered in weak camelids with a history of hyperthermia. PMID:25320390

  7. Effect of exercise, heat stress and dehydration on myocardial performance.

    PubMed

    Fehling, P C; Haller, J M; Lefferts, W K; Hultquist, E M; Wharton, M; Rowland, T W; Smith, D L

    2015-06-01

    Myocardial dysfunction is a well-documented outcome of extended periods of high cardiac output. Whether similar effects occur during firefighting, an occupation characterized by repeated periods of work compounded by dehydration and heat stress, is uncertain. To investigate the independent and combined effects of moderate heat stress and dehydration on indicators of myocardial performance following intermittent, submaximal treadmill exercise while wearing personal protective equipment (PPE). Twelve aerobically fit young men (age 21.5±2.6 years; maximal oxygen uptake [VO2max] 60.3±4.4ml kg(-1) min(-1)) performed intermittent treadmill walking exercise consisting of three 20min bouts at an intensity of ~40% VO2max separated by two periods of rest in four different conditions in random order: (i) no heat stress-euhydrated, (ii) heat stress-euhydrated (heat stress created by wearing PPE, (iii) no heat stress-dehydrated and (iv) heat stress-dehydrated. We measured core temperature by a telemetric gastrointestinal pill. We determined cardiac variables by standard echocardiographic techniques immediately before and ~30min after exercise. We recorded no significant changes in markers of systolic (ejection fraction, shortening fraction, tissue Doppler-S) or diastolic (mitral peak E velocity, tissue Doppler-E' and E/E') function following exercise in any of the four conditions. In this model of exercise designed to mimic the work, heat stress and dehydration associated with firefighting activities, we observed no negative effects on myocardial inotropic or lusitropic function. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Regulation of Heat Stress by HSF1 and GR

    DTIC Science & Technology

    2016-09-01

    thermogenesis and mitochondria -derived reactive oxygen species, which likely play a role in heat stress response. Both HSF1 and GR may directly or indirectly...control, n = 3 per group. Furthermore, we examined GR and HSF1 contents in the cytosol, mitochondria , and nucleus of the skeletal muscles. We...are indeed sensitive to heat stress as well as HA. Mitochondria in skeletal muscles are likely the target organelle of acute severe and repeated

  9. Thermometry, calorimetry, and mean body temperature during heat stress.

    PubMed

    Kenny, Glen P; Jay, Ollie

    2013-10-01

    Heat balance in humans is maintained at near constant levels through the adjustment of physiological mechanisms that attain a balance between the heat produced within the body and the heat lost to the environment. Heat balance is easily disturbed during changes in metabolic heat production due to physical activity and/or exposure to a warmer environment. Under such conditions, elevations of skin blood flow and sweating occur via a hypothalamic negative feedback loop to maintain an enhanced rate of dry and evaporative heat loss. Body heat storage and changes in core temperature are a direct result of a thermal imbalance between the rate of heat production and the rate of total heat dissipation to the surrounding environment. The derivation of the change in body heat content is of fundamental importance to the physiologist assessing the exposure of the human body to environmental conditions that result in thermal imbalance. It is generally accepted that the concurrent measurement of the total heat generated by the body and the total heat dissipated to the ambient environment is the most accurate means whereby the change in body heat content can be attained. However, in the absence of calorimetric methods, thermometry is often used to estimate the change in body heat content. This review examines heat exchange during challenges to heat balance associated with progressive elevations in environmental heat load and metabolic rate during exercise. Further, we evaluate the physiological responses associated with heat stress and discuss the thermal and nonthermal influences on the body's ability to dissipate heat from a heat balance perspective.

  10. Development of silencers for suppressing noise emitted from heat-recovery boilers taking into account the attenuation of sound energy in their heating surfaces

    NASA Astrophysics Data System (ADS)

    Semin, S. A.; Tupov, V. B.

    2011-08-01

    A formula is proposed using which attenuation of the level of acoustic power in a heat-recovery boiler can be calculated as a function of the area of its heat-transfer heating surfaces. The silencers developed by specialists of the Moscow Power Engineering Institute for additional suppression of noise emitted from combined-cycle and gas turbine units equipped with heat-recovery boilers are considered.

  11. Differential proteomic response to heat stress in thermal Agrostis scabra and heat-sensitive Agrostis stolonifera.

    PubMed

    Xu, Chenping; Huang, Bingru

    2010-06-01

    Knowledge of heat-responsive proteins is critical for further understanding of the molecular mechanisms of heat tolerance. The objective of this study was to compare proteins differentially expressed in two C(3) grass species contrasting in heat tolerance, heat-tolerant thermal Agrostis scabra and heat-sensitive Agrostis stolonifera L., and to identify heat-responsive proteins for short- and long-term responses. Plants were exposed to 20/15 degrees C (day/night, control) or 40/35 degrees C (day/night, heat stress) in growth chambers. Leaves were harvested at 2 and 10 days after temperature treatment. Proteins were extracted and separated by fluorescence difference gel electrophoresis (DIGE). Thermal A. scabra had superior heat tolerance than A. stolonifera, as indicated by the maintenance of higher chlorophyll content and photochemical efficiency under heat stress. The two-dimensional difference electrophoresis detected 68 heat-responsive proteins in the two species. Thermal A. scabra had more protein spots either down- or up-regulated at 2 days of heat stress, but fewer protein spots were altered at 10 days of heat stress compared with A. stolonifera. Many protein spots exhibited transient down-regulation in thermal A. scabra (only at 2 days of heat treatment), whereas down-regulation of many proteins was also found at 10 days of heat treatment in A. stolonifera, which suggested that protein metabolism in thermal A. scabra might acclimate to heat stress more rapidly than those in A. stolonifera. The sequences of 56 differentially expressed protein spots were identified using mass spectrometry. The results suggest that the maintenance or less severe down-regulation of proteins during long-term (10 days) heat stress may contribute to the superior heat tolerance in thermal A. scabra, including those involved in photosynthesis [RuBisCo, RuBisCo activase, chloroplastic glyceraldehydes-3-phosphate dehydrogenase (GAPDH), chloroplastic aldolase, oxygen-evolving complex

  12. Cardiovascular drift during heat stress: implications for exercise prescription.

    PubMed

    Wingo, Jonathan E; Ganio, Matthew S; Cureton, Kirk J

    2012-04-01

    Cardiovascular drift, the progressive increase in heart rate and decrease in stroke volume that begins after approximately 10 min of prolonged moderate-intensity exercise, is associated with decreased maximal oxygen uptake, particularly during heat stress. Consequently, the increased heart rate reflects an increased relative metabolic intensity during prolonged exercise in the heat when cardiovascular drift occurs, which has implications for exercise prescription.

  13. Resveratrol Attenuates Cisplatin Renal Cortical Cytotoxicity by Modifying Oxidative Stress

    PubMed Central

    Valentovic, Monica A.; Ball, John G.; Brown, J. Mike; Terneus, Marcus V.; McQuade, Elizabeth; Van Meter, Stephanie; Hedrick, Hayden M.; Roy, Amy Allison; Williams, Tierra

    2014-01-01

    Cisplatin, a cancer chemotherapy drug, is nephrotoxic. The aim of this study was to investigate whether resveratrol (RES) reduced cisplatin cytotoxicity and oxidative stress. Rat renal cortical slices were pre-incubated 30 min with 0 (VEH, ethanol) or 30 μg/ml RES followed by 60, 90 or 120 min co-incubation with 0, 75, or 150 μg/mL cisplatin. Lactate dehydrogenase (LDH) leakage was unchanged at 60 and 90 min by cisplatin. Cisplatin increased (p<0.05) LDH leakage at 120 min which was protected by RES. Cisplatin induced oxidative stress prior to LDH leakage as cisplatin depressed glutathione peroxidase and superoxide dismutase (SOD) activity, increased lipid peroxidation, protein carbonyls and 4-hydroxynonenal (4-HNE) adducted proteins within 60 min. RES failed to reverse glutathione (GSH) depression by cisplatin. In order to eliminated an extracellular interaction between RES and cisplatin, additional studies (RINSE studies) allowed a 30 min RES uptake into slices, transfer of slices to buffer lacking RES, followed by 120 min cisplatin incubation. RES in the RINSE studies prevented LDH leakage by cisplatin indicating that RES protection was not via a physical interaction with cisplatin in the media. These findings indicate that RES diminished cisplatin in vitro renal toxicity and prevented the development of oxidative stress. PMID:24239945

  14. Estimates of heat stress relief needs for Holstein dairy cows.

    PubMed

    Berman, A

    2005-06-01

    Estimates of environmental heat stress are required for heat stress relief measures in cattle. Heat stress is commonly assessed by the temperature-humidity index (THI), the sum of dry and wet bulb temperatures. The THI does not include an interaction between temperature and humidity, although evaporative heat loss increases with rising air temperature. Coat, air velocity, and radiation effects also are not accounted for in the THI. The Holstein dairy cow is the primary target of heat stress relief, followed by feedlot cattle. Heat stress may be estimated for a variety of conditions by thermal balance models. The models consist of animal-specific data (BW, metabolic heat production, tissue and coat insulation, skin water loss, coat depth, and minimal and maximal tidal volumes) and of general heat exchange equations. A thermal balance simulation model was modified to adapt it for Holstein cows by using Holstein data for the animal characteristics in the model, and was validated by comparing its outputs to experimental data. Model outputs include radiant, convective, skin evaporative, respiratory heat loss and rate of change of body temperature. Effects of milk production (35 and 45 kg/d), hair coat depth (3 and 6 mm), air temperature (20 to 45 degrees C), air velocity (0.2 to 2.0 m/s), air humidity (0.8 to 3.9 kPa), and exposed body surface (100, 75, and 50%) on thermal balance outputs were examined. Environmental conditions at which respiratory heat loss attained approximately 50% of its maximal value were defined as thresholds for intermediate heat stress. Air velocity increased and humidity significantly decreased threshold temperatures, particularly at higher coat depth. The effect of air velocity was amplified at high humidity. Increasing milk production from 35 to 45 kg/d decreased threshold temperature by 5 degrees C. In the lying cow, the lower air velocity in the proximity of body surface and the smaller exposed surface markedly decrease threshold

  15. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  16. Experimental study of the stress effect on attenuation of normally incident P-wave through coal

    NASA Astrophysics Data System (ADS)

    Feng, Junjun; Wang, Enyuan; Chen, Liang; Li, Xuelong; Xu, Zhaoyong; Li, Guoai

    2016-09-01

    The purpose of this study is to experimentally investigate the stress effect on normally incident P-wave attenuation through coal specimens. Laboratory tests were carried out using a Split Hopkinson pressure bar (SHPB) system, and a modified method was proposed to determine the quality factor (Q) of P-waves through coal specimens. Larger quality factor denotes less energy attenuated during P-wave propagating through coal. Experimental results indicate that the quality factor and stress (σ) within coal specimens are positively correlated. The P-wave propagation through coal specimens causes crack closure at the beginning of the coal fracture process in SHPB tests, an innovative model was thus proposed to describe the relationship between the crack closure length and the dynamic stress induced by P-wave. Finally, the stress effect on P-wave attenuation through coal was quantitatively represented by a power function Q = a(c-bσ)- 6, and the material constants a, b, and c were determined as 1.227, 1.314, and 0.005, respectively. The results obtained in this study would be helpful for engineers to estimate seismic energy attenuation and coal mass instability in coal mines.

  17. A virtual rat for simulating environmental and exertional heat stress.

    PubMed

    Rakesh, Vineet; Stallings, Jonathan D; Reifman, Jaques

    2014-12-01

    Severe cases of environmental or exertional heat stress can lead to varying degrees of organ dysfunction. To understand heat-injury progression and develop efficient management and mitigation strategies, it is critical to determine the thermal response in susceptible organs under different heat-stress conditions. To this end, we used our previously published virtual rat, which is capable of computing the spatiotemporal temperature distribution in the animal, and extended it to simulate various heat-stress scenarios, including 1) different environmental conditions, 2) exertional heat stress, 3) circadian rhythm effect on the thermal response, and 4) whole body cooling. Our predictions were consistent with published in vivo temperature measurements for all cases, validating our simulations. We observed a differential thermal response in the organs, with the liver experiencing the highest temperatures for all environmental and exertional heat-stress cases. For every 3°C rise in the external temperature from 40 to 46°C, core and organ temperatures increased by ∼0.8°C. Core temperatures increased by 2.6 and 4.1°C for increases in exercise intensity from rest to 75 and 100% of maximal O2 consumption, respectively. We also found differences as large as 0.8°C in organ temperatures for the same heat stress induced at different times during the day. Even after whole body cooling at a relatively low external temperature (1°C for 20 min), average organ temperatures were still elevated by 2.3 to 2.5°C compared with normothermia. These results can be used to optimize experimental protocol designs, reduce the amount of animal experimentation, and design and test improved heat-stress prevention and management strategies.

  18. Umbilical cord blood-derived stem cells improve heat tolerance and hypothalamic damage in heat stressed mice.

    PubMed

    Tseng, Ling-Shu; Chen, Sheng-Hsien; Lin, Mao-Tsun; Lin, Ying-Chu

    2014-01-01

    Heatstroke is characterized by excessive hyperthermia associated with systemic inflammatory responses, which leads to multiple organ failure, in which brain disorders predominate. This definition can be almost fulfilled by a mouse model of heatstroke used in the present study. Unanesthetized mice were exposed to whole body heating (41.2°C for 1 hour) and then returned to room temperature (26°C) for recovery. Immediately after termination of whole body heating, heated mice displayed excessive hyperthermia (body core temperature ~42.5°C). Four hours after termination of heat stress, heated mice displayed (i) systemic inflammation; (ii) ischemic, hypoxic, and oxidative damage to the hypothalamus; (iii) hypothalamo-pituitary-adrenocortical axis impairment (reflected by plasma levels of both adrenocorticotrophic-hormone and corticosterone); (iv) decreased fractional survival; and (v) thermoregulatory deficits (e.g., they became hypothermia when they were exposed to room temperature). These heatstroke reactions can be significantly attenuated by human umbilical cord blood-derived CD34(+) cells therapy. Our data suggest that human umbilical cord blood-derived stem cells therapy may improve outcomes of heatstroke in mice by reducing systemic inflammation as well as hypothalamo-pituitary-adrenocortical axis impairment.

  19. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress.

    PubMed

    Tang, Shu; Chen, Hongbo; Cheng, Yanfen; Nasir, Mohammad Abdel; Kemper, Nicole; Bao, Endong

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42˚C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480‑min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB.

  20. The interactive association between heat shock factor 1 and heat shock proteins in primary myocardial cells subjected to heat stress

    PubMed Central

    TANG, SHU; CHEN, HONGBO; CHENG, YANFEN; NASIR, MOHAMMAD ABDEL; KEMPER, NICOLE; BAO, ENDONG

    2016-01-01

    Heat shock factor 1 (HSF1) is a heat shock transcription factor that rapidly induces heat shock gene transcription following thermal stress. In this study, we subjected primary neonatal rat myocardial cells to heat stress in vitro to create a model system for investigating the trends in expression and association between various heat shock proteins (HSPs) and HSF1 under adverse environmental conditions. After the cells were subjected to heat stress at 42°C for different periods of time, HSP and HSF1 mRNA and protein levels were detected by qPCR and western blot analysis in the heat-stressed cells. The HSF1 expression levels significantly increased in the cells following 120 min of exposure to heat stess compared to the levels observed at the beginning of heat stress exposure. HSP90 followed a similar trend in expression to HSF1, whereas HSP70 followed an opposite trend. However, no significant changes were observed in the crystallin, alpha B (CRYAB, also known as HSP beta-5) expression levels during the 480-min period of exposure to heat stress. The interaction between the HSPs and HSF1 was analyzed by STRING 9.1, and it was found that HSF1 interacted with HSP90 and HSP70, and that it did not play a role in regulating CRYAB expression. Based on our findings, HSP70 may suppress HSF1 in rat myocardial cells under conditions of heat stress. Furthermore, our data demonstrate that HSF1 is not the key factor for all HSPs, and this was particularly the case for CRYAB. PMID:26719858

  1. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens.

    PubMed

    Liu, L L; He, J H; Xie, H B; Yang, Y S; Li, J C; Zou, Y

    2014-01-01

    This study investigated the effects of dietary resveratrol at 0, 200, 400, or 600 mg/kg of diet on the performance, immune organ growth index, serum parameters, and expression levels of heat shock protein (Hsp) 27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius, thymus, and spleen of 42-d-old female black-boned chickens exposed to heat stress at 37 ± 2°C for 15 d. The results showed that heat stress reduced daily feed intake and BW gain; decreased serum glutathione (GSH), growth hormone, and insulin-like growth factor-1 levels; and inhibited GSH peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities compared with birds subjected to thermo-neutral circumstances. Chickens that were fed diets supplemented with resveratrol exhibited a linear increase in feed intake and BW gain (P < 0.001); serum GSH, growth hormone, and insulin-like growth factor-1 levels (P ≤ 0.01); and GSH-Px, SOD, and CAT activities (P < 0.001) compared with chickens that were fed diets without resveratrol during heat stress. In contrast, serum malonaldehyde concentrations were decreased (P < 0.001) in the chickens fed a resveratrol-supplemented diet. Heat stress also reduced (P < 0.05) the growth index of the bursa of Fabricus and spleen; however, it had no effect on the growth index of the thymus. The growth index of the bursa of Fabricius and spleen increased (P < 0.05) upon heat stress and coincided with an increase in supplemental resveratrol levels. The expression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen were increased (P < 0.01), but those of Hsp27 and Hsp90 mRNA in thymus were decreased (P < 0.01) under heat stress compared with no heat stress. Resveratrol attenuated the heat stress-induced overexpression of Hsp27, Hsp70, and Hsp90 mRNA in the bursa of Fabricius and spleen and increased the low expression of Hsp27 and Hsp90 mRNA in thymus upon heat stress. The results suggest that supplemental resveratrol improves growth performance

  2. Feedlot cattle susceptibility to heat stress: an animal specific model

    USDA-ARS?s Scientific Manuscript database

    The extreme effects of heat stress in a feedlot situation can cause losses exceeding 5% of all the cattle on feed in a single feedlot. These losses can be very devastating to a localized area of feedlot producers. Animal stress is a result of the combination of three different components: environm...

  3. Heat stress, gastrointestinal permeability and interleukin-6 signaling — Implications for exercise performance and fatigue

    PubMed Central

    Vargas, Nicole; Marino, Frank

    2016-01-01

    ABSTRACT Exercise in heat stress exacerbates performance decrements compared to normothermic environments. It has been documented that the performance decrements are associated with reduced efferent drive from the central nervous system (CNS), however, specific factors that contribute to the decrements are not completely understood. During exertional heat stress, blood flow is preferentially distributed away from the intestinal area to supply the muscles and brain with oxygen. Consequently, the gastrointestinal barrier becomes increasingly permeable, resulting in the release of lipopolysaccharides (LPS, endotoxin) into the circulation. LPS leakage stimulates an acute-phase inflammatory response, including the release of interleukin (IL)-6 in response to an increasingly endotoxic environment. If LPS translocation is too great, heat shock, neurological dysfunction, or death may ensue. IL-6 acts initially in a pro-inflammatory manner during endotoxemia, but can attenuate the response through signaling the hypothalamic pituitary adrenal (HPA)-axis. Likewise, IL-6 is believed to be a thermoregulatory sensor in the gut during the febrile response, hence highlighting its role in periphery – to – brain communication. Recently, IL-6 has been implicated in signaling the CNS and influencing perceptions of fatigue and performance during exercise. Therefore, due to the cascade of events that occur during exertional heat stress, it is possible that the release of LPS and exacerbated response of IL-6 contributes to CNS modulation during exertional heat stress. The purpose of this review is to evaluate previous literature and discuss the potential role for IL-6 during exertional heat stress to modulate performance in favor of whole body preservation. PMID:27857954

  4. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals.

    PubMed

    Akbarian, Abdollah; Michiels, Joris; Degroote, Jeroen; Majdeddin, Maryam; Golian, Abolghasem; De Smet, Stefaan

    2016-01-01

    Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement of heat stress in inducing oxidative stress has received much interest. Oxidative stress is defined as the presence of reactive species in excess of the available antioxidant capacity of animal cells. Reactive species can modify several biologically cellular macromolecules and can interfere with cell signaling pathways. Furthermore, during the last decade, there has been an ever-increasing interest in the use of a wide array of natural feed-delivered phytochemicals that have potential antioxidant properties for poultry. In light of this, the current review aims to (1) summarize the mechanisms through which heat stress triggers excessive superoxide radical production in the mitochondrion and progresses into oxidative stress, (2) illustrate that this pathophysiology is dependent on the intensity and duration of heat stress, (3) present different nutritional strategies for mitigation of mitochondrial dysfunction, with particular focus on antioxidant phytochemicals. Oxidative stress that occurs with heat exposure can be manifest in all parts of the body; however, mitochondrial dysfunction underlies oxidative stress. In the initial phase of acute heat stress, mitochondrial substrate oxidation and electron transport chain activity are increased resulting in excessive superoxide production. During the later stage of acute heat stress, down-regulation of avian uncoupling protein worsens the oxidative stress situation causing mitochondrial dysfunction and tissue damage. Typically, antioxidant enzyme activities are upregulated. Chronic heat stress, however, leads to downsizing of mitochondrial metabolic oxidative capacity, up-regulation of avian uncoupling protein, a clear alteration in the pattern of antioxidant enzyme activities, and depletion of antioxidant

  5. ATR-FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance.

    PubMed

    Lahlali, Rachid; Jiang, Yunfei; Kumar, Saroj; Karunakaran, Chithra; Liu, Xia; Borondics, Ferenc; Hallin, Emil; Bueckert, Rosalind

    2014-01-01

    With climate change, pea will be more frequently subjected to heat stress in semi-arid regions like Saskatchewan during flowering. The pollen germination percentage of two pea cultivars was reduced by heat stress (36°C) with an important decrease in cultivar 'CDC Golden' compared to 'CDC Sage.' Lipids, protein and other pollen coat compositions of whole intact pollen grains of both pea cultivars were investigated using mid infrared (mid-IR) attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. Curve fitting of ATR absorbance spectra in the protein region enabled estimation and comparison of different protein secondary structures between the two cultivars. CDC Sage had relatively greater amounts of α-helical structures (48.6-43.6%; band at 1654 cm(-1)) and smaller amounts of β-sheets (41.3-46%) than CDC Golden. The CDC Golden had higher amounts of β-sheets (46.3-51.7%) compared to α-helical structures (35.3-36.2%). Further, heat stress resulted in prominent changes in the symmetrical and asymmetrical CH2 bands from lipid acyl chain, ester carbonyl band, and carbohydrate region. The intensity of asymmetric and symmetric CH2 vibration of heat stressed CDC Golden was reduced considerably in comparison to the control and the decrease was higher compared to CDC Sage. In addition, CDC Golden showed an increase in intensity at the oxidative band of 3015 cm(-1). These results reveal that the whole pollen grains of both pea cultivars responded differently to heat stress. The tolerance of CDC Sage to heat stress (expressed as pollen germination percentage) may be due to its protein richness with α-helical structures which would protect against the destructive effects of dehydration due to heat stress. The low pollen germination percentage of CDC Golden after heat stress may be also due to its sensitivity to lipid changes due to heat stress.

  6. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress.

    PubMed

    Zhou, Rong; Yu, Xiaqing; Ottosen, Carl-Otto; Rosenqvist, Eva; Zhao, Liping; Wang, Yinlei; Yu, Wengui; Zhao, Tongmin; Wu, Zhen

    2017-01-25

    Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. Shoot fresh and dry weight, leaf area and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars significantly decreased under drought and combined stress as compared to control. The tomato 'Arvento' was more affected by heat stress than 'LA1994' and 'LA2093' due to significant decreases in shoot dry weight, chlorophyll a and carotenoid content, starch content and NPQ (non-photochemical quenching) only in 'Arvento' under heat treatment. By comparison, the two heat-tolerant tomatoes were more affected by drought stress compared to 'Arvento' as shown by small stomatal and pore area, decreased sucrose content, ΦPSII (quantum yield of photosystem II), ETR (electron transport rate) and qL (fraction of open PSII centers) in 'LA1994' and 'LA2093'. The three cultivars showed similar response when subjected to the combination of drought and heat stress as shown by most physiological parameters, even though only 'LA1994' and 'LA2093' showed decreased Fv/Fm (maximum potential quantum efficiency of photosystem II), ΦPSII, ETR and qL under combined stress. The cultivars differing in heat sensitivity did not show difference in the combined stress sensitivity, indicating that selection for tomatoes

  7. Low, medium, and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat.

    PubMed

    Shen, Qian; Jangam, Priyanka M; Soni, Kamlesh A; Nannapaneni, Ramakrishna; Schilling, Wes; Silva, Juan L

    2014-08-01

    A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with an initial cell density of 10(7) CFU/ml were analyzed for their heat tolerance at 60°C for 10 min. These L. monocytogenes strains were categorized into three heat tolerance groups: low (<2 log CFU/ml survival), medium (2 to 4 log CFU/ml survival), and high (4 to 6 log CFU/ml survival). Serotype 1/2a strains had relatively low heat tolerance; seven of the eight tested strains were classified as low heat tolerant. Of the two serotype 1/2b strains tested, one was very heat sensitive (not detectable) and the other was very heat resistant (5.4 log CFU/ml survival). Among the 16 serotype 4b strains, survival ranged from not detectable to 4 log CFU/ml. When one L. monocytogenes strain from each heat tolerance group was subjected to sublethal heat stress at 48°C for 30 or 60 min, the survival of heat-stressed cells at 60°C for 10 min increased by 5 log CFU/ml (D60°C-values nearly doubled) compared with the nonstressed control cells. Sublethal heat stress at 48°C for 60 or 90 min increased the lag phase of L. monocytogenes in tryptic soy broth supplemented with 0.6% yeast extract at room temperature by 3 to 5 h compared with nonstressed control cells. The heat stress adaptation in L. monocytogenes was reversed after 2 h at room temperature but was maintained for up to 24 h at 4°C. Our results indicate a high diversity in heat tolerance among strains of L. monocytogenes, and once acquired this heat stress adaptation persists after cooling, which should be taken into account while conducting risk analyses for this pathogen.

  8. Real-Time Attenuation Of Heated Optical Fibers In A Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Partin, Judy K.; Bolstad, Jon O.; Collins, David R.

    1984-03-01

    The Idaho National Engineering Laboratory is actively involved in the development and application of fiberoptic-based sensor technology for use in nuclear reactor research. One such sensor is a minature fiberoptic probe which senses steam-to-water transitions in a high pressure, high temperature coolant circuit.' Hundreds of these probes have been utilized in non-nuclear reactor simulation facilities and efforts are underway to adapt these and other fiberoptic techniques to full-scale nuclear applications. This paper describes work recently completed to characterize fiberoptic attenuation induced by gamma and neutron radiation in a reactor. The specific goal was to make in-situ attenuation measurements of promising waveguide materials during radiation exposure at elevated temperatures characteristic of reactor environments. Testing was done in a swimming-pool-type reactor generating about one kilowatt thermal power and producing fluxes of about 109n/cm2/sec fast neutrons (>1 MEV), 1010 on /cm2/sec thermal neutrons, and dose rates of 6 X 106 rad/hr gamma radiation. Samples of state-of-the-art radiation-resistant waveguides, received from five manufacturers, were tested simultaneously. One set of waveguides was held at 180°C temperature and the other set remained at 20°C. Attenuation was monitored con-tinuously in several spectral bands in the 600-1050 nanometer region. Total reactor exposure time was about ten hours and the change in attenuation at this time for the heated samples was as low as 5 db/km at the longer wavelengths and as high as 3000 db/km at the shorter wavelengths. Attenuation in this range is acceptable for many instrumentation or sensor applications because transmission distances would be relatively short in the radiated region. The annealing effect at elevated temperature was found to be significant for all waveguide samples. A ten-fold decrease in attenuation was observed for one heated sample in comparison with its counterpart at ambient

  9. Heat Stress and Cardiovascular, Hormonal, and Heat Shock Proteins in Humans

    PubMed Central

    Iguchi, Masaki; Littmann, Andrew E.; Chang, Shuo-Hsiu; Wester, Lydia A.; Knipper, Jane S.; Shields, Richard K.

    2012-01-01

    Context: Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. Objective: To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extra-cellular protein responses of exercise. Design: Randomized controlled trial. Setting: University research laboratory. Patients or Other Participants: Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Intervention(s): Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Main Outcome Measure(s): Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. Results: After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F6,24 = 186, P < .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F6,24 = 10.1, P < .001) and 5 mm Hg (F6,24 = 5.4, P < .001), respectively. Norepinephrine (F1,12 = 12.1, P = .004) and prolactin (F1,12 = 30.2, P < .001) increased in the plasma (58% and 285%, respectively) (P < .05). The HSP72 (F1,12 = 44.7, P < .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. Conclusions: We found that whole-body heat stress triggers some of the

  10. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans.

    PubMed

    Iguchi, Masaki; Littmann, Andrew E; Chang, Shuo-Hsiu; Wester, Lydia A; Knipper, Jane S; Shields, Richard K

    2012-01-01

    Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extracellular protein responses of exercise. Randomized controlled trial. University research laboratory. Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F₆,₂₄ = 186, P < .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F₆,₂₄ = 10.1, P < .001) and 5 mm Hg (F₆,₂₄ = 5.4, P < .001), respectively. Norepinephrine (F₁,₁₂ = 12.1, P = .004) and prolactin (F₁,₁₂ = 30.2, P < .001) increased in the plasma (58% and 285%, respectively) (P < .05). The HSP72 (F₁,₁₂ = 44.7, P < .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. We found that whole-body heat stress triggers some of the physiologic responses observed with exercise. Future studies are necessary to investigate whether

  11. Heat stress in grapevine: the pros and cons of acclimation.

    PubMed

    Carvalho, Luísa C; Coito, João L; Colaço, Silvana; Sangiogo, Maurício; Amâncio, Sara

    2015-04-01

    Heat stress is a major limiting factor of grapevine production and quality. Acclimation and recovery are essential to ensure plant survival, and the recovery mechanisms can be independent of the heat response mechanisms. An experimental set up with and without acclimation to heat followed by recovery [stepwise acclimation and recovery (SAR) and stepwise recovery (SR), respectively] was applied to two grapevine varieties, Touriga Nacional (TN), and Trincadeira (TR), with different tolerance to abiotic stress. Major differences were found between leaves of SAR and SR, especially after recovery; in SAR, almost all parameters returned to basal levels while in SR they remained altered. Acclimation led to a swifter and short-term antioxidative response, affecting the plant to a lesser extent than SR. Significant differences were found among varieties: upon stress, TN significantly increased ascorbate and glutathione reduction levels, boosting the cell's redox-buffering capacity, while TR needed to synthesize both metabolites, its response being insufficient to keep the redox state at working levels. TR was affected by stress for a longer period and the up-regulation pattern of antioxidative stress genes was more obvious. In TN, heat shock proteins were significantly induced, but the canonical heat-stress gene signature was not evident probably because no shutdown of the housekeeping metabolism was needed.

  12. Heat Stress and Baroreflex Regulation of Blood Pressure

    PubMed Central

    CRANDALL, CRAIG G.

    2010-01-01

    In healthy, noninjured, individuals, passive (i.e., nonexercising) whole-body heating has the potential to cause significant cardiovascular stress that may be second only to the cardiovascular stress associated with exercise. For example, such a heat stress can increase heart rate to well over 100 beats·min−1 with cardiac output increasing upward to 13 L·min−1. This increase in cardiac output is necessary to maintain blood pressure due to profound reductions in total vascular conductance associated with cutaneous vasodilation. These responses are accompanied with elevations in sympathetic activity and reductions in vascular conductance (i.e., increased vascular resistance) from noncutaneous beds. While heat-stressed, blood pressure control is compromised resulting in orthostatic intolerance. A plausible explanation for such an event is that heat stress impairs baroreflex responsiveness perhaps due to the reduced range by which baroreflexes can increase heart rate, cardiac output, sympathetic activity, and vascular resistance during a hypotensive challenge. Given that dynamic exercise has the potential to cause large increases in internal temperature, possibly a component of the response to exercise, with respect to baroreflex control of blood pressure, may be affected by the thermal load during the exercise bout. Within this context, the purpose of this review was to summarize findings investigating the effects of heat stress on baroreflex regulation of blood pressure. PMID:18981943

  13. Heat stress and baroreflex regulation of blood pressure.

    PubMed

    Crandall, Craig G

    2008-12-01

    In healthy, noninjured, individuals, passive (i.e., nonexercising) whole-body heating has the potential to cause significant cardiovascular stress that may be second only to the cardiovascular stress associated with exercise. For example, such a heat stress can increase heart rate to well over 100 beats min(-1) with cardiac output increasing upward to 13 L min(-1). This increase in cardiac output is necessary to maintain blood pressure due to profound reductions in total vascular conductance associated with cutaneous vasodilation. These responses are accompanied with elevations in sympathetic activity and reductions in vascular conductance (i.e., increased vascular resistance) from noncutaneous beds. While heat-stressed, blood pressure control is compromised resulting in orthostatic intolerance. A plausible explanation for such an event is that heat stress impairs baroreflex responsiveness perhaps due to the reduced range by which baroreflexes can increase heart rate, cardiac output, sympathetic activity, and vascular resistance during a hypotensive challenge. Given that dynamic exercise has the potential to cause large increases in internal temperature, possibly a component of the response to exercise, with respect to baroreflex control of blood pressure, may be affected by the thermal load during the exercise bout. Within this context, the purpose of this review was to summarize findings investigating the effects of heat stress on baroreflex regulation of blood pressure.

  14. Vaccine-induced inflammation attenuates the vascular responses to mental stress.

    PubMed

    Paine, Nicola J; Ring, Christopher; Bosch, Jos A; Drayson, Mark T; Aldred, Sarah; Veldhuijzen van Zanten, Jet J C S

    2014-09-01

    Inflammation is associated with poorer vascular function, with evidence to suggest that inflammation can also impair the vascular responses to mental stress. This study examined the effects of vaccine-induced inflammation on vascular responses to mental stress in healthy participants. Eighteen male participants completed two stress sessions: an inflammation condition having received a typhoid vaccination and a control (non-inflamed) condition. Tumor necrosis factor-alpha and interleukin-6 (p's<.001) increased following vaccination, confirming modest increases in inflammation. Mental stress increased blood flow, blood pressure, heart rate, and cardiac output in both conditions (all p's<.001), but the blood flow response to stress was attenuated having received the vaccination compared to the control condition (p's<.05). These results further implicate the interaction between inflammation and the vasculature as a mechanism through which stress may trigger myocardial infarction. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Ideas and perspectives: Heat stress: more than hot air

    NASA Astrophysics Data System (ADS)

    De Boeck, Hans J.; Van De Velde, Helena; De Groote, Toon; Nijs, Ivan

    2016-10-01

    Climate models project an important increase in the frequency and intensity of heat waves. In gauging the impact on plant responses, much of the focus has been on air temperatures, while a critical analysis of leaf temperatures during heat extremes has not been conducted. Nevertheless, direct physiological consequences from heat depend primarily on leaf rather than on air temperatures. We discuss how the interplay between various environmental variables and the plants' stomatal response affects leaf temperatures and the potential for heat stress by making use of both an energy balance model and field data. The results demonstrate that this interplay between plants and environment can cause leaf temperature to vary substantially at the same air temperature. In general, leaves tended to heat up when radiation was high and when stomates were closed, as expected. But perhaps counterintuitively, high air humidity also raised leaf temperatures, while humid conditions are typically regarded as benign with respect to plant survival since they limit water loss. High wind speeds brought the leaf temperature closer to the air temperature, which can imply either cooling or warming (i.e. abating or reinforcing heat stress) depending on other prevailing conditions. The results thus indicate that heat waves characterized by similar extreme air temperatures may pose little danger under some atmospheric conditions but could be lethal in other cases. The trends illustrated here should give ecologists and agronomists a more informed indication about which circumstances are most conducive to the occurrence of heat stress.

  16. Dynamics of urban heat stress events in climate models

    NASA Astrophysics Data System (ADS)

    Yang, David

    2016-04-01

    Extreme heat stress events as measured by the wet-bulb temperature require extraordinarily high air temperatures coupled with high humidity. These conditions are rare, as relative humidity rapidly falls with rising air temperature, and this effect often results in decreasing heat stress as temperature rises. However, in certain coastal locations in the Middle East recent heat waves have resulted in wet-bulb temperatures of 33-35 degrees C, which approach the theoretical limits of human tolerance. These conditions result from the combination of extreme desert heat and humid winds off of the warm ocean waters. It is unclear if climate models properly simulate these dynamics. This study will analyse the ability of the CMIP5 model suite to replicate observed dynamics during extreme heat events in major urban areas.

  17. Eccentric-exercise induced inflammation attenuates the vascular responses to mental stress.

    PubMed

    Paine, Nicola J; Ring, Christopher; Aldred, Sarah; Bosch, Jos A; Wadley, Alex J; Veldhuijzen van Zanten, Jet J C S

    2013-05-01

    Mental stress has been identified as a trigger of myocardial infarction (MI), with inflammation and vascular responses to mental stress independently implicated as contributing factors. This study examined whether inflammation moderates the vascular responses to mental stress. Eighteen healthy male participants completed a stress task under two counter balanced conditions. In the exercise condition, a morning bout of eccentric exercise (12×5 repetitions of unilateral eccentric knee extension at 120% intensity of concentric one repetition maximum) was used to increase levels of inflammatory-responsive cytokines during an afternoon stress session scheduled 6h later. In the control condition, participants sat and relaxed for 45min, 6h prior to the afternoon stress session. Forearm blood flow, calf blood flow (measured in the leg which completed the exercise task), blood pressure, heart rate and cardiac output were assessed at rest and in response to mental stress. As expected, interleukin-6 was higher (p=.02) 6h post exercise, i.e., at the start of the stress session, as compared to the no-exercise control condition. Mental stress increased forearm blood flow, calf blood flow, blood pressure, heart rate, and cardiac output in both conditions (p's<.001). Stress-induced calf blood flow was attenuated in the exercise condition compared to the control condition (p<.05) which was not the case for forearm blood flow. This study found that the inflammatory response to eccentric exercise attenuated the vascular responses to mental stress locally at the site of eccentric exercise-induced inflammation. The observed impairment in vascular responses to stress associated with increased levels of inflammation suggests a mechanism through which inflammation might increase the risk for MI. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations

    PubMed Central

    Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni

    2016-01-01

    There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation. PMID:26904719

  19. Neural pathways link social support to attenuated neuroendocrine stress responses.

    PubMed

    Eisenberger, Naomi I; Taylor, Shelley E; Gable, Shelly L; Hilmert, Clayton J; Lieberman, Matthew D

    2007-05-01

    It is well established that a lack of social support constitutes a major risk factor for morbidity and mortality, comparable to risk factors such as smoking, obesity, and high blood pressure. Although it has been hypothesized that social support may benefit health by reducing physiological reactivity to stressors, the mechanisms underlying this process remain unclear. Moreover, to date, no studies have investigated the neurocognitive mechanisms that translate experiences of social support into the health outcomes that follow. To investigate these processes, thirty participants completed three tasks in which daily social support, neurocognitive reactivity to a social stressor, and neuroendocrine responses to a social stressor were assessed. Individuals who interacted regularly with supportive individuals across a 10-day period showed diminished cortisol reactivity to a social stressor. Moreover, greater social support and diminished cortisol responses were associated with diminished activity in the dorsal anterior cingulate cortex (dACC) and Brodmann's area (BA) 8, regions previously associated with the distress of social separation. Lastly, individual differences in dACC and BA 8 reactivity mediated the relationship between high daily social support and low cortisol reactivity, such that supported individuals showed reduced neurocognitive reactivity to social stressors, which in turn was associated with reduced neuroendocrine stress responses. This study is the first to investigate the neural underpinnings of the social support-health relationship and provides evidence that social support may ultimately benefit health by diminishing neural and physiological reactivity to social stressors.

  20. Azadirachta indica attenuates cisplatin-induced nephrotoxicity and oxidative stress.

    PubMed

    Abdel Moneim, Ahmed E; Othman, Mohamed S; Aref, Ahmed M

    2014-01-01

    We investigated the effects of methanolic leaves extract of Azadirachta indica (MLEN, 500 mg/kg bwt) on cisplatin- (CP-) induced nephrotoxicity and oxidative stress in rats. CP (5 mg/kg bwt) was injected intraperitoneally and MLEN was given by gastric gavage for 5 days before or after CP injection. After 5 days of CP injection, CP-induced injury of the renal tissue was evidenced (i) as histopathological damage of the renal tissue, (ii) as increases in serum uric acid, urea, and creatinine, (iii) as increases in malondialdehyde (MDA) and nitric oxide (NO), (iv) as decreases in the level of glutathione and activities of superoxide dismutase, catalase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase, and (v) as increase in the expression of nuclear factor kappa B and apoptosis in kidney tissues. However, the oral administration of MLEN to CP-intoxicated rats for 5 days brought back MDA, NO production, and enzymatic and nonenzymatic antioxidants to near normalcy. Moreover, the histological observations evidenced that neem extract effectively rescues the kidney from CP-mediated oxidative damage. Furthermore, PCR results for caspase-3 and caspase-9 and Bax genes showed downregulation in MLEN treated groups. Therefore, Azadirachta indica can be considered a potential candidate for protection of nephrotoxicity induced by cisplatin.

  1. Neural pathways link social support to attenuated neuroendocrine stress responses

    PubMed Central

    Eisenberger, Naomi I.; Taylor, Shelley E.; Gable, Shelly L.; Hilmert, Clayton J.; Lieberman, Matthew D.

    2009-01-01

    It is well established that a lack of social support constitutes a major risk factor for morbidity and mortality, comparable to risk factors such as smoking, obesity, and high blood pressure. Although it has been hypothesized that social support may benefit health by reducing physiological reactivity to stressors, the mechanisms underlying this process remain unclear. Moreover, to date, no studies have investigated the neurocognitive mechanisms that translate experiences of social support into the health outcomes that follow. To investigate these processes, thirty participants completed three tasks in which daily social support, neurocognitive reactivity to a social stressor, and neuroendocrine responses to a social stressor were assessed. Individuals who interacted regularly with supportive individuals across a ten-day period showed diminished cortisol reactivity to a social stressor. Moreover, greater social support and diminished cortisol responses were associated with diminished activity in the dorsal anterior cingulate cortex (dACC) and Brodmann's area (BA) 8, regions previously associated with the distress of social separation. Lastly, individual differences in dACC and BA 8 reactivity mediated the relationship between high daily social support and low cortisol reactivity, such that supported individuals showed reduced neurocognitive reactivity to social stressors, which in turn was associated with reduced neuroendocrine stress responses. This study is the first to investigate the neural underpinnings of the social support-health relationship and provides evidence that social support may ultimately benefit health by diminishing neural and physiological reactivity to social stressors. PMID:17395493

  2. Azadirachta indica Attenuates Cisplatin-Induced Nephrotoxicity and Oxidative Stress

    PubMed Central

    Abdel Moneim, Ahmed E.; Othman, Mohamed S.; Aref, Ahmed M.

