#### Sample records for heat transfer problems

1. Heat Transfer Problems of Mixed Refrigerants

Fujii, Tetsu; Koyama, Shigeru; Goto, Masao; Takamatsu, Hiroshi

From the point of view of the application of non-azeotropic mixed refrigerants to heat pump and refrigeration cycles, literatures on condensation and evaporation are surveyed and future problems to be studied are extracted. All researches on the relevant problems are recently started and still in developing way except for condensation on a single horizontal tube. Particularly, the studies for condensation and evaporation of mixed Freon refrigerant in a horizontal tube, which are the most important in practice, are far backward in comparison with single component refrigerant in every point of heat transfer characteristics, flow pattern and theoretical analysis.

2. Solving nonlinear heat transfer constant area fin problems

NASA Technical Reports Server (NTRS)

1968-01-01

Tables and graphs were compiled for solving nonlinear heat transfer constant area fin problems. The differential equation describing one-dimensional steady-state temperature distribution and heat flow under three modes of heat transfer with heat generation was investigated.

3. Methods and problems in heat and mass transfer

Kotliar, Iakov Mikhailovich; Sovershennyi, Viacheslav Dmitrievich; Strizhenov, Dmitrii Sergeevich

The book focuses on the mathematical methods used in heat and mass transfer problems. The theory, statement, and solution of some problems of practical importance in heat and mass transfer are presented, and methods are proposed for solving algebraic, transcendental, and differential equations. Examples of exact solutions to heat and mass transfer equations are given. The discussion also covers some aspects of the development of a mathematical model of turbulent flows.

4. Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code

NASA Technical Reports Server (NTRS)

Hou, Gene

2000-01-01

The report documents the recent effort to enhance a transient linear heat transfer code so as to solve nonlinear problems. The linear heat transfer code was originally developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat Transfer (SCHT) code. The report includes four parts. The first part outlines the formulation of the heat transfer problem of concern. The second and the third parts give detailed procedures to construct the nonlinear finite element equations and the required Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final part summarizes the results of the numerical experiments on the newly enhanced SCHT code.

5. Some Problems of Heat Transfer in Rockets

DTIC Science & Technology

1946-05-01

Pag« List of symbols ••••• rit Abstract • 1 Part I. INTRODUCTION 1 II. BEAT TRANSFER TO THE -..’ALLS OF THE BURSTER TUBE 3 III. EFFECT...fc. ,V2 2/t 1/8 Laplace operator, (J*0z*) t (daA9ys) t 0’/9z"). Thermal conductivity (cal/cm-sec-°C). Density of gas [ Part IZ] or density of TNT... Part IV] (gm/cm*). ^- (a’oA)D. •- (rj c/*)D. vUi SCME PROBLEMS OF BUT TRANSFER II ROCKETS Abstract Seme of the problem« ooanootod «1th tte

6. Radiative heat transfer as a Landauer-Büttiker problem

Yap, Han Hoe; Wang, Jian-Sheng

2017-01-01

We study the radiative heat transfer between two semi-infinite half-spaces, bounded by conductive surfaces in contact with vacuum. This setup is interpreted as a four-terminal mesoscopic transport problem. The slabs and interfaces are viewed as bosonic reservoirs, coupled perfectly to a scattering center consisting of the two planes and vacuum. Using Rytov's fluctuational electrodynamics and assuming Kirchhoff's circuital law, we calculate the heat flow in each bath. This allows for explicit evaluation of a conductance matrix, from which one readily verifies Büttiker symmetry. Thus, radiative heat transfer in layered media with conductive interfaces becomes a Landauer-Büttiker transport problem.

7. A flux correction method for the conjugate heat transfer problem

SciTech Connect

He, M.; Bishop, P.J.; Minardi, A.; Kassab, A.J.

1995-12-31

A computational method, the flux correction method, is proposed to deal with the conjugate heat transfer problem, which uses a coupled FDM/BEM iteration scheme. The convective heat transfer in the fluid is solved using the BEM. The two solutions are coupled by enforcing continuity of temperature and heat flux at the solid-fluid interfaces. The proposed method is tested using available experimental data. For the considered cases of flow in a parallel plate channel subjected to constant heat flux or constant temperature, good agreements are observed.

8. Sensitivity Equation Derivation for Transient Heat Transfer Problems

NASA Technical Reports Server (NTRS)

Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson

2004-01-01

The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.

9. ASME Heat Transfer Division: Proceedings. Volume 1: Heat transfer in microgravity systems, radiative heat transfer and radiative heat transfer in low-temperature environments, and thermal contact conductance and inverse problems in heat transfer; HTD-Volume 332

SciTech Connect

Gopinath, A.; Sadhal, S.S.; Jones, P.D.; Seyed-Yagoobi, J.; Woodbury, K.A.

1996-12-31

In the first section on heat transfer in microgravity, the papers cover phase-change phenomena and thermocapillary flows and surface effects. In the second section, several papers cover solution methods for radiative heat transfer while the rest cover heat transfer in low-temperature environments. The last section covers papers containing valuable information for thermal contact conductance of various materials plus papers on inverse problems in heat transfer. Separate abstracts were prepared for most papers in this volume.

10. Algorithmic aspects of transient heat transfer problems in structures

NASA Technical Reports Server (NTRS)

Haftka, R. T.; Kadivar, M. H.

1982-01-01

It is noted that the application of finite element or finite difference techniques to the solution of transient heat transfer problems in structures often results in a stiff system of ordinary differential equations. Such systems are usually handled most efficiently by implicit integration techniques which require the solution of large and sparse systems of algebraic equations. The assembly and solution of these systems using the incomplete Cholesky conjugate gradient algorithm is examined. Several examples are used to demonstrate the advantage of the algorithm over other techniques.

11. Locating CVBEM collocation points for steady state heat transfer problems

USGS Publications Warehouse

1985-01-01

The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.

12. Contact of boundary-value problems and nonlocal problems in mathematical models of heat transfer

Lyashenko, V.; Kobilskaya, O.

2015-10-01

In this paper the mathematical models in the form of nonlocal problems for the two-dimensional heat equation are considered. Relation of a nonlocal problem and a boundary value problem, which describe the same physical heating process, is investigated. These problems arise in the study of the temperature distribution during annealing of the movable wire and the strip by permanent or periodically operating internal and external heat sources. The first and the second nonlocal problems in the mobile area are considered. Stability and convergence of numerical algorithms for the solution of a nonlocal problem with piecewise monotone functions in the equations and boundary conditions are investigated. Piecewise monotone functions characterize the heat sources and heat transfer conditions at the boundaries of the area that is studied. Numerous experiments are conducted and temperature distributions are plotted under conditions of internal and external heat sources operation. These experiments confirm the effectiveness of attracting non-local terms to describe the thermal processes. Expediency of applying nonlocal problems containing nonlocal conditions - thermal balance conditions - to such models is shown. This allows you to define heat and mass transfer as the parameters of the process control, in particular heat source and concentration of the substance.

13. HEAP: Heat Energy Analysis Program, a computer model simulating solar receivers. [solving the heat transfer problem

NASA Technical Reports Server (NTRS)

Lansing, F. L.

1979-01-01

A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.

14. Mathematical modeling of heat transfer problems in the permafrost

Gornov, V. F.; Stepanov, S. P.; Vasilyeva, M. V.; Vasilyev, V. I.

2014-11-01

In this work we present results of numerical simulation of three-dimensional temperature fields in soils for various applied problems: the railway line in the conditions of permafrost for different geometries, the horizontal tunnel underground storage and greenhouses of various designs in the Far North. Mathematical model of the process is described by a nonstationary heat equation with phase transitions of pore water. The numerical realization of the problem is based on the finite element method using a library of scientific computing FEniCS. For numerical calculations we use high-performance computing systems.

15. Effective-medium model of wire metamaterials in the problems of radiative heat transfer

SciTech Connect

Mirmoosa, M. S. Nefedov, I. S. Simovski, C. R.; Rüting, F.

2014-06-21

In the present work, we check the applicability of the effective medium model (EMM) to the problems of radiative heat transfer (RHT) through so-called wire metamaterials (WMMs)—composites comprising parallel arrays of metal nanowires. It is explained why this problem is so important for the development of prospective thermophotovoltaic (TPV) systems. Previous studies of the applicability of EMM for WMMs were targeted by the imaging applications of WMMs. The analogous study referring to the transfer of radiative heat is a separate problem that deserves extended investigations. We show that WMMs with practically realizable design parameters transmit the radiative heat as effectively homogeneous media. Existing EMM is an adequate tool for qualitative prediction of the magnitude of transferred radiative heat and of its effective frequency band.

NASA Technical Reports Server (NTRS)

Artyukhin, Eugene A.

1991-01-01

Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.

17. Assessment of different radiative transfer equation solvers for combined natural convection and radiation heat transfer problems

Sun, Yujia; Zhang, Xiaobing; Howell, John R.

2017-06-01

This work investigates the performance of the DOM, FVM, P1, SP3 and P3 methods for 2D combined natural convection and radiation heat transfer for an absorbing, emitting medium. The Monte Carlo method is used to solve the RTE coupled with the energy equation, and its results are used as benchmark solutions. Effects of the Rayleigh number, Planck number and optical thickness are considered, all covering several orders of magnitude. Temperature distributions, heat transfer rate and computational performance in terms of accuracy and computing time are presented and analyzed.

18. Analytico-numerical study of bio-heat transfer problems with temperature-dependent perfusion

Kengne, Emmanuel; Lakhssassi, Ahmed

2015-05-01

We consider the one-dimensional bio-heat transfer problems with linear temperature-dependent blood perfusion and spatially distributed heating which describe heat transport in blood perfused tissues. Analytical methods for solving nonlinear partial differential equations are combined with the Crank-Nicholson scheme to study several selected typical bio-heat transfer processes, which are often encountered in cancer hyperthermia, laser surgery, and thermal comfort analysis. The results mainly show that: i) the larger heating power increases the amplitude of the temperature response of the tissues; ii) a very low frequency of the heating power can be associated to a large frequency of the surrounding medium temperature to make irregular the frequency of the resulted temperature response.

19. [Inverse problem identification of parameters in heat transfer processes of human body].

PubMed

Yu, K; Ji, Z; Xie, T; Li, X

1999-06-01

In order that the distortion of the relative skin temperatures which is accompanied with the physiological destruction of an organ in the abdominal cavity and its physical-physiological mechanism may be investigated, we adopt in this paper the mathematical model for heat transfer problems in human layered tissues and a perfect parametric identification approach-inverse problem method. By utilizing the extremum method and integrating with the experimental data of an artificial thermo-focus, this difficult biophysical problem is solved.

20. Solving implicit multi-mesh flow and conjugate heat transfer problems with RELAP-7

SciTech Connect

Zou, L.; Peterson, J.; Zhao, H.; Zhang, H.; Andrs, D.; Martineau, R.

2013-07-01

The fully implicit simulation capability of RELAP-7 to solve multi-mesh flow and conjugate heat transfer problems for reactor system safety analysis is presented. Compared to general single-mesh simulations, the reactor system safety analysis-type of code has unique challenges due to its highly simplified, interconnected, one-dimensional, and zero-dimensional flow network describing multiple physics with significantly different time and length scales. To use the Jacobian-free Newton Krylov-type of solver, preconditioning is generally required for the Krylov method. The uniqueness of the reactor safety analysis-type of code in treating the interconnected flow network and conjugate heat transfer also introduces challenges in providing preconditioning matrix. Typical flow and conjugate heat transfer problems involved in reactor safety analysis using RELAP-7, as well as the special treatment on the preconditioning matrix are presented in detail. (authors)

1. Adjoint analyses of enhanced solidification for shape optimization in conjugate heat transfer problem

Morimoto, Kenichi; Kinoshita, Hidenori; Suzuki, Yuji

2016-11-01

In the present study, an adjoint-based shape-optimization method has been developed for designing extended heat transfer surfaces in conjugate heat transfer problems. Here we specifically consider heat conduction-dominated solidification problem under different thermal boundary conditions: (i) the isothermal condition, and (ii) the conjugate condition with thermal coupling between the solidified liquid and the solid wall inside the domain bounded by the extended heat transfer surface. In the present shape-optimization scheme, extended heat transfer surfaces are successively refined in a local way based on the variational information of a cost functional with respect to the shape modification. In the computation of the developed scheme, a meshless method is employed for dealing with the complex boundary shape. For high-resolution analyses with boundary-fitted node arrangement, we have introduced a bubble-mesh method combined with a high-efficiency algorithm for searching neighboring bubbles within a cut-off distance. The present technique can be easily applied to convection problems including high Reynolds number flow. We demonstrate, for the isothermal boundary condition, that the present optimization leads to tree-like fin shapes, which achieve the temperature field with global similarity for different initial fin shapes. We will also show the computational results for the conjugate condition, which would regularize the present optimization due to the fin-efficiency effect.

2. A numerical solution to an inverse unsteady-state heat transfer problem involving the Trefftz functions

Maciejewska, Beata; Piasecka, Magdalena

This paper shows the results concerning flow boiling heat transfer in an asymmetrically heated vertical minichannel. The heated element for FC-72 Fluorinert flowing in that minichannel was a thin foil. The foil surface temperature was monitored continuously at 18 points by K-type thermocouples from the outer foil surface. Fluid temperature and pressure in the minichannel inlet and outlet, current supplied to the foil and voltage drop were also monitored. Measurements were carried out at 1 s intervals. The objective was to determine the heat transfer coefficient on the heated foil-fluid contact surface in the minichannel. It was obtained from the Robin boundary condition. The foil temperature was the result of solving the nonstationary two-dimensional inverse boundary problem in the heated foil. Using the FEM combined with Trefftz functions as basis functions solved the problem. The unknown temperature values at nodes were calculated by minimising the adequate functional. The values of local heat transfer coefficients were consistent with the results obtained by the authors in their previous studies when steady-state conditions were analysed. This time, however, these values were analysed as time dependent, which facilitated observation of coefficient changes that were impossible to observe under the steady-state conditions.

3. Heat Problems.

ERIC Educational Resources Information Center

Connors, G. Patrick

Heat problems and heat cramps related to jogging can be caused by fluid imbalances, medications, dietary insufficiency, vomiting or diarrhea, among other factors. If the condition keeps reoccurring, the advice of a physician should be sought. Some preventive measures that can be taken include: (1) running during the cooler hours of the day; (2)…

4. Heat Problems.

ERIC Educational Resources Information Center

Connors, G. Patrick

Heat problems and heat cramps related to jogging can be caused by fluid imbalances, medications, dietary insufficiency, vomiting or diarrhea, among other factors. If the condition keeps reoccurring, the advice of a physician should be sought. Some preventive measures that can be taken include: (1) running during the cooler hours of the day; (2)…

5. On computational experiments in some inverse problems of heat and mass transfer

Bilchenko, G. G.; Bilchenko, N. G.

2016-11-01

The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.

6. A boundary inverse problem for the process of heat and moisture transfer in multilayered region

Rysbaiuly, Bolatbek; Karashbayeva, Zhanat O.; Ryskeldi, Meiirzhan

2017-09-01

The paper deals with the boundary inverse problem for a system of transfer equations for heat and moisture. A system of equations describe the joint movement of moisture and heat in the multilayer region. Boundary conditions of practical importance have defined. The resulting initial boundary problem is written in dimensionless form. After that the formulation of the inverse boundary value problem in dimensionless variables is given. The result gives a quasi-linear inverse boundary problem. In the present work we have derived the conjugate system of differential equations with partial derivatives. The boundary and initial conditions of the conjugate problem are defined. A connection between the line and the conjugate problem is established. We have constructed a functional for solving the inverse boundary problem. The unknown quantities are determined from the minimum of this functional. The minimizing functional is written in the dimensionless form. An iterative method is developed to calculate the unknown boundary heat and moisture values. Iteration formulas are written in an explicit form and contain the decisions of direct and the conjugate problem. The iteration is carried out so, that the functional decreases monotonically in the calculation process. The convergence of iterative processes is controlled by a small control functions. The numerical calculations are conducted by proving the suitability of the developed method. The criterion for stopping the computing process is sufficient smallness of the dimensionless values of the functional.

7. Modeling Granular Materials as Compressible Non-Linear Fluids: Heat Transfer Boundary Value Problems

SciTech Connect

Massoudi, M.C.; Tran, P.X.

2006-01-01

We discuss three boundary value problems in the flow and heat transfer analysis in flowing granular materials: (i) the flow down an inclined plane with radiation effects at the free surface; (ii) the natural convection flow between two heated vertical walls; (iii) the shearing motion between two horizontal flat plates with heat conduction. It is assumed that the material behaves like a continuum, similar to a compressible nonlinear fluid where the effects of density gradients are incorporated in the stress tensor. For a fully developed flow the equations are simplified to a system of three nonlinear ordinary differential equations. The equations are made dimensionless and a parametric study is performed where the effects of various dimensionless numbers representing the effects of heat conduction, viscous dissipation, radiation, and so forth are presented.

8. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

NASA Technical Reports Server (NTRS)

Cerro, J. A.; Scotti, S. J.

1991-01-01

Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

9. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

Cerro, J. A.; Scotti, S. J.

1991-07-01

Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

10. On the possibility of control restoration in some inverse problems of heat and mass transfer

Bilchenko, G. G.; Bilchenko, N. G.

2016-11-01

The hypersonic aircraft permeable surfaces effective heat protection problems are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated in mathematical model. The statements of direct problems of heat and mass transfer are given: according to preset given controls it is necessary to compute the boundary layer mathematical model parameters and determinate the local and total heat flows and friction forces and the power of blowing system. The A.A.Dorodnicyn's generalized integral relations method has been used as calculation basis. The optimal control - the blowing into boundary layer (for continuous functions) was constructed as the solution of direct problem in extreme statement with the use of this approach. The statement of inverse problems are given: the control laws ensuring the preset given local heat flow and local tangent friction are restored. The differences between the interpolation and the approximation statements are discussed. The possibility of unique control restoration is established and proved (in the stagnation point). The computational experiments results are presented.

11. Efficient analysis of transient heat transfer problems exhibiting sharp thermal gradients

O'Hara, P.; Duarte, C. A.; Eason, T.; Garzon, J.

2013-05-01

In this paper, heat transfer problems with sharp spatial gradients are analyzed using the Generalized Finite Element Method with global-local enrichment functions ( GFEM gl). With this approach, scale-bridging enrichment functions are generated on the fly, providing specially-tailored enrichment functions for the problem to be analyzed with no a-priori knowledge of the exact solution. In this work, a decomposition of the linear system of equations is formulated for both steady-state and transient heat transfer problems, allowing for a much more computationally efficient analysis of the problems of interest. With this algorithm, only a small portion of the global system of equations, i.e., the hierarchically added enrichments, need to be re-computed for each loading configuration or time-step. Numerical studies confirm that the condensation scheme does not impact the solution quality, while allowing for more computationally efficient simulations when large problems are considered. We also extend the GFEM gl to allow for the use of hexahedral elements in the global domain, while still using tetrahedral elements in the local domain, to allow for automatic localized mesh refinement without the use of constrained approximations. Simulations are run with the use of linear and quadratic hexahedral and tetrahedral elements in the global domain. Convergence studies indicate that the use of a different partition of unity (PoU) in the global (hexahedral elements) and local (tetrahedral elements) domains does not adversely impact the solution quality.

12. The Finite Analytic Method for steady and unsteady heat transfer problems

NASA Technical Reports Server (NTRS)

Chen, C.-J.; Li, P.

1980-01-01

A new numerical method called the Finite Analytical Method for solving partial differential equations is introduced. The basic idea of the finite analytic method is the incorporation of the local analytic solution in obtaining the numerical solution of the problem. The finite analytical method first divides the total region of the problem into small subregions in which local analytic solutions are obtained. Then an algebraic equation is derived from the local analytic solution for each subregion relating an interior nodal value at a point P in the subregion to its neighboring nodal values. The assembly of all the local analytic solutions thus provides the finite-analytic numerical solution of the problem. In this paper the finite analytic method is illustrated in solving steady and unsteady heat transfer problems.

13. Improved time-space method for 3-D heat transfer problems including global warming

SciTech Connect

Saitoh, T.S.; Wakashima, Shinichiro

1999-07-01

In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

14. Exploiting New Features of COMSOL Version 4 on Conjugate Heat Transfer Problems

SciTech Connect

Freels, James D; Arimilli, Rao V; Bodey, Isaac T

2010-01-01

Users of COMSOL Multiphysics at version 3.5a and earlier have enjoyed many features that have provided not only a good user experience at the GUI interface, but also the capability to solve many classes of problems in a consistent manner with the physics being simulated. With the new release version 4.0 and later (4+) of COMSOL, the user is provided a dramatic new interface from which to interact, and many new features ``under the hood'' for solving problems more efficiently and with even greater accuracy and consistency than before. This paper will explore several of these new version 4+ features for the conjugate heat transfer class of problems. Our environment is challenging in that we demand high-quality solutions for nuclear-reactor systems and the models tend to become large and difficult to solve. Areas investigated include turbulence modeling, distributed parallel processing, solver scaling, and opengl graphics issues in a Linux computing environment.

15. A 2D inverse problem of predicting boiling heat transfer in a long fin

2016-10-01

A method for the determination of local values of the heat transfer coefficient on non-isothermal surfaces was analyzed on the example of a long smooth-surfaced fin made of aluminium. On the basis of the experimental data, two cases were taken into consideration: one-dimensional model for Bi < 0.1 and two-dimensional model for thicker elements. In the case when the drop in temperature over the thickness could be omitted, the rejected local values of heat fluxes were calculated from the integral of the equation describing temperature distribution on the fin. The corresponding boiling curve was plotted on the basis of temperature gradient distribution as a function of superheat. For thicker specimens, where Bi > 0.1, the problem was modelled using a 2-D heat conduction equation, for which the boundary conditions were posed on the surface observed with a thermovision camera. The ill-conditioned inverse problem was solved using a method of heat polynomials, which required validation.

16. Optimal homotopy perturbation method for nonlinear differential equations governing MHD Jeffery-Hamel flow with heat transfer problem

Marinca, Vasile; Ene, Remus-Daniel

2017-01-01

In this paper, the Optimal Homotopy Perturbation Method (OHPM) is employed to determine an analytic approximate solution for the nonlinear MHD Jeffery-Hamel flow and heat transfer problem. The Navier-Stokes equations, taking into account Maxwell's electromagnetism and heat transfer, lead to two nonlinear ordinary differential equations. The results obtained by means of OHPM show very good agreement with numerical results and with Homotopy Perturbation Method (HPM) results.

17. Heat transfer in aeropropulsion systems

Simoneau, R. J.

1985-07-01

Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.

18. Heat transfer in aeropropulsion systems

NASA Technical Reports Server (NTRS)

Simoneau, R. J.

1985-01-01

Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.

19. Numerical Solution of Inverse Radiative-Conductive Transient Heat Transfer Problem in a Grey Participating Medium

Zmywaczyk, J.; Koniorczyk, P.

2009-08-01

The problem of simultaneous identification of the thermal conductivity Λ(T) and the asymmetry parameter g of the Henyey-Greenstein scattering phase function is under consideration. A one-dimensional configuration in a grey participating medium with respect to silica fibers for which the thermophysical and optical properties are known from the literature is accepted. To find the unknown parameters, it is assumed that the thermal conductivity Λ(T) may be represented in a base of functions {1, T, T 2, . . .,T K } so the inverse problem can be applied to determine a set of coefficients {Λ0, Λ1, . . ., Λ K ; g}. The solution of the inverse problem is based on minimization of the ordinary squared differences between the measured and model temperatures. The measured temperatures are considered known. Temperature responses measured or theoretically generated at several different distances from the heat source along an x axis of the specimen set are known as a result of the numerical solution of the transient coupled heat transfer in a grey participating medium. An implicit finite volume method (FVM) is used for handling the energy equation, while a finite difference method (FDM) is applied to find the sensitivity coefficients with respect to the unknown set of coefficients. There are free parameters in a model, so these parameters are changed during an iteration process used by the fitting procedure. The Levenberg- Marquardt fitting procedure is iteratively searching for best fit of these parameters. The source term in the governing conservation-of-energy equation taking into account absorption, emission, and scattering of radiation is calculated by means of a discrete ordinate method together with an FDM while the scattering phase function approximated by the Henyey-Greenstein function is expanded in a series of Legendre polynomials with coefficients {c l } = (2l + 1)g l . The numerical procedure proposed here also allows consideration of some cases of coupled heat

NASA Technical Reports Server (NTRS)

Siegel, R.; Howell, J. R.

1972-01-01

1. Modeling the heat transfer problem for the novel combined cryosurgery and hyperthermia system.

PubMed

Zhao, Gang; Bai, Xue-Fei; Luo, Da-Wei; Gao, Da-Yong

2006-01-01

A multidimensional, finite element analysis (FEA) for the freezing, holding, rewarming and heating processes of biological tissues during the cryosurgery process of the new Combined Cryosurgery/Hyperthermia System is presented to theoretically test its validity. The tissues are treated as nonideal materials freezing over a temperature range, and the thermophysical properties of which are temperature dependent. The enthalpy method is applied to solve the highly nonlinear problem. It was found that when the same boundary condition and the same target tissue presented, the novel Cryosurgery/Hyperthermia System could supply the target tissue an approximative cooling rate, a much lower minimal temperature, a much greater warming rate, and a much greater thermal gradients compared with that of the simplified Endocare system. The numerical simulation indicates that the novel combined cryosurgery and hyperthermia system can provide an excellent curative effect in the corresponding cryotherapy. And the most attractive feature of this FEA framework is that it can be easily mastered by the surgeon without in-depth theory of heat transfer to analyze the cryosurgery process beforehand due to the friendly GUI (graphical user interface) of Ansys software.

2. Two dimensional heat transfer problem in flow boiling in a rectangular minichannel

Hożejowska, Sylwia; Piasecka, Magdalena; Hożejowski, Leszek

2015-05-01

The paper presents mathematical modelling of flow boiling heat transfer in a rectangular minichannel asymmetrically heated by a thin and one-sided enhanced foil. Both surfaces are available for observations due to the openings covered with glass sheets. Thus, changes in the colour of the plain foil surface can be registered and then processed. Plain side of the heating foil is covered with a base coat and liquid crystal paint. Observation of the opposite, enhanced surface of the minichannel allows for identification of the gas-liquid two-phase flow patterns and vapour quality. A two-dimensional mathematical model of heat transfer in three subsequent layers (sheet glass, heating foil, liquid) was proposed. Heat transfer in all these layers was described with the respective equations: Laplace equation, Poisson equation and energy equation, subject to boundary conditions corresponding to the observed physical process. The solutions (temperature distributions) in all three layers were obtained by Trefftz method. Additionally, the temperature of the boiling liquid was obtained by homotopy perturbation method (HPM) combined with Trefftz method. The heat transfer coefficient, derived from Robin boundary condition, was estimated in both approaches. In comparison, the results by both methods show very good agreement especially when restricted to the thermal sublayer.

3. The Effect of Using an Explicit General Problem Solving Teaching Approach on Elementary Pre-Service Teachers' Ability to Solve Heat Transfer Problems

ERIC Educational Resources Information Center

Mataka, Lloyd M.; Cobern, William W.; Grunert, Megan L.; Mutambuki, Jacinta; Akom, George

2014-01-01

This study investigate the effectiveness of adding an "explicit general problem solving teaching strategy" (EGPS) to guided inquiry (GI) on pre-service elementary school teachers' ability to solve heat transfer problems. The pre-service elementary teachers in this study were enrolled in two sections of a chemistry course for pre-service…

4. Conduction heat transfer solutions

SciTech Connect

VanSant, James H.

1980-03-01

This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. This material is useful for engineers, scientists, technologists, and designers of all disciplines, particularly those who design thermal systems or estimate temperatures and heat transfer rates in structures. More than 500 problem solutions and relevant data are tabulated for easy retrieval. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. A case number is assigned to each problem for cross-referencing, and also for future reference. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. At least one source reference is given so that the user can review the methods used to derive the solutions. Problem solutions are given in the form of equations, graphs, and tables of data, all of which are also identified by problem case numbers and source references.

5. Single-pulse excimer laser nanostructuring of silicon: A heat transfer problem and surface morphology

SciTech Connect

Eizenkop, Julia; Avrutsky, Ivan; Georgiev, Daniel G.; Chaudchary, Vipin

2008-05-01

We present computer modeling along with experimental data on the formation of sharp conical tips on silicon-based three-layer structures that consist of a single-crystal Si layer on a 1 {mu}m layer of silica on a bulk Si substrate. The upper Si layers with thicknesses in the range of 0.8-4.1 {mu}m were irradiated by single pulses from a KrF excimer laser focused onto a spot several micrometers in diameter. The computer simulation includes two-dimensional time-dependent heat transfer and phase transformations in Si films that result from the laser irradiation (the Stefan problem). After the laser pulse, the molten material self-cools and resolidifies, forming a sharp conical structure, the height of which can exceed 1 {mu}m depending on the irradiation conditions. We also performed computer simulations for experiments involving single-pulse irradiation of bulk silicon, reported by other groups. We discuss conditions under which different types of structures (cones versus hollows) emerge. We confirm a correlation between the presence of the lateral resolidification condition after the laser pulse and the presence of conical structures on a solidified surface.

6. Simplifying the model of a complex heat-transfer system for solving the relay control problem

Shilin, A. A.; Bukreev, V. G.

2014-09-01

A method for approximating the high-dimensionality model of a complex heat-transfer system with time delay by a nonlinear second-order differential equation is proposed. The modeling results confirming adequacy of the nonlinear properties of the reduced and initial models and their correspondence to the controlled plant actual data are presented.

7. Heat transfer system

DOEpatents

Not Available

1980-03-07

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

8. Heat transfer system

DOEpatents

McGuire, Joseph C.

1982-01-01

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

9. Enhancement of heat transfer

Nakayama, W.

Recent publications on enhancement of heat transfer are reviewed, emphasizing the effects of roughness elements, fins, and porous surfaces. Enhancement of forced convective heat transfer on roughened surfaces, performance evaluation of enhanced surfaces, viscous flows in cooled tubes and tubes with swirlers, and active methods of enhancement are addressed. Aspects of pool boiling heat transfer are considered, including nucleate boiling heat transfer on rough surfaces and porous surfaces, and maximum and minimum heat fluxes. Evaporative heat transfer is discussed for thin-film evaporation on structured surfaces and liquid spray cooling of a heated surface. Condensation heat transfer on external surfaces is covered, including filmwise condensation on vertical finned and fluted surfaces and on horizontal tubes. In-tube boiling and condensation are treated, discussing their enhancement by fins and inserts, as well as critical heat flux in coiled, rifled, and corrugated tubes.

10. Smooth and robust solutions for Dirichlet boundary control of fluid-solid conjugate heat transfer problems

Yan, Yan; Keyes, David E.

2015-01-01

We study a new optimization scheme that generates smooth and robust solutions for Dirichlet velocity boundary control (DVBC) of conjugate heat transfer (CHT) processes. The solutions to the DVBC of the incompressible Navier-Stokes equations are typically nonsmooth, due to the regularity degradation of the boundary stress in the adjoint Navier-Stokes equations. This nonsmoothness is inherited by the solutions to the DVBC of CHT processes, since the CHT process couples the Navier-Stokes equations of fluid motion with the convection-diffusion equations of fluid-solid thermal interaction. Our objective in the CHT boundary control problem is to select optimally the fluid inflow profile that minimizes an objective function that involves the sum of the mismatch between the temperature distribution in the fluid system and a prescribed temperature profile and the cost of the control. Our strategy to resolve the nonsmoothness of the boundary control solution is based on two features, namely, the objective function with a regularization term on the gradient of the control profile on both the continuous and the discrete levels, and the optimization scheme with either explicit or implicit smoothing effects, such as the smoothed Steepest Descent and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) methods. Our strategy to achieve the robustness of the solution process is based on combining the smoothed optimization scheme with the numerical continuation technique on the regularization parameters in the objective function. In the section of numerical studies, we present two suites of experiments. In the first one, we demonstrate the feasibility and effectiveness of our numerical schemes in recovering the boundary control profile of the standard case of a Poiseuille flow. In the second one, we illustrate the robustness of our optimization schemes via solving more challenging DVBC problems for both the channel flow and the flow past a square cylinder, which use initial

11. Handbook of heat transfer applications (2nd edition)

Rohsenow, W. M.; Hartnett, J. P.; Ganic, E. N.

The applications of heat transfer in engineering problems are considered. Among the applications discussed are: mass transfer cooling; heat exchangers; and heat pipes. Consideration is also given to: heat transfer in nonNewtonian fluids; fluidized and packed beds; thermal energy storage; and heat transfer in solar collectors. Additional topics include: heat transfer in buildings; cooling towers and ponds; and geothermal heat transfer.

12. Conduction heat transfer solutions

SciTech Connect

VanSant, J.H.

1983-08-01

This text is a collection of solutions to a variety of heat conduction problems found in numerous publications, such as textbooks, handbooks, journals, reports, etc. Its purpose is to assemble these solutions into one source that can facilitate the search for a particular problem solution. Generally, it is intended to be a handbook on the subject of heat conduction. There are twelve sections of solutions which correspond with the class of problems found in each. Geometry, state, boundary conditions, and other categories are used to classify the problems. Each problem is concisely described by geometry and condition statements, and many times a descriptive sketch is also included. The introduction presents a synopsis on the theory, differential equations, and boundary conditions for conduction heat transfer. Some discussion is given on the use and interpretation of solutions. Supplementary data such as mathematical functions, convection correlations, and thermal properties are included for aiding the user in computing numerical values from the solutions. 155 figs., 92 refs., 9 tabs.

13. Heat transfer in damaged material

Kruis, J.

2013-10-01

Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.

14. Application of the TEMPEST computer code to canister-filling heat transfer problems

SciTech Connect

Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.

1988-03-01

Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch filling mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs.

15. Numerical Solution of an Ill-Posed Problem Arising in Wind Tunnel Heat Transfer Data Reduction,

DTIC Science & Technology

1981-12-04

Solutions of Ill - Posed Problems , A. H. Winston and Sons, 1977 . 6. Widder, D. V., The Heat Equation, Academic Press. 7. Richtmyer, R. D. and...DEC Al J B BELL. A B WAROLAW UNCLASSI ESWC WC/TR2l3lSBI.ADF5 046NL U" ~ a5 11111.5 N NSWC TR 82-32 cNUMERICAL SOLUTION OF AN ILL - POSED PROBLEM ...is ill - posed . A Tikhonov regularization procedure5 is then used to compute stable approximate solutions to the integral equation. In the

16. High-intensity drying process: Impulse drying. Progress report on modeling of fluid flow and heat transfer in a crown compensated impulse drying roll: The heat transfer problem

SciTech Connect

Orloff, D.; Hojjatie, B.; Bloom, F.

1995-07-01

Results of this study indicate that under the conditions where the two boundaries are maintained at the same temperature, the viscous heat dissipation within the lubricant, due to viscous drag and inertial effects, plays a major role in the net heat transfer. However, when the inner surface temperature is much greater than that of the shoe, the effect of viscous heat dissipation is reduced significantly. For the conditions analyzed in this study, the regions under the solid part of the shoe, which are associated with a greater lubricant velocity, had a significant influence on the magnitude of the heat transfer from the oil to the roll; because of a greater lubricant thickness for the left-hand sub-channel, the dissipated heat, and net heat transfer under the solid part in the left-hand sub-channel was greater than that for the corresponding region in the right-hand sub-channel. Numerical techniques such as finite difference or finite element analysis should be utilized to determine the thermal performance of the press roll subjected to a temperature dependent viscosity. and other types of boundary conditions. The temperature distributions predicted from such a model should be incorporated in a finite element model to determine the stress distribution within the roll coating for various design and operating conditions.

17. Exact triple integrals of beam functions. [in application of Galerkin method to heat and mass transfer problems

NASA Technical Reports Server (NTRS)

Jhaveri, B. S.; Rosenberger, F.

1982-01-01

Definite triple integrals encountered in applying the Galerkin method to the problem of heat and mass transfer across rectangular enclosures are discussed. Rather than evaluating them numerically, the technique described by Reid and Harris (1958) was extended to obtain the exact solution of the integrals. In the process, four linear simultaneous equations with triple integrals as unknowns were obtained. These equations were then solved exactly to obtain the closed form solution. Since closed form representations of this type have been shown to be useful in solving nonlinear hydrodynamic problems by series expansion, the integrals are presented here in general form.

18. Heat transfer in microwave heating

Peng, Zhiwei

Heat transfer is considered as one of the most critical issues for design and implement of large-scale microwave heating systems, in which improvement of the microwave absorption of materials and suppression of uneven temperature distribution are the two main objectives. The present work focuses on the analysis of heat transfer in microwave heating for achieving highly efficient microwave assisted steelmaking through the investigations on the following aspects: (1) characterization of microwave dissipation using the derived equations, (2) quantification of magnetic loss, (3) determination of microwave absorption properties of materials, (4) modeling of microwave propagation, (5) simulation of heat transfer, and (6) improvement of microwave absorption and heating uniformity. Microwave heating is attributed to the heat generation in materials, which depends on the microwave dissipation. To theoretically characterize microwave heating, simplified equations for determining the transverse electromagnetic mode (TEM) power penetration depth, microwave field attenuation length, and half-power depth of microwaves in materials having both magnetic and dielectric responses were derived. It was followed by developing a simplified equation for quantifying magnetic loss in materials under microwave irradiation to demonstrate the importance of magnetic loss in microwave heating. The permittivity and permeability measurements of various materials, namely, hematite, magnetite concentrate, wüstite, and coal were performed. Microwave loss calculations for these materials were carried out. It is suggested that magnetic loss can play a major role in the heating of magnetic dielectrics. Microwave propagation in various media was predicted using the finite-difference time-domain method. For lossy magnetic dielectrics, the dissipation of microwaves in the medium is ascribed to the decay of both electric and magnetic fields. The heat transfer process in microwave heating of magnetite

19. Heat transfer equipment design

Shah, R. K.; Subbarao, Eleswarapu Chinna; Mashelkar, R. A.

A comprehensive presentation is made of state-of-the-art configurations and design methodologies for heat transfer devices applicable to industrial processes, automotive systems, air conditioning/refrigeration, cryogenics, and petrochemicals refining. Attention is given to topics in heat exchanger mechanical design, single-phase convection processes, thermal design, two-phase exchanger thermal design, heat-transfer augmentation, and rheological effects. Computerized analysis and design methodologies are presented for the range of heat transfer systems, as well as advanced methods for optimization and performance projection.

20. Sphere Drag and Heat Transfer.

PubMed

Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

2015-07-20

Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

1. Sphere Drag and Heat Transfer

PubMed Central

Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

2015-01-01

Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body. PMID:26189698

2. Approach to solution of coupled heat transfer problem on the surface of hypersonic vehicle of arbitrary shape

Bocharov, A. N.; Bityurin, V. A.; Golovin, N. N.; Evstigneev, N. M.; Petrovskiy, V. P.; Ryabkov, O. I.; Teplyakov, I. O.; Shustov, A. A.; Solomonov, Yu S.; Fortov, V. E.

2016-11-01

In this paper, an approach to solve conjugate heat- and mass-transfer problems is considered to be applied to hypersonic vehicle surface of arbitrary shape. The approach under developing should satisfy the following demands. (i) The surface of the body of interest may have arbitrary geometrical shape. (ii) The shape of the body can change during calculation. (iii) The flight characteristics may vary in a wide range, specifically flight altitude, free-stream Mach number, angle-of-attack, etc. (iv) The approach should be realized with using the high-performance-computing (HPC) technologies. The approach is based on coupled solution of 3D unsteady hypersonic flow equations and 3D unsteady heat conductance problem for the thick wall. Iterative process is applied to account for ablation of wall material and, consequently, mass injection from the surface and changes in the surface shape. While iterations, unstructured computational grids both in the flow region and within the wall interior are adapted to the current geometry and flow conditions. The flow computations are done on HPC platform and are most time-consuming part of the whole problem, while heat conductance problem can be solved on many kinds of computers.

3. Heat transfer, diffusion, and evaporation

NASA Technical Reports Server (NTRS)

Nusselt, Wilhelm

1954-01-01

Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.

4. A new branch solution for the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient

Shivanian, Elyas; Hosseini Ghoncheh, S. J.

2017-02-01

In this paper, the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient is revisited. In this problem, it has been assumed that the heat transfer coefficient is expressed in a power-law form and the thermal conductivity is a linear function of temperature. A method based on the traditional shooting method and the homotopy analysis method is applied, the so-called shooting homotopy analysis method (SHHAM), to the governing nonlinear differential equation. In this technique, more high-order approximate solutions are computable and multiple solutions are easily searched and discovered due to being free of the symbolic variable. It is found that the solution might be empty, unique or dual depending on the values of the parameters of the model. Furthermore, corresponding fin efficiencies with high accuracy are computed. As a consequence, a new branch solution for this nonlinear problem by a new proposed method, based on the traditional shooting method and the homotopy analysis method, is obtained.

5. Heat transfer in pipes

NASA Technical Reports Server (NTRS)

Burbach, T.

1985-01-01

The heat transfer from hot water to a cold copper pipe in laminar and turbulent flow condition is determined. The mean flow through velocity in the pipe, relative test length and initial temperature in the vessel were varied extensively during tests. Measurements confirm Nusselt's theory for large test lengths in laminar range. A new equation is derived for heat transfer for large starting lengths which agrees satisfactorily with measurements for large starting lengths. Test results are compared with the new Prandtl equation for heat transfer and correlated well. Test material for 200- and to 400-diameter test length is represented at four different vessel temperatures.

6. Digitized Heat Transfer

Mohseni, Kamran; Young, Patrick

2007-11-01

This presentation presents theoretical and numerical results describing digitized heat transfer (DHT), an active thermal management technique for high-power electronics and integrated micro systems. In digitized heat transfer discrete droplets are employed. The internal flow inside a discrete droplet is dominated by internal circulation imposed by the boundaries. This internal circulation imposes a new timescale for recirculating cold liquid from the middle of the droplet to the boundary. This internal circulation produces periodic oscillation in the overall convective heat transfer rate. Numerical simulations are presented for heat transfer in the droplet for both constant temperature and flux boundary conditions. The effectiveness of DHT for managing both localized temperature spikes and steady state cooling is demonstrated, identifying key parameters for optimization of the DHT method.

7. Turbine heat transfer

NASA Technical Reports Server (NTRS)

Rohde, J. E.

1982-01-01

Objectives and approaches to research in turbine heat transfer are discussed. Generally, improvements in the method of determining the hot gas flow through the turbine passage is one area of concern, as is the cooling air flow inside the airfoil, and the methods of predicting the heat transfer rates on the hot gas side and on the coolant side of the airfoil. More specific areas of research are: (1) local hot gas recovery temperatures along the airfoil surfaces; (2) local airfoil wall temperature; (3) local hot gas side heat transfer coefficients on the airfoil surfaces; (4) local coolant side heat transfer coefficients inside the airfoils; (5) local hot gas flow velocities and secondary flows at real engine conditions; and (6) local delta strain range of the airfoil walls.

8. External and internal problems of modeling the heat and mass transfer coefficients at particles motion in liquids

Laptev, A. G.; Lapteva, E. A.

2017-03-01

An approach to the determination of the heat and mass transfer coefficients from dispersed particles by the development of the hydrodynamic analogy is considered. The equations for computing the heat and mass transfer coefficients in continuous phase at a laminar regime of the flow around solid particles as well as the mass transfer coefficients in droplets are obtained. Comparisons with the experimental data of different authors are presented.

9. Heat transfer fluids containing nanoparticles

DOEpatents

Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

2016-05-17

A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

10. Numerical methods in heat transfer

SciTech Connect

Lewis, R.W.; Morgan, K.; Schrefler, B.A.

1983-01-01

Topics discussed in this book include modelling the effects of fire, ablation, heat flow in porous rock, thermal stress and dissolving coal. Alternative energy sources such as geothermal reservoirs and solar radiation are also discussed. Includes bibliographies at the end of the papers, a cited author index, and a subject index. Contents, abridged: Exact finite element solutions for linear steady state thermal problems. Steep gradient modelling in diffusion problems. Numerical solution of coupled conduction-convection problems using lumped-parameter methods. The prediction of turbulent heat transfer by the finite element methods. The influence of creep and transformation plasticity in the analysis of stresses due to heat treatment. Heat and moisture movement in wood composite materials during the pressing operation-a simplified model. Index.

11. Heat transfer studies

SciTech Connect

Boehm, R.; Chen, Y.T.; Sathappan, A.K.

1995-10-20

Work continued from last quarter related to studies of heat transfer and fluid flow in porous media. One experiment focused on issues of drying in subresidually-saturated systems. The other experiment deals with studies of flows in a repository-like geometry around a heated horizontal annulus. In the subresidual saturation studies, elevated temperature environments were considered during this quarter. A 1 in. {times} 8 ft long heating tape (heating capabilities of 8.6 W/in{sup 2}) with an on-off type temperature controller has been used to maintain a constant temperature on the aluminum test section (the latter has been described in earlier reports). Nitrogen gas with a flow rate of 1 SLPM was flowed through a glass-bead medium with an isothermal (90{degrees}C) boundary condition. The drying characteristics of this system are reported. In a second experiment, that of flow and heat transfer around a simulated drift, a low, constant heat flux boundary condition on the heater has been used. Two different admitted water quantities, 200 ml and 300 ml, have been used as before. The response of temperatures and relative humidity in the porous medium and annulus are very similar to the results of the high constant heat flux on the case of 300 ml water experiments. This is not the case for the 200 ml water experiment. The low constant heat flux with a small quantity of water is found to have no significant effect on the temperature responses.

12. Exact analytical solution to a transient conjugate heat-transfer problem

NASA Technical Reports Server (NTRS)

Sucec, J.

1973-01-01

An exact analytical solution is found for laminar, constant-property, slug flow over a thin plate which is also convectively cooled from below. The solution is found by means of two successive Laplace transformations when a transient in the plate and the fluid is initiated by a step change in the fluid inlet temperature. The exact solution yields the transient fluid temperature, surface heat flux, and surface temperature distributions. The results of the exact transient solution for the surface heat flux are compared to the quasi-steady values, and a criterion for the validity of the quasi-steady results is found. Also the effect of the plate coupling parameter on the surface heat flux are investigated.

PubMed

Yu, Renwen; Manjavacas, Alejandro; García de Abajo, F Javier

2017-02-23

Light absorption in conducting materials produces heating of their conduction electrons, followed by relaxation into phonons within picoseconds, and subsequent diffusion into the surrounding media over longer timescales. This conventional picture of optical heating is supplemented by radiative cooling, which typically takes place at an even lower pace, only becoming relevant for structures held in vacuum or under extreme thermal isolation. Here, we reveal an ultrafast radiative cooling regime between neighboring plasmon-supporting graphene nanostructures in which noncontact heat transfer becomes a dominant channel. We predict that more than 50% of the electronic heat energy deposited on a graphene disk can be transferred to a neighboring nanoisland within a femtosecond timescale. This phenomenon is facilitated by the combination of low electronic heat capacity and large plasmonic field concentration in doped graphene. Similar effects should occur in other van der Waals materials, thus opening an unexplored avenue toward efficient heat management.Electron relaxation, which is the dominant release channel of electronic heat in nanostructures, occurs with characteristic times of several picoseconds. Here, the authors predict that an ultrafast (femtosecond) radiative cooling regime takes place in plasmonically active neighboring graphene nanodisks prior to electron relaxation.

14. Solar Energy: Heat Transfer.

ERIC Educational Resources Information Center

Knapp, Henry H., III

This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

15. Methane heat transfer investigation

NASA Technical Reports Server (NTRS)

1984-01-01

Future high chamber pressure LOX/hydrocarbon booster engines require copper base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and reusable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper base alloy material adjacent to he fuel coolant. High pressure methane cooling and coking characteristics recently evaluated at Rocketdyne using stainless steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

16. Methane heat transfer investigation

NASA Technical Reports Server (NTRS)

Cook, R. T.

1984-01-01

Future high chamber pressure LOX/hydrocarbon booster engines require copper-base alloy main combustion chamber coolant channels similar to the SSME to provide adequate cooling and resuable engine life. Therefore, it is of vital importance to evaluate the heat transfer characteristics and coking thresholds for LNG (94% methane) cooling, with a copper-base alloy material adjacent to the fuel coolant. High-pressure methane cooling and coking characteristics were recently evaluated using stainless-steel heated tubes at methane bulk temperatures and coolant wall temperatures typical of advanced engine operation except at lower heat fluxes as limited by the tube material. As expected, there was no coking observed. However, coking evaluations need be conducted with a copper-base surface exposed to the methane coolant at higher heat fluxes approaching those of future high chamber pressure engines.

17. HEAT TRANSFER METHOD

DOEpatents

Gambill, W.R.; Greene, N.D.

1960-08-30

A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

18. Geothermal Heat Transfer

SciTech Connect

Basmajian, V.V.

1986-01-28

This patent describes a heat transfer apparatus which consists of: heat exchanging means for orientation in the earth below ground substantially vertically, having a hollow conduit of length from top to bottom much greater than the span across the hollow conduit orthogonal to its length with a top, bottom and an intermediate portion contiguous and communicating with the top and bottom portions for allowing thermally conductive fluid to flow freely between the top, intermediate and bottom portions for immersion in thermally conductive fluid in the region around the heat exchanging means for increasing the heat flow between the latter and earth when inserted into a substantially vertical borehole in the earth with the top portion above the bottom portion. The heat exchanger consists of heat exchanging conduit means in the intermediate portion for carrying refrigerant. The heat exchanging conduit consisting of tubes of thermally conductive material for carrying the refrigerant and extending along the length of the hollow conduit for a tube length that is less than the length of the hollow conduit. The hollow conduit is formed with port means between the top and the plurality of tubes for allowing the thermally conductive fluid to pass in a flow path embracing the tubes, the bottom portion, an outer channel around the hollow conduit and the port means.

19. Partitioned coupling strategies for multi-physically coupled radiative heat transfer problems

SciTech Connect

Wendt, Gunnar; Erbts, Patrick Düster, Alexander

2015-11-01

20. Partitioned coupling strategies for multi-physically coupled radiative heat transfer problems

Wendt, Gunnar; Erbts, Patrick; Düster, Alexander

2015-11-01

1. Transferring heat during a bounce

Shiri, Samira; Bird, James

2015-11-01

When a hot liquid drop impacts a cold non-wetting surface, the temperature difference drives heat transfer. If the drop leaves the surface before reaching thermal equilibrium, the amount of heat transfer may depend on the contact time. Past studies exploring finite-time heat exchange with droplets focus on the Leidenfrost condition where heat transfer is regulated by a thin layer of vapor. Here, we present systematic experiments to measure the heat transferred by a bouncing droplet in non-Leidenfrost conditions. We propose a physical model of this heat transfer and compare our model to the experiments.

2. Heat-Transfer Coupling For Heat Pipes

NASA Technical Reports Server (NTRS)

Nesmith, Bill J.

1991-01-01

Proposed welded heat-transfer coupling joins set of heat pipes to thermoelectric converter. Design avoids difficult brazing operation. Includes pair of mating flanged cups. Upper cup integral part of housing of thermoelectric converter, while lower cup integral part of plate supporting filled heat pipes. Heat pipes prefilled. Heat of welding applied around periphery of coupling, far enough from heat pipes so it would not degrade working fluid or create excessive vapor pressure in the pipes.

3. Heat transfer probe

DOEpatents

Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

2006-10-10

Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

4. Heat transfer device

NASA Technical Reports Server (NTRS)

Kalkbrenner, R. W. (Inventor)

1974-01-01

A heat transfer device is characterized by an hermetically sealed tubular housing including a tubular shell terminating in spaced end plates, and a tubular mesh wick concentrically arranged and operatively supported within said housing. The invention provides an improved wicking restraint formed as an elongated and radially expanded tubular helix concentrically related to the wick and adapted to be axially foreshortened and radially expanded into engagement with the wick in response to an axially applied compressive load. The wick is continuously supported in a contiguous relationship with the internal surfaces of the shell.

5. The use of high-performance computing to solve participating media radiative heat transfer problems-results of an NSF workshop

SciTech Connect

Gritzo, L.A.; Skocypec, R.D.; Tong, T.W.

1995-01-11

Radiation in participating media is an important transport mechanism in many physical systems. The simulation of complex radiative transfer has not effectively exploited high-performance computing capabilities. In response to this need, a workshop attended by members active in the high-performance computing community, members active in the radiative transfer community, and members from closely related fields was held to identify how high-performance computing can be used effectively to solve the transport equation and advance the state-of-the-art in simulating radiative heat transfer. This workshop was held on March 29-30, 1994 in Albuquerque, New Mexico and was conducted by Sandia National Laboratories. The objectives of this workshop were to provide a vehicle to stimulate interest and new research directions within the two communities to exploit the advantages of high-performance computing for solving complex radiative heat transfer problems that are otherwise intractable.

6. Solution strategies for finite elements and finite volumes methods applied to flow and heat transfer problem in U-shaped geothermal exchangers

Egidi, Nadaniela; Giacomini, Josephin; Maponi, Pierluigi

2016-06-01

Matter of this paper is the study of the flow and the corresponding heat transfer in a U-shaped heat exchanger. We propose a mathematical model that is formulated as a forced convection problem for incompressible and Newtonian fluids and results in the unsteady Navier-Stokes problem. In order to get a solution, we discretise the equations with both the Finite Elements Method and the Finite Volumes Method. These procedures give rise to a non-symmetric indefinite quadratic system of equations. Thus, three regularisation techniques are proposed to make approximations effective and ideas to compare their results are provided.

7. Heat transfer and fire spread

Treesearch

Hal E. Anderson

1969-01-01

Experimental testing of a mathematical model showed that radiant heat transfer accounted for no more than 40% of total heat flux required to maintain rate of spread. A reasonable prediction of spread was possible by assuming a horizontal convective heat transfer coefficient when certain fuel and flame characteristics were known. Fuel particle size had a linear relation...

8. Tubing for augmented heat transfer

SciTech Connect

Yampolsky, J.S.; Pavlics, P.

1983-08-01

The objectives of the program reported were: to determine the heat transfer and friction characteristics on the outside of spiral fluted tubing in single phase flow of water, and to assess the relative cost of a heat exchanger constructed with spiral fluted tubing with one using conventional smooth tubing. An application is examined where an isolation water/water heat exchanger was used to transfer the heat from a gaseous diffusion plant to an external system for energy recovery. (LEW)

9. Comparative study of conjugate gradient algorithms performance on the example of steady-state axisymmetric heat transfer problem

Ocłoń, Paweł; Łopata, Stanisław; Nowak, Marzena

2013-09-01

The finite element method (FEM) is one of the most frequently used numerical methods for finding the approximate discrete point solution of partial differential equations (PDE). In this method, linear or nonlinear systems of equations, comprised after numerical discretization, are solved to obtain the numerical solution of PDE. The conjugate gradient algorithms are efficient iterative solvers for the large sparse linear systems. In this paper the performance of different conjugate gradient algorithms: conjugate gradient algorithm (CG), biconjugate gradient algorithm (BICG), biconjugate gradient stabilized algorithm (BICGSTAB), conjugate gradient squared algorithm (CGS) and biconjugate gradient stabilized algorithm with l GMRES restarts (BICGSTAB(l)) is compared when solving the steady-state axisymmetric heat conduction problem. Different values of l parameter are studied. The engineering problem for which this comparison is made is the two-dimensional, axisymmetric heat conduction in a finned circular tube.

10. Condensation heat transfer in a microgravity environment

NASA Technical Reports Server (NTRS)

Chow, L. C.; Parish, R. C.

1986-01-01

In the present treatment of the condensation heat transfer process in a microgravity environment, two mechanisms for condensate removal are analyzed in light of two problems: (1) film condensation on a flat, porous plate, with condensate being removed by wall suction; and (2) the analytical prediction of the heat transfer coefficient of condensing annular flows, where the condensate film is driven by vapor shear. Both suction and vapor shear can effectively drain the condensate, ensuring continuous operation in microgravity.

11. Inverse heat conduction problems

Orlande, Helcio Rangel Barreto

We present the solution of the following inverse problems: (1) Inverse Problem of Estimating Interface Conductance Between Periodically Contacting Surfaces; (2) Inverse Problem of Estimating Interface Conductance During Solidification via Conjugate Gradient Method; (3) Determination of the Reaction Function in a Reaction-Diffusion Parabolic Problem; and (4) Simultaneous Estimation of Thermal Diffusivity and Relaxation Time with Hyperbolic Heat Conduction Model. Also, we present the solution of a direct problem entitled: Transient Thermal Constriction Resistance in a Finite Heat Flux Tube. The Conjugate Gradient Method with Adjoint Equation was used in chapters 1-3. The more general function estimation approach was treated in these chapters. In chapter 1, we solve the inverse problem of estimating the timewise variation of the interface conductance between periodically contacting solids, under quasi-steady-state conditions. The present method is found to be more accurate than the B-Spline approach for situations involving small periods, which are the most difficult on which to perform the inverse analysis. In chapter 2, we estimate the timewise variation of the interface conductance between casting and mold during the solidification of aluminum. The experimental apparatus used in this study is described. In chapter 3, we present the estimation of the reaction function in a one dimensional parabolic problem. A comparison of the present function estimation approach with the parameter estimation technique, wing B-Splines to approximate the reaction function, revealed that the use of function estimation reduces the computer time requirements. In chapter 4 we present a finite difference solution for the transient constriction resistance in a cylinder of finite length with a circular contact surface. A numerical grid generation scheme was used to concentrate grid points in the regions of high temperature gradients in order to reduce discretization errors. In chapter 6, we

12. Forced Convection Heat Transfer in Circular Pipes

ERIC Educational Resources Information Center

Tosun, Ismail

2007-01-01

One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

13. Forced Convection Heat Transfer in Circular Pipes

ERIC Educational Resources Information Center

Tosun, Ismail

2007-01-01

One of the pitfalls of engineering education is to lose the physical insight of the problem while tackling the mathematical part. Forced convection heat transfer (the Graetz-Nusselt problem) certainly falls into this category. The equation of energy together with the equation of motion leads to a partial differential equation subject to various…

14. Heat transfer and thermal control

Crosbie, A. L.

Radiation heat transfer is considered along with conduction heat transfer, heat pipes, and thermal control. Attention is given to the radiative properties of a painted layer containing nonspherical pigment, bidirectional reflectance measurements of specular and diffuse surfaces with a simple spectrometer, the radiative equilibrium in a general plane-parallel environment, and the application of finite-element techniques to the interaction of conduction and radiation in participating medium, a finite-element approach to combined conductive and radiative heat transfer in a planar medium. Heat transfer in irradiated shallow layers of water, an analytical and experimental investigation of temperature distribution in laser heated gases, numerical methods for the analysis of laser annealing of doped semiconductor wafers, and approximate solutions of transient heat conduction in a finite slab are also examined. Consideration is also given to performance testing of a hydrogen heat pipe, heat pipe performance with gravity assist and liquid overfill, vapor chambers for an atmospheric cloud physics laboratory, a prototype heat pipe radiator for the German Direct Broadcasting TV Satellite, free convection in enclosures exposed to compressive heating, and a thermal analysis of a multipurpose furnace for material processing in space.

15. HEAT TRANSFER MEANS

DOEpatents

Fraas, A.P.; Wislicenus, G.F.

1961-07-11

A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

16. Advances in enhanced heat transfer: 1987

SciTech Connect

Jensen, M.K.; Carey, V.P.

1987-01-01

This book contains nine selections. Some of the titles are: High Heat-Flux, Forced-Convection Heat Transfer for Tubes with Twisted-Tape Inserts; Heat Transfer Augmentation by Interrupted Surfaces - Experimental Consideration; Turbulent Flow Heat Transfer from Externally Roughened Tubes in Axial Flow in Concentric Pipe Heat Exchangers; and Heat Transfer Enhancement of Turbulent Flow in Pipes with an Internal Circular Rib.

17. Conjugate heat transfer characterization in cooling channels

Cukurel, Beni; Arts, Tony; Selcan, Claudio

2012-06-01

Cooling technology of gas turbine blades, primarily ensured via internal forced convection, is aimed towards withdrawing thermal energy from the airfoil. To promote heat exchange, the walls of internal cooling passages are lined with repeated geometrical flow disturbance elements and surface non-uniformities. Raising the heat transfer at the expense of increased pressure loss; the goal is to obtain the highest possible cooling effectiveness at the lowest possible pressure drop penalty. The cooling channel heat transfer problem involves convection in the fluid domain and conduction in the solid. This coupled behavior is known as conjugate heat transfer. This experimental study models the effects of conduction coupling on convective heat transfer by applying iso-heat-flux boundary condition at the external side of a scaled serpentine passage. Investigations involve local temperature measurements performed by Infrared Thermography over flat and ribbed slab configurations. Nusselt number distributions along the wetted surface are obtained by means of heat flux distributions, computed from an energy balance within the metal domain. For the flat plate experiments, the effect of conjugate boundary condition on heat transfer is estimated to be in the order of 3%. In the ribbed channel case, the normalized Nusselt number distributions are compared with the basic flow features. Contrasting the findings with other conjugate and convective iso-heat-flux literature, a high degree of overall correlation is evident.

18. The Principles of Turbulent Heat Transfer

NASA Technical Reports Server (NTRS)

Reichardt, H.

1957-01-01

The literature on turbulent heat transfer has in the course of years attained a considerable volume. Since this very complicated problem has not as yet found a complete solution, further studies in this field may be expected. The heat engineer must therefore accomodate himself to a constantly increasing number of theories and formulas. Since the theories generally start from hypothetical assumptions, and since they contain true and false assertions, verified knowledge and pure suppositions often being intermingled in a manner difficult to tell them apart, the specialist had difficulty in forming a correct evaluation of the individual studies. The need therefore arises for a presentation of the problem of turbulent heat transfer which is not initially bound by hypothetical assumptions and in which uninvestigated can be clearly distinguished form each other. Such a presentation will be given in the present treatment. Brief remarks with regard to the development of the theory of local heat transfer are included.

19. Condensation heat transfer under a microgravity environment

NASA Technical Reports Server (NTRS)

Chow, L. C.

1986-01-01

A description of the condensation heat transfer process in microgravity is given. A review of the literature is also reported. The most essential element of condensation heat transfer in microgravity is the condensate removal mechanism. Two mechanisms for condensate removal are analyzed by looking into two problems. The first problem is concerned with film condensation on a flat porous plate with the condensate being removed by suction at the wall. The second problem is an analytical prediction of the heat transfer coefficient for condensing annular flows with the condensate film driven by the vapor shear. It is concluded that both suction and vapor shear can effectively drain the condensate to ensure continuous operation of the condensers operated under a microgravity environment. It is recommended that zero-g flight experiments be carried out to verify the prediction made in the present report. The results contained in this report should also aid in the design of future space condensers.

20. Introductory heat-transfer

NASA Technical Reports Server (NTRS)

Widener, Edward L.

1992-01-01

The objective is to introduce some concepts of thermodynamics in existing heat-treating experiments using available items. The specific objectives are to define the thermal properties of materials and to visualize expansivity, conductivity, heat capacity, and the melting point of common metals. The experimental procedures are described.

1. Heat-transfer thermal switch

NASA Technical Reports Server (NTRS)

Friedell, M. V.; Anderson, A. J.

1974-01-01

Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.

2. Conjugate Heat Transfer Study in Hypersonic Flows

Sahoo, Niranjan; Kulkarni, Vinayak; Peetala, Ravi Kumar

2017-05-01

Coupled and decoupled conjugate heat transfer (CHT) studies are carried out to imitate experimental studies for heat transfer measurement in hypersonic flow regime. The finite volume based solvers are used for analyzing the heat interaction between fluid and solid domains. Temperature and surface heat flux signals are predicted by both coupled and decoupled CHT analysis techniques for hypersonic Mach numbers. These two methodologies are also used to study the effect of different wall materials on surface parameters. Effectiveness of these CHT solvers has been verified for the inverse problem of wall heat flux recovery using various techniques reported in the literature. Both coupled and decoupled CHT techniques are seen to be equally useful for prediction of local temperature and heat flux signals prior to the experiments in hypersonic flows.

3. Heat Transfer Parametric System Identification

DTIC Science & Technology

1993-06-01

Transfer Parametric System Identification 6. AUTHOR(S Parker, Gregory K. 7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING ORGANIZATION...distribution is unlimited. Heat Transfer Parametric System Identification by Gregory K. Parker Lieutenant, United States Navy BS., DeVry Institute of...Modeling Concept ........ ........... 3 2. Lumped Parameter Approach ...... ......... 4 3. Parametric System Identification ....... 4 B. BASIC MODELING

4. Enhanced heat transfer using nanofluids

DOEpatents

Choi, Stephen U. S.; Eastman, Jeffrey A.

2001-01-01

This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

5. Heat transfer from oriented heat exchange areas

Vantuch, Martin; Huzvar, Jozef; Kapjor, Andrej

2014-03-01

This paper deals with the transfer of heat-driven heat transfer surface area in relation to the construction of the criterion equation for "n" horizontal pipe one about another. On the bases of theoretical models have been developed for calculating the thermal performance of natural convection by Churilla and Morgan, for various pipe diameters and temperatures. These models were compared with models created in CFD-Fluent Ansys the same boundary conditions. The aim of the analyse of heat and fluxional pipe fields "n" pipes one about another at natural convection is the creation of criterion equation on the basis of which the heat output of heat transfer from pipe oriented areas one above another with given spacing could be quantified. At presence a sum of criterion equations exists for simple geometrical shapes of individual oriented geometrical areas but the criterion equation which would consider interaction of fluxional field generated by free convection from multiple oriented areas is not mentioned in standardly accessible technical literature and other magazine publications.

6. Nanofluid impingement jet heat transfer

PubMed Central

2012-01-01

Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer carrier can enhance the heat transfer process. For the same Reynolds number, the experimental data show an increase in the Nusselt numbers as the nanoparticle concentration increases. Size of heating disk diameters shows reverse effect on heat transfer. It is also found that presenting the data in terms of Reynolds number at impingement jet diameter can take into account on both effects of jet heights and nozzle diameter. Presenting the data in terms of Peclet numbers, at fixed impingement nozzle diameter, makes the data less sensitive to the percentage change of the nanoparticle concentrations. Finally, general heat transfer correlation is obtained verses Peclet numbers using nanoparticle concentrations and the nozzle diameter ratio as parameters. PMID:22340669

7. Measurement of thermoacoustic convection heat transfer phenomenon

NASA Technical Reports Server (NTRS)

Parang, M.; Salah-Eddine, A.

1983-01-01

In this paper the results of an experimental investigation of thermoacoustic convection (TAC) heat transfer phenomenon in both zero-gravity and gravity environment are presented and compared with pure conduction heat transfer. The numerical solutions of the governing equations obtained by others for TAC heat transfer phenomenon are also discussed. The experimental results show that for rapid heating rate at a boundary, the contribution of TAC heat transfer to a gas could be significantly (one order of magnitude) higher than heat transfer rate from pure conduction. The results also show significantly reduced transient time in heat transfer processes involving thermoacoustic convective heat transfer mode in both space and gravity environment.

8. Heat Transfer in Complex Fluids

SciTech Connect

2012-01-01

(linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an

9. An accuracy analysis of the front tracking method and interface capturing methods for the solution of heat transfer problems with phase changes

Klimeš, Lubomír; Mauder, Tomáš; Charvát, Pavel; Štétina, Josef

2016-09-01

Materials undergoing a phase change have a number of applications in practice and engineering. Computer simulation tools are often used for investigation of such heat transfer problems with phase changes since they are fast and relatively not expensive. However, a crucial issue is the accuracy of these simulation tools. Numerical methods from the interface capturing category are frequently applied. Such approaches, however, allow for only approximate tracking of the interface between the phases. The paper presents an accuracy analysis and comparison of two widely used interface capturing methods—the enthalpy and the effective heat capacity methods—with the front tracking algorithm. A paraffin-based phase change material is assumed in the study. Computational results show that the front tracking algorithm provides a significantly higher accuracy level than the considered interface capturing methods.

10. FED. Zoning for TRUMP Heat Transfer Code

SciTech Connect

Elrod, D.

1987-10-23

FED reduces the effort required to obtain the necessary geometric input for problems which are to be solved using the heat-transfer code, TRUMP. TRUMP calculates transient and steady-state temperature distributions in multidimensional systems. FED can properly zone any body of revolution in one, two, or three dimensions.

11. Investigation of Heat Transfer From

NASA Technical Reports Server (NTRS)

Lewis, James P.; Ruggeri, Robert S.

1956-01-01

The convective heat transfer from the surface of an ellipsoidal forebody of fineness ratio 3 and 20-inch maximum diameter was investigated in clear air for both stationary and rotating operation over a range of conditions including air speeds up to 240 knots, rotational speeds up to 1200 rpm, and angles of attack of 0 deg, 3 deg, and 6 deg. The results are presented in the form of heat-transfer coefficients and the correlation of Nusselt and Reynolds numbers. Both a uniform surface temperature and a uniform input heater density distribution were used. The experimental results agree well with theoretical predictions for uniform surface temperature distribution. Complete agreement was not obtained with uniform input heat density in the laminar-flow region because of conduction effects. No significant effects of rotation were obtained over the range of airstream and rotational speeds investigated. Operation at angle of attack had only minor effects on the local heat transfer. Transition from laminar to turbulent heat transfer occurred over a wide range of Reynolds numbers. The location of transition depended primarily on surface roughness and pressure and temperature gradients. Limited transient heating data indicate that the variation of surface temperature with time followed closely an exponential relation.

12. A heat transfer model of a horizontal ground heat exchanger

Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

2016-04-01

Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

13. Two dimensional finite element heat transfer models for softwood

Treesearch

Hongmei Gu; John F. Hunt

2004-01-01

The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential directions and have not differentiated the effects of cellular alignment, earlywood/latewood...

14. Modeling microscale heat transfer using Calore.

SciTech Connect

Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

2005-09-01

Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

15. Simplified models for heat transfer in rooms

Graca, Guilherme C. C. Carrilho Da

Buildings protect their occupants from the outside environment. As a semi-enclosed environment, buildings tend to contain the internally generated heat and air pollutants, as well as the solar and conductive heat gains that can occur in the facade. In the warmer months of the year this generally leads to overheating, creating a need for a cooling system. Ventilation air replaces contaminated air in the building and is often used as the dominant medium for heat transfer between indoor and outdoor environments. The goal of the research presented in this thesis is to develop a better understanding of the important parameters in the performance of ventilation systems and to develop simplified convective heat transfer models. The general approach used in this study seeks to capture the dominant physical processes for these problems with first order accuracy, and develop simple models that show the correct system behavior trends. Dimensional analysis, in conjunction with simple momentum and energy conservation, scaled model experiments and numerical simulations, is used to improve airflow and heat transfer rate predictions in both single and multi room ventilation systems. This study includes the three commonly used room ventilation modes: mixing, displacement and cross-ventilation. A new modeling approach to convective heat transfer between the building and the outside is presented: the concept of equivalent room heat transfer coefficient. The new model quantifies the reduction in heat transfer between ventilation air and internal room surfaces caused by limited thermal capacity and temperature variation of the air for the three modes studied. Particular emphasis is placed on cross-ventilation, and on the development of a simple model to characterize the airflow patterns that occur in this case. The implementation of the models in a building thermal simulation software tool is presented as well as comparisons between model predictions, experimental results and complex

16. Boiling Heat Transfer in Confined Space.

DTIC Science & Technology

1981-10-01

the problem the following assumptions were made: Cl) The problem is steady state with constant properties for the fluid. (2) The flow is laminar in...T7ax - 1 62 (11) Heat Transfer: Considering the constant properties and neglecting the viscous dissipation, the energy equation of the laminar flow in...evaluated from the assumed local quality and fluid properties using I.J equation (6). Using an assumed local friction factor f , the local pressure gradient

Chapman, K.; Ramadhyani, S.; Ramamurthy, H.; Viskanta, R.