    2014-01-01

    We investigated the effects of methanolic leaves extract of Azadirachta indica (MLEN, 500 mg/kg bwt) on cisplatin- (CP-) induced nephrotoxicity and oxidative stress in rats. CP (5 mg/kg bwt) was injected intraperitoneally and MLEN was given by gastric gavage for 5 days before or after CP injection. After 5 days of CP injection, CP-induced injury of the renal tissue was evidenced (i) as histopathological damage of the renal tissue, (ii) as increases in serum uric acid, urea, and creatinine, (iii) as increases in malondialdehyde (MDA) and nitric oxide (NO), (iv) as decreases in the level of glutathione and activities of superoxide dismutase, catalase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase, and (v) as increase in the expression of nuclear factor kappa B and apoptosis in kidney tissues. However, the oral administration of MLEN to CP-intoxicated rats for 5 days brought back MDA, NO production, and enzymatic and nonenzymatic antioxidants to near normalcy. Moreover, the histological observations evidenced that neem extract effectively rescues the kidney from CP-mediated oxidative damage. Furthermore, PCR results for caspase-3 and caspase-9 and Bax genes showed downregulation in MLEN treated groups. Therefore, Azadirachta indica can be considered a potential candidate for protection of nephrotoxicity induced by cisplatin. PMID:25162019

  3. Tauroursodeoxycholic Acid Attenuates Lipid Accumulation in Endoplasmic Reticulum-Stressed Macrophages

    PubMed Central

    Hua, Yinan; Kandadi, Machender R.; Zhu, Meijun; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Background/Aim Recent evidence suggests that endoplasmic reticulum (ER) stress provoked under diabetic conditions augments the expression of scavenger receptors on macrophages, promoting the uptake of oxidized low-density lipoprotein (ox-LDL) uptake and atherogenesis. The aim of the present study was to test the hypothesis that the chemical chaperone tauroursodeoxycholic acid (TUDCA) attenuates lipid accumulation in macrophages subjected to ER stress. Methods Cultured human macrophages were subjected to ER-stress by treating them with tunicamycin. Lipid-uptake by macrophages subjected to ER-stress in the presence or absence of TUDCA was assessed by oil red O staining and by assessing the cellular uptake of Dil-ox-LDL by fluorescence measurement. Protein levels and phosphorylation status of ER stress markers, insulin-signalling molecules and scavenger receptor were assessed by Western blotting. Results Treatment of cultured human macrophages with the ER-stressor tunicamycin caused an increase in the protein levels of CD-36, and augmentation of lipid-uptake both of which were inhibited by TUDCA. TUDCA-treatment inhibited tunicamycin-induced ER-stress as evidenced by the attenuation of phosphorylation of eukaryotic translation initiation factor-2α and glucose reactive protein-78. In addition, TUDCA improved insulin signaling in macrophages by augmenting Akt-phosphorylation and blunting c-Jun N-terminal kinase activity. Conclusion Inhibition of macrophage ER-stress may represent a potential strategy in preventing atherogenesis under diabetic conditions. PMID:19834331

  4. Longevity of Daphnia and the attenuation of stress responses by melatonin.

    PubMed

    Schwarzenberger, Anke; Christjani, Mark; Wacker, Alexander

    2014-11-06

    The widespread occurrence of melatonin in prokaryotes as well as eukaryotes indicates that this indoleamine is considerably old. This high evolutionary age has led to the development of diverse functions of melatonin in different organisms, such as the detoxification of reactive oxygen species and anti-stress effects. In insects, i.e. Drosophila, the addition of melatonin has also been shown to increase the life span of this arthropod, probably by reducing age-related increasing oxidative stress. Although the presence of melatonin was recently found to exist in the ecological and toxicological model organism Daphnia, its function in this cladoceran has thus far not been addressed. Therefore, we challenged Daphnia with three different stressors in order to investigate potential stress-response attenuating effects of melatonin. i) Female and male daphnids were exposed to melatonin in a longevity experiment, ii) Daphnia were confronted with stress signals from the invertebrate predator Chaoborus sp., and iii) Daphnia were grown in high densities, i.e. under crowding-stress conditions. In our experiments we were able to show that longevity of daphnids was not affected by melatonin. Therefore, age-related increasing oxidative stress was probably not compensated by added melatonin. However, melatonin significantly attenuated Daphnia's response to acute predator stress, i.e. the formation of neckteeth which decrease the ability of the gape-limited predator Chaoborus sp. to handle their prey. In addition, melatonin decreased the extent of crowding-related production of resting eggs of Daphnia. Our results confirm the effect of melatonin on inhibition of stress-signal responses of Daphnia. Until now, only a single study demonstrated melatonin effects on behavioral responses due to vertebrate kairomones, whereas we clearly show a more general effect of melatonin: i) on morphological predator defense induced by an invertebrate kairomone and ii) on life history characteristics

  5. Calibration of Heat Stress Monitor and its Measurement Uncertainty

    NASA Astrophysics Data System (ADS)

    Ekici, Can

    2017-07-01

    Wet-bulb globe temperature (WBGT) equation is a heat stress index that gives information for the workers in the industrial areas. WBGT equation is described in ISO Standard 7243 (ISO 7243 in Hot environments—estimation of the heat stress on working man, based on the WBGT index, ISO, Geneva, 1982). WBGT is the result of the combined quantitative effects of the natural wet-bulb temperature, dry-bulb temperature, and air temperature. WBGT is a calculated parameter. WBGT uses input estimates, and heat stress monitor measures these quantities. In this study, the calibration method of a heat stress monitor is described, and the model function for measurement uncertainty is given. Sensitivity coefficients were derived according to GUM. Two-pressure humidity generators were used to generate a controlled environment. Heat stress monitor was calibrated inside of the generator. Two-pressure humidity generator, which is located in Turkish Standard Institution, was used as the reference device. This device is traceable to national standards. Two-pressure humidity generator includes reference temperature Pt-100 sensors. The reference sensor was sheltered with a wet wick for the calibration of natural wet-bulb thermometer. The reference sensor was centred into a black globe that has got 150 mm diameter for the calibration of the black globe thermometer.

  6. Identification of workers exposed concomitantly to heat stress and chemicals.

    PubMed

    Bourbonnais, Robert; Zayed, Joseph; Lévesque, Martine; Busque, Marc-Antoine; Duguay, Patrice; Truchon, Ginette

    2013-01-01

    In the context of climate change, concomitant exposure to heat stress and chemicals takes on great importance. However, little information is available in this regard. The purpose of this research, therefore, was to develop an approach aimed at identifying worker groups that would be potentially most at risk. The approach comprises 5 consecutive steps: - Establishment of a list of occupations for all industry sectors - Determination of heat stress parameters - Identification of occupations at risk of heat stress - Determination of exposure to chemicals - Identification of occupations potentially most at risk. Overall, 1,010 occupations were selected due to their representativeness of employment sectors in Québec. Using a rating matrix, the risk stemming from exposure to heat stress was judged "critical" or "significant" for 257 occupations. Among these, 136 occupations were identified as showing a high potential of simultaneous exposure to heat stress and chemicals. Lastly, a consultation with thirteen experts made it possible to establish a list of 22 priority occupations, that is, 20 occupations in the metal manufacturing sector, as well as roofers and firefighters. These occupations would merit special attention for an investigation and evaluation of the potential effects on workers' health.

  7. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  8. Orchiectomy attenuates oxidative stress induced by aluminum in rats.

    PubMed

    Contini, María Del Carmen; Millen, Néstor; González, Marcela; Benmelej, Adriana; Fabro, Ana; Mahieu, Stella

    2016-08-01

    The aim of this work was to study whether the increase in antioxidant defenses associated with orchiectomy may account for the reduced susceptibility to aluminum (Al) in male kidney and also to examine whether the reduced antioxidant defenses are associated with androgen levels in orchiectomized (ORX) rats treated with testosterone propionate (TP). Rats were divided into nine groups, namely, intact males (without treatment, treated with sodium lactate, and treated with Al), sham males, ORX males (without treatment, treated with sodium lactate, treated with TP, treated with Al, and treated with TP and Al). Al groups were chronically treated with aluminum lactate for 12 weeks (0.575 mg Al/100 g of body weight, intraperitoneally, three times per week). We reported that ORX rats treated with Al had significantly less lipid peroxidation and an increased level of reduced glutathione (GSH) and GSH/oxidized glutathione ratio in the kidney when compared with intact and TP-treated ORX rats. The activity of superoxide dismutase, catalase, and glutathione peroxidase in ORX rats was much greater than in intact or TP-administered ORX rats. Castration reduced the glomerular alterations caused by Al as well as the number of necrotic tubular cells and nuclear abnormalities. However, we observed a slight alteration in brush border, dilation of proximal tubules, mononuclear infiltrates, and interstitial fibrosis. Castrated males treated with TP showed that this intervention cancels the protective effect of the ORX. This finding suggests that androgens contribute to the development of renal alterations and proteinuria in rats treated with Al. Our results showed that ORX rats are protected against the induction of oxidative stress by Al, but the morphological damage to the kidney tissue induced by the cation was only reduced. Male intact rats treated with Al had more severe glomerulosclerosis, tubular damage, and proteinuria than ORX rats. © The Author(s) 2015.

  9. Eicosapentaenoic Acid Enhances Heat Stress-Impaired Intestinal Epithelial Barrier Function in Caco-2 Cells

    PubMed Central

    Xiao, Guizhen; Tang, Liqun; Yuan, Fangfang; Zhu, Wei; Zhang, Shaoheng; Liu, Zhifeng; Geng, Yan; Qiu, Xiaowen

    2013-01-01

    Objective Dysfunction of the intestinal epithelial tight junction (TJ) barrier is known to have an important etiologic role in the pathophysiology of heat stroke. N-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play a role in maintaining and protecting the TJ structure and function. This study is aimed at investigating whether n-3 PUFAs could alleviate heat stress-induced dysfunction of intestinal tight junction. Methods Human intestinal epithelial Caco-2 cells were pre-incubated with EPA, DHA or arachidonic acid (AA) and then exposed to heat stress. Transepithelial electrical resistance (TEER) and Horseradish Peroxidase (HRP) permeability were measured to analyze barrier integrity. Levels of TJ proteins, including occludin, ZO-1 and claudin-2, were analyzed by Western blot and localized by immunofluorescence microscopy. Messenger RNA levels were determined by quantitative real time polymerase chain reaction (Q-PCR). TJ morphology was observed by transmission electron microscopy. Results EPA effectively attenuated the decrease in TEER and impairment of intestinal permeability in HRP flux induced by heat exposure. EPA significantly elevated the expression of occludin and ZO-1, while DHA was less effective and AA was not at all effective. The distortion and redistribution of TJ proteins, and disruption of morphology were also effectively prevented by pretreatment with EPA. Conclusion This study indicates for the first time that EPA is more potent than DHA in protecting against heat-induced permeability dysfunction and epithelial barrier damage of tight junction. PMID:24066055

  10. Effects of heat stress on ocular blood flow during exhaustive exercise.

    PubMed

    Ikemura, Tsukasa; Hayashi, Naoyuki

    2014-01-01

    The hypothesis that heat stress reduces the ocular blood flow response to exhaustive exercise was tested by measuring ocular blood flow, blood pressure, and end- tidal carbon dioxide partial pressure (PETCO2) in 12 healthy males while they performed cycle ergometer exercise at 75% of the maximal heart rate at ambient temperatures of 20°C (control condition) and 35°C (heat condition), until exhaustion. The blood flows in the retinal and choroidal vasculature (RCV), the superior temporal retinal arteriole (STRA) and the superior nasal retinal arteriole (SNRA) were recorded at rest and at 6 and 16 min after the start of exercise period and at exhaustion [after 16 ± 2 min (mean ± SE) and 24 ± 3 min of exercise in the heat and control condition, respectively]. The mean arterial pressure at exhaustion was significantly lower in the heat condition than in the control condition at both 16 min and exhaustion. The degree of PETCO2 reduction did not differ significantly between the two thermal conditions at either 16 min or exhaustion. The blood flow velocity in the RCV significantly increased from the resting baseline value at 6 min in both thermal conditions (32 ± 6% and 25 ± 5% at 20°C and 35°C, respectively). However, at 16 min the increase in RCV blood flow velocity had returned to the resting baseline level only in the heat condition. At exhaustion, the blood flows in the STRA and SNRA had decreased significantly from the resting baseline value in the heat condition (STRA: -19 ± 5% and SNRA: -30 ± 6%), and SNRA blood flow was lower than that in the control condition (-14 ± 6% vs -30 ± 6% at 20°C and 35°C, respectively), despite the finding that both thermal conditions induced the same reductions in PETCO2 and vascular conductance. These findings suggested that the heat condition decreases or suppresses ocular blood flow via attenuation of pressor response during exhaustive exercise. Key PointsThe ocular (retinal and choroidal) blood flow response to

  11. Effects of Heat Stress on Ocular Blood Flow During Exhaustive Exercise

    PubMed Central

    Ikemura, Tsukasa; Hayashi, Naoyuki

    2014-01-01

    The hypothesis that heat stress reduces the ocular blood flow response to exhaustive exercise was tested by measuring ocular blood flow, blood pressure, and end- tidal carbon dioxide partial pressure (PETCO2) in 12 healthy males while they performed cycle ergometer exercise at 75% of the maximal heart rate at ambient temperatures of 20°C (control condition) and 35°C (heat condition), until exhaustion. The blood flows in the retinal and choroidal vasculature (RCV), the superior temporal retinal arteriole (STRA) and the superior nasal retinal arteriole (SNRA) were recorded at rest and at 6 and 16 min after the start of exercise period and at exhaustion [after 16 ± 2 min (mean ± SE) and 24 ± 3 min of exercise in the heat and control condition, respectively]. The mean arterial pressure at exhaustion was significantly lower in the heat condition than in the control condition at both 16 min and exhaustion. The degree of PETCO2 reduction did not differ significantly between the two thermal conditions at either 16 min or exhaustion. The blood flow velocity in the RCV significantly increased from the resting baseline value at 6 min in both thermal conditions (32 ± 6% and 25 ± 5% at 20°C and 35°C, respectively). However, at 16 min the increase in RCV blood flow velocity had returned to the resting baseline level only in the heat condition. At exhaustion, the blood flows in the STRA and SNRA had decreased significantly from the resting baseline value in the heat condition (STRA: -19 ± 5% and SNRA: -30 ± 6%), and SNRA blood flow was lower than that in the control condition (-14 ± 6% vs -30 ± 6% at 20°C and 35°C, respectively), despite the finding that both thermal conditions induced the same reductions in PETCO2 and vascular conductance. These findings suggested that the heat condition decreases or suppresses ocular blood flow via attenuation of pressor response during exhaustive exercise. Key Points The ocular (retinal and choroidal) blood flow response to

  12. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  13. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  14. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants

    PubMed Central

    Sun, Ai-Zhen; Guo, Fang-Qing

    2016-01-01

    It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants. PMID:27066042

  15. Curcumin attenuates quinocetone-induced oxidative stress and genotoxicity in human hepatocyte L02 cells.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Li, Daowen; Zhao, Kena; Xiao, Xilong

    2015-01-01

    Quinocetone (QCT), a new quinoxaline 1,4-dioxides, has been used as antimicrobial feed additive in China. Potential genotoxicity of QCT was concerned as a public health problem. This study aimed to investigate the protective effect of curcumin on QCT-induced oxidative stress and genotoxicity in human hepatocyte L02 cells. Cell viability and intracellular reactive oxygen species (ROS), biomarkers of oxidative stress including superoxide dismutase (SOD) activity and glutathione (GSH) level were measured. Meanwhile, comet assay and micronucleus assay were carried out to evaluate genotoxicity. The results showed that, compared to the control group, QCT at the concentration ranges of 2-16 μg/mL significantly decreased L02 cell viability, which was significantly attenuated with curcumin pretreatment (2.5 and 5 μM). In addition, QCT significantly increased cell oxidative stress, characterized by increases of intracellular ROS level, while decreased endogenous antioxidant biomarkers GSH level and SOD activity (all p < 0.05 or 0.01). Curcumin pretreatment significantly attenuated ROS formation, inhibited the decreases of SOD activity and GSH level. Furthermore, curcumin significantly reduced QCT-induced DNA fragments and micronuclei formation. These data suggest that curcumin could attenuate QCT-induced cytotoxicity and genotoxicity in L02 cells, which may be attributed to ROS scavenging and anti-oxidative ability of curcumin. Importantly, consumption of curcumin may be a plausible way to prevent quinoxaline 1,4-dioxides-mediated oxidative stress and genotoxicity in human or animals.

  16. 4-PBA improves lithium-induced nephrogenic diabetes insipidus by attenuating ER stress.

    PubMed

    Zheng, Peili; Lin, Yu; Wang, Feifei; Luo, Renfei; Zhang, Tiezheng; Hu, Shan; Feng, Pinning; Liang, Xinling; Li, Chunling; Wang, Weidong

    2016-10-01

    Endoplasmic reticulum (ER) stress has been implicated in some types of glomerular and tubular disorders. The objectives of this study were to elucidate the role of ER stress in lithium-induced nephrogenic diabetes insipidus (NDI) and to investigate whether attenuation of ER stress by 4-phenylbutyric acid (4-PBA) improves urinary concentrating defect in lithium-treated rats. Wistar rats received lithium (40 mmol/kg food), 4-PBA (320 mg/kg body wt by gavage every day), or no treatment (control) for 2 wk, and they were dehydrated for 24 h before euthanasia. Lithium treatment resulted in increased urine output and decreased urinary osmolality, which was significantly improved by 4-PBA. 4-PBA also prevented reduced protein expression of aquaporin-2 (AQP2), pS256-AQP2, and pS261-AQP2 in the inner medulla of kidneys from lithium-treated rats after 24-h dehydration. Lithium treatment resulted in increased expression of ER stress markers in the inner medulla, which was associated with dilated cisternae and expansion of ER in the inner medullary collecting duct (IMCD) principal cells. Confocal immunofluorescence studies showed colocalization of a molecular chaperone, binding IgG protein (BiP), with AQP2 in principal cells. Immunohistochemistry demonstrated increased intracellular expression of BiP and decreased AQP2 expression in IMCD principal cells of kidneys from lithium-treated rats. 4-PBA attenuated expression of ER stress markers and recovered ER morphology. In IMCD suspensions isolated from lithium-treated rats, 4-PBA incubation was also associated with increased AQP2 expression and ameliorated ER stress. In conclusion, in experimental lithium-induced NDI, 4-PBA improved the urinary concentrating defect and increased AQP2 expression, likely via attenuating ER stress in IMCD principal cells. Copyright © 2016 the American Physiological Society.

  17. Neuroendocrine and cardiovascular reactions to acute psychological stress are attenuated in smokers.

    PubMed

    Ginty, Annie T; Jones, Alexander; Carroll, Douglas; Roseboom, Tessa J; Phillips, Anna C; Painter, Rebecca; de Rooij, Susanne R

    2014-10-01

    A number of studies have now examined the association between smoking and the magnitude of physiological reactions to acute psychological stress. However, no large-scale study has demonstrated this association incorporating neuroendocrine in addition to cardiovascular reactions to stress. The present study compared neuroendocrine and cardiovascular reactions to acute stress exposure in current smokers, ex-smokers, and those who had never smoked in a large community sample. Salivary cortisol, systolic and diastolic blood pressure, heart rate and frequency components of systolic blood pressure and heart rate variability were measured at rest and during exposure to a battery of three standardized stress tasks in 480 male and female participants from the Dutch Famine Birth Cohort Study. Current smokers had significantly lower cortisol, systolic and diastolic blood pressure, and heart rate reactions to stress. They also exhibited smaller changes in the low frequency band of blood pressure variability compared to ex- and never smokers. There were no group differences in stress related changes in overall heart rate variability as measured by the root mean square of successive interbeat interval differences or in the high frequency band of heart rate variability. In all cases, effects remained significant following statistical adjustment for a host of variables likely to be associated with reactivity and/or smoking. In secondary analyses, there were no significant associations between lifetime cigarette consumption or current consumption and stress reactivity. In conclusion, compared to non-smokers and ex-smokers, current smokers exhibited attenuated neuroendocrine and cardiovascular reactions to acute psychological stress. Among smokers and ex-smokers, there is no evidence that lifetime exposure was associated with physiological reactions to acute stress, nor that current levels of cigarette consumption were associated with reactivity. It is possible, then, that

  18. Development of a telemetric heat stress monitor. Final report

    SciTech Connect

    1996-10-21

    Hazardous-materials workers and firefighters wear clothing that protects them from external hazards, but the sealed environment of a protective suit makes its wearer susceptible to heat stress. A prototype of the Telemetric Heat Stress Monitor (THSM) was developed at LANL to warn workers, and personnel monitoring the workers, of incipient heat stress by detecting the workers` elevated temperatures and heart rates. The purpose of this CRADA was to transfer the information and technology from LANL to the industrial partner, and to assist in the further development of a commercial THSM product. The THSM is the first extensive telemetric physiological monitor to be developed; previous monitors used wires between the sensors and the recording and display equipment. Developing a reliable, small, battery-powered, inexpensive telemetry system to share the RF spectrum with today`s proliferating wireless devices was a significant technical accomplishment.

  19. Low, medium and high heat tolerant strains of Listeria monocytogenes and increased heat stress resistance after exposure to sublethal heat

    USDA-ARS?s Scientific Manuscript database

    Listeria monocytogenes exhibits sophisticated adaptive mechanisms to counteract higher levels of lethal acid, heat, salt or oxidative stresses after pre-exposure to sublethal concentrations of homogenous stress. A group of 37 strains representing all 13 serotypes of Listeria monocytogenes with initi...

  20. Salidroside Protects Against 6-Hydroxydopamine-Induced Cytotoxicity by Attenuating ER Stress.

    PubMed

    Tao, Kai; Wang, Bao; Feng, Dayun; Zhang, Wei; Lu, Fangfang; Lai, Juan; Huang, Lu; Nie, Tiejian; Yang, Qian

    2016-02-01

    Parkinson's disease (PD) is a neurodegenerative disease characterized by a persistent decline of dopaminergic (DA) neurons in the substantia nigra pars compacta. Despite its frequency, effective therapeutic strategies that halt the neurodegenerative processes are lacking, reinforcing the need to better understand the molecular drivers of this disease. Importantly, increasing evidence suggests that the endoplasmic reticulum (ER) stress-induced unfolded protein response is likely involved in DA neuronal death. Salidroside, a major compound isolated from Rhodiola rosea L., possesses potent anti-oxidative stress properties and protects against DA neuronal death. However, the underlying mechanisms are not well understood. In the present study, we demonstrate that salidroside prevents 6-hydroxydopamine (6-OHDA)-induced cytotoxicity by attenuating ER stress. Furthermore, treatment of a DA neuronal cell line (SN4741) and primary cortical neurons with salidroside significantly reduced neurotoxin-induced increases in cytoplasmic reactive oxygen species and calcium, both of which cause ER stress, and cleaved caspase-12, which is responsible for ER stress-induced cell death. Together, these results suggest that salidroside protects SN4741 cells and primary cortical neurons from 6-OHDA-induced neurotoxicity by attenuating ER stress. This provides a rationale for the investigation of salidroside as a potential therapeutic agent in animal models of PD.

  1. Thermal preconditioning and heat-shock protein 72 preserve synaptic transmission during thermal stress.

    PubMed

    Kelty, Jonathan D; Noseworthy, Peter A; Feder, Martin E; Robertson, R Meldrum; Ramirez, Jan-Marino

    2002-01-01

    As with other tissues, exposing the mammalian CNS to nonlethal heat stress (i.e., thermal preconditioning) increases levels of heat-shock proteins (Hsps) such as Hsp70 and enhances the viability of neurons under subsequent stress. Using a medullary slice preparation from a neonatal mouse, including the site of the neural network that generates respiratory rhythm (the pre-Bötzinger complex), we show that thermal preconditioning has an additional fundamental effect, protection of synaptic function. Relative to 30 degrees C baseline, initial thermal stress (40 degrees C) greatly increased the frequency of synaptic currents recorded without pharmacological manipulation by approximately 17-fold (p < 0.01) and of miniature postsynaptic currents (mPSCs) elicited by GABA (20-fold) glutamate (10-fold), and glycine (36-fold). Thermal preconditioning (15 min at 40 degrees C) eliminated the increase in frequency of overall synaptic transmission during acute thermal stress and greatly attenuated the frequency increases of GABAergic, glutamatergic, and glycinergic mPSCs (for each, p < 0.05). Moreover, without thermal preconditioning, incubation of slices in solution containing inducible Hsp70 (Hsp72) mimicked the effect of thermal preconditioning on the stress-induced release of neurotransmitter. That preconditioning and exogenous Hsp72 can affect and preserve normal physiological function has important therapeutic implications.

  2. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density.

    PubMed

    Arias, Leticia N; Sambucetti, Pablo; Scannapieco, Alejandra C; Loeschcke, Volker; Norry, Fabian M

    2012-07-01

    Survival of a potentially lethal high temperature stress is a genetically variable thermal adaptation trait in many organisms. Organisms cope with heat stress by basal or induced thermoresistance. Here, we tested quantitative trait loci (QTL) for heat stress survival (HSS) in Drosophila melanogaster, with and without a cyclic heat-hardening pre-treatment, for flies that were reared at low (LD) or high (HD) density. Mapping populations were two panels of recombinant inbred lines (RIL), which were previously constructed from heat stress-selected stocks: RIL-D48 and RIL-SH2, derived from backcrosses to stocks of low and high heat resistance, respectively. HSS increased with heat hardening in both LD and HD flies. In addition, HSS increased consistently with density in non-hardened flies. There was a significant interaction between heat hardening and density effects in RIL-D48. Several QTL were significant for both density and hardening treatments. Many QTL overlapped with thermotolerance QTL identified for other traits in previous studies based on LD cultures only. However, three new QTL were found in HD only (cytological ranges: 12E-16F6; 30A3-34C2; 49C-50C). Previously found thermotolerance QTL were also significant for flies from HD cultures.

  3. Influence of heat stress to matrix on bone formation.

    PubMed

    Yoshida, Keiko; Uoshima, Katsumi; Oda, Kimimitsu; Maeda, Takeyasu

    2009-08-01

    It is important to know the etiology of implant failure. It has been reported that heat stress during drilling was one of the causes for failure and the threshold was 47 degrees C. However, clinically, we encounter cases in which overheating does not seem to affect osseointegration eventually. The purpose of this study was to assess histologically the spatio-temporal effect of heat stress on bone formation after overheating the bone matrix. Rat calvarial bone was heated to 37 degrees C, 43 degrees C, 45 degrees C and 48 degrees C for 15 min by a temperature stimulator. Paraffin sections were prepared 1, 3 and 5 weeks after heating and investigated histologically under light microscopy. Hematoxylin and eosin staining, alkaline phosphatase (ALP), osteopontin (OPN), heat shock protein 27 (Hsp27) and heat shock protein 70 (Hsp70) immunohistochemistry and tartrate-resistant acid phosphatase (TRAP) enzyme histochemistry were carried out. The area of dead osteocytes was calculated and statistically analyzed. Apoptotic osteocytes were detected by the terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) method. Along with the temperature increase, the area of dead osteocytes increased and regeneration of the periosteal membrane was delayed. Hsps- and TUNEL-positive cells were only seen in the 48 degrees C group. Spatio-temporal changes of TRAP- and ALP-positive cell numbers were observed, while OPN expression was mostly absent. Even after 48 degrees C stimulation, bone formation on the calvarial surface was observed after 5 weeks. Although there was a temperature-dependent delay in bone formation after heat stress, the 48 degrees C heat stress did not obstruct bone formation eventually. This delay was probably caused by slow periosteal membrane regeneration.

  4. Sequence determinants of prokaryotic gene expression level under heat stress.

    PubMed

    Xiong, Heng; Yang, Yi; Hu, Xiao-Pan; He, Yi-Ming; Ma, Bin-Guang

    2014-11-01

    Prokaryotic gene expression is environment-dependent and temperature plays an important role in shaping the gene expression profile. Revealing the regulation mechanisms of gene expression pertaining to temperature has attracted tremendous efforts in recent years particularly owning to the yielding of transcriptome and proteome data by high-throughput techniques. However, most of the previous works concentrated on the characterization of the gene expression profile of individual organism and little effort has been made to disclose the commonality among organisms, especially for the gene sequence features. In this report, we collected the transcriptome and proteome data measured under heat stress condition from recently published literature and studied the sequence determinants for the expression level of heat-responsive genes on multiple layers. Our results showed that there indeed exist commonness and consistent patterns of the sequence features among organisms for the differentially expressed genes under heat stress condition. Some features are attributed to the requirement of thermostability while some are dominated by gene function. The revealed sequence determinants of bacterial gene expression level under heat stress complement the knowledge about the regulation factors of prokaryotic gene expression responding to the change of environmental conditions. Furthermore, comparisons to thermophilic adaption have been performed to reveal the similarity and dissimilarity of the sequence determinants for the response to heat stress and for the adaption to high habitat temperature, which elucidates the complex landscape of gene expression related to the same physical factor of temperature. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Enemies with benefits: parasitic endoliths protect mussels against heat stress

    NASA Astrophysics Data System (ADS)

    Zardi, G. I.; Nicastro, K. R.; McQuaid, C. D.; Ng, T. P. T.; Lathlean, J.; Seuront, L.

    2016-08-01

    Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than non-parasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation.

  6. Enemies with benefits: parasitic endoliths protect mussels against heat stress

    PubMed Central

    Zardi, G. I.; Nicastro, K. R.; McQuaid, C. D.; Ng, T. P. T.; Lathlean, J.; Seuront, L.

    2016-01-01

    Positive and negative aspects of species interactions can be context dependant and strongly affected by environmental conditions. We tested the hypothesis that, during periods of intense heat stress, parasitic phototrophic endoliths that fatally degrade mollusc shells can benefit their mussel hosts. Endolithic infestation significantly reduced body temperatures of sun-exposed mussels and, during unusually extreme heat stress, parasitised individuals suffered lower mortality rates than non-parasitised hosts. This beneficial effect was related to the white discolouration caused by the excavation activity of endoliths. Under climate warming, species relationships may be drastically realigned and conditional benefits of phototrophic endolithic parasites may become more important than the costs of infestation. PMID:27506855

  7. Crop heat stress in the context of Earth System modeling

    NASA Astrophysics Data System (ADS)

    Levis, Samuel

    2014-05-01

    Siebert et al (2014 Environ. Res. Lett. 9 044012) suggest that crop models do not represent the effect of heat stress on crop yield adequately unless they apply such effect to sensitive phases in a crop’s growth cycle. Siebert et al focus particularly on the phase considered most sensitive for wheat yield in Germany, the time of anthesis. Siebert et al find that observed canopy rather than 2 m or ground temperature better quantifies the effect of heat stress during anthesis on wheat yield in Germany when evaluated against data from pot experiments under controlled conditions.

  8. Yield-stress fluid drop impact on heated surfaces

    NASA Astrophysics Data System (ADS)

    Blackwell, Brendan; Wu, Alex; Ewoldt, Randy

    2015-11-01

    Yield-stress fluids, including gels and pastes, are effectively fluid at high stress and solid at low stress. In liquid-solid impacts, these fluids can stick and accumulate where they impact, motivating several applications of these rheologically-complex materials. Here we use high-speed imaging to experimentally study liquid-solid impact of yield-stress fluids on heated surfaces. At low temperatures yield-stress fluids tend to stick to surfaces and leave a coating layer. At sufficiently high temperatures the Leidenfrost effect can be observed, wherein a layer of vapor is created between the material and the surface due to rapid boiling, which can prevent a droplet of yield-stress fluid from sticking to the surface. In this study rheological material properties, drop size, drop velocity, and surface temperature are varied to characterize behavioral regimes. Material sticking to and releasing from the surface is observed as a function of the input parameters.

  9. Research in occupational heat stress in India: Challenges and opportunities

    PubMed Central

    Srinivasan, Krishnan; Maruthy, K. N.; Venugopal, Vidhya; Ramaswamy, Padmavathi

    2016-01-01

    Occupational heat stress is a major health burden with several potential negative health and well-being outcomes. It is only in the recent years medical research has addressed this risk factor. The aim of this paper is to present an overview of studies in the area of occupational heat stress and its health impacts. Research in occupational heat stress in developing countries like India is limited because of several challenges and constraints. Few challenges are permission from industries to publish the data, resistance for change from employers and workers, improper record of heat/any occupational disease by the employer or worker, study design, and paucity in number of studies. Proper education and guidelines can help to overcome some of the constraints. Proper and correct guidelines will help in mitigating the effects of excessive heat exposure on the health of workers. The studies in this area are limited, and the association between occupational heat exposure and health impacts is not clearly established. Hence, carefully designed studies are required to examine this association and thereby provide valuable information to protect worker's health. PMID:28194079

  10. Hypersonic Composites Resist Extreme Heat and Stress

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Through research contracts with NASA, Materials and Electrochemical Research Corporation (MER), of Tucson, Arizona, contributed a number of technologies to record-breaking hypersonic flights. Through this research, MER developed a coating that successfully passed testing to simulate Mach 10 conditions, as well as provide several additional carbon-carbon (C-C) composite components for the flights. MER created all of the leading edges for the X-43A test vehicles at Dryden-considered the most critical parts of this experimental craft. In addition to being very heat resistant, the coating had to be very lightweight and thin, as the aircraft was designed to very precise specifications and could not afford to have a bulky coating. MER patented its carbon-carbon (C-C) composite process and then formed a spinoff company, Frontier Materials Corporation (FMC), also based in Tucson. FMC is using the patent in conjunction with low-cost PAN (polyacrylonitrile)-based fibers to introduce these materials to the commercial markets. The C-C composites are very lightweight and exceptionally strong and stiff, even at very high temperatures. The composites have been used in industrial heating applications, the automotive and aerospace industries, as well as in glass manufacturing and on semiconductors. Applications also include transfer components for glass manufacturing and structural members for carrier support in semiconductor processing.

  11. Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats.

    PubMed

    Barman, Susmita; Srinivasan, Krishnapura

    2017-02-01

    Oxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.

  12. Study of heat-stress levels in naturally ventilated sheep barns during heat waves: development and assessment of regression models

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Bartzanas, T.; Panagakis, P.; Zhang, G.; Kittas, C.

    2016-11-01

    It is well documented that heat-stress burdens sheep welfare and productivity. Peak heat-stress levels are observed when high temperatures prevail, i.e. during heat waves; however, continuous measurements inside livestock buildings are not usually available for long periods so as to study the variation of summer heat-stress levels for several years, especially during extreme hot weather. Α methodology to develop a long time series of summer temperature and relative humidity inside naturally ventilated sheep barns is proposed. The accuracy and the transferability of the developed linear regression models were verified. Temperature Humidity Index (THI) was used to assess sheep's potential heat-stress. Τhe variation of THI inside a barn during heat wave and non-heat wave days was examined, and the results were comparatively assessed. The analysis showed that sheep were exposed to moderate, severe, and extreme severe heat-stress in 10, 21 and 66 % of hours, respectively, during heat wave days, while the corresponding values during non-heat wave days were 14, 33 and 43 %, respectively. The heat load on sheep was much higher during heat wave events than during non-heat wave periods. Additionally, based on the averaged diurnal variation of THI, it was concluded that extreme severe heat-stress conditions were prevailing between 1000 and 2400 hours local time during heat wave days. Cool off night periods were never and extremely rarely detected during heat wave and non-heat wave days, respectively.

  13. Study of heat-stress levels in naturally ventilated sheep barns during heat waves: development and assessment of regression models.

    PubMed

    Papanastasiou, D K; Bartzanas, T; Panagakis, P; Zhang, G; Kittas, C

    2016-11-01

    It is well documented that heat-stress burdens sheep welfare and productivity. Peak heat-stress levels are observed when high temperatures prevail, i.e. during heat waves; however, continuous measurements inside livestock buildings are not usually available for long periods so as to study the variation of summer heat-stress levels for several years, especially during extreme hot weather. Α methodology to develop a long time series of summer temperature and relative humidity inside naturally ventilated sheep barns is proposed. The accuracy and the transferability of the developed linear regression models were verified. Temperature Humidity Index (THI) was used to assess sheep's potential heat-stress. Τhe variation of THI inside a barn during heat wave and non-heat wave days was examined, and the results were comparatively assessed. The analysis showed that sheep were exposed to moderate, severe, and extreme severe heat-stress in 10, 21 and 66 % of hours, respectively, during heat wave days, while the corresponding values during non-heat wave days were 14, 33 and 43 %, respectively. The heat load on sheep was much higher during heat wave events than during non-heat wave periods. Additionally, based on the averaged diurnal variation of THI, it was concluded that extreme severe heat-stress conditions were prevailing between 1000 and 2400 hours local time during heat wave days. Cool off night periods were never and extremely rarely detected during heat wave and non-heat wave days, respectively.

  14. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy

    PubMed Central

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F.; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A.; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A.; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela

    2016-01-01

    Climate change has led to significant rise of 0.8°C–0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. PMID:27151892

  15. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy.

    PubMed

    Glaser, Jason; Lemery, Jay; Rajagopalan, Balaji; Diaz, Henry F; García-Trabanino, Ramón; Taduri, Gangadhar; Madero, Magdalena; Amarasinghe, Mala; Abraham, Georgi; Anutrakulchai, Sirirat; Jha, Vivekanand; Stenvinkel, Peter; Roncal-Jimenez, Carlos; Lanaspa, Miguel A; Correa-Rotter, Ricardo; Sheikh-Hamad, David; Burdmann, Emmanuel A; Andres-Hernando, Ana; Milagres, Tamara; Weiss, Ilana; Kanbay, Mehmet; Wesseling, Catharina; Sánchez-Lozada, Laura Gabriela; Johnson, Richard J

    2016-08-08

    Climate change has led to significant rise of 0.8°C-0.9°C in global mean temperature over the last century and has been linked with significant increases in the frequency and severity of heat waves (extreme heat events). Climate change has also been increasingly connected to detrimental human health. One of the consequences of climate-related extreme heat exposure is dehydration and volume loss, leading to acute mortality from exacerbations of pre-existing chronic disease, as well as from outright heat exhaustion and heat stroke. Recent studies have also shown that recurrent heat exposure with physical exertion and inadequate hydration can lead to CKD that is distinct from that caused by diabetes, hypertension, or GN. Epidemics of CKD consistent with heat stress nephropathy are now occurring across the world. Here, we describe this disease, discuss the locations where it appears to be manifesting, link it with increasing temperatures, and discuss ongoing attempts to prevent the disease. Heat stress nephropathy may represent one of the first epidemics due to global warming. Government, industry, and health policy makers in the impacted regions should place greater emphasis on occupational and community interventions. Copyright © 2016 by the American Society of Nephrology.

  16. Intradermal microdialysis of hypertonic saline attenuates cutaneous vasodilatation in response to local heating.

    PubMed

    DuPont, Jennifer J; Farquhar, William B; Edwards, David G

    2011-07-01

    We tested the hypothesis that microdialysis of hypertonic saline would attenuate the skin blood flow response to local heating. Seventeen healthy subjects (23 ± 1 years old) were studied. In one group (n = 9), four microdialysis fibres were placed in the forearm skin and infused with the following: (1) Ringer solution; (2) normal saline (0.9% NaCl); (3) hypertonic saline (3% NaCl); and (4) 10 mm l-NAME. A second group (n = 8) was infused with the following: (1) normal saline; (2) hypertonic saline; (3) normal saline + l-NAME; and (4) hypertonic saline + l-NAME. Red blood cell flux was measured via laser Doppler flowmetry during local heating to 42°C. Site-specific maximal vasodilatation was determined by infusing 28 mm sodium nitroprusside while the skin was heated to 43°C. Data were expressed as the percentage of maximal cutaneous vascular conductance (%CVC(max)). The local heating response at the Ringer solution and normal saline sites did not differ (n = 9; initial peak Ringer solution, 69 ± 6 versus normal saline, 66 ± 2%CVC(max); plateau Ringer solution, 89 ± 4 versus normal saline, 89 ± 5%CVC(max)). Hypertonic saline reduced the initial peak (n = 9; normal saline, 66 ± 2 versus hypertonic saline, 54 ± 4%CVC(max); P < 0.05) and plateau (normal saline, 89 ± 5 versus hypertonic saline, 78 ± 2%CVC(max); P < 0.05) compared with normal saline. Plateau %CVC(max) was attenuated to a similar value at the normal saline + l-NAME and hypertonic saline + l-NAME sites (n = 8; normal saline + l-NAME, 39 ± 6 and hypertonic saline + l-NAME, 39 ± 5%CVC(max)). The nitric oxide contribution (plateau %CVC(max) - l-NAME plateau %CVC(max)) was lower at the hypertonic saline site (normal saline, 55 ± 6 versus hypertonic saline, 35 ± 4; P < 0.01). These data suggest an effect of salt on the cutaneous response to local heating, which may be mediated through a decreased production and/or availability of nitric oxide.

  17. Thermal Indices and Thermophysiological Modeling for Heat Stress.

    PubMed

    Havenith, George; Fiala, Dusan

    2015-12-15

    The assessment of the risk of human exposure to heat is a topic as relevant today as a century ago. The introduction and use of heat stress indices and models to predict and quantify heat stress and heat strain has helped to reduce morbidity and mortality in industrial, military, sports, and leisure activities dramatically. Models used range from simple instruments that attempt to mimic the human-environment heat exchange to complex thermophysiological models that simulate both internal and external heat and mass transfer, including related processes through (protective) clothing. This article discusses the most commonly used indices and models and looks at how these are deployed in the different contexts of industrial, military, and biometeorological applications, with focus on use to predict related thermal sensations, acute risk of heat illness, and epidemiological analysis of morbidity and mortality. A critical assessment is made of tendencies to use simple indices such as WBGT in more complex conditions (e.g., while wearing protective clothing), or when employed in conjunction with inappropriate sensors. Regarding the more complex thermophysiological models, the article discusses more recent developments including model individualization approaches and advanced systems that combine simulation models with (body worn) sensors to provide real-time risk assessment. The models discussed in the article range from historical indices to recent developments in using thermophysiological models in (bio) meteorological applications as an indicator of the combined effect of outdoor weather settings on humans.

  18. Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity.

    PubMed

    Li, G; Liu, J-Y; Zhang, H-X; Li, Q; Zhang, S-W

    2015-01-01

    It is known that excessive sympathetic activity and oxidative stress are enhanced in obesity. This study aimed to clarify whether exercise training (ET) attenuates sympathetic activation and oxidative stress in obesity. The obesity was induced by high-fat diet (HFD) for 12 weeks. Male Sprague-Dawley rats were assigned to four groups: regular diet (RD) plus sedentary (RD-S), RD plus ET (RD-ET), HFD plus sedentary (HFD-S), and HFD plus ET (HFD-ET). The rats in RD-ET and HFD-ET groups were trained on a motorized treadmill for 60 min/day, five days/week for 8 weeks. The sympathetic activity was evaluated by the plasma norepinephrine (NE) level. The superoxide anion, malondialdehyde and F2-isoprostanes levels in serum and muscles were measured to evaluate oxidative stress. The ET prevented the increases in the body weight, arterial pressure and white adipose tissue mass in HFD rats. The NE level in plasma and oxidative stress related parameters got lower in HFD-ET group compared with HFD-S group. We have found decreased mRNA and protein levels of toll-like receptor (TLR)-2 and TLR-4 by ET in HFD rats. These findings suggest that ET may be effective for attenuating sympathetic activation and oxidative stress in diet-induced obesity.