1989-03-01

A simple two-dimensional mathematical model was developed to predict the steady state thermal performance and combustion characteristics of a natural gas indirectly fired once-through radiant tube. Different burner geometries were studied and a grid size analysis was performed to determine the optimum grid spacing for each case. The rate of fuel burn-up was correlated using the burner geometry, the equivalence ratio, the fuel firing rate and air preheat temperatures as variables for non-swirling diffusion flames in the radiant tube. The model predictions were also compared with available experimental data for the purpose of validating the model. The transient, zero-dimensional model was used to conduct a detailed parametric study of a directly-fired batch reheating furnace. The parameters that were investigated are the load and refractory emissivities, the air preheat temperature, the heat capacity of the load, and the height of the combustion space. A one-dimensional model of a directly-fired continuous reheating furnace was also developed. A parametric study was completed to examine the effect of the local throughput on the furnace performance.

18. Short duration heat transfer measurements

Arts, T.; Camci, C.

Shock tunnels, blowdown cascades, and isentropic light piston compression tubes used to study heat transfer and aerodynamic phenomena in turbine components are described. Thin film heat transfer gages, calorimeter gages, and optical measurements methods are presented. Compression tube investigations of convective heat transfer on a flat plate, with and without film cooling; and convective heat transfer on a high pressure rotor blade with and without film cooling are summarized. Results show that along the suction side, laminar to turbulent transition is strongly influenced by the presence of the leading edge cooling holes, even when no coolant flow is ejected. Along the pressure side, the boundary layer behavior is dominated by the free stream pressure gradient rather than by the existence of the cooling holes. Significant coolant temperature effects are also observed. At low blowing rate this effect is mainly observed up to 35 to 40 hole diameters downstream of the suction side ejection rows when the coolant temperature is lowered from wall temperature to half of the mainstream level. At high blowing rate, the influence of the coolant temperature is felt much further downstream.

19. Host turbine heat transfer overview

NASA Technical Reports Server (NTRS)

Rohde, J. E.

1984-01-01

Improved methods of predicting airfoil local metal temperatures require advances in the understanding of the physics and methods of analytically predicting the following four aerothermal loads: hot gas flow over airfoils, heat transfer rates on the gas-side of airfoils, cooling air flow inside airfoils, and heat transfer rates on the coolant-side of airfoils. A systematic building block research approach is being pursued to investigate these four areas of concern from both the experimental and analytical sides. Experimental approaches being pursued start with fundamental experiments using simple shapes and flat plates in wind tunnels, progress to more realistic cold and hot cascade tests using airfoils, continue to progress in large low-speed rigs and turbines and warm turbines, and finally, combine all the interactive effects in tests using real engines or real engine type turbine rigs. Analytical approaches being pursued also build from relatively simple steady two dimensional inviscid flow and boundary layer heat transfer codes to more advanced steady two and three dimensional viscous flow and heat transfer codes. These advanced codes provide more physics to model better the interactive effects and the true real-engine environment.

20. Sodium heat transfer system modeling

Baker, A. F.; Fewell, M. E.

1983-11-01

The sodium heat transfer system of the international energy agency (IEA) small solar power systems (SSPS) central receiver system (CRS), which includes the heliostat field, receiver, hot and cold storage vessels, and sodium/water steam generator was modeled. The computer code SOLTES (simulator of large thermal energy systems), was used to model this system. The results from SOLTES are compared to measured data.

1. Heat transfer in aerospace propulsion

NASA Technical Reports Server (NTRS)

Simoneau, Robert J.; Hendricks, Robert C.; Gladden, Herbert J.

1988-01-01

Presented is an overview of heat transfer related research in support of aerospace propulsion, particularly as seen from the perspective of the NASA Lewis Research Center. Aerospace propulsion is defined to cover the full spectrum from conventional aircraft power plants through the Aerospace Plane to space propulsion. The conventional subsonic/supersonic aircraft arena, whether commercial or military, relies on the turbine engine. A key characteristic of turbine engines is that they involve fundamentally unsteady flows which must be properly treated. Space propulsion is characterized by very demanding performance requirements which frequently push systems to their limits and demand tailored designs. The hypersonic flight propulsion systems are subject to severe heat loads and the engine and airframe are truly one entity. The impact of the special demands of each of these aerospace propulsion systems on heat transfer is explored.

2. Combustion, heat transfer and analysis

SciTech Connect

Not Available

1986-01-01

This book presents papers on diesel engines combustion. Topics considered include combustion control, high-speed photography, visual studies of diesel combustion, swirl chambers, heat insulated turbochargers, direct injection, autoignition, statistical analysis software, particulate emissions, improvements in exhaust gas emissions and cold startability of diesel engines with new injection-rate-control pumps, jet mixing processes, a thermodynamic simulation model, heat transfer in ceramic combustion chamber walls, temperature distribution in a diesel piston, and the application of a variable swirl device to a two-stroke engine.

3. Numerical Modeling of Ablation Heat Transfer

NASA Technical Reports Server (NTRS)

Ewing, Mark E.; Laker, Travis S.; Walker, David T.

2013-01-01

A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

4. Selective tube roughening increases heat transfer capability

NASA Technical Reports Server (NTRS)

Carlson, L. W.

1966-01-01

Selectively roughening inside surfaces of tubes increases the heat transfer capabilities, but minimizes the pressure drop. This technique is used to construct roughened test sections for hydrogen heat transfer studies.

5. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

Yoshida, Suguru; Fujita, Yasunobu

The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

6. Ethyl alcohol boiling heat transfer on multilayer meshed surfaces

Dåbek, Lidia; Kapjor, Andrej; Orman, Łukasz J.

2016-06-01

The paper presents the problem of heat transfer enhancement with the application of multilayer metal mesh structures during boiling of ethyl alcohol at ambient pressure. The preparation of samples involved sintering fine copper meshes with the copper base in the reduction atmosphere in order to prevent oxidation of the samples. The experiments included testing up to 4 layers of copper meshes. Significant augmentation of boiling heat transfer is possible, however, considerable number of meshes actually hinders heat transfer conditions and leads to the reduction in the heat flux transferred from the heater surface.

7. Heat exchanger device and method for heat removal or transfer

DOEpatents

Koplow, Jeffrey P [San Ramon, CA

2012-07-24

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

8. Heat exchanger device and method for heat removal or transfer

DOEpatents

Koplow, Jeffrey P.

2015-12-08

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

9. Heat exchanger device and method for heat removal or transfer

DOEpatents

Koplow, Jeffrey P

2013-12-10

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

10. Heat exchanger device and method for heat removal or transfer

DOEpatents

Koplow, Jeffrey P

2015-03-24

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

11. Heat transfer and planetary evolution

Tozer, D. C.

1985-06-01

The object of this account is to show how much one can interprete and predict about the present state of material forming planet size objects, despite the fact we do not and could never have the kind of exact or prior knowledge of initial conditions and in situ material behaviour that would make a formal mathematical analysis of the dynamical problems of planetary evolution an efficient or meaningful exercise The interest and usefulness of results obtained within these limitations stem from the highly non linear nature of planetary scale heat transfer problems when posed in any physically plausible form. The non linearity arising from a strongly temperature dependent rheology assumed for in situ planetary material is particularly valuable in deriving results insensitive to such uncertainties. Qualitatively, the thermal evolution of a planet is quite unlike that given by heat conduction calculation below a very superficial layer, and much unnecessary argument and confusion results from a persistent failure to recognise that fact. At depths that are no greater on average than a few tens of kilometres in the case of Earth, the temperature distribution is determined by a convective flow regime inaccessble to the laboratory experimenter and to the numerical methods regularly employed to study convective movement. A central and guiding quantitative result is the creation in homogeneous planet size objects having surface temperatures less than about half the absolute melting temperature of their material, of internal states with horizontally a veraged viscosity values ˜1021 poise. This happens in times short compared with the present Solar System age. The significance of this result for an understanding of such processes and features as isostasy, continental drift, a minimum in seismic S wave velocity in Earth's upper mantle, a uniformity of mantle viscosity values, the survival of liquid planetary cores and the differentiation of terrestrial planet material is examined

12. Heat Transfer in a Thermoacoustic Process

ERIC Educational Resources Information Center

Beke, Tamas

2012-01-01

Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

13. Heat Transfer in a Thermoacoustic Process

ERIC Educational Resources Information Center

Beke, Tamas

2012-01-01

Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

14. Unsteady heat transfer during subcooled film boiling

Yagov, V. V.; Zabirov, A. R.; Lexin, M. A.

2015-11-01

Cooling of high-temperature bodies in subcooled liquid is of importance for quenching technologies and also for understanding the processes initiating vapor explosion. An analysis of the available experimental information shows that the mechanisms governing heat transfer in these processes are interpreted ambiguously; a more clear-cut definition of the Leidenfrost temperature notion is required. The results of experimental observations (Hewitt, Kenning, and previous investigations performed by the authors of this article) allow us to draw a conclusion that there exists a special mode of intense heat transfer during film boil- ing of highly subcooled liquid. For revealing regularities and mechanisms governing intense transfer of energy in this process, specialists of Moscow Power Engineering Institute's (MPEI) Department of Engineering Thermal Physics conduct systematic works aimed at investigating the cooling of high-temperature balls made of different metals in water with a temperature ranging from 20 to 100°C. It has been determined that the field of temperatures that takes place in balls with a diameter of more than 30 mm in intense cooling modes loses its spherical symmetry. An approximate procedure for solving the inverse thermal conductivity problem for calculating the heat flux density on the ball surface is developed. During film boiling, in which the ball surface temperature is well above the critical level for water, and in which liquid cannot come in direct contact with the wall, the calculated heat fluxes reach 3-7 MW/m2.

15. High Resolution Convective Heat Transfer Measurements

DTIC Science & Technology

2001-05-30

ONR Thermal Materials Workshop 2001 1 HIGH RESOLUTION CONVECTIVE HEAT TRANSFER MEASUREMENTS Peter Ireland and Terry Jones R-R UTC in Heat Transfer...temperatures. • Fluid dynamics correct through use of Reynolds number, Mach number and Prandtl number. Mach)Pr,(Re,fNu Dimensionless heat transfer...depends on local h su rf ac e te m p T s gas temperature Tg timestart of test hTc Calibration Test data ONR Thermal Materials Workshop 2001 10 Heat

16. Heat transfer measurements with TOIRT method

Solnař, S.; Petera, K.; Dostál, M.; Jirout, T.

Temperature Oscillation Infra-Red Thermography (TOIRT) method was used to measure heat transfer coefficients between a at surface and a confined impinging jet generated by an impeller in a difusor and baffled vessel. The TOIRT method is based on measuring a phase-lag between the oscillating heat flux applied to the heat transfer surface and the surface temperature response using a contactless infra-red camera. The phase lag is in a direct relationship with the heat transfer coefficient.

17. Tunable heat transfer with smart nanofluids.

PubMed

Bernardin, Michele; Comitani, Federico; Vailati, Alberto

2012-06-01

Strongly thermophilic nanofluids are able to transfer either small or large quantities of heat when subjected to a stable temperature difference. We investigate the bistability diagram of the heat transferred by this class of nanofluids. We show that bistability can be exploited to obtain a controlled switching between a conductive and a convective regime of heat transfer, so as to achieve a controlled modulation of the heat flux.

18. Some observations on the historical development of conduction heat transfer

Cheng, Kwo Chang

An attempt is made to obtain historical perspectives on the development of the mathematical theory of heat conduction considering Newton's law of cooling (1701) and its close connection with Fourier's work from 1807 to 1822 resulting in his epoch-making treatise on "The Analytical Theory of Heat". Fourier was the principal architect of the heat conduction theory. Fourier's work established a new methodology for the formulation and solution of physical problems, based on partial differential equations and marked a major turning point in the history of physics. The developments in the periods 1822 to 1900 and 1900 to 1950 are also briefly reviewed as are the classical (analytical) and numerical methods of solution for heat conduction problems. The analogy in heat, momentum, and mass transfer for transport phenomena is discussed. A list of recent conduction heat transfer books is presented to show the scope of recent developments. Some observations on conduction heat transfer are noted.

19. Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.

PubMed

Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei

2017-09-12

Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.

20. Modeling of radiative - conductive heat transfer in compositing materials

Luchnikov, P. A.; Nefedov, V. I.; Trefilov, N. A.; Dementiev, A. N.; Surzhikov, A. P.

2017-01-01

A layer of composite material is investigated, which is heated one-sidedly with one-dimensional energy transfer accounting for thermal conductivity and radiation. A mathematical model is suggested for non-stationary coefficient thermophysical problem under radiative-conductive heat transfer in a material layer. Temperature dependencies of thermal capacity and thermal conductivity coefficient of composite radio-transparent material have been determined through numerical modeling by solving the coefficient reverse problem of thermal conductivity.

1. Class and Home Problems. Identify-Solve-Broadcast Your Own Transport Phenomenon: Student-Created YouTube Videos to Foster Active Learning in Mass and Heat Transfer

ERIC Educational Resources Information Center

Wen, Fei; Khera, Eshita

2016-01-01

Despite the instinctive perception of mass and heat transfer principles in daily life, productive learning in this course continues to be one of the greatest challenges for undergraduate students in chemical engineering. In an effort to enhance student learning in classroom, we initiated an innovative active-learning method titled…

2. Class and Home Problems. Identify-Solve-Broadcast Your Own Transport Phenomenon: Student-Created YouTube Videos to Foster Active Learning in Mass and Heat Transfer

ERIC Educational Resources Information Center

Wen, Fei; Khera, Eshita

2016-01-01

Despite the instinctive perception of mass and heat transfer principles in daily life, productive learning in this course continues to be one of the greatest challenges for undergraduate students in chemical engineering. In an effort to enhance student learning in classroom, we initiated an innovative active-learning method titled…

3. Stagnation point flow, heat transfer and species transfer over a shrinking sheet with coupled Stefan blowing effects from species transfer

Hamid, Rohana Abdul; Nazar, Roslinda; Pop, Ioan

2016-11-01

The problem of stagnation-point flow and heat transfer with the effect of the blowing from species transfer over an impermeable shrinking sheet is studied. The governing boundary layer equations are transformed into the ordinary differential equations using the similarity transformations which are then solved numerically using the bvp4c function in Matlab. The focus of this study is the effect of the blowing parameter to the velocity of the flow, the rate of heat transfer and the mass of species transfer over a flat surface of shrinking sheet. From the numerical results, it is found that the blowing parameter substantially affects the flow, heat and mass transfer characteristics.

4. New computer program solves wide variety of heat flow problems

NASA Technical Reports Server (NTRS)

Almond, J. C.

1966-01-01

Boeing Engineering Thermal Analyzer /BETA/ computer program uses numerical methods to provide accurate heat transfer solutions to a wide variety of heat flow problems. The program solves steady-state and transient problems in almost any situation that can be represented by a resistance-capacitance network.

5. Industrial furnace with improved heat transfer

SciTech Connect

Hoetzl, M.; Lingle, T.M.

1992-07-07

This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.

6. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

NASA Technical Reports Server (NTRS)

Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; Woodiga, Sudesh

2012-01-01

This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

7. A review of NASA combustor and turbine heat transfer research

NASA Technical Reports Server (NTRS)

Rudey, R. A.; Graham, R. W.

1984-01-01

The thermal design of the combustor and turbine of a gas turbine engine poses a number of difficult heat transfer problems. The importance of improved prediction techniques becomes more critical in anticipation of future generations of gas turbine engines which will operate at higher cycle pressure and temperatures. Research which addresses many of the complex heat transfer processes holds promise for yielding significant improvements in prediction of metal temperatures. Such research involves several kinds of program including: (1) basic experiments which delineate the fundamental flow and heat transfer phenomena that occur in the hot sections of the gas turbine but at low enthalpy conditions; (2) analytical modeling of these flow and heat transfer phenomena which results from the physical insights gained in experimental research; and (3) verification of advanced prediction techniques in facilities which operate near the real engine thermodynamic conditions. In this paper, key elements of the NASA program which involves turbine and combustor heat transfer research will be described and discussed.

8. Heat Transfer in Gas Turbines

NASA Technical Reports Server (NTRS)

Garg, Vijay K.

2001-01-01

The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.

9. Convective Heat Transfer for Ship Propulsion.

DTIC Science & Technology

1981-04-01

OF RILJORT 6 PelIOO COVERED Convective Heat Transfer for Ship Propulsion . Annual gummary Report / (Sixth Annual Sumary Report) //115 Jan 180-30 Mard...DO* IrCOVE) Sixth Annual Summary Report CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION By M. A. Habib and D. M. McEligot Aerospace and Mechanical...permitted for any purpose of the United States Government. ._ _ _ _ _ _ I CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION M. A. Habib* and D. M. McEligot

10. Heat-transfer data for hydrogen

NASA Technical Reports Server (NTRS)

Mc Carthy, J. R.; Miller, W. S.; Okuda, A. S.; Seader, J. D.

1970-01-01

Information is given regarding experimental heat-transfer data compiled for the turbulent flow of hydrogen within straight, electrically heated, round cross section tubes. Tube materials, test conditions, parameters studied, and generalized conclusions are presented.

11. Radiative heat transfer in porous uranium dioxide

SciTech Connect

Hayes, S.L.

1992-12-01

Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.

Pilat, Peter; Patsch, Marek; Papucik, Stefan; Vantuch, Martin

2014-08-01

13. Enhancement of Forced Convection Heat Transfer

Tanasawa, Ichiro

There has been strong demand for enhancement techniques of single-phase forced convection heat transfer because of its wide area of application on the one side and because of inferior heat-transfer capability, when compared with phase change heat transfer such as boiling and condensation, on the other side. The enhancement techniques are indispensable when gases are used as heat-transfer media. In this article the basic principles of enhancement of single-phase forced convection heat transfer are described in the first place. Three principal techniques currently employed, i.e.,(a) interrupted fins, (b) twisted tapes, and (c) turbulence promoters, are introduced. Mechanisms of heat-tansfer enhancement and the state-of-the art review on the R&D are presented for these techniques. In addition to these, supplementary remarks are given on techniques utilizing multiphase flow and electrostatic field.

14. Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid

2012-02-01

In this paper, heat transfer characteristics of a miniature heat sink cooled by SiO 2-water nanofluids were investigated both experimentally and numerically. The heat sink was fabricated from aluminum and insulated by plexiglass cover plates. The heat sink consisted of an array of 4 mm diameter circular channels with a length of 40 mm. Tests were performed while inserting a 180 W/cm 2 heat flux to the bottom of heat sink and Reynolds numbers ranged from 400 to 2000. The three-dimensional heat transfer characteristics of the heat sink were analyzed numerically by solving conjugate heat transfer problem of thermally and hydrodynamically developing fluid flow. Experimental results showed that dispersing SiO 2 nanoparticles in water significantly increased the overall heat transfer coefficient while thermal resistance of heat sink was decreased up to 10%. Numerical results revealed that channel diameter, as well as heat sink height and number of channels in a heat sink have significant effects on the maximum temperature of heat sink. Finally, an artificial neural network (ANN) was used to simulate the heat sink performance based on these parameters. It was found that the results of ANN are in excellent agreement with the mathematical simulation and cover a wider range for evaluation of heat sink performance.

15. Transient heat transfer in superfluid helium

SciTech Connect

Dresner, L.

1981-01-01

According to the Goerter-Mellink law, the heat flux in superfluid helium is proportional to the cube root of the temperature gradient. If we use this proportionality in place of Fourier's linear law to derive an equation of heat conduction, we obtain a non-linear partial differential equation. Such equations are usually difficult to solve because we cannot superpose solutions to obtain others. In spite of this, the problem of this paper, the constant-flux problem, can be solved because its temperature profiles are self-similar. Self-similarity means that the temperature profile at one time can be obtained from that at a different time by suitable (different) stretching of the distance and temperature axes of the latter profle. The self-similarity of the temperature profiles is connected with the invariance of the non-linear partial differential equation to certain groups of transformations. We reduce the partial differential equation of heat conduction to an ordinary differential equation, the appropriate solution of which we find without extensive computation. The reduction involves the similarity variables ..delta..T/..sqrt..t and z/..sqrt..t, where ..delta..T is the temperature rise at a distance z from the heated face at a time t after the (constant) heating has begun. Use of these variables should, and does, reduce all of the experimental temperature profiles reported by van Sciver to a single, universal curve. We obtain this curve as well by solving the differential equation; agreement is excellent. In fact agreement with all the experimental data reported by van Sciver is excellent, so that the Goerter-Mellink law seems to be a very successful basis for describing transient heat transfer in superfluid helium.

16. Thermochromic liquid crystals in heat transfer research

Stasiek, Jan A.; Kowalewski, Tomasz A.

2002-06-01

In recent years Thermochromic Liquid Crystals (TLC) have been successfully used in non-intrusive heat transfer and fluid mechanics studies. Thin coatings of TLC's at surfaces is utilized to obtain detailed heat transfer data of steady or transient process. Application of TLC tracers allows instantaneous measurement of the temperature and velocity fields for two-dimensional cross-section of flow. Computerized flow visualization techniques allow automatic quantification of temperature of the analyzed surface or the visualized flow cross-section. Here we describe our experience in applying the method to selected problems studied in our laboratory. They include modeling flow configurations in the differentially heated inclined cavity with vertical temperature gradient simulating up-slope flow as well as thermal convection under freezing surface. The main aim of these experimental models is to generate reliable experimental database on velocity and temperature fields for specific flow. The methods are based on computerized true-color analysis of digital images for temperature measurements and modified Particle Image Velocimetry and Thermometry (PIVT) used to obtain the flow field velocity.

17. Heat transfer during heat sterilization and cooling processes of canned products

Dincer, I.

In this paper, an analysis of transient heat transfer during heat sterilization and cooling processes of a cylindrical canned product is presented. In the analysis, most practical case including the boundary condition of third kind (i.e., convection boundary condition, leading to 0.1 <= Bi <= 100) was employed. A simple analytical model for determining effective heat transfer coefficients for such products is developed. For the heat sterilization process, heating coefficient is incorporated into heat transfer coefficient model. An experimental study was performed to measure the thermal center temperatures of the short-cylindrical canned products (i.e., Tuna fish) during heat sterilization at the retort medium temperatures of 115∘C and 121∘C, and during cooling process at 16∘C. The effective heat transfer coefficient model used the experimental temperature data. Using these effective heat transfer coefficients the center temperature distributions were calculated and compared with the experimental temperature distributions. Agreement was found considerably high. The results of the present study indicate that the heat-transfer analysis technique and heat-transfer coefficient model are reliable, and can provide accurate results for such problems.

18. Heat Transfer in the Turbulent Incompressible Boundary Layer. 3; Arbitrary Wall Temperature and Heat Flux

NASA Technical Reports Server (NTRS)

Reynolds, W. C.; Kays, W. M.; Kline, S. J.

1958-01-01

Superposition techniques are used to calculate the rate of heat transfer from a flat plate to a turbulent incompressible boundary layer for several cases of variable surface temperature. The predictions of a number of these calculations are compared with experimental heat- transfer rates, and good agreement is obtained. A simple computing procedure for determining the heat-transfer rates from surfaces with arbitrary wall-temperature distributions is presented and illustrated by two examples. The inverse problem of determining the temperature distribution from an arbitrarily prescribed heat flux is also treated, both experimentally and analytically.

19. Flow and heat transfer enhancement in tube heat exchangers

Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

2015-11-01

The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.

20. Heat transfer through an extended surface containing He II

SciTech Connect

Van Sciver, S.W.

1999-02-01

A semi-analytic solution for the heat transfer process between a He II pressurized bath and a saturated tube-type heat exchanger is presented. The problem is modeled with an extended surface heat transfer formulation analogous to that in conventional conduction. The process is governed by Kapitza conductance and counterflow within the bulk fluid in the tube. The resulting nonlinear differential equation may be integrated for the special case of constant properties, yielding a simple solution applicable to design and analysis of practical heat exchangers.

1. Efficient Heat and Mass Transfer Formulations for Oil Shale Retorting

Parker, J. C.; Zhang, F.

2007-12-01

A mathematical model for oil shale retorting is described that considers kerogen pyrolysis, oil coking, residual carbon gasification, carbonate mineral decomposition, water-gas shift, and phase equilibria reaction. Reaction rate temperature-dependence is described by Arrhenius kinetics. Fractured rock is modeled as a bi-continuum consisting of fracture porosity in which advective and dispersive gas and heat transport occur, and rock matrix in which diffusive mass transport and thermal conduction occur. Heat transfer between fracture and matrix regions is modeled either by a partial differential equation for spherical conduction or by a linear first-order heat transfer formulation. Mass transfer is modeled in an analogous manner or assuming local equilibrium. First-order mass and heat transfer coefficients are computed by a theoretical model from fundamental rock matrix properties. The governing equations are solved using a 3-D finite element formulation. Simulations of laboratory retort experiments and hypothetical problems indicated thermal disequilibrium to be the dominant factor controlling retort reactions. Simulation accuracy was unaffected by choice of mass transfer formulation. However, computational effort to explicitly simulate diffusive mass transfer in the rock matrix increased computational effort by more than an order of magnitude compared with first-order mass transfer or equilibrium analyses. A first-order heat transfer approximation of thermal conduction can be used without significant loss of accuracy if the block size and/or heating rate are not too large, as quantified by a proposed dimensionless heating rate.

2. Application of ray tracing in radiation heat transfer

NASA Technical Reports Server (NTRS)

Baumeister, Joseph F.

1993-01-01

This collection of presentation figures displays the capabilities of ray tracing for radiation propagation calculations as compared to an analytical approach. The goal is to introduce the terminology and solution process used in ray tracing, and provide insight into radiation heat transfer principles and analysis tools. A thermal analysis working environment is introduced that solves demanding radiation heat transfer problems based on ray tracing. This information may serve as a reference for designing and building ones own analysis environment.

3. Impingement Heat Transfer of Reciprocating Jet Array

Su, Lo May; Chang, Shyy Woei; Chiou, Shyr Fuu

This paper describes an experimental study of impingement heat transfer of reciprocating jet-array with piston cooling application for marine heavy-duty diesel engine. A selection of heat transfer measurements illustrates the manner by which the individual and interactive influences of reciprocating force and buoyancy on heat transfer for the impinging jet-array. It is demonstrated that the reciprocating force coupled with buoyancy interaction causes considerable heat transfer modifications from the static results. The isolated reciprocating force effect could initially reduce heat transfer to a level about 0.45 of static level with weak reciprocation but recovers when the reciprocating force increases. Heat transfer improvement and impediment could be aided by the location-dependent buoyancy effect in addition to the reciprocating force effect. An empirical heat transfer correlation, which is physically consistent, has been developed to permit the evaluation of the individual and synergistic effects of reciprocating force and buoyancy interaction on local heat transfer of the impinging jet-array.

4. Fundamental heat transfer experiments of heat pipes for turbine cooling

SciTech Connect

Yamawaki, S.; Yoshida, T.; Taki, M.; Mimura, F.

1998-07-01

Fundamental heat transfer experiments were carried out for three kinds of heat pipes that may be applied to turbine cooling in future aero-engines. In the turbine cooling system with a heat pipe, heat transfer rate and start-up time of the heat pipe are the most important performance criteria to evaluate and compare with conventional cooling methods. Three heat pipes are considered, called heat pipe A, B, and C, respectively. All heat pipes have a stainless steel shell and nickel sintered powder metal wick. Sodium (Na) was the working fluid for heat pipes A and B; heat pipe C used eutectic sodium-potassium (NaK). Heat pipes B and C included noncondensible gas for rapid start-up. There were fins on the cooling section of heat pipes. In the experiments, an infrared image furnace supplied heat to the heat pipe simulating turbine blade surface conditions. In the results, heat pipe B demonstrated the highest heat flux of 17 to 20 W/cm{sup 2}. The start-up time was about 6 minutes for heat pipe B and about 6 minutes for heat pipe A. Thus, adding noncondensible gas effectively reduced start-up time. Although NaK is a liquid phase at room temperature, the start-up time of heat pipe C (about 7 to 8 minutes) was not shorter than the heat pipe B. The effect of a gravitational force on heat pipe performance was also estimated by inclining the heat pipe at an angle of 90 deg. There was no significant gravitational dependence on heat transport for heat pipes including noncondensible gas.

5. Phase Change Heat Transfer Device for Process Heat Applications

SciTech Connect

Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

2010-10-01

The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to approx.1300 K) and industrial scale power transport (=50MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via ‘pumping a fluid’, a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

6. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

SciTech Connect

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

7. Heat transfer coefficient of cryotop during freezing.

PubMed

Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

2013-01-01

Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

8. Rotary Joint for Heat Transfer

NASA Technical Reports Server (NTRS)

Shauback, R.

1986-01-01

Rotary joint exchanges heat between two heat pipes - one rotating and one stationary. Joint accommodates varying heat loads with little temperature drop across interface. According to concept, heat pipe enters center of disklike stationary section of joint. There, wicks in central artery of heat pipe separate into multiple strands that lead to concentric channels on rotaryinterface side of stationary disk. Thin layer of liquid sodium/potassium alloy carries heat from one member of rotary joint to other. Liquid conducts heat efficiently while permitting relative motion between members. Polypropylene rings contain liquid without interfering with rotation.

9. A Compact Remote Heat Transfer Device for Space Cryocoolers

Yan, T.; Zhao, Y.; Liang, T.

In this paper a compact remote heat transfer device (CRHD) for cryocoolers is proposed. This device is especially attractive in cases where cryocoolers are not easy to set near the heat source, generally the infrared sensor. The CRHD is designed on basis of the concept of loop heat pipes, while the primary evaporator is located near the cryocooler cold head and a simple tube-in-tube secondary evaporator is remotely located and thermally connected with the heat source for cooling. With such a device a cooling power of 1 W is achieved across a heat transfer distance of about 2 m. The major problem of this device is the low heat transfer efficiency (1 W of net cooling power at the cost of about 7 W of cooling power from the cryocooler), and in the future a secondary wicked evaporator will be used instead of the tube-in-tube evaporator in order to improve the efficiency.

10. Determination of the heat transfer coefficients in porous media

SciTech Connect

Kim, L.V.

1994-06-01

The process of transpiration cooling is considered. Methods are suggested for estimating the volumetric coefficient of heat transfer with the use of a two-temperature model and the surface heat transfer coefficient at entry into a porous wall. The development of new technology under conditions of increasing heat loads puts the search for effective methods of heat transfer enhancement in the forefront of theoretical investigations. One of the promising trends in the solution of this problem is the use of porous materials (PM) in the elements of power units. For thermal protection against convective or radiative heat fluxes, the method of transpiration cooling is successfully used. The mechanism operative in the thermal protection involves the injection of a coolant through a porous medium to produce a screen over the contour of a body in a flow for removing heat energy from the skeleton of the porous material.

11. Pool Boiling Heat Transfer on structured Surfaces

Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

2016-09-01

The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

12. Forced convective heat transfer in curved diffusers

NASA Technical Reports Server (NTRS)

Rojas, J.; Whitelaw, J. H.; Yianneskis, M.

1987-01-01

Measurements of the velocity characteristics of the flows in two curved diffusers of rectangular cross section with C and S-shaped centerlines are presented and related to measurements of wall heat transfer coefficients along the heated flat walls of the ducts. The velocity results were obtained by laser-Doppler anemometry in a water tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. The thermographic technique allowed the rapid and inexpensive measurement of wall heat transfer coefficients along flat walls of arbitrary boundary shapes with an accuracy of about 5 percent. The results show that an increase in secondary flow velocities near the heated wall causes an increase in the local wall heat transfer coefficient, and quantify the variation for maximum secondary-flow velocities in a range from 1.5 to 17 percent of the bulk flow velocity.

13. Periodic Heat Transfer at Small Pressure Fluctuations

NASA Technical Reports Server (NTRS)

Pfriem, H.

1943-01-01

The effect of cyclic gas pressure variations on the periodic heat transfer at a flat wall is theoretically analyzed and the differential equation describing the process and its solution for relatively. Small pressure fluctuations developed, thus explaining the periodic heat cycle between gas and wall surface. The processes for pure harmonic pressure and temperature oscillations, respectively, in the gas space are described by means of a constant heat transfer coefficient and the equally constant phase angle between the appearance of the maximum values of the pressure and heat flow most conveniently expressed mathematically in the form of a complex heat transfer coefficient. Any cyclic pressure oscillations, can be reduced by Fourier analysis to harmonic oscillations, which result in specific, mutual relationships of heat-transfer coefficients and phase angles for the different harmonics.

14. Heat-transfer coefficients in agitated vessels. Sensible heat models

SciTech Connect

Kumpinsky, E.

1995-12-01

Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.

15. Heat transfer research on enhanced heating surfaces in pool boiling

Kalawa, Wojciech; Wójcik, Tadeusz M.; Piasecka, Magdalena

The paper focuses on the analysis of the enhanced surfaces in such applications as boiling heat transfer. The testing measurement module with enhanced heating surfaces was used for pool boiling research. Pool boiling experiments were conducted with distilled water at atmospheric pressure in the vessel using an enhanced sample as the bottom heating surface. The samples are soldered to a copper heating block of the round cross-section .They were placed: in the fluid (saturation temperature measurement), under the sample for temperature determination. A vessel made of four flat glass panes was used for visualization. The heated surfaces in contact with the fluid differed in roughness were smooth or enhanced. This paper analyzes the effects of the microstructured heated surface on the heat transfer coefficient. The results are presented as relationships between the heat transfer coefficient and the heat flux and as boiling curves. The experimental data obtained for the two types of enhanced heated surfaces was compared with the results recorded for the smooth heated surface. The highest local values of the heat transfer coefficient were reported for the enhanced surfaces.

16. Fluid flow and heat transfer in polygonal micro heat pipes

Rao, Sai; Wong, Harris

2015-11-01

Micro heat pipes have been used to cool microelectronic devices, but their heat transfer coefficients are low compared with those of conventional heat pipes. We model heat and mass transfer in triangular, square, hexagonal, and rectangular micro heat pipes under small imposed temperature differences. A micro heat pipe is a closed microchannel filled with a wetting liquid and a long vapor bubble. When a temperature difference is applied across a micro heat pipe, the equilibrium vapor pressure at the hot end is higher than that at the cold end, and the difference drives a vapor flow. As the vapor moves, the vapor pressure at the hot end drops below the saturation pressure. This pressure drop induces continuous evaporation from the interface. Two dimensionless numbers emerge from the momentum and energy equations: the heat-pipe number H, and the evaporation exponent S. When H >> 1 and S >> 1, vapor-flow heat transfer dominates and a thermal boundary layer appears at the hot end, the thickness of which scales as L/S, where L is the half-length of the pipe. A similar boundary layer exists at the cold end. Outside the boundary layers, the temperature is uniform. We also find a dimensionless optimal pipe length Sm =Sm(H) for maximum evaporative heat transfer. Thus, our model suggests that micro heat pipes should be designed with H >> 1 and S =Sm. We calculate H and S for four published micro-heat-pipe experiments, and find encouraging support for our design criterion.

17. Thermographic heat transfer measurements in separated flows

Scherer, V.; Wittig, S.; Bittlinger, G.; Pfeiffer, A.

1993-12-01

A measurement technique to determine the surface heat transfer distribution in complex turbulent flows is described. For this purpose, a constant wall heat flux test surface has been designed. To measure the surface temperature of the test plate, an infrared camera was used. The instrumentation allows the determination of the heat transfer with high accuracy and detailed spatial resolution. In examining combustor-type separated flow, the capabilities of the technique are demonstrated and its accuracy is verified by appropriate conventional techniques.

18. Heat transfer characteristics of rotating triangular thermosyphon

Ibrahim, E.; Moawed, M.; Berbish, N. S.

2012-09-01

An experimental investigation is carried out to study heat transfer characteristics of a rotating triangular thermosyphon, using R-134a refrigerant as the working fluid. The tested thermosyphon is an equilateral triangular tube made from copper material of 11 mm triangular length, 2 mm thickness, and a total length of 1,500 mm. The length of the evaporator section is 600 mm, adiabatic section is 300 mm, and condenser section is 600 mm. The effects of the rotational speed, filling ratio, and the evaporator heat flux on each of the evaporator heat transfer coefficient, he, condenser heat transfer coefficient, hc, and the overall effective thermal conductance, Ct are studied. Experiments are performed with a vertical position of thermosyphon within heat flux ranges from 11 to 23 W/m2 for the three selected filling ratios of 10, 30 and 50 % of the evaporator section volume. The results indicated that the maximum values of the tested heat transfer parameters of the rotational equilateral triangular thermosyphon are obtained at the filling ratio of 30 %. Also, it is found that the heat transfer coefficient of the condensation is increased with increasing the rotational speed. The tested heat transfer parameters of the thermosyphon are correlated as a function of the evaporator heat flux and angular velocity.

19. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

Hafeez, Pakeeza

Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

20. Effect of surface roughness on rarefied-gas heat transfer in microbearings

Zhang, Wen-Ming; Meng, Guang; Wei, Xue-Yong; Peng, Zhi-Ke

2012-01-01

In this Letter, the rarefaction and roughness effects on the heat transfer process in gas microbearings are investigated. A heat transfer model is developed by introducing two-variable Weierstrass-Mandelbrot (W-M) function with fractal geometry. The heat transfer problem in the multiscale self-affine rough microbearings at slip flow regime is analyzed and discussed. The results show that rarefaction has more significant effect on heat transfer in rough microbearings with lower fractal dimension. The negative influence of roughness on heat transfer found to be the Nusselt number reduction. The heat transfer performance can be optimized with increasing fractal dimension of the rough surface.

1. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.

PubMed

Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

2014-01-01

This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.

2. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger

PubMed Central

Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

2014-01-01

This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%–0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%–24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles. PMID:27433521

3. Active chimney effect using heated porous layers: optimum heat transfer

2017-05-01

The purpose of the present work is to treat numerically the problem of the steady mixed convection that occurs in a vertical cylinder, opened at both ends and filled with a succession of three fluid saturated porous elements, namely a partially porous duct. The flow conditions fit with the classical Darcy-Brinkman model allowing analysing the flow structure on the overall domain. The induced heat transfer, in terms of local and average Nusselt numbers, is discussed for various controlling parameters as the porous medium permeability, Rayleigh and Reynolds numbers. The efficiency of the considered system is improved by the injection/suction on the porous matrices frontier. The undertaken numerical exploration particularly highlighted two possible types of flows, with and without fluid recirculation, which principally depend on the mixed convection regime. Thus, it is especially shown that recirculation zones appear in some domain areas under specific conditions, obvious by a negative central velocity and a prevalence of the natural convection effects, i.e., turnoff flow swirls. These latter are more accentuated in the areas close to the porous obstacles and for weak permeability. Furthermore, when fluid injection or suction is considered, the heat transfer increases under suction and reduces under injection. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage II (ICOME 2016)", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

4. A Course in Advanced Topics in Heat and Mass Transfer.

ERIC Educational Resources Information Center

Shaeiwitz, Joseph A.

1983-01-01

A three or four semester-hour graduate course was designed to provide basic instruction in heat/mass transfer topics relevant to chemical engineering problems and to train students to develop mathematical descriptions for new situations encountered in problem-solving. Course outline and list of references used in the course are provided. (JM)

5. A Course in Advanced Topics in Heat and Mass Transfer.

ERIC Educational Resources Information Center

Shaeiwitz, Joseph A.

1983-01-01

A three or four semester-hour graduate course was designed to provide basic instruction in heat/mass transfer topics relevant to chemical engineering problems and to train students to develop mathematical descriptions for new situations encountered in problem-solving. Course outline and list of references used in the course are provided. (JM)

6. Novel Heat Transfer Device Research

DTIC Science & Technology

2012-04-01

Thermography Comparison of the Qu Tube with the Wicked Heat Pipe .................. 4 3.3 Quantitative Characterization of both Qu Tube and Heat Pipe...the Qu Tube operations in comparison with a wicked water heat pipe using the IR thermography . III. Quantitative characterization of both Qu Tubes...4 Approved for public release; distribution unlimited. Figure 2: X-Ray Images of Copper Heat Pipes 3.2 IR Thermography

7. Van der Waals Force Assisted Heat Transfer

Sasihithlu, K.; Pendry, J. B.; Craster, R. V.

2017-02-01

Phonons (collective atomic vibrations in solids) are more effective in transporting heat than photons. This is the reason why the conduction mode of heat transport in nonmetals (mediated by phonons) is dominant compared to the radiation mode of heat transport (mediated by photons). However, since phonons are unable to traverse a vacuum gap (unlike photons), it is commonly believed that two bodies separated by a gap cannot exchange heat via phonons. Recently, a mechanism was proposed [J. B. Pendry, K. Sasihithlu, and R. V. Craster, Phys. Rev. B 94, 075414 (2016)] by which phonons can transport heat across a vacuum gap - through the Van der Waals interaction between two bodies with gap less than the wavelength of light. Such heat transfer mechanisms are highly relevant for heating (and cooling) of nanostructures; the heating of the flying heads in magnetic storage disks is a case in point. Here, the theoretical derivation for modelling phonon transmission is revisited and extended to the case of two bodies made of different materials separated by a vacuum gap. Magnitudes of phonon transmission, and hence the heat transfer, for commonly used materials in the micro- and nano-electromechanical industry are calculated and compared with the calculation of conduction heat transfer through air for small gaps as well as the heat transfer calculation due to photon exchange.

8. Control of complex heat transfer on producing extremal fields

Grenkin, G. V.; Chebotarev, A. Yu.

2016-10-01

A time-dependent model of complex heat transfer including the P 1 approximation for the equation of radiative transfer is considered. The problem of finding the coefficient in the boundary condition from a given interval, providing the minimum (maximum) temperature and radiation intensity in the entire domain is formulated. The solvability of the control problem is proven, conditions for optimality are obtained, and an iterative algorithm for finding the optimal control is found.

9. Pumped two-phase heat transfer loop

NASA Technical Reports Server (NTRS)

Edelstein, Fred

1988-01-01

A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

10. Pumped two-phase heat transfer loop

NASA Technical Reports Server (NTRS)

Edelstein, Fred (Inventor)

1987-01-01

A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

11. Heat and Mass Transfer Model in Freeze-Dried Medium

Alfat, Sayahdin; Purqon, Acep

2017-07-01

There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.

12. Passive heat transfer means for nuclear reactors

SciTech Connect

Burelbach, James P.

1984-01-01

An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

13. Convective Heat Transfer for Ship Propulsion.

DTIC Science & Technology

1980-01-30

Report Contract No. N00014-75-C-0694 Contract Authority NR-097-395 I0 I CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION Prepared for Office of Naval...Vj~ / TITE find~&ie S.~ TYPE OF REPOAT-& PERIOD COVERED CovcieHeat Transfer for Ship Propulsion # nna umary /epS’Ptoi ", 1’ . Anua MING 14G RE an...ee Fifth Annual Summary Report CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION By S. E. Faas and D. M. McEligot Aerospace and Mechanical Engineering

14. Fundamental phenomena governing heat transfer during rolling

Chen, W. C.; Samarasekera, I. V.; Hawbolt, E. B.

1993-06-01

To quantify the effect of roll chilling on the thermal history of a slab during hot rolling, tests were conducted at the Canada Center for Mineral and Energy Technology (CANMET) and at the University of British Columbia (UBC). In these tests, the surface and the interior temperatures of specimens were recorded during rolling using a data acquisition system. The corresponding heat-transfer coefficients in the roll bite were back-calculated by a trial-and-error method using a heat-transfer model. The heat-transfer coefficient was found to increase along the arc of contact and reach a maximum, followed by a decrease, until the exit of the roll bite. Its value was influenced by rolling parameters, such as percent reduction, rolling speed, rolling temperature, material type, etc. It was shown that the heat-transfer coefficient in the roll gap was strongly dependent on the roll pressure, and the effect of different variables on the interfacial heat-transfer coefficient can be related to their influence on pressure. At low mean roll pressure, such as in the case of rolling plain carbon steels at elevated temperature, the maximum heat-transfer coefficient in the roll bite was in the 25 to 35 kW/m2 °C range. As the roll pressure increased with lower rolling temperature and higher deformation resistance of stainless steel and microalloyed grades, the maximum heat-transfer coefficient reached a value of 620 kW/m2 °C. Obviously, the high pressure improved the contact between the roll and the slab surface, thereby reducing the resistance to heat flow. The mean roll-gap heat-transfer coefficient at the interface was shown to be linearly related to mean roll pressure. This finding is important because it permitted a determination of heat-transfer coefficients applicable to industrial rolling from pilot mill data. Thus, the thermal history of a slab during rough rolling was computed using a model in which the mean heat-transfer coefficient between the roll and the slab was

15. Code for Multiblock CFD and Heat-Transfer Computations

NASA Technical Reports Server (NTRS)

Fabian, John C.; Heidmann, James D.; Lucci, Barbara L.; Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur

2006-01-01

The NASA Glenn Research Center General Multi-Block Navier-Stokes Convective Heat Transfer Code, Glenn-HT, has been used extensively to predict heat transfer and fluid flow for a variety of steady gas turbine engine problems. Recently, the Glenn-HT code has been completely rewritten in Fortran 90/95, a more object-oriented language that allows programmers to create code that is more modular and makes more efficient use of data structures. The new implementation takes full advantage of the capabilities of the Fortran 90/95 programming language. As a result, the Glenn-HT code now provides dynamic memory allocation, modular design, and unsteady flow capability. This allows for the heat-transfer analysis of a full turbine stage. The code has been demonstrated for an unsteady inflow condition, and gridding efforts have been initiated for a full turbine stage unsteady calculation. This analysis will be the first to simultaneously include the effects of rotation, blade interaction, film cooling, and tip clearance with recessed tip on turbine heat transfer and cooling performance. Future plans call for the application of the new Glenn-HT code to a range of gas turbine engine problems of current interest to the heat-transfer community. The new unsteady flow capability will allow researchers to predict the effect of unsteady flow phenomena upon the convective heat transfer of turbine blades and vanes. Work will also continue on the development of conjugate heat-transfer capability in the code, where simultaneous solution of convective and conductive heat-transfer domains is accomplished. Finally, advanced turbulence and fluid flow models and automatic gridding techniques are being developed that will be applied to the Glenn-HT code and solution process.

16. Heat transfer enhancement using 2MHz ultrasound.

PubMed

Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas

2017-11-01

The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.

17. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

ERIC Educational Resources Information Center

Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

2012-01-01

In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

18. On Heat Transfer through a Solid Slab Heated Uniformly and Periodically: Determination of Thermal Properties

ERIC Educational Resources Information Center

Rojas-Trigos, J. B.; Bermejo-Arenas, J. A.; Marin, E.

2012-01-01

In this paper, some heat transfer characteristics through a sample that is uniformly heated on one of its surfaces by a power density modulated by a periodical square wave are discussed. The solution of this problem has two contributions, comprising a transient term and an oscillatory term, superposed to it. The analytical solution is compared to…

19. Heat transfer behavior of molten nitrate salt

Das, Apurba K.; Clark, Michael M.; Teigen, Bard C.; Fiveland, Woodrow A.; Anderson, Mark H.

2016-05-01

The usage of molten nitrate salt as heat transfer fluid and thermal storage medium decouples the generation of electricity from the variable nature of the solar resource, allowing CSP plants to avoid curtailment and match production with demand. This however brings some unique challenges for the design of the molten salt central receiver (MSCR). An aspect critical to the use of molten nitrate (60wt%/40wt% - NaNO3/KNO3) salt as heat transfer fluid in the MSCR is to understand its heat transfer behavior. Alstom collaborated with the University of Wisconsin to conduct a series of experiments and experimentally determined the heat transfer coefficients of molten nitrate salt up to high Reynolds number (Re > 2.0E5) and heat flux (q″ > 1000 kW/m2), conditions heretofore not reported in the literature. A cartridge heater instrumented with thermocouples was installed inside a stainless steel pipe to form an annular test section. The test section was installed in the molten salt flow loop at the University of Wisconsin facility, and operated over a range of test conditions to determine heat transfer data that covered the expected operating regime of a practical molten salt receiver. Heat transfer data were compared to widely accepted correlations found in heat transfer literature, including that of Gnielinski. At lower Reynolds number conditions, the results from this work concurred with the molten salt heat transfer data reported in literature and followed the aforementioned correlations. However, in the region of interest for practical receiver design, the correlations did not accurately model the experimentally determined heat transfer data. Two major effects were observed: (i) all other factors remaining constant, the Nusselt numbers gradually plateaued at higher Reynolds number; and (ii) at higher Reynolds number a positive interaction of heat flux on Nusselt number was noted. These effects are definitely not modeled by the existing correlations. In this paper a new

20. Heat Transfer Correlations for compressible flow in Micro Heat Exchangers

Coppola, M. A.; Croce, G.

2016-09-01

The paper discusses the definition of dimensionless parameters useful to define a local correlation for convective heat transfer in compressible, micro scale gaseous flows. A combination of static and stagnation temperatures is chosen, as it allows to weight the temperature change related to the heat transfer and that induced by conversion of internal energy into kinetic one. The correlation offers a purely convective local Nusselt number, i.e. correlating the heat flow rate with the local flow parameters and wall surface temperature. The correlation is validated through a series of numerical computations in both counter-current and co-current micro heat exchanger configurations. The numerical computations take into account rarefaction and conjugate heat transfer effects.

1. Coolant passage heat transfer with rotation

NASA Technical Reports Server (NTRS)

Rohde, J. E.

1982-01-01

Although the effects of the coriolis and buoyancy forces due to rotation on coolant-side heat transfer are generally not included in the design methods for blades, the influence of these forces could be large. Comparisons of nonrotating heat transfer data and extrapolations of available correlation for the average heat transfer coefficients with radial outflow of cooling air showed that neglecting rotation at gas turbine engine conditions result in variations in the heat transfer coefficient by as much as 45 percent. This, in effect, results in blade metal temperatures running as much as 100 F different from predicted values. This also may explain why rotating blade metal temperatures in engine tests are often higher than expected from results obtained in nonrotating cascade tests.

2. Cooling Heat Transfer of Supercritical Carbon Dioxide

Dang, Chaobin; Hihara, Eiji

The characteristics of carbon dioxide cooled under supercritical condition were investigated theoretically and experimentally. Based on the results of numerical calculation and experimental measurements described in the 1st report, a new correlation was proposed to predict the heat transfer coefficient, and the Filonenko's equation was found adequate to predict the pressure drop inside as mall seized tube. Those correlations were compared with measurement results and the deviations were found lower than ±20%. Furthermore, a compressor cycle was assembled to investigate the effect of lubricant oil on heat transfer and pressure drop. The oil content in CO2 was set to be about 0.5% during the measurements. This amount of lubricant oil was found affected the heat transfer coefficient significantly, with largest degradation of heat transfer coefficient at the pseudocritical point to nearly 50%. The effect of lubricant oil at small concentration on the pressure drop was found negligible.

3. Nanoparticle enhanced ionic liquid heat transfer fluids

DOEpatents

Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

2014-08-12

A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

4. Convective Heat Transfer for Ship Propulsion.

DTIC Science & Technology

1982-04-01

RD-A124 Wi CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION (U) ARIZONA 112 UNIV TUCSON ENGINEERING EXPERIMENT STATION PARK ET AL. 01 APR 82 1248-9 N814...395 CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION Prepared for Office of Naval Research Code 431 Arlington, Virginia Prepared by J. S. Park, M. F...FOR SHIP PROPULSION By J. S. Park, M. F. Taylor and D. M. McEligot Aerospace and Mechanical Engineering Department University of Arizona Tucson

5. Analytical Prediction of Turbulent Heat Transfer Parameters.

DTIC Science & Technology

1985-04-01

ofMaterfals (McGraw-Hill, equations show that the resistive bending moment in the New York, 1949), p. 184. cross section is OA . Bejan. J. Heat Transfer...178011981. graphed wavelengths agree with each other and with the ’ OA . Bejan, Lett. Heat Mass Transfer 8, 187 119810. buckling wavelength -’D/2...nicht- tear hslresaemto.wiht oeft ’ zahe Bereich der Fahne (die _Fahnensdule-) elastische Eigen- * schaften besitzt ihnlich jener elastischer Stiibe

6. Heat transfer mechanisms in microgravity flow boiling.

PubMed

Ohta, Haruhiko

2002-10-01

The objective of this paper is to clarify the mechanisms of heat transfer and dryout phenomena in flow boiling under microgravity conditions. Liquid-vapor behavior in annular flow, encountered in the moderate quality region, has extreme significance for practical application in space. To clarify the gravity effect on the heat transfer observed for an upward flow in a tube, the research described here started from the measurement of pressure drop for binary gas-liquid mixture under various gravity conditions. The shear stress acting on the surface of the annular liquid film was correlated by an empirical method. Gravity effects on the heat transfer due to two-phase forced convection were investigated by the analysis of velocity and temperature profiles in the film. The results reproduce well the trends of heat transfer coefficients varying with the gravity level, quality, and mass velocity. Dryout phenomena in the moderate quality region were observed in detail by the introduction of a transparent heated tube. At heat fluxes just lower and higher than CHF value, a transition of the heat transfer coefficient was calculated from oscillating wall temperature, where a series of opposing heat transfer trends--the enhancement due to the quenching of dried areas or evaporation from thin liquid films and the deterioration due to the extension of dry patches--were observed between the passage of disturbance waves. The CHF condition that resulted from the insufficient decrease of wall temperature in the period of enhanced heat transfer was overcome by a temperature increase in the deterioration period. No clear effect of gravity on the mechanisms of dryout was observed within the range of experiments.

7. Heat transfer coefficient of nanofluids in minichannel heat sink

Utomo, Adi T.; Zavareh, Ashkan I. T.; Poth, Heiko; Wahab, Mohd; Boonie, Mohammad; Robbins, Phillip T.; Pacek, Andrzej W.

2012-09-01

Convective heat transfer in a heat sink consisting of rectangular minichannels and cooled with alumina and titania nanofluids has been investigated experimentally and numerically. Numerical simulations were carried out in a three dimensional domain employing homogeneous mixture model with effective thermo-physical properties of nanofluids. The predictions of base temperature profiles of the heat sink cooled with both water and nanofluids agree well with the experimental data. Experimental and numerical results show that the investigated nanofluids neither exhibits unusual enhancement of heat transfer coefficient nor decreases the heat sink base temperature. Although both nanofluids showed marginal thermal conductivity enhancements, the presence of solid nanoparticles lowers the specific heat capacity of nanofluids offseting the advantage of thermal conductivity enhancement. For all investigated flow rates, the Nusselt number of both nanofluids overlaps with that of water indicating that both nanofluids behave like single-phase fluids.

8. Examination of Liquid Fluoride Salt Heat Transfer

SciTech Connect

Yoder Jr, Graydon L

2014-01-01

The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

9. Heat transfer between fish and ambient water.

PubMed

Stevens, E D; Sutterlin, A M

1976-08-01

1. The ability of fish gills to transfer heat was measured by applying a heat pulse to blood in the ventral aorta and measuring it before and after passing through the gills of a teleost, Hemitripterus americanus. 2. 80-90% of heat contained in the blood is lost during passage through the gills. 3. The fraction of heat not lost during passage through the gills is due to direct transfer of heat between the afferent and efferent artery within the gill bar. 4. The major fraction of metabolic heat (70 - 90%) is lost through the body wall and fins of the sea raven in sea water at 5 degrees C; the remainder is lost through the gills.

10. Interactive Heat Transfer Simulations for Everyone

ERIC Educational Resources Information Center

Xie, Charles

2012-01-01

Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

11. Interactive Heat Transfer Simulations for Everyone

ERIC Educational Resources Information Center

Xie, Charles

2012-01-01

Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…

12. Control of heat source in a heat conduction problem

Lyashenko, V.; Kobilskaya, E.

2014-11-01

The mathematical model of thermal processes during the heat treatment of a moving axisymmetric environment, for example wire. is considered. The wire is heated by internal constantly or periodically operating heat source. It is presented in the form of initial-boundary value problem for the unsteady heat equation with internal constantly or periodically operating heat source. The purpose of the work is the definition of control parameter of temperature field of a moving area, which is heated by internal heat source. The control parameters are determined by solving a nonlocal problem for the heat equation. The problem of getting an adequate temperature distribution throughout the heating area is considered. Therefore, a problem of heat source control is solved, in particular, control by electric current. Control of the heat source allows to maintain the necessary, from a technological point of view, temperature in the heating area. In this paper, to find additional information about the source of heat. The integral condition is used in the control problem. Integral condition, which is considered in the work, determines the energy balance of the heating zone and connects the desired temperature distribution in the internal points of area with temperatures at the boundaries. Control quality in an extremum formulation of the problem is assessed using the quadratic functional. In function space, from a physical point of view, proposed functional is the absolute difference between the actual emission of energy and absorbed energy in the heating zone. The absorbed energy is calculated by solving of the boundary value problem. Methods of determining the control parameters of temperature field are proposed. The resulting problem is solved by iterative methods. At different physical conditions, numerical calculations are carried out, control parameters of the heat treatment process are obtained.

13. Heat transfer measurements for Stirling machine cylinders

NASA Technical Reports Server (NTRS)

Kornhauser, Alan A.; Kafka, B. C.; Finkbeiner, D. L.; Cantelmi, F. C.

1994-01-01

The primary purpose of this study was to measure the effects of inflow-produced heat turbulence on heat transfer in Stirling machine cylinders. A secondary purpose was to provide new experimental information on heat transfer in gas springs without inflow. The apparatus for the experiment consisted of a varying-volume piston-cylinder space connected to a fixed volume space by an orifice. The orifice size could be varied to adjust the level of inflow-produced turbulence, or the orifice plate could be removed completely so as to merge the two spaces into a single gas spring space. Speed, cycle mean pressure, overall volume ratio, and varying volume space clearance ratio could also be adjusted. Volume, pressure in both spaces, and local heat flux at two locations were measured. The pressure and volume measurements were used to calculate area averaged heat flux, heat transfer hysteresis loss, and other heat transfer-related effects. Experiments in the one space arrangement extended the range of previous gas spring tests to lower volume ratio and higher nondimensional speed. The tests corroborated previous results and showed that analytic models for heat transfer and loss based on volume ratio approaching 1 were valid for volume ratios ranging from 1 to 2, a range covering most gas springs in Stirling machines. Data from experiments in the two space arrangement were first analyzed based on lumping the two spaces together and examining total loss and averaged heat transfer as a function of overall nondimensional parameter. Heat transfer and loss were found to be significantly increased by inflow-produced turbulence. These increases could be modeled by appropriate adjustment of empirical coefficients in an existing semi-analytic model. An attempt was made to use an inverse, parameter optimization procedure to find the heat transfer in each of the two spaces. This procedure was successful in retrieving this information from simulated pressure-volume data with artificially

14. Heat Transfer to Fuel Sprays Injected into Heated Gases

NASA Technical Reports Server (NTRS)

Selden, Robert F; Spencer, Robert C

1938-01-01

This report presents the results of a study made of the influence of several variables on the pressure decrease accompanying injection of a relatively cool liquid into a heated compressed gas. Indirectly, this pressure decrease and the time rate of change of it are indicative of the total heat transferred as well as the rate of heat transfer between the gas and the injected liquid. Air, nitrogen, and carbon dioxide were used as ambient gases; diesel fuel and benzene were the injected liquids. The gas densities and gas-fuel ratios covered approximately the range used in compression-ignition engines. The gas temperatures ranged from 150 degrees c. to 350 degrees c.

15. Bistable heat transfer in a nanofluid.

PubMed

Donzelli, Gea; Cerbino, Roberto; Vailati, Alberto

2009-03-13

Heat convection in water can be suppressed by adding a small amount of highly thermophilic nanoparticles. We show that such suppression is not effective when a suspension with uniform concentration of nanoparticles is suddenly heated from below. At Rayleigh numbers smaller than a sample dependent threshold Ra;{*} we observe transient oscillatory convection. Unexpectedly, the duration of convection diverges at Ra;{*}. Above Ra;{*} oscillatory convection becomes permanent and the heat transferred exhibits bistability. Our results are explained only partially and qualitatively by existing theories.

16. Capillary-Condenser-Pumped Heat-Transfer Loop

NASA Technical Reports Server (NTRS)

Silverstein, Calvin C.

1989-01-01

Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

17. Capillary-Condenser-Pumped Heat-Transfer Loop

NASA Technical Reports Server (NTRS)

Silverstein, Calvin C.

1989-01-01

Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

18. Modelling of heat and mass transfer processes in neonatology.

PubMed

Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C

2008-09-01

This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.

19. Heat transfer through a paraffin wax solar energy storage characterized by a temperature dependent specific heat

SciTech Connect

Gobin, D.; Benard, C.; Levesque, D.; Gogy, J.C.

1981-01-01

The numerical solution of heat transfer equations in the melting process of a phase change material (PCM) has been studied. This problem generally concerns pure materials presenting a frank solid-liquid transition at a precise melting temperature. This problem allows the simulated comparison of various types of PCMs and testing the behavior of a given system for variations of different parameters. 3 refs.

20. Indirect evaporative coolers with enhanced heat transfer

DOEpatents

Kozubal, Eric; Woods, Jason; Judkoff, Ron

2015-09-22

A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

1. Heat transfer in rocket combustion chambers

NASA Technical Reports Server (NTRS)

Anderson, P.; Cheng, G.; Farmer, R.

1993-01-01

Complexities of liquid rocket engine heat transfer which involve the injector faceplate and film cooled walls are being investigated by computational analysis. A conjugate heat transfer analysis was used to describe localized heating phenomena associated with particular injector configurations and film coolant flows. These components were analyzed, and the analyses verified when appropriate test data were available. The component analyses are being synthesized into an overall flowfield/heat transfer model. A Navier-Stokes flow solver, the FDNS code, was used to make the analyses. Particular attention was given to the representation of the thermodynamic properties of the fluid streams. Unit flow models of specific coaxial injector elements have been developed and are being used to describe the flame structure near the injector faceplate.

2. TACO: a finite element heat transfer code

SciTech Connect

Mason, W.E. Jr.

1980-02-01

TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.

3. Personalized recommendation based on heat bidirectional transfer

Ma, Wenping; Feng, Xiang; Wang, Shanfeng; Gong, Maoguo

2016-02-01

Personalized recommendation has become an increasing popular research topic, which aims to find future likes and interests based on users' past preferences. Traditional recommendation algorithms pay more attention to forecast accuracy by calculating first-order relevance, while ignore the importance of diversity and novelty that provide comfortable experiences for customers. There are some levels of contradictions between these three metrics, so an algorithm based on bidirectional transfer is proposed in this paper to solve this dilemma. In this paper, we agree that an object that is associated with history records or has been purchased by similar users should be introduced to the specified user and recommendation approach based on heat bidirectional transfer is proposed. Compared with the state-of-the-art approaches based on bipartite network, experiments on two benchmark data sets, Movielens and Netflix, demonstrate that our algorithm has better performance on accuracy, diversity and novelty. Moreover, this method does better in exploiting long-tail commodities and cold-start problem.

4. Characteristics of Transient Boiling Heat Transfer

SciTech Connect

Liu, Wei; Monde, Masanori; Mitsutake, Y.

2002-07-01

In this paper, one dimensional inverse heat conduction solution is used for a measurement of pool boiling curve. The experiments are performed under atmospheric pressure for copper, brass, carbon steel and gold. Boiling curves, including unsteady transition boiling region, are found can be traced fairly well from a simple experiment system by solving inverse heat conduction solution. Boiling curves for steady heating and transient heating, for heating process and cooling process are compared. Surface behavior around CHF point, transition boiling and film-boiling regions are observed by using a high-speed camera. The results show the practicability of the inverse heat conduction solution in tracing boiling curve and thereby supply us a new way in boiling heat transfer research. (authors)

5. Heat transfer in suspensions of rigid particles

Brandt, Luca; Niazi Ardekani, Mehdi; Abouali, Omid

2016-11-01

We study the heat transfer in laminar Couette flow of suspensions of rigid neutrally buoyant particles by means of numerical simulations. An Immersed Boundary Method is coupled with a VOF approach to simulate the heat transfer in the fluid and solid phase, enabling us to fully resolve the heat diffusion. First, we consider spherical particles and show that the proposed algorithm is able to reproduce the correlations between heat flux across the channel, the particle volume fraction and the heat diffusivity obtained in laboratory experiments and recently proposed in the literature, results valid in the limit of vanishing inertia. We then investigate the role of inertia on the heat transfer and show an increase of the suspension diffusivity at finite particle Reynolds numbers. Finally, we vary the relativity diffusivity of the fluid and solid phase and investigate its effect on the effective heat flux across the channel. The data are analyzed by considering the ensemble averaged energy equation and decomposing the heat flux in 4 different contributions, related to diffusion in the solid and fluid phase, and the correlations between wall-normal velocity and temperature fluctuations. Results for non-spherical particles will be examined before the meeting. Supported by the European Research Council Grant No. ERC-2013- CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing).

6. Heat transfer education : Keeping it relevant and vibrant.

SciTech Connect

Khounsary, A. M.

1998-08-14

The motivation for a fresh look at heat transfer education, both in content and in methodology, is generated by a number of trends in engineering practice. These include the increasing demand for engineers with interdisciplinary skills, rapid integration of technology, emergence of computerized and interactive problem-solving tools, shortening time of concept-to-market, availability of new technologies, and an increasing number of new or redesigned products and processes in which heat transfer plays a part. Examination of heat transfer education in this context can be aided by considering the changes, both qualitatively and quantitatively, in the student, educator, and researcher populations, employment opportunities, in the needs of corporations, government, industry, and universities, and in the relevant technical problems and issues of the day. Such an overview provides the necessary background for charting a response to the difficult question of how to maintain excellence and continuity in heat transfer education in the face of rapid, widespread, and complex changes. The present paper addresses how to make heat transfer education more relevant and stimulating. This paper represents a written summary of a 1996 panel discussion at the 1996 International Mechanical Engineering Conference and Exhibition (IMECE) of the American Society of Mechanical Engineers (ASME) in Atlanta, Georgia, on ''Heat Transfer Education: Keeping it Relevant and Vibrant,'' with significant expansion and amplification by the authors and the panelists in the 1997-98 period. The consensus of the participants is that the steps necessary to ensure the desired outcome in heat transfer education should include: (1) a better understanding of the interaction between the student, course content, and market needs; (2) an appreciation of the need in multidisciplinary industrial environments for engineers trained with a broad background: (3) a revision of the introductory heat transfer course to

7. Teaching with Spreadsheets: An Example from Heat Transfer.

ERIC Educational Resources Information Center

Drago, Peter

1993-01-01

Provides an activity which measures the heat transfer through an insulated cylindrical tank, allowing the student to gain a better knowledge of both the physics involved and the working of spreadsheets. Provides both a spreadsheet solution and a maximum-minimum method of solution for the problem. (MVL)

8. Heat transfer in pressurized circulating fluidized beds

SciTech Connect

Wirth, K.E.

1997-12-31

The wall-to-suspension heat transfer in circulating fluidized beds (CFBs) operated at almost atmospheric pressure depends on the fluid mechanics immediately near the wall and on the thermal properties of the gas used. No influence of the superficial gas velocity adjusted is present. Consequently, the wall-to-suspension heat transfer coefficient in the form of the Nusselt number can be described by the Archimedes number of the gas-solid-system and the pressure drop number. The last number relates the cross-sectional average solids concentration to the solids concentration at minimum fluidization condition. However, with pressurized CFBs an influence of the superficial gas velocity on the wall-to-suspension heat transfer can be observed. Normalizing the superficial gas velocity in the form of the particle Froude number, two cases for the heat transfer in pressurized CFBs can be detected: with small particle Froude numbers (smaller than four) the same flow behavior and consequently the same heat transfer correlation is valid as it is for CFBs operated at almost atmospheric conditions; and with high particle Froude numbers (for example higher than four) the flow behavior immediately near the heat exchanger surface (CFB wall) can change. Instead of curtains of solids falling down with almost atmospheric pressure swirls of gas and solids can occur in the vicinity of the CFB wall when the static pressure is increased. With the change of the flow pattern near the CFB wall, i.e., the heat exchanger surface, a change of the heat transfer coefficient takes place. For the same Archimedes number, i.e., the same gas-solid system, and the same pressure drop number, i.e., the same cross-sectional average solids concentration, the Nusselt number, i.e., the heat transfer coefficient, increases when the flow pattern near the CFB wall changes from the curtain-type flow to that of the swirl-type flow. From experimentally obtained data in a cold running CFB a very simple correlation was

9. Turbulent heat transfer prediction method for application to scramjet engines

NASA Technical Reports Server (NTRS)

Pinckney, S. Z.

1974-01-01

An integral method for predicting boundary layer development in turbulent flow regions on two-dimensional or axisymmetric bodies was developed. The method has the capability of approximating nonequilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was developed for the problem of predicting the heat transfer in a turbulent boundary layer in the presence of a high pressure gradient. The solution was derived with particular emphasis on its applicability to supersonic combustion; thus, the effects of real gas flows were included. The resulting integrodifferential boundary layer method permits the estimation of cooling reguirements for scramjet engines. Theoretical heat transfer results are compared with experimental combustor and noncombustor heat transfer data. The heat transfer method was used in the development of engine design concepts which will produce an engine with reduced cooling requirements. The Langley scramjet engine module was designed by utilizing these design concepts and this engine design is discussed along with its corresponding cooling requirements. The heat transfer method was also used to develop a combustor cooling correlation for a combustor whose local properties are computed one dimensionally by assuming a linear area variation and a given heat release schedule.

10. Gas-side heat transfer with rotation

NASA Technical Reports Server (NTRS)

Dring, R. P.

1983-01-01

The primary basis for heat transfer analysis of turbine blades is experimental data obtained in linear cascades. These data have been very valuable in identifying the major heat transfer and fluid flow features of a turbine airfoil. The question of major interest is how well all of these data translate to the rotating turbine blade. It is known from the work of Lokay and Trushin that average heat transfer coefficients on the rotor may be as much as 40 percent above the values measured on the same blades nonrotating. Recent work by Dunn and Holt supports the Russian conclusion. What is lacking is a set of data from a rotating system which is of sufficient detail as to make careful local comparisons between static system in which there is sufficient documentation of the flow field to support the computer analyses being developed today. A second major question is the influence, if any, of the first stator row on the heat transfer of the second stator row after the flow has passed through the rotor. An objective of the present program, is to obtain a detailed set of heat transfer coefficients along the midspan of a blade in a rotating turbine.

11. Dissociation heat transfer characteristics of methane hydrates

SciTech Connect

Kamath, V.A.; Holder, G.D.

1987-02-01

Knowledge of the interfacial heat transfer phenomenon during the dissociation of gas hydrates is essential in modeling the hydrate dissociation process. Such knowledge has applications in natural gas processing, storage, or transportation; in the drilling and recovery of oil and gas in the presence of gas hydrates; in the desalination of sea water; and in the production of natural gas from hydrate reservoirs. The process of hydrate dissociation is a unique phenomenon in which gas and water are simultaneously produced at the dissociated hydrate surface and play an important role in the mechanism of heat transfer to hydrates. An earlier study of propane hydrate dissociation showed that hydrate dissociation is a heat-transfer-limited process and somewhat similar to the nucleate boiling of liquids. In the present study, heat transfer limitations for methane hydrate dissociation were studied for two reasons. First, a comparison of the results of this study with propane hydrate was desired. Second, the effect of hydrate structure and gas molecule type on the rate of heat transfer during hydrate dissociation was sought.

12. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

DOEpatents

Koplow, Jeffrey P.

2016-02-16

Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

13. Problem-Solving Transfer Among Programming Languages

DTIC Science & Technology

1990-06-04

stable from programming in the first language to in the second. In other words, the transfer on subsequent drafts was mainly manifested as fewer drafts...substantial transfer from solving a problem in the first language (LISP or PROLOG) to solving it in the second language (PROLOG or LISP) in terms of time...transfer a lot of the algorithmic knowledge gained from programming in the first language to in the second. We will refer this type of transfer as

14. Numerical simulations of heat and mass transfer at ablating surface in hypersonic flow

Bocharov, A. N.; Golovin, N. N.; Petrovskiy, V. P.; Teplyakov, I. O.