  19. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress.

    PubMed

    Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C

    2012-06-28

    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the 'oligoprotective' effects of CBD during inflammation.

  20. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress

    PubMed Central

    Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C

    2012-01-01

    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the ‘oligoprotective' effects of CBD during inflammation. PMID:22739983

  1. Heat stress assessment among workers in a Nicaraguan sugarcane farm

    PubMed Central

    Delgado Cortez, Orlando

    2009-01-01

    Background Heat illness is a major cause of preventable morbidity worldwide. Workers exposed to intense heat can become unable to activate compensation mechanisms, putting their health at risk. Heat stress also has a direct impact on production by causing poor task performance and it increases the possibility of work-related morbidity and injuries. During the sugarcane harvest period, workers are exposed to excessive sunlight and heat from approximately 6 am to 3 pm. A first assessment of heat stress during the 2006/2007 harvesting season served to redesign the existing rehydration measures. In this project, sugarcane workers were provided with more rehydration solutions and water during their work schedule. Objective To assess heat stress preventive measures in order to improve existing rehydration strategies as a means of increasing productivity. Methods A small group of 22 workers were followed up for 15 days during working hours, from 6 am to 3 pm. Selection criteria were defined: to have worked more than 50% of the day's working schedule and to have worked for at least 10 days of the follow-up period. A simple data recollection sheet was used. Information regarding the amount of liquid intake was registered. Production output data was also registered. Temperature measurements were recorded by using a portable temperature monitoring device (‘EasyLog’, model EL-USB-2). Results The average temperature measurements were above the Nicaraguan Ministry of Labour thresholds. Seven workers drank 7–8 L of liquid, improving their production. Output production increased significantly (p=0.005) among those best hydrated, from 5.5 to 8 tons of cut sugarcane per worker per day. Conclusions Productivity improved with the new rehydration measures. Awareness among workers concerning heat stress prevention was increased. PMID:20052378

  2. Attenuating the surface Urban Heat Island within the Local Thermal Zones through land surface modification.

    PubMed

    Wang, Jiong; Ouyang, Wanlu

    2017-02-01

    Inefficient mitigation of excessive heat is attributed to the discrepancy between the scope of climate research and conventional planning practice. This study approaches this problem at both domains. Generally, the study, on one hand, claims that the climate research of the temperature phenomenon should be at local scale, where implementation of planning and design strategies can be more feasible. On the other hand, the study suggests that the land surface factors should be organized into zones or patches, which conforms to the urban planning and design manner. Thus in each zone, the land surface composition of those excessively hot places can be compared to the zonal standard. The comparison gives guidance to the modification of the land surface factors at the target places. Specifically, this study concerns the Land Surface Temperature (LST) in Wuhan, China. The land surface is classified into Local Thermal Zones (LTZ). The specifications of temperature sensitive land surface factors are relative homogeneous in each zone and so is the variation of the LST. By extending the city scale analysis of Urban Heat Island into local scale, the Local Surface Urban Heat Islands (LSUHIs) are extracted. Those places in each zone that constantly maintain as LSUHI and exceed the homogenous LST variation are considered as target places or hotspots with higher mitigation or adaptation priority. The operation is equivalent to attenuate the abnormal LST variation in each zone. The framework is practical in the form of prioritization and zoning, and mitigation strategies are essentially operated locally.

  3. Carotid baroreflex responsiveness in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.

    2000-01-01

    The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.

  4. Carotid baroreflex responsiveness in heat-stressed humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.

    2000-01-01

    The effects of whole body heating on human baroreflex function are relatively unknown. The purpose of this project was to identify whether whole body heating reduces the maximal slope of the carotid baroreflex. In 12 subjects, carotid-vasomotor and carotid-cardiac baroreflex responsiveness were assessed in normothermia and during whole body heating. Whole body heating increased sublingual temperature (from 36.4 +/- 0.1 to 37.4 +/- 0.1 degrees C, P < 0.01) and increased heart rate (from 59 +/- 3 to 83 +/- 3 beats/min, P < 0. 01), whereas mean arterial blood pressure (MAP) was slightly decreased (from 88 +/- 2 to 83 +/- 2 mmHg, P < 0.01). Carotid-vasomotor and carotid-cardiac responsiveness were assessed by identifying the maximal gain of MAP and heart rate to R wave-triggered changes in carotid sinus transmural pressure. Whole body heating significantly decreased the responsiveness of the carotid-vasomotor baroreflex (from -0.20 +/- 0.02 to -0.13 +/- 0.02 mmHg/mmHg, P < 0.01) without altering the responsiveness of the carotid-cardiac baroreflex (from -0.40 +/- 0.05 to -0.36 +/- 0.02 beats x min(-1) x mmHg(-1), P = 0.21). Carotid-vasomotor and carotid-cardiac baroreflex curves were shifted downward and upward, respectively, to accommodate the decrease in blood pressure and increase in heart rate that accompanied the heat stress. Moreover, the operating point of the carotid-cardiac baroreflex was shifted closer to threshold (P = 0.02) by the heat stress. Reduced carotid-vasomotor baroreflex responsiveness, coupled with a reduction in the functional reserve for the carotid baroreflex to increase heart rate during a hypotensive challenge, may contribute to increased susceptibility to orthostatic intolerance during a heat stress.

  5. Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats.

    PubMed

    Zeeni, N; Bassil, M; Fromentin, G; Chaumontet, C; Darcel, N; Tome, D; Daher, C F

    2015-02-01

    Exposure to an enriched environment (EE) or the intake of a highly palatable diet may reduce the response to chronic stress in rodents. To further explore the relationships between EE, dietary intake and stress, male Sprague-Dawley rats were fed one of two diets for 5 weeks: high carbohydrate (HC) or "cafeteria" (CAF) (Standard HC plus a choice of highly palatable cafeteria foods: chocolate, biscuits, and peanut butter). In addition, they were either housed in empty cages or cages with EE. After the first two weeks, half of the animals from each group were stressed daily using a chronic variable stress (CVS) paradigm, while the other half were kept undisturbed. Rats were sacrificed at the end of the 5-week period. The effects of stress, enrichment and dietary intake on animal adiposity, serum lipids, and stress hormones were analyzed. Results showed an increase in intra-abdominal fat associated with the CAF diet and an increase in body weight gain associated with both the CAF diet and EE. Furthermore, the increase in ACTH associated with CVS was attenuated in the presence of EE and the CAF diet independently while the stress-induced increase in corticosterone was reduced by the combination of EE and CAF feeding. The present study provides evidence that the availability of a positive environment combined to a highly palatable diet increases resilience to the effects of CVS in rats. These results highlight the important place of palatable food and supportive environments in reducing central stress responses.

  6. Body Temperature Versus Microclimate Selection in Heat Stressed Dairy Cows

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study is to characterize the thermoregulatory responses of unrestrained heat-stressed dairy cows within a freestall environment using fan and spray configurations for cooling cows while lying or standing. An experimental treatment sprayed individual cows lying in freestalls from ...

  7. Mechanisms of Aerobic Performance Impairment With Heat Stress and Dehydration

    DTIC Science & Technology

    2010-08-01

    Jones (65) demonstrated that a menthol mouth rinse reduced RPE (com- pared with placebo) by 15% and improved TTE by 9% during exercise-heat stress...potentials. Appl Physiol Nutr Metab 35: 456–463, 2010. 65. Mundel T, Jones DA. The effects of swilling an l()- menthol solution during exercise in the

  8. Genetic solutions to infertility caused by heat stress

    USDA-ARS?s Scientific Manuscript database

    Reproductive function in mammals is very susceptible to disruption by heat stress. In lactating dairy cows, for example, pregnancy rates per insemination can be as low as 10-15% in the summer vs. 25-40% in cool weather. Reduced fertility in females is caused by a combination of 1) the negative cons...

  9. Peripheral vascular responses to heat stress after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Looft-Wilson, Robin C.; Gisolfi, Carl V.

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether hindlimb suspension (which simulates the effects of microgravity) results in impaired hemodynamic responses to heat stress or alterations in mesenteric small artery sympathetic nerve innervation. METHODS: Over 28 d, 16 male Sprague-Dawley rats were hindlimb-suspended, and 13 control rats were housed in the same type of cage. After the treatment, mean arterial pressure (MAP), colonic temperature (Tcol), and superior mesenteric and iliac artery resistances (using Doppler flowmetry) were measured during heat stress [exposure to 42 degrees C until the endpoint of 80 mm Hg blood pressure was reached (75 +/- 9 min); endpoint Tcore = 43.6 +/- 0.2] while rats were anesthetized (sodium pentobarbital, 50 mg x kg(-1) BW). RESULTS: Hindlimb-suspended and control rats exhibited similar increases in Tcol, MAP, and superior mesenteric artery resistance, and similar decreases in iliac resistance during heat stress (endpoint was a fall in MAP below 80 mm Hg). Tyrosine hydroxylase immunostaining indicated similar sympathetic nerve innervation in small mesenteric arteries from both groups. CONCLUSION: Hindlimb suspension does not alter the hemodynamic or thermoregulatory responses to heat stress in the anesthetized rat or mesenteric sympathetic nerve innervation, suggesting that this sympathetic pathway is intact.

  10. Peripheral vascular responses to heat stress after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Looft-Wilson, Robin C.; Gisolfi, Carl V.

    2002-01-01

    PURPOSE: The purpose of this study was to determine whether hindlimb suspension (which simulates the effects of microgravity) results in impaired hemodynamic responses to heat stress or alterations in mesenteric small artery sympathetic nerve innervation. METHODS: Over 28 d, 16 male Sprague-Dawley rats were hindlimb-suspended, and 13 control rats were housed in the same type of cage. After the treatment, mean arterial pressure (MAP), colonic temperature (Tcol), and superior mesenteric and iliac artery resistances (using Doppler flowmetry) were measured during heat stress [exposure to 42 degrees C until the endpoint of 80 mm Hg blood pressure was reached (75 +/- 9 min); endpoint Tcore = 43.6 +/- 0.2] while rats were anesthetized (sodium pentobarbital, 50 mg x kg(-1) BW). RESULTS: Hindlimb-suspended and control rats exhibited similar increases in Tcol, MAP, and superior mesenteric artery resistance, and similar decreases in iliac resistance during heat stress (endpoint was a fall in MAP below 80 mm Hg). Tyrosine hydroxylase immunostaining indicated similar sympathetic nerve innervation in small mesenteric arteries from both groups. CONCLUSION: Hindlimb suspension does not alter the hemodynamic or thermoregulatory responses to heat stress in the anesthetized rat or mesenteric sympathetic nerve innervation, suggesting that this sympathetic pathway is intact.

  11. Body Temperature Versus Microclimate Selection in Heat Stressed Dairy Cows

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study is to characterize the thermoregulatory responses of unrestrained heat-stressed dairy cows within a freestall environment using fan and spray configurations for cooling cows while lying or standing. An experimental treatment sprayed individual cows lying in freestalls from ...

  12. Simulating canopy temperature for modelling heat stress in cereals

    USDA-ARS?s Scientific Manuscript database

    Crop models must be improved to account for the large effects of heat stress effects on crop yields. To date, most approaches in crop models use air temperature despite evidence that crop canopy temperature better explains yield reductions associated with high temperature events. This study presents...

  13. Causes, effects and molecular mechanisms of testicular heat stress.

    PubMed

    Durairajanayagam, Damayanthi; Agarwal, Ashok; Ong, Chloe

    2015-01-01

    The process of spermatogenesis is temperature-dependent and occurs optimally at temperatures slightly lower than that of the body. Adequate thermoregulation is imperative to maintain testicular temperatures at levels lower than that of the body core. Raised testicular temperature has a detrimental effect on mammalian spermatogenesis and the resultant spermatozoa. Therefore, thermoregulatory failure leading to heat stress can compromise sperm quality and increase the risk of infertility. In this paper, several different types of external and internal factors that may contribute towards testicular heat stress are reviewed. The effects of heat stress on the process of spermatogenesis, the resultant epididymal spermatozoa and on germ cells, and the consequent changes in the testis are elaborated upon. We also discuss the molecular response of germ cells to heat exposure and the possible mechanisms involved in heat-induced germ cell damage, including apoptosis, DNA damage and autophagy. Further, the intrinsic and extrinsic pathways that are involved in the intricate mechanism of germ cell apoptosis are explained. Ultimately, these complex mechanisms of apoptosis lead to germ cell death. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  14. A Chrysanthemum Heat Shock Protein Confers Tolerance to Abiotic Stress

    PubMed Central

    Song, Aiping; Zhu, Xirong; Chen, Fadi; Gao, Haishun; Jiang, Jiafu; Chen, Sumei

    2014-01-01

    Heat shock proteins are associated with protection against various abiotic stresses. Here, the isolation of a chrysanthemum cDNA belonging to the HSP70 family is reported. The cDNA, designated CgHSP70, encodes a 647-residue polypeptide, of estimated molecular mass 70.90 kDa and pI 5.12. A sub-cellular localization assay indicated that the cDNA product is deposited in the cytoplasm and nucleus. The performance of Arabidopsis thaliana plants constitutively expressing CgHSP70 demonstrated that the gene enhances tolerance to heat, drought and salinity. When CgHSP70 was stably over-expressed in chrysanthemum, the plants showed an increased peroxidase (POD) activity, higher proline content and inhibited malondialdehyde (MDA) content. After heat stress, drought or salinity the transgenic plants were better able to recover, demonstrating CgHSP70 positive effect. PMID:24663057

  15. Landing Characteristics of the Apollo Spacecraft with Deployed Heat Shield Impact Attenuation System

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Landing Characteristics of the Apollo Spacecraft with Deployed Heat Shield Impact Attenuation Systems. An experimental investigation was made to determine the landing characteristics of a 1/4-scale dynamic model of the Apollo spacecraft command module using two different active (heat shield deployed prior to landing) landing systems for impact attenuation. One landing system (configuration 1) consisted of six hydraulic struts and eight crushable honeycomb struts. The other landing system (configuration 2), consisted of four hydraulic struts and six strain straps. Tests made on water and the hard clay-gravel composite landing surfaces simulated parachute letdown (vertical) velocities of 23 ft/sec (7.0 m/s) (full scale). Landings made on the sand landing surface simulated vertical velocities of 30 ft/sec (9.1 m/s). Horizontal velocities of from 0 to 50 ft/sec (15 m/s) were simulated. Landing attitudes ranged from -30'degrees to 20 degrees, and the roll attitudes were O degrees, 90 degrees, and 180 degrees. For configuration 1, maximum normal accelerations at the vehicle center of gravity for landings on water, sand, and the hard clay-gravel composite surface were 9g, 20g, and 18g, respectively. The maximum normal center-of-gravity acceleration for configuration 2 which was landed only on the hard clay-gravel landing surface was approximately 19g. Accelerations for configuration 2 were generally equal to or lower than accelerations for configuration 1 and normal. [Entire movie available on DVD from CASI as Doc ID 20070030975. Contact help@sti.nasa.gov

  16. Outdoor occupational environments and heat stress in IRAN.

    PubMed

    Heidari, Hamidreza; Golbabaei, Farideh; Shamsipour, Aliakbar; Rahimi Forushani, Abbas; Gaeini, Abbasali

    2015-01-01

    The present study aimed at demonstrating the heat stress situation (distribution and intensity) based on a standard and common heat stress index, Wet Bulb Globe Temperature (WBGT), during hot seasons and interpret the obtained results considering global warming and rising temperature in different parts of the country based on climate changes studied in Iran. Heat stress assessment was done using WBGT index. Environmental parameters were measured simultaneously in the early, middle and end of shift work. The personal parameters including cloth thermal insulation and metabolic rate of 242 participants from 9 climatic categories were recorded for estimating effective WBGT (measured WBGT plus cloth adjustment factor as well as metabolic rate effect). The values of the indicator were categorized in the statistical software media and then linked to the climatic zoning of the data in the GIS information layers, in which, WBGT values relating to selected stations were given generalization to similar climatic regionalization. The obtained results showed that in the summer about 60 % and more than 75 % of the measurements relating to 12 pm and 3 pm, respectively, were in heat stress situations (i.e. the average amount of heat stress index was higher than 28 °C). These values were found to be about 20-25 % in the spring. Moreover, only in the early hours of shift work in spring could safe conditions be seen throughout the country. This situation gradually decreased in the middle of the day hours and was replaced by the warning status and stress. And finally, in the final hours of shift work thermal stresses reached their peaks. These conditions for the summer were worse. Regarding several studies related to climate change in Iran and the results of present study, heat stress, especially in the central and southern parts of Iran, can be exacerbated in the decades to come if climate change and rising temperature occurs. Therefore, paying attention to this critical issue

  17. Pathway to a Phenocopy: Heat Stress Effects in Early Embryogenesis

    PubMed Central

    Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane

    2015-01-01

    Background Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants – having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from non-specific heat stress to phenocopied abnormalities is unknown. Results Drosophila embryos subjected to 30-min, 38-°C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 μm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. Conclusions The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity – i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types. PMID:26498920

  18. Heat stress and thermal strain challenges in running.

    PubMed

    Bergeron, Michael F

    2014-10-01

    Running well and safely in the heat is challenging for all runners, from recreational to elite. As environmental heat stress (heat stress modulated or augmented by air temperature, humidity, wind speed, and solar radiation) and the intensity and duration of a training run or race increase, so are metabolic heat production, the parallel need for heat transfer from the body to maintain thermal equilibrium, the consequent increase in blood flow to the skin, and the concomitant sweating response progressively and proportionally amplified. An accumulating total body-water deficit from extensive sweating and escalating level of cardiovascular and thermal strain will, in due course, considerably challenge a runner's physiology, perception of effort, and on-course well-being and performance. However, with the appropriate preparation and modifications to planned running intensity and distance, runners can safely tolerate and effectively train and compete in a wide range of challenging environmental conditions. Clinicians play a key role in this regard as an effective resource for providing the most effective guidelines and making the best overall individual recommendations regarding training and competing in the heat.

  19. Pathway to a phenocopy: Heat stress effects in early embryogenesis.

    PubMed

    Crews, Sarah M; McCleery, W Tyler; Hutson, M Shane

    2016-03-01

    Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants-having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from nonspecific heat stress to phenocopied abnormalities is unknown. Drosophila embryos subjected to 30-min, 38 °C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 µm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity, i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types. © 2015 Wiley Periodicals, Inc.

  20. The effect of heat stress on skeletal muscle contractile properties.

    PubMed

    Locke, Marius; Celotti, Carlo

    2014-07-01

    An elevated heat-shock protein (HSP) content protects cells and tissues, including skeletal muscles, from certain stressors. We determined if heat stress and the elevated HSP content that results is correlated with protection of contractile characteristics of isolated fast and slow skeletal muscles when contracting at elevated temperatures. To elevate muscle HSP content, one hindlimb of Sprague-Dawley rats (21-28 days old, 70-90 g) was subjected to a 15 min 42 °C heat-stress. Twenty-four hours later, both extensor digitorum longus (EDL) and soleus muscles were removed, mounted in either 20 °C or 42 °C Krebs-Ringer solution, and electrically stimulated. Controls consisted of the same muscles from the contra-lateral (non-stressed) hindlimbs as well as muscles from other (unstressed) animals. Isolated muscles were twitched and brought to tetanus every 5 min for 30 min. As expected, HSP content was elevated in muscles from the heat-stressed limbs when compared with controls. Regardless of prior treatment, both EDL and soleus twitch tensions were lower at 42 °C when compared with 20 °C. In addition, when incubated at 42 °C, both muscles showed a drop in twitch tension between 5 and 30 min. For tetanic tension, both muscles also showed an increase in tension between 5 and 30 min when stimulated at 20 °C regardless of treatment but when stimulated at 42 °C no change was observed. No protective effect of an elevated HSP content was observed for either muscle. In conclusion, although heat stress caused an elevation in HSP content, no protective effects were conferred to isolated contracting muscles.

  1. Heat shock proteins in relation to heat stress tolerance of creeping bentgrass at different N levels.

    PubMed

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.

  2. Heat Shock Proteins in Relation to Heat Stress Tolerance of Creeping Bentgrass at Different N Levels

    PubMed Central

    Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik

    2014-01-01

    Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on ‘Penn-A4’ creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha−1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance. PMID:25050702

  3. Investigating the stress attenuating potential of furosemide in immobilization and electric foot-shock stress models in mice.

    PubMed

    Kaur, Aalamjeet; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2015-05-01

    The present study was designed to investigate the antistress effect of furosemide (sodium potassium chloride co-transporter inhibitor) in immobilization and foot-shock stress-induced behavioral alterations in the mice. Acute stress was induced in Swiss albino mice either by applying electric foot shocks of 0.6-mA intensity of 1-s duration with 30-s inter-shock interval for 1 h or immobilizing for 150 min. The acute stress-induced behavioral changes were assessed by using actophotometer, hole board, open-field, and social interaction tests. Biochemically, the corticosterone levels were estimated in the serum as a biomarker of hypothalamus-pituitary-adrenal (HPA) axis. Acute stress resulted in the development of behavioral alterations and elevation of the corticosterone levels. Intraperitoneal administration of furosemide (25 and 50 mg/kg) significantly attenuated immobilization and foot-shock stress-induced behavioral changes along with normalization of the corticosterone levels. It may be concluded that furosemide produces beneficial effects in reestablishing the behavioral and biochemical alterations in immobilization and foot-shock-induced acute stress in mice.

  4. Attenuation of short strongly nonlinear stress pulses in dissipative granular chains.

    PubMed

    Wang, S Y; Nesterenko, V F

    2015-06-01

    Attenuation of short, strongly nonlinear stress pulses in chains of spheres and cylinders was investigated experimentally and numerically for two ratios of their masses keeping their contacts identical. The chain with mass ratio 0.98 supports solitary waves and another one (with mass ratio 0.55) supports nonstationary pulses, which preserve their identity only on relatively short distances, but attenuate on longer distances because of radiation of small amplitude tails generated by oscillating small mass particles. Pulse attenuation in experiments in the chain with mass ratio 0.55 was faster at the same number of the particles from the entrance than in the chain with mass ratio 0.98. It is in quantitative agreement with results of numerical calculations with effective damping coefficient 6 kg/s. This level of damping was critical for eliminating the gap openings between particles in the system with mass ratio 0.55 present at lower or no damping. With increase of dissipation numerical results show that the chain with mass ratio 0.98 provides faster attenuation than the chain with mass ratio 0.55 due to the fact that the former system supports the narrower pulse with the larger difference between velocities of neighboring particles. The investigated chains demonstrated similar behavior at large damping coefficient 100 kg/s.

  5. Deteriorated Stress Response in Stationary-Phase Yeast: Sir2 and Yap1 Are Essential for Hsf1 Activation by Heat Shock and Oxidative Stress, Respectively

    PubMed Central

    Cohen, Aviv; Bar-Nun, Shoshana

    2014-01-01

    Stationary-phase cultures have been used as an important model of aging, a complex process involving multiple pathways and signaling networks. However, the molecular processes underlying stress response of non-dividing cells are poorly understood, although deteriorated stress response is one of the hallmarks of aging. The budding yeast Saccharomyces cerevisiae is a valuable model organism to study the genetics of aging, because yeast ages within days and are amenable to genetic manipulations. As a unicellular organism, yeast has evolved robust systems to respond to environmental challenges. This response is orchestrated largely by the conserved transcription factor Hsf1, which in S. cerevisiae regulates expression of multiple genes in response to diverse stresses. Here we demonstrate that Hsf1 response to heat shock and oxidative stress deteriorates during yeast transition from exponential growth to stationary-phase, whereas Hsf1 activation by glucose starvation is maintained. Overexpressing Hsf1 does not significantly improve heat shock response, indicating that Hsf1 dwindling is not the major cause for Hsf1 attenuated response in stationary-phase yeast. Rather, factors that participate in Hsf1 activation appear to be compromised. We uncover two factors, Yap1 and Sir2, which discretely function in Hsf1 activation by oxidative stress and heat shock. In Δyap1 mutant, Hsf1 does not respond to oxidative stress, while in Δsir2 mutant, Hsf1 does not respond to heat shock. Moreover, excess Sir2 mimics the heat shock response. This role of the NAD+-dependent Sir2 is supported by our finding that supplementing NAD+ precursors improves Hsf1 heat shock response in stationary-phase yeast, especially when combined with expression of excess Sir2. Finally, the combination of excess Hsf1, excess Sir2 and NAD+ precursors rejuvenates the heat shock response. PMID:25356557

  6. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress.

    PubMed

    Kim, Seong Hun; Kim, Kook Hwan; Kim, Hyoung-Kyu; Kim, Mi-Jeong; Back, Sung Hoon; Konishi, Morichika; Itoh, Nobuyuki; Lee, Myung-Shik

    2015-04-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-diabetic and anti-obesity activity. FGF21 expression is increased in patients with and mouse models of obesity or nonalcoholic fatty liver disease (NAFLD). However, the functional role and molecular mechanism of FGF21 induction in obesity or NAFLD are not clear. As endoplasmic reticulum (ER) stress is triggered in obesity and NAFLD, we investigated whether ER stress affects FGF21 expression or whether FGF21 induction acts as a mechanism of the unfolded protein response (UPR) adaptation to ER stress induced by chemical stressors or obesity. Hepatocytes or mouse embryonic fibroblasts deficient in UPR signalling pathways and liver-specific eIF2α mutant mice were employed to investigate the in vitro and in vivo effects of ER stress on FGF21 expression, respectively. The in vivo importance of FGF21 induction by ER stress and obesity was determined using inducible Fgf21-transgenic mice and Fgf21-null mice with or without leptin deficiency. We found that ER stressors induced FGF21 expression, which was dependent on a PKR-like ER kinase-eukaryotic translation factor 2α-activating transcription factor 4 pathway both in vitro and in vivo. Fgf21-null mice exhibited increased expression of ER stress marker genes and augmented hepatic lipid accumulation after tunicamycin treatment. However, these changes were attenuated in inducible Fgf21-transgenic mice. We also observed that Fgf21-null mice with leptin deficiency displayed increased hepatic ER stress response and liver injury, accompanied by deteriorated metabolic variables. Our results suggest that FGF21 plays an important role in the adaptive response to ER stress- or obesity-induced hepatic metabolic stress.

  7. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    PubMed

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Curcumin attenuates oxidative stress following downhill running-induced muscle damage.

    PubMed

    Kawanishi, Noriaki; Kato, Kouki; Takahashi, Masaki; Mizokami, Tsubasa; Otsuka, Yoshihiko; Imaizumi, Atsushi; Shiva, Daisuke; Yano, Hiromi; Suzuki, Katsuhiko

    2013-11-22

    Downhill running causes muscle damage, and induces oxidative stress and inflammatory reaction. Recently, it is shown that curcumin possesses anti-oxidant and anti-inflammatory potentials. Interestingly, curcumin reduces inflammatory cytokine concentrations in skeletal muscle after downhill running of mice. However, it is not known whether curcumin affects oxidative stress after downhill running-induced muscle damage. Therefore, the purpose of this study was to investigate the effects of curcumin on oxidative stress following downhill running induced-muscle damage. We also investigated whether curcumin affects macrophage infiltration via chemokines such as MCP-1 and CXCL14. Male C57BL/6 mice were divided into four groups; rest, rest plus curcumin, downhill running, or downhill running plus curcumin. Downhill running mice ran at 22 m/min, -15% grade on the treadmill for 150 min. Curcumin (3mg) was administered in oral administration immediately after downhill running. Hydrogen peroxide concentration and NADPH-oxidase mRNA expression in the downhill running mice were significantly higher than those in the rest mice, but these variables were significantly attenuated by curcumin administration in downhill running mice. In addition, mRNA expression levels of MCP-1, CXCL14 and F4/80 reflecting presence of macrophages in the downhill running mice were significantly higher than those in the rest mice. However, MCP-1 and F4/80 mRNA expression levels were significantly attenuated by curcumin administration in downhill running mice. Curcumin may attenuate oxidative stress following downhill running-induced muscle damage.

  9. Paeoniflorin Attenuated Oxidative Stress in Rat COPD Model Induced by Cigarette Smoke

    PubMed Central

    Lin, Jinpei; Xu, Fei; Wang, Genfa; Kong, Lingwen; Lv, Yvbao; Liu, Jiaqi; Li, Lulu

    2016-01-01

    Paeoniflorin (PF), a monoterpene glucoside, might have an effect on the oxidative stress. However, the mechanism is still unknown. In this study, we made the COPD model in Sprague-Dawley (SD) rats by exposing them to the smoke of 20 cigarettes for 1 hour/day and 6 days/week, for 12 weeks, 24 weeks, or 36 weeks. Our findings suggested that smoke inhalation can trigger the oxidative stress from the very beginning. A 24-week treatment of PF especially in the dosage of 40 mg/kg·d can attenuate oxygen stress by partially quenching reactive oxygen species (ROS) and upregulating antioxidant enzymes via an Nrf2-dependent mechanism. PMID:28003846

  10. Exercise Training Attenuates the Dysregulated Expression of Adipokines and Oxidative Stress in White Adipose Tissue

    PubMed Central

    Ishibashi, Yoshinaga; Ohno, Hideki

    2017-01-01

    Obesity-induced inflammatory changes in white adipose tissue (WAT), which caused dysregulated expression of inflammation-related adipokines involving tumor necrosis factor-α and monocyte chemoattractant protein-1, contribute to the development of insulin resistance. Moreover, current literature reports state that WAT generates reactive oxygen species (ROS), and the enhanced production of ROS in obese WAT has been closely associated with the dysregulated expression of adipokines in WAT. Therefore, the reduction in excess WAT and oxidative stress that results from obesity is thought to be one of the important strategies in preventing and improving lifestyle-related diseases. Exercise training (TR) not only brings about a decrease in WAT mass but also attenuates obesity-induced dysregulated expression of the adipokines in WAT. Furthermore, some reports indicate that TR affects the generation of oxidative stress in WAT. This review outlines the impact of TR on the expression of inflammation-related adipokines and oxidative stress in WAT. PMID:28168013

  11. Effects of heat-stress on production in dairy cattle.

    PubMed

    West, J W

    2003-06-01

    The southeastern United States is characterized as humid subtropical and is subject to extended periods of high ambient temperature and relative humidity. Because the primary nonevaporative means of cooling for the cow (radiation, conduction, convection) become less effective with rising ambient temperature, the cow becomes increasingly reliant upon evaporative cooling in the form of sweating and panting. High relative humidity compromises evaporative cooling, so that under hot, humid conditions common to the Southeast in summer the dairy cow cannot dissipate sufficient body heat to prevent a rise in body temperature. Increasing air temperature, temperature-humidity index and rising rectal temperature above critical thresholds are related to decreased dry matter intake (DMI) and milk yield and to reduced efficiency of milk yield. Modifications including shade, barns which enhance passive ventilation, and the addition of fans and sprinklers increase body heat loss, lowering body temperature and improving DMI. New technologies including tunnel ventilation are being investigated to determine if they offer cooling advantages. Genetic selection for heat tolerance may be possible, but continued selection for greater performance in the absence of consideration for heat tolerance will result in greater susceptibility to heat stress. The nutritional needs of the cow change during heat stress, and ration reformulation to account for decreased DMI, the need to increase nutrient density, changing nutrient requirements, avoiding nutrient excesses and maintenance of normal rumen function is necessary. Maintaining cow performance in hot, humid climatic conditions in the future will likely require improved cooling capability, continued advances in nutritional formulation, and the need for genetic advancement which includes selection for heat tolerance or the identification of genetic traits which enhance heat tolerance.

  12. Clinical value of stress-only Tc-99m SPECT imaging: importance of attenuation correction.

    PubMed

    Mathur, Shishir; Heller, Gary V; Bateman, Timothy M; Ruffin, Richard; Yekta, Arshad; Katten, Deborah; Alluri, Nitya; Ahlberg, Alan W

    2013-02-01

    In selected patients, stress-only SPECT imaging has been proposed as an alternative to rest-stress SPECT imaging to improve laboratory efficiency and reduce radiation exposure. The impact of attenuation correction (AC) upon interpretation, post-test patient management and cardiac risk stratification in relation to stress-only imaging is not well understood. The purpose of this study was to determine the clinical value for laboratory throughput and predicting outcomes of normal and abnormal stress-only SPECT imaging with AC in a consecutive series of clinically referred patients. A retrospective analysis of 1,383 consecutive patients who were scheduled for stress-only SPECT imaging for symptom assessment of suspected myocardial ischemia was performed. All images had been interpreted and categorized using the standard 17-segment model without AC followed by AC. Follow-up data for 2.1 ± 1.3 years after SPECT imaging for the occurrence of cardiac events (non-fatal MI, cardiac death, and cardiac revascularization) previously collected by routine methods were reviewed. Non-AC SPECT image interpretation revealed that 58% (802/1383) of patients had abnormal stress images. AC image interpretation of the abnormal non-AC images re-classified 83% (666/802) of these as normal. Among patients with abnormal stress images after AC (136/1383), 63% (86/136) returned for additional rest scans, while the remaining 37% (50/136) were clinically managed without further rest images. The incidence of cardiac death or non-fatal MI was very low in patients with normal stress-only scans (0.7%). A strategy of stress-only imaging with AC in symptomatic patients is an efficient method which appropriately identifies at risk and low-risk patients yielding a low percentage requiring rest imaging. Clinical decisions can be made based on abnormal stress-only imaging without further rest imaging if clinically appropriate.

  13. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress.

    PubMed

    Rizhsky, Ludmila; Liang, Hongjian; Shuman, Joel; Shulaev, Vladimir; Davletova, Sholpan; Mittler, Ron

    2004-04-01

    Within their natural habitat, plants are subjected to a combination of abiotic conditions that include stresses such as drought and heat. Drought and heat stress have been extensively studied; however, little is known about how their combination impacts plants. The response of Arabidopsis plants to a combination of drought and heat stress was found to be distinct from that of plants subjected to drought or heat stress. Transcriptome analysis of Arabidopsis plants subjected to a combination of drought and heat stress revealed a new pattern of defense response in plants that includes a partial combination of two multigene defense pathways (i.e. drought and heat stress), as well as 454 transcripts that are specifically expressed in plants during a combination of drought and heat stress. Metabolic profiling of plants subjected to drought, heat stress, or a combination of drought and heat stress revealed that plants subject to a combination of drought and heat stress accumulated sucrose and other sugars such as maltose and glucose. In contrast, Pro that accumulated in plants subjected to drought did not accumulate in plants during a combination of drought and heat stress. Heat stress was found to ameliorate the toxicity of Pro to cells, suggesting that during a combination of drought and heat stress sucrose replaces Pro in plants as the major osmoprotectant. Our results highlight the plasticity of the plant genome and demonstrate its ability to respond to complex environmental conditions that occur in the field.

  14. Muscle-damaging exercise increases heat strain during subsequent exercise heat stress.

    PubMed

    Fortes, Matthew Benjamin; Di Felice, Umberto; Dolci, Alberto; Junglee, Naushad A; Crockford, Michael J; West, Liam; Hillier-Smith, Ryan; Macdonald, Jamie Hugo; Walsh, Neil Peter

    2013-10-01

    It remains unclear whether exercise-induced muscle damage (EIMD) increases heat strain during subsequent exercise heat stress, which in turn may increase the risk of exertional heat illness. We examined heat strain during exercise heat stress 30 min after EIMD to coincide with increases in circulating pyrogens (e.g., interleukin-6 [IL-6]) and 24 h after EIMD to coincide with the delayed muscle inflammatory response when a higher rate of metabolic energy expenditure (M˙) and thus decreased economy might also increase heat strain. Thirteen non-heat-acclimated males (mean ± SD, age = 20 ± 2 yr) performed exercise heat stress tests (running for 40 min at 65% V˙O2max in 33°C, 50% humidity) 30 min (HS1) and 24 h (HS2) after treatment, involving running for 60 min at 65% V˙O2max on either -10% gradient (EIMD) or +1% gradient (CON) in a crossover design. Rectal (Tre) and skin (Tsk) temperature, local sweating rate, and M˙ were measured throughout HS tests. Compared with CON, EIMD evoked higher circulating IL-6 pre-HS1 (P < 0.01) and greater plasma creatine kinase and muscle soreness pre-HS2 (P < 0.01). The ΔTre was greater after EIMD than CON during HS1 (0.35°C, 95% confidence interval = 0.11°C-0.58°C, P < 0.01) and HS2 (0.17°C, 95% confidence interval = 0.07°C-0.28°C, P < 0.01). M˙ was higher on EIMD throughout HS1 and HS2 (P < 0.001). Thermoeffector responses (Tsk, sweating rate) were not altered by EIMD. Thermal sensation and RPE were higher on EIMD after 25 min during HS1 (P < 0.05). The final Tre during HS1 correlated with the pre-HS1 circulating IL-6 concentration (r = 0.67). Heat strain was increased during endurance exercise in the heat conducted 30 min after and, to a much lesser extent, 24 h after muscle-damaging exercise. These data indicate that EIMD is a likely risk factor for exertional heat illness particularly during exercise heat stress when behavioral thermoregulation cues are ignored.

  15. Drivers of self-reported heat stress in the Australian labour force.

    PubMed

    Zander, Kerstin K; Moss, Simon A; Garnett, Stephen T

    2017-01-01

    Heat stress causes reductions in well-being and health. As average annual temperatures increase, heat stress is expected to affect more people. While most research on heat stress has explored how exposure to heat affects functioning of the human organism, stress from heat can be manifest long before clinical symptoms are evident, with profound effects on behavior. Here we add to the little research conducted on these subclinical effects of environmental heat using results from an Australian-wide cross-sectional study of nearly 2000 respondents on their self-reported level of heat stress. Slightly less than half (47%) of the respondents perceived themselves as at least sometimes, often or very often stressed by heat during the previous 12 months. Health status and smoking behavior had the expected impact on self-reported perceived heat stress. There were also regional differences with people living in South Australia, Victoria and New South Wales most likely to have reported to have felt heat stressed. People generally worried about climate change, who had been influenced by recent heat waves and who thought there was a relationship between climate change and health were also more likely to have been heat stressed. Surprisingly average maximum temperatures did not significantly explain heat stress but stress was greater among people who perceived the day of the survey as hotter than usual. Currently heat stress indices are largely based on monitoring the environment and physical limitations to people coping with heat. Our results suggest that psychological perceptions of heat need to be considered when predicting how people will be affected by heat under climate change and when developing heat relief and climate change adaptation plans, at work, at home or in public spaces. We further conclude that the perception of temperature and heat stress complements measures that assess heat exposure and heat strain.

  16. An adaptability limit to climate change due to heat stress

    PubMed Central

    Sherwood, Steven C.; Huber, Matthew

    2010-01-01

    Despite the uncertainty in future climate-change impacts, it is often assumed that humans would be able to adapt to any possible warming. Here we argue that heat stress imposes a robust upper limit to such adaptation. Peak heat stress, quantified by the wet-bulb temperature TW, is surprisingly similar across diverse climates today. TW never exceeds 31 °C. Any exceedence of 35 °C for extended periods should induce hyperthermia in humans and other mammals, as dissipation of metabolic heat becomes impossible. While this never happens now, it would begin to occur with global-mean warming of about 7 °C, calling the habitability of some regions into question. With 11–12 °C warming, such regions would spread to encompass the majority of the human population as currently distributed. Eventual warmings of 12 °C are possible from fossil fuel burning. One implication is that recent estimates of the costs of unmitigated climate change are too low unless the range of possible warming can somehow be narrowed. Heat stress also may help explain trends in the mammalian fossil record. PMID:20439769

  17. Stress wave attenuation in thin structures by ultrasonic through-transmission

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Williams, J. H., Jr.

    1980-01-01

    The steady state amplitude of the output of an ultrasonic through transmission measurement is analyzed and the result is given in closed form. Provided that the product of the input and output transduction ratios; the specimen-transducer reflection coefficient; the specimen-transducer phase shift parameter; and the material phase velocity are known, this analysis gives a means for determining the through-thickness attenuation of an individual thin sample. Multiple stress wave reflections are taken into account and so signal echoes do not represent a difficulty. An example is presented for a graphite fiber epoxy composite (Hercules AS/3501-6). A direct method for continuous or intermittent monitoring of through thickness attenuation of plate structures which may be subject to service structural degradation is provided.

  18. Stress-wave attenuation in thin structures by ultrasonic through-transmission

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Williams, J. H., Jr.

    1980-01-01

    The steady-state amplitude of the output of an ultrasonic through-transmission measurement is analyzed and the result is given in closed form. Provided that the product of the input and output transduction ratios, the specimen-transducer reflection coefficient, the specimen-transducer phase-shift parameter, and the material phase velocity are known, this analysis gives a means for determining the through-thickness attenuation of an individual thin sample. Multiple stress-wave reflections are taken into account, and so signal echoes do not represent a difficulty. An example is presented for a graphite fiber epoxy composite (Hercules AS/3501-6). Thus, the technique provides a direct method for continuous or intermittent monitoring of through-thickness attenuation of plate structures which may be subject to service structural degradation.

  19. Modelling the heat stress and the recovery of bacterial spores.

    PubMed

    Mafart, P; Leguérinel, I

    1997-07-22

    After heat treatment, the temperature incubation and the medium composition, (pH and sodium chloride content) influence the capacity of injured spores to repair heat damage. The concept of heat resistance D- (decimal reduction time) and z-values (temperature increase which results in a ten fold reduction of the D value) is not sufficient and the ratio of spore recovery after incubation should be considered in calculations used in thermal processing of food. This paper aims to derive a model describing the recovery of injured spores as a function of both the heat treatment intensity and the environmental conditions. According to data from numerous investigators, when spores are incubated in unfavorable conditions, the ratio of cell recovery and the apparent D-value are reduced. Moreover the ratio of the apparent D-value and the estimated in optimal incubation D-value is constant and independent of the heat treatment conditions. Beyond these observations it is shown that the ratio of cell recovery with respect to the heat treatment F-value (exposure time, in minutes, at 121.1 degrees C which results in the same destruction ratio that the considered heat treatment does) is linear and can be quantified by using two factors independent of the heat treatment: the gamma-factor reflects the degree of precariousness due to the heat stress while the epsilon-factor reflects more intrinsically the incubation conditions without previous heat treatment. The gamma-factor varies as a function of the incubation temperature according to an Arrhenius law.

  20. Heat stress monitoring system. Innovative technology summary report

    SciTech Connect

    1998-11-01

    The US Department of Energy`s (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System`s heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker`s reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  1. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    PubMed

    Fujii, Naoto; Meade, Robert D; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah; Kenny, Glen P

    2015-05-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P < 0.05). However, during both exercise bouts, there were no differences in CVC or sweating between the treatment sites (all P > 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P < 0.05). We show angiotensin II impairs cutaneous perfusion independent of oxidative stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. Copyright © 2015 the American Physiological Society.

  2. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    PubMed Central

    Fujii, Naoto; Meade, Robert D.; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah

    2015-01-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P < 0.05). However, during both exercise bouts, there were no differences in CVC or sweating between the treatment sites (all P > 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P < 0.05). We show angiotensin II impairs cutaneous perfusion independent of oxidative stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. PMID:25767030

  3. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    SciTech Connect

    Park, Hyelim; Park, Sanghoon; Jeon, Hyunju; Song, Byeong-Wook; Kim, Jin-Bae; Kim, Chang-Soo; Pak, Hui-Nam; Hwang, Ki-Chul; Lee, Moon-Hyoung; Chung, Ji Hyung; Joung, Boyoung

    2013-01-15

    Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  4. N-Acetylcysteine protects against trichloroethene-mediated autoimmunity by attenuating oxidative stress

    SciTech Connect

    Wang, Gangduo; Wang, Jianling; Ma, Huaxian; Ansari, G.A.S.; Khan, M. Firoze

    2013-11-15

    Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, is known to induce autoimmunity both in humans and animal models. However, mechanisms underlying TCE-mediated autoimmunity remain largely unknown. Previous studies from our laboratory in MRL +/+ mice suggest that oxidative stress may contribute to TCE-induced autoimmune response. The current study was undertaken to further assess the role of oxidative stress in TCE-induced autoimmunity by supplementing with an antioxidant N-acetylcysteine (NAC). Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, 250 mg/kg/day through drinking water). TCE exposure led to significant increases in serum levels of anti-nuclear, anti-dsDNA and anti-Sm antibodies. TCE exposure also led to significant induction of anti-malondiadelhyde (MDA)- and anti-hydroxynonenal (HNE)-protein adduct antibodies which were associated with increased ANA in the sera along with increased MDA-/HNE-protein adducts in the livers and kidneys, and increases in protein oxidation (carbonylation) in the sera, livers and kidneys, suggesting an overall increase in oxidative stress. Moreover, TCE exposure also resulted in increased release of IL-17 from splenocytes and increases in IL-17 mRNA expression. Remarkably, NAC supplementation attenuated not only the TCE-induced oxidative stress, IL-17 release and mRNA expression, but also the markers of autoimmunity, as evident from decreased levels of ANA, anti-dsDNA and anti-Sm antibodies in the sera. These results provide further support to a role of oxidative stress in TCE-induced autoimmune response. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for preventive and/or therapeutic strategies. - Highlights: • TCE led to increased autoantibodies, supporting its potential to induce autoimmunity. • TCE exposure led to increases in lipid perioxidation and protein carbonyls. • TCE exposure resulted in

  5. Gastric emptying during exercise: effects of heat stress and hypohydration.

    PubMed

    Neufer, P D; Young, A J; Sawka, M N

    1989-01-01

    To determine the effects of acute heat stress, heat acclimation and hypohydration on the gastric emptying rate of water (W) during treadmill exercise, ten physically fit men ingested 400 ml of W before each of three 15 min bouts of exercise (treadmill, approximately 50% VO2max) on five separate occasions. Stomach contents were aspirated after each exercise bout. Before heat acclimation (ACC), experiments were performed in a neutral (18 degrees C), hot (49 degrees C) and warm (35 degrees C) environment. Subjects were euhydrated for all experiments before ACC. After ACC, the subjects completed two more experiments in the warm (35 degrees C) environment; one while euhydrated and a final one while hypohydrated (-5% of body weight). The volume of ingested water emptied into the intestines at the completion of each exercise bout was inversely correlated (P less than 0.01) with the rectal temperature (r = -0.76). The following new observations were made: 1) exercise in a hot (49 degrees C) environment impairs gastric emptying rate as compared with a neutral (18 degrees C) environment, 2) exercise in a warm (35 degrees C) environment does not significantly reduce gastric emptying before or after heat acclimation, but 3) exercise in a warm environment (35 degrees C) when hypohydrated reduces gastric emptying rate and stomach secretions. Reductions in gastric emptying appear to be related to the severity of the thermal strain induced by an exercise/heat stress.

  6. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    PubMed

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  7. Association of heat shock protein 70 expression with rat myocardial cell damage during heat stress in vitro and in vivo.

    PubMed

    Chen, H B; Zhang, X C; Cheng, Y F; Abdelnasir, A; Tang, S; Kemper, N; Hartung, J; Bao, E D

    2015-03-20

    To investigate the mechanism of sudden death as a result of stress-induced damage to heart tissue and myocardial cells and to investigate the cardioprotective role of Hsp70 during heat stress, the distribution and expression of Hsp70 was evaluated in the heart cells of heat-stressed rats in vivo and heat-stressed H9c2 cells in vitro. After exposure to heat stress at 42°C for different durations, we observed a significant induction of CK, CK-MB, and LDH as well as pathologic lesions characterized by acute degeneration, suggesting that cell damage occurs from the onset of heat stress. Immunocytochemistry showed that Hsp70 was distributed mainly in the cytoplasm of myocardial cells in vivo and in vitro. Hsp70-positive signals in the cytoplasm were more prominent in intact areas than in degenerated areas after 60 min of heat stress. Hsp70 protein levels in myocardial cells in vitro decreased from the beginning to the end of heat stress. Hsp70 protein levels in rat heart tissues in vivo decreased gradually with prolonged heat stress, with a slight increase at the beginning of heat stress. These results indicate that Hsp70 plays a role in the response of cardiac cells to heat stress and that decreased Hsp70 levels are associated with damage to rat myocardial cells in vitro and in vivo. Significant differences were found in hsp70 mRNA, which began to increase after 20 min of heat stress in vitro and after 40 min in vivo. This indicates that hysteresis is involved in mRNA expression after heat stress in vivo.

  8. Quantifying livestock responses for heat stress management: a review

    NASA Astrophysics Data System (ADS)

    Nienaber, J. A.; Hahn, G. L.; Eigenberg, R. A.

    Hot weather challenges livestock production but technology exists to offset the challenge if producers have made appropriate strategic decisions. Key issues include understanding the hazards of heat stress, being prepared to offer relief from the heat, recognizing when an animal is in danger, and taking appropriate action. This paper describes our efforts to develop biological response functions; assesses climatic probabilities and performs associated risk analyses; provides inputs for computer models used to make environmental management decisions; and evaluates threshold temperatures as estimates of critical temperature limits for swine, cattle and sheep.

  9. Isolongifolene attenuates rotenone-induced mitochondrial dysfunction, oxidative stress and apoptosis.

    PubMed

    Balakrishnan, Rengasamy; Elangovan, Namasivayam; Mohankumar, Thangavel; Nataraj, Jegadeesan; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Mohamed Essa, Musthafa; Akbar, Mohammed; Abdul Sattar Khan, Mohammed

    2018-01-01

    The present study was carried out to investigate the neuroprotective effects of isolongifolene (ILF), a tricyclic sesquiterpene of Murraya koenigii, against rotenone-induced mitochondrial dysfunction, oxidative stress and apoptosis in a cellular model. SH-SY5Y human neuroblastoma cells were divided into four experimental groups (control, rotenone (100 nM), ILF (10 microM) + rotenone (100 nanoM), ILF 10 microM alone treated) based on 3-(4, 5-dimethyl 2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The results of the present study showed that the ILF treatment significantly alleviated rotenone-induced cytotoxicity, oxidative stress and mitochondrial dysfunction in SH-SY5Y cells. Moreover, ILF attenuated rotenone induced toxicity by down-regulating  Bax, caspases-3, 6, 8 and 9 expression and up-regulating of Bcl-2 expression. Furthermore regulation of p-P13K, p-AKT and p-GSK-3 beta expression by ILF, clearly confirmed its protective effects. Taken together, our results suggested that ILF attenuated rotenone-induced oxidative stress, mitochondrial dysfunction and apoptosis through the regulation of P13K/AKT/GSK-3 beta signaling pathways. However further pre-clinical studies are warranted in rodents to use ILF as a promising therapeutic agent for PD in future.

  10. Nanomolar naloxone attenuates neurotoxicity induced by oxidative stress and survival motor neuron protein deficiency.

    PubMed

    Hsu, Ya-Yun; Jong, Yuh-Jyh; Lin, Yu-Ting; Tseng, Yu-Ting; Hsu, Shih-Hsien; Lo, Yi-Ching

    2014-04-01

    Oxidative stress and survival motor neuron (Smn) protein deficiency are the major causes of motor neuronal death. Naloxone exhibits neuroprotection against ischemic stroke and anti-inflammation. In this study, we determined whether nanomolar naloxone provides neuroprotection under oxidative stress (H(2)O(2)) and Smn deficiency in a motor neuron-like cell line, NSC34. In H(2)O(2)-treated NSC34 cells, naloxone (1-10 nM) increased cell survival and mitochondria membrane potential. In addition, naloxone decreased NADPH oxidase (NOX) 2 activation, reactive oxygen species production and oxygen consumption rate. Moreover, naloxone increased anti-apoptotic Bcl-2 expression, attenuated apoptotic protein (Bax, cytochrome c, and caspase) expression and decreased apoptotic death. Furthermore, naloxone also increased Smn mRNA and protein expression. In Smn knockdown NSC34 cells, Smn deficiency significantly increased H(2)O(2) cytotoxicity. Naloxone exhibited neuroprotection at higher concentrations in Smn knockdown NSC34 cells than in control cells. In conclusion, naloxone attenuated neurotoxicity induced by H(2)O(2) and Smn deficiency. Our findings also revealed the involvement of Smn protein in naloxone protection and oxidative stress-related neurotoxicity.

  11. Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock

    PubMed Central

    Li, Hao; Ahammed, Golam J.; Zhou, Guona; Xia, Xiaojian; Zhou, Jie; Shi, Kai; Yu, Jingquan; Zhou, Yanhong

    2016-01-01

    Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential. PMID:27313587

  12. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress.

    PubMed

    Fujikawa, Tetsuya; Munakata, Takeo; Kondo, Shin-ichi; Satoh, Nori; Wada, Shuichi

    2010-03-01

    The genome of Ciona intestinalis contains eight genes for HSP70 superfamily proteins, 36 genes for J-proteins, a gene for a J-like protein, and three genes for BAG family proteins. To understand the stress responses of genes in the HSP70 chaperone system comprehensively, the transcriptional profiles of these 48 genes under heat stress and endoplasmic reticulum (ER) stress were studied using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Heat stress treatment increased the messenger RNA (mRNA) levels of six HSP70 superfamily genes, eight J-protein family genes, and two BAG family genes. In the cytoplasmic group of the DnaK subfamily of the HSP70 family, Ci-HSPA1/6/7-like was the only heat-inducible gene and Ci-HSPA2/8 was the only constitutively active gene which showed striking simplicity in comparison with other animals that have been examined genome-wide so far. Analyses of the time course and temperature dependency of the heat stress responses showed that the induction of Ci-HSPA1/6/7-like expression rises to a peak after heat stress treatment at 28 degrees C (10 degrees C upshift from control temperature) for 1 h. ER stress treatment with Brefeldin A, a drug that is known to act as ER stress inducer, increased the mRNA levels of four HSP70 superfamily genes and four J-protein family genes. Most stress-inducible genes are conserved between Ciona and vertebrates, as expected from a close evolutionary relationship between them. The present study characterized the stress responses of HSP70 chaperone system genes in Ciona for the first time and provides essential data for comprehensive understanding of the functions of the HSP70 chaperone system.

  13. Nrf2-mediated mucoprotective and anti-inflammatory actions of Artemisia extracts led to attenuate stress related mucosal damages

    PubMed Central

    Park, Jong-Min; Han, Young-Min; Lee, Jin-Seok; Ko, Kwang Hyun; Hong, Sung-Pyo; Kim, Eun-Hee; Hahm, Ki-Baik

    2015-01-01

    The aim of this study was to compare biological actions between isopropanol and ethanol extracts of Artemisia including antioxidant, anti-inflammatory, and cytoprotective actions. Antioxidant activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and confocal microscopy on lipopolysaccharide-induced RGM1 cells, cytoprotection effects evaluated by detecting heme oxygenase-1 (HO-1), Nf-E2 related factor2 (Nrf2) and heat shock protein 70 (HSP70), and anti-inflammatory effects investigated by measuring inflammatory mediators. Water immersion restraint stress was imposed to provoke stress related mucosal damages (SRMD) in rats. Isopropanol extracts of Artemisia showed the higher DPPH radical scavenging activity and lesser LPS-induced reactive oxygen species productions and increased HO-1 expression through increased nuclear translocation of Nrf2 transcription factor compared to ethanol extracts. The increased expression of HSP70 and decreased expression of endothelin-1 were only increased with isopropanol extracts. A concentration-dependent inhibition of LPS-induced COX-2 and iNOS even at a rather lower concentration than ethanol extract was achieved with isopropanol extracts. Cytokine protein array revealed Artemisia extracts significantly attenuated the levels of CXCL-1, CXCL-16, and MCP-1. These orchestrated actions led to significant rescue from SRMD. Conclusively, Artemisia extracts imposed significant antioxidant and anti-inflammatory activity against SRMD and isopropanol extracts were superior to ethanol extracts in these beneficiary actions of Artemisia. PMID:25759519

  14. Attenuation of stress waves in single and multi-layered structures. [mitigation of elastic and plastic stress waves during spacecraft landing

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Tsui, C. Y.

    1972-01-01

    Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.

  15. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues

    PubMed Central

    van Lith, R.; Gregory, E.K.; Yang, J.; Kibbe, M.R.; Ameer, G.A.

    2014-01-01

    Oxidative stress plays an important role in the limited biological compatibility of many biomaterials due to inflammation, as well as in various pathologies including atherosclerosis and restenosis as a result of vascular interventions. Engineering antioxidant properties into a material is therefore a potential avenue to improve the biocompatibility of materials, as well as to locally attenuate oxidative stress-related pathologies. Moreover, biodegradable polymers that have antioxidant properties built into their backbone structure have high relative antioxidant content and may provide prolonged, continuous attenuation of oxidative stress while the polymer or its degradation products are present. In this report, we describe the synthesis of poly(1,8-octanediol-co-citrate-co-ascorbate) (POCA), a citric-acid based biodegradable elastomer with native, intrinsic antioxidant properties. The in vitro antioxidant activity of POCA as well as its effects on vascular cells in vitro and in vivo were studied. Antioxidant properties investigated included scavenging of free radicals, iron chelation and the inhibition of lipid peroxidation. POCA reduced reactive oxygen species generation in cells after an oxidative challenge and protected cells from oxidative stress-induced cell death. Importantly, POCA antioxidant properties remained present upon degradation. Vascular cells cultured on POCA showed high viability, and POCA selectively inhibited smooth muscle cell proliferation, while supporting endothelial cell proliferation. Finally, preliminary data on POCA-coated ePTFE grafts showed reduced intimal hyperplasia when compared to standard ePTFE grafts. This biodegradable, intrinsically antioxidant polymer may be useful for tissue engineering application where oxidative stress is a concern. PMID:24976244

  16. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues.

    PubMed

    van Lith, Robert; Gregory, Elaine K; Yang, Jian; Kibbe, Melina R; Ameer, Guillermo A

    2014-09-01

    Oxidative stress plays an important role in the limited biological compatibility of many biomaterials due to inflammation, as well as in various pathologies including atherosclerosis and restenosis as a result of vascular interventions. Engineering antioxidant properties into a material is therefore a potential avenue to improve the biocompatibility of materials, as well as to locally attenuate oxidative stress-related pathologies. Moreover, biodegradable polymers that have antioxidant properties built into their backbone structure have high relative antioxidant content and may provide prolonged, continuous attenuation of oxidative stress while the polymer or its degradation products are present. In this report, we describe the synthesis of poly(1,8-octanediol-co-citrate-co-ascorbate) (POCA), a citric-acid based biodegradable elastomer with native, intrinsic antioxidant properties. The in vitro antioxidant activity of POCA as well as its effects on vascular cells in vitro and in vivo were studied. Antioxidant properties investigated included scavenging of free radicals, iron chelation and the inhibition of lipid peroxidation. POCA reduced reactive oxygen species generation in cells after an oxidative challenge and protected cells from oxidative stress-induced cell death. Importantly, POCA antioxidant properties remained present upon degradation. Vascular cells cultured on POCA showed high viability, and POCA selectively inhibited smooth muscle cell proliferation, while supporting endothelial cell proliferation. Finally, preliminary data on POCA-coated ePTFE grafts showed reduced intimal hyperplasia when compared to standard ePTFE grafts. This biodegradable, intrinsically antioxidant polymer may be useful for tissue engineering application where oxidative stress is a concern.

  17. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    SciTech Connect

    Yu, Xiao-Jing; Zhang, Dong-Mei; Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong; Cui, Wei; Chen, Wensheng; Zhu, Guo-Qing; Qin, Da-Nian; Kang, Yu-Ming

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  18. Wind stress and heat fluxes over a Brazilian Coastal Upwelling

    NASA Astrophysics Data System (ADS)

    Dourado, Marcelo; Candella, Rogério

    2017-04-01

    Coastal upwelling zones have been intensively studied in the last decades especially due to their importance to the biological cycle. The coastal upwelling system of the Cabo Frio region (east coast of the Rio de Janeiro state, Brazil) keeps the surface water cold during most part of the year, what induces a stable atmospheric boundary layer associated to northeast winds. The main goal of this study is to investigate the wind stress and heat fluxes exchanges between the ocean and the atmosphere in that area. For this purpose, a set of hourly data meteorological and oceanographic data collected by a Wavescan metocean buoy anchored at 23o59S; 42oW, were used, as well as solar radiation and relative humidity from a terrestrial meteorological station from the Instituto Nacional de Meteorologia (InMet). COARE 3.0 algorithm was used to calculate the latent and sensible heat fluxes. In this discussion, positive values represent fluxes towards the ocean. The average net heat flux over our study period is 88 W m-2. The reduction of the net heat flux is due to the increase of the ocean latent heat loss, although a reduction in incoming shortwave radiation and an increase in ocean long wave cooling also contributes. The latent heat is 20 times larger than the sensible heat flux, but the mean value of the latent heat flux, 62 W m-2, is half the typical value found in open ocean. The temporal variability of both sensible and latent heat fluxes reflects their dependence on wind speed and air-sea temperature differences. When upwelling events, here periods when diurnal SST is lower than 18oC, are compared with undisturbed (without upwelling) events, it can be noted the sensible heat fluxes are positives and 10 times greater in magnitude. This is related to an increment, during these upwelling events, of the air-sea temperature difference and an increasing of the wind speed. The cold waters of the upwelling increase the air-sea temperature gradient and, also, the horizontal land

  19. Heat stress causes substantial labour productivity loss in Australia

    NASA Astrophysics Data System (ADS)

    Zander, Kerstin K.; Botzen, Wouter J. W.; Oppermann, Elspeth; Kjellstrom, Tord; Garnett, Stephen T.

    2015-07-01

    Heat stress at the workplace is an occupational health hazard that reduces labour productivity. Assessment of productivity loss resulting from climate change has so far been based on physiological models of heat exposure. These models suggest productivity may decrease by 11-27% by 2080 in hot regions such as Asia and the Caribbean, and globally by up to 20% in hot months by 2050. Using an approach derived from health economics, we describe self-reported estimates of work absenteeism and reductions in work performance caused by heat in Australia during 2013/2014. We found that the annual costs were US$655 per person across a representative sample of 1,726 employed Australians. This represents an annual economic burden of around US$6.2 billion (95% CI: 5.2-7.3 billion) for the Australian workforce. This amounts to 0.33 to 0.47% of Australia’s GDP. Although this was a period when many Australians experienced what is at present considered exceptional heat, our results suggest that adaptation measures to reduce heat effects should be adopted widely if severe economic impacts from labour productivity loss are to be avoided if heat waves become as frequent as predicted.

  20. Pulmonary Artery and Intestinal Temperatures during Heat Stress and Cooling

    PubMed Central

    Pearson, James; Ganio, Matthew S; Seifert, Thomas; Overgaard, Morten; Secher, Niels H; Crandall, Craig G

    2011-01-01

    Introduction/Purpose In humans, whole body heating and cooling are used to address physiological questions where core temperature is central to the investigated hypotheses. Core temperature can be measured in various locations throughout the human body. The measurement of intestinal temperature is increasingly used in laboratory settings as well as in athletics. However, it is unknown whether intestinal temperature accurately tracks pulmonary artery blood temperature, the gold standard, during thermal stimuli in resting humans, which is the investigated hypothesis. Methods This study compared pulmonary artery blood temperature (via thermistor in a pulmonary artery catheter) with intestinal temperature (telemetry pill) during whole-body heat stress (n=8), followed by whole-body cooling in healthy humans (mean ± SD age 24 ± 3 yrs; height 183 ± 8 cm; mass 78.1 ± 8.2 kg). Heat stress and subsequent cooling were performed by perfusing warm followed by cold water through a tube-lined suit worn by each subject. Results Prior to heat stress blood temperature (36.69 ± 0.25°C) was less than intestinal temperature (36.96 ± 0.21°C, P = 0.004). The increase in blood temperature after 20 min of heat stress was greater than intestinal temperature (0.70 ± 0.24 vs. 0.47 ± 0.18; P = 0.001). However, the increase in temperatures at the end of heat stress were similar between sites (blood Δ = 1.32 ± 0.20°C vs. intestinal Δ = 1.21 ± 0.36°C; P = 0.30). Subsequent cooling decreased blood temperature (Δ = −1.03 ± 0.34°C) to a greater extent than intestinal temperature (Δ = −0.41 ± 0.30°C, P = 0.04). Conclusion In response to the applied thermal provocations, early temperature changes in the intestine are less than the temperature changes in pulmonary artery blood. PMID:22015711

  1. Chronic oral administration of pine bark extract (flavangenol) attenuates brain and liver mRNA expressions of HSPs in heat-exposed chicks.

    PubMed

    Yang, Hui; Chowdhury, Vishwajit S; Bahry, Mohammad A; Tran, Phuong V; Do, Phong H; Han, Guofeng; Zhang, Rong; Tagashira, Hideki; Tsubata, Masahito; Furuse, Mitsuhiro

    2016-08-01

    Exposure to a high ambient temperature (HT) can cause heat stress, which has a huge negative impact on physiological functions. Cellular heat-shock response is activated upon exposure to HT for cellular maintenance and adaptation. In addition, antioxidants are used to support physiological functions under HT in a variety of organisms. Flavangenol, an extract of pine bark, is one of the most potent antioxidants with its complex mixture of polyphenols. In the current study, chronic (a single daily oral administration for 14 days) or acute (a single oral administration) oral administration of flavangenol was performed on chicks. Then the chicks were exposed to an acute HT (40±1°C for 3h) to examine the effect of flavangenol on the mRNA expression of heat-shock protein (HSP) in the brain and liver. Rectal temperature, plasma aspartate aminotransferase (AAT), a marker of liver damage, and plasma corticosterone as well as metabolites were also determined. HSP-70 and -90 mRNA expression, rectal temperature, plasma AAT and corticosterone were increased by HT. Interestingly, the chronic, but not the acute, administration of flavangenol caused a declining in the diencephalic mRNA expression of HSP-70 and -90 and plasma AAT in HT-exposed chicks. Moreover, the hepatic mRNA expression of HSP-90 was also significantly decreased by chronic oral administration of flavangenol in HT chicks. These results indicate that chronic, but not acute, oral administration of flavangenol attenuates HSP mRNA expression in the central and peripheral tissues due to its possible role in improving cellular protective functions during heat stress. The flavangenol-dependent decline in plasma AAT further suggests that liver damage induced by heat stress was minimized by flavangenol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Heat stress during the Black Saturday event in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    Jacobs, Stephanie J.; Vihma, Timo; Pezza, Alexandre B.

    2015-06-01

    The Black Saturday bushfire event of February 7, 2009, devastated the state of Victoria, Australia, resulting in 173 deaths. On this day, the maximum temperature in Melbourne (state capital of Victoria, population 4 million people) exceeded 46 °C, there were wind gusts of over 80 km h-1 and the relative humidity dropped below 5 %. We investigated the severe meteorological conditions of Black Saturday and the risk of heat stress and dehydration for the residents of Melbourne. This was through the analysis of weather station data, air pollution data, the apparent temperature (AT) and the COMfort FormulA human energy budget model. A very strong pressure gradient caused hot and dry air to be advected to Melbourne from the desert interior of Australia creating the extreme weather conditions. The AT showed that on Black Saturday, heat stress conditions were present, though underrepresented due to assumptions in the AT formula. Further investigation into the human energy budget revealed that the conditions required a sweating rate of 1.4 kg h-1 to prevent heat accumulation into the body. If sweating stopped, hyperthermia could occur in 15 min. Sensitivity tests indicated that the dry air and strong winds on Black Saturday helped to release latent heat, but the required sweating rate was virtually unattainable for an average person and would result in intense dehydration. Air particulates were at dangerous concentrations in Melbourne on Black Saturday, further intensifying the stresses to the human body. In the future, we recommend that the AT is not used as a thermal comfort measure as it underestimates the physical stress people experience.

  3. Heat stress of helicopter aircrew wearing immersion suit.

    PubMed

    Ducharme, Michel B

    2006-07-01

    The objectives of the present study were to define the lowest ambient air and cabin temperatures at which aircrews wearing immersion protection are starting to experience thermal discomfort and heat stress during flight operations, and to characterize during a flight simulation in laboratory, the severity of the heat stress during exposure to a typical northern summer ambient condition (25 degrees C, 40% RH). Twenty male helicopter aircrews wearing immersion suits (insulation of 2.2 Clo in air) performed 26 flights within an 8-month period at ambient temperatures ranging between -15 and 25 degrees C, and cabin temperatures ranging between 3 and 28 degrees C. It was observed based on thermal comfort ratings that the aircrews were starting to experience thermal discomfort and heat stress at ambient and cabin air conditions above 18 degrees C and at a WBGT index of 16 degrees C. In a subsequent study, seven aircrews dressed with the same clothing were exposed for 140 min to 25 degrees C and 40% RH in a climatic chamber. During the exposure, the aircrews simulated pilot flight maneuvers for 80 min followed with backender/flight engineer activities for 60 min. By the end of the 140 min exposure, the skin temperature, rectal temperature and heart rate had increased significantly to 35.7 +/- 0.2 degrees C, 38.4 +/- 0.2 degrees C and between 110 and 160 beats/min depending on the level of physical activity. The body sweat rate averaged 0.58 kg/h and the relative humidity inside the clothing was at saturation by the end of the exposure. It was concluded that aircrews wearing immersion suits during the summer months in northern climates might experience thermal discomfort and heat stress at ambient or cabin air temperature as low as 18 degrees C.

  4. Heat stress during the Black Saturday event in Melbourne, Australia.

    PubMed

    Jacobs, Stephanie J; Vihma, Timo; Pezza, Alexandre B

    2015-06-01

    The Black Saturday bushfire event of February 7, 2009, devastated the state of Victoria, Australia, resulting in 173 deaths. On this day, the maximum temperature in Melbourne (state capital of Victoria, population 4 million people) exceeded 46 °C, there were wind gusts of over 80 km h(-1) and the relative humidity dropped below 5 %. We investigated the severe meteorological conditions of Black Saturday and the risk of heat stress and dehydration for the residents of Melbourne. This was through the analysis of weather station data, air pollution data, the apparent temperature (AT) and the COMfort FormulA human energy budget model. A very strong pressure gradient caused hot and dry air to be advected to Melbourne from the desert interior of Australia creating the extreme weather conditions. The AT showed that on Black Saturday, heat stress conditions were present, though underrepresented due to assumptions in the AT formula. Further investigation into the human energy budget revealed that the conditions required a sweating rate of 1.4 kg h(-1) to prevent heat accumulation into the body. If sweating stopped, hyperthermia could occur in 15 min. Sensitivity tests indicated that the dry air and strong winds on Black Saturday helped to release latent heat, but the required sweating rate was virtually unattainable for an average person and would result in intense dehydration. Air particulates were at dangerous concentrations in Melbourne on Black Saturday, further intensifying the stresses to the human body. In the future, we recommend that the AT is not used as a thermal comfort measure as it underestimates the physical stress people experience.

  5. Familial Liability to Psychosis Is Associated With Attenuated Dopamine Stress Signaling in Ventromedial Prefrontal Cortex

    PubMed Central

    Myin-Germeys, Inez

    2014-01-01

    Objective: Patients diagnosed with a psychotic disorder and their first-degree relatives display increased reactivity to stress. Theory predicts that experience of psychosocial stress is associated both with ventromedial prefrontal and mesolimbic dopamine neurotransmission. However, while there is evidence of aberrant striatal dopamine processing in psychotic disorder, the role of the prefrontal cortex remains under-researched. This study aimed at investigating stress-induced in vivo dopamine release in ventromedial prefrontal cortex (vmPFC) of individuals at familial risk for psychosis. Method: Fourteen healthy first-degree relatives of patients with a diagnosis of psychotic disorder and 10 control subjects underwent a single dynamic positron emission tomography (PET) scanning session after intravenous administration of 183.2 (SD = 7.6) MBq [18F]fallypride. Psychosocial stress was initiated at 100min postinjection using a computerized mental arithmetic task with social evaluative threat components. PET data were analyzed using the linearized simplified reference region model. Regression analyses were performed to compare the spatial extent of task-related ligand displacement between control subjects and relatives and to find how it related to self-rated experiences of psychosocial stress and psychosis. Results: First-degree relatives displayed hyporeactive dopamine signaling in the vmPFC in response to stress. Increased levels of subjectively rated stress were associated with increased intensity of psychotic experiences. This effect was particularly pronounced in first-degree relatives. Conclusion: Although previous studies have hypothesized a role for prefrontal dopamine dysfunction in psychosis, this study, to our knowledge, is the first in vivo human imaging study showing attenuated (ie, hyporeactive) dopamine stress neuromodulation in vmPFC of individuals at familial risk for psychosis. PMID:23363687

  6. Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress.

    PubMed

    Bharwani, Aadil; Mian, M Firoz; Surette, Michael G; Bienenstock, John; Forsythe, Paul

    2017-01-11

    Stress-related disorders involve systemic alterations, including disruption of the intestinal microbial community. Given the putative connections between the microbiota, immunity, neural function, and behaviour, we investigated the potential for microbe-induced gut-to-brain signalling to modulate the impact of stress on host behaviour and immunoregulation. Male C57BL/6 mice treated orally over 28 days with either Lactobacillus rhamnosus (JB-1) ™ or vehicle were subjected to chronic social defeat and assessed for alterations in behaviour and immune cell phenotype. 16S rRNA sequencing and mass spectrometry were employed to analyse the faecal microbial community and metabolite profile. Treatment with JB-1 decreased stress-induced anxiety-like behaviour and prevented deficits in social interaction with conspecifics. However, JB-1 did not alter development of aggressor avoidance following social defeat. Microbial treatment attenuated stress-related activation of dendritic cells while increasing IL-10+ regulatory T cells. Furthermore, JB-1 modulated the effect of stress on faecal metabolites with neuroactive and immunomodulatory properties. Exposure to social defeat altered faecal microbial community composition and reduced species richness and diversity, none of which was prevented by JB-1. Stress-related microbiota disruptions persisted in vehicle-treated mice for 3 weeks following stressor cessation. These data demonstrate that despite the complexity of the gut microbiota, exposure to a single microbial strain can protect against certain stress-induced behaviours and systemic immune alterations without preventing dysbiosis. This work supports microbe-based interventions for stress-related disorders.

  7. Beneficial effect of Oligonol supplementation on sweating response under heat stress in humans.

    PubMed

    Lee, Jeong Beom; Shin, Young Oh

    2014-10-01

    Oligonol is a low-molecular weight polyphenol that possesses antioxidant and anti-inflammatory properties. However, nothing is known regarding the impact of Oligonol on sudomotor activity. This study investigated the effects of Oligonol supplementation on sudomotor activity during heat load in humans. Initially, we conducted a placebo-controlled, cross-over trial where participants took a daily dose of Oligonol 200 mg or placebo for one week. After a 2 week washout period, the subjects were switched to the other study arm. As a heat load, half-body immersion into hot water (42 ± 0.5 °C for 30 min) was performed in an automated climate chamber. Tympanic and skin temperatures were measured. Sudomotor activity, including onset time, sweat rate (SR) and volume (SV), active sweat gland density (ASGD), and sweat gland output (SGO), was tested in four or eight areas of skin. When compared with placebo, Oligonol attenuated increases in tympanic and skin temperatures after the heat load. There was an increasing trend in local sweat onset time, but there was a decrease in local SR, SV, ASGD, and SGO for Oligonol compared to placebo. The mean ASGD was significantly higher in the Oligonol group than in the placebo group for 10, 20, and 30 min. This study demonstrates that Oligonol appears to be worthy of consideration as a natural supplement to support more economical use of body fluids against heat stress.

  8. Single nucleotide polymorphisms associated with thermoregulation in lactating dairy cows exposed to heat stress

    USDA-ARS?s Scientific Manuscript database

    Dairy cows with increased rectal temperature during heat stress experience lower milk yield and fertility. Given that rectal temperature during heat stress is heritable in dairy cattle, genetic selection for regulation of body temperature should reduce effects of heat stress on production. One goal...

  9. Recombinant human leptin attenuates stress axis activity in common carp (Cyprinus carpio L.).

    PubMed

    Gorissen, Marnix; Bernier, Nicholas J; Manuel, Remy; de Gelder, Stefan; Metz, Juriaan R; Huising, Mark O; Flik, Gert

    2012-08-01

    Proper functioning of the endocrine stress axis requires communication between the stress axis and other regulatory mechanisms. We here describe an intimate interplay between the stress axis and recombinant human leptin (rhLeptin) in a teleostean fish, the common carp Cyprinus carpio. Restraint stress (by netting up to 96h) increased plasma cortisol but did not affect hepatic leptin expression. Perifusion of pituitary glands or head kidneys with rhLeptin revealed direct effects of rhLeptin on both tissues. RhLeptin suppresses basal and CRF-induced ACTH-secretion in a rapid and concentration-dependent manner. The rhLeptin effect persisted for over an hour after administration had been terminated. RhLeptin decreases basal interrenal cortisol secretion in vitro, and by doing so attenuates ACTH-stimulated cortisol production; rhLeptin does not affect interrenal ACTH-sensitivity. Our findings show that the endocrine stress axis activity and leptin are inseparably linked in a teleostean fish, a notion relevant to further our insights in the evolution of leptin physiology in vertebrates.

  10. Mitochondrial Respiratory Electron Carriers Are Involved in Oxidative Stress during Heat Stress in Saccharomyces cerevisiae

    PubMed Central

    Davidson, John F.; Schiestl, Robert H.

    2001-01-01

    In the present study we sought to determine the source of heat-induced oxidative stress. We investigated the involvement of mitochondrial respiratory electron transport in post-diauxic-phase cells under conditions of lethal heat shock. Petite cells were thermosensitive, had increased nuclear mutation frequencies, and experienced elevated levels of oxidation of an intracellular probe following exposure to a temperature of 50°C. Cells with a deletion in COQ7 leading to a deficiency in coenzyme Q had a much more severe thermosensitivity phenotype for these oxidative endpoints following heat stress compared to that of petite cells. In contrast, deletion of the external NADH dehydrogenases NDE1 and NDE2, which feed electrons from NADH into the electron transport chain, abrogated the levels of heat-induced intracellular fluorescence and nuclear mutation frequency. Mitochondria isolated from COQ7-deficient cells secreted more than 30 times as much H2O2 at 42 as at 30°C, while mitochondria isolated from cells simultaneously deficient in NDE1 and NDE2 secreted no H2O2. We conclude that heat stress causes nuclear mutations via oxidative stress originating from the respiratory electron transport chains of mitochondria. PMID:11713283

  11. Heat stress promotes extracellular matrix remodelling via TGF-β1 and MMP-2/TIMP-2 modulation in tenotomised soleus and plantaris muscles.

    PubMed

    Hirunsai, Muthita; Srikuea, Ratchakrit; Yimlamai, Tossaporn

    2015-06-01

    Heat stress has been shown to reduce muscle atrophy and enhance muscle regeneration. However, the role of heat stress on extracellular matrix (ECM) remodelling remains poorly understood. Here, we examined the effect of heat exposure on intramuscular fibrosis and its associated signalling in soleus and plantaris muscles after tenotomy. Male Wistar rats were randomly divided into four groups: sedentary control (CON), control plus heat stress (CON+HEAT), tenotomy (TEN) for 8 days, and tenotomy for 8 days plus heat stress (TEN+HEAT). Whole body heat stress was maintained at 40.5-41.5 °C for 30 min, 24 h before and 1-6 days after tenotomy. Tenotomy resulted in muscle atrophy and a substantial increase in intramuscular collagen content, which was more pronounced in soleus than in plantaris muscles, whereas laminin content remained unaffected. These effects were associated with increases in MMP-2 activity, TIMP-2, and TGF-β1 protein expressions. Heat stress, however, attenuated tenotomy-induced intramuscular collagen accumulation in soleus muscle and reduced TIMP-2 and TGF-β1 protein expressions, but had no effect on MMP-2 activity in both muscles. These alterations were concomitant with the induction of heat shock protein 72 (Hsp72). These data demonstrated that heat stress could reduce intramuscular fibrosis, at least in part, through decreasing TGF-β1 and TIMP-2 protein expressions of tenotomised soleus muscle. The results from this study shed light on the mechanism and suggest the potential therapeutic effect of heat stress in alleviating intramuscular fibrosis after tenotomy.

  12. l-Arginine Enhances Resistance against Oxidative Stress and Heat Stress in Caenorhabditis elegans

    PubMed Central

    Ma, Heran; Ma, Yudan; Zhang, Zhixian; Zhao, Ziyuan; Lin, Ran; Zhu, Jinming; Guo, Yi; Xu, Li

    2016-01-01

    The antioxidant properties of l-arginine (l-Arg) in vivo, and its effect on enhancing resistance to oxidative stress and heat stress in Caenorhabditis elegans were investigated. C. elegans, a worm model popularly used in molecular and developmental biology, was used in the present study. Here, we report that l-Arg, at a concentration of 1 mM, prolonged C. elegans life by 26.98% and 37.02% under oxidative and heat stress, respectively. Further experiments indicated that the longevity-extending effects of l-Arg may be exerted by its free radical scavenging capacity and the upregulation of aging-associated gene expression in worms. This work is important in the context of numerous recent studies that concluded that environment stresses are associated with an increased population death rate. PMID:27690079

  13. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress

    PubMed Central

    Hosoi, Toru; Yamaguchi, Rie; Noji, Kikuko; Matsuo, Suguru; Baba, Sachiko; Toyoda, Keisuke; Suezawa, Takahiro; Kayano, Takaaki; Tanaka, Shinpei; Ozawa, Koichiro

    2014-01-01

    Endoplasmic reticulum (ER) stress, caused by the accumulation of unfolded proteins, is involved in the development of obesity. We demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited chaperone activity, which reduced protein aggregation and alleviated ER stress-induced leptin resistance, characterized by insensitivity to the actions of the anti-obesity hormone leptin. This result was further supported by flurbiprofen attenuating high-fat diet-induced obesity in mice. The other NSAIDs tested did not exhibit such effects, which suggested that this anti-obesity action is mediated independent of NSAIDs. Using ferriteglycidyl methacrylate beads, we identified aldehyde dehydrogenase as the target of flurbiprofen, but not of the other NSAIDs. These results suggest that flurbiprofen may have unique pharmacological properties that reduce the accumulation of unfolded proteins and may represent a new class of drug for the fundamental treatment of obesity. Subject Categories Metabolism; Pharmacology & Drug Discovery PMID:24421337

  14. Manual lymph drainage attenuates frontal EEG asymmetry in subjects with psychological stress: a preliminary study.

    PubMed

    Shim, Jung-Myo; Kim, Sung-Joong

    2014-04-01

    [Purpose] The purpose of this preliminary study was to investigate the effect of manual lymph drainage (MLD) of the neck on frontal electroencephalogram (EEG) asymmetry in subjects with psychological stress. [Subjects] Thirteen subjects with psychological stress participated in the study. [Methods] Subjects received MLD of the neck for 15 min. [Results] Analysis of the frontal asymmetry index showed that the energy shift in the alpha frequency band from the left hemisphere to the right hemisphere after MLD resulted in greater left-side activation (positive asymmetry values), which could be related to the positive emotional state observed particularly in the F7-F8 area. [Conclusion] These preliminary findings suggest that frontal EEG asymmetry was significantly attenuated after MLD.

  15. Trait dominance is associated with vascular cardiovascular responses, and attenuated habituation, to social stress.

    PubMed

    Lee, Eimear M; Hughes, Brian M

    2014-05-01

    Both exaggerated and diminished levels of cardiovascular reactivity have been associated with cardiovascular ill health. Dysregulation of hemodynamic mechanisms which control cardiovascular functioning may account for some individual differences in health outcomes. Trait dominance has also been associated with poor cardiovascular health in studies of humans and animals. The current study investigated the relationship between trait dominance and cardiovascular habituation to repeated social stress in humans. Forty-seven undergraduate women completed two consecutive speech tasks, preceded by a baseline period, and separated by an inter-task resting phase. Continuous cardiovascular functioning was monitored using the Finometer device. The trait dominance subscale of the Jackson Personality Research Form was completed. Mixed ANCOVA with trait dominance revealed a significant 3 (dominance) × 4 (phase) interaction for total peripheral resistance (TPR), such that TPR varied across experimental phases and was associated with trait dominance, F(1, 43)=12.88, p=.001, partial η(2)=.23. Further mixed ANCOVA for TPR reactivity to Exposures 1 and 2 revealed a significant 3 × 2 interaction with trait dominance, F(2, 40)=7.77, p=.001, partial η(2)=.28, such that higher dominance was associated with attenuated TPR habituation to Exposure 2. Trait dominance was significantly associated with vascular-oriented cardiovascular functioning, and with attenuated habituation to social stress. Vascular-dominated stress responses have in some instances been associated with ill-health, suggesting that a failure to habituate to stress, and a vascular response style could reflect potential mechanisms through which dominance is associated with poor future cardiovascular health. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Antioxidant vitamins attenuate oxidative stress and cardiac dysfunction in tachycardia-induced cardiomyopathy.

    PubMed

    Shite, J; Qin, F; Mao, W; Kawai, H; Stevens, S Y; Liang, C

    2001-11-15

    We administered antioxidant vitamins to rabbits with pacing-induced cardiomyopathy to assess whether antioxidant therapy retards the progression of congestive heart failure (CHF). Although oxidative stress is increased in CHF, whether progression of heart failure could be prevented or reduced by antioxidants is not known. Rabbits with chronic cardiac pacing and sham operation were randomized to receive a combination of beta-carotene, ascorbic acid and alpha-tocopherol, alpha-tocopherol alone or placebo over eight weeks. Echocardiography was used to measure cardiac function weekly. Resting hemodynamics and in vivo myocardial beta-adrenergic responsiveness were studied at week 8. Animals were then sacrificed for measuring myocardial beta-receptor density, norepinephrine (NE) uptake-1 site density, sympathetic neuronal marker profiles, tissue-reduced glutathione/oxidized glutathione (GSH/GSSG) ratio and oxidative damage of mitochondrial DNA (mtDNA). Rapid cardiac pacing increased myocardial oxidative stress as evidenced by reduced myocardial GSH/GSSG ratio and increased oxidized mtDNA and produced cardiac dysfunction, beta-adrenergic subsensitivity, beta-receptor downregulation, diminished sympathetic neurotransmitter profiles and reduced NE uptake-1 carrier density. A combination of antioxidant vitamins reduced the myocardial oxidative stress, attenuated cardiac dysfunction and prevented myocardial beta-receptor downregulation and sympathetic nerve terminal dysfunction. Administration of alpha-tocopherol alone produced similar effects, but the effects were less marked than those produced by the three vitamins together. Vitamins produced no effects in sham-operated animals. Antioxidant vitamins reduced tissue oxidative stress in CHF and attenuated the associated cardiac dysfunction, beta-receptor downregulation and sympathetic nerve terminal abnormalities. The findings suggest that antioxidant therapy may be efficacious in human CHF.