2015-11-01

The numerical technique was developed to solve heat and mass transfer problem in 3D hypersonic flow taking into account destruction of thermal protection system. Described technique was applied for calculation of heat and mass transfer in sphere-cone shaped body. The data on temperature, heat flux and mass flux were obtained.

SciTech Connect

Tencer, John; Carlberg, Kevin Thomas; Larsen, Marvin E.; Hogan, Roy E.

2016-10-01

Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.

16. Accuracy Quantification of the Loci-CHEM Code for Chamber Wall Heat Transfer in a GO2/GH2 Single Element Injector Model Problem

NASA Technical Reports Server (NTRS)

West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin

2006-01-01

A robust rocket engine combustor design and development process must include tools which can accurately predict the multi-dimensional thermal environments imposed on solid surfaces by the hot combustion products. Currently, empirical methods used in the design process are typically one dimensional and do not adequately account for the heat flux rise rate in the near-injector region of the chamber. Computational Fluid Dynamics holds promise to meet the design tool requirement, but requires accuracy quantification, or validation, before it can be confidently applied in the design process. This effort presents the beginning of such a validation process for the Loci-CHEM CFD code. The model problem examined here is a gaseous oxygen (GO2)/gaseous hydrogen (GH2) shear coaxial single element injector operating at a chamber pressure of 5.42 MPa. The GO2/GH2 propellant combination in this geometry represents one the simplest rocket model problems and is thus foundational to subsequent validation efforts for more complex injectors. Multiple steady state solutions have been produced with Loci-CHEM employing different hybrid grids and two-equation turbulence models. Iterative convergence for each solution is demonstrated via mass conservation, flow variable monitoring at discrete flow field locations as a function of solution iteration and overall residual performance. A baseline hybrid was used and then locally refined to demonstrate grid convergence. Solutions were obtained with three variations of the k-omega turbulence model.

17. Accuracy Quantification of the Loci-CHEM Code for Chamber Wall Heat Transfer in a GO2/GH2 Single Element Injector Model Problem

NASA Technical Reports Server (NTRS)

West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin

2006-01-01

A robust rocket engine combustor design and development process must include tools which can accurately predict the multi-dimensional thermal environments imposed on solid surfaces by the hot combustion products. Currently, empirical methods used in the design process are typically one dimensional and do not adequately account for the heat flux rise rate in the near-injector region of the chamber. Computational Fluid Dynamics holds promise to meet the design tool requirement, but requires accuracy quantification, or validation, before it can be confidently applied in the design process. This effort presents the beginning of such a validation process for the Loci-CHEM CFD code. The model problem examined here is a gaseous oxygen (GO2)/gaseous hydrogen (GH2) shear coaxial single element injector operating at a chamber pressure of 5.42 MPa. The GO2/GH2 propellant combination in this geometry represents one the simplest rocket model problems and is thus foundational to subsequent validation efforts for more complex injectors. Multiple steady state solutions have been produced with Loci-CHEM employing different hybrid grids and two-equation turbulence models. Iterative convergence for each solution is demonstrated via mass conservation, flow variable monitoring at discrete flow field locations as a function of solution iteration and overall residual performance. A baseline hybrid was used and then locally refined to demonstrate grid convergence. Solutions were obtained with three variations of the k-omega turbulence model.

18. Electromagnetic Heat Transfer in Artificial Materials

Woods, Lilia; Drosdoff, David; Phan, Anh

2014-03-01

Electromagnetic energy exchange has found promising new opportunities by greatly enhancing the heat transfer between bodies via radiation in the near-field regime. The greatest heat transfer occurs when the bodies support surface plasmons or polaritons that share the same resonant frequency. It has been shown, however, that 2-D materials such as graphene can have their surface plasmons tuned by modifying the chemical potential and temperature. This allows for tuning its resonance with other systems. In this talk, we investigated the electromagnetic radiation in metamaterials characterized by a strong magnetic response. We study theoretically Pendry-like and magnetically active metamaterial/graphene composites. The possibility for enhancing or inhibiting the heat transfer via the graphene properties is investigated.

19. Radiant heat transfer between nongray directional surfaces.

NASA Technical Reports Server (NTRS)

Fischer, W. D.; Hering, R. G.

1972-01-01

Real surface property effects on local and overall heat transfer are studied for a simple system of interacting opaque surfaces. Wavelength, temperature and directional dependence of surface properties is included in the analysis for equal and unequal temperature specularly reflecting surfaces. Tungsten is employed as a representative metal and Roberts' model is used to describe the wavelength and temperature dependence of its optical parameters. The relationships of electromagnetic theory are employed to describe the directional dependence of spectral properties. Numerical results establish that gray direction independent property analysis adequately predicts the general trends of real surface analysis. The results also establish that spectral and temperature dependence of surface properties influences radiant heat transfer to a greater degree than does directional dependence of properties. Property models which adequately account for the nongray character of engineering surfaces while neglecting directional dependence of properties can provide heat transfer results of acceptable engineering accuracy.

20. Evaporative heat transfer in beds of sensible heat pellets

SciTech Connect

Arimilli, R.V.; Moy, C.A.

1989-03-01

An experimental study of boiling/evaporative heat transfer from heated spheres in vertical packed beds with downward liquid-vapor flow of Refrigerant-113 was conducted. Surface superheats of 1 to 50{degrees}C, mass flow rates of 1.7 to 5.6 Kg/min, sphere diameters of 1.59 and 2.54 cm, quality (i.e., mass fraction of vapor) of the inlet flow of 0.02 to 1.0, and two surface conditions were considered. Instrumented smooth and rough aluminum spheres were used to measure the heat transfer coefficients under steady state conditions. Heat transfer coefficients were independently determined for each sphere at three values three values of surface superheat. The quantitative results of this extensive experimental study are successfully correlated. The correlation equation for the boiling heat transfer coefficients is presented in terms of a homogeneous model. The correlation may be used in the development of numerical models to simulate the transient thermal performance of packed bed thermal energy storage unit while operating as an evaporator. The boiling of the liquid-vapor flow around the spheres in the packed bed was visually observed with a fiber-optic baroscope and recorded on a videotape. The visualization results showed qualitatively the presence of four distinct flow regimes. One of these occurs under saturated inlet conditions and are referred to as the Low-quality, Medium-quality, and High-quality Regimes. The regimes are discussed in detail in this paper.

1. Heat transfer mechanisms in pulsating heat-pipes with nanofluid

Gonzalez, Miguel; Kelly, Brian; Hayashi, Yoshikazu; Kim, Yoon Jo

2015-01-01

In this study, the effect of silver nanofluid on a pulsating heat-pipe (PHP) thermal performance was experimentally investigated to figure out how nanofluid works with PHP. A closed loop PHP was built with 3 mm diameter tubes. Thermocouples and pressure transducers were installed for fluid and surface temperature and pressure measurements. The operating temperature of the PHP varied from 30-100 °C, with power rates of 61 W and 119 W. The fill ratio of 30%, 50%, and 70% were tested. The results showed that the evaporator heat transfer performance was degraded by the addition of nanoparticles due to increased viscosity at high power rate, while the positive effects of high thermal conductivity and enhanced nucleate boiling worked better at low power rate. In the condenser section, owing to the relatively high liquid content, nanofluid more effectively improved the heat transfer performance. However, since the PHP performance was dominantly affected by evaporator heat transfer performance, the overall benefit of enhanced condenser section performance was greatly limited. It was also observed that the poor heat transfer performance with nanofluid at the evaporator section led to lower operating pressure of PHP.

2. Heat Transfer Measurements of Internally Finned Rotating Heat Pipes.

DTIC Science & Technology

1983-12-01

Noncondensable Gases, Rotating Heat Pipe , Performance, Helical and Straight Pin, Internal Heat Transfer Coefficient. AS"RACY (40115111111141 WH ide of* 0686...improvement over the smooth condenser. By helically finning the tube wall in addition to increasing the internal area, the counter-clockwise spiral ... spirally -finned condenser then on the straight-finned condenser. Apparently, during fabrication of the helically -finned condenser, a series of

3. Metallized Gelled Propellant Heat Transfer Tests Analyzed

NASA Technical Reports Server (NTRS)

Palaszewski, Bryan A.

1997-01-01

A series of rocket engine heat transfer experiments using metallized gelled liquid propellants was conducted at the NASA Lewis Research Center. These experiments used a small 20- to 40-lbf thrust engine composed of a modular injector, an igniter, a chamber, and a nozzle. The fuels used were traditional liquid RP-1 and gelled RP-1 with 0-, 5-, and 55-wt % loadings of aluminum particles. Gaseous oxygen was used as the oxidizer. Heat transfer measurements were made with a rocket engine calorimeter chamber and nozzle with a total of 31 cooling channels. Each channel used water flow to carry heat away from the chamber and the attached thermocouples; flow meters allowed heat flux estimates at each of the 31 stations.

4. Coolant passage heat transfer with rotation

NASA Technical Reports Server (NTRS)

Hajek, T. J.; Wagner, J.; Johnson, B. V.

1986-01-01

In current and advanced gas turbine engines, increased speeds, pressures and temperatures are used to reduce specific fuel consumption and increase thrust/weight ratios. Hence, the turbine airfoils are subjected to increased heat loads escalating the cooling requirements to satisfy life goals. The efficient use of cooling air requires that the details of local geometry and flow conditions be adequately modeled to predict local heat loads and the corresponding heat transfer coefficients. The objective of this program is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

5. Transfer of radiative heat through clothing ensembles.

PubMed

Lotens, W A; Pieters, A M

1995-06-01

A mathematical model was designed to calculate the temperature and dry heat transfer in the various layers of a clothing ensemble, and the total heat loss of a human who is irradiated for a certain fraction of his or her area. The clothing ensemble that is irradiated by an external heat source is considered to be composed of underclothing, trapped air, and outer fabric. The model was experimentally tested with heat balance methods, using subjects, varying the activity, wind, and radiation characteristics of the outer garment of two-layer ensembles. In two experiments the subjects could only give off dry heat because they were wrapped in plastic foil. The model appeared to be correct within about 1 degree C (rms error) and 10 Wm-2 (rms error). In a third experiment, sweat evaporation was also taken into account, showing that the resulting physiological heat load of 10 to 30% of the intercepted additional radiation is compensated by additional sweating. The resulting heat strain was rather mild. It is concluded that the mathematical model is a valid tool for the investigation of heat transfer through two-layer ensembles in radiant environments.

6. Low-temperature heat transfer in nanowires.

PubMed

Glavin, B A

2001-05-07

A new regime of low-temperature heat transfer in suspended nanowires is predicted. It takes place when (i) only "acoustic" phonon modes of the wire are thermally populated and (ii) phonons are subject to the effective elastic scattering. Qualitatively, the main peculiarities of heat transfer originate due to the appearance of the flexural modes with high density of states in the wire phonon spectrum. They give rise to the T(1/2) temperature dependence of the wire thermal conductance. Experimental situations where the new regime is likely to be detected are discussed.

7. Convective heat transfer during dendritic growth

NASA Technical Reports Server (NTRS)

Glicksman, M. E.; Huang, S. C.

1979-01-01

Axial growth rate measurements were carried out at 17 levels of supercooling between 0.043 C and 2 C, a temperature range in which convection, instead of diffusion, becomes the controlling mechanism of heat transfer in the dentritic growth process. The growth velocity, normalized to that expected for pure diffusive heat transfer, displays a dependence on orientation. The ratio of the observed growth velocity to that for convection-free growth and the coefficients of supercooling are formulated. The dependence of normalized growth rate in supercooling is described for downward growing dendrites. These experimental correlations can be justified theoretically only to a limited extent.

8. Splice connector with internal heat transfer jacket

DOEpatents

Silva, Frank A.; Mayer, Robert W.

1977-01-01

A heat transfer jacket is placed over the terminal portions of the conductors of a pair of high voltage cables which are connected in a splice connection wherein a housing surrounds the connected conductor portions, the heat transfer jacket extending longitudinally between the confronting ends of a pair of adaptor sleeves placed upon the insulation of the cables to engage and locate the adaptor sleeves relative to one another, and laterally between the conductors and the housing to provide a path of relatively high thermal conductivity between the connected conductor portions and the housing.

9. Experimental determination of stator endwall heat transfer

NASA Technical Reports Server (NTRS)

Boyle, Robert J.; Russell, Louis M.

1989-01-01

Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane possage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Resutls were obtained for Reynolds numbers based on inlet velocity and axial chord between 75,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

10. Experimental determination of stator endwall heat transfer

NASA Technical Reports Server (NTRS)

Boyle, Robert J.; Russell, Louis M.

1989-01-01

Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.

11. Heat transfer during quenching of gases

Ambraziavichius, A.

Results of theoretical and experimental investigations of gas-side heat transfer of subsonic laminar or turbulent flows of diatomic gases (air or nitrogen) heated to 5000 K in cold-wall pipes are presented. While determining the mixing length, physical parameters which consider local temperatures of the boundary layer were adopted. Thus, the generalized fields of velocities and temperatures in the turbulent region of the boundary layer are identical for both moderate and high gas temperature ranges, and Pr-sub-t may be considered constant and approximately equal to 0.9. The temperature level of gases in turblent flow is shown to insignificantly affect heat transfer equations, provided the physical parameters in the similarity numbers are chosen according to the bulk flow temperature. A calculation technique is developed for heat transfer of dissociated diatomic gases in annular and rectangular channels, in slots, and over bundles of square tubes in cross flow. Also, a relation is shown between the heat transfer coefficient, quenching velocity, and nitrogen oxide concentration in the air exhaust of a nitrogen oxide quenching apparatus.

12. Microscale surface modifications for heat transfer enhancement.

PubMed

Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

2013-10-09

In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

13. Natural convective heat transfer from square cylinder

SciTech Connect

Novomestský, Marcel Smatanová, Helena Kapjor, Andrej

2016-06-30

This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.

14. Experimental Investigations of Heat and Mass Transfer in Microchannel Heat-Transfer Elements

Konovalov, D. A.

2016-05-01

The present work seeks to develop and investigate experimentally microchannel heat-exchange apparatuses of two designs: with porous elements manufactured from titanium and copper, and also based on the matrix of filamentary silicon single crystals under operating conditions with high heat loads, unsteadiness, and nonlinear flow of the coolant. For experimental investigations, the authors have developed and manufactured a unique test bench allowing tests of the developed heat-transfer elements in unsteady operating regimes. The performed experimental investigations have made it possible to obtain criterial dependences of the heat-transfer coefficient on the Reynolds and Prandtl numbers and to refine the values of viscous and inertial coefficients. It has been established that microchannel heat-transfer elements based on silicon single crystals, which make it possible to remove a heat flux above 100 W/cm2, are the most efficient. For porous heat-transfer elements, the best result was attained for wedge-shaped copper samples. According to investigation results, the authors have considered the issues of optimization of thermal and hydraulic characteristics of the heat-transfer elements under study. In the work, the authors have given examples of practical use of the developed heat-transfer elements for cooling systems of radioelectronic equipment.

15. Heat Transfer and Cooling in Gas Turbines

DTIC Science & Technology

1985-09-01

pillar -like protrusions. .1-2 The accurate determination of ILet transfer coefficient distributions in these blade passages is vital at the design...verification. The fin analysis had indirectly assumed absence of any contact resistance between the copper endwall and the wood pins, woich could be...thin layer of epoxy (-.005-.006 cm) between the copper pin and the endwalls of less than 1% of the heat transfer surface temperature. The resulting

16. FEHM: finite element heat and mass transfer code

SciTech Connect

Zyvoloski, G.; Dash, Z.; Kelkar, S.

1988-03-01

The finite element heat and mass (FEHM) transfer code is a computer code developed to simulate geothermal and hot dry rock reservoirs. It is also applicable to natural-state studies of geothermal systems and ground-water flow. It solves the equations of heat and mass transfer for multiphase flow in porous and permeable media using the finite element method. The code also has provisions for a noncoupled tracer; that is, the tracer solutions do not affect the heat and mass transfer solutions. It can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model, the numerical solution procedure, and model verification and validation are provided in this report. A user's guide and sample problems are included in the appendices. 17 refs., 10 figs., 4 tabs.

17. Self supporting heat transfer element

DOEpatents

Story, Grosvenor Cook; Baldonado, Ray Orico

2002-01-01

The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.

18. The Community College Transfer Problem

ERIC Educational Resources Information Center

Roach, Ronald

2009-01-01

Once a high school dropout, Hamilton Cunningham beat the odds in navigating the transition from earning a GED, serving in the U.S. Air Force, and attending community college to enrolling at Howard University in fall 2007 as a sophomore where he is now a Truman Scholar and a Jack Kent Cooke Foundation undergraduate transfer scholarship recipient.…

19. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

PubMed Central

Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

2014-01-01

This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

20. Heat flux sensors for infrared thermography in convective heat transfer.

PubMed

Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

2014-11-07

This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

1. Three-dimensional nonsteady heat-transfer analysis of an indirect heating furnace

SciTech Connect

Ito, H.; Umeda, Y.; Nakamura, Y.; Wantanabe, T.; Mitutani, T. ); Arai, N.; Hasatani, M. )

1991-01-01

This paper reports on an accurate design method for industrial furnaces from the viewpoint of heat transfer. The authors carried out a three-dimensional nonsteady heat-transfer analysis for a practical-size heat- treatment furnace equipped with radiant heaters. The authors applied three software package programs, STREAM, MORSE, and TRUMP, for the analysis of the combined heat-transfer problems of radiation, conduction, and convection. The authors also carried out experiments of the heating of a charge consisting of packed bolts. The authors found that the air swirled inside the furnace. As for the temperature in each part in the furnace, analytical results were generally in close agreement with the experimental ones. This suggests that our analytical method is useful for a fundamental heat- transfer-based design of a practical-size industrial furnace with an actual charge such as packed bolts. As for the temperature distribution inside the bolt charge (work), the analytical results were also in close agreement with the experimental ones. Consequently, it was found that the heat transfer in the bolt charge could be described with an effective thermal conductivity.

2. Analytical Investigation of Heat Transfer in an Anisotropic Band with Heat Fluxes Assigned at the Boundaries

Formalev, V. F.; Kolesnik, S. A.

2016-07-01

An analytical solution of a nonstationary problem of the theory of heat conduction in an anisotropic band under heat transfer conditions at the boundaries has been obtained for the first time by applying the Fourier transformation with respect to the longitudinal variable and the Laplace transformation for time. The problem is formulated and solved in regions with anisotropy of general form when the principal axes of the heat conduction tensor are set at an angle that orients these axes relative to the Cartesian coordinate system.

3. Heat and mass transfer and hydrodynamics in swirling flows (review)

Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.

2017-02-01

Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.

4. Inverse heat conduction problem in a phase change memory device

Battaglia, Jean-Luc; De, Indrayush; Sousa, Véronique

2017-01-01

An invers heat conduction problem is solved considering the thermal investigation of a phase change memory device using the scanning thermal microscopy. The heat transfer model rests on system identification for the probe thermal impedance and on a finite element method for the device thermal impedance. Unknown parameters in the model are then identified using a nonlinear least square algorithm that minimizes the quadratic gap between the measured probe temperature and the simulated one.

5. Phase change heat transfer during cryosurgery of lung cancer using hyperbolic heat conduction model.

PubMed

Kumar, Ajay; Kumar, Sushil; Katiyar, V K; Telles, Shirley

2017-05-01

The paper reports a numerical study of phase change heat transfer process in lung cancer undergoing cryosurgery. A two dimensional hyperbolic bio-heat model with non-ideal property of tissue, blood perfusion and metabolism is used to analyze the problem. The governing equations are solved by finite difference method based on enthalpy formulation. Effects of relaxation time of heat flux in hyperbolic model on freezing process have been examined. A comparative investigation of two different models (hyperbolic and parabolic bio-heat models) is also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

6. Cooperative heat transfer and ground coupled storage system

DOEpatents

Metz, Philip D.

1982-01-01

A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

7. Cooperative heat transfer and ground coupled storage system

DOEpatents

Metz, P.D.

A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

8. Heat transfer studies. Final report

SciTech Connect

Boehm, R.; Chen, Y.T.

1996-04-12

Many simple (without thermal effects) ground-water flow models have been used for analysis of water resource problems since the 1960`s. The emphasis on more complicated ground-water flow models began to shift with the focus on waste management problems during the 1970`s. The ground-water flow model development has shifted to unsaturated flow models because the unsaturated zone at Yucca Mountain was selected as a potential high-level radioactive waste disposal site. Many unsaturated flow models have been developed and used since the mid-1980`s. A few unsaturated flow models have also been developed in the 1990`s. Under the U.S. Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document the existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. Two major regulatory requirements are the main criteria for selection of ground-water flow models in the unsaturated zone. One is of calculating the pre-emplacement ground-water travel time. Our work has focused on visualization techniques, and experiments that could have more application quantitatively. Many studies are summarized in this report.

9. Development of advanced low-temperature heat transfer fluids for district heating and cooling

SciTech Connect

Not Available

1991-09-30

The feasibility of adding phase change materials (PCMs) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMs, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literaturevalues. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. When using PCMs in district cooling systems, clogging of frozen PCM particles isone of the major problems to be overcome. In the present project it is proposed to minimize or prevent clogging by the addition of an emulsifier. Effects of the emulsifier on the mixture of water and hexadecane(a PCM) were studied. As the amount of the emulsifier was increased, the size of the solid PCM particles became smaller. When the size of the particles was small enough, they did not stick together or stick to the cold surface of a heat exchanger. The amount of emulsifier to produce this condition was determined.

10. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

NASA Technical Reports Server (NTRS)

Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

2013-01-01

This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

11. Evaluation of three different radiative transfer equation solvers for combined conduction and radiation heat transfer

Sun, Yujia; Zhang, Xiaobing; Howell, John R.

2016-11-01

This work investigates the performance of P1 method, FVM and SP3 method for 2D combined conduction and radiation heat transfer problem. Results based on the Monte Carlo method coupled with the energy equation are used as the benchmark solutions. Effects of the conduction-radiation parameter and optical thickness are considered. Performance analyses in term of the accuracy of heat flux and temperature predictions and of computing time are presented and analyzed.

12. Heat transfer variations of bicycle helmets.

PubMed

Brühwiler, P A; Buyan, M; Huber, R; Bogerd, C P; Sznitman, J; Graf, S F; Rösgen, T

2006-09-01

Bicycle helmets exhibit complex structures so as to combine impact protection with ventilation. A quantitative experimental measure of the state of the art and variations therein is a first step towards establishing principles of bicycle helmet ventilation. A thermal headform mounted in a climate-regulated wind tunnel was used to study the ventilation efficiency of 24 bicycle helmets at two wind speeds. Flow visualization in a water tunnel with a second headform demonstrated the flow patterns involved. The influence of design details such as channel length and vent placement was studied, as well as the impact of hair. Differences in heat transfer among the helmets of up to 30% (scalp) and 10% (face) were observed, with the nude headform showing the highest values. On occasion, a negative role of some vents for forced convection was demonstrated. A weak correlation was found between the projected vent cross-section and heat transfer variations when changing the head tilt angle. A simple analytical model is introduced that facilitates the understanding of forced convection phenomena. A weak correlation between exposed scalp area and heat transfer was deduced. Adding a wig reduces the heat transfer by approximately a factor of 8 in the scalp region and up to one-third for the rest of the head for a selection of the best ventilated helmets. The results suggest that there is significant optimization potential within the basic helmet structure represented in modern bicycle helmets.

13. Heat Transfer and Thermodynamics: a Compilation

NASA Technical Reports Server (NTRS)

1974-01-01

A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Studies include theories and mechanical considerations in the transfer of heat and the thermodynamic properties of matter and the causes and effects of certain interactions.

14. Computational Aspects of Heat Transfer in Structures

NASA Technical Reports Server (NTRS)

1982-01-01

Techniques for the computation of heat transfer and associated phenomena in complex structures are examined with an emphasis on reentry flight vehicle structures. Analysis methods, computer programs, thermal analysis of large space structures and high speed vehicles, and the impact of computer systems are addressed.

15. Turbine airfoil gas side heat transfer

NASA Technical Reports Server (NTRS)

Turner, E. R.

1984-01-01

Work is currently underway to develop and characterize an analytical approach, based on boundary layer theory, for predicting the effects of leading edge (showerhead) film cooling on downstream gas side heat transfer rates. Parallel to this work, experiments are being conducted to build a relevant data base for present and future methods verification.

16. Turbulent Heat Transfer in Ribbed Pipe Flow

Kang, Changwoo; Yang, Kyung-Soo

2012-11-01

From the view point of heat transfer control, surface roughness is one of the popular ways adopted for enhancing heat transfer in turbulent pipe flow. Such a surface roughness is often modeled with a rib. In the current investigation, Large Eddy Simulation has been performed for turbulent flow in a pipe with periodically-mounted ribs at Reτ=700, Pr=0.71, and p / k =2, 4, and 8. Here, p and k represent the pitch and rib height, respectively. The rib height is fixed as one tenth of the pipe radius. The profiles of mean velocity components, mean temperature, root-mean-squares (rms) of temperature fluctuation are presented at the selected streamwise locations. In comparison with the smooth-pipe case at the same Re and Pr, the effects of the ribs are clearly identified, leading to overall enhancement of turbulent heat transfer in terms of Nu. The budget of temperature variance is presented in the form of contours. The results of an Octant analysis are also given to elucidate the dominant events. Our LES results shed light on a complete understanding of the heat-transfer mechanisms in turbulent ribbed-pipe flow which has numerous applications in engineering. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012013019).

17. Boiling heat transfer characteristics of liquid xenon

Haruyama, T.

2002-05-01

Liquid xenon is one of the excellent media for high-energy particle calorimeter. In order to detect a scintillation light effectively, a large number of photo-multipliers (PMTs) will be immersed in liquid xenon. Many chip-resistors equipped with the PMTs dissipate heat into liquid and possibly generate thermal turbulence, such as bubbles, convection flow under a certain operating condition. There is, however, no heat transfer curve (q-ΔT curve) in the literature. Boiling heat transfer characteristics of liquid xenon were measured at a saturated pressure of 0.1 MPa for the first time by using a small pulse tube refrigerator. The heat transfer surface is a thin platinum wire of 0.1 mm diameter and 25 mm long. The measured results were in good agreement with the calculated values both in natural convection and nucleate boiling condition. The film boiling state was difficult to obtain due to its poor reproducibility, and only one data was obtained. The relationship between the heat flux q and temperature difference ΔT was in good agreement with the Morgan's empirical equation in the natural convection region, and with the Kutateladze's equation in the nucleate boiling region.

18. Spatial Mathematical Model of Heat Transfer in Human Skin Influenced by Heated up to High Temperatures Particle

Baranovskiy, Nikolay V.; Solodkin, Andrey S.; Stuparenko, Alexandr A.

2016-02-01

Numerical research results of heat transfer in system "air-heated particle-skin layer" presented. Skin was influenced by heated up to high temperatures particle. The problem is solved in tree-dimensional statement in Cartesian system of coordinates. The typical range of influence parameters of heated particle considered. Temperature distributions in different moments of time obtained. Condition of burn occurrence by heated particle is under consideration in this research.

19. Advanced Heat Transfer and Thermal Storage Fluids

SciTech Connect

Moens, L.; Blake, D.

2005-01-01

The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

20. Heat transfer in a real engine environment

1985-10-01

The hot section facility at the Lewis Research Center was used to demonstrate the capability of instruments to make required measurements of boundary conditions of the flow field and heat transfer processes in the hostile environment of the turbine. The results of thermal scaling tests show that low temperature and pressure rig tests give optimistic estimates of the thermal performance of a cooling design for high pressure and temperature application. The results of measuring heat transfer coefficients on turbine vane airfoils through dynamic data analysis show good comparison with measurements from steady state heat flux gauges. In addition, the data trends are predicted by the STAN5 boundary layer code. However, the magnitude of the experimental data was not predicted by the analysis, particularly in laminar and transitional regions near the leading edge. The infrared photography system was shown capable of providing detailed surface thermal gradients and secondary flow features on a turbine vane and endwell.

1. Heat transfer in a real engine environment

NASA Technical Reports Server (NTRS)

1985-01-01

The hot section facility at the Lewis Research Center was used to demonstrate the capability of instruments to make required measurements of boundary conditions of the flow field and heat transfer processes in the hostile environment of the turbine. The results of thermal scaling tests show that low temperature and pressure rig tests give optimistic estimates of the thermal performance of a cooling design for high pressure and temperature application. The results of measuring heat transfer coefficients on turbine vane airfoils through dynamic data analysis show good comparison with measurements from steady state heat flux gauges. In addition, the data trends are predicted by the STAN5 boundary layer code. However, the magnitude of the experimental data was not predicted by the analysis, particularly in laminar and transitional regions near the leading edge. The infrared photography system was shown capable of providing detailed surface thermal gradients and secondary flow features on a turbine vane and endwell.

2. Heat transfer in bioengineering and medicine

SciTech Connect

Chato, J.C.; Diller, T.E.; Diller, K.R.; Roemer, R.B.

1987-01-01

This book contains the following papers: New ideas in heat transfer for agricultural animals; Issues in heat transfer and tumor blood flow in localized hyperthermia treatments of cancer; Ultrasound enhances adriamycin toxicity in vitro; Scanned, focused ultrasound hyperthermia treatment of brain tumors; Mathematical prediction and phantom studies of the clinical target ''hot spot'' using a three applicator phased array system (TRIPAS); Development of an endoscopic RF hyperthermia system for deep tumor therapy; Simultaneous measurement of intrinsic and effective thermal conductivity; Determination of the transport of thermal energy by conduction in perfused tissue; A whole body thermal model of man with a realistic circulatory system; and Canine muscle blood flow changes in response to initial heating rates.

3. Numerical study of heat transfer characteristics in BOG heat exchanger

Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

2016-12-01

In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

4. Analysis of a heat transfer device for measuring film coefficients

NASA Technical Reports Server (NTRS)

Medrow, R. A.; Johnson, R. L.; Loomis, W. R.; Wedeven, L. D.

1975-01-01

A heat transfer device consisting of a heated rotating cylinder in a bath was analyzed for its effectiveness to determine heat transfer coefficient of fluids. A time dependent analysis shows that the performance is insensitive to the value of heat transfer coefficient with the given rig configuration.

5. Heat transfer in GTA welding arcs

Huft, Nathan J.

Heat transfer characteristics of Gas Tungsten Arc Welding (GTAW) arcs with arc currents of 50 to 125 A and arc lengths of 3 to 11 mm were measured experimentally through wet calorimetry. The data collected were used to calculate how much heat reported to the cathode and anode and how much was lost from the arc column. A Visual Basic for Applications (VBA) macro was written to further analyze the data and account for Joule heating within the electrodes and radiation and convection losses from the arc, providing a detailed account of how heat was generated and dissipated within the system. These values were then used to calculate arc efficiencies, arc column voltages, and anode and cathode fall voltages. Trends were noted for variances in the arc column voltage, power dissipated from the arc column, and the total power dissipated by the system with changing arc length. Trends for variances in the anode and cathode fall voltages, total power dissipated, Joule heating within the torches and electrodes with changing arc current were also noted. In addition, the power distribution between the anode and cathode for each combination of arc length and arc current was examined. Keywords: Gas Tungsten Arc Welding, GTAW, anode fall, cathode fall, heat transfer, wet calorimetry

6. Two Heat-Transfer Improvements for Gas Liquefiers

NASA Technical Reports Server (NTRS)

Martin, Jerry L.

2005-01-01

Two improvements in heat-transfer design have been investigated with a view toward increasing the efficiency of refrigerators used to liquefy gases. The improvements could contribute to the development of relatively inexpensive, portable oxygen liquefiers for medical use. A description of the heat-transfer problem in a pulse-tube refrigerator is prerequisite to a meaningful description of the first improvement. In a pulse-tube refrigerator in particular, one of in-line configuration heat must be rejected from two locations: an aftercooler (where most of the heat is rejected) and a warm heat exchanger (where a small fraction of the total input power must be rejected as heat). Rejection of heat from the warm heat exchanger can be problematic because this heat exchanger is usually inside a vacuum vessel. When an acoustic-inertance tube is used to provide a phase shift needed in the pulse-tube cooling cycle, another problem arises: Inasmuch as the acoustic power in the acoustic-inertance tube is dissipated over the entire length of the tube, the gas in the tube must be warmer than the warm heat exchanger in order to reject heat at the warm heat exchanger. This is disadvantageous because the increase in viscosity with temperature causes an undesired increase in dissipation of acoustic energy and an undesired decrease in the achievable phase shift. Consequently, the overall performance of the pulse-tube refrigerator decreases with increasing temperature in the acoustic-inertance tube. In the first improvement, the acoustic-inertance tube is made to serve as the warm heat exchanger and to operate in an approximately isothermal condition at a lower temperature, thereby increasing the achievable phase shift and the overall performance of the refrigerator. This is accomplished by placing the acoustic-inertance tube inside another tube and pumping a cooling fluid (e.g., water) in the annular space between the tubes. Another benefit of this improvement is added flexibility of

7. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

NASA Technical Reports Server (NTRS)

Siegel, R.

1974-01-01

Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

8. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

NASA Technical Reports Server (NTRS)

Siegel, R.

1973-01-01

Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media, and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential, The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

9. Conformal mapping technique for two-dimensional porous media and jet impingement heat transfer

NASA Technical Reports Server (NTRS)

Siegel, R.

1974-01-01

Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy's law in porous media and the inviscid approximation for liquid metals, the local fluid velocity in these flows equals the gradient of a potential. The energy equation and flow region are simplified when transformed into potential plane coordinates. In these coordinates, the present problems are reduced to heat conduction solutions which are mapped into the physical geometry. Results are obtained for a porous region with simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed, and heat transfer for two liquid metal slot jets impinging on a heated plate.

10. Heat Transfer Principles in Thermal Calculation of Structures in Fire.

PubMed

Zhang, Chao; Usmani, Asif

2015-11-01

Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented.

11. Heat Transfer Principles in Thermal Calculation of Structures in Fire

PubMed Central

Zhang, Chao; Usmani, Asif

2016-01-01

Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379

12. On the Magnetospheric Heating Problem

Nykyri, K.; Moore, T.; Dimmock, A. P.; Ma, X.; Johnson, J.; Delamere, P. A.

2016-12-01

In the Earth's magnetosphere the specific entropy, increases by approximately two orders of magnitude when transitioning from the magnetosheath into the magnetosphere. However, the origin of this non-adiabatic heating is not well understood. In addition, there exists a dawn-dusk temperature asymmetry in the flanks of the plasma sheet - the cold component ions are hotter by 30-40% at the dawnside plasma sheet compared to the duskside plasma sheet. Our recent statistical study of magnetosheath temperatures using 7 years of THEMIS data indicates that ion magnetosheath temperatures downstream of quasi-parallel (dawn-flank for the Parker-Spiral IMF) bow shock are only 15 percent higher than downstream of the quasi-perpendicular shock. This magnetosheath temperature asymmetry is therefore inadequate to cause the observed level of the plasma sheet temperature asymmetry. In this presentation we address the origin of non-adiabatic heating from the magnetosheath into the plasma sheet by utilizing small Cluster spacecraft separations, 9 years of statistical THEMIS data as well as Hall-MHD and hybrid simulations. We present evidence of a new physical mechanism capable of cross-scale energy transport at the flank magnetopause with strong contributions to the non-adiabatic heating observed between the magnetosheath and plasma sheet. This same heating mechanism may occur and drive asymmetries also in the magnetospheres of gas giants: Jupiter and Saturn, as well as play role elsewhere in the universe where significant flow shears are present such as in the solar corona, and other astrophysical and laboratory plasmas.

13. Heat Transfer and Hydraulic Flow Resistance for Streams of High Velocity

NASA Technical Reports Server (NTRS)

Lelchuk, V. L.

1943-01-01

Problems of hydraulic flow resistance and heat transfer for streams with velocities comparable with acoustic have present great importance for various fields of technical science. Especially, they have great importance for the field of heat transfer in designing and constructing boilers.of the "Velox" type. In this article a description of experiments and their results as regards definition of the laws of heat transfer in differential form for high velocity air streams inside smooth tubes are given.