  17. Acute vagal stimulation attenuates cardiac metabolic response to β-adrenergic stress

    PubMed Central

    Vimercati, Claudio; Qanud, Khaled; Ilsar, Itamar; Mitacchione, Gianfranco; Sarnari, Roberto; Mania, Daniella; Faulk, Ryan; Stanley, William C; Sabbah, Hani N; Recchia, Fabio A

    2012-01-01

    The effects of vagal stimulation (VS) on cardiac energy substrate metabolism are unknown. We tested the hypothesis that acute VS alters the balance between free fatty acid (FFA) and carbohydrate oxidation and opposes the metabolic effects of β-adrenergic stimulation. A clinical-type selective stimulator of the vagal efferent fibres was connected to the intact right vagus in chronically instrumented dogs. VS was set to reduce heart rate by 30 beats min−1, and the confounding effects of bradycardia were then eliminated by pacing the heart at 165 beats min−1. [3H]Oleate and [14C]glucose were infused to measure FFA and glucose oxidation. The heart was subjected to β-adrenergic stress by infusing dobutamine at 5, 10 and 15 μg kg−1 min−1 before and during VS. VS did not significantly affect baseline cardiac performance, haemodynamics or myocardial metabolism. However, at peak dobutamine stress, VS attenuated the increase in left ventricular pressure–diameter area from 235.9 ± 72.8 to 167.3 ± 55.8%, and in cardiac oxygen consumption from 173.9 ± 23.3 to 127.89 ± 6.2% (both P < 0.05), and thus mechanical efficiency was not enhanced. The increase in glucose oxidation fell from 289.3 ± 55.5 to 131.1 ± 20.9%(P < 0.05), while FFA oxidation was not increased by β-adrenergic stress and fell below baseline during VS only at the lowest dose of dobutamine. The functional and in part the metabolic changes were reversed by 0.1 mg kg−1 atropine i.v. Our data show that acute right VS does not affect baseline cardiac metabolism, but attenuates myocardial oxygen consumption and glucose oxidation in response to adrenergic stress, thus functioning as a cardio-selective antagonist to β-adrenergic activation. PMID:22966163

  18. Acute vagal stimulation attenuates cardiac metabolic response to β-adrenergic stress.

    PubMed

    Vimercati, Claudio; Qanud, Khaled; Ilsar, Itamar; Mitacchione, Gianfranco; Sarnari, Roberto; Mania, Daniella; Faulk, Ryan; Stanley, William C; Sabbah, Hani N; Recchia, Fabio A

    2012-12-01

    The effects of vagal stimulation (VS) on cardiac energy substrate metabolism are unknown. We tested the hypothesis that acute VS alters the balance between free fatty acid (FFA) and carbohydrate oxidation and opposes the metabolic effects of β-adrenergic stimulation. A clinical-type selective stimulator of the vagal efferent fibres was connected to the intact right vagus in chronically instrumented dogs. VS was set to reduce heart rate by 30 beats min(-1), and the confounding effects of bradycardia were then eliminated by pacing the heart at 165 beats min(-1). [(3)H]Oleate and [(14)C]glucose were infused to measure FFA and glucose oxidation. The heart was subjected to β-adrenergic stress by infusing dobutamine at 5, 10 and 15 μg kg(-1) min(-1) before and during VS. VS did not significantly affect baseline cardiac performance, haemodynamics or myocardial metabolism. However, at peak dobutamine stress, VS attenuated the increase in left ventricular pressure-diameter area from 235.9 ± 72.8 to 167.3 ± 55.8%, and in cardiac oxygen consumption from 173.9 ± 23.3 to 127.89 ± 6.2% (both P < 0.05), and thus mechanical efficiency was not enhanced. The increase in glucose oxidation fell from 289.3 ± 55.5 to 131.1 ± 20.9% (P < 0.05), while FFA oxidation was not increased by β-adrenergic stress and fell below baseline during VS only at the lowest dose of dobutamine. The functional and in part the metabolic changes were reversed by 0.1 mg kg(-1) atropine i.v. Our data show that acute right VS does not affect baseline cardiac metabolism, but attenuates myocardial oxygen consumption and glucose oxidation in response to adrenergic stress, thus functioning as a cardio-selective antagonist to β-adrenergic activation.

  19. Plastic and evolutionary responses to heat stress in a temperate dung fly: negative correlation between basal and induced heat tolerance?

    PubMed

    Esperk, T; Kjaersgaard, A; Walters, R J; Berger, D; Blanckenhorn, W U

    2016-05-01

    Extreme weather events such as heat waves are becoming more frequent and intense. Populations can cope with elevated heat stress by evolving higher basal heat tolerance (evolutionary response) and/or stronger induced heat tolerance (plastic response). However, there is ongoing debate about whether basal and induced heat tolerance are negatively correlated and whether adaptive potential in heat tolerance is sufficient under ongoing climate warming. To evaluate the evolutionary potential of basal and induced heat tolerance, we performed experimental evolution on a temperate source population of the dung fly Sepsis punctum. Offspring of flies adapted to three thermal selection regimes (Hot, Cold and Reference) were subjected to acute heat stress after having been exposed to either a hot-acclimation or non-acclimation pretreatment. As different traits may respond differently to temperature stress, several physiological and life history traits were assessed. Condition dependence of the response was evaluated by exposing juveniles to different levels of developmental (food restriction/rearing density) stress. Heat knockdown times were highest, whereas acclimation effects were lowest in the Hot selection regime, indicating a negative association between basal and induced heat tolerance. However, survival, adult longevity, fecundity and fertility did not show such a pattern. Acclimation had positive effects in heat-shocked flies, but in the absence of heat stress hot-acclimated flies had reduced life spans relative to non-acclimated ones, thereby revealing a potential cost of acclimation. Moreover, body size positively affected heat tolerance and unstressed individuals were less prone to heat stress than stressed flies, offering support for energetic costs associated with heat tolerance. Overall, our results indicate that heat tolerance of temperate insects can evolve under rising temperatures, but this response could be limited by a negative relationship between basal and

  20. Pomegranate juice intake attenuates the increase in oxidative stress induced by intravenous iron during hemodialysis.

    PubMed

    Shema-Didi, Lilach; Kristal, Batya; Ore, Liora; Shapiro, Galina; Geron, Ronit; Sela, Shifra

    2013-06-01

    The hemodialysis (HD) procedure induces oxidative stress (OS), which is further aggravated by intravenous (IV) iron administration, aimed at correcting anemia of patients with HD. We have recently shown that 1 year of pomegranate juice (PJ) intake attenuated OS and inflammation in patients with HD. In the current study, we hypothesized that a single dose of PJ can attenuate the enhanced OS and inflammation induced by both the dialysis procedure and IV iron administration during HD session. Twenty-seven patients with HD were randomized to receive PJ or placebo during 1 dialysis session with IV iron. Blood samples were drawn before and after the session to asses OS biomarkers such as advanced oxidation protein products and myeloperoxidase (MPO), whereas polymorphonuclear leukocyte (PMNL) counts served as an indirect measure of inflammation. At the end of the dialysis session, an increase in advanced oxidation protein products and MPO levels as well as a decrease in PMNLs counts were observed in the placebo group, whereas no significant changes occurred in the PJ group. The postdialysis increase in MPO levels in the placebo group is a direct result of PMNL degranulation, associated with postdialysis decrease in PMNL counts. Degranulation of PMNLs leads to the release of other cell moieties, such as inflammatory mediators and proteases that enhance inflammation. We conclude that PJ intake attenuated the increase in systemic OS and inflammation induced by IV iron administration during the dialysis session. These beneficial effects illuminate the previously observed attenuation in OS and inflammation in patients with HD on prolonged PJ intake.

  1. Autophagy Attenuates Noise-Induced Hearing Loss by Reducing Oxidative Stress

    PubMed Central

    Yuan, Hu; Wang, Xianren; Hill, Kayla; Chen, Jun; Lemasters, John; Yang, Shi-Ming

    2015-01-01

    Abstract Aims: Reactive oxygen species play a dual role in mediating both cell stress and defense pathways. Here, we used pharmacological manipulations and siRNA silencing to investigate the relationship between autophagy and oxidative stress under conditions of noise-induced temporary, permanent, and severe permanent auditory threshold shifts (temporary threshold shift [TTS], permanent threshold shift [PTS], and severe PTS [sPTS], respectively) in adult CBA/J mice. Results: Levels of oxidative stress markers (4-hydroxynonenal [4-HNE] and 3-nitrotyrosine [3-NT]) increased in outer hair cells (OHCs) in a noise-dose-dependent manner, whereas levels of the autophagy marker microtubule-associated protein light chain 3 B (LC3B) were sharply elevated after TTS but rose only slightly in response to PTS and were unaltered by sPTS noise. Furthermore, green fluorescent protein (GFP) intensity increased in GFP-LC3 mice after TTS-noise exposure. Treatment with rapamycin, an autophagy activator, significantly increased LC3B expression, while diminishing 4-HNE and 3-NT levels, reducing noise-induced hair cell loss, and, subsequently, noise-induced hearing loss (NIHL). In contrast, treatment with either the autophagy inhibitor 3-methyladenine (3MA) or LC3B siRNA reduced LC3B expression, increased 3-NT and 4-HNE levels, and exacerbated TTS to PTS. Innovation: This study demonstrates a relationship between oxidative stress and autophagy in OHCs and reveals that autophagy is an intrinsic cellular process that protects against NIHL by attenuating oxidative stress. Conclusions: The results suggest that the lower levels of oxidative stress incurred by TTS-noise exposure induce autophagy, which promotes OHC survival. However, excessive oxidative stress under sPTS-noise conditions overwhelms the beneficial potential of autophagy in OHCs and leads to OHC death and NIHL. Antioxid. Redox Signal. 22, 1308–1324. PMID:25694169

  2. Low Shear Stress Attenuates COX-2 Expression Induced by Resistin in Human Osteoarthritic Chondrocytes.

    PubMed

    Su, Yu-Ping; Chen, Cheng-Nan; Chang, Hsin-I; Huang, Kuo-Chin; Cheng, Chin-Chang; Chiu, Fang-Yao; Lee, Ko-Chao; Lo, Chun-Min; Chang, Shun-Fu

    2017-06-01

    Low shear stress has been proposed to play a reparative role in modulating cartilage homeostasis. Recently, epidemiological studies have found a positive correlation between the resistin level in serum and synovial fluid and osteoarthritis (OA) severity in patients. However, the effect of moderate shear stress on the catabolic stimulation of resistin in OA chondrocytes remains unclear. Hence, this study was to investigate whether low shear stress could regulate resistin-induced catabolic cyclooxygenase (COX)-2 expression in human OA chondrocytes and the underlying mechanism. Human OA chondrocytes and SW1353 chondrosarcoma cells were used in this study. Two modes of low shear stress (2 dyn/cm(2) ), pre-shear and post-shear, were applied to the chondrocytes. A specific activator and siRNAs were used to investigate the mechanism of low shear stress-regulated COX-2 expression of resistin induction. We found that human OA chondrocytes exposed to different modes of low shear stress elicit an opposite effect on resistin-induced COX-2 expression: pre-shear for a short duration attenuates the resistin effect by inhibiting the transcription factor nuclear factor (NF)-κB-p65 subunit and the cAMP response element binding protein; however, post-shear over a longer duration enhances the resistin effect by activating only the NF-κB-p65 subunit. Moreover, our results demonstrated that the regulation of both shear modes in resistin-stimulated COX-2 expression occurs through increasing AMP-activated protein kinase activation and then sirtuin 1 expression. This study elucidates the detailed mechanism of low shear stress regulating the resistin-induced catabolic COX-2 expression and indicates a possible reparative role of moderate shear force in resistin-stimulated OA development. J. Cell. Physiol. 232: 1448-1457, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Neurokinin-1 receptor antagonism attenuates neuronal activity triggered by stress-induced reinstatement of alcohol seeking

    PubMed Central

    Schank, J.R.; Nelson, B.S.; Damadzic, R.; Tapocik, J.D.; Yao, M.; King, C.E.; Rowe, K.E.; Cheng, K.; Rice, K.C.; Heilig, M.

    2015-01-01

    Substance P (SP) and its cognate neurokinin-1 receptor (NK1R) are involved in alcohol-related behaviors. We have previously reported that NK1R antagonism attenuates stress-induced reinstatement of alcohol seeking and suppresses escalated alcohol self-administration, but does not affect primary reinforcement or cue-induced reinstatement. Here, we administered an NK1R antagonist or vehicle prior to footshock-induced reinstatement of alcohol seeking, and mapped the resulting neuronal activation using Fos immunohistochemistry. As expected, vehicle treated animals exposed to footshock showed induction of Fos immunoreactivity in several regions of the brain stress circuitry, including the amygdala (AMG), nucleus accumbens (NAC), dorsal raphe nucleus (DR), prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST). NK1R antagonism selectively suppressed the stress-induced increase in Fos in the DR and NAC shell. In the DR, Fos-induction by stress largely overlapped with tryptophan hydroxylase (TrpH), indicating activation of serotonergic neurons. Of NAC shell neurons activated during stress-induced reinstatement of alcohol seeking, about 30% co-expressed dynorphin (DYN), while 70% co-expressed enkephalin (ENK). Few (<1%) activated NAC shell neurons co-expressed choline acetyltransferase (ChAT), which labels the cholinergic interneurons of this region. Infusion of the NK1R antagonist L822429 into the NAC shell blocked stress-induced reinstatement of alcohol seeking. In contrast, L822429 infusion into the DR had no effect, suggesting that the influence of NK1R signaling on neuronal activity in the DR is indirect. Taken together, our results outline a potential pathway through which endogenous NK1R activation mediates stress-induced alcohol seeking. PMID:26188146

  4. Apocynin attenuates diaphragm oxidative stress and protease activation during prolonged mechanical ventilation

    PubMed Central

    McClung, Joseph M.; Van Gammeren, Darin; Whidden, Melissa A.; Falk, Darin J.; Kavazis, Andreas N.; Hudson, Matt B.; Gayan-Ramirez, Ghislaine; Decramer, Marc; DeRuisseau, Keith C.; Powers, Scott K.

    2010-01-01

    Objective To investigate whether apocynin protects the diaphragm from wasting and oxidative stress during mechanical ventilation (MV). Design Prospective, randomized, controlled study. Setting Research laboratory. Subjects Adult female Sprague-Dawley rats. Interventions Rats were randomly assigned to one of five experimental groups: 1) acutely anesthetized control, 2) spontaneous breathing control, 3) spontaneously breathing control with administration of the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin, 4) mechanically ventilated, and 5) mechanically ventilated with apocynin. Measurements and Main Results Apocynin attenuated MV-induced diaphragmatic oxidative stress, contractile dysfunction, and type I, type IIa, and type IIb/IIx myofiber atrophy. The apocynin-induced attenuation of MV-induced diaphragmatic atrophy and contractile dysfunction occurred in conjunction with a reduction in the small increase in nicotinamide adenine dinucleotide phosphate oxidase activity as well as the preservation of total glutathione levels, glutathione peroxidase protein abundance, and a decrease in the activation of the cysteine proteases, calpain-1 and caspase-3. Interestingly, independent of MV, apocynin increased diaphragmatic levels of calpastatin, an endogenous calpain inhibitor. Furthermore, treatment of skeletal muscle cells in culture (C2C12 myotubes) with apocynin resulted in an increase in both calpastatin mRNA levels and protein abundance. Conclusions Our results suggest that the protective effects of apocynin on the diaphragm during prolonged MV seem to be linked to both its functions as an antioxidant and role in cellular signaling regulating the cysteine protease inhibitor calpastatin. PMID:19242334

  5. Centella asiatica Attenuates Mitochondrial Dysfunction and Oxidative Stress in Aβ-Exposed Hippocampal Neurons

    PubMed Central

    Zweig, Jonathan A.; Matthews, Donald G.; Caruso, Maya; Quinn, Joseph F.; Soumyanath, Amala

    2017-01-01

    Centella asiatica has been used for centuries to enhance memory. We have previously shown that a water extract of Centella asiatica (CAW) protects against the deleterious effects of amyloid-β (Aβ) in neuroblastoma cells and attenuates Aβ-induced cognitive deficits in mice. Yet, the neuroprotective mechanism of CAW has yet to be thoroughly explored in neurons from these animals. This study investigates the effects of CAW on neuronal metabolism and oxidative stress in isolated Aβ-expressing neurons. Hippocampal neurons from amyloid precursor protein overexpressing Tg2576 mice and wild-type (WT) littermates were treated with CAW. In both genotypes, CAW increased the expression of antioxidant response genes which attenuated the Aβ-induced elevations in reactive oxygen species (ROS) and lipid peroxidation in Tg2576 neurons. CAW also improved mitochondrial function in both genotypes and increased the expression of electron transport chain enzymes and mitochondrial labeling, suggesting an increase in mitochondrial content. These data show that CAW protects against mitochondrial dysfunction and oxidative stress in Aβ-exposed hippocampal neurons which could contribute to the beneficial effects of the extract observed in vivo. Since CAW also improved mitochondrial function in the absence of Aβ, these results suggest a broader utility for other conditions where neuronal mitochondrial dysfunction occurs. PMID:28883904

  6. Curcumin Mediated Attenuation of Carbofuran Induced Oxidative Stress in Rat Brain

    PubMed Central

    Jaiswal, Sunil Kumar; Sharma, Ashish; Gupta, Vivek Kumar; Singh, Rakesh Kumar; Sharma, Bechan

    2016-01-01

    The indiscriminate use of carbofuran to improve crop productivity causes adverse effects in nontargets including mammalian systems. The objective of this study was to evaluate carbofuran induced oxidative stress in rat brain stem and its attenuation by curcumin, a herbal product. Out of 6 groups of rats, 2 groups received two different doses of carbofuran, that is, 15 and 30% of LD50, respectively, for 30 days. Out of these, 2 groups receiving same doses of carbofuran were pretreated with curcumin (100 mg/kg body weight). The levels of antioxidants, TBARS, GSH, SOD, catalase, and GST were determined in rat brain stem. The 2 remaining groups served as placebo and curcumin treated, respectively. The data suggested that carbofuran at different doses caused significant alterations in the levels of TBARS and GSH in dose dependent manner. The TBARS and GSH contents were elevated. The activities of SOD, catalase, and GST were significantly inhibited at both doses of carbofuran. The ratio of P/A was also found to be sharply increased. The pretreatment of curcumin exhibited significant protection from carbofuran induced toxicity. The results suggested that carbofuran at sublethal doses was able to induce oxidative stress in rat brain which could be attenuated by curcumin. PMID:27213055

  7. Pleurotus tuber-regium Polysaccharides Attenuate Hyperglycemia and Oxidative Stress in Experimental Diabetic Rats

    PubMed Central

    Huang, Hui-Yu; Korivi, Mallikarjuna; Chaing, Ying-Ying; Chien, Ting-Yi; Tsai, Ying-Chieh

    2012-01-01

    Pleurotus tuber-regium contains polysaccharides that are responsible for pharmacological actions, and medicinal effects of these polysaccharides have not yet been studied in diabetic rats. We examined the antidiabetic, antihyperlipidemic, and antioxidant properties of P. tuber-regium polysaccharides in experimental diabetic rats. Forty rats were equally assigned as diabetic high-fat (DHF) diet and polysaccharides treated DHF groups (DHF+1P, DHF+2P, and DHF+3P, 20 mg/kg bodyweight/8-week). Diabetes was induced by chronic low-dose streptozotocin injections and a high-fat diet to mimic type 2 diabetes. Polysaccharides (1P, 2P, and 3P) were extracted from three different strains of P. tuber-regium. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels substantially decreased, while serum insulin levels were restored by polysaccharides treatment compared to DHF. Furthermore, plasma total cholesterol, triglycerides, and low-density lipoprotein levels were significantly (P < 0.01) lower in polysaccharide groups. High-density lipoprotein levels were attenuated with polysaccharides against diabetes condition. Polysaccharides inhibited (P < 0.01) the lipid peroxidation index (malondialdehyde), and restored superoxide dismutase and glutathione peroxidase activities in the liver of diabetic rats. The antihyperglycemic property of polysaccharides perhaps boosts the antioxidant system that attenuates oxidative stress. We emphasize that P. tuber-regium polysaccharides can be considered as an alternative medicine to treat hyperglycemia and oxidative stress in diabetic rats. PMID:22973406

  8. ATR–FTIR spectroscopy reveals involvement of lipids and proteins of intact pea pollen grains to heat stress tolerance

    PubMed Central

    Lahlali, Rachid; Jiang, Yunfei; Kumar, Saroj; Karunakaran, Chithra; Liu, Xia; Borondics, Ferenc; Hallin, Emil; Bueckert, Rosalind

    2014-01-01

    With climate change, pea will be more frequently subjected to heat stress in semi-arid regions like Saskatchewan during flowering. The pollen germination percentage of two pea cultivars was reduced by heat stress (36°C) with an important decrease in cultivar ‘CDC Golden’ compared to ‘CDC Sage.’ Lipids, protein and other pollen coat compositions of whole intact pollen grains of both pea cultivars were investigated using mid infrared (mid-IR) attenuated total reflectance (ATR)–Fourier transform infrared (FTIR) spectroscopy. Curve fitting of ATR absorbance spectra in the protein region enabled estimation and comparison of different protein secondary structures between the two cultivars. CDC Sage had relatively greater amounts of α-helical structures (48.6–43.6%; band at 1654 cm-1) and smaller amounts of β-sheets (41.3–46%) than CDC Golden. The CDC Golden had higher amounts of β-sheets (46.3–51.7%) compared to α-helical structures (35.3–36.2%). Further, heat stress resulted in prominent changes in the symmetrical and asymmetrical CH2 bands from lipid acyl chain, ester carbonyl band, and carbohydrate region. The intensity of asymmetric and symmetric CH2 vibration of heat stressed CDC Golden was reduced considerably in comparison to the control and the decrease was higher compared to CDC Sage. In addition, CDC Golden showed an increase in intensity at the oxidative band of 3015 cm-1. These results reveal that the whole pollen grains of both pea cultivars responded differently to heat stress. The tolerance of CDC Sage to heat stress (expressed as pollen germination percentage) may be due to its protein richness with α-helical structures which would protect against the destructive effects of dehydration due to heat stress. The low pollen germination percentage of CDC Golden after heat stress may be also due to its sensitivity to lipid changes due to heat stress. PMID:25566312

  9. Glycyrrhizic acid Attenuates Neuroinflammation and Oxidative Stress in Rotenone Model of Parkinson's Disease.

    PubMed

    Ojha, Shreesh; Javed, Hayate; Azimullah, Sheikh; Abul Khair, Salema B; Haque, M Emdadul

    2016-02-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting humans. It is characterized by dopaminergic neurodegeneration, mitochondrial impairment, and oxidative stress, enhanced lipid peroxidation, and induction of pro-inflammatory cytokines. We evaluated the neuroprotective efficacy of glycyrrhizic acid (GA), an active component of licorice, against rotenone-induced-oxidative stress and neuroinflammation in a PD rat model. Since PD is progressive and chronic, we investigated the effect of chronic administration of GA for 4 weeks (50 mg/kg/day), 30 min prior to rotenone administration. Rotenone administration significantly reduced the activity of superoxide dismutase and catalase, and caused the depletion of reduced glutathione. A concomitant increase in the levels of the lipid peroxidation product malondialdehyde was observed. It also significantly enhanced the levels of pro-inflammatory cytokines in the midbrain and elevated the levels of inflammatory mediators such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). Immunohistochemical analysis revealed significant increments in ionized calcium-binding adaptor molecule-1 (Iba-1) levels, and in glial fibrillary acidic protein (GFAP) levels, and loss of dopamine neurons in the substantia nigra pars compacta upon rotenone challenge. GA treatment significantly attenuated the dopamine neuron loss and decreased the Iba-1 and GFAP activation induced by the rotenone insult. GA also improved antioxidant enzyme activity, prevented glutathione depletion, inhibited lipid peroxidation, and attenuated induction of pro-inflammatory cytokines. Subsequently, GA attenuated the increased levels of the inflammatory mediators COX-2 and iNOS. In conclusion, GA protects against rotenone-induced-PD. The neuroprotective effects of GA are attributed to its potent antioxidative and anti-inflammatory properties.

  10. Serelaxin Treatment Reduces Oxidative Stress and Increases Aldehyde Dehydrogenase-2 to Attenuate Nitrate Tolerance

    PubMed Central

    Leo, Chen Huei; Fernando, Dhanushke T.; Tran, Lillie; Ng, Hooi Hooi; Marshall, Sarah A.; Parry, Laura J.

    2017-01-01

    Background: Glyceryl trinitrate (GTN) is a commonly prescribed treatment for acute heart failure patients. However, prolonged GTN treatment induces tolerance, largely due to increased oxidative stress and reduced aldehyde dehydrogenase-2 (ALDH-2) expression. Serelaxin has several vasoprotective properties, which include reducing oxidative stress and augmenting endothelial function. We therefore tested the hypothesis in rodents that serelaxin treatment could attenuate low-dose GTN-induced tolerance. Methods and Results: Co-incubation of mouse aortic rings ex vivo with GTN (10 μM) and serelaxin (10 nM) for 1 h, restored GTN responses, suggesting that serelaxin prevented the development of GTN tolerance. Male Wistar rats were subcutaneously infused with ethanol (control), low-dose GTN+placebo or low-dose GTN+serelaxin via osmotic minipumps for 3 days. Aortic vascular function and superoxide levels were assessed using wire myography and lucigenin-enhanced chemiluminescence assay respectively. Changes in aortic ALDH-2 expression were measured by qPCR and Western blot respectively. GTN+placebo infusion significantly increased superoxide levels, decreased ALDH-2 and attenuated GTN-mediated vascular relaxation. Serelaxin co-treatment with GTN significantly enhanced GTN-mediated vascular relaxation, reduced superoxide levels and increased ALDH-2 expression compared to GTN+placebo-treated rats. Conclusion: Our data demonstrate that a combination of serelaxin treatment with low dose GTN attenuates the development of GTN-induced tolerance by reducing superoxide production and increasing ALDH-2 expression in the rat aorta. We suggest that serelaxin may improve nitrate efficacy in a clinical setting. PMID:28377719

  11. Attenuated DHEA and DHEA-S response to acute psychosocial stress in individuals with depressive disorders.

    PubMed

    Jiang, Xiaoling; Zhong, Wen; An, Haiyan; Fu, Mingyu; Chen, Yuanyuan; Zhang, Zhenggang; Xiao, Zhongju

    2017-06-01

    In recent years, a relationship between depression and basal dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) levels has frequently been suggested, but responses of these adrenal steroids to psychosocial stress have not been examined in individuals with depressive disorders. In this study, we examined salivary DHEA, DHEA-S, and cortisol/DHEA response to the Trier Social Stress Test (TSST) in individuals with depressive disorders and in healthy controls to discover whether the responses of DHEA and DHEA-S to acute psychosocial stress could be a more sensitive marker of HPA dysfunction in depressive disorders. We compared salivary cortisol, DHEA, DHEA-S, and cortisol/DHEA levels to the TSST tests between 38 individuals with depression and 43 healthy controls aged 18.4-25.9 years. Depression severity was assessed by the self-reported Beck Depression Inventory-II (BDI-II). Salivary samples were evaluated at four time points: the baseline (-10 time point), before the TSST started (0 time point), the end of the TSST (+20 time point), and the recovery (+50 time points). No significant differences existed in the basal adrenal hormonal levels between subjects with depressive disorders and controls; however, at the end of TSST, attenuated DHEA and DHEA-S response was identified in subjects with depressive disorders compared to that found in healthy subjects. The differences in the DHEA and DHEA-S levels at the +20 time point, as well as the differences in the cortisol/DHEA at the +50 time point, exhibited negative correlations with depression severity. Attenuated DHEA and DHEA-S response to acute psychosocial stress was identified in subjects with depressive disorders. These findings help us to discover the bi-directional relationship between depression and the hypothalamic-pituitary-adrenal (HPA) axis function, hence furthering our understanding of whether altered DHEA and DHEA-S response to psychosocial stress may be a more sensitive method than

  12. Geranylgeranylacetone attenuates hepatic fibrosis by increasing the expression of heat shock protein 70

    PubMed Central

    HE, WEI; ZHUANG, YUN; WANG, LIANGZHI; QI, LEI; CHEN, BINFANG; WANG, MEI; SHAO, DONG; CHEN, JIANPING

    2015-01-01

    Increasing evidence has demonstrated that the heat shock protein 70 (HSP70) gene may be closely associated with tissue fibrosis; however, the association between HSP70 and liver fibrosis remains to be fully elucidated. The present study hypothesized that geranylgeranylacetone (GGA) exerts beneficial effects on liver fibrosis though upregulation of the expression of HSP70. Liver fibrosis was induced in rats using carbon tetrachloride (CCl4). The rats were subsequently divided into three groups: Control group, CCl4 model group and CCl4 model + GGA group. Liver fibrosis in the rats was evaluated using hematoxylin and eosin staining, Masson's trichrome staining and Sirius red staining. The levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin were determined using an automated biochemistry analyzer. The levels of total hepatic hydroxyproline were also determined. The expression levels of α-smooth muscle actin (α-SMA) and transforming growth factor-β1 (TGF-β1) were determined using immunofluorescence staining and western blotting, and the protein expression levels of HSP70 were determined using western blotting. The CCl4-induced rats exhibited liver fibrosis, increased hydroxyproline content, impaired liver function, upregulated expression levels of the α-SMA and TGF-β1 pro-fibrogenic proteins, and increased expression of HSP70, compared with the control group. These changes were attenuated by treatment with GGA. These results demonstrated that GGA exerted beneficial effects in CCl4-induced liver fibrosis via upregulating the expression of HSP70. PMID:26165998

  13. Geranylgeranylacetone attenuates hepatic fibrosis by increasing the expression of heat shock protein 70.

    PubMed

    He, Wei; Zhuang, Yun; Wang, Liangzhi; Qi, Lei; Chen, Binfang; Wang, Mei; Shao, Dong; Chen, Jianping

    2015-10-01

    Increasing evidence has demonstrated that the heat shock protein 70 (HSP70) gene may be closely associated with tissue fibrosis; however, the association between HSP70 and liver fibrosis remains to be fully elucidated. The present study hypothesized that geranylgeranylacetone (GGA) exerts beneficial effects on liver fibrosis though upregulation of the expression of HSP70. Liver fibrosis was induced in rats using carbon tetrachloride (CCl4). The rats were subsequently divided into three groups: Control group, CCl4 model group and CCl4 model + GGA group. Liver fibrosis in the rats was evaluated using hematoxylin and eosin staining, Masson's trichrome staining and Sirius red staining. The levels of serum alanine aminotransferase, aspartate aminotransferase and total bilirubin were determined using an automated biochemistry analyzer. The levels of total hepatic hydroxyproline were also determined. The expression levels of α‑smooth muscle actin (α‑SMA) and transforming growth factor‑β1 (TGF‑β1) were determined using immunofluorescence staining and western blotting, and the protein expression levels of HSP70 were determined using western blotting. The CCl4‑induced rats exhibited liver fibrosis, increased hydroxyproline content, impaired liver function, upregulated expression levels of the α‑SMA and TGF‑β1 pro‑fibrogenic proteins, and increased expression of HSP70, compared with the control group. These changes were attenuated by treatment with GGA. These results demonstrated that GGA exerted beneficial effects in CCl4‑induced liver fibrosis via upregulating the expression of HSP70.

  14. Volume loading augments cutaneous vasodilatation and cardiac output of heat stressed older adults.

    PubMed

    Gagnon, Daniel; Romero, Steven A; Ngo, Hai; Sarma, Satyam; Cornwell, William K; Poh, Paula Y S; Stoller, Douglas; Levine, Benjamin D; Crandall, Craig G

    2017-08-21

    Age-related changes in cutaneous microvascular and cardiac functions limit the extent of cutaneous vasodilatation and the increase in cardiac output that healthy older adults can achieve during passive heat stress. However, it is unclear if these age-related changes in microvascular and cardiac functions maximally restrain the levels of cutaneous vasodilatation and cardiac output that healthy older adults can achieve during heat stress. We observed that rapid volume loading, performed during passive heat stress, augments both cutaneous vasodilatation and cardiac output in healthy older humans. These findings demonstrate that the microcirculation of healthy aged skin can further dilate during passive heat exposure, despite peripheral limitations to vasodilatation. Furthermore, healthy older humans can augment cardiac output when cardiac pre-load is increased during heat stress. Primary ageing markedly attenuates cutaneous vasodilatation and the increase in cardiac output during passive heating. However, it remains unclear if these responses are maximally restrained by age-related changes in cutaneous microvascular and cardiac functions. We hypothesized that rapid volume loading performed during heat stress would increase cardiac output in older adults without parallel increases in cutaneous vasodilatation. Twelve young (Y: 26 ± 5 years) and ten older (O: 69 ± 3 years) healthy adults were passively heated until core temperature increased by 1.5°C. Cardiac output (thermodilution), forearm vascular conductance (FVC, venous occlusion plethysmography) and cutaneous vascular conductance (CVC, laser-Doppler) were measured before and after rapid infusion of warmed saline (15 mL kg(-1) , ∼7 min). While heat stressed, but prior to saline infusion, cardiac output (O: 6.8 ± 0.4 vs. Y: 9.4 ± 0.6 L min(-1) ), FVC (O: 0.08 ± 0.01 vs. Y: 0.17 ± 0.02 mL (100 mL min(-1)  mmHg(-1) )(-1) ), and CVC (O: 1.29 ± 0.34 vs. Y: 1.93 ± 0.30

  15. Heart rate variability during high heat stress: a comparison between young and older adults with and without Type 2 diabetes.

    PubMed

    Carrillo, Andres E; Flouris, Andreas D; Herry, Christophe L; Poirier, Martin P; Boulay, Pierre; Dervis, Sheila; Friesen, Brian J; Malcolm, Janine; Sigal, Ronald J; Seely, Andrew J E; Kenny, Glen P

    2016-10-01

    We examined whether older individuals with and without Type 2 diabetes (T2D) experience differences in heart rate variability (HRV) during a 3-h exposure to high heat stress compared with young adults. Young (Young; n = 22; 23 ± 3 yr) and older individuals with (T2D; n = 11; 59 ± 9 yr) and without (Older; n = 25; 63 ± 5 yr) T2D were exposed to heat stress (44°C, 30% relative humidity) for 3 h. Fifty-five HRV measures were assessed for 15 min at baseline and at minutes 82.5-97.5 (Mid) and minutes 165-180 (End) during heat stress. When compared with Young, a similar number of HRV indices were significantly different (P < 0.05) in Older (Baseline: 35; Mid: 29; End: 32) and T2D (Baseline: 31; Mid: 30; End: 27). In contrast, the number of HRV indices significantly different (P < 0.05) between Older and T2D were far fewer (Baseline: 13, Mid: 1, End: 3). Within-group analyses demonstrated a greater change in the Young group's HRV during heat stress compared with Older and T2D; the number of significantly different (P < 0.05) HRV indices between baseline and End were 42, 29, and 20, for Young, Older, and T2D, respectively. Analysis of specific HRV domains suggest that the Young group experienced greater sympathetic activity during heat stress compared with Older and T2D. In conclusion, when compared with young, older individuals with and without T2D demonstrate low HRV at baseline and less change in HRV (including an attenuated sympathetic response) during 3 h high heat stress, potentially contributing to impaired thermoregulatory function. Copyright © 2016 the American Physiological Society.

  16. Attenuation of progressive hearing loss in a model of age-related hearing loss by a heat shock protein inducer, geranylgeranylacetone.

    PubMed

    Mikuriya, Takefumi; Sugahara, Kazuma; Sugimoto, Kazutaka; Fujimoto, Mitsuaki; Takemoto, Tsuyoshi; Hashimoto, Makoto; Hirose, Yoshinobu; Shimogori, Hiroaki; Hayashida, Naoki; Inouye, Sachiye; Nakai, Akira; Yamashita, Hiroshi

    2008-05-30

    Mechanisms of age-related hearing loss (ARHL) have not been elucidated as aging processes are extremely complex. Although oxidative stress and apoptotic cell death are involved in progression of ARHL, number of trial to treat ARHL is limited. Heat shock response is characterized by induction of heat shock proteins (HSPs) in response to stresses such as heat shock, which diminishes during aging. HSPs act as molecular chaperones, and some HSPs also inhibit apoptotic pathways. Here, we examined age-related expression of HSPs in the cochlea of ARHL model DBA/2J mice and control CBA/N mice. Western blot assay revealed that CBA/N mice showed constant expression of Hsp70 and Hsp110 with age, but not in DBA/2J mice. The result suggests that pharmacological upregulation of HSPs might attenuate ARHL. We administered DBA/2J mice with food containing geranylgeranylacetone (GGA) that induces HSPs in the cochlea, and found that its administration suppresses ARHL examined by ABR test and histological examination though protection is specific for the apical part of the cochlea. These results demonstrate that dietary supplementation of GGA could be an effective therapeutic strategy for treatment of ARHL.

  17. Attenuation of Heat-induced Hypothalamic Ischemia, Inflammation, and Damage by Hyperbaric Oxygen in Rats.

    PubMed

    Tai, Po-An; Chang, Chen-Kuei; Niu, Ko-Chi; Lin, Mao-Tsun; Chiu, Wen-Ta; Lin, Jia-Wei

    2010-06-25

    The present study was attempted to assess the mechanisms underlying the beneficial effects of hyperbaric oxygen (HBO2; 100% O2 at 253 kpa) in treating experimental heatstroke. Anesthetized rats were divided into five major groups: the normothermic control (NC) rats treated with normobaric air (NBA; 21% O2 at 101 kpa) (NC+NBA), the NC rats treated with HBO2 (NC+HBO2), the heatstroke (HS) rats treated with NBA (HS+NBA), the HS rats treated with hyperbaric air (HBA; 21% at 253 kpa) (HS+HBA), and the HS rats treated with HBO2 (HS+HBO2). The HS groups were exposed to heat (43o) for exactly 68 min and then allowed to recover at 26oC. HBA or HBO2 was adopted 68 min or 78 min after the start of heat exposure. The survival time values for (HS+NBA) rats, (HS+HBA) rats at 68 min, (HS+HBA) rats at 78 min, (HS+HBO2) rats at 68 min, and (HS+HBO2) rats at 78 min were found to be 90±3 mins, 133±12 mins, 109±9 mins, 240±18 mins, and 170±15 mins, respectively. Resuscitation with HBA or HBO2 at 68 mins was superior to those treated at 78 mins in prolonging the survival time values. All (HS+NBA) animals displayed hyperthermia, hypotension, and increased cellular levels of ischemia, oxidative stress and damage markers, pro-inflammatory cytokines and an indicator of polymorphonuclear cells accumulation in their hypothalamus as compared to those of normothermic controls. The heat-induced hyperthermia was not affected by HBA or HBO2 treatment. However, heat-induced hypotension and hypothalamic ischemia, oxidative stress, neuronal damage, and inflammation were all significantly reduced by HBA or HBO2 therapy. Compared to those of HBA therapy, HBO2 therapy had significantly higher beneficial effect in treating heatstroke. Our results suggested that HBO2 improved heatstroke outcomes in part by restoring normal hypothalamic function. Delaying the onset of HBO2 therapy reduced the therapeutic efficiency.

  18. Responses to social and environmental stress are attenuated by strong male bonds in wild macaques

    PubMed Central

    Young, Christopher; Majolo, Bonaventura; Heistermann, Michael; Schülke, Oliver; Ostner, Julia

    2014-01-01

    In humans and obligatory social animals, individuals with weak social ties experience negative health and fitness consequences. The social buffering hypothesis conceptualizes one possible mediating mechanism: During stressful situations the presence of close social partners buffers against the adverse effects of increased physiological stress levels. We tested this hypothesis using data on social (rate of aggression received) and environmental (low temperatures) stressors in wild male Barbary macaques (Macaca sylvanus) in Morocco. These males form strong, enduring, and equitable affiliative relationships similar to human friendships. We tested the effect of the strength of a male’s top three social bonds on his fecal glucocorticoid metabolite (fGCM) levels as a function of the stressors’ intensity. The attenuating effect of stronger social bonds on physiological stress increased both with increasing rates of aggression received and with decreasing minimum daily temperature. Ruling out thermoregulatory and immediate effects of social interactions on fGCM levels, our results indicate that male Barbary macaques employ a tend-and-befriend coping strategy in the face of increased environmental as well as social day-to-day stressors. This evidence of a stress-ameliorating effect of social bonding among males under natural conditions and beyond the mother–offspring, kin or pair bond broadens the generality of the social buffering hypothesis. PMID:25489097

  19. Phenolic Rich Extract from Clinacanthus nutans Attenuates Hyperlipidemia-Associated Oxidative Stress in Rats.

    PubMed

    Sarega, Nadarajan; Imam, Mustapha Umar; Ooi, Der-Jiun; Chan, Kim Wei; Md Esa, Norhaizan; Zawawi, Norhasnida; Ismail, Maznah

    2016-01-01

    Clinacanthus nutans is used as traditional medicine in Asia but there are limited scientific studies to support its use. In this study, the stem and leaf of C. nutans were extracted using solvents of differing polarities, and their antioxidant capacities were determined using multiple antioxidant assays. The water and aqueous methanolic leaf extracts were further fractionated and their antioxidant capacities and phenolic compositions were tested. Furthermore, the efficacies of the water and aqueous methanolic leaf extracts were tested against hyperlipidemia-induced oxidative stress in rats. Serum and hepatic antioxidant and oxidative stress markers were tested after feeding the rats with high fat diet together with the extracts or simvastatin for 7 weeks. The results indicated that both leaf extracts attenuated oxidative stress through increasing serum antioxidant enzymes activity and upregulating the expression of hepatic antioxidant genes. Multiple phenolic compounds were detected in the extracts and fractions of C. nutans, although protocatechuic acid was one of the most abundant and may have contributed significantly towards the bioactivities of the extracts. However, synergistic effects of different phenolics may have contributed to the overall bioactivities. C. nutans can be a good source of functional ingredients for the management of oxidative stress-related diseases.

  20. Phenolic Rich Extract from Clinacanthus nutans Attenuates Hyperlipidemia-Associated Oxidative Stress in Rats

    PubMed Central

    Sarega, Nadarajan; Imam, Mustapha Umar; Ooi, Der-Jiun; Chan, Kim Wei; Md Esa, Norhaizan; Zawawi, Norhasnida; Ismail, Maznah

    2016-01-01

    Clinacanthus nutans is used as traditional medicine in Asia but there are limited scientific studies to support its use. In this study, the stem and leaf of C. nutans were extracted using solvents of differing polarities, and their antioxidant capacities were determined using multiple antioxidant assays. The water and aqueous methanolic leaf extracts were further fractionated and their antioxidant capacities and phenolic compositions were tested. Furthermore, the efficacies of the water and aqueous methanolic leaf extracts were tested against hyperlipidemia-induced oxidative stress in rats. Serum and hepatic antioxidant and oxidative stress markers were tested after feeding the rats with high fat diet together with the extracts or simvastatin for 7 weeks. The results indicated that both leaf extracts attenuated oxidative stress through increasing serum antioxidant enzymes activity and upregulating the expression of hepatic antioxidant genes. Multiple phenolic compounds were detected in the extracts and fractions of C. nutans, although protocatechuic acid was one of the most abundant and may have contributed significantly towards the bioactivities of the extracts. However, synergistic effects of different phenolics may have contributed to the overall bioactivities. C. nutans can be a good source of functional ingredients for the management of oxidative stress-related diseases. PMID:26881026

  1. Tauroursodeoxycholic acid attenuates endoplasmic reticulum stress and protects the liver from chronic intermittent hypoxia induced injury.

    PubMed

    Hou, Yanpeng; Yang, Huai'an; Cui, Zeshi; Tai, Xuhui; Chu, Yanling; Guo, Xing

    2017-09-01

    Obstructive sleep apnea that characterized by chronic intermittent hypoxia (CIH) has been reported to associate with chronic liver injury. Tauroursodeoxycholic acid (TUDCA) exerts liver-protective effects in various liver diseases. The purpose of this study was to test the hypothesis that TUDCA could protect liver against CIH injury. C57BL/6 mice were subjected to intermittent hypoxia for eight weeks and applied with TUDCA by intraperitoneal injection. The effect of TUDCA on liver histological changes, liver function, oxidative stress, inflammatory response, hepatocyte apoptosis and endoplasmic reticulum (ER) stress were investigated. The results showed that administration of TUDCA attenuated liver pathological changes, reduced serum alanine aminotransferase and aspartate aminotransferase level, suppressed reactive oxygen species activity, decreased tumor necrosis factor-α and interleukin-1β level and inhibited hepatocyte apoptosis induced by CIH. TUDCA also inhibited CIH-induced ER stress in liver as evidenced by decreased expression of ER chaperone 78 kDa glucose-related protein, unfolded protein response transducers and ER proapoptotic proteins. Altogether, the present study described a liver-protective effect of TUDCA in CIH mice model, and this effect seems at least partly through the inhibition of ER stress.

  2. Thermoregulatory disorders and illness related to heat and cold stress.

    PubMed

    Cheshire, William P

    2016-04-01

    Thermoregulation is a vital function of the autonomic nervous system in response to cold and heat stress. Thermoregulatory physiology sustains health by keeping body core temperature within a degree or two of 37°C, which enables normal cellular function. Heat production and dissipation are dependent on a coordinated set of autonomic responses. The clinical detection of thermoregulatory impairment provides important diagnostic and localizing information in the evaluation of disorders that impair thermoregulatory pathways, including autonomic neuropathies and ganglionopathies. Failure of neural thermoregulatory mechanisms or exposure to extreme or sustained temperatures that overwhelm the body's thermoregulatory capacity can also result in potentially life-threatening departures from normothermia. Hypothermia, defined as a core temperature of <35.0°C, may present with shivering, respiratory depression, cardiac dysrhythmias, impaired mental function, mydriasis, hypotension, and muscle dysfunction, which can progress to cardiac arrest or coma. Management includes warming measures, hydration, and cardiovascular support. Deaths from hypothermia are twice as frequent as deaths from hyperthermia. Hyperthermia, defined as a core temperature of >40.5°C, may present with sweating, flushing, tachycardia, fatigue, lightheadedness, headache, and paresthesia, progressing to weakness, muscle cramps, oliguria, nausea, agitation, hypotension, syncope, confusion, delirium, seizures, and coma. Mental status changes and core temperature distinguish potentially fatal heat stroke from heat exhaustion. Management requires the immediate reduction of core temperature. Ice water immersion has been shown to be superior to alternative cooling measures. Avoidance of thermal risk and early recognition of cold or heat stress are the cornerstones of preventive therapy. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  3. Dissecting the heat stress response in Chlamydomonas by pharmaceutical and RNAi approaches reveals conserved and novel aspects.

    PubMed

    Schmollinger, Stefan; Schulz-Raffelt, Miriam; Strenkert, Daniela; Veyel, Daniel; Vallon, Olivier; Schroda, Michael

    2013-11-01

    To study how conserved fundamental concepts of the heat stress response (HSR) are in photosynthetic eukaryotes, we applied pharmaceutical and antisense/amiRNA approaches to the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HSR appears to be triggered by the accumulation of unfolded proteins, as it was induced at ambient temperatures by feeding cells with the arginine analog canavanine. The protein kinase inhibitor staurosporine strongly retarded the HSR, demonstrating the importance of phosphorylation during activation of the HSR also in Chlamydomonas. While the removal of extracellular calcium by the application of EGTA and BAPTA inhibited the HSR in moss and higher plants, only the addition of BAPTA, but not of EGTA, retarded the HSR and impaired thermotolerance in Chlamydomonas. The addition of cycloheximide, an inhibitor of cytosolic protein synthesis, abolished the attenuation of the HSR, indicating that protein synthesis is necessary to restore proteostasis. HSP90 inhibitors induced a stress response when added at ambient conditions and retarded attenuation of the HSR at elevated temperatures. In addition, we detected a direct physical interaction between cytosolic HSP90A/HSP70A and heat shock factor 1, but surprisingly this interaction persisted after the onset of stress. Finally, the expression of antisense constructs targeting chloroplast HSP70B resulted in a delay of the cell's entire HSR, thus suggesting the existence of a retrograde stress signaling cascade that is desensitized in HSP70B-antisense strains.

  4. Carcass and meat quality traits of rabbits under heat stress.

    PubMed

    Zeferino, C P; Komiyama, C M; Fernandes, S; Sartori, J R; Teixeira, P S S; Moura, A S A M T

    2013-03-01

    Rabbits are very sensitive to heat stress because they have difficulty eliminating excess body heat. The objective of the current study was to evaluate the effects of heat stress on slaughter weight, dressing percentage and carcass and meat quality traits of rabbits from two genetic groups. Ninety-six weaned rabbits were used: half were from the Botucatu genetic group and half were crossbreds between New Zealand White sires and Botucatu does. They were assigned to a completely randomized design in a 2 × 3 factorial arrangement (two genetic groups and three ambient temperatures: 18°C, 25°C and 30°C) and kept under controlled conditions in three environmental chambers from 5 to 10 weeks of age. Slaughter took place at 10 weeks, on 2 consecutive days. Meat quality measurements were made in the longissimus muscle. Actual average ambient temperature and relative humidity in the three chambers were 18.4°C and 63.9%, 24.4°C and 80.2% and 29.6°C and 75.9%, respectively. Purebred rabbits were heavier at slaughter and had heavier commercial and reference carcasses than crossbreds at 30°C; however, no differences between genetic groups for these traits were found at lower temperatures. No genetic group × ambient temperature interaction was detected for any other carcass or meat quality traits. The percentages of distal parts of legs, skin and carcass forepart were higher in crossbred rabbits, indicating a lower degree of maturity at slaughter in this group. The percentage of thoracic viscera was higher in the purebreds. Lightness of the longissimus muscle was higher in the purebreds, whereas redness was higher in the crossbreds. Slaughter, commercial and reference carcass weights and the percentages of thoracic viscera, liver and kidneys were negatively related with ambient temperature. Commercial and reference carcass yields, and the percentage of distal parts of legs, on the other hand, had a positive linear relationship with ambient temperature. Meat redness and

  5. Atorvastatin attenuates atherosclerotic plaque destabilization by inhibiting endoplasmic reticulum stress in hyperhomocysteinemic mice.

    PubMed

    Jia, Fang; Wu, Chunfang; Chen, Zhenyue; Lu, Guoping; Sun, Jianhui

    2016-04-01

    Endoplasmic reticulum (ER) stress has been suggested to play a role in the progression of plaque vulnerability and the occurrence of acute complications of coronary atherosclerosis. Atorvastatin is known to exert pleiotropic effects on the cardiovascular system. The present study aimed to examine the stabilizing effects of atorvastatin on vulnerable plaques within hyperhomocysteinemic apolipoprotein E‑deficient (ApoE‑/‑) mice, and to investigate the potential mechanisms underlying ER stress in ApoE‑/‑ mice and macrophages. In the present study, ApoE‑/‑ mice were administrated methionine or atorvastatin, and were sacrificed after 2 months. Necrotic core size, collagen content and inflammatory cytokine infiltration were subsequently measured in the aortic lesions, in order to investigate plaque stability. Treatment with atorvastatin decreased the number and size of necrotic cores, increased collagen content, and downregulated tumor necrosis factor (TNF)‑α and matrix metalloproteinase (MMP)‑9 mRNA expression, as compared with the methionine group. Immunohistochemical analysis indicated that atorvastatin administration prevented ER stress activation in aortic lesions of hyperhomocysteinemic mice. Furthermore, macrophages were challenged with homocysteine (Hcy) in the presence or absence of atorvastatin and thapsigargin (an ER stress inducer). Atorvastatin suppressed Hcy‑induced ER stress, and downregulated TNF‑α and MMP‑9 mRNA expression in the macrophages. Conversely, thapsigargin attenuated the inhibitory effects of atorvastatin against Hcy‑induced TNF‑α and MMP‑9 expression. These results indicated that hyperhomocysteinemia may promote atherosclerotic plaque development and instability. In addition, atorvastatin was able to improve atherosclerotic plaque stability in hyperhomocysteinemic mice by inhibiting ER stress.

  6. Increased heat shock protein expression after stress in Japanese quail.

    PubMed

    Hoekstra, K A; Iwama, G K; Nichols, C R; Godin, D V; Cheng, K M

    1998-12-01

    Heat shock proteins (HSPs) have been shown to provide information on the biological impact of environmental stress to organisms, yet none have investigated the HSP response to stress in birds. Japanese quail were exposed to seven different stressors (mild restraint, loud noise, inescapable irritation, cold temperature, isolation in darkness, and two stressful social situations) and expression of HSP30, 60, 70, and 90 in heart, liver, lung, kidney and gonads was examined. Tonic Immobility (TI) tests were also conducted to assess whether the stressors increased fear response. Increased expression of HSP70 was found in the myocardial tissue of birds exposed to loud noise, inescapable irritation, cold temperature, and isolation in darkness. Increased expression of other HSPs was not apparent in the heart or any of the other all tissues examined. Longer TI was observed only in birds exposed to the noise stress. Evidence is presented that a fairly wide range of stressors caused increased expression of HSP70 in the Japanese quail myocardial tissue and that HSPs may provide useful biomarkers for the study of environmental stress in birds.

  7. PVN Blockade of p44/42 MAPK Pathway Attenuates Salt-induced Hypertension through Modulating Neurotransmitters and Attenuating Oxidative Stress

    PubMed Central

    Gao, Hong-Li; Yu, Xiao-Jing; Liu, Kai-Li; Shi, Xiao-Lian; Qi, Jie; Chen, Yan-Mei; Zhang, Yan; Bai, Juan; Yi, Qiu-Yue; Feng, Zhi-Peng; Chen, Wen-Sheng; Cui, Wei; Liu, Jin-Jun; Zhu, Guo-Qing; Kang, Yu-Ming

    2017-01-01

    The imbalance of neurotransmitters and excessive oxidative stress responses contribute to the pathogenesis of hypertension. In this study, we determined whether blockade of p44/42 MAPK pathway in the hypothalamic paraventricular nucleus (PVN) ameliorates the development of hypertension through modulating neurotransmitters and attenuating oxidative stress. Dahl salt-sensitive (S) rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 6 weeks and were treated with bilateral PVN infusion of PD-98059 (0.025 μg/h), a p44/42 MAPK inhibitor, or vehicle via osmotic minipump. HS resulted in higher mean arterial pressure (MAP) and Fra-like (Fra-LI) activity, and plasma and PVN levels of norepinephrine (NE), tyrosine hydroxylase (TH), NOX2 and NOX4, lower PVN levels of gamma-aminobutyric acid (GABA), copper/zinc superoxide dismutase (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67), as compared with NS group. PD-98059 infusion reduced NE, TH, NOX2 and NOX4 in the PVN, and induced Cu/Zn-SOD and GAD67 in the PVN. It suggests that PVN blockade of p44/42 MAPK attenuates hypertension through modulating neurotransmitters and attenuating oxidative stress. PMID:28225041

  8. Heat stress standard for hot work environments in Japan.

    PubMed

    Tanaka, Masatoshi

    2007-01-01

    Threshold limit values (TLVs) are intended to protect workers from the severest effects of thermal stress and to establish the exposures to heat in working conditions. Earlier, acute heat strokes often occurred as a result of working in hot environments in Japan. However, acute heat strokes recently sometimes occurred in outdoor work environments such as industrial constructions and agriculture. Seasonal variations in weather are significant and the climatic conditions vary. The criteria are mainly set for working in mines, factories, and so on. WBGT is a useful evaluation index for hot environments; however, it is not commonly used for work practices. WBGT could be calculated and should be commonly used as a standard during summer. Japan mainly has a very hot and humid climate during summer. With regard to the thermal standard for offices, humidity also creates a problem in the indoor thermal conditions. Therefore, it is better to decide the TLVs of the thermal conditions according to seasons and activity levels. Inadequate thermal stress may cause discomfort and adversely affect the performance, safety, and harm to health. Further, thermal factors in the work environment must be measured and evaluated under light workload conditions like desk work for safety and work efficiency.

  9. Chromium picolinate, rather than biotin, alleviates performance and metabolic parameters in heat-stressed quail.

    PubMed

    Sahin, N; Sahin, K; Onderci, M; Gursu, M F; Cikim, G; Vijaya, J; Kucuk, O

    2005-08-01

    1. The effects of chromium picolinate and biotin supplementation alone and in combination on performance, carcase characteristics, malondialdehyde (MDA), vitamin C, vitamin E, glucose and cholesterol levels were evaluated in Japanese quail exposed to high ambient temperature. 2. Two hundred and forty quails (10d old) were assigned randomly to 4 dietary treatments at room temperature (22 degrees C; thermoneutral, TN) or ambient (34 degrees C for 8 h/d; heat stress, HS). Both TN and HS were fed either on a basal (control) diet or the basal diet supplemented with 400 microg of Cr/kg (Cr group), 0.5 mg of biotin/kg of diet (biotin group) or both (Cr + Biotin group). 3. Supplementing the diet of heat-stressed quails with chromium picolinate improved live weight gain, feed intake, feed efficiency and carcase traits. Biotin supplementation during TN and HS conditions did not have any beneficial effects on body weight gain, feed intake, feed efficiency or carcase traits. 4. Either in combination or alone, chromium picolinate increased serum concentrations of vitamins C and E, but decreased MDA, glucose and cholesterol concentrations in birds kept at high ambient temperature. There was no difference in vitamins C and E and MDA concentrations between birds given chromium picolinate and birds receiving chromium picolinate plus biotin, while glucose and cholesterol levels were significantly lower in all groups. The lowest concentrations of cholesterol and glucose were found in the combination group under both TN and HS conditions. An interaction between diet and temperature was detected for glucose and cholesterol concentrations. 5. Excretion rates for zinc, iron and chromium were lower in TN groups than in the corresponding HS groups. Supplementing diet with chromium picolinate and chromium picolinate plus biotin decreased excretion of minerals while biotin alone did not effect excretion of minerals. 6. Chromium supplementation, but not biotin supplementation, attenuated the

  10. Heat shock (stress response) proteins and renal ischemia/reperfusion injury.

    PubMed

    Kelly, Katherine J

    2005-01-01

    Acute renal failure occurs frequently, may be increasing, carries an unacceptably high mortality, yet there is no specific treatment. The induction of stress response (heat shock) proteins (HSPs) is a highly conserved response that protects many cell types from diverse physiological and environmental stressors. HSP families of different sizes function as molecular chaperones that facilitate the folding of enzymes and other proteins into functional conformations. After injury, HSPs are believed to facilitate the restoration of normal function by assisting in the refolding of denatured proteins and degradation of irreparably damaged proteins and toxic metabolites, limitation of aggregation of damaged peptides and aiding appropriate folding of newly synthesized essential polypeptides. HSPs may also regulate apoptosis and immune functions. We have demonstrated protection from the functional deficits and histological evidence of experimental ischemic renal injury with heat stress 6 but not 48 h prior to ischemia. Limitation of the induction of HSPs (either with a short period of hyperthermia or pharmacologically) attenuated the protection observed. Other investigators have demonstrated a correlation between the levels of HSP25 and renal ischemic preconditioning in the mouse. Several pharmacological agents have been shown to increase HSP expression. Enhancement of these endogenous protective mechanisms has potential benefit in human disease.

  11. Treatment with Geranylgeranylacetone Induces Heat Shock Protein 70 and Attenuates Neonatal Hyperoxic Lung Injury in a Model of Bronchopulmonary Dysplasia.

    PubMed

    Tokuriki, Shuko; Igarashi, Aiko; Okuno, Takashi; Ohta, Genrei; Naiki, Hironobu; Ohshima, Yusei

    2017-08-01

    Bronchopulmonary dysplasia (BPD) is a respiratory complication characterized by abnormal alveolar development in premature infants. Geranylgeranylacetone (GGA) can induce heat shock protein (HSP) 70, which has cytoprotective effects against various stressors. Here, we investigated whether GGA protected neonatal lungs from hyperoxic stress in a murine BPD model, and measured the serum HSP70 levels in preterm humans treated with oxygen. Newborn mice were exposed to >90% oxygen and administered GGA or vehicle alone orally on days 1, 2, and 3 of life. At 2 days of age, HSP70 expression in the lung was determined by western blotting. At 8 days of age, the lungs were processed for histological analysis. Radial alveolar count (RAC) and mean linear intercept (MLI) were measured as parameters of alveolarization. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and cleaved caspase-3 immunohistochemistry. Serum HSP70 levels in preterm humans treated with oxygen were measured by enzyme-linked immunosorbent assay. GGA administration enhanced the HSP70 expression to two-fold compared with normoxia-exposed and vehicle-treated mice. Hyperoxia reduced HSP70 expression, whereas GGA abrogated the effects. Hyperoxia-exposed mice exhibited more apoptotic cells in lung parenchyma and a more simplified alveolar structure with less RAC and larger MLI than normoxia-exposed mice. GGA suppressed the increase in apoptotic cells and the structural changes of the lungs induced by hyperoxia. Serum HSP70 levels of preterm human infants gradually decreased with age. GGA may attenuate hyperoxic injury in neonatal lungs and thereby may prevent the development of BPD.

  12. Short term post-partum heat stress in dairy cows

    NASA Astrophysics Data System (ADS)

    Fuquay, J. W.; Chapin, L. T.; Brown, W. H.

    1980-06-01

    Since many dairy cows calve during late summer, the objective was to determine if heat stress immediately post-partum would (1) alter metabolism, thus, increasing susceptibility to metabolic disorders, (2) affect lactation and/or (3) affect reproduction. Forty four cows, calving during late summer, were paired with one member of each pair stressed (HS) for the first 10 post-partum days in a hot barn. Controls (CC) were kept in a cooled section of the barn. Plasma drawn weekly for 7 weeks was analyzed in an autoanalyzer for calcium, inor. phosphorus, protein, glucose and cholesterol and by radioimmunoassay for cortisol and progesterone. Ovaries and uteri were palpated weekly. Rectal temperatures were significant higher for HS during the first 10 post-partum days. No significant effects on plasma constituents were observed during the 10-day treatment period. For the 7-week period, glucose and cholesterol were lower in HS, as were cyclic peaks of progesterone and cortisol. Both calcium and inorganic phosphorus remained clinically low for the 7 weeks, but no treatment effects were seen. Uteri of HS involuted more rapidly than the CC. Treatment did not affect reproductive efficiency. Lactation milk yields did not differ, but milk fat percent was lower in HS. Heat stress immediately post-partum altered lipid metabolism, but the animal's compensatory mechanisms prevented reduction in milk production or reproductive efficiency.

  13. Expression of heat stress proteins by human periodontal ligament cells.

    PubMed

    Sauk, J J; Norris, K; Foster, R; Moehring, J; Somerman, M J

    1988-11-01

    The purpose of the present report was to document the stress response produced by physical and chemical abuses to human periodontal ligament cells, and to review some of the known functions of stress response proteins produced as a result of such treatments. For these studies human PDL cells were exposed to sublethal challenges of 43 degrees C heat, sodium arsenite and the amino acid analog L-azetidine-2-carboxylic acid (AZC). The cells were labelled with [35S]-methionine and the proteins produced were examined by autofluorography of SDS-PAGE gels. Heat challenges were shown to induce hsps with an apparent mol. wts. of 90K, 68-72K, 41-47K, and 36 K. Arsenite-treated cells produced similar hsps including a 30k protein not produced by other forms of stress. AZC treatment resulted in the production of apparent functionless hsps with apparent molecular weights of 90,000, 72,000, 68,000 and 36,000. The function of these proteins and their possible role in periodontal disease is discussed.

  14. Neonatal handling (resilience) attenuates water-avoidance stress induced enhancement of chronic mechanical hyperalgesia in the rat

    PubMed Central

    Alvarez, Pedro; Levine, Jon D.; Green, Paul G.

    2015-01-01

    Chronic stress is well known to exacerbate pain. We tested the hypothesis that neonatal handling, which induces resilience to the negative impact of stress by increasing the quality and quantity of maternal care, attenuates the mechanical hyperalgesia produced by water-avoidance stress in the adult rat. Neonatal male rats underwent the handling protocol on postnatal days 2–9, weaned at 21 days and tested for muscle mechanical nociceptive threshold at postnatal days 50–75. Decrease in mechanical nociceptive threshold in skeletal muscle in adult rats, produced by exposure to water-avoidance stress, was significantly attenuated by neonatal handling. Neonatal handling also attenuated the mechanical hyperalgesia produced by intramuscular administration of the pronociceptive inflammatory mediator, prostaglandin E2 in rats exposed as adults to water-avoidance stress. Neonatal handling, which induces a smaller corticosterone response in adult rats exposed to a stressor as well as changes in central nervous system neurotransmitter systems, attenuates mechanical hyperalgesia produced by water-avoidance stress and enhanced prostaglandin hyperalgesia in adult animals. PMID:25637700

  15. Neonatal handling (resilience) attenuates water-avoidance stress induced enhancement of chronic mechanical hyperalgesia in the rat.

    PubMed

    Alvarez, Pedro; Levine, Jon D; Green, Paul G

    2015-03-30

    Chronic stress is well known to exacerbate pain. We tested the hypothesis that neonatal handling, which induces resilience to the negative impact of stress by increasing the quality and quantity of maternal care, attenuates the mechanical hyperalgesia produced by water-avoidance stress in the adult rat. Neonatal male rats underwent the handling protocol on postnatal days 2-9, weaned at 21 days and tested for muscle mechanical nociceptive threshold at postnatal days 50-75. Decrease in mechanical nociceptive threshold in skeletal muscle in adult rats, produced by exposure to water-avoidance stress, was significantly attenuated by neonatal handling. Neonatal handling also attenuated the mechanical hyperalgesia produced by intramuscular administration of the pronociceptive inflammatory mediator, prostaglandin E2 in rats exposed as adults to water-avoidance stress. Neonatal handling, which induces a smaller corticosterone response in adult rats exposed to a stressor as well as changes in central nervous system neurotransmitter systems, attenuates mechanical hyperalgesia produced by water-avoidance stress and enhanced prostaglandin hyperalgesia in adult animals. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Patterns of Gene Expression Associated with Recovery and Injury in Heat-stressed Rats

    DTIC Science & Technology

    2014-12-03

    RESEARCH ARTICLE Open Access Patterns of gene expression associated with recovery and injury in heat-stressed rats Jonathan D Stallings1*, Danielle L...characterization of the gene response to heat stress using an in vivo conscious rat model. Results: We heated rats until implanted thermal probes indicated a maximal...all four organs at Tc,Max. Self-organizing maps identified gene-specific signatures corresponding to protein-folding disorders in heat-stressed rats

  17. Analysis of extinction acquisition to attenuated tones in prenatally stressed and non-stressed offspring following auditory fear conditioning.

    PubMed

    Salm, A K; Lally, B E; Borysiewicz, E; Fil, D; Konat, G

    2015-02-01

    Stimulus generalization occurs when stimuli with characteristics similar to a previously conditioned stimulus (CS) become able to evoke a previously conditioned response. Experimental data (Lissek et al., 2005) indicate that patients with post-traumatic stress disorder (PTSD), more often show stimulus generalization following fear conditioning when tested under laboratory conditions. Factors surrounding this observation may contribute to two common features of PTSD: 1) hyper-responsiveness to sensory stimuli reminiscent of those associated with the original trauma, and 2) resistance of PTSD to extinction-based therapies. Adverse early experience is considered a risk factor for the later development of PTSD and in the present experiments we hypothesized that stimulus generalization would occur in an animal model of adverse early experience, the prenatally stressed (PS) rat. Adult PS and control (CON) rats underwent extensive pre-habituation to a conditioning chamber followed by conventional auditory fear conditioning. The next day both groups began an extinction regimen where a series of quieter (attenuated), CSs were administered prior to the full 75 dB training CS. When tested in this manner, PS rats froze at significantly lower tone amplitudes than did CON offspring on the first day of extinction training. This suggests that the PS rats had stimulus-generalized the CS to lower decibel tones. In addition to this finding, we also observed that PS rats froze more often and longer during three ensuing days of extinction training to attenuated tones. Group differences vanished when PS and CON rats were extinguished under conventional conditions. Thus, it appears that the two extinction regimens differed in their aversive cue saliency for the PS vs. CON rats. Follow-up prefrontal cortex transcriptome probing suggests that cholinergic and dopaminergic alterations may be involved.

  18. Thermomechanical Stress in Cryopreservation Via Vitrification With Nanoparticle Heating as a Stress-Moderating Effect.

    PubMed

    Eisenberg, David P; Bischof, John C; Rabin, Yoed

    2016-01-01

    This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided-the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

  19. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  20. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  1. Heat shock factor 1 promotes TERRA transcription and telomere protection upon heat stress.

    PubMed

    Koskas, Sivan; Decottignies, Anabelle; Dufour, Solenne; Pezet, Mylène; Verdel, André; Vourc'h, Claire; Faure, Virginie

    2017-03-27

    In response to metabolic or environmental stress, cells activate powerful defense mechanisms to prevent the formation and accumulation of toxic protein aggregates. The main orchestrator of this cellular response is HSF1 (heat shock factor 1), a transcription factor involved in the up-regulation of protein-coding genes with protective roles. It has become very clear that HSF1 has a broader function than initially expected. Indeed, our previous work demonstrated that, upon stress, HSF1 activates the transcription of a non-coding RNA, named Satellite III, at pericentromeric heterochromatin. Here, we observe that the function of HSF1 extends to telomeres and identify subtelomeric DNA as a new genomic target of HSF1. We show that the binding of HSF1 to subtelomeric regions plays an essential role in the upregulation of non-coding TElomeric Repeat containing RNA (TERRA) transcription upon heat shock. Importantly, our data show that telomere integrity is impacted by heat shock and that telomeric DNA damages are markedly enhanced in HSF1 deficient cells. Altogether, our findings reveal a new direct and essential function of HSF1 in the transcriptional activation of TERRA and in telomere protection upon stress.

  2. Does heat stress alter the pig's response to dietary fat?

    PubMed

    Kellner, T A; Baumgard, L H; Prusa, K J; Gabler, N K; Patience, J F

    2016-11-01

    Heat stress (HS) results in major losses to the pork industry via reduced growth performance and, possibly, carcass fat quality. The experimental objective was to measure the effects of HS on the pig's response to dietary fat in terms of lipid digestion, metabolism, and deposition over a 35-d finishing period. A total of 96 PIC 337 × C22/C29 (PIC, Inc., Hendersonville, TN) barrows (initial BW of 100.4 ± 1.2 kg) were randomly allotted to 1 of 9 treatments arranged as a 3 × 3 factorial: thermoneutral (TN; constant 24°C; ad libitum access to feed), pair-fed thermoneutral (PFTN; constant 24°C; limit fed based on previous HS daily feed intake), or HS (cyclical 28°C nighttime, 33°C from d 0 to 7, 33.5°C from d 7 to 14, 34°C from d 14 to 21, 34.5°C from d 21 to 28, and 35°C from d 28 to 35 daytime; ab libitum access to feed) and diet (a corn-soybean meal-based diet with 0% added fat [CNTR], CNTR with 3% added tallow [TAL; iodine value {IV} = 41.8], or CNTR with 3% added corn oil [CO; IV = 123.0]). No interactions between environment and diet were evident for any major response criteria ( ≥ 0.063). Rectal temperature increased due to HS (39.0°C for HS, 38.1°C for TN, and 38.2°C for PFTN; < 0.001). Heat stress decreased ADFI (27.8%; < 0.001), ADG (0.72 kg/d for HS, 1.03 kg/d for TN, and 0.78 kg/d for PFTN; < 0.001), and G:F (0.290 for HS, 0.301 for TN, and 0.319 for PFTN; = 0.006). Heat stress barrows required 1.2 Mcal of ME intake more per kilogram of BW gain than PFTN ( < 0.001). Heat stress tended to result in the lowest apparent total tract digestibility of acid hydrolyzed ether extract (AEE; 59.0% for HS, 60.2% for TN, and 61.4% for PFTN; = 0.055). True total tract digestibility (TTTD) of AEE of CO-based diets (99.3%) was greater than that of CNTR (97.3%) and TAL-based diets (96.3%; = 0.012). Environment had no impact on TTTD of AEE ( = 0.118). Environment had no impact on jowl IV at market (69.2 g/100 g for HS, 69.3 g/100 g for TN, and 69.8 g/100 g for

  3. Does the hair influence heat extraction from the head during head cooling under heat stress?

    PubMed Central

    SHIN, Sora; PARK, Joonhee; LEE, Joo-Young

    2015-01-01

    The purpose of this study was to investigate the effects of head hair on thermoregulatory responses when cooling the head under heat stress. Eight young males participated in six experimental conditions: normal hair (100–130 mm length) and cropped hair (5 mm length) with three water inlet temperatures of 10, 15, and 20°C. The head and neck of subjects were cooled by a liquid perfused hood while immersing legs at 42°C water for 60 min in a sitting position at the air temperature of 28°C with 30% RH. The results showed that heat removal from the normal hair condition was not significantly different from the cropped hair condition. Rectal and mean skin temperatures, and sweat rate showed no significant differences between the normal and cropped hair conditions. Heat extraction from the head was significantly greater in 10°C than in 15 or 20°C cooling (p<0.05) for both normal and cropped hair, whereas subjects preferred the 15°C more than the 10 or 20°C cooling regimen. These results indicate that the selection of effective cooling temperature is more crucial than the length of workers’ hair during head cooling under heat stress, and such selection should be under the consideration of subjective perceptions with physiological responses. PMID:26165361

  4. Does the hair influence heat extraction from the head during head cooling under heat stress?

    PubMed

    Shin, Sora; Park, Joonhee; Lee, Joo-Young

    2015-01-01

    The purpose of this study was to investigate the effects of head hair on thermoregulatory responses when cooling the head under heat stress. Eight young males participated in six experimental conditions: normal hair (100-130 mm length) and cropped hair (5 mm length) with three water inlet temperatures of 10, 15, and 20°C. The head and neck of subjects were cooled by a liquid perfused hood while immersing legs at 42°C water for 60 min in a sitting position at the air temperature of 28°C with 30% RH. The results showed that heat removal from the normal hair condition was not significantly different from the cropped hair condition. Rectal and mean skin temperatures, and sweat rate showed no significant differences between the normal and cropped hair conditions. Heat extraction from the head was significantly greater in 10°C than in 15 or 20°C cooling (p<0.05) for both normal and cropped hair, whereas subjects preferred the 15°C more than the 10 or 20°C cooling regimen. These results indicate that the selection of effective cooling temperature is more crucial than the length of workers' hair during head cooling under heat stress, and such selection should be under the consideration of subjective perceptions with physiological responses.

  5. Heat stress abatement during the dry period influences prolactin signaling in lymphocytes Heat stress abatement during the dry period influences prolactin signaling in lymphocytes

    USDA-ARS?s Scientific Manuscript database

    Heat stress perturbs PRL release and affects dairy cow lactational performance and immune cell function. We hypothesized that greater PRL concentration in plasma of heat-stressed cows would decrease expression of PRL-R mRNA and increase mRNA expression of suppressors of cytokine signaling (SOCS) in ...

  6. Expression of translationally controlled tumor protein in heat-stressed human dental pulp cells.

    PubMed

    Jirachotikoon, Canussanun; Tannukit, Sissada; Kedjarune-Leggat, Ureporn

    2015-10-01

    The aim of this study was to investigate the effects of heat stress on cell viability, translationally controlled tumor protein (TCTP) expression, and the effects of recombinant TCTP on heat-stressed human dental pulp cells (HDPCs). HDPCs were isolated from human teeth and cultured at 37°C. For heat stress, HPDCs were incubated at 43°C for 45min. After heat stress, recombinant TCTP were added to HDPCs and cultured for various periods of time at 37°C. Heat-treated cells were then analyzed by DNA staining with Hoechst 33258, MTT, and caspase 3 activity assays. TCTP expression level was assessed by real-time PCR and western blot analysis. Heat-treated cells displayed lower cell density and nuclear morphology resembling apoptotic body. Heat stress significantly decreased cell viability and induced activity of caspase 3. The effect of recombinant TCTP on pulp cell death from heat stress varied depending on each subject and TCTP concentration. Heat stress up-regulated TCTP mRNA expression level. In contrast, TCTP protein level remained unchanged. Recombinant TCTP did not affect TCTP mRNA expression but down-regulated TCTP protein in heat-treated cells. Heat stress induces caspase 3 activation and up-regulates TCTP mRNA expression in HDPCs. TCTP did not play a key role on pulp cell recovery from heat stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Acute Heat Stress and Reduced Nutrient Intake Alter Intestinal Proteomic Profile and Gene Expression in Pigs

    PubMed Central

    Pearce, Sarah C.; Lonergan, Steven M.; Huff-Lonergan, Elisabeth; Baumgard, Lance H.; Gabler, Nicholas K.

    2015-01-01

    Heat stress and reduced feed intake negatively affect intestinal integrity and barrier function. Our objective was to compare ileum protein profiles of pigs subjected to 12 hours of HS, thermal neutral ad libitum feed intake, or pair-fed to heat stress feed intake under thermal neutral conditions (pair-fed thermal neutral). 2D-Differential In Gel Electrophoresis and gene expression were performed. Relative abundance of 281 and 138 spots differed due to heat stress, compared to thermal neutral and pair-fed thermal neutral pigs, respectively. However, only 20 proteins were different due to feed intake (thermal neutral versus pair-fed thermal neutral). Heat stress increased mRNA expression of heat shock proteins and protein abundance of heat shock proteins 27, 70, 90-α and β were also increased. Heat stress reduced ileum abundance of several metabolic enzymes, many of which are involved in the glycolytic or TCA pathways, indicating a change in metabolic priorities. Stress response enzymes peroxiredoxin-1 and peptidyl-prolyl cis-trans isomerase A were decreased in pair-fed thermal neutral and thermal neutral pigs compared to heat stress. Heat stress increased mRNA abundance markers of ileum hypoxia. Altogether, these data show that heat stress directly alters intestinal protein and mRNA profiles largely independent of reduced feed intake. These changes may be related to the reduced intestinal integrity associated with heat stress. PMID:26575181

  8. Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes.

    PubMed

    Chen, Yao-Chang; Kao, Yu-Hsun; Huang, Chun-Feng; Cheng, Chen-Chuan; Chen, Yi-Jen; Chen, Shih-Ann

    2010-04-01

    Heat stress-induced responses change the ionic currents and calcium homeostasis. However, the molecular insights into the heat stress responses on calcium homeostasis remain unclear. The purposes of this study were to examine the mechanisms of heat stress responses on calcium handling and electrophysiological characteristics in atrial myocytes. We used indo-1 fluorimetric ratio technique and whole-cell patch clamp to investigate the intracellular calcium, action potentials, and ionic currents in isolated rabbit single atrial cardiomyocytes with or without (control) exposure to heat stress (43 degrees C, 15 min) 5+/-1 h before experiments. The expressions of sarcoplasmic reticulum ATPase (SERCA2a), and Na(+)-Ca(2+) exchanger (NCX) in the control and heat stress-treated atrial myocytes were evaluated by Western blot and real-time PCR. As compared with control myocytes, the heat stress-treated myocytes had larger sarcoplasmic reticulum calcium content and larger intracellular calcium transient with a shorter decay portion. Heat stress-treated myocytes also had larger L-type calcium currents, transient outward potassium currents, but smaller NCX currents. Heat stress responses increased the protein expressions, SERCA2a, NCX, and heat shock protein. However, heat stress responses did not change the RNA expression of SERCA2a and NCX. In conclusion, heat stress responses change calcium handling through protein but not RNA regulation.

  9. Active cutaneous vasodilation in resting humans during mild heat stress.

    PubMed

    Kamijo, Yoshi-Ichiro; Lee, Kichang; Mack, Gary W

    2005-03-01

    The role of skin temperature in reflex control of the active cutaneous vasodilator system was examined in six subjects during mild graded heat stress imposed by perfusing water at 34, 36, 38, and 40 degrees C through a tube-lined garment. Skin sympathetic nerve activity (SSNA) was recorded from the peroneal nerve with microneurography. While monitoring esophageal, mean skin, and local skin temperatures, we recorded skin blood flow at bretylium-treated and untreated skin sites by using laser-Doppler velocimetry and local sweat rate by using capacitance hygrometry on the dorsal foot. Cutaneous vascular conductance (CVC) was calculated by dividing skin blood flow by mean arterial pressure. Mild heat stress increased mean skin temperature by 0.2 or 0.3 degrees C every stage, but esophageal and local skin temperature did not change during the first three stages. CVC at the bretylium tosylate-treated site (CVC(BT)) and sweat expulsion number increased at 38 and 40 degrees C compared with 34 degrees C (P < 0.05); however, CVC at the untreated site did not change. SSNA increased at 40 degrees C (P < 0.05, different from 34 degrees C). However, SSNA burst amplitude increased (P < 0.05), whereas SSNA burst duration decreased (P < 0.05), at the same time as we observed the increase in CVC(BT) and sweat expulsion number. These data support the hypothesis that the active vasodilator system is activated by changes in mean skin temperature, even at normal core temperature, and illustrate the intricate competition between active vasodilator and the vasoconstrictor system for control of skin blood flow during mild heat stress.

  10. Attenuation of maternal psychophysiological stress responses and the maternal cortisol awakening response over the course of human pregnancy.

    PubMed

    Entringer, Sonja; Buss, Claudia; Shirtcliff, Elizabeth A; Cammack, Alison L; Yim, Ilona S; Chicz-DeMet, Aleksandra; Sandman, Curt A; Wadhwa, Pathik D

    2010-05-01

    The effects of maternal stress during pregnancy may depend, in part, on the timing in gestation of the occurrence of stress. The aim of the present study was to examine the effect of stage of gestation on maternal psychophysiological responses to stress using a standardized laboratory paradigm and on the cortisol response to awakening (CAR). A longitudinal design was employed to quantify maternal psychophysiological stress reactivity [changes in heart rate (HR), blood pressure, salivary cortisol, and psychological distress in response to the trier social stress test (TSST)] and the CAR at approximately 17 and 31 weeks gestation in a sample of 148 women. To account for the possible effects of habituation when being exposed to the same stress protocol twice, a non-pregnant comparison group (CG, N = 36) also underwent these assessments at two time points, with a comparable time interval between the assessments. In both groups, the TSST elicited significant changes in maternal HR, mean arterial pressure, and psychological distress levels but not a significant increase in cortisol levels. Among the pregnant women (pregnant group(PG)), the stressor-induced increases in HR, blood pressure, and psychological distress were significantly lower at the second (31 weeks gestation) compared to the first (17 weeks gestation) assessment of pregnancy (all p < 0.01). The maternal CAR was also significantly attenuated in later compared to earlier gestation (p = 0.003). In the CG, there were no significant differences in psychophysiological stress responses and in the CAR across the two assessments. Among pregnant women there is a progressive attenuation of psychophysiological stress responses with advancing gestation. This attenuation is unlikely to be attributable to habituation. Individual differences in the degree of attenuation of stress responses over gestation may represent a novel marker of stress susceptibility in human pregnancy.

  11. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus.

    PubMed

    Sainz, Martha; Díaz, Pedro; Monza, Jorge; Borsani, Omar

    2010-09-01

    Drought and heat stress have been studied extensively in plants, but most reports involve analysis of response to only one of these stresses. Studies in which both stresses were studied in combination have less commonly been reported. We report the combined effect of drought and heat stress on Photosystem II (PSII) of Lotus japonicus cv. Gifu plants. Photochemistry of PSII was not affected by drought or heat stress alone, but the two stresses together decreased PSII activity as determined by fluorescence emission. Heat stress alone resulted in degradation of D1 and CP47 proteins, and D2 protein was also degraded by combined drought-heat stress. None of these proteins were degraded by drought stress alone. Drought alone induced accumulation of hydrogen peroxide but the drought-heat combination led to an increase in superoxide levels and a decrease in hydrogen peroxide levels. Furthermore, combined drought-heat stress was correlated with an increase in oxidative damage as determined by increased levels of thiobarbituric acid reactive substances. Heat also induced degradation of chloroplast Cu/Zn superoxide dismutase (SOD: EC 1.15.1.1) as shown by reduced protein levels and isozyme-specific SOD activity. Loss of Cu/Zn SOD and induction of catalase (CAT: EC 1.11.1.6) activity would explain the altered balance between hydrogen peroxide and superoxide in response to drought vs combined drought-heat stress. Degradation of PSII could thus be caused by the loss of components of chloroplast antioxidant defence systems and subsequent decreased function of PSII. A possible explanation for energy dissipation by L. japonicus under stress conditions is discussed.

  12. Factors of subjective heat stress of urban citizens in contexts of everyday life

    NASA Astrophysics Data System (ADS)

    Kunz-Plapp, Tina; Hackenbruch, Julia; Schipper, Janus Willem

    2016-04-01

    Heat waves and the consequent heat stress of urban populations have a growing relevance in urban risk management and strategies of urban adaptation to climate change. In this context, social science studies on subjective experiencing of heat as stress by urban citizens are a new emerging field. To contribute to the understanding of self-reported subjective heat stress and its major determinants in a daily life perspective, we conducted a questionnaire survey with 323 respondents in Karlsruhe, Germany, after heat waves in July and August 2013. Statistical data analysis showed that subjective heat stress is an issue permeating everyday activities. Subjective heat stress at home was lower than at work and in general. Subjective heat stress in general, at home, and at work was determined by the health impairments experienced during the heat and the feeling of being helplessly exposed to the heat. For subjective heat stress at home, characteristics of the residential building and the built environment additionally played a role. Although the rate of implemented coping measures was rather high, coping measures showed no uniform effect for the subjective heat stress. We conclude that in terms of urban adaptation strategies, further research is needed to understand how various processes of daily social (work) life enable or limit individual coping and that communication strategies are important for building capacities to better cope with future heat waves.