14. Concurrent implementation of the Crank-Nicolson method for heat transfer analysis

NASA Technical Reports Server (NTRS)

Ransom, J. B.; Fulton, R. E.

1985-01-01

To exploit the significant gains in computing speed provided by Multiple Instruction Multiple Data (MIMD) computers, concurrent methods for practical problems need to be investigated and test problems implemented on actual hardware. One such problem class is heat transfer analysis which is important in many aerospace applications. This paper compares the efficiency of two alternate implementations of heat transfer analysis on an experimental MIMD computer called the Finite Element Machine (FEM). The implicit Crank-Nicolson method is used to solve concurrently the heat transfer equations by both iterative and direct methods. Comparison of actual timing results achieved for the two methods and their significance relative to more complex problems are discussed.

15. Heterogeneous nanofluids: natural convection heat transfer enhancement

PubMed Central

2011-01-01

Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case. PMID:21711755

16. Articulation and Transfer: Definitions, Problems, and Solutions.

ERIC Educational Resources Information Center

Wright, M. Irene; And Others

Although the Maricopa County Community College District (MCCCD), in Arizona, maintains an exemplary relationship and numerous transfer agreements with the state's public universities, systematic and operational problems still exist. Systematic problems include the accumulation of excessive college credit hours; changes in applicable transfer…

17. Full Eulerian lattice Boltzmann model for conjugate heat transfer.

PubMed

Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong

2015-12-01

In this paper a full Eulerian lattice Boltzmann model is proposed for conjugate heat transfer. A unified governing equation with a source term for the temperature field is derived. By introducing the source term, we prove that the continuity of temperature and its normal flux at the interface is satisfied automatically. The curved interface is assumed to be zigzag lines. All physical quantities are recorded and updated on a Cartesian grid. As a result, any complicated treatment near the interface is avoided, which makes the proposed model suitable to simulate the conjugate heat transfer with complex interfaces efficiently. The present conjugate interface treatment is validated by several steady and unsteady numerical tests, including pure heat conduction, forced convection, and natural convection problems. Both flat and curved interfaces are also involved. The obtained results show good agreement with the analytical and/or finite volume results.

18. Accuracy Quantification of the Loci-CHEM Code for Chamber Wall Heat Transfer in a GO2/GH2 Single Element Model Problem

NASA Technical Reports Server (NTRS)

West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin

2006-01-01

All solutions with Loci-CHEM achieved demonstrated steady state and mesh convergence. Preconditioning had no effect on solution accuracy and typically yields a 3-5times solution speed-up. The SST turbulence model has superior performance, relative to the data in the head end region, for the rise rate and peak heat flux. It was slightly worse than the others in the downstream region where all over-predicted the data by 30-100%.There was systematic mesh refinement in the unstructured volume and structured boundary layer areas produced only minor solution differences. Mesh convergence was achieved. Overall, Loci-CHEM satisfactorily predicts heat flux rise rate and peak heat flux and significantly over predicts the downstream heat flux.

19. Incompressible Navier-Stokes Computations with Heat Transfer

NASA Technical Reports Server (NTRS)

Kiris, Cetin; Kwak, Dochan; Rogers, Stuart; Kutler, Paul (Technical Monitor)

1994-01-01

The existing pseudocompressibility method for the system of incompressible Navier-Stokes equations is extended to heat transfer problems by including the energy equation. The solution method is based on the pseudo compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. Current computations use one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. Both forced and natural convection problems are examined. Numerical results from turbulent reattaching flow behind a backward-facing step will be compared against experimental measurements for the forced convection case. The validity of Boussinesq approximation to simplify the buoyancy force term will be investigated. The natural convective flow structure generated by heat transfer in a vertical rectangular cavity will be studied. The numerical results will be compared by experimental measurements by Morrison and Tran.

20. Fem Formulation for Heat and Mass Transfer in Porous Medium

Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan

2017-08-01

Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.

1. Student Engagement in a Structured Problem-Based Approach to Learning: A First-Year Electronic Engineering Study Module on Heat Transfer

ERIC Educational Resources Information Center

Montero, E.; Gonzalez, M. J.

2009-01-01

Problem-based learning has been at the core of significant developments in engineering education in recent years. This term refers to any learning environment in which the problem drives the learning, because it is posed in such a way that students realize they need to acquire new knowledge before the problem can be solved. This paper presents the…

2. Student Engagement in a Structured Problem-Based Approach to Learning: A First-Year Electronic Engineering Study Module on Heat Transfer

ERIC Educational Resources Information Center

Montero, E.; Gonzalez, M. J.

2009-01-01

Problem-based learning has been at the core of significant developments in engineering education in recent years. This term refers to any learning environment in which the problem drives the learning, because it is posed in such a way that students realize they need to acquire new knowledge before the problem can be solved. This paper presents the…

3. Acquisition systems for heat transfer measurement

SciTech Connect

De Witt, R.J.

1983-01-01

Practical heat transfer data acquisition systems are normally characterized by the need for high-resolution, low-drift, low-speed recording devices. Analog devices such as strip chart or circular recorders and FM analog magnetic tape have excellent resolution and work well when data will be presented in temperature versus time format only and need not be processed further. Digital systems are more complex and require an understanding of the following components: digitizing devices, interface bus types, processor requirements, and software design. This paper discusses all the above components of analog and digital data acquisition, as they are used in current practice. Additional information on thermocouple system analysis will aid the user in developing accurate heat transfer measuring systems.

4. Coolant passage heat transfer with rotation

NASA Technical Reports Server (NTRS)

Hajek, T. J.; Higgins, A. W.

1985-01-01

The objective is to develop a heat transfer and pressure drop data base, computational fluid dynamic techniques, and correlations for multi-pass rotating coolant passages with and without flow turbulators. The experimental effort is focused on the simulation of configurations and conditions expected in the blades of advanced aircraft high pressure turbines. With the use of this data base, the effects of Coriolis and buoyancy forces on the coolant side flow can be included in the design of turbine blades.

5. Heat Transfer Characteristics of SHS Reactions

DTIC Science & Technology

1990-07-01

A+R?0 Qt43 =5 -YA co ,/A FINAL REPORT AD- A225 769-=-_ HEAT TRANSFER CHARACTERISTICS OF SHS REACTIONS K. V. Logan, G. R. Villalobos, J. N. Harris, P...2741 Ta 180.9 3287 5731 Cr 52.0 2130 2945 lNb 95.9 2890 4919 W 183.8 3683 >6000 Mli 54.9 1518 2335 Fe 55.8 1808 3135 Co 58.9 1768 3201 Ni 58.7 1726

6. Radiation heat transfer shapefactors for combustion systems

NASA Technical Reports Server (NTRS)

Emery, A. F.; Johansson, O.; Abrous, A.

1987-01-01

The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.

7. Heat Transfer in a Superelliptic Transition Duct

NASA Technical Reports Server (NTRS)

Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

2008-01-01

Local heat transfer measurements were experimentally mapped using a transient liquid-crystal heat transfer technique on the surface of a circular-to-rectangular transition duct. The transition duct had a length-to-diameter ratio of 1.5 and an exit-plane aspect ratio of 3. The crosssectional geometry was defined by the equation of a superellipse. The cross-sectional area was the same at the inlet and exit but varied up to 15 percent higher through the transition. The duct was preheated to a uniform temperature (nominally 64 C) before allowing room temperature air to be suddenly drawn through it. As the surface cooled, the resulting isothermal contours on the duct surface were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the surface temperature and time data for all points on the duct surfaces during each test. Using this surface temperature-time data together with the temperature of the air flowing through the model and the initial temperature of the model wall, the heat transfer coefficient was calculated by employing the classic one-dimensional, semi-infinite wall heat transfer conduction model. Test results are reported for inlet diameter-based Reynolds numbers ranging from 0.4x106 to 2.4x106 and two grid-generated freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

NASA Technical Reports Server (NTRS)

Cebeci, Tuncer; Simoneau, Robert J.; Platzer, Max F.

1990-01-01

This paper describes a method for calculating heat transfer on turbine blades subjected to passing wakes. It is based on the numerical solution of the boundary-layer equations for laminar, transitional, and turbulent flows with a novel procedure to account for the movement of the stagnation point. Results are presented for a model flow and show that the procedure is numerically sound and produces results that can give good agreement with measurements provided that the turbulence model is adequate.

9. Low-melting point heat transfer fluid

DOEpatents

Cordaro, Joseph Gabriel; Bradshaw, Robert W.

2010-11-09

A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

NASA Technical Reports Server (NTRS)

Cebeci, Tuncer; Simoneau, Robert J.; Platzer, Max F.

1990-01-01

This paper describes a method for calculating heat transfer on turbine blades subjected to passing wakes. It is based on the numerical solution of the boundary-layer equations for laminar, transitional, and turbulent flows with a novel procedure to account for the movement of the stagnation point. Results are presented for a model flow and show that the procedure is numerically sound and produces results that can give good agreement with measurements provided that the turbulence model is adequate.

11. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

SciTech Connect

Not Available

2010-08-01

Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

12. HOST turbine heat transfer subproject overview

NASA Technical Reports Server (NTRS)

1986-01-01

The experimental part of the turbine heat transfer subproject consists of six large experiments, which are highlighted in this overview, and three of somewhat more modest scope. One of the initial efforts was the stator airfoil heat transfer program. The non-film cooled and the showerhead film cooled data have already been reported. The gill region film cooling effort is currently underway. The investigation of secondary flows in a 90 deg curved duct, was completed. The first phase examined flows with a relatively thin inlet boundary layer and low free stream turbulence. The second phase studied a thicker inlet boundary layer and higher free stream turbulence. A comparison of analytical and experimental cross flow velocity vectors is shown for the 60 deg plane. Two experiments were also conducted in the high pressure facility. One examined full coverage film cooled vanes, and the other, advanced instrumentation. The other three large experimental efforts were conducted in a rotation reference frame. An experiment to obtain gas path airfoil heat transfer coefficients in the large, low speed turbine was completed. Single-stage data with both high and low-inlet turbulence were taken. The second phase examined a one and one-half stage turbine and focused on the second vane row. Under phase 3 aerodynamic quantities such as interrow time-averaged and rms values of velocity, flow angle, inlet turbulence, and surface pressure distribution were measured.

13. Combustion and heat transfer in porous media

SciTech Connect

Sathe, S.B.; Peck, R.E.; Tong, T.W.

1990-06-01

The objective of the present study is to generate fundamental knowledge about heat transfer and combustion in porous radiant burners (PRBs) in order to improve their performance. A theoretical heat transfer and combustion model is developed to study the characteristics of PRBs. The model accounts for non-local thermal equilibrium between the solid and gas phases. The solid is assumed to absorb, emit and scatter radiant energy. Combustion is modeled as a one-step global reaction. It is revealed that the flame speed inside the porous medium is enhanced compared to the adiabatic flame speeds due to the higher conductivity of the solid compared to the gas as well as due to radiative preheating of the reactants. The effects of the properties of the porous material on the flame speeds, radiative outputs and efficiencies were investigated. To improve the radiative output from the burner, it is desirable that the porous layer has an optical thickness of about ten. The radiative output and the efficiency is higher for lower scattering albedo. The heat transfer coupling between the solid and gas phases should be high enough to ensure local thermal equilibrium, by choosing a fine porous matrix. Higher solid phase conduction enhances the flame speed and the radiative output. Experiments are performed on a ceramic foam to verify the theoretical findings. The existence of the two stability regions was verified experimentally.

14. Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles

NASA Technical Reports Server (NTRS)

Rickman, S. L.; Iamello, C. J.

2016-01-01

Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.

15. Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids

PubMed Central

Agromayor, Roberto; Cabaleiro, David; Pardinas, Angel A.; Vallejo, Javier P.; Fernandez-Seara, Jose; Lugo, Luis

2016-01-01

The low thermal conductivity of fluids used in many industrial applications is one of the primary limitations in the development of more efficient heat transfer systems. A promising solution to this problem is the suspension of nanoparticles with high thermal conductivities in a base fluid. These suspensions, known as nanofluids, have great potential for enhancing heat transfer. The heat transfer enhancement of sulfonic acid-functionalized graphene nanoplatelet water-based nanofluids is addressed in this work. A new experimental setup was designed for this purpose. Convection coefficients, pressure drops, and thermophysical properties of various nanofluids at different concentrations were measured for several operational conditions and the results are compared with those of pure water. Enhancements in thermal conductivity and in convection heat transfer coefficient reach 12% (1 wt %) and 32% (0.5 wt %), respectively. New correlations capable of predicting the Nusselt number and the friction factor of this kind of nanofluid as a function of other dimensionless quantities are developed. In addition, thermal performance factors are obtained from the experimental convection coefficient and pressure drop data in order to assess the convenience of replacing the base fluid with designed nanofluids. PMID:28773578

16. Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids.

PubMed

Agromayor, Roberto; Cabaleiro, David; Pardinas, Angel A; Vallejo, Javier P; Fernandez-Seara, Jose; Lugo, Luis

2016-06-08

The low thermal conductivity of fluids used in many industrial applications is one of the primary limitations in the development of more efficient heat transfer systems. A promising solution to this problem is the suspension of nanoparticles with high thermal conductivities in a base fluid. These suspensions, known as nanofluids, have great potential for enhancing heat transfer. The heat transfer enhancement of sulfonic acid-functionalized graphene nanoplatelet water-based nanofluids is addressed in this work. A new experimental setup was designed for this purpose. Convection coefficients, pressure drops, and thermophysical properties of various nanofluids at different concentrations were measured for several operational conditions and the results are compared with those of pure water. Enhancements in thermal conductivity and in convection heat transfer coefficient reach 12% (1 wt %) and 32% (0.5 wt %), respectively. New correlations capable of predicting the Nusselt number and the friction factor of this kind of nanofluid as a function of other dimensionless quantities are developed. In addition, thermal performance factors are obtained from the experimental convection coefficient and pressure drop data in order to assess the convenience of replacing the base fluid with designed nanofluids.

17. Implications of stability analysis for heat transfer at Yucca Mountain

SciTech Connect

Ross, B.; Yiqiang Zhang; Ning Lu

1993-03-01

An analytical solution has been obtained to the stability problem for an infinite horizontal layer of gas with Its humidity constrained to 100%. Latent heat transfer makes convective heat transfer much more Important for this moist gas than for a dry gas. The critical Rayleigh number for the onset of convective flow in the moist gas, with a lower no-flow boundary at 97{degrees}C and an upper no-flow boundary at 27{degrees}C, is 0.18, much less than the value of 4m{sup 2} for a dry gas. Although the heat source at Yucca Mountain will be finite in extent, the solution for an infinite horizontal layer still gives a useful criterion for the qualitative importance of convective heat transfer. The critical Rayleigh number of 0.18 corresponds to a permeability of 4 {times} 10{sup {minus}12} m{sup 2} if other parameters ate given values measured at Yucca Mountain. This value falls roughly in the middle of the range of measured permeabilities. The analysis also gives a time constant for the onset of convection, which at twice the critical Rayleigh number is 1000 yr. Thus convection will probably make an important contribution, to host transfer at Yucca Mountain if the rock permeability falls in the upper portion of the range of measurements to date, but only at times after a few hundred or thousand years.

18. Supercritical oxygen heat transfer. [regenerative cooling

NASA Technical Reports Server (NTRS)

Spencer, R. G.; Rousar, D. C.

1977-01-01

Heat transfer to supercritical oxygen was experimentally measured in electrical heated tubes. Experimental data were obtained for pressures ranging from 17 to 34.5 MPa (2460 to 5000 psia), and heat fluxes from 2 to 90 million w/sq cm (1.2 to 55 Btu/(sq in. sec)). Bulk temperatures ranged from 96 to 217 K (173 to 391 R). Experimental data obtained by other investigators were added to this to increase the range of pressure down to 2 MPa (290 psia) and increase the range of bulk temperature up to 566 K (1019 R). From this compilation of experimental data a correlating equation was developed which predicts over 95% of the experimental data within + or - 30%.

19. Measuring Furnace/Sample Heat-Transfer Coefficients

NASA Technical Reports Server (NTRS)

Rosch, William R.; Fripp, Archibald L., Jr.; Debnam, William J., Jr.; Woodell, Glenn A.

1993-01-01

Complicated, inexact calculations now unnecessary. Device called HTX used to simulate and measure transfer of heat between directional-solidification crystal-growth furnace and ampoule containing sample of crystalline to be grown. Yields measurement data used to calculate heat-transfer coefficients directly, without need for assumptions or prior knowledge of physical properties of furnace, furnace gas, or specimen. Determines not only total heat-transfer coefficients but also coefficients of transfer of heat in different modes.

20. A Numerical Method for Incompressible Flow with Heat Transfer

NASA Technical Reports Server (NTRS)

Sa, Jong-Youb; Kwak, Dochan

1997-01-01

A numerical method for the convective heat transfer problem is developed for low speed flow at mild temperatures. A simplified energy equation is added to the incompressible Navier-Stokes formulation by using Boussinesq approximation to account for the buoyancy force. A pseudocompressibility method is used to solve the resulting set of equations for steady-state solutions in conjunction with an approximate factorization scheme. A Neumann-type pressure boundary condition is devised to account for the interaction between pressure and temperature terms, especially near a heated or cooled solid boundary. It is shown that the present method is capable of predicting the temperature field in an incompressible flow.

1. A multilevel method for conductive-radiative heat transfer

SciTech Connect

Banoczi, J.M.; Kelley, C.T.

1996-12-31

We present a fast multilevel algorithm for the solution of a system of nonlinear integro-differential equations that model steady-state combined radiative-conductive heat transfer. The equations can be formulated as a compact fixed point problem with a fixed point map that requires both a solution of the linear transport equation and the linear heat equation for its evaluation. We use fast transport solvers developed by the second author, to construct an efficient evaluation of the fixed point map and then apply the Atkinson-Brakhage, method, with Newton-GMRES as the coarse mesh solver, to the full nonlinear system.

2. Parametric results for heat transfer across honeycomb sandwich panels

NASA Technical Reports Server (NTRS)

Ramohalli, K.; Sahakian, J.

1981-01-01

The problem of heat transfer across honeycomb sandwich panels is theoretically investigated. The basic objective is to predict the rear surface temperature as a function of time when the front surface is exposed to a prescribed heat flux; the faces are bounded by planar sheets so that the air circulation in the honeycomb cells is bounded and contained. The influence of the air circulation on convective heat transfer is explicitly included. Drawing upon previous investigators' results that indicated various relations for the Nusselt numbers vs Rayleigh numbers in different regimes of the aspect ratio (defined as the ratio of the cell height to cell width), parametric calculations are performed to predict the rear surface temperatures. Chemical degradation of the material, especially the glue holding the face material on the end, is important but has not yet been included. The results indicate that decreasing the cell width, increasing the cell wall thickness and increasing the cell height all have beneficial effects upon the heat transfer; i.e., all of these variations reduce rear surface temperature for a given time for a prescribed heat flux on the front surface.

3. Combined conduction and radiation heat transfer in concentric cylindrical media

NASA Technical Reports Server (NTRS)

Pandey, D. K.

1987-01-01

The exact radiative transfer expressions for gray and nongray gases which are absorbing, emitting and nonscattering, contained between infinitely long concentric cylinders with black surfaces, are given in local thermodynamic equilibrium. Resulting energy equations due to the combination of conduction and radiation modes of heat transfer, under steady state conditions for gray and nongray media, are solved numerically using the undetermined parameters method. A single 4.3-micron band of CO2 is considered for the nongray problems. The present solutions for gray and nongray gases obtained in the plane-parallel limit (radius ratio approaches to one) are compared with the plane-parallel results reported in the literature.

4. Two-dimensional finite element heat transfer model of softwood. Part I, Effective thermal conductivity

Treesearch

John F. Hunt; Hongmei Gu

2006-01-01

The anisotropy of wood complicates solution of heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential direction and do not differentiate the effects of cellular alignment, earlywood/latewood differences, or...

5. Refined Model of Heat Transfer in Composite Bodies Reinforced with Tubes with a Liquid Heat-Transfer Agent Moving in a Developed Turbulent Regime

Yankovskii, A. P.

2015-07-01

The author has obtained equations describing thermal conductivity of composite bodies spatially reinforced with a system of smooth tubes in which an incompressible liquid heat-transfer agent is pumped in a developed turbulent regime. The corresponding boundary-value heat-conduction problem was formulated and its qualitative analysis was made. Specific calculations were performed for steady-state temperature fields in cylindrical concrete shells spirally reinforced with steel tubes through which a heat-transfer agent (air) is pumped. A study has been made of the influence of the reinforcement parameters and of the velocity and direction of the heat-transfer agent in the tubes and the dimensions of their cross sections on the temperature field. It has been established that variation of these characteristics enables one to substantially change the intensity of heat removal from the shells, opening up wide opportunities for efficient control of the heat transfer in them.

6. Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles

ERIC Educational Resources Information Center

Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.

2010-01-01

This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…

7. Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles

ERIC Educational Resources Information Center

Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.

2010-01-01

This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…

8. Film-Cooling Heat-Transfer Measurements Using Liquid Crystals

NASA Technical Reports Server (NTRS)

Hippensteele, Steven A.

1997-01-01

The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.

9. 7 CFR 2902.54 - Heat transfer fluids.

Code of Federal Regulations, 2011 CFR

2011-01-01

... 7 Agriculture 15 2011-01-01 2011-01-01 false Heat transfer fluids. 2902.54 Section 2902.54... Items § 2902.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used to... heat transfer fluids....

10. 7 CFR 3201.54 - Heat transfer fluids.

Code of Federal Regulations, 2012 CFR

2012-01-01

... 7 Agriculture 15 2012-01-01 2012-01-01 false Heat transfer fluids. 3201.54 Section 3201.54... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used to facilitate the transfer of heat from one location to another, including coolants or refrigerants...

11. 7 CFR 3201.54 - Heat transfer fluids.

Code of Federal Regulations, 2014 CFR

2014-01-01

... 7 Agriculture 15 2014-01-01 2014-01-01 false Heat transfer fluids. 3201.54 Section 3201.54... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used to facilitate the transfer of heat from one location to another, including coolants or refrigerants...

12. 7 CFR 3201.54 - Heat transfer fluids.

Code of Federal Regulations, 2013 CFR

2013-01-01

... 7 Agriculture 15 2013-01-01 2013-01-01 false Heat transfer fluids. 3201.54 Section 3201.54... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used to facilitate the transfer of heat from one location to another, including coolants or refrigerants...

13. Low heat transfer oxidizer heat exchanger design and analysis

NASA Technical Reports Server (NTRS)

Kanic, P. G.; Kmiec, T. D.; Peckham, R. J.

1987-01-01

The RL10-IIB engine, a derivative of the RLIO, is capable of multi-mode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2 percent of full thrust, and pumped idle (PI), which is 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for log-g deployment. Stable combustion of the RL10-IIB engine at THI and PI thrust levels can be accomplished by providing gaseous oxygen at the propellant injector. Using gaseous hydrogen from the thrust chamber jacket as an energy source, a heat exchanger can be used to vaporize liquid oxygen without creating flow instability. This report summarizes the design and analysis of a United Aircraft Products (UAP) low-rate heat transfer heat exchanger concept for the RL10-IIB rocket engine. The design represents a second iteration of the RL10-IIB heat exchanger investigation program. The design and analysis of the first heat exchanger effort is presented in more detail in NASA CR-174857. Testing of the previous design is detailed in NASA CR-179487.

14. Heat Transfer Through Turbulent Friction Layers

NASA Technical Reports Server (NTRS)

Reichardt, H.

1943-01-01

The "general Prandtl number" Pr(exp 1) - A(sub q)/A Pr, aside from the Reynolds number determines the ratio of turbulent to molecular heat transfer, and the temperature distribution in turbulent friction layers. A(sub q) = exchange coefficient for heat; A = exchange coefficient for momentum transfer. A formula is derived from the equation defining the general Prandtl number which describes the temperature as a function of the velocity. For fully developed thermal boundary layers all questions relating to heat transfer to and from incompressible fluids can be treated in a simple manner if the ratio of the turbulent shear stress to the total stress T(sub t)/T in the layers near the wall is known, and if the A(sub q)/A can be regarded as independent of the distance from the wall. The velocity distribution across a flat smooth channel and deep into the laminar sublayer was measured for isothermal flow to establish the shear stress ratio T(sub t)/T and to extend the universal wall friction law. The values of T(sub t)/T which resulted from these measurements can be approximately represented by a linear function of the velocity in the laminar-turbulent transition zone. The effect of the temperature relationship of the material values on the flow near the wall is briefly analyzed. It was found that the velocity at the laminar boundary (in contrast to the thickness of the laminar layer) is approximately independent of the temperature distribution. The temperature gradient at the wall and the distribution of temperature and heat flow in the turbulent friction layers were calculated on the basis of the data under two equations. The derived formulas and the figures reveal the effects of the Prandtl number, the Reynolds number, the exchange quantities and the temperature relationship of the material values.

15. 46 CFR 153.430 - Heat transfer systems; general.

Code of Federal Regulations, 2012 CFR

2012-10-01

... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...

16. 46 CFR 153.430 - Heat transfer systems; general.

Code of Federal Regulations, 2013 CFR

2013-10-01

... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...

17. 46 CFR 153.430 - Heat transfer systems; general.

Code of Federal Regulations, 2014 CFR

2014-10-01

... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's heat...

18. A Theoretical Approach to One Dimensional Heat Conduction of Solid phase Change with Convective Surface Heat Transfer

Hamamatsu, Teruhide

A theoretical approach to heat conduction in phase changing solid with convective surface heat transfer has been tried to disclose the effect of the heat transfer, and to get the governing equation for the phase-changing front movement and the transient temperature field. As a result of the analytical work in the rectangular heat conduction field, the quasi-theoretical solutions containing the Stefan's problem for the phase change front movement and the transient temperature distribution have been obtained, and in addition one of the key parameters newly introduced is a non-dimensional heat transfer factor. HTF (convective heat tranferrability vs. latent heat capacity) which can indicate the acceleration of phase change and the difference from the Stefan's solution.

19. Flow and heat transfer in a curved channel

NASA Technical Reports Server (NTRS)

Brinich, P. F.; Graham, R. W.

1977-01-01

Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

20. Predicting heat and mass transfer in fractured porous media (Invited)

Geiger, S.; Cortis, A.; Emmanuel, S.

2010-12-01

Fractures are abundant in the subsurface and affect many relevant single- and multi-phase transport processes such as gas and oil extraction, contaminant transport, or geothermal reservoir engineering. However, making reliable predictions of heat and mass transfer in fractured porous media is an outstanding challenge due to its multi-scale nature and the orders-of-magnitude varations in transport rates. Direct high-resolution simulations provide fundamental insights into the local advective and diffusive transport processes in fractured porous media. However, this approach is intractable for inverse simulations because of its high computational requirements. Continuous Time Random Walks on the other hand are a viable alternative and general way to model heat and mass transfer in structurally complex and multi-scale geological media, particularly for inverse problems. But they do not offer the same insights into local transport processes as direct numerical simulations. Here we combine both approaches to simulate the detailed transport processes occurring during heat and mass transfer in fractured porous media and analyse how these affect the breakthrough curves used to calibrate the Continuous Time Random Walks. We show that heat transport in fractured porous media can be anomalous, i.e. characterised by early breakthrough and long tailing, like it is well known for solute transport. We also demonstrate that a careful analysis of the solute breakthrough curves can yield insights into the heterogeneity of the fracture pattern and the transport occurring between fracture and matrix as well as within the matrix and fractures.

1. [Mechanism of heat transfer in various regions of human body].

PubMed

Luchakov, Iu I; Nozdrachev, A D

2009-01-01

The processes of heat transfer in a human body were studied with the use of a mathematical model. It has been shown that only conductive or only convective heat transfer may occur in different body areas. The rate of blood-mediated heat transfer in the presence of blood circulation is many times higher than heat transfer due to temperature gradient; therefore, the convective process prevails over the conductive process. The body core contains a variety of blood vessels, and the bulk of blood concentrates there in the norm. Hence, heat transfer in it is mainly convective. In surface tissues, where the rate of blood circulation is lower and the vasculature has certain specific features, heat transfer is mainly conductive. Hence, the core and surface tissues are absolutely different body zones in terms of heat transfer.

2. Advances in refrigeration and heat transfer engineering

DOE PAGES

2015-05-13

This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

3. Advances in refrigeration and heat transfer engineering

SciTech Connect

2015-05-13

This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

4. Convective heat transfer and infrared thermography.

PubMed

Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

2002-10-01

Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

5. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

Freeburg, Eric Thomas

Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

6. Macro- to Nanoscale Heat and Mass Transfer: The Lagging Behavior

Ghazanfarian, Jafar; Shomali, Zahra; Abbassi, Abbas

2015-07-01

The classical model of the Fourier's law is known as the most common constitutive relation for thermal transport in various engineering materials. Although the Fourier's law has been widely used in a variety of engineering application areas, there are many exceptional applications in which the Fourier's law is questionable. This paper gathers together such applications. Accordingly, the paper is divided into two parts. The first part reviews the papers pertaining to the fundamental theory of the phase-lagging models and the analytical and numerical solution approaches. The second part wrap ups the various applications of the phase-lagging models including the biological materials, ultra-high-speed laser heating, the problems involving moving media, micro/nanoscale heat transfer, multi-layered materials, the theory of thermoelasticity, heat transfer in the material defects, the diffusion problems we call as the non-Fick models, and some other applications. It is predicted that the interest in the field of phase-lagging heat transport has grown incredibly in recent years because they show good agreement with the experiments across a wide range of length and time scales.

7. Heat Transfer Model for Hot Air Balloons

A heat transfer model and analysis for hot air balloons is presented in this work, backed with a flow simulation using SolidWorks. The objective is to understand the major heat losses in the balloon and to identify the parameters that affect most its flight performance. Results show that more than 70% of the heat losses are due to the emitted radiation from the balloon envelope and that convection losses represent around 20% of the total. A simulated heating source is also included in the modeling based on typical thermal input from a balloon propane burner. The burner duty cycle to keep a constant altitude can vary from 10% to 28% depending on the atmospheric conditions, and the ambient temperature is the parameter that most affects the total thermal input needed. The simulation and analysis also predict that the gas temperature inside the balloon decreases at a rate of -0.25 K/s when there is no burner activity, and it increases at a rate of +1 K/s when the balloon pilot operates the burner. The results were compared to actual flight data and they show very good agreement indicating that the major physical processes responsible for balloon performance aloft are accurately captured in the simulation.

8. Porous media heat transfer for injection molding

DOEpatents

Beer, Neil Reginald

2016-05-31

The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

9. Heat transfer augmentation in nanofluids via nanofins.

PubMed

2011-02-18

Theoretical results derived in this article are combined with experimental data to conclude that, while there is no improvement in the effective thermal conductivity of nanofluids beyond the Maxwell's effective medium theory (J.C. Maxwell, Treatise on Electricity and Magnetism, 1891), there is substantial heat transfer augmentation via nanofins. The latter are formed as attachments on the hot wire surface by yet an unknown mechanism, which could be related to electrophoresis, but there is no conclusive evidence yet to prove this proposed mechanism.

10. Convective Heat Transfer for Ship Propulsion.

DTIC Science & Technology

1985-11-29

frpiac i aU cd i INds-- butl .<. Contract No. N00014-75-C-0694; NR-097-395 ! _; "’ ~CONVECTIVE HEAT TRANSFER FOR SHIP PROPULSION -’- Aerospace and...Claaification, CONVECTIVEHET7 TRNSE FOR SHIP PROPULSION (U) ______ 1.PRSONAL AUTHOR(S) McEligot, Donald M., P. 0. Box 4282, Middletown, Rhode Island...cooled -"ireactors using N2 04 compared with atomic2 4- I.- electric stations using sodium. The potential benefits for ship propulsion are obvious

11. Solar Pond Fluid Dynamics and Heat Transfer

NASA Technical Reports Server (NTRS)

Jones, G. F.

1984-01-01

The primary objective of the solar pond research was to obtain an indepth understanding of solar pond fluid dynamics and heat transfer. The key product was the development of a validated one-dimensional computer model with the capability to accurately predict time-dependent solar pond temperature, salinities, and interface motions. Laboratory scale flow visualization experiments were conducted to better understand layer motion. Two laboratory small-scale ponds and a large-scale outdoor solar pond were designed and built to provide quantitative data. This data provided a basis for validating the model and enhancing the understanding of pond dynamic behavior.

12. Analysis of radial fin assembly heat transfer with dehumidification

SciTech Connect

Rosario, L.; Rahman, M.M.

1996-12-31

The aim of this paper is the analysis of heat transfer in a radial fin assembly during the process of dehumidification. An individual finned tube geometry is a reasonable representation of heat exchangers used in air conditioning. The condensation process involves both heat and mass transfer and the cooling takes place by the removal of sensible as well as latent heat. The ratio of sensible to total heat is an important quantity that defines the heat transfer process during a dehumidifier operation. A one-dimensional model for heat transfer in the fin and the heat exchanger block is developed to study the effects of condensation on the fin surface. The combined heat and mass transfer process is modeled by incorporating the ratio of sensible to total heat in the formulation. The augmentation of heat transfer due to fin was established by comparing heat transfer rate with and without fins under the same operating conditions. Numerical calculations were carried out to study the effects of relative humidity and dry bulb temperature of the incoming air, and cold fluid temperature inside the coil on the performance of the heat exchanger. Results were compared to those published for rectangular fin under humid condition showed excellent agreement when the present model was used to compute that limiting condition. It was found that the heat transfer rate increased with increment in both dry bulb temperature and relative humidity of the air. The augmentation factor, however, decreased with increment in relative humidity and the dry bulb temperature.

13. Thermodynamics of flame impingement heat transfer

Som, S. K.; Agrawal, G. K.; Chakraborty, Suman

2007-08-01

A theoretical model for entropy generation and utilization of work potential (exergy) in flame impingement (both premixed and diffusion) heat transfer has been developed in this article, to offer physical insights on the optimal operational regimes, depicting high values of the surface heat flux with minimal exergy destruction, within the practical constraints. The irreversibility components due to different physical processes have been evaluated from a general entropy transport equation. The velocity, temperature, and species concentration fields required for the solution of entropy transport equation have been determined from the numerical computation of flow-field in the flame. Global two-step chemical kinetics has been considered with methane (CH4) and air as fuel and oxidizer, respectively. The results have been predicted in terms of average nondimensional heat flux, expressed as Nusselt number at the target plate, the irreversibility components, and second law efficiency, as functions of the pertinent input parameters such as the jet Reynolds number and the ratio of plate separation distance to nozzle diameter (H /d). The average Nusselt number has been found to increase with an increase in jet Reynolds number and a decrease in H /d ratio, up to a value of 8. The dominant source of thermodynamic irreversibility in a premixed flame has been attributed to the thermal energy exchange whereas, in a diffusion flame, the same has been attributed to an uncontrolled exchange of electrons accompanying the reactive kinetics. The second law efficiency has been found to increase with an increase in jet Reynolds number and an increase in the H /d ratio, up to a value of 20. Values of the jet Reynolds number greater than 10 000 and H /d ratio in the tune of 15 have been observed to pertain to the regime of optimum flame impingement heat transfer, consistent with the energy and exergy balance constraints.

14. Fibre optic sensors for heat transfer studies

Sinha, Pranay G.

This thesis describes the design and development of a prototype sensor, based on a miniature optical fiber Fabry-Perot interferometer, for heat transfer studies on model turbomachinery components in transient flow wind tunnels. These sensors overcome a number of difficulties which are often encountered in using conventional electrical thin-film resistance gauges such as in the measurement of rapidly varying heat transfer rates, spatial resolution, electromagnetic interference, calibration and signal processing. The special features of the optical sensor are: (1) short length (less than 5 mm), and therefore embeddable in thin structures of model components; (2) direct measurement of heat flux rates; (3) calorimetric operation with temperature resolution of less than 25 mK over a measurement bandwidth of 100 kHz; (4) capability of measuring heat flux less than 5 kWm(exp -2) with measurement range in excess of 10 MWm(exp -2); (5) temporal response time of less than 10 microseconds; (6) minimal thermal disturbances because models are often made of ceramic materials with thermal properties similar to those of the optical fiber from which sensors are made;(7) possibility of using in models with dissimilar thermal properties to the optical fiber, for example, metals; (8) spatial resolution of less than 5 microns; (9) remote operation; (10) an ability to be multiplexed; and (11) immunity to electromagnetic interference. A detailed discussion of the design considerations for the sensor, system development, evaluation of the sensor performance both in the laboratory and wind tunnel environments is presented in this thesis. The performance of the sensor compared favorably with electrical gauges namely, platinum thin-film resistance thermometers. A 4-sensor multiplexed system has been successfully operated, and is reported in the thesis. A brief discussion is also included to indicate that the same sensor design may be considered for applications in other engineering areas.