  13. Extinction-induced neuroplasticity attenuates stress-induced cocaine seeking: a state-dependent learning hypothesis.

    PubMed

    Self, David W; Choi, Kwang-Ho

    2004-09-01

    Chronic drug use weakens excitatory neocortical input to the nucleus accumbens (NAc). We previously reported that extinction training, a form of inhibitory learning that progressively reduces cocaine-seeking behaviour when reward is withheld, reverses this deficit by up-regulating GluR1 and GluR2/3 subunits of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptors in the NAc. The level of GluR1 up-regulation is positively associated with a reduction in cocaine seeking, suggesting that extinction-induced up-regulation in AMPA receptors in the NAc opposes motivational influences that maintain cocaine seeking. This hypothesis is supported by the finding that over-expression of GluR1 and GluR2 in the NAc facilitates extinction of cocaine self-administration. Furthermore, a single extinction training session conducted during GluR1 and GluR2 over-expression strongly and selectively attenuates the ability of an environmental stressor to trigger relapse to cocaine seeking long after GluR1 and GluR2 over-expression declines. These results could suggest that excitatory input to the NAc promotes extinction learning, but only when memory is recalled under stressful situations. Recent studies indicate that both environmental stress and the frustrative stress of withholding reward during extinction of drug self-administration induce similar neurochemical events in the NAc. These neurochemical events could impose a "state-dependency" on extinction learning such that subsequent exposure to stress acts as a cue to enhance retrieval of extinction memory. Our results suggest that extinction-induced up-regulation in NAc AMPA receptors acts reciprocally to facilitate state-dependent extinction learning, as stressful situations evoke extinction memories that exert powerful inhibitory control over drug-seeking behaviour. These results may have important therapeutic implications for behaviour-based approaches aimed at treating drug addiction.

  14. Plasma Volume during Heat Stress and Exercise in Women,

    DTIC Science & Technology

    1986-11-01

    AD-A174 W16 PLASMA VOLUME DURING HEAT STRESS AND EXERCISE IN o t ( U ) ARMY RESEARCH INST OF ENVIRONMENTAL MEDICINE NATICK MA L A STEPHENSON ET AL NOV...86 USARIER-M-i-87 U NLLASSIFE F/G 614 II 11110 2 2 IlUll Im .. : llILIII.a ILO 1ffl.2.5 au* iICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF...NAME OF MONITORING ORGANIZATION U.S. Army Res Inst of Env Med (if aplicable) U.S. Army Research Institute of GRD- U - Environmental Medicine 6c

  15. Self organizing maps in urban heat stress projections

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung

    2016-04-01

    A self organizing map (SOM) is an unsupervised machine learning algorithm well suited for identifying patterns in large datasets. It has been used successfully to classify atmospheric states in climate data and as part of statistical downscaling procedures. This study aims to use SOMs to produce downscaled CMIP5-based projections of wet-bulb temperature in urban areas, taking into account the regional atmospheric state and learned local dynamics. These downscaled projections will be compared to the CMIP5 models as well as to observations and then used to project local extreme heat stress events in the future.

  16. Heat shock-induced attenuation of hydroxyl radical generation and mitochondrial aconitase activity in cardiac H9c2 cells.

    PubMed

    Ilangovan, Govindasamy; Venkatakrishnan, C D; Bratasz, Anna; Osinbowale, Sola; Cardounel, Arturo J; Zweier, Jay L; Kuppusamy, Periannan

    2006-02-01

    A mild heat shock (hyperthermia) protects cells from apoptotic and necrotic deaths by inducing overexpression of various heat shock proteins (Hsps). These proteins, in combination with the activation of the nitric oxide synthase (NOS) enzyme, play important roles in the protection of the myocardium against a variety of diseases. In the present work we report that the generation of potent reactive oxygen species (ROS), namely *OH in cardiac H9c2 cells, is attenuated by heat shock treatment (2 h at 42 degrees C). Western blot analyses showed that heat shock treatment induced overexpression of Hsp70, Hsp60, and Hsp25. The observed *OH was found to be derived from the superoxide (O(2)(-)*) generated by the mitochondria. Whereas the manganese superoxide dismutase (MnSOD) activity was increased in the heat-shocked cells, the mitochondrial aconitase activity was reduced. The mechanism of O(2)(-)* conversion into *OH in mitochondria is proposed as follows. The O(2)(-)* leaked from the electron transport chain, oxidatively damages the mitochondrial aconitase, releasing a free Fe(2+). The aconitase-released Fe(2+) combines with H(2)O(2) to generate *OH via a Fenton reaction and the oxidized Fe(3+) recombines with the inactivated enzyme after being reduced to Fe(2+) by other cellular reductants, turning it over to be active. However, in heat-shocked cells, because of higher MnSOD activity, the excess H(2)O(2) causes irreversible damage to the mitochondrial aconitase enzyme, thus inhibiting its activity. In conclusion, we propose that attenuation of *OH generation after heat shock treatment might play an important role in reducing the myocardial ischemic injury, observed in heat shock-treated animals.

  17. Adenosine receptor inhibition with theophylline attenuates the skin blood flow response to local heating in humans.

    PubMed

    Fieger, Sarah M; Wong, Brett J

    2010-09-01

    Mechanisms underlying the robust cutaneous vasodilatation in response to local heating of human skin remain unresolved. Adenosine receptor activation has been shown to induce vasodilatation via nitric oxide, and a substantial portion of the plateau phase to local heating of human skin has been shown to be dependent on nitric oxide. The purpose of this study was to investigate a potential role for adenosine receptor activation in cutaneous thermal hyperaemia in humans. Six subjects were equipped with four microdialysis fibres on the ventral forearm. Sites were randomly assigned to receive one of the following four treatments: (1) lactated Ringer solution to serve as a control; (2) 4 mM theophylline, a competitive, non-selective A(1)/A(2) adenosine receptor antagonist; (3) 10 mM Nomega(-)-nitro-L-arginine methyl ester (L-NAME) to inhibit NO synthase; or (4) combined 4 mm theophylline + 10 mM L-NAME. Following baseline measurements, each site was locally heated from a baseline temperature of 33 degrees C to 42 degrees C at a rate of 1 degrees C (10 s)(-1), and skin blood flow was monitored via laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was calculated as LDF divided by mean arterial pressure and normalized to maximal values (CVC(max)) via local heating to 43 degrees C and infusion of 28 mM sodium nitroprusside. The initial peak was significantly reduced in theophylline (68 +/- 2% CVC(max)) and L-NAME sites (54 +/- 5% CVC(max)) compared with control sites (81 +/- 2% CVC(max); P < 0.01 and P < 0.001, respectively). Combined theophylline + L-NAME (52 +/- 5% CVC(max)) reduced the initial peak compared with control and theophylline sites, but was not significantly different compared with L-NAME sites. The secondary plateau was attenuated in theophylline (77 +/- 2% CVC(max)), L-NAME (60 +/- 2% CVC(max)) and theophylline + L-NAME (53 +/- 1% CVC(max)) compared with control sites (94 +/- 2% CVC(max); P < 0.001 for all conditions). The secondary plateau

  18. Chromium picolinate attenuates hyperglycemia-induced oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Sundaram, Bhuvaneshwari; Aggarwal, Aanchal; Sandhir, Rajat

    2013-04-01

    Chromium picolinate is advocated as an anti-diabetic agent for impaired glycemic control. It is a transition metal that exists in various oxidation states and may thereby act as a pro-oxidant. The present study has been designed to examine the effect of chromium picolinate supplementation on hyperglycemia-induced oxidative stress. Diabetes was induced in male Wistar rats by a single intraperitoneal injection of streptozotocin (50mg/kg body weight) and chromium was administered orally as chromium picolinate (1mg/kg body weight) daily for a period of four weeks after the induction of diabetes. As is characteristic of diabetic condition, hyperglycemia was associated with an increase in oxidative stress in liver in terms of increased lipid peroxidation and decreased glutathione levels. The activity of antioxidant enzymes like superoxide dismutase, catalase and glutathione reductase were significantly reduced in liver of diabetic animals. Levels of α-tocopherol and ascorbic acid were found to be considerably lower in plasma of diabetic rats. Chromium picolinate administration on the other hand was found to have beneficial effect in normalizing glucose levels, lipid peroxidation and antioxidant status. The results from the present study demonstrate potential of chromium picolinate to attenuate hyperglycemia-induced oxidative stress in experimental diabetes.

  19. Experimental Colitis Is Attenuated by Cardioprotective Diet Supplementation That Reduces Oxidative Stress, Inflammation, and Mucosal Damage.

    PubMed

    Vargas Robles, Hilda; Citalán Madrid, Alí Francisco; García Ponce, Alexander; Silva Olivares, Angelica; Shibayama, Mineko; Betanzos, Abigail; Del Valle Mondragón, Leonardo; Nava, Porfirio; Schnoor, Michael

    2016-01-01

    Inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD) are multifactorial, relapsing disorders of the gastrointestinal tract. However, the etiology is still poorly understood but involves altered immune responses, epithelial dysfunction, environmental factors, and nutrition. Recently, we have shown that the diet supplement corabion has cardioprotective effects due to reduction of oxidative stress and inflammation. Since oxidative stress and inflammation are also prominent risk factors in IBD, we speculated that corabion also has beneficial effects on experimental colitis. Colitis was induced in male mice by administration of 3.5% (w/v) dextran sulfate sodium (DSS) in drinking water for a period of 3 or 7 days with or without daily gavage feeding of corabion consisting of vitamin C, vitamin E, L-arginine, and eicosapentaenoic and docosahexaenoic acid. We found that corabion administration attenuated DSS-induced colon shortening, tissue damage, and disease activity index during the onset of colitis. Mechanistically, these effects could be explained by reduced neutrophil recruitment, oxidative stress, production of proinflammatory cytokines, and internalization of the junctional proteins ZO-1 and E-cadherin leading to less edema formation. Thus, corabion may be a useful diet supplement for the management of chronic inflammatory intestinal disorders such as IBD.

  20. Tetomilast attenuates elastase-induced pulmonary emphysema through inhibition of oxidative stress in rabbits.

    PubMed

    Baila, Bulin; Ohno, Yasushi; Nagamoto, Hisashi; Kotosai, Kounori; Yabuuchi, Youichi; Funaguchi, Norihiko; Ito, Fumitaka; Endo, Junki; Mori, Hidenori; Takemura, Genzou; Fujiwara, Takako; Fujiwara, Hisayoshi; Minatoguchi, Shinya

    2012-01-01

    Tetomilast was originally identified as a potent inhibitor of superoxide production in human neutrophils, and is of interest because it may relieve oxidative stress related to chronic obstructive pulmonary disease (COPD). Our objective was to determine whether tetomilast effectively protects against the development of porcine pancreatic elastase (PPE)-induced emphysema in rabbits. Rabbits were divided into three groups (sham n=19, PPE n=19, PPE/Tetomilast n=18). The rabbits were once daily orally administered vehicle solution or tetomilast 5 d/week for 4 weeks before the PPE instillation. We compared pulmonary function, inflammatory cell infiltration, oxidative stress, and the incidences of apoptosis among the three groups. Tetomilast suppressed PPE-induced increases in the incidence of apoptosis and the production of 8-hydroxy-deoxyguanosine (8-OHdG) in lung tissues. PPE-instilled rabbits treated with tetomilast showed significantly less mean linear intercept and significantly better pulmonary function than rabbits administered PPE alone. Tetomilast may inhibit the development of emphysema by attenuating pulmonary inflammation and apoptosis caused by PPE-induced oxidative stress.

  1. Experimental Colitis Is Attenuated by Cardioprotective Diet Supplementation That Reduces Oxidative Stress, Inflammation, and Mucosal Damage

    PubMed Central

    Vargas Robles, Hilda; Citalán Madrid, Alí Francisco; García Ponce, Alexander; Silva Olivares, Angelica; Shibayama, Mineko; Betanzos, Abigail; Del Valle Mondragón, Leonardo; Nava, Porfirio; Schnoor, Michael

    2016-01-01

    Inflammatory bowel diseases (IBD) such as ulcerative colitis (UC) and Crohn's disease (CD) are multifactorial, relapsing disorders of the gastrointestinal tract. However, the etiology is still poorly understood but involves altered immune responses, epithelial dysfunction, environmental factors, and nutrition. Recently, we have shown that the diet supplement corabion has cardioprotective effects due to reduction of oxidative stress and inflammation. Since oxidative stress and inflammation are also prominent risk factors in IBD, we speculated that corabion also has beneficial effects on experimental colitis. Colitis was induced in male mice by administration of 3.5% (w/v) dextran sulfate sodium (DSS) in drinking water for a period of 3 or 7 days with or without daily gavage feeding of corabion consisting of vitamin C, vitamin E, L-arginine, and eicosapentaenoic and docosahexaenoic acid. We found that corabion administration attenuated DSS-induced colon shortening, tissue damage, and disease activity index during the onset of colitis. Mechanistically, these effects could be explained by reduced neutrophil recruitment, oxidative stress, production of proinflammatory cytokines, and internalization of the junctional proteins ZO-1 and E-cadherin leading to less edema formation. Thus, corabion may be a useful diet supplement for the management of chronic inflammatory intestinal disorders such as IBD. PMID:26881044

  2. Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage.

    PubMed

    Sahu, Bidya Dhar; Kuncha, Madhusudana; Sindhura, G Jeevana; Sistla, Ramakrishna

    2013-03-15

    Nephrotoxicity is an important complication in cancer patients undergoing cisplatin therapy. Oxidative stress, inflammation and apoptosis/necrosis are the major patho-mechanisms of cisplatin induced nephrotoxicity. In the present study, hesperidin, a naturally-occurring bioflavonoid has been demonstrated to have protective effect on cisplatin-induced renal injury in rats. Cisplatin intoxication resulted in structural and functional renal impairment which was revealed by massive histopathological changes and elevated blood urea nitrogen and serum creatinine levels, respectively. Renal injury was associated with oxidative stress/lipid peroxidation as evident by increased reactive oxygen species (ROS) and malondialdehyde (MDA) formation with decreased levels of antioxidants such as reduced glutathione, vitamin C, catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase and glutathione-S-transferase. Cisplatin administration also triggered inflammatory response in rat kidneys by inducing pro-inflammatory cytokine, TNF-α, with the increased expression of myeloperoxidase (MPO). Furthermore, cisplatin increased the activity of caspase-3 and DNA damage with decreased tissue nitric oxide levels. Hesperidin treatment significantly attenuated the cisplatin-induced oxidative stress/lipid peroxidation, inflammation (infiltration of leukocytes and pro-inflammatory cytokine), apoptosis/necrosis (caspase-3 activity with DNA damage) as well as increased expression of nitric oxide in the kidney and improved renal function. Thus, our results suggest that hesperidin co-administration may serve as a novel and promising preventive strategy against cisplatin-induced nephrotoxicity. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. Value of attenuation correction in stress-only myocardial perfusion imaging using CZT-SPECT.

    PubMed

    van Dijk, J D; Mouden, M; Ottervanger, J P; van Dalen, J A; Knollema, S; Slump, C H; Jager, P L

    2017-04-01

    Attenuation correction (AC) improves the diagnostic outcome of stress-only myocardial perfusion imaging (MPI) using conventional SPECT. Our aim was to determine the value of AC using a cadmium zinc telluride-based (CZT)-SPECT camera. We retrospectively included 107 consecutive patients who underwent stress-optional rest MPI CZT-SPECT/CT. Next, we created three types of images for each patient; (1) only displaying reconstructed data without the CT-based AC (NC), (2) only displaying AC, and (3) with both NC and AC (NC + AC). Next, two experienced physicians visually interpreted these 321 randomized images as normal, equivocal, or abnormal. Image outcome was compared with all hard events over a mean follow-up time of 47.7 ± 9.8 months. The percentage of images interpreted as normal increased from 45% using the NC images to 72% using AC and to 67% using NC + AC images (P < .001). Hard event hazard ratios for images interpreted as normal were not different between using NC and AC (1.01, P = .99), or NC and NC + AC images (0.97, P = .97). AC lowers the need for additional rest imaging in stress-first MPI using CZT-SPECT, while long-term patient outcome remained identical. Use of AC reduces the need for additional rest imaging, decreasing the mean effective dose by up to 1.2 mSv.

  4. Chloroquine attenuates paraquat-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis.

    PubMed

    Shen, Haitao; Wu, Na; Wang, Yu; Zhao, Hongyu; Zhang, Lichun; Li, Tiegang; Zhao, Min

    2017-05-01

    Paraquat is one of the most extensively used herbicides and has high toxicity for humans and animals. However, there is no effective treatment for paraquat poisoning. The aim of the present study was to evaluate the effects of chloroquine on paraquat-induced lung injury in mice. Mice received a single intraperitoneal injection of paraquat and a daily intraperitoneal injection of the indicated dosages of chloroquine or dexamethasone. The histological changes, inflammation and oxidative stress in the lungs were examined at day 3, and the degree of pulmonary fibrosis was examined at day 28. H&E staining showed that chloroquine markedly attenuated lung injury induced by paraquat. In addition, the inflammatory responses induced by paraquat were inhibited after treatment with chloroquine, as indicated by the decreased number of leukocytes, the reduced levels of TNF-α, IL-1β and IL-6 in the bronchoalveolar lavage fluid, the reduced NO content, and downregulation of iNOS expression in lung tissues. No different effect was found between high-dose chloroquine and dexamethasone. Additionally, the treatment with chloroquine increased the activity of SOD and decreased the level of MDA in the lung tissues. The expressions of the anti-oxidative proteins, Nrf2, HO-1 and NQO1, were also upregulated by chloroquine treatment. The high-dose chloroquine was more effective than dexamethasone in its anti-oxidation ability. Finally, the results of Masson's staining illustrated that chloroquine markedly attenuated fibrosis in the paraquat-exposed lungs. Immunohistochemistry staining showed that the expressions of the pro-fibrotic proteins TGF-β and α-SMA were downregulated after treatment with chloroquine. In conclusion, chloroquine effectively attenuated paraquat-induced lung injury in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hormonal modulation of the heat shock response: insights from fish with divergent cortisol stress responses.

    PubMed

    LeBlanc, Sacha; Höglund, Erik; Gilmour, Kathleen M; Currie, Suzanne

    2012-01-01

    Acute temperature stress in animals results in increases in heat shock proteins (HSPs) and stress hormones. There is evidence that stress hormones influence the magnitude of the heat shock response; however, their role is equivocal. To determine whether and how stress hormones may affect the heat shock response, we capitalized on two lines of rainbow trout specifically bred for their high (HR) and low (LR) cortisol response to stress. We predicted that LR fish, with a low cortisol but high catecholamine response to stress, would induce higher levels of HSPs after acute heat stress than HR trout. We found that HR fish have significantly higher increases in both catecholamines and cortisol compared with LR fish, and LR fish had no appreciable stress hormone response to heat shock. This unexpected finding prevented further interpretation of the hormonal modulation of the heat shock response but provided insight into stress-coping styles and environmental stress. HR fish also had a significantly greater and faster heat shock response and less oxidative protein damage than LR fish. Despite these clear differences in the physiological and cellular responses to heat shock, there were no differences in the thermal tolerance of HR and LR fish. Our results support the hypothesis that responsiveness to environmental change underpins the physiological differences in stress-coping styles. Here, we demonstrate that the heat shock response is a distinguishing feature of the HR and LR lines and suggest that it may have been coselected with the hormonal responses to stress.

  6. Leptin Attenuates the Contractile Function of Adult Rat Cardiomyocytes Involved in Oxidative Stress and Autophagy

    PubMed Central

    Luo, Liu-Jin; Liu, Ying-Ping; Yuan, Xun; Zhang, Gui-Ping; Hou, Ning; Wu, Xiao-Qian; Luo, Jian-Dong; Zhang, Gen-Shui

    2016-01-01

    Background Leptin has been identified as an important protein involved in obesity. As a chronic metabolic disorder, obesity is associated with a high risk of developing cardiovascular and metabolic diseases, including heart failure. The aim of this paper was to investigate the effects and the mechanism of leptin on the contractile function of cardiomyocytes in the adult rat. Methods Isolated adult rat cardiomyocytes were exposed to leptin (1, 10, and 100 nmol/L) for 1 hour. The calcium transients and the contraction of adult rat cardiomyocytes were recorded with SoftEdge MyoCam system. Apocynin, tempol and rapamycin were added respectively, and Western blotting was employed to evaluate the expression of LC3B and Beclin-1. Results The peak shortening and maximal velocity of shortening/relengthening (± dL/dtmax) of cell shortening were significantly decreased, and the time to 50% relengthening was prolonged with leptin perfusion. Leptin also significantly reduced the baseline, peak and time to 50% baseline of calcium transient. Leptin attenuated autophagy as indicated by decreased LC3-II and Beclin-1. All of the abnormalities were significantly attenuated by apocynin, tempol or rapamycin. Conclusions Our results indicated that leptin depressed the intracellular free calcium and myocardial systolic function via increasing oxidative stress and inhibiting autophagy. PMID:27899860

  7. S-Allylmercaptocysteine Attenuates Cisplatin-Induced Nephrotoxicity through Suppression of Apoptosis, Oxidative Stress, and Inflammation

    PubMed Central

    Zhu, Xiaosong; Jiang, Xiaoyan; Li, Ang; Zhao, Zhongxi; Li, Siying

    2017-01-01

    Cisplatin is a potent chemotherapeutic agent, but its clinical usage is limited by nephrotoxicity. S-allylmercaptocysteine (SAMC), one of the water-soluble organosulfur garlic derivatives, has antioxidant and anti-inflammatory properties and plays an important role in protecting cells from apoptosis. This study aims to examine the protective effects of SAMC on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection. Rats were treated with cisplatin with or without pre-treatment with SAMC. Renal function, histological change, oxidative stress markers and antioxidant enzyme activities were investigated. Apoptotic marker, nuclearfactor (NF)-κB activity, expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and inflammatory cytokines were also examined. The effect of SAMC on cell viability and apoptosis was examined in cultured human kidney (HK-2) cells. SAMC was confirmed to significantly attenuate cisplatin-induced renal damage by using histological pathology and molecular biological method. Pre-treatment with SAMC reduced NF-κB activity, up-regulated Nrf2 and NQO1 expression and down-regulated inflammatory cytokine levels after cisplatin administration. Cisplatin-induced apoptosis in HK-2 cells was significantly attenuated by SAMC. Thus our results suggest that SAMC could be a potential therapeutic agent in the treatment of the cisplatin-induced nephrotoxicity through its anti-apoptotic, anti-oxidant and anti-inflammatory effects. PMID:28230744

  8. Renal denervation prevents stroke and brain injury via attenuation of oxidative stress in hypertensive rats.

    PubMed

    Nakagawa, Takashi; Hasegawa, Yu; Uekawa, Ken; Ma, Mingjie; Katayama, Tetsuji; Sueta, Daisuke; Toyama, Kensuke; Kataoka, Keiichiro; Koibuchi, Nobutaka; Maeda, Masanobu; Kuratsu, Jun-Ichi; Kim-Mitsuyama, Shokei

    2013-10-14

    Although renal denervation (RD) is shown to reduce blood pressure significantly in patients with resistant hypertension, the benefit of RD in prevention of stroke is unknown. We hypothesized that RD can prevent the incidence of stroke and brain injury in hypertensive rats beyond blood pressure lowering. High-salt-loaded, stroke-prone, spontaneously hypertensive rats (SHRSP) were divided into 4 groups: (1) control; (2) sham operation; (3) bilateral RD; and (4) hydralazine administration to examine the effect of RD on stroke and brain injury of SHRSP. RD significantly reduced the onset of neurological deficit and death in SHRSP, and this protection against stroke by RD was associated with the increase in cerebral blood flow (CBF), the suppression of blood-brain barrier disruption, the limitation of white matter (WM) lesions, and the attenuation of macrophage infiltration and activated microglia. Furthermore, RD significantly attenuated brain oxidative stress, and NADPH oxidase subunits, P67 and Rac1 in SHRSP. On the other hand, hydralazine, with similar blood pressure lowering to RD, did not significantly suppress the onset of stroke and brain injury in SHRSP. Furthermore, RD prevented cardiac remodeling and vascular endothelial impairment in SHRSP. Our present work provided the first experimental evidence that RD can prevent hypertensive stroke and brain injury, beyond blood pressure lowering, thereby highlighting RD as a promising therapeutic strategy for stroke as well as hypertension.

  9. Renal Denervation Prevents Stroke and Brain Injury via Attenuation of Oxidative Stress in Hypertensive Rats

    PubMed Central

    Nakagawa, Takashi; Hasegawa, Yu; Uekawa, Ken; Ma, Mingjie; Katayama, Tetsuji; Sueta, Daisuke; Toyama, Kensuke; Kataoka, Keiichiro; Koibuchi, Nobutaka; Maeda, Masanobu; Kuratsu, Jun‐ichi; Kim‐Mitsuyama, Shokei

    2013-01-01

    Background Although renal denervation (RD) is shown to reduce blood pressure significantly in patients with resistant hypertension, the benefit of RD in prevention of stroke is unknown. We hypothesized that RD can prevent the incidence of stroke and brain injury in hypertensive rats beyond blood pressure lowering. Methods and Results High‐salt‐loaded, stroke‐prone, spontaneously hypertensive rats (SHRSP) were divided into 4 groups: (1) control; (2) sham operation; (3) bilateral RD; and (4) hydralazine administration to examine the effect of RD on stroke and brain injury of SHRSP. RD significantly reduced the onset of neurological deficit and death in SHRSP, and this protection against stroke by RD was associated with the increase in cerebral blood flow (CBF), the suppression of blood–brain barrier disruption, the limitation of white matter (WM) lesions, and the attenuation of macrophage infiltration and activated microglia. Furthermore, RD significantly attenuated brain oxidative stress, and NADPH oxidase subunits, P67 and Rac1 in SHRSP. On the other hand, hydralazine, with similar blood pressure lowering to RD, did not significantly suppress the onset of stroke and brain injury in SHRSP. Furthermore, RD prevented cardiac remodeling and vascular endothelial impairment in SHRSP. Conclusions Our present work provided the first experimental evidence that RD can prevent hypertensive stroke and brain injury, beyond blood pressure lowering, thereby highlighting RD as a promising therapeutic strategy for stroke as well as hypertension. PMID:24125845

  10. Caffeine protects against alcoholic liver injury by attenuating inflammatory response and oxidative stress.

    PubMed

    Lv, Xiongwen; Chen, Zhen; Li, Jun; Zhang, Lei; Liu, Hongfeng; Huang, Cheng; Zhu, Pengli

    2010-08-01

    The present investigation was designed to determine the effects of caffeine on alcohol-induced hepatic injury in mice. Five groups of mice (8 each) were used. The mice treated with different doses of caffeine (5, 10, and 20 mg/kg, respectively). The degree of alcoholic liver injury was evaluated biochemically by measuring serum markers and pathological examination. Real time PCR and ELISA methods were used to check the expression of cytokines and CYP 450. Treatment with caffeine significantly attenuated the elevated serum aminotransferase enzymes and reduced the severe extent of hepatic cell damage, steatosis and the immigration of inflammatory cells. Interestingly, caffeine decreased hepatic mRNA expression of lipogenic genes, while it had no effect on protein expression of hepatic CYP2E1. Furthermore, caffeine decreased serum and tissue inflammatory cytokines levels, tissue lipid peroxidation and inhibited the necrosis of hepatocytes. Kupffer cells isolated from ethanol-fed mice produced high amounts of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-alpha), whereas Kupffer cells from caffeine treatment mice produced less ROS and TNF-alpha. These findings suggest that caffeine may represent a novel, protective strategy against alcoholic liver injury by attenuating oxidative stress and inflammatory response.

  11. Vetiver oil (Java) attenuates cisplatin-induced oxidative stress, nephrotoxicity and myelosuppression in Swiss albino mice.

    PubMed

    Sinha, Sonali; Jothiramajayam, Manivannan; Ghosh, Manosij; Jana, Aditi; Chatterji, Urmi; Mukherjee, Anita

    2015-07-01

    Clinical efficacy of the widely used anticancer drug cisplatin is limited due to its adverse side effects in normal tissues mediated by oxidative stress. This study was aimed to investigate the protective effects of vetiver acetate oil, Java (VO) against cisplatin-induced toxicity in Swiss albino mice. The ameliorating potential was evaluated by orally priming the animals with VO at doses 5, 10 or 20 mg/kg bw for 7 days prior to cisplatin treatment. Acute toxicity in mice was induced by injecting cisplatin (3 mg/kg bw) intraperitoneally for 5 consecutive days. Significant attenuation of renal toxicity was confirmed by histopathological examination, lowered levels of serum blood urea nitrogen, creatinine and reduced DNA damage. VO also compensated deficits in the renal antioxidant system. VO intervention significantly inhibited DNA damage, clastogenic effects, and cell cycle arrest in the bone marrow cells of mice. Hematological parameters indicated attenuation of cisplatin-induced myelosuppression. Overall, this study provides for the first time that VO has a protective role in the abatement of cisplatin-induced toxicity in mice which may be attributed to its antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Use of heat stress responsive gene expression levels for early selection of heat tolerant cabbage (Brassica oleracea L.).

    PubMed

    Park, Hyun Ji; Jung, Won Yong; Lee, Sang Sook; Song, Jun Ho; Kwon, Suk-Yoon; Kim, Hyeran; Kim, Chulwook; Ahn, Jun Cheul; Cho, Hye Sun

    2013-06-04

    Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL), "HO", and a heat-sensitive cabbage line (HSCL), "JK", by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR) to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13) were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS). Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress.

  13. Use of Heat Stress Responsive Gene Expression Levels for Early Selection of Heat Tolerant Cabbage (Brassica oleracea L.)

    PubMed Central

    Park, Hyun Ji; Jung, Won Yong; Lee, Sang Sook; Song, Jun Ho; Kwon, Suk-Yoon; Kim, HyeRan; Kim, ChulWook; Ahn, Jun Cheul; Cho, Hye Sun

    2013-01-01

    Cabbage is a relatively robust vegetable at low temperatures. However, at high temperatures, cabbage has disadvantages, such as reduced disease tolerance and lower yields. Thus, selection of heat-tolerant cabbage is an important goal in cabbage breeding. Easier or faster selection of superior varieties of cabbage, which are tolerant to heat and disease and have improved taste and quality, can be achieved with molecular and biological methods. We compared heat-responsive gene expression between a heat-tolerant cabbage line (HTCL), “HO”, and a heat-sensitive cabbage line (HSCL), “JK”, by Genechip assay. Expression levels of specific heat stress-related genes were increased in response to high-temperature stress, according to Genechip assays. We performed quantitative RT-PCR (qRT-PCR) to compare expression levels of these heat stress-related genes in four HTCLs and four HSCLs. Transcript levels for heat shock protein BoHsp70 and transcription factor BoGRAS (SCL13) were more strongly expressed only in all HTCLs compared to all HSCLs, showing much lower level expressions at the young plant stage under heat stress (HS). Thus, we suggest that expression levels of these genes may be early selection markers for HTCLs in cabbage breeding. In addition, several genes that are involved in the secondary metabolite pathway were differentially regulated in HTCL and HSCL exposed to heat stress. PMID:23736694

  14. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress

    PubMed Central

    Fujikawa, Tetsuya; Munakata, Takeo; Kondo, Shin-ichi; Satoh, Nori

    2009-01-01

    The genome of Ciona intestinalis contains eight genes for HSP70 superfamily proteins, 36 genes for J-proteins, a gene for a J-like protein, and three genes for BAG family proteins. To understand the stress responses of genes in the HSP70 chaperone system comprehensively, the transcriptional profiles of these 48 genes under heat stress and endoplasmic reticulum (ER) stress were studied using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) analysis. Heat stress treatment increased the messenger RNA (mRNA) levels of six HSP70 superfamily genes, eight J-protein family genes, and two BAG family genes. In the cytoplasmic group of the DnaK subfamily of the HSP70 family, Ci-HSPA1/6/7-like was the only heat-inducible gene and Ci-HSPA2/8 was the only constitutively active gene which showed striking simplicity in comparison with other animals that have been examined genome-wide so far. Analyses of the time course and temperature dependency of the heat stress responses showed that the induction of Ci-HSPA1/6/7-like expression rises to a peak after heat stress treatment at 28°C (10°C upshift from control temperature) for 1 h. ER stress treatment with Brefeldin A, a drug that is known to act as ER stress inducer, increased the mRNA levels of four HSP70 superfamily genes and four J-protein family genes. Most stress-inducible genes are conserved between Ciona and vertebrates, as expected from a close evolutionary relationship between them. The present study characterized the stress responses of HSP70 chaperone system genes in Ciona for the first time and provides essential data for comprehensive understanding of the functions of the HSP70 chaperone system. Electronic supplementary material The online version of this article (doi:10.1007/s12192-009-0133-x) contains supplementary material, which is available to authorized users. PMID:19629754

  15. Sesamol attenuates oxidative stress-mediated experimental acute pancreatitis in rats.

    PubMed

    Chu, P-Y; Srinivasan, P; Deng, J-F; Liu, M-Y

    2012-04-01

    Acute pancreatitis is a potentially fatal disease with no known cure. The initial events in acute pancreatitis may occur within the acinar cells. We examined the effect of sesamol on (i) a cerulein-induced pancreatic acinar cancer cell line, AR42J, and (ii) cerulein-induced experimental acute pancreatitis in rats. Sesamol inhibited amylase activity and increased cell survival. It also inhibited medium lipid peroxidation and 8-hydroxydeoxyguanosine in AR42J cells compared with the cerulein-alone groups. In addition, in cerulein-treated rats, sesamol inhibited serum amylase and lipase levels, pancreatic edema, and lipid peroxidation, but it increased pancreatic glutathione and nitric oxide levels. Thus, we hypothesize that sesamol attenuates cerulein-induced experimental acute pancreatitis by inhibiting the pancreatic acinar cell death associated with oxidative stress in rats.

  16. Hesperidin Attenuates Ultraviolet B-Induced Apoptosis by Mitigating Oxidative Stress in Human Keratinocytes

    PubMed Central

    Hewage, Susara Ruwan Kumara Madduma; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Han, Xia; Oh, Min Chang; Jung, Uhee; Kim, In Gyu; Hyun, Jin Won

    2016-01-01

    Human skin cells undergo pathophysiological processes via generation of reactive oxygen species (ROS) upon excessive exposure to ultraviolet B (UVB) radiation. This study investigated the ability of hesperidin (C28H34O15) to prevent apoptosis due to oxidative stress generated through UVB-induced ROS. Hesperidin significantly scavenged ROS generated by UVB radiation, attenuated the oxidation of cellular macromolecules, established mitochondrial membrane polarization, and prevented the release of cytochrome c into the cytosol. Hesperidin downregulated expression of caspase-9, caspase-3, and Bcl-2-associated X protein, and upregulated expression of B-cell lymphoma 2. Hesperidin absorbed wavelengths of light within the UVB range. In summary, hesperidin shielded human keratinocytes from UVB radiation-induced damage and apoptosis via its antioxidant and UVB absorption properties. PMID:26797112

  17. Effects of genistein and hesperidin on biomarkers of heat stress in broilers under persistent summer stress.

    PubMed

    Kamboh, A A; Hang, S Q; Bakhetgul, M; Zhu, W-Y

    2013-09-01

    This study investigated the supplemental effects of the flavonoids genistein and hesperidin for biomarkers of heat stress in broilers reared under persistent summer stress. A total of 360 one-day-old, mixed-sex broiler chickens were divided into 6 treatment groups: control or supplemented with 5 mg of genistein•kg of feed(-1), 20 mg of hesperidin•kg of feed(-1), or a mixture of genistein and hesperidin (1:4) at a dosage of 5 mg•kg(-1), 10 mg•kg(-1), and 20 mg•kg(-1) of feed. Broilers were slaughtered at 42 d and samples were analyzed for hematological profile, creatine kinase, lactate dehydrogenase, and heat shock protein 70 mRNA levels. Results showed that dietary genistein and hesperidin improved (P < 0.05) the weekly performance of broilers particularly during the finisher period. The circulating heterophils and heterophil-to-lymphocyte ratios were found to decrease (P < 0.01) in the treated groups. Moreover, biomarkers of heat stress including the level of creatine kinase, lactate dehydrogenase, and heat shock protein 70 mRNA of breast muscle was also changed (P < 0.01) positively by the dietary compounds with pronounced effects of combined treatments. These findings suggested that genistein and hesperidin could be a prime strategy to ameliorate summer stress effects in broilers; and a combination of both compounds may lead to mutual synergistic effects. It could be suggested that dietary use of both genistein and hesperidin as a feed supplement may offer a potential nutritional strategy in tropical and subtropical regions to overcome the deleterious effects of persistent summer stress in broiler production.

  18. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  19. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats

    PubMed Central

    Gimenes, C.; Gimenes, R.; Rosa, C. M.; Xavier, N. P.; Campos, D. H. S.; Fernandes, A. A. H.; Cezar, M. D. M.; Guirado, G. N.; Cicogna, A. C.; Takamoto, A. H. R.; Okoshi, M. P.; Okoshi, K.

    2015-01-01

    We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. Conclusion. Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats. PMID:26509175

  20. PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress.

    PubMed

    Lehmann, Michael L; Mustafa, Tomris; Eiden, Adrian M; Herkenham, Miles; Eiden, Lee E

    2013-05-01

    The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) regulates activation of the hypothalamic-pituitary-adrenal (HPA) axis and the adrenal gland in response to various stressors. We previously found that in response to acute psychological stress (restraint), elevated corticotrophin-releasing hormone (CRH) mRNA levels in the hypothalamic paraventricular nucleus (PVN) as well as elevated plasma corticosterone (CORT) were profoundly attenuated in PACAP-deficient mice. To determine whether HPA axis responses and stress-induced depressive-like behaviors in a chronic stress paradigm are affected by PACAP deficiency, we subjected mice to 14 days of social defeat stress. Defeat-exposed PACAP-/- mice showed a marked attenuation of stress-induced increases in serum CORT levels, cellular PVN ΔFosB immunostaining, and depressive-like behaviors (social interaction and forced swim tests) compared to wild-type control mice. The PACAP-/- mice showed reduced PVN FosB-positive cell numbers, but relatively elevated cell counts in several forebrain areas including the medial prefrontal cortex, after social stress. PACAP appears to be specific for mediating HPA activation only in psychological stress because marked elevations in plasma CORT after a systemic stressor (lipopolysaccharide administration) occurred regardless of genotype. We conclude that chronically elevated CORT is a key component of depressive effects of social defeat, and that attenuation of the CORT response at the level of the PVN, as well as extrahypothalamic forebrain regions, in PACAP-deficient mice protects from development of depressive behavior.

  1. Repeated muscle damage blunts the increase in heat strain during subsequent exercise heat stress.

    PubMed

    Dolci, A; Fortes, M B; Walker, F S; Haq, A; Riddle, T; Walsh, N P

    2015-07-01

    Exercise-induced muscle damage (EIMD) has recently been shown to increase heat strain during exercise heat stress (HS), and represents a risk factor for exertional heat illness (EHI). We hypothesised that a repeated bout of EIMD blunts the increase in rectal temperature (T re) during subsequent endurance exercise in the heat. Sixteen non-heat-acclimated males were randomly allocated to EIMD (n = 9) or control (CON, n = 7). EIMD performed a downhill running treatment at -10 % gradient for 60 min at 65 % [Formula: see text]O2max in 20 °C, 40 % RH. CON participants performed the same treatment but at +1 % gradient. Following treatment, participants rested for 30 min, then performed HS (+1 % gradient running for 40 min at 65 % [Formula: see text]O2max in 33 °C, 50 % RH) during which thermoregulatory measures were assessed. Both groups repeated the treatment and subsequent HS 14 days later. Isometric quadriceps strength was assessed at baseline, and 48 h post-treatment. The decrease in leg strength 48 h post-EIMD trial 1 (-7.5 %) was absent 48 h post-EIMD trial 2 (+2.9 %) demonstrating a repeated bout effect. Final T re during HS was lower following EIMD trial 2 (39.25 ± 0.47 °C) compared with EIMD trial 1 (39.59 ± 0.49 °C, P < 0.01), with CON showing no difference. Thermal sensation and the T re threshold for sweating onset were also lower during HS on EIMD trial 2. The repeated bout effect blunted the increase in heat strain during HS conducted after EIMD. Incorporating a muscle-damaging bout into training could be a strategy to reduce the risk of EHI and improve endurance performance in individuals undertaking heavy exercise with an eccentric component in the heat.

  2. Effects of heat stress on the regeneration of injured skeletal muscle in rats

    NASA Astrophysics Data System (ADS)

    Yoshioka, Toshitada; Goto, Katsumasa; Kojima, Atsushi; Akema, Tatsuo; Sugiura, Takao; Ohira, Yoshinobu

    2005-08-01

    The purpose of this study was to investigate the effects of heat stress on the regeneration of injured mammalian skeletal muscles. To activate a necrosis-regeneration cycle, cardiotoxin (CTX) was injected into the left tibialis anterior (TA) muscle, except for the normal control group. Rats in the heat-stressed group were exposed to heat in a heat chamber 24 hours before or immediately after CTX injection. The muscle protein contents in the heat-stressed group were significantly higher than the non-heated group 28 days after CTX injection (p<0.05). The CTX-injection-related increment of Pax7-positive nuclei in the heated group was greater than that in the non-heated group. Evidences suggest that heat-stress could activate satellite cells, promote the proliferation and the differentiation of satellite cells, and facilitate the regeneration of muscle.

  3. Risperidone Attenuates Modified Stress-Re-stress Paradigm-Induced Mitochondrial Dysfunction and Apoptosis in Rats Exhibiting Post-traumatic Stress Disorder-Like Symptoms.

    PubMed

    Garabadu, Debapriya; Ahmad, Ausaf; Krishnamurthy, Sairam

    2015-06-01

    Mitochondria play a significant role in the pathophysiology of post-traumatic stress disorder (PTSD). Risperidone and paroxetine were evaluated for their effect on mitochondrial dysfunction and mitochondria-dependent apoptosis in discrete brain regions in modified stress re-stress (SRS) animal model of PTSD. Male rats were subjected to stress protocol of 2 h restraint and 20 min forced swim followed by halothane anesthesia on day 2 (D-2). Thereafter, rats were exposed to re-stress (forced swim) on D-8 and at 6-day intervals on D-14, D-20, D-26, and D-32. The rats were treated with risperidone (0.01, 0.1, and 1.0 mg/kg p.o.) and paroxetine (10.0 mg/kg p.o.) from D-8 to D-32. Risperidone at median dose and paroxetine ameliorated modified SRS-induced depressive-like symptom (increase in immobility period) in forced swim, anxiety-like behavior (decrease in percentage of open arm entries and time spent) in elevated plus maze and cognitive deficits (loss in spatial recognition memory) in Y-maze tests on D-32. Risperidone, but not paroxetine, attenuated modified SRS-induced decreases in plasma corticosterone levels. Risperidone ameliorated increase in the activity of mitochondrial respiratory complex (I, II, IV, and V), decreases in the levels of mitochondrial membrane potential, cytochrome-C and caspase-9 in the hippocampus, hypothalamus, pre-frontal cortex, and amygdala. However, both drugs attenuated modified SRS-induced increase in the number of apoptotic cells and caspase-3 levels in all the brain regions indicating anti-apoptotic activity of these drugs. Hence, these results suggest that anti-apoptotic activity could be a common mechanism for anti-PTSD-like effect irrespective of the pathways of apoptosis in the modified SRS model.