15. Fibre Optic Sensors for Heat Transfer Studies.

Sinha, Pranay G.

Available from UMI in association with The British Library. This thesis describes the design and development of a prototype sensor, based on a miniature optical fibre Fabry-Perot interferometer, for heat transfer studies on model turbomachinery components in transient flow wind tunnels. These sensors overcome a number of difficulties which are often encountered in using conventional electrical thin-film resistance gauges such as in the measurement of rapidly varying heat transfer rates, spatial resolution, electromagnetic interference, calibration and signal processing. The special features of the optical sensor are: (i) short length (<5 mm), and therefore embeddable in thin structures of model components; (ii) direct measurement of heat flux rates; (iii) calorimetric operation with temperature resolution of <25 mK over a measurement bandwidth of 100 kHz: (iv) capability of measuring heat flux <5 kWm^ {-2} with measurement range in excess of 10 MWm^{-2}; (v) temporal response time of <10 mus; (vi) minimal thermal disturbances because models are often made of ceramic materials with thermal properties similar to those of the optical fibre from which sensors are made; (vii) possibility of using in models with dissimilar thermal properties to the optical fibre, for example, metals; (viii) spatial resolution of <5 mu m; (ix) remote operation; (x) an ability to be multiplexed; and (xi) immunity to electromagnetic interference. A detailed discussion of the design considerations for the sensor, system development, evaluation of the sensor performance both in the laboratory and wind tunnel environments is presented in this thesis. The performance of the sensor compared favourably with electrical gauges namely, platinum thin-film resistance thermometers. A 4-sensor multiplexed system has been sucessfully operated, and is reported in the thesis. A brief discussion is also included to indicate that the same sensor design may be considered for applications in other engineering

16. Nanoscale heat transfer and phase transformation surrounding intensely heated nanoparticles

Sasikumar, Kiran

Over the last decade there has been significant ongoing research to use nanoparticles for hyperthermia-based destruction of cancer cells. In this regard, the investigation of highly non-equilibrium thermal systems created by ultrafast laser excitation is a particularly challenging and important aspect of nanoscale heat transfer. It has been observed experimentally that noble metal nanoparticles, illuminated by radiation at the plasmon resonance wavelength, can act as localized heat sources at nanometer-length scales. Achieving biological response by delivering heat via nanoscale heat sources has also been demonstrated. However, an understanding of the thermal transport at these scales and associated phase transformations is lacking. A striking observation made in several laser-heating experiments is that embedded metal nanoparticles heated to extreme temperatures may even melt without an associated boiling of the surrounding fluid. This unusual phase stability is not well understood and designing experiments to understand the physics of this phenomenon is a challenging task. In this thesis, we will resort to molecular dynamics (MD) simulations, which offer a powerful tool to investigate this phenomenon, without assumptions underlying continuum-level model formulations. We present the results from a series of steady state and transient non-equilibrium MD simulations performed on an intensely heated nanoparticle immersed in a model liquid. For small nanoparticles (1-10 nm in diameter) we observe a stable liquid phase near the nanoparticle surface, which can be at a temperature well above the boiling point. Furthermore, we report the existence of a critical nanoparticle size (4 nm in diameter) below which we do not observe formation of vapor even when local fluid temperatures exceed the critical temperature. Instead, we report the existence of a stable fluid region with a density much larger than that of the vapor phase. We explain this stability in terms of the

17. High-intensity drying processes: Impulse drying modeling of fluid flow and heat transfer in a crown compensated impulse drying press roll, The lubrication problem. Annual report

SciTech Connect

Orloff, D.I.; Hojjatie, B.; Bloom, F.

1994-08-01

Although evaporative drying is currently used to dry paper, research has showed that significant energy savings could be realized with the newer impulse drying technology in drying heavy weight grades of paper. This report analyzes the lubrication problem which arises in modeling impulse drying employing a crown compensated roll. The geometry for the associated steady flow problem is constructed and expressions are derived for the relevant velocity fields, mass flow rates, and normal and tangential forces acting on both the bottom surface of an internal hydrostatic shoe and the inside surface of the crown-compensated roll. Results from the analytical model agreed well with experimental data from Beloit Corp. for the small shoe/roll configuration. The model can be used to predict effect of design and physical parameters on the performance of the press roll (lubricant thickness, pressure distributions, mechanical power required to operate the roll, etc.) and to determine optimal performance under various operating conditions.

18. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

SciTech Connect

Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

2007-10-03

A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

19. Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades

NASA Technical Reports Server (NTRS)

Graham, R. W.

1979-01-01

Heat tranfer problems in aircraft gas turbines required for improved prediction of turbine blade or vane gas-side heat transfer are examined. Estimates of the heat transfer from the gas to vanes or rotating blades are uncertain due to the complexity of the heat transfer processes, since the gas flow is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. The thermal state and flow characteristics of the hot gases that enter the turbine blade row, analytical methods for calculating the gas-side heat transfer to turbine blades, and flow phenomena such as stagnation, curvature effects, acceleration, secondary flows, and transition that influences local heat transfer rates are discussed.

20. Kinetic Monte Carlo modeling of chemical reactions coupled with heat transfer

Castonguay, Thomas C.; Wang, Feng

2008-03-01

In this paper, we describe two types of effective events for describing heat transfer in a kinetic Monte Carlo (KMC) simulation that may involve stochastic chemical reactions. Simulations employing these events are referred to as KMC-TBT and KMC-PHE. In KMC-TBT, heat transfer is modeled as the stochastic transfer of "thermal bits" between adjacent grid points. In KMC-PHE, heat transfer is modeled by integrating the Poisson heat equation for a short time. Either approach is capable of capturing the time dependent system behavior exactly. Both KMC-PHE and KMC-TBT are validated by simulating pure heat transfer in a rod and a square and modeling a heated desorption problem where exact numerical results are available. KMC-PHE is much faster than KMC-TBT and is used to study the endothermic desorption of a lattice gas. Interesting findings from this study are reported.

1. Convective heat transfer in a high aspect ratio minichannel heated on one side

SciTech Connect

Forrest, Eric C.; Hu, Lin -Wen; Buongiorno, Jacopo; McKrell, Thomas J.

2015-10-21

Experimental results are presented for single-phase heat transfer in a narrow rectangular minichannel heated on one side. The aspect ratio and gap thickness of the test channel were 29:1 and 1.96 mm, respectively. Friction pressure drop and Nusselt numbers are reported for the transition and fully turbulent flow regimes, with Prandtl numbers ranging from 2.2 to 5.4. Turbulent friction pressure drop for the high aspect ratio channel is well-correlated by the Blasius solution when a modified Reynolds number, based upon a laminar equivalent diameter, is utilized. The critical Reynolds number for the channel falls between 3500 and 4000, with Nusselt numbers in the transition regime being reasonably predicted by Gnielinski's correlation. The dependence of the heat transfer coefficient on the Prandtl number is larger than that predicted by circular tube correlations, and is likely a result of the asymmetric heating. The problem of asymmetric heating condition is approached theoretically using a boundary layer analysis with a two-region wall layer model, similar to that originally proposed by Prandtl. The analysis clarifies the influence of asymmetric heating on the Nusselt number and correctly predicts the experimentally observed trend with Prandtl number. Furthermore, a semi-analytic correlation is derived from the analysis that accounts for the effect of aspect ratio and asymmetric heating, and is shown to predict the experimental results of this study with a mean absolute error (MAE) of less than 5% for 4000 < Re < 70,000.

2. Study and Analysis of Heat Transfer Limitation of Separated Heat Pipe

Mou, Qizheng; Mou, Kai

2002-01-01

satellite and spacecraft. evaporator, heat isolation and condenser along the axial direction. The working fluid absorbs heat and evaporates in evaporator, and then the vapor flows to condenser and gives out heat. The condensed liquid is pumped to evaporator by wick. By the circulation, the heat can by transferred continuously. heat pipe as follow: - Vapor-liquid two phase flow inside pipe; - The manner of latent heat to transfer heat; - Automatic circulation by working fluid flowing - A certain extent of vacuum. and the traditional heat pipe, that is, the vapor fluid and liquid fluid flow along the same direction. So it is obviously that the separated heat pipe has special internal heat transfer characteristic and crisis. This paper has regard for the heat transfer crisis of the separated heat pipe, and meanwhile relevant calculation and analysis have been done. 1. FLOW TYPE OF THE WORKING FLUID IN SEPARATED HEAT PIPE 2. HEAT TRANSFER CRISIS IN THE EVAPORATOR 3. CARRYING PHENOMENON INSIDE SEPARATED HEAT PIPE 4. THE STAGNANT FLOW PHENOMENON AND THE BACKWARD FLOW PHENOMENON IN EVAPORATOR CONCLUSION transfer limitation of location burn-out, and the heat transfer limitation of flow unconventionality in erective pipe. The carrying phenomenon can occurs not only in evaporator but also in condenser of separated heat pipe. It is in the evaporator that should take place the heat transfer limitation of liquid film dry-out at first. Then with the increasing of heat flux, the heat transfer limitation of location burn-out would happen. In order to avoid the heat transfer limitation of flow unconventionality in erective pipe, the length and diameter of the outflow tube and inflow tube must be reasonably calculated to control the flow velocity of the working fluid inside pipe. Key words:Separated Heat PipeHeat Transfer LimitationDry-OutCarryingStagnancy

3. Nucleation and Heat Transfer in Liquid Nitrogen

Roth, Eric Warner

1993-01-01

With the advent of the new high Tc superconductors as well as the increasing use of cryo-cooled conventional electronics, liquid nitrogen will be one of the preferred cryogens used to cool these materials. Consequently, a more thorough understanding of the heat transfer characteristics of liquid nitrogen is required. In these investigations the transient heating characteristics of liquid nitrogen to states of nucleate and film boiling under different liquid flow conditions are examined. Using a metal hot wire/plate technique, it is verified that there is a premature transition to film boiling in the transient case at power levels as much as 30 percent lower than under steady state nucleate boiling conditions. It is also shown that the premature transition can be reduced or eliminated depending on the flow velocity. The second part of this research analyses the nucleation (boiling) process from a dynamical systems point of view. By observing how the boiling system variables evolve and fluctuate over time, it is hoped that physical insight and predictive information can be gained. One goal is to discover some indicator or signature in the data that anticipates the transition from nucleate boiling to film boiling. Some of the important variables that make up the boiling system are the temperature of the heater and the heat flux through the heater surface into the liquid nitrogen. The result, gained by plotting the system's trajectory in the heat flux-temperature plane, is that on average the system follows a counterclockwise trajectory. A physical model is constructed that explains this behavior. Also, as the applied heater power approaches levels at which the transition to film is known to occur, the area per unit time swept out in the heat flux-temperature plane is seen to reach a maximum. This could be of practical interest as the threshold to film boiling can be anticipated and possibly prevented.

4. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization

SciTech Connect

McHugh, P.R.

1995-10-01

Fully coupled, Newton-Krylov algorithms are investigated for solving strongly coupled, nonlinear systems of partial differential equations arising in the field of computational fluid dynamics. Primitive variable forms of the steady incompressible and compressible Navier-Stokes and energy equations that describe the flow of a laminar Newtonian fluid in two-dimensions are specifically considered. Numerical solutions are obtained by first integrating over discrete finite volumes that compose the computational mesh. The resulting system of nonlinear algebraic equations are linearized using Newton`s method. Preconditioned Krylov subspace based iterative algorithms then solve these linear systems on each Newton iteration. Selected Krylov algorithms include the Arnoldi-based Generalized Minimal RESidual (GMRES) algorithm, and the Lanczos-based Conjugate Gradients Squared (CGS), Bi-CGSTAB, and Transpose-Free Quasi-Minimal Residual (TFQMR) algorithms. Both Incomplete Lower-Upper (ILU) factorization and domain-based additive and multiplicative Schwarz preconditioning strategies are studied. Numerical techniques such as mesh sequencing, adaptive damping, pseudo-transient relaxation, and parameter continuation are used to improve the solution efficiency, while algorithm implementation is simplified using a numerical Jacobian evaluation. The capabilities of standard Newton-Krylov algorithms are demonstrated via solutions to both incompressible and compressible flow problems. Incompressible flow problems include natural convection in an enclosed cavity, and mixed/forced convection past a backward facing step.

5. Heat Transfer in High Temperature Multilayer Insulation

NASA Technical Reports Server (NTRS)

Daryabeigi, Kamran; Miller, Steve D.; Cunnington, George R.

2007-01-01

High temperature multilayer insulations have been investigated as an effective component of thermal-protection systems for atmospheric re-entry of reusable launch vehicles. Heat transfer in multilayer insulations consisting of thin, gold-coated, ceramic reflective foils and Saffil(TradeMark) fibrous insulation spacers was studied both numerically and experimentally. A finite volume numerical thermal model using combined conduction (gaseous and solid) and radiation in porous media was developed. A two-flux model with anisotropic scattering was used for radiation heat transfer in the fibrous insulation spacers between the reflective foils. The thermal model was validated by comparison with effective thermal conductivity measurements in an apparatus based on ASTM standard C201. Measurements were performed at environmental pressures in the range from 1x10(exp -4) to 760 torr over the temperature range from 300 to 1300 K. Four multilayer samples with nominal densities of 48 kg/cu m were tested. The first sample was 13.3 mm thick and had four evenly spaced reflective foils. The other three samples were 26.6 mm thick and utilized either one, two, or four reflective foils, located near the hot boundary with nominal foil spacing of 1.7 mm. The validated thermal model was then used to study relevant design parameters, such as reflective foil spacing and location in the stack-up and coating of one or both sides of foils.

6. Micro-grooved heat transfer combustor wall

NASA Technical Reports Server (NTRS)

Ward, Steven D. (Inventor)

1994-01-01

A gas turbine engine hot section combustor liner is provided a non-film cooled portion of a heat transfer wall having a hot surface and a plurality of longitudinally extending micro-grooves disposed in the portion of the wall along the hot surface in a direction parallel to the direction of the hot gas flow. The depth of the micro-grooves is very small and on the order of magnitude of a predetermined laminar sublayer of a turbulent boundary layer. The micro-grooves are sized so as to inhibit heat transfer from the hot gas flow to the hot surface of the wall while reducing NOx emissions of the combustor relative to an otherwise similar combustor having a liner wall portion including film cooling apertures. In one embodiment the micro-grooves are about 0.001 inches deep and have a preferred depth range of from about 0.001 inches to 0.005 inches and which are square, rectangular, or triangular in cross-section and the micro-grooves are spaced about one width apart.

7. Transient critical heat flux and blowdown heat-transfer studies

SciTech Connect

Leung, J.C.

1980-05-01

Objective of this study is to give a best-estimate prediction of transient critical heat flux (CHF) during reactor transients and hypothetical accidents. To accomplish this task, a predictional method has been developed. Basically it involves the thermal-hydraulic calculation of the heated core with boundary conditions supplied from experimental measurements. CHF predictions were based on the instantaneous ''local-conditions'' hypothesis, and eight correlations (consisting of round-tube, rod-bundle, and transient correlations) were tested against most recent blowdown heat-transfer test data obtained in major US facilities. The prediction results are summarized in a table in which both CISE and Biasi correlations are found to be capable of predicting the early CHF of approx. 1 s. The Griffith-Zuber correlation is credited for its prediction of the delay CHF that occurs in a more tranquil state with slowly decaying mass velocity. In many instances, the early CHF can be well correlated by the x = 1.0 criterion; this is certainly indicative of an annular-flow dryout-type crisis. The delay CHF occurred at near or above 80% void fraction, and the success of the modified Zuber pool-boiling correlation suggests that this CHF is caused by flooding and pool-boiling type hydrodynamic crisis.

8. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

SciTech Connect

Dechant, Lawrence; Smith, Justin

2016-01-01

Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

9. Boiling local heat transfer enhancement in minichannels using nanofluids

Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

2013-03-01

This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

10. Boiling local heat transfer enhancement in minichannels using nanofluids

PubMed Central

2013-01-01

This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445

11. Boiling local heat transfer enhancement in minichannels using nanofluids.

PubMed

Chehade, Ali Ahmad; Gualous, Hasna Louahlia; Le Masson, Stephane; Fardoun, Farouk; Besq, Anthony

2013-03-18

This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance.

12. 2D FEM Heat Transfer & E&M Field Code

SciTech Connect

1992-04-02

TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.

13. Heat transfer assembly for a fluorescent lamp and fixture

DOEpatents

Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

1992-12-29

In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

14. Heat transfer assembly for a fluorescent lamp and fixture

DOEpatents

Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.

1992-01-01

In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

15. The Optimum Plate to Plate Spacing for Maximum Heat Transfer Rate from a Flat Plate Type Heat Exchanger

Ambarita, Himsar; Kishinami, Koki; Daimaruya, Mashashi; Tokura, Ikuo; Kawai, Hideki; Suzuki, Jun; Kobiyama, Mashayosi; Ginting, Armansyah

The present paper is a study on the optimum plate to plate spacing for maximum heat transfer rate from a flat plate type heat exchanger. The heat exchanger consists of a number of parallel flat plates. The working fluids are flowed at the same operational conditions, either fixed pressure head or fixed fan power input. Parallel and counter flow directions of the working fluids were considered. While the volume of the heat exchanger is kept constant, plate number was varied. Hence, the spacing between plates as well as heat transfer rate will vary and there exists a maximum heat transfer rate. The objective of this paper is to seek the optimum plate to plate spacing for maximum heat transfer rate. In order to solve the problem, analytical and numerical solutions have been carried out. In the analytical solution, the correlations of the optimum plate to plate spacing as a function of the non-dimensional parameters were developed. Furthermore, the numerical simulation is carried out to evaluate the correlations. The results show that the optimum plate to plate spacing for a counter flow heat exchanger is smaller than parallel flow ones. On the other hand, the maximum heat transfer rate for a counter flow heat exchanger is bigger than parallel flow ones.

16. Convective heat transfer in porous media

Cheng, P.

Recent emerging technologies on the extraction of geothermal energy, the design of insulation systems for energy conservation, the use of aquifers for hot-water storage, the disposal of nuclear wastes in sub-seabeds, the enhanced recovery of oils by thermal methods, and the design of catalyst-bed reactors have demanded an improved understanding of heat transfer mechanisms in fluid-filled porous media. Experiments have been conducted to investigate the onset of free convection in rectangular and cylindrical enclosures filled with porous media and heated from below. The Nusselt numbers determined from these experiments during steady conditions are correlated in terms of the Rayleigh number. The data for free convection in rectangular geometries show considerable scattering among investigators using different porous media and fluids. Recently, some data has been obtained for free convect on in water-filled glass beads adjacent to a heated vertical flat plate, a horizontal cylinder and between vertical concentric cylinders. The data obtained at low Rayleigh numbers is found to be in good agreement with theoretical predictions based on Darcy's law.

17. Control of Impingement Heat Transfer Using Mist

Kanamori, Azusa; Hiwada, Munehiko; Mimatsu, Junji; Sugimoto, Hiraku; Oyakawa, Kenyuu

Impingement heat transfer from a circular orifice jet by using latent heat of water mists was studied experimentally. The amounts of mists of about Zauter's mean diameter 14 µm were from 60 to 200 g/h within a range where liquid films were not formed on the target plate and mists were added near the orifice edge. Experiments covered Reynolds numbers from 12,500 to 50,000 and a heat flux is 1,400 W/m2. The experimental results indicate that adding mists had little influence on free jet mean velocity profiles and target plate pressure coefficients. On the other hand, mists had a strong influence on temperature and humidity profiles of a free jet and they also influenced Nusselt number distributions on the target plate. Increases of mists and Reynolds number caused increases in Nusselt number on the developed region. In addition, we investigated influence of the way mists were added and these results showed that Nusselt number was influenced not only by the amounts of mists but also by the adding method. Local Nusselt number profiles with mists were closely related to temperature distributions of the free jet at the location corresponding to the target plate.

18. Analysis of Fluid Flow and Heat Transfer in a Falling Film Using Volume of Fluid Method

SciTech Connect

Vishnoi, A.K.; Chandraker, D.K.; Vijayan, P.K.

2006-07-01

This paper deals with the applicability of VOF method for interface tracking with heat transfer and validation of the VOF approach using experimental data. A vertical channel flow problem in which the liquid is falling inside a vertical channel along one of the walls from the top is analysed and liquid--air interface is tracked. In the same problem analysis of heat transfer from the wall has been incorporated. This approach has a potential to predict liquid film thickness in a heated tube/subchannel which will lead to the evaluation of critical power (power corresponding to critical heat flux). (authors)

19. The heat transfer of cooling fins on moving air

NASA Technical Reports Server (NTRS)

Doetsch, Hans

1935-01-01

The present report is a comparison of the experimentally defined temperature and heat output of cooling fins in the air stream with theory. The agreement is close on the basis of a mean coefficient of heat transfer with respect to the total surface. A relationship is established between the mean coefficient of heat transfer, the dimensions of the fin arrangement, and the air velocity.

20. Heat transfer from starlings sturnus vulgaris during flight

PubMed

Ward; Rayner; MOLler; Jackson; Nachtigall; Speakman

1999-06-01

Infrared thermography was used to measure heat transfer by radiation and the surface temperature of starlings (Sturnus vulgaris) (N=4) flying in a wind tunnel at 6-14 m s-1 and at 15-25 degrees C. Heat transfer by forced convection was calculated from bird surface temperature and biophysical modelling of convective heat transfer coefficients. The legs, head and ventral brachial areas (under the wings) were the hottest parts of the bird (mean values 6.8, 6.0 and 5.3 degrees C, respectively, above air temperature). Thermal gradients between the bird surface and the air decreased at higher air temperatures or during slow flight. The legs were trailed in the air stream during slow flight and when air temperature was high; this could increase heat transfer from the legs from 1 to 12 % of heat transfer by convection, radiation and evaporation (overall heat loss). Overall heat loss at a flight speed of 10.2 m s-1 averaged 11. 3 W, of which radiation accounted for 8 % and convection for 81 %. Convection from the ventral brachial areas was the most important route of heat transfer (19 % of overall heat loss). Of the overall heat loss, 55 % occurred by convection and radiation from the wings, although the primaries and secondaries were the coolest parts of the bird (2.2-2.5 degrees C above air temperature). Calculated heat transfer from flying starlings was most sensitive to accurate measurement of air temperature and convective heat transfer coefficients.

1. 46 CFR 153.430 - Heat transfer systems; general.

Code of Federal Regulations, 2011 CFR

2011-10-01

... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's...

2. 46 CFR 153.430 - Heat transfer systems; general.

Code of Federal Regulations, 2010 CFR

2010-10-01

... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer systems; general. 153.430 Section 153.430... Temperature Control Systems § 153.430 Heat transfer systems; general. Each cargo cooling system required by... separated from all other cooling and heating systems; and (c) Allow manual regulation of the system's...

3. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

Kılıç, Bayram; İpek, Osman

2017-02-01

In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

4. [Heat-related problems in the elderly].

PubMed

Karg, T; Rendenbach, U

2005-06-30

In particular in the elderly patient, exposure to heat can lead to disturbances of the circulatory system and of the water and electrolyte balance. Provided that certain prophylactic measures are taken, serious problems are unlikely to occur. Food and drink should be matched to the ambient temperature, and permanent medication should be checked. In the case of confused persons, nursing personnel should substitute for any failure to make the necessary acclimatization changes (appropriate clothing). In the case of incontinent patients, it must be remembered that the diapered area is not available for radiating off heat.

5. Raman Measurement of Heat Transfer in Suspended Individual Carbon Nanotube.

PubMed

Wang, Hai-Dong; Liu, Jin-Hui; Zhang, Xing; Zhang, Ru-Fan; Wei, Fei

2015-04-01

The excellent thermal performance of carbon nanotube (CNT) has been noticed long ago and attracted much attention. In the experiments, the electrical and thermal contact resistances remain the unsolved key problems causing undesirable measurement uncertainty. Recently, a micro-Raman spectroscopy technique has been applied to perform non-contact measurement for individual CNT, thus the contact resistances during the measurement process can be avoided. In this method, the temperature rise of CNT is a function of laser absorption probability and thermal properties, these parameters are coupled together. In this work, the thermal conductivity and optical absorption of the same CNT sample are decoupled and determined simultaneously. The thermal conductivity is obtained by measuring the temperature rise caused by a direct current heating, where the laser heating effect can be eliminated. Then the optical absorption is obtained by solving the heat transfer equation considering the thermal conductivity as a known parameter. The CNT sample is 24.8 µm in length and 3 nm in diameter. The measured thermal conductivity is 2630 Wm(-1)K(-1) and the optical absorption is 0.194%. The heat transfer coefficient is evaluated using a kinetic two-layer model, which has been proven by the previous experiment. Because the length of CNT is much larger than the size of the focused laser spot, the experimental result is insensitive to the contact resistances at the ends of CNT.

6. Numerical simulation of the convective heat transfer on high-performance computing systems

Stepanov, S. P.; Vasilyeva, M. V.; Vasilyev, V. I.

2016-10-01

In this work, we consider a coupled system of equations for the convective heat transfer and flow problems, which describes the processes of the natural or forced convection in some bounded area. Mathematical model include the Navier-Stokes equation for flow and the heat transfer equation for the heat transfer. Numerical implementation is based on the finite element method, which allows to take into account the complex geometry of the modeled objects. For numerical stabilization of the convective heat transfer equation for high Peclet numbers, we use streamline upwinding Petrov-Galerkin (SUPG) method. The results of the numerical simulations are presented for the 2D formulation. As the test problems, we consider the flow and heat transfer problems in technical construction under the conditions of heat sources and influence of air temperature. We couple this formulation with heat transfer problem in the surrounding grounds and investigate the influence of the technical construction to the ground in condition of the permafrost and the influence of the grounds to the temperature distribution in the construction. Numerical computation are performed on the computational cluster of the North-Eastern Federal University.

7. Modelling heat transfer in heterogeneous media using fractional calculus.

PubMed

Sierociuk, Dominik; Dzielinski, Andrzej; Sarwas, Grzegorz; Petras, Ivo; Podlubny, Igor; Skovranek, Tomas

2013-05-13

This paper presents the results of modelling the heat transfer process in heterogeneous media with the assumption that part of the heat flux is dispersed in the air around the beam. The heat transfer process in a solid material (beam) can be described by an integer order partial differential equation. However, in heterogeneous media, it can be described by a sub- or hyperdiffusion equation which results in a fractional order partial differential equation. Taking into consideration that part of the heat flux is dispersed into the neighbouring environment we additionally modify the main relation between heat flux and the temperature, and we obtain in this case the heat transfer equation in a new form. This leads to the transfer function that describes the dependency between the heat flux at the beginning of the beam and the temperature at a given distance. This article also presents the experimental results of modelling real plant in the frequency domain based on the obtained transfer function.

8. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

Kuznetsov, V. V.; Shamirzaev, A. S.

2015-11-01

The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

9. Fundamental mechanisms that influence the estimate of heat transfer to gas turbine blades

NASA Technical Reports Server (NTRS)

Graham, R. W.

1979-01-01

Estimates of the heat transfer from the gas to stationary (vanes) or rotating blades poses a major uncertainty due to the complexity of the heat transfer processes. The gas flow through these blade rows is three dimensional with complex secondary viscous flow patterns that interact with the endwalls and blade surfaces. In addition, upstream disturbances, stagnation flow, curvature effects, and flow acceleration complicate the thermal transport mechanisms in the boundary layers. Some of these fundamental heat transfer effects are discussed. The chief purpose of the discussion is to acquaint those in the heat transfer community, not directly involved in gas turbines, of the seriousness of the problem and to recommend some basic research that would improve the capability for predicting gas-side heat transfer on turbine blades and vanes.

10. Heat transfer analysis of cylindrical anaerobic reactors with different sizes: a heat transfer model.

PubMed

Liu, Jiawei; Zhou, Xingqiu; Wu, Jiangdong; Gao, Wen; Qian, Xu

2017-08-28

The temperature is the essential factor that influences the efficiency of anaerobic reactors. During the operation of the anaerobic reactor, the fluctuations of ambient temperature can cause a change in the internal temperature of the reactor. Therefore, insulation and heating measures are often used to maintain anaerobic reactor's internal temperature. In this paper, a simplified heat transfer model was developed to study heat transfer between cylindrical anaerobic reactors and their surroundings. Three cylindrical reactors of different sizes were studied, and the internal relations between ambient temperature, thickness of insulation, and temperature fluctuations of the reactors were obtained at different reactor sizes. The model was calibrated by a sensitivity analysis, and the calibrated model was well able to predict reactor temperature. The Nash-Sutcliffe model efficiency coefficient was used to assess the predictive power of heat transfer models. The Nash coefficients of the three reactors were 0.76, 0.60, and 0.45, respectively. The model can provide reference for the thermal insulation design of cylindrical anaerobic reactors.

11. Nanofluids for heat transfer: an engineering approach.

PubMed

Timofeeva, Elena V; Yu, Wenhua; France, David M; Singh, Dileep; Routbort, Jules L

2011-02-28

An overview of systematic studies that address the complexity of nanofluid systems and advance the understanding of nanoscale contributions to viscosity, thermal conductivity, and cooling efficiency of nanofluids is presented. A nanoparticle suspension is considered as a three-phase system including the solid phase (nanoparticles), the liquid phase (fluid media), and the interfacial phase, which contributes significantly to the system properties because of its extremely high surface-to-volume ratio in nanofluids. The systems engineering approach was applied to nanofluid design resulting in a detailed assessment of various parameters in the multivariable nanofluid systems. The relative importance of nanofluid parameters for heat transfer evaluated in this article allows engineering nanofluids with desired set of properties.

12. Turbine disk cavity aerodynamics and heat transfer

NASA Technical Reports Server (NTRS)

Johnson, B. V.; Daniels, W. A.

1992-01-01

Experiments were conducted to define the nature of the aerodynamics and heat transfer for the flow within the disk cavities and blade attachments of a large-scale model, simulating the Space Shuttle Main Engine (SSME) turbopump drive turbines. These experiments of the aerodynamic driving mechanisms explored the following: (1) flow between the main gas path and the disk cavities; (2) coolant flow injected into the disk cavities; (3) coolant density; (4) leakage flows through the seal between blades; and (5) the role that each of these various flows has in determining the adiabatic recovery temperature at all of the critical locations within the cavities. The model and the test apparatus provide close geometrical and aerodynamic simulation of all the two-stage cavity flow regions for the SSME High Pressure Fuel Turbopump and the ability to simulate the sources and sinks for each cavity flow.

13. Heat transfer characteristics in film cooling applications

Licu, Dragos Nicolae

1998-11-01

14. Nanofluids for heat transfer : an engineering approach.

SciTech Connect

Timofeeva, E. V.; Yu, W.; France, D. M.; Singh, D.; Routbort, J. L.

2011-02-28

An overview of systematic studies that address the complexity of nanofluid systems and advance the understanding of nanoscale contributions to viscosity, thermal conductivity, and cooling efficiency of nanofluids is presented. A nanoparticle suspension is considered as a three-phase system including the solid phase (nanoparticles), the liquid phase (fluid media), and the interfacial phase, which contributes significantly to the system properties because of its extremely high surface-to-volume ratio in nanofluids. The systems engineering approach was applied to nanofluid design resulting in a detailed assessment of various parameters in the multivariable nanofluid systems. The relative importance of nanofluid parameters for heat transfer evaluated in this article allows engineering nanofluids with desired set of properties.

15. Heat and mass transfer in flames

NASA Technical Reports Server (NTRS)

Faeth, G. M.

1986-01-01

Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

16. Heat and mass transfer in flames

NASA Technical Reports Server (NTRS)

Faeth, G. M.

1986-01-01

Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

17. Submersible pumping system with heat transfer mechanism

DOEpatents

Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

2014-04-15

A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

18. HEAT TRANSFER AND TRITIUM PRODUCING SYSTEM

DOEpatents

Johnson, E.F.

1962-06-01

This invention related to a circulating lithium-containing blanket system in a neution source hav'ing a magnetic field associated therewith. The blanket serves simultaneously and efficiently as a heat transfer mediunm and as a source of tritium. The blanket is composed of a lithium-6-enriched fused salt selected from the group consisting of lithium nitrite, lithium nitrate, a mixture of said salts, a mixture of each of said salts with lithium oxide, and a mixture of said salts with each other and with lithium oxide. The moderator, which is contained within the blanket in a separate conduit, can be water. A stellarator is one of the neutron sources which can be used in this invention. (AEC)

19. Low-melting point heat transfer fluid

DOEpatents

Cordaro, Joseph G [Oakland, CA; Bradshaw, Robert W [Livermore, CA

2011-04-12

A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

20. Analysis of the heat transfer in double and triple concentric tube heat exchangers

Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.

2016-08-01

The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.

1. Flow and heat transfer in microchannels using a microcontinuum approach

SciTech Connect

Jacobi, A.M. )

1989-11-01

Heat and mass transfer in small channels has many important applications. Recent advances in electronic cooling technology have suggested the use of microchannels for cooling electronic components. The purpose of this note is to employ Eringen's theory to predict how heat transfer may be affected as the classical fluid model breaks down. Such predictions hold not only theoretical importance, but may serve useful in modeling heat transfer in microchannel, or arterioles where the theory has been widely applied.

2. Liquid jet impingement heat transfer with or without boiling

Ma, C. F.; Gan, Y. P.; Tian, Y. C.; Lei, D. H.; Gomi, T.

1993-03-01

The purpose of this paper is to summarize the important studies in the area of impingement heat transfer with or without phase change, with emphasis on the research conducted at Beijing Polytechnic University mainly with circular jets. Heat transfer characteristics of single phase jets are discussed in detail. Comment is presented on boiling heat transfer of impinging jets for steady and transient states. Some special cooling configurations of two-phase jets are also introduced.

3. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

SciTech Connect

Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle

2014-10-01

This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

4. Two-dimensional finite element heat transfer model of softwood. Part III, Effect of moisture content on thermal conductivity

Treesearch

Hongmei Gu; John F. Hunt

2007-01-01

The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models for softwood use average thermal properties across either the radial or tangential direction and do not differentiate the effects of cellular alignment or...

5. In - line determination of heat transfer coefficients in a plate heat exchanger

Sotelo, S. Silva; Domínguez, R. J. Romero

This paper shows an in - line determination of heat transfer coefficients in a plate heat exchanger. Water and aqueous working solution of lithium bromide + ethylene glycol are considered. Heat transfer coefficients are calculated for both fluids. "Type T" thermocouples were used for monitoring the wall temperature in a plate heat exchanger, which is one of the main components in an absorption system. Commercial software Agilent HP Vee Pro 7.5 was used for monitoring the temperatures and for the determination of the heat transfer coefficients. There are not previous works for heat transfer coefficients for the working solution used in this work.

6. High thermal power density heat transfer. [thermionic converters

NASA Technical Reports Server (NTRS)

Morris, J. F. (Inventor)

1980-01-01

Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically non-conducting gap between the two heat pipes.

7. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

DOEpatents

Phillips, Benjamin A.; Zawacki, Thomas S.; Marsala, Joseph

1994-11-29

Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

8. Heat transfer enhancement by application of nano-powder

Mosavian, M. T. Hamed; Heris, S. Zeinali; Etemad, S. Gh.; Esfahany, M. Nasr

2010-09-01

In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.

9. Conjugate Heat Transfer in Porous Cavity: ANN approach

Jafer Kazi1, Mohammed; Yunus Khan, T. M.