  4. On thermal stress failure of the SNAP-19A RTG heat shield

    NASA Technical Reports Server (NTRS)

    Pitts, W. C.; Anderson, L. A.

    1974-01-01

    Results of a study on thermal stress problems in an amorphous graphite heat shield that is part of the launch-abort protect system for the SNAP-19A radio-isotope thermoelectric generators (RTG) that will be used on the Viking Mars Lander are presended. The first result is from a thermal stress analysis of a full-scale RTG heat source that failed to survive a suborbital entry flight test, possibly due to thermal stress failure. It was calculated that the maximum stress in the heat shield was only 50 percent of the ultimate strength of the material. To provide information on the stress failure criterion used for this calculation, some heat shield specimens were fractured under abort entry conditions in a plasma arc facility. It was found that in regions free of stress concentrations the POCO graphite heat shield material did fracture when the local stress reached the ultimate uniaxial stress of the material.

  5. Glutamine treatment attenuates endoplasmic reticulum stress and apoptosis in TNBS-induced colitis.

    PubMed

    Crespo, Irene; San-Miguel, Beatriz; Prause, Carolina; Marroni, Norma; Cuevas, María J; González-Gallego, Javier; Tuñón, María J

    2012-01-01

    Endoplasmic reticulum (ER) stress and apoptotic cell death play an important role in the pathogenesis and perpetuation of inflammatory bowel disease (IBD). We aimed to explore the potential of glutamine to reduce ER stress and apoptosis in a rat model of experimental IBD. Colitis was induced in male Wistar rats by intracolonic administration of 30 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Glutamine (25 mg/dL) was given by rectal route daily for 2 d or 7 d. Both oxidative stress (TBARS concentration and oxidised/reduced glutathione ratio) and ER stress markers (CHOP, BiP, calpain-1 and caspase-12 expression) increased significantly within 48 h of TNBS instillation, and glutamine attenuated the extent of the changes. Glutamine also inhibited the significant increases of ATF6, ATF4 and spliced XBP-1 mRNA levels induced by TNBS instillation. TNBS-colitis resulted in a significant increase in p53 and cytochrome c expression, and a reduced Bcl-xL expression and Bax/Bcl-2 ratio. These effects were significantly inhibited by glutamine. Treatment with the amino acid also resulted in significant decreases of caspase-9, caspase-8 and caspase-3 activities. Double immunofluorescence staining showed co-localization of CHOP and cleaved caspase-3 in colon sections. Phospho-JNK and PARP-1 expression was also significantly higher in TNBS-treated rats, and treatment with glutamine significantly decreased JNK phosphorylation and PARP-1 proteolysis. To directly address the effect of glutamine on ER stress and apoptosis in epithelial cells, the ER stress inducers brefeldin A and tunicamycin were added to Caco-2 cells that were treated with glutamine (5 mM and 10 mM). The significant enhancement in PERK, ATF6 phosphorylated IRE1, BiP and cleaved caspase-3 expression induced by brefeldin A and tunicamycin was partly prevented by glutamine. Data obtained indicated that modulation of ER stress signalling and anti-apoptotic effects contribute to protection by glutamine against damage

  6. Attenuating brain inflammation, ischemia, and oxidative damage by hyperbaric oxygen in diabetic rats after heat stroke.

    PubMed

    Lee, Kai-Li; Niu, Ko-Chi; Lin, Mao-Tsun; Niu, Chiang-Shan

    2013-08-01

    Alternating hypothalamic-pituitary-adrenal axis mechanisms would lead to multiple organs dysfunction or failure. Herein, we attempt to assess whether hypothalamic inflammation and ischemic and oxidative damage that occurred during heatstroke (HS) can be affected by hyperbaric oxygen (HBO₂) therapy in streptozotocin-induced diabetic rats. In this study, anesthetized diabetic rats, immediately after the onset of HS, were divided into two major groups and given the normobaric air (21% O₂ at 1.0 atmospheres absolute) or HBO₂ (100% O₂ at 2.0 atmospheres absolute). HS was induced by exposing the animals to heat stress (43°C). Another group of anesthetized diabetic rats was kept at normothermic state and used as controls. The survival time values for the HBO2-treated HS-diabetic rats increased form the control values of 78-82 minutes to new values of 184-208 minutes. HBO₂ therapy caused a reduction of HS-induced cellular ischemia (e.g., increased cellular levels of glutamate and lactate/pyruvate ratio), hypoxia (e.g., decreased cellular levels of PO₂), inflammation (e.g., increased cellular levels of interleukin-1β, tumor necrosis factor-alpha, interleukin-6, and myeloperoxidase), and oxidative damage (e.g., increased values of nitric oxide, 2,3-dihydroxybenzoic acid, glycerol, and neuronal damage score) in the hypothalamus of the diabetic rats. Our results suggest that, in diabetic animals, HBO2 therapy may improve outcomes of HS in part by reducing heat-induced activated inflammation and ischemic and oxidative damage in the hypothalamus and other brain regions. Copyright © 2012. Published by Elsevier B.V.

  7. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress

    PubMed Central

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-01-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase. PMID:26831215

  8. Heat stress induces ferroptosis-like cell death in plants.

    PubMed

    Distéfano, Ayelén Mariana; Martin, María Victoria; Córdoba, Juan Pablo; Bellido, Andrés Martín; D'Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Roldán, Juan Alfredo; Bartoli, Carlos Guillermo; Zabaleta, Eduardo Julián; Fiol, Diego Fernando; Stockwell, Brent R; Dixon, Scott J; Pagnussat, Gabriela Carolina

    2017-02-01

    In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient. © 2017 Distéfano et al.

  9. Heat stress induces ferroptosis-like cell death in plants

    PubMed Central

    D’Ippólito, Sebastián; Colman, Silvana Lorena; Soto, Débora; Bartoli, Carlos Guillermo; Fiol, Diego Fernando

    2017-01-01

    In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)–induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana. The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient. PMID:28100685

  10. Resveratrol Attenuates Oxidative Stress and Extends Life Span in the Annual Fish Nothobranchius guentheri.

    PubMed

    Liu, Tingting; Qi, He; Ma, Long; Liu, Zhaojun; Fu, Huiling; Zhu, Wenzhen; Song, Taiyu; Yang, Bingwu; Li, Guorong

    2015-06-01

    Resveratrol is a natural polyphenol derived mainly from the skin of grapes and from red wine. Resveratrol prolongs life span in several invertebrates, but this function is not found in mice. Our recently published paper demonstrated that resveratrol prolonged longevity of the annual fish Nothobranchius guentheri, a promising vertebrate model for anti-aging research. However, the anti-aging process by resveratrol remains largely unexplored, and little is known about its effects on oxidative stress. In this study, by long-term supplementation of resveratrol from sexual maturity onward in the annual fish, we detected survivorship and oxidative stress at three different developmental stages in vivo. A total of 112 fish were fed with resveratrol in the concentration of 200 μg/gram food and 111 fish without resveratrol from 16 weeks of age until to the end of their lives. The mean and maximum life spans of the fish treated with resveratrol were extended by 17.34% and 17.66%, respectively, compared to the fish in control group. The markers of oxidative stress, such as the levels of reactive oxygen species (ROS), the activities of anti-oxidant enzymes, and the degree of oxidative damage, were detected at 6, 9, and 12 months, respectively. The results showed that levels of ROS and oxidative damage increased and activities of anti-oxidant enzymes appeared to decrease with age. Resveratrol treatment significantly attenuated the increase of ROS and oxidative damage and up-regulated the decrease of anti-oxidant enzyme activities induced by aging. Our results demonstrated that resveratrol decreased oxidative stress and extended life span in this short-lived fish.

  11. Ouabain attenuates the oxidative stress induced by lipopolysaccharides in the cerebellum of rats.

    PubMed

    Garcia, Israel José Pereira; Kinoshita, Paula Fernanda; de Oliveira Braga, Italo; Parreira, Gabriela Machado; Mignaco, Julio Alberto; Scavone, Cristoforo; Barbosa, Leandro Augusto; de Lima Santos, Hérica

    2017-08-31

    Our study aimed to analyze the effect of ouabain administration on lipopolysaccharide (LPS)-induced changes in oxidative parameters, membrane lipid composition, and the activities of some important enzymes of the nervous system. The content of phospholipids, cholesterol and gangliosides were analyzed in Wistar rats after intraperitoneal injection of ouabain(1.8 µg/kg), LPS(200 µg/kg) or saline. Oxidative parameters were also evaluated, including the activities of superoxide dismutase, catalase and glutathione peroxidase, the levels of glutathione and lipid peroxidation, as well as Na,K-ATPase activity and the level of glutamate transporter EAAT4. Administration of LPS resulted in increased oxidative stress, as evidenced by an increase in lipid peroxidation levels, glutathione peroxidase activity, decreased catalase activity and reduced glutathione levels. All changes recorded were attenuated by pretreatment with ouabain. Administration of ouabain plus LPS enhanced the total ganglioside content and EAAT4 levels, but failed to alter the Na,K-ATPase activity. Our data suggest a neuroprotective effect of ouabain against LPS-induced oxidative stress by promoting membrane lipid remodeling and increasing the expression of glutamate transporter EAAT4. Our results emphasize that the observed oxidative stress is not correlated with Na,K-ATPase, but with a possible ouabain-mediated effect on cellular signaling. The relevance of our results extends beyond LPS-induced changes in oxidative parameters, as nanomolar doses of ouabain might prove useful in neurodegenerative models. Further study of other cardenolides and related molecules, as well as the development of new molecules derived from ouabain, could also prove useful in the fight against the oxidative and/or general cell stress triggered by neuronal pathologies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Heat stress and a countermeasure in the Shuttle rescueman's suit

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.; Reed, H.; Convertino, V. A.

    1992-01-01

    Rescue of the astronaut flight crew from a contingency landing may risk exposure of the rescue crew to toxic propellants spilling from potentially ruptured tanks in the crew module area. An Aquala dry diver's suit has been in service by the rescue team to preclude exposure, especially in the water rescue scenario. Heat stress has become a factor of concern in recent years when older and less physically-fit team members work in this suit. Methods: Field testing was initiated using fully instrumented rescue men in a simulated scenario to determine the extent of heat stress. Two tests were accomplished, one in the normal (N) configuration and one with a proposed cooling countermeasure, the Steele vest (S). Results: Heat stress was high as indicated by average rectal temperatures (Tre) of 38.28 degrees C(100.9 degrees F) after the 45 minute protocol. Slopes of the regression equations describing the increase in Tre with time were greater (P less than 0.05) with N (0.073 plus or minus .008) compared to S (0.060 plus or minus .007). Projection of time to the 38.89 degree C (102 degree F) limit was increased by 15.3 percent with the vest. Mean skin temperature (Tsk) was higher (P less than 0.05) in N (38.33 plus or minus .11 degrees C) compared to S (34.33 plus or minus .39 degrees C). Average heart rate was higher (P less than 0.05 in N than S. Sweat loss, as measured by weight loss, was more (P less than 0.05) for N (1.09 plus or minus .09 kg versus 0.77 plus or minus .06 kg). Air usage, while slightly less for S, was not statistically different. Conclusion: The use of the cool vest provided significant relief from thermal stress in spite of the addition of 3.4 kg (7.5 pounds) weight and some loss in mobility.

  13. Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals.

    PubMed

    Grahn, D A; Dillon, J L; Heller, H C

    2009-07-01

    Insulation reduces heat exchange between a body and the environment. Glabrous (nonhairy) skin surfaces (palms of the hands, soles of the feet, face, and ears) constitute a small percentage of total body surface area but contain specialized vascular structures that facilitate heat loss. We have previously reported that cooling the glabrous skin surfaces is effective in alleviating heat stress and that the application of local subatmospheric pressure enhances the effect. In this paper, we compare the effects of cooling multiple glabrous skin surfaces with and without vacuum on thermal recovery in heavily insulated heat-stressed individuals. Esophageal temperatures (T(es)) and heart rates were monitored throughout the trials. Water loss was determined from pre- and post-trial nude weights. Treadmill exercise (5.6 km/h, 9-16% slope, and 25-45 min duration) in a hot environment (41.5 degrees C, 20-30% relative humidity) while wearing insulating pants and jackets was used to induce heat stress (T(es)>or=39 degrees C). For postexercise recovery, the subjects donned additional insulation (a balaclava, winter gloves, and impermeable boot covers) and rested in the hot environment for 60 min. Postexercise cooling treatments included control (no cooling) or the application of a 10 degrees C closed water circulating system to (a) the hand(s) with or without application of a local subatmospheric pressure, (b) the face, (c) the feet, or (d) multiple glabrous skin regions. Following exercise induction of heat stress in heavily insulated subjects, the rate of recovery of T(es) was 0.4+/-0.2 degrees C/h(n=12), but with application of cooling to one hand, the rate was 0.8+/-0.3 degrees C/h(n=12), and with one hand cooling with subatmospheric pressure, the rate was 1.0+/-0.2 degrees C/h(n=12). Cooling alone yielded two responses, one resembling that of cooling with subatmospheric pressure (n=8) and one resembling that of no cooling (n=4). The effect of treating multiple surfaces was

  14. VIP/PACAP receptor mediation of cutaneous active vasodilation during heat stress in humans.

    PubMed

    Kellogg, Dean L; Zhao, Joan L; Wu, Yubo; Johnson, John M

    2010-07-01

    Vasoactive intestinal peptide (VIP) is implicated in cutaneous active vasodilation in humans. VIP and the closely related pituitary adenylate cyclase activating peptide (PACAP) act through several receptor types: VIP through VPAC1 and VPAC2 receptors and PACAP through VPAC1, VPAC2, and PAC1 receptors. We examined participation of VPAC2 and/or PAC1 receptors in cutaneous vasodilation during heat stress by testing the effects of their specific blockade with PACAP6-38. PACAP6-38 dissolved in Ringer's was administered by intradermal microdialysis at one forearm site while a control site received Ringer's solution. Skin blood flow was monitored by laser-Doppler flowmetry (LDF). Blood pressure was monitored noninvasively and cutaneous vascular conductance (CVC) calculated. A 5- to 10-min baseline period was followed by approximately 70 min of PACAP6-38 (100 microM) perfusion at one site in normothermia and a 3-min period of body cooling. Whole body heating was then performed to engage cutaneous active vasodilation and was maintained until CVC had plateaued at an elevated level at all sites for 5-10 min. Finally, 58 mM sodium nitroprusside was perfused through both microdialysis sites to effect maximal vasodilation. No CVC differences were found between control and PACAP6-38-treated sites during normothermia (19 +/- 3%max untreated vs. 20 +/- 3%max, PACAP6-38 treated; P > 0.05 between sites) or cold stress (11 +/- 2%max untreated vs. 10 +/- 2%max, PACAP6-38 treated, P > 0.05 between sites). PACAP6-38 attenuated the increase in CVC during whole body heating when compared with untreated sites (59 +/- 3%max untreated vs. 46 +/- 3%max, PACAP6-38 treated, P < 0.05). We conclude that VPAC2 and/or PAC1 receptor activation is involved in cutaneous active vasodilation in humans.

  15. Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants

    PubMed Central

    2011-01-01

    Background Fluctuations in temperature occur naturally during plant growth and reproduction. However, in the hot summers this variation may become stressful and damaging for the molecular mechanisms involved in proper cell growth, impairing thus plant development and particularly fruit-set in many crop plants. Tolerance to such a stress can be achieved by constitutive gene expression or by rapid changes in gene expression, which ultimately leads to protection against thermal damage. We have used cDNA-AFLP and microarray analyses to compare the early response of the tomato meiotic anther transcriptome to moderate heat stress conditions (32°C) in a heat-tolerant and a heat-sensitive tomato genotype. In the light of the expected global temperature increases, elucidating such protective mechanisms and identifying candidate tolerance genes can be used to improve breeding strategies for crop tolerance to heat stress. Results The cDNA-AFLP analysis shows that 30 h of moderate heat stress (MHS) alter the expression of approximately 1% of the studied transcript-derived fragments in a heat-sensitive genotype. The major effect is gene down-regulation after the first 2 h of stress. The microarray analysis subsequently applied to elucidate early responses of a heat-tolerant and a heat-sensitive tomato genotype, also shows about 1% of the genes having significant changes in expression after the 2 h of stress. The tolerant genotype not only reacts with moderate transcriptomic changes but also exhibits constitutively higher expression levels of genes involved in protection and thermotolerance. Conclusion In contrast to the heat-sensitive genotype, the heat-tolerant genotype exhibits moderate transcriptional changes under moderate heat stress. Moreover, the heat-tolerant genotype also shows a different constitutive gene expression profile compared to the heat-sensitive genotype, indicating genetic differences in adaptation to increased temperatures. In the heat-tolerant genotype

  16. Effects of cold stress and heat stress on coral fluorescence in reef-building corals

    PubMed Central

    Roth, Melissa S.; Deheyn, Dimitri D.

    2013-01-01

    Widespread temperature stress has caused catastrophic coral bleaching events that have been devastating for coral reefs. Here, we evaluate whether coral fluorescence could be utilized as a noninvasive assessment for coral health. We conducted cold and heat stress treatments on the branching coral Acropora yongei, and found that green fluorescent protein (GFP) concentration and fluorescence decreased with declining coral health, prior to initiation of bleaching. Ultimately, cold-treated corals acclimated and GFP concentration and fluorescence recovered. In contrast, heat-treated corals eventually bleached but showed strong fluorescence despite reduced GFP concentration, likely resulting from the large reduction in shading from decreased dinoflagellate density. Consequently, GFP concentration and fluorescence showed distinct correlations in non-bleached and bleached corals. Green fluorescence was positively correlated with dinoflagellate photobiology, but its closest correlation was with coral growth suggesting that green fluorescence could be used as a physiological proxy for health in some corals. PMID:23478289

  17. Effects of cold stress and heat stress on coral fluorescence in reef-building corals.

    PubMed

    Roth, Melissa S; Deheyn, Dimitri D

    2013-01-01

    Widespread temperature stress has caused catastrophic coral bleaching events that have been devastating for coral reefs. Here, we evaluate whether coral fluorescence could be utilized as a noninvasive assessment for coral health. We conducted cold and heat stress treatments on the branching coral Acropora yongei, and found that green fluorescent protein (GFP) concentration and fluorescence decreased with declining coral health, prior to initiation of bleaching. Ultimately, cold-treated corals acclimated and GFP concentration and fluorescence recovered. In contrast, heat-treated corals eventually bleached but showed strong fluorescence despite reduced GFP concentration, likely resulting from the large reduction in shading from decreased dinoflagellate density. Consequently, GFP concentration and fluorescence showed distinct correlations in non-bleached and bleached corals. Green fluorescence was positively correlated with dinoflagellate photobiology, but its closest correlation was with coral growth suggesting that green fluorescence could be used as a physiological proxy for health in some corals.

  18. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.

    PubMed

    Liu, Bing; Asseng, Senthold; Liu, Leilei; Tang, Liang; Cao, Weixing; Zhu, Yan

    2016-05-01

    Higher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT-CERES-Wheat, DSSAT-Nwheat, APSIM-Wheat, and WheatGrow) were evaluated with 4 years of environment-controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30-0.60%, total aboveground biomass was reduced by 0.37-0.43%, and grain yield was reduced by 1.0-1.6%, but GPC was increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase in GPC due to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies. © 2016 John Wiley & Sons Ltd.

  19. Humid heat exposure induced oxidative stress and apoptosis in cardiomyocytes through the angiotensin II signaling pathway.

    PubMed

    Wang, Xiaowu; Yuan, Binbin; Dong, Wenpeng; Yang, Bo; Yang, Yongchao; Lin, Xi; Gong, Gu

    2015-05-01

    Exposure to humid heat stress leads to the initiation of serious physiological dysfunction that may result in heat-related diseases, including heat stroke, heat cramp, heat exhaustion, and even death. Increasing evidences have shown that the humid heat stress-induced dysfunction of the cardiovascular system was accompanied with severe cardiomyocyte injury; however, the precise mechanism of heat stress-induced injury of cardiomyocyte remains unknown. In the present study, we hypothesized that humid heat stress promoted oxidative stress through the activation of angiotensin II (Ang II) in cardiomyocytes. To test our hypothesis, we established mouse models of humid heat stress. Using the animal models, we found that Ang II levels in serum were significantly up-regulated and that the Ang II receptor AT1 was increased in cardiomyocytes. The antioxidant ability in plasma and heart tissues which was detected by the ferric reducing/antioxidant power assay was also decreased with the increased ROS production under humid heat stress, as was the expression of antioxidant genes (SOD2, HO-1, GPx). Furthermore, we demonstrated that the Ang II receptor antagonist, valsartan, effectively relieved oxidative stress, blocked Ang II signaling pathway and suppressed cardiomyocyte apoptosis induced by humid heat stress. In addition, overexpression of antioxidant genes reversed cardiomyocyte apoptosis induced by Ang II. Overall, these results implied that humid heat stress increased oxidative stress and caused apoptosis of cardiomyocytes through the Ang II signaling pathway. Thus, targeting the Ang II signaling pathway may provide a promising approach for the prevention and treatment of cardiovascular diseases caused by humid heat stress.

  20. Activation of Toll-like Receptor 4 (TLR4) Attenuates Adaptive Thermogenesis via Endoplasmic Reticulum Stress*

    PubMed Central

    Okla, Meshail; Wang, Wei; Kang, Inhae; Pashaj, Anjeza; Carr, Timothy; Chung, Soonkyu

    2015-01-01

    Adaptive thermogenesis is the cellular process transforming chemical energy into heat in response to cold. A decrease in adaptive thermogenesis is a contributing factor to obesity. However, the molecular mechanisms responsible for the compromised adaptive thermogenesis in obese subjects have not yet been elucidated. In this study we hypothesized that Toll-like receptor 4 (TLR4) activation and subsequent inflammatory responses are key regulators to suppress adaptive thermogenesis. To test this hypothesis, C57BL/6 mice were either fed a palmitate-enriched high fat diet or administered with chronic low-dose LPS before cold acclimation. TLR4 stimulation by a high fat diet or LPS were both associated with reduced core body temperature and heat release. Impairment of thermogenic activation was correlated with diminished expression of brown-specific markers and mitochondrial dysfunction in subcutaneous white adipose tissue (sWAT). Defective sWAT browning was concomitant with elevated levels of endoplasmic reticulum (ER) stress and autophagy. Consistently, TLR4 activation by LPS abolished cAMP-induced up-regulation of uncoupling protein 1 (UCP1) in primary human adipocytes, which was reversed by silencing of C/EBP homologous protein (CHOP). Moreover, the inactivation of ER stress by genetic deletion of CHOP or chemical chaperone conferred a resistance to the LPS-induced suppression of adaptive thermogenesis. Collectively, our data indicate the existence of a novel signaling network that links TLR4 activation, ER stress, and mitochondrial dysfunction, thereby antagonizing thermogenic activation of sWAT. Our results also suggest that TLR4/ER stress axis activation may be a responsible mechanism for obesity-mediated defective brown adipose tissue activation. PMID:26370079

  1. Therapeutic treatment with ascorbate rescues mice from heat stroke-induced death by attenuating systemic inflammatory response and hypothalamic neuronal damage.

    PubMed

    Chang, Chia-Yu; Chen, Jen-Yin; Chen, Sheng-Hsien; Cheng, Tain-Junn; Lin, Mao-Tsun; Hu, Miao-Lin

    2016-04-01

    The impact of ascorbate on oxidative stress-related diseases is moderate because of its limited oral bioavailability and rapid clearance. However, recent evidence of the clinical benefit of parenteral vitamin C administration has emerged, especially in critical care. Heatstroke is defined as a form of excessive hyperthermia associated with a systemic inflammatory response that results in multiple organ dysfunctions in which central nervous system disorders such as delirium, convulsions, and coma are predominant. The thermoregulatory, immune, coagulation and tissue injury responses of heatstroke closely resemble those observed during sepsis and are likely mediated by similar cellular mechanisms. This study was performed by using the characteristic high lethality rate and sepsis-mimic systemic inflammatory response of a murine model of heat stroke to test our hypothesis that supra-physiological doses of ascorbate may have therapeutic use in critical care. We demonstrated that parenteral administration of ascorbate abrogated the lethality and thermoregulatory dysfunction in murine model of heat stroke by attenuating heat stroke-induced accelerated systemic inflammatory, coagulation responses and the resultant multiple organ injury, especially in hypothalamus. Overall, our findings support the hypothesis and notion that supra-physiological doses of ascorbate may have therapeutic use in critical care.

  2. Biochemical analysis of 'kerosene tree' Hymenaea courbaril L. under heat stress.

    PubMed

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants.

  3. Biochemical analysis of ‘kerosene tree’ Hymenaea courbaril L. under heat stress

    PubMed Central

    Gupta, Dinesh; Eldakak, Moustafa; Rohila, Jai S; Basu, Chhandak

    2014-01-01

    Hymenaea courbaril or jatoba is a tropical tree known for its medically important secondary metabolites production. Considering climate change, the goal of this study was to investigate differential expression of proteins and lipids produced by this tree under heat stress conditions. Total lipid was extracted from heat stressed plant leaves and various sesquiterpenes produced by the tree under heat stress were identified. Gas chromatographic and mass spectrometric analysis were used to study lipid and volatile compounds produced by the plant. Several volatiles, isoprene, 2-methyl butanenitrile, β ocimene and a numbers of sesquiterpenes differentially produced by the plant under heat stress were identified. We propose these compounds were produced by the tree to cope up with heat stress. A protein gel electrophoresis (2-D DIGE) was performed to study differential expression of proteins in heat stressed plants. Several proteins were found to be expressed many folds different in heat stressed plants compared to the control. These proteins included heat shock proteins, histone proteins, oxygen evolving complex, and photosynthetic proteins, which, we believe, played key roles in imparting thermotolerance in Hymenaea tree. To the best of our knowledge, this is the first report of extensive molecular physiological study of Hymenaea trees under heat stress. This work will open avenues of further research on effects of heat stress in Hymenaea and the findings can be applied to understand how global warming can affect physiology of other plants. PMID:25482765

  4. Whole body heat stress increases motor cortical excitability and skill acquisition in humans.

    PubMed

    Littmann, Andrew E; Shields, Richard K

    2016-02-01

    Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress (1) facilitated motor cortex excitability and (2) improved motor task acquisition compared to no heat stress. Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 min of heat stress at 73 °C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (p<0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p<0.05) during a novel movement task using the FDI. Passive environmental heat stress (1) increases motor cortical excitability, and (2) enhances performance in a motor skill acquisition task. Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Whole body heat stress increases motor cortical excitability and skill acquisition in humans

    PubMed Central

    Littmann, Andrew E.; Shields, Richard K.

    2015-01-01

    Objective Vigorous systemic exercise stimulates a cascade of molecular and cellular processes that enhance central nervous system (CNS) plasticity and performance. The influence of heat stress on CNS performance and learning is novel. We designed two experiments to determine whether passive heat stress 1) facilitated motor cortex excitability and 2) improved motor task acquisition compared to no heat stress. Methods Motor evoked potentials (MEPs) from the first dorsal interosseus (FDI) were collected before and after 30 minutes of heat stress at 73° C. A second cohort of subjects performed a motor learning task using the FDI either following heat or the no heat condition. Results Heat stress increased heart rate to 65% of age-predicted maximum. After heat, mean resting MEP amplitude increased 48% (P < 0.05). MEP stimulus-response amplitudes did not differ according to stimulus intensity. In the second experiment, heat stress caused a significant decrease in absolute and variable error (p < 0.05) during a novel movement task using the FDI. Conclusions Passive environmental heat stress 1) increases motor cortical excitability, and 2) enhances performance in a motor skill acquisition task. Significance Controlled heat stress may prime the CNS to enhance motor skill acquisition during rehabilitation. PMID:26616546

  6. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa.

    PubMed

    Li, Wei; Zhang, Chunyan; Lu, Qingtao; Wen, Xiaogang; Lu, Congming

    2011-10-15

    Under natural conditions or in the field, plants are often subjected to a combination of different stresses such as salt stress and heat shock. Although salt stress and heat shock have been extensively studied, little is known about how their combination affects plants. We used proteomics, coupled with physiological measurements, to investigate the effect of salt stress, heat shock, and their combination on Suaeda salsa plants. A combination of salt stress and heat shock resulted in suppression of CO(2) assimilation and the photosystem II efficiency. Approximately 440 protein spots changed their expression levels upon salt stress, heat shock and their combination, and 57 proteins were identified by MS. These proteins were classified into several categories including disease/defense, photosynthesis, energy production, material transport, and signal transduction. Some proteins induced during salt stress, e.g. choline monooxygenase, chloroplastic ATP synthase subunit beta, and V-type proton ATPase catalytic subunit A, and some proteins induced during heat shock, e.g. heat shock 70kDa protein, probable ion channel DMI1, and two component sensor histidine kinase, were either unchanged or suppressed during a combination of salt stress and heat shock. In contrast, the expression of some proteins, including nucleoside diphosphate kinase 1, chlorophyll a/b binding protein, and ABC transporter I family member 1, was specifically induced during a combination of salt stress and heat shock. The potential roles of the stress-responsive proteins are discussed.

  7. Cannabidiol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death.

    PubMed

    Pan, Hao; Mukhopadhyay, Partha; Rajesh, Mohanraj; Patel, Vivek; Mukhopadhyay, Bani; Gao, Bin; Haskó, György; Pacher, Pál

    2009-03-01

    The platinum compound cisplatin is one of the most potent chemotherapy agents available to treat various malignancies. Nephrotoxicity is a common complication of cisplatin chemotherapy, which involves increased oxidative and nitrosative stress, limiting its clinical use. In this study, we have investigated the effects of a nonpsychoactive cannabinoid cannabidiol, which was reported to exert antioxidant effects and has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in patients in a mouse model of cisplatin-induced nephropathy. Cisplatin induced increased expression of superoxide-generating enzymes RENOX (NOX4) and NOX1, enhanced reactive oxygen species generation, inducible nitric-oxide synthase expression, nitrotyrosine formation, apoptosis (caspase-3/7 activity, DNA fragmentation, and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining), poly(ADP-ribose) polymerase activity, and inflammation (tumor necrosis factor-alpha and interleukin-1beta) in the kidneys of mice, associated with marked histopathological damage and impaired renal function (elevated serum blood urea nitrogen and creatinine levels) 72 h after the administration of the drug. Treatment of mice with cannabidiol markedly attenuated the cisplatin-induced oxidative/nitrosative stress, inflammation, and cell death in the kidney, and it improved renal function. Thus, our results suggest that cannabidiol may represent a promising new protective strategy against cisplatin-induced nephrotoxicity.

  8. Isorhamnetin attenuates collagen-induced arthritis via modulating cytokines and oxidative stress in mice

    PubMed Central

    Wang, Xuewen; Zhong, Wei

    2015-01-01

    Inflammation and oxidative stress were involved in the development and progression of rheumatoid arthritis (RA). Isorhamnetin has anti-inflammatory and anti-oxidative activities, but its effects on RA have not been investigated. In order to observe the possible therapeutic effects of isorhamnetin on RA, we established a collagen-induced arthritis mouse model and treated the animal with isorhamnetin for 3 weeks. Besides, fibroblast-like synoviocytes (FLS) were treated with lipopolysaccharide (LPS) and isorhamnetin. The severity of arthritis was assessed by arthritis score, joint destruction score and inflammation score. Levels of cytokines TNF-α, IL-1β, IL-6, IL-17A, IL-17F, IL-10 and IL-35 in the joint tissue homogenate and cell culture medium as well as anti-type II collagen antibody in serum were measured using ELISA. Contents of H2O2 and malondialdehyde (MDA) in joint tissue homogenate were measured using assay kits. We found collagen immunization induced significant arthritis in mice and isorhamnetin at the dose of 10 and 20 mg/kg/day could significantly attenuate the collagen-induced arthritis. Isorhamnetin also modulated the production of cytokines and suppressed the oxidative stress in the mice with collagen-induced arthritis at the dose of 10 and 20 mg/kg/day. These data suggested that isorhamnetin might be a potential agent for the management of RA. PMID:26629181

  9. Isorhamnetin attenuates collagen-induced arthritis via modulating cytokines and oxidative stress in mice.

    PubMed

    Wang, Xuewen; Zhong, Wei

    2015-01-01

    Inflammation and oxidative stress were involved in the development and progression of rheumatoid arthritis (RA). Isorhamnetin has anti-inflammatory and anti-oxidative activities, but its effects on RA have not been investigated. In order to observe the possible therapeutic effects of isorhamnetin on RA, we established a collagen-induced arthritis mouse model and treated the animal with isorhamnetin for 3 weeks. Besides, fibroblast-like synoviocytes (FLS) were treated with lipopolysaccharide (LPS) and isorhamnetin. The severity of arthritis was assessed by arthritis score, joint destruction score and inflammation score. Levels of cytokines TNF-α, IL-1β, IL-6, IL-17A, IL-17F, IL-10 and IL-35 in the joint tissue homogenate and cell culture medium as well as anti-type II collagen antibody in serum were measured using ELISA. Contents of H2O2 and malondialdehyde (MDA) in joint tissue homogenate were measured using assay kits. We found collagen immunization induced significant arthritis in mice and isorhamnetin at the dose of 10 and 20 mg/kg/day could significantly attenuate the collagen-induced arthritis. Isorhamnetin also modulated the production of cytokines and suppressed the oxidative stress in the mice with collagen-induced arthritis at the dose of 10 and 20 mg/kg/day. These data suggested that isorhamnetin might be a potential agent for the management of RA.

  10. Daily sesame oil supplement attenuates joint pain by inhibiting muscular oxidative stress in osteoarthritis rat model.

    PubMed

    Hsu, Dur-Zong; Chu, Pei-Yi; Jou, I-Ming

    2016-03-01

    Osteoarthritis (OA) is the most common form of arthritis, affecting approximately 15% of the population. The aim of this study was to evaluate the efficacy of sesame oil in controlling OA pain in rats. Rat joint pain was induced by medial meniscal transection in Sprague-Dawley rats and assessed by using hindlimb weight distribution method. Muscular oxidative stress was assessed by determining lipid peroxidation, reactive oxygen species and circulating antioxidants. Sesame oil significantly decreased joint pain compared with positive control group in a dose-dependent manner. Sesame oil decreased lipid peroxidation in muscle but not in serum. Further, sesame oil significantly decreased muscular superoxide anion and peroxynitrite generations but increased muscular glutathione and glutathione peroxidase levels. Further, sesame oil significantly increased nuclear factor erythroid-2-related factor (Nrf2) expression compared with positive control group. We concluded that daily sesame oil supplement may attenuate early joint pain by inhibiting Nrf2-associated muscular oxidative stress in OA rat model. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Kaempferol Attenuates Cardiac Hypertrophy via Regulation of ASK1/MAPK Signaling Pathway and Oxidative Stress.

    PubMed

    Feng, Hong; Cao, Jianlei; Zhang, Guangyu; Wang, Yanggan

    2017-02-20

    Kaempferol has been demonstrated to provide benefits for the treatment of atherosclerosis, coronary heart disease, hyperlipidemia, and diabetes through its antioxidant and anti-inflammatory properties. However, its role in cardiac hypertrophy remains to be elucidated. The aim of our study was to investigate the effects of kaempferol on cardiac hypertrophy and the underlying mechanism. Mice subjected to aorta banding were treated with or without kaempferol (100 mg/kg/d, p. o.) for 6 weeks. Echocardiography was performed to evaluate cardiac function. Mice hearts were collected for pathological observation and molecular mechanism investigation. H9c2 cardiomyocytes were stimulated with or without phenylephrine for in vitro study. Kaempferol significantly attenuated cardiac hypertrophy induced by aorta banding as evidenced by decreased cardiomyocyte areas and interstitial fibrosis, accompanied with improved cardiac functions and decreased apoptosis. The ASK1/MAPK signaling pathways (JNK1/2 and p38) were markedly activated in the aorta banding mouse heart but inhibited by kaempferol treatment. In in vitro experiments, kaempferol also inhibited the activity of ASK1/JNK1/2/p38 signaling pathway and the enlargement of H9c2 cardiomyocytes. Furthermore, our study revealed that kaempferol could protect the mouse heart and H9c2 cells from pathological oxidative stress. Our investigation indicated that treatment with kaempferol protects against cardiac hypertrophy, and its cardioprotection may be partially explained by the inhibition of the ASK1/MAPK signaling pathway and the regulation of oxidative stress.

  12. L-DOPA attenuates prolactin secretion in response to isolation stress in Holstein steers.

    PubMed

    Kasuya, Etsuko; Yayou, Ken-ichi; Sutoh, Madoka

    2013-07-01

    To clarify endocrine responses to psychological stressors in cattle, the effects of isolation from familiar peers on plasma prolactin (PRL) and cortisol (CORT) concentrations, and the effect of 3,4-dihydroxy-L-phenylalanine (L-DOPA), a precursor of dopamine (DA), on stress-induced PRL secretion were determined in Holstein steers. First, the potency of peripheral L-DOPA administration on attenuation of central DA levels was confirmed. Cerebrospinal fluid (CSF) collected from a chronic cannula in the third ventricle and plasma were sampled 1 h before and 3 h after intravenous injection of L-DOPA (100 mg/head). DA concentrations in CSF increased just after L-DOPA injection with subsequent decrease in PRL secretion. Injection of L-DOPA increased CORT secretion. Second, one experimental steer was isolated in its stall by removing its peers for 2 h with or without- pre-injection of L-DOPA. The concentration of PRL was elevated by isolation treatment, whereas the effect of isolation on CORT concentration could not be detected. The increase in PRL concentration after isolation was abolished by pre-injection of L-DOPA. These results suggest that PRL responds to isolation and that DA neurons in the central nervous system may regulate stress-induced PRL secretion in steers.

  13. A blueberry enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress

    USDA-ARS?s Scientific Manuscript database

    Objective: To assess renoprotective effects of a blueberry-enriched diet in a rat model of hypertension. Background: Oxidative stress (OS) appears to be involved in the development of hypertension and related renal injury. Pharmacological antioxidants can attenuate hypertension and hypertension-indu...

  14. Prediction of residual stress and distortion from residual stress in heat treated and machined aluminum parts

    NASA Astrophysics Data System (ADS)

    Jones, Robert

    Parts machined from relatively large thickness cross sections can experience significant deformations from high residual stresses that develop in the part during the heat treatment used to form the aluminum alloy. Uphill quenching is a process that can create a part with low residual stress and stable dimensions when the process is controlled properly. The uphill quenching process involves a solution heat treat, quench, cool to liquid nitrogen, steam blast, and then age to final temper. In this thesis two parts were modeled using ANSYS. The first part underwent the uphill quench process in the rough machined state. The second part was modeled in the stock material shape and only underwent a solution heat treat, quench, and age to final temper. After the residual stress in the second part was predicted the excess material was removed by killing the associated elements and the deformation of the final machined part was predicted. For both parts analyzed measurements were made and compared against predictions with fairly good results.

  15. Pretreatment with tert-butylhydroquinone attenuates cerebral oxidative stress in mice after traumatic brain injury.

    PubMed

    Lu, Xin-Yu; Wang, Han-dong; Xu, Jian-Guo; Ding, Ke; Li, Tao

    2014-05-01

    Traumatic brain injury (TBI) is a worldwide health problem, identified as a major cause of death and disability. Increasing evidence has shown that oxidative stress plays an important role in TBI pathogenesis. The antioxidant transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), is a known mediator in protection against TBI-induced brain damage. The objective of this study was to test whether tert-butylhydroquinone (tBHQ), a novel Nrf2 activator, can protect against TBI-induced oxidative stress. Adult male imprinting control region mice were randomly divided into three groups: (1) sham + vehicle group; (2) TBI + vehicle group; and (3) TBI + tBHQ group. Closed-head brain injury was applied using the Feeney weight-drop method. We accessed the neurologic outcome of mice at 24 h after TBI, and subsequently measured protein levels of Nrf2 and the NOX2 subunit of nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase), the concentration of malondialdehyde, superoxide dismutase activity, and brain edema. The NOX2 protein level was increased fivefold in the TBI + vehicle group, whereas pretreatment with tBHQ markedly attenuated the NOX2 protein expression relative to that in the TBI + vehicle group. TBI increased Nrf2 formation by 5% compared with the sham group, whereas treatment with tBHQ further upregulated the Nrf2 protein level by 12% compared with the sham group. The level of the oxidative damage marker malondialdehyde was reduced by 29% in the TBI + tBHQ group compared with the TBI + vehicle group, Moreover, pretreatment with tBHQ significantly increased the antioxidant enzyme superoxide dismutase activity. Administration of tBHQ also significantly decreased TBI-induced brain edema and neurologic deficits. Pretreatment with tBHQ effectively attenuated markers of cerebral oxidative stress after TBI, thus supporting the testing of tBHQ as a potential neuroprotectant and adjunct therapy for TBI patients. Copyright © 2014

  16. Finite element residual stress analysis of induction heating bended ferritic steel piping

    SciTech Connect

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-06

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  17. Finite element residual stress analysis of induction heating bended ferritic steel piping

    NASA Astrophysics Data System (ADS)

    Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae

    2014-10-01

    Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.

  18. Comparison of heat dissipation response between Malaysian and Japanese males during exercise in humid heat stress.

    PubMed

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2011-07-01

    This study investigated the differences in heat dissipation response to intense heat stress during exercise in hot and humid environments between tropical and temperate indigenes with matched physical characteristics. Ten Japanese (JP) and ten Malaysian (MY) males participated in this study. Subjects performed exercise for 60 min at 55% peak oxygen uptake in 32°C air with 70% relative humidity, followed by 30 min recovery. The increase in rectal temperature (T(re)) was smaller in MY during exercise compared to JP. The local sweat rate and total body mass loss were similar in both groups. Both skin blood flow and mean skin temperature was lower in MY compared to JP. A significantly greater increase in hand skin temperature was observed in MY during exercise, which is attributable to heat loss due to the greater surface area to mass ratio and large number of arteriovenous anastomoses. Also, the smaller increase in T(re) in MY may be explained by the presence of a significantly greater core-skin temperature gradient in MY than JP. The thermal gradient is also a major factor in increasing the convective heat transfer from core to skin as well as skin blood flow. It is concluded that the greater core-skin temperature gradient observed in MY is responsible for the smaller increase in T(re).

  19. Comparison of heat dissipation response between Malaysian and Japanese males during exercise in humid heat stress

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Hitoshi; Wijayanto, Titis; Lee, Joo-Young; Hashiguchi, Nobuko; Saat, Mohamed; Tochihara, Yutaka

    2011-07-01

    This study investigated the differences in heat dissipation response to intense heat stress during exercise in hot and humid environments between tropical and temperate indigenes with matched physical characteristics. Ten Japanese (JP) and ten Malaysian (MY) males participated in this study. Subjects performed exercise for 60 min at 55% peak oxygen uptake in 32°C air with 70% relative humidity, followed by 30 min recovery. The increase in rectal temperature ( T re) was smaller in MY during exercise compared to JP. The local sweat rate and total body mass loss were similar in both groups. Both skin blood flow and