2017-08-01

Artificial neural network is a technique to predict the outcome of a function depending on various input parameters that could be either or geometric variables. This technique is widely used in many fields to predict an outcome. The current article discusses the usage of artificial neural network to predict conjugate heat transfer behaviour inside the porous cavity. The artificial neural network is run with neurons placed in multiple layers. The heat transfer inside the porous cavity is predicted in terms of Nusselt number which shows the convective heat transfer in relation to its conduction counterpart. The heat transfer prediction is compared with the results obtained by finite element method.

10. Heat transfer coefficient in serpentine coolant passage for CCDTL

SciTech Connect

Leslie, P.; Wood, R.; Sigler, F.; Shapiro, A.; Rendon, A.

1998-12-31

A series of heat transfer experiments were conducted to refine the cooling passage design in the drift tubes of a coupled cavity drift tube linac (CCDTL). The experimental data were then compared to numerical models to derive relationships between heat transfer rates, Reynold`s number, and Prandtl number, over a range of flow rates. Data reduction consisted of axisymmetric finite element modeling where the heat transfer coefficients were modified to match the experimental data. Unfortunately, the derived relationship is valid only for this specific geometry of the test drift tube. Fortunately, the heat transfer rates were much better (approximately 2.5 times) than expected.

11. Heat Transfer Variation on Protuberances and Surface Roughness Elements

NASA Technical Reports Server (NTRS)

Henry, Robert C.; Hansman, R. John, Jr.; Breuer, Kenneth S.

1995-01-01

In order to determine the effect of surface irregularities on local convective heat transfer, the variation in heat transfer coefficients on small (2-6 mm diam) hemispherical roughness elements on a flat plate has been studied in a wind funnel using IR techniques. Heat transfer enhancement was observed to vary over the roughness elements with the maximum heat transfer on the upstream face. This heat transfer enhancement increased strongly with roughness size and velocity when there was a laminar boundary layer on the plate. For a turbulent boundary layer, the heat transfer enhancement was relatively constant with velocity, but did increase with element size. When multiple roughness elements were studied, no influence of adjacent roughness elements on heat transfer was observed if the roughness separation was greater than approximately one roughness element radius. As roughness separation was reduced, less variation in heat transfer was observed on the downstream elements. Implications of the observed roughness enhanced heat transfer on ice accretion modeling are discussed.

12. CarbAl Heat Transfer Material

NASA Technical Reports Server (NTRS)

Fink, Richard

2015-01-01

The increasing use of power electronics, such as high-current semiconductor devices and modules, within space vehicles is driving the need to develop specialty thermal management materials in both the packaging of these discrete devices and the packaging of modules consisting of these device arrays. Developed by Applied Nanotech, Inc. (ANI), CarbAl heat transfer material is uniquely characterized by its low density, high thermal diffusivity, and high thermal conductivity. Its coefficient of thermal expansion (CTE) is similar to most power electronic materials, making it an effective base plate substrate for state-of-the-art silicon carbide (SiC) super junction transistors. The material currently is being used to optimize hybrid vehicle inverter packaging. Adapting CarbAl-based substrates to space applications was a major focus of the SBIR project work. In Phase I, ANI completed modeling and experimentation to validate its deployment in a space environment. Key parameters related to cryogenic temperature scaling of CTE, thermal conductivity, and mechanical strength. In Phase II, the company concentrated on improving heat sinks and thermally conductive circuit boards for power electronic applications.

13. Heat transfer characteristics of igniter output plumes

Evans, N. A.; Durand, N. A.

Seven types of pyrotechnic igniters were each mounted at one end of a closed cylindrical bore hole representative of the center hole in a thermal battery. Measurements of local bore wall temperature, T(sub w), using commercially available, fast response (10 microsec) sheathed chromel-constantan thermocouples allowed calculation of local heat transfer rates, q, and wall heat flows, Q. The principal charge constituents of all these igniters were titanium and potassium perchlorate, while three types also contained barium styphnate as an ignition sensitizer. Igniter closure disc materials included glass-ceramic, glass, metal (plain, scored, with and without capture cone), and kapton/RTV. All igniters produced the lowest values of T(sub w) and q at the beginning of the bore, and, except for the igniter with the kapton/RTV closure disc, these quantities increased with distance along the bore. For igniters containing only titanium/potassium perchlorate, the rates of increase of Q along the bore length, compared with those for T(sub w) and q, were generally lower and more variable. The inclusion of barium styphnate produced rates of change in Q that were essentially constant to the end of the bore. The highest overall average wall temperatures were achieved by two igniter types with metal closure discs and no capture cone. No clear correlation was established between peak bore pressure and maximum wall temperature.

14. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

DOEpatents

Phillips, Benjamin A.; Zawacki, Thomas S.

1996-12-03

Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

15. Constructal tree networks for heat transfer

Ledezma, G. A.; Bejan, A.; Errera, M. R.

1997-07-01

This paper addresses the fundamental problem of how to connect a heat generating volume to a point heat sink by using a finite amount of high-conductivity material that can be distributed through the volume. The problem is one of optimizing the access (or minimizing the thermal resistance) between a finite-size volume and one point. The solution is constructed by covering the volume with a sequence of building blocks, which proceeds toward larger sizes (assemblies), hence, the "constructal" name for this approach. Optimized numerically at each stage are geometric features such as the overall shape of the building block, its number of constituents, and the internal distribution of high-conductivity inserts. It is shown that in the optimal design, the high-conductivity material has a distribution with the shape of a tree. Every aspect of the tree architecture is deterministic: the shapes of the largest assembly and all its constituents, the number of branches at each level of assembly, the relative position of building blocks in each assembly, and the relative thicknesses of successive branches. The finer, innermost details of the tree architecture (e.g., the branching angle) have a negligible effect on the overall thermal resistance. The main conclusion is that the structure, working mechanism, and minimal resistance of the tree network can be obtained deterministically, and that the constrained optimization of access routes accounts for the macroscopic structure in nature.

16. Heat transfer enhancement -- the maturing of second-generation heat transfer technology

SciTech Connect

Bergles, A.E.

1997-01-01

This paper is basically the text of the Kern Lecture for 1991 (the 1990 Kern Award). The paper begins with some remarks about Dr. Kern. By way of introduction to heat transfer enhancement, historical notes and the evolution of literature in this area are presented. Comments are made about the increasing practical applications of enhancement technology. Developments in single-phase convection are presented, with particular emphasis on offset strip fins and twisted-tape inserts. Pool boiling and flow boiling (particularly microfin tubes) are then considered in some detail. It is concluded that enhancement represents a powerful technology to improve heat exchanger performance.

17. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts.

PubMed

Zeinali Heris, Saeed; Noie, Seyyed Hossein; Talaii, Elham; Sargolzaei, Javad

2011-02-28

In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.

18. Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts

PubMed Central

2011-01-01

In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles. PMID:21711694

19. Finite Element Methods for Heat Transfer Problems.

DTIC Science & Technology

1980-04-02

v are-c all positive are (1 +.( v) )6 + h(v1 -v1s)62 + .(lc-vld)63 = l k(c-w6 + (1 + l(v2 Mva +6 hf (v cv~ )63 = k(v3c-v 3 w)6 1 + hk(v 3c-v 3 s...is a three-level, explicit, central difference scheme. It has solutions of the form ’ k = k Xk xo ’ Pk PoX (16) where B4 X2_-1 2hX =0. (17) 2h X 2_

20. The heat transfer coefficients of the heating surface of 300 MWe CFB boiler

Wu, Haibo; Zhang, Man; Lu, Qinggang; Sun, Yunkai

2012-08-01

A study of the heat transfer about the heating surface of three commercial 300 MWe CFB boilers was conducted in this work. The heat transfer coefficients of the platen heating surface, the external heat exchanger (EHE) and cyclone separator were calculated according to the relative operation data at different boiler loads. Moreover, the heat transfer coefficient of the waterwall was calculated by heat balance of the hot circuit of the CFB boiler. With the boiler capacity increasing, the heat transfer coefficients of these heating surface increases, and the heat transfer coefficient of the water wall is higher than that of the platen heating surface. The heat transfer coefficient of the EHE is the highest in high boiler load, the heat transfer coefficient of the cyclone separator is the lowest. Because the fired coal is different from the design coal in No.1 boiler, the ash content of the fired coal is much lower than that of the design coal. The heat transfer coefficients which calculated with the operation data are lower than the previous design value and that is the reason why the bed temperature is rather high during the boiler operation in No.1 boiler.

1. Condensation heat transfer coefficient with noncondensible gases for heat transfer in thermal hydraulic codes

SciTech Connect

Banerjee, S.; Hassan, Y.A.

1995-09-01

Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.

2. Heat transfer analysis for high temperature preheated air combustion in furnace

SciTech Connect

Taniguchi, H.; Arai, N.; Kudo, K.; Aoki, K.

1998-07-01

The high temperature preheated air combustion system has been recently developed and techniques of heat transfer analysis pose important problems in its application to the industrial field. The three-dimensional simulation has to be introduced, therefore, for the above heat transfer analysis with combustion, fluid flow and heat transfer. Another effort may be introduced to reduce the computing time of heat transfer analysis by means of some simplification in software of chemical simulation, etc. If one has introduced the application of the high temperature preheated air combustion technique in natural gas firing, the non-gray radiation should be applied to each radiant gas of CO{sub 2}, H{sub 2}O, CO or CH{sub 4}, in this analysis. Finally, the authors would like to refer the inverse computation of radiation heat transfer in furnace which has been proposed by one of the authors and another researcher in the United States. If one tries to estimate the performance of an industrial furnace, the heat flux on heating material is the most important factor which has been fixed as input data of computation. Therefore, the heat transfer analysis may be sometimes reversed by fixed data of heat flux and proceeded by trial and error method, in order to obtain the initial condition of heat source and furnace facilities.

3. Heat transfer research on supercritical water flow upward in tube

SciTech Connect

Li, H. B.; Yang, J.; Gu, H. Y.; Zhao, M.; Lu, D. H.; Zhang, J. M.; Wang, F.; Zhang, Y.

2012-07-01

The experimental research of heat transfer on supercritical water has been carried out on the supercritical water multipurpose test loop with a 7.6 mm upright tube. The experimental data of heat transfer is obtained. The experimental results of thermal-hydraulic parameters on flow and heat transfer of supercritical water show that: Heat transfer enhancement occurs when the fluid temperature reaches pseudo-critical point with low mass flow velocity, and peters out when the mass flow velocity increases. The heat transfer coefficient and Nusselt number decrease with the heat flux or system pressure increases, and increase with the increasing of mass flow velocity. The wall temperature increases when the mass flow velocity decreases or the system pressure increases. (authors)

4. Study of a high performance evaporative heat transfer surface

NASA Technical Reports Server (NTRS)

Saaski, E. W.; Hamasaki, R. H.

1977-01-01

An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.

5. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.

PubMed

Karani, Hamid; Huber, Christian

2015-02-01

In this paper, we propose an approach for studying conjugate heat transfer using the lattice Boltzmann method (LBM). The approach is based on reformulating the lattice Boltzmann equation for solving the conservative form of the energy equation. This leads to the appearance of a source term, which introduces the jump conditions at the interface between two phases or components with different thermal properties. The proposed source term formulation conserves conductive and advective heat flux simultaneously, which makes it suitable for modeling conjugate heat transfer in general multiphase or multicomponent systems. The simple implementation of the source term approach avoids any correction of distribution functions neighboring the interface and provides an algorithm that is independent from the topology of the interface. Moreover, our approach is independent of the choice of lattice discretization and can be easily applied to different advection-diffusion LBM solvers. The model is tested against several benchmark problems including steady-state convection-diffusion within two fluid layers with parallel and normal interfaces with respect to the flow direction, unsteady conduction in a three-layer stratified domain, and steady conduction in a two-layer annulus. The LBM results are in excellent agreement with analytical solution. Error analysis shows that our model is first-order accurate in space, but an extension to a second-order scheme is straightforward. We apply our LBM model to heat transfer in a two-component heterogeneous medium with a random microstructure. This example highlights that the method we propose is independent of the topology of interfaces between the different phases and, as such, is ideally suited for complex natural heterogeneous media. We further validate the present LBM formulation with a study of natural convection in a porous enclosure. The results confirm the reliability of the model in simulating complex coupled fluid and thermal dynamics

6. Options: the JADE reactor and heat transfer by heat pipes

SciTech Connect

Simpson, J.E.; Massey, J.V.

1981-08-10

The JADE reactor is a new Lawrence Livermore National Laboratory (LLNL) concept which maintains advantages of liquid metal walls and addresses some of their problems. The concept envisions a porous medium, called the jade, of specific geometry lining the reactor cavity. The jade is designed to convert the kinetic energy of the fluid to thermal energy before it reaches the first wall. Finally, its particular geometric shape is used to minimize reaction forces on the first wall due to blow-off caused by soft x-rays and debris, to provide empty spaces for fluid expansion after neutron energy deposition where droplets collide with droplets cancelling their kinetic energies, and to provide large surface areas for rapid condensation of vapor. LLNL also suggested that heat pipes might be used to eliminate portions of the primary or secondary coolant loops, thereby reducing pumping requirements found in current reactor designs.

7. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

NASA Technical Reports Server (NTRS)

Golliher, Eric L.; Yao, Shi-Chune

2013-01-01

The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

8. Flow and heat transfer of a nanofluid over a hyperbolically stretching sheet

A., Ahmad; Asghar, S.; Alsaedi, A.

2014-07-01

This article explores the boundary layer flow and heat transfer of a viscous nanofluid bounded by a hyperbolically stretching sheet. Effects of Brownian and thermophoretic diffusions on heat transfer and concentration of nanoparticles are given due attention. The resulting nonlinear problems are computed for analytic and numerical solutions. The effects of Brownian motion and thermophoretic property are found to increase the temperature of the medium and reduce the heat transfer rate. The thermophoretic property thus enriches the concentration while the Brownian motion reduces the concentration of the nanoparticles in the fluid. Opposite effects of these properties are observed on the Sherwood number.

9. Measurement of convective heat transfer coefficient for a horizontal cylinder rotating in quiescent air

SciTech Connect

Oezerdem, B.

2000-04-01

Heat transfer from a rotating cylinder is one of the problems, which is drawing attention due to its wide range of engineering applications. The present paper deals with convective heat transfer from a horizontal cylinder rotating in quiescent air, experimentally. The average convective heat transfer coefficients have been measured by using radiation pyrometer, which offers a new method. According to the experimental results, a correlation in terms of the average Nusselt number and rotating Reynolds number has been established. The average Nusselt number increased with an increase in the rotating speed. Comparison of the results, with previous studies, have been showed a good agreement with each other.

10. Analysis of supersonic plug nozzle flowfield and heat transfer

NASA Technical Reports Server (NTRS)

Murthy, S. N. B.; Sheu, W. H.

1988-01-01

A number of problems pertaining to the flowfield in a plug nozzle, designed as a supersonic thruster nozzle, with provision for cooling the plug with a coolant stream admitted parallel to the plug wall surface, were studied. First, an analysis was performed of the inviscid, nonturbulent, gas dynamic interaction between the primary hot stream and the secondary coolant stream. A numerical prediction code for establishing the resulting flowfield with a dividing surface between the two streams, for various combinations of stagnation and static properties of the two streams, was utilized for illustrating the nature of interactions. Secondly, skin friction coefficient, heat transfer coefficient and heat flux to the plug wall were analyzed under smooth flow conditions (without shocks or separation) for various coolant flow conditions. A numerical code was suitably modified and utilized for the determination of heat transfer parameters in a number of cases for which data are available. Thirdly, an analysis was initiated for modeling turbulence processes in transonic shock-boundary layer interaction without the appearance of flow separation.

11. Predicting Turbulent Convective Heat Transfer in Fully Developed Duct Flows

NASA Technical Reports Server (NTRS)

Rokni, Masoud; Gatski, Thomas B.

2001-01-01

The performance of an explicit algebraic stress model (EASM) is assessed in predicting the turbulent flow and forced heat transfer in both straight and wavy ducts, with rectangular, trapezoidal and triangular cross-sections, under fully developed conditions. A comparison of secondary flow patterns. including velocity vectors and velocity and temperature contours, are shown in order to study the effect of waviness on flow dynamics, and comparisons between the hydraulic parameters. Fanning friction factor and Nusselt number, are also presented. In all cases. isothermal conditions are imposed on the duct walls, and the turbulent heat fluxes are modeled using gradient-diffusion type models. The formulation is valid for Reynolds numbers up to 10(exp 5) and this minimizes the need for wall functions that have been used with mixed success in previous studies of complex duct flows. In addition, the present formulation imposes minimal demand on the number of grid points without any convergence or stability problems. Criteria in terms of heat transfer and friction factor needed to choose the optimal wavy duct cross-section for industrial applications among the ones considered are discussed.

12. Radiation heat transfer within an optical fiber draw tower furnace

SciTech Connect

Issa, J.; Jaluria, Y.; Polymeropoulos, C.E.; Yin, Z.

1995-12-31

Study of the thermal transport and material flow processes associated with the drawing of optical fiber in a graphite draw furnace requires modeling of the heat transfer from the furnace wall. Previous work has shown that accurate knowledge of the furnace heater element axial temperature distribution is essential for proper modeling of the radiative transfer process. The present work is aimed at providing this information, as well as generating a set of data for the study of radiation exchange in the furnace cavity. The experimental procedure involved measuring the centerline temperature distribution in graphite and fused silica rods inserted into an optical fiber draw tower furnace. The temperature measurements were then used along with a model for radiative-convective heat transfer in the furnace in order to obtain the furnace temperature profile. This is an inverse problem since the centerline temperature in the rod is known whereas the furnace thermal conditions are not. The results obtained showed that the furnace temperature distribution was independent of rod material and size. The shape of the computed temperature distributions suggest that they can be well represented by a Gaussian function.

13. Heat transfer from protein crystals: implications for flash-cooling and X-ray beam heating.

PubMed

Kriminski, S; Kazmierczak, M; Thorne, R E

2003-04-01

Three problems involving heat transfer from a protein crystal to a cooling agent are analyzed: flash-cooling in a cold nitrogen- or helium-gas stream, plunge-cooling into liquid nitrogen, propane or ethane and crystal heating in a cold gas stream owing to X-ray absorption. Heat transfer occurs by conduction inside the crystal and by convection from the crystal's outer surface to the cooling fluid. For flash-cooling in cold gas streams, heat transfer is limited by the rate of external convection; internal temperature gradients and crystal strains during cooling are very small. Helium gas provides only a threefold improvement in cooling rates relative to nitrogen because its much larger thermal conductivity is offset by its larger kinematic viscosity. Characteristic cooling times vary with crystal size L as L(3/2) and theoretical estimates of these times are consistent with experiments. Plunge-cooling into liquid cryogens, which can give much smaller convective thermal resistances provided that surface boiling is eliminated, can increase cooling rates by more than an order of magnitude. However, the internal conduction resistance is no longer negligible, producing much larger internal temperature gradients and strains that may damage larger crystals. Based on this analysis, factors affecting the success of flash-cooling experiments can be ordered from most to least important as follows: (1) crystal solvent content and solvent composition, (2) crystal size and shape, (3) amount of residual liquid around the crystal, (4) cooling method (liquid plunge versus gas stream), (5) choice of gas/liquid and (6) relative speed between cooling fluid and crystal. Crystal heating by X-ray absorption on present high-flux beamlines should be small. For a fixed flux and illuminated area, heating can be reduced by using crystals with areas normal to the beam that are much larger than the beam area.

14. Numerical Heat Transfer Model for a Heat-Barrier-Piston Engine with Hypergolic Combustion.

DTIC Science & Technology

1986-02-01

MODEL FOR A HEAT-BARRIER-PISTON ENGINE WITH I HYPERGOLIC COMBUSTION David A. Blank, LCD. , USN UNITED STATES NAVAL ACADEMY Annapolis, MD 21402 February...1fflOMG STATEMENT 1 ^ELECTE I MAR 101986 Dub~ -- t I~ NUMERICAL HEAT TRANSFER MODEL FOR A 4 - HEAT-BARRIER-PISTON ENGINE WITH HYPERGOLI C COMBUSTION...COVERED Numerical Heat Transfer Model for a Heat- IIBarrier-Piston Engine with Hypergolic Combustion Progress, 19a2-1986 I. .29AFORMINC, ORG. REPORT

15. Heat Transfer in a Turbulent Liquid or Gas Stream

NASA Technical Reports Server (NTRS)

Latzko, H.

1944-01-01

The,theory of heat.transfer from a solid body to a liquid stream could he presented previously** only with limiting assumptions about the movement of the fluid (potential flow, laminar frictional flow). (See references 1, 2, and 3). For turbulent flow, the most important practical case, the previous theoretical considerations did not go beyond dimensionless formulas and certain conclusions as to the analogy between the friction factor and the unit thermal conductance, (See references 4, 5, 6, and 7,) In order to obtain numerical results, an experimental treatment of the problem was resorted to, which gave rise to numerous investigations because of the importance of this problem in many branches of technology. However, the results of these investigations frequently deviate from one another. The experimental results are especially dependent upon the overall dimensions and the specific proportions of the equipment. In the present work, the attempt will be made to develop systematically the theory of the heat transfer and of the dependence of the unit thermal conductance upon shape and dimensions, using as a basis the velocity distribution for turbulent flow set up by Prandtl and Von Karman.

16. Capillary Pumped Heat Transfer (CHT) Experiment

NASA Technical Reports Server (NTRS)

Hallinan, Kevin P.; Allen, J. S.

1998-01-01

The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

17. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis.

PubMed

Sergis, Antonis; Hardalupas, Yannis

2011-05-19

This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

18. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

PubMed Central

2011-01-01

This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932

19. Convective Heat Transfer Characteristics of NaHCO3-Ag Nano Compound Material Solution

Kang, Byung Ha; Heo, Juyeong; Kim, Kyung Jae

Convection heat transfer enhancement is an important issue since this problem is of particular interest in the field of energy and environment. Ag nano-solution is expected not only to enhance heat transfer but also to work for deodorization and antifungal effect. An experimental investigation on the convective heat transfer characteristics for NaHCO3-Ag nano-compound material solution in a long and straight heated pipe has been carried out. NaHCO3 compound materials with 400 ppm or 1000 ppm Ag nano-particle solved in pure water are considered to study the effect of Ag nano-particle on the heat transfer enhancement. The concentration of NaHCO3-Ag compound material in the water is varied 0.1 % to 1.0 %. The results indicate that the convective heat transfer coefficient is increased with an increase in the concentration of NaHCO3-Ag compound solution. At a given concentration, heat transfer coefficient is increased as the content of the Ag nano-particle is increased. Heat transfer enhancement ratio correlation using NaHCO3-Ag compound solution is also suggested.

20. Heat transfer processes during intermediate and large break loss-of-coolant accidents (LOCAs)

SciTech Connect

Vojtek, I

1986-09-01

The general purpose of this project was the investigation of the heat transfer regimes during the high pressure portion of blowdown. The main attention has been focussed on the evaluation of those phenomena which are most important in reactor safety, such as maximum and minimum critical heat flux and forced convection film boiling heat transfer. The experimental results of the 25-rod bundle blowdown heat transfer tests, which were performed at the KWU heat transfer test facility in Karlstein, were used as a database for the verification of different correlations which are used or were developed for the analysis of reactor safety problems. The computer code BRUDI-VA was used for the calculation of local values of important thermohydraulic parameters in the bundle.

1. Improving Heat Transfer Performance of Printed Circuit Boards

NASA Technical Reports Server (NTRS)

Schatzel, Donald V.

2009-01-01

This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

2. Improving Heat Transfer Performance of Printed Circuit Boards

NASA Technical Reports Server (NTRS)

Schatzel, Donald V.

2009-01-01

This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

3. Mixed convection heat transfer in concave and convex channels

SciTech Connect

Moukalled, F.; Doughan, A.; Acharya, S.

1997-07-01

Mixed convection heat transfer studies in the literature have been primarily confined to pipe and rectangular channel geometry's. In some applications, however, heat transfer in curved channels may be of interest (e.g., nozzle and diffuser shaped passages in HVAC systems, fume hoods, chimneys, bell-shaped or dome-shaped chemical reactors, etc.). A numerical investigation of laminar mixed convection heat transfer of air in concave and convex channels is presented. Six different channel aspects ratios (R/L = 1.04, 1.25, 2.5, 5, 10, and {infinity}) and five different values of Gr/Re{sup 2} (Gr/Re{sup 2} = 0, 0.1, 1, 3, 5) are considered. Results are displayed in terms of streamline and isotherm plots, velocity and temperature profiles, and local and average Nusselt number estimates. Numerical predictions reveal that compared to straight channels of equal height, concave channels of low aspect ratio have lower heat transfer at relatively low values of Gr/Re{sup 2} and higher heat transfer at high values of Gr/Re{sup 2}. When compared to straight channels of equal heated length, concave channels are always found to have lower heat transfer and for all values of Gr/Re{sup 2}. On the other hand, predictions for convex channels revealed enhancement in heat transfer compared to straight channels of equal height and/or equal heated length for all values of Gr/Re{sup 2}.

4. Influence of oscillation-induced diffusion on heat transfer in a uniformly heated channel

SciTech Connect

Siegel, R. )

1987-02-01

The purpose of this note is to show that, for forced convection in slow laminar flow in a channel with uniform heat addition, the effect of flow oscillation will be to reduce the channel heat transfer coefficient. This is becausethe heat addition along the channel wall produces an increasing fluid temperature along the channel length. The flow oscillations interacting with this positive temperature gradient will induce a heat flow back toward the channel inlet. This will tend to inhibit the heat transfer process and will raise the wall temperature required to transfer away a given amount of heating at the channel wall.

5. An assessment of RELAP5 MOD3.1.1 condensation heat transfer modeling with GIRAFFE heat transfer tests

SciTech Connect

Boyer, B.D.; Parlatan, Y.; Slovik, G.C.

1995-09-01

RELAP5 MOD3.1.1 is being used to simulate Loss of Coolant Accidents (LOCA) for the Simplified Boiling Water Reactor (SBWR) being proposed by General Electric (GE). One of the major components associated with the SBWR is the Passive Containment Cooling System (PCCS) which provides the long-term heat sink to reject decay heat. The RELAP5 MOD3.1.1 code is being assessed for its ability to represent accurately the PCCS. Data from the Phase 1, Step 1 Heat Transfer Tests performed at Toshiba`s Gravity-Driven Integral Full-Height Test for Passive Heat Removal (GIRAFFE) facility will be used for assessing the ability of RELAP5 to model condensation in the presence of noncondensables. The RELAP5 MOD3.1.1 condensation model uses the University of California at Berkeley (UCB) correlation developed by Vierow and Schrock. The RELAP5 code uses this heat transfer coefficient with the gas velocity effect multiplier being limited to 2. This heat transfer option was used to analyze the condensation heat transfer in the GIRAFFE PCCS heat exchanger tubes in the Phase 1, Step 1 Heat Transfer Tests which were at a pressure of 3 bar and had a range of nitrogen partial pressure fractions from 0.0 to 0.10. The results of a set of RELAP5 calculations at these conditions were compared with the GIRAFFE data. The effects of PCCS cell noding on the heat transfer process were also studied. The UCB correlation, as implemented in RELAP5, predicted the heat transfer to {plus_minus}5% of the data with a three--node model. The three-node model has a large cell in the entrance region which smeared out the entrance effects on the heat transfer, which tend to overpredict the condensation. Hence, the UCB correlation predicts condensation heat transfer correlation implemented in the code must be removed to allow for accurate calculations with smaller cell sizes.

6. Heat transfer characteristics of a linear solar collector.

PubMed

Seraphin, B O

1973-02-01

The heat transfer characteristics of a linear solar energy collector are calculated as functions of dimensions, spectral quality of the selective absorber surface, optical flux concentration of the optical configuration, and thermal parameters and flow rate of the heat transfer medium. Carnot efficiency, exit temperature, and an upper limit to the amount of heat extracted are determined for systems in which liquid sodium serves as the heat transfer medium. The performance is evaluated for selective absorber surfaces representing the state of the art as well as for surfaces requiring a more mature thin-film technology.

7. Simultaneous velocity-surface heat transfer behavior of turbulent spots

Sabatino, D.; Smith, C. R.

2002-06-01

The properties of artificially initiated turbulent spots in a heated laminar boundary layer were investigated in a water channel facility. The instantaneous velocity field and surface heat transfer were determined simultaneously over a temporal sequence using a technique that combines traditional particle image velocimetry and thermochromic liquid crystal temperature measurements. The correlated results indicate that the highest surface heat transfer occurs in the trailing region of the spot where only the near-wall fluid is energetic. The results suggest that the "body" of the spot entrains, and subsequently recirculates, warm surface fluid within the spot, which reduces the effective heat transfer.

8. Convective heat transfer in a high aspect ratio minichannel heated on one side

DOE PAGES

Forrest, Eric C.; Hu, Lin -Wen; Buongiorno, Jacopo; ...

2015-10-21

Experimental results are presented for single-phase heat transfer in a narrow rectangular minichannel heated on one side. The aspect ratio and gap thickness of the test channel were 29:1 and 1.96 mm, respectively. Friction pressure drop and Nusselt numbers are reported for the transition and fully turbulent flow regimes, with Prandtl numbers ranging from 2.2 to 5.4. Turbulent friction pressure drop for the high aspect ratio channel is well-correlated by the Blasius solution when a modified Reynolds number, based upon a laminar equivalent diameter, is utilized. The critical Reynolds number for the channel falls between 3500 and 4000, with Nusseltmore » numbers in the transition regime being reasonably predicted by Gnielinski's correlation. The dependence of the heat transfer coefficient on the Prandtl number is larger than that predicted by circular tube correlations, and is likely a result of the asymmetric heating. The problem of asymmetric heating condition is approached theoretically using a boundary layer analysis with a two-region wall layer model, similar to that originally proposed by Prandtl. The analysis clarifies the influence of asymmetric heating on the Nusselt number and correctly predicts the experimentally observed trend with Prandtl number. Furthermore, a semi-analytic correlation is derived from the analysis that accounts for the effect of aspect ratio and asymmetric heating, and is shown to predict the experimental results of this study with a mean absolute error (MAE) of less than 5% for 4000 < Re < 70,000.« less

9. Fem Formulation of Coupled Partial Differential Equations for Heat Transfer

Ameer Ahamad, N.; Soudagar, Manzoor Elahi M.; Kamangar, Sarfaraz; Anjum Badruddin, Irfan

2017-08-01

Heat Transfer in any field plays an important role for transfer of energy from one region to another region. The heat transfer in porous medium can be simulated with the help of two partial differential equations. These equations need an alternate and relatively easy method due to complexity of the phenomenon involved. This article is dedicated to discuss the finite element formulation of heat transfer in porous medium in Cartesian coordinates. A triangular element is considered to discretize the governing partial differential equations and matrix equations are developed for 3 nodes of element. Iterative approach is used for the two sets of matrix equations involved representing two partial differential equations.

10. Experimental study of heat transfer to falling liquid films

Fagerholm, N. E.; Kivioja, K.; Ghazanfari, A. R.; Jaervinen, E.

1985-12-01

This project was initiated in order to obtain more knowledge about thermal design of falling film heat exchangers and to find methods to improve heat transfer in film flow. A short literature survey of film flow characteristics and heat transfer is presented. An experimental apparatus designed and built for studying falling film evaporation is described. The first experiments were made with smooth Cu tube 25/22 mm and refrigerant R114 as evaporating liquid. A significant amount of droplet entrainment was observed during the tests. The measured average heat transfer coefficient varied from 1000 to 1800 W/m K when Re=1300 to 11000 respectively and when the transfer mode is surface evaporation. This could be predicted accurately with the experimental correlation of Chun and Seban. When nucleate boiling is dominant the heat transfer could be predicted well with pool boiling correlation of VDI-84.

11. Heat transfer between elastic solids with randomly rough surfaces.

PubMed

Volokitin, A I; Lorenz, B; Persson, B N J

2010-01-01

We study the heat transfer between elastic solids with randomly rough surfaces.We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the non-contact regions.We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.

12. Heat transfer in a longitudinal glow discharge

Yunusov, R. F.

2017-01-01

This article is devoted to the experimental study of heat transfer in a longitudinal glow discharge. The discharge was ignited in the discharge chamber (DC), consisting of a glass tube 10 mm in diameter and two electrodes. Copper electrodes were placed in the side branches, so that the average distance between them was 9 cm. The discharge pressure was varied in the range of P = (2.5 – 8.5) kPa. The air flow rate was varied from zero to G = 0.06 g / s. Current was varied in the range of I = (30-80) mA. Current-voltage characteristics of the discharge had falling form, and the voltage was varied in the range of U = (1-2) kV. The temperature of neutral particles in the plasma glow discharge was measured by six thermocouples, which were insertedon radius of DC. The aim of the article was to compare achieved experiment data with theoretical studies: recombination and diffusion plasma models.

13. Dual circuit embossed sheet heat transfer panel

DOEpatents

Morgan, G.D.

1984-02-21

A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

14. Dual circuit embossed sheet heat transfer panel

DOEpatents

Morgan, Grover D.

1984-01-01

A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

15. Direct contact heat transfer for thermal energy storage

Wright, J. D.

1982-03-01

Direct contact heat exchange offers the potential for increased efficiency and lower heat transfer costs in a variety of thermal energy storage systems. SERI models of direct contact heat transfer based on literature information identified dispersed phase drop size, the mechanism of heat transfer within the drop, and dispersed phase holdup as the parameters controlling direct contact system performance. Tests were defined and equipment constructed to provide independent determination of drop size, heat transfer mechanism, and hold up. Further experiments are needed to conclusively determine whether the salt in a salt hydrate melt acts to block internal circulation. The potential of low temperature oil/salt hydrate latent heat storage systems is being evaluated in the laboratory.

16. Direct contact heat transfer for thermal energy storage

Wright, J. D.

1980-11-01

Direct contact heat exchange offers the potential for increased efficiency and lower heat transfer costs in a variety of thermal energy storage systems. Models of direct contact heat transfer based on literature information identified dispersed phase drop size, the mechanism of heat transfer within the drop, and dispersed phase holdup as the parameters controlling direct contact system performance. Tests were defined and equipment constructed to provide independent determination of drop size, heat transfer mechanism, and hold up. Experiments with heptane dispersed in water are described. The velocity at which drop formation changes from dropwise to jetting was overpredicted by all literature correlations. Further experiments are needed to conclusively determine whether the salt in a salt hydrate melt acts to block internal circulation. In addition, the potential of low temperature oil/salt hydrate latent heat storage systems is evaluated in the laboratory.

17. Conjugate heat transfer with the entropic lattice Boltzmann method.

PubMed

Pareschi, G; Frapolli, N; Chikatamarla, S S; Karlin, I V

2016-07-01

A conjugate heat-transfer model is presented based on the two-population entropic lattice Boltzmann method. The present approach relies on the extension of Grad's boundary conditions to the two-population model for thermal flows, as well as on the appropriate exact conjugate heat-transfer condition imposed at the fluid-solid interface. The simplicity and efficiency of the lattice Boltzmann method (LBM), and in particular of the entropic multirelaxation LBM, are retained in the present approach, thus enabling simulations of turbulent high Reynolds number flows and complex wall boundaries. The model is validated by means of two-dimensional parametric studies of various setups, including pure solid conduction, conjugate heat transfer with a backward-facing step flow, and conjugate heat transfer with the flow past a circular heated cylinder. Further validations are performed in three dimensions for the case of a turbulent flow around a heated mounted cube.

18. Computational heat transfer analysis for oscillatory channel flows

Ibrahim, Mounir; Kannapareddy, Mohan

An accurate finite-difference scheme has been utilized to investigate oscillatory, laminar and incompressible flow between two-parallel-plates and in circular tubes. The two-parallel-plates simulate the regenerator of a free-piston Stirling engine (foil type regenerator) and the channel wall was included in the analysis (conjugate heat transfer problem). The circular tubes simulate the cooler and heater of the engine with an isothermal wall. The study conducted covered a wide range for the maximum Reynolds number (from 75 to 60,000), Valensi number (from 2.5 to 700), and relative amplitude of fluid displacement (0.714 and 1.34). The computational results indicate a complex nature of the heat flux distribution with time and axial location in the channel. At the channel mid-plane we observed two thermal cycles (out of phase with the flow) per each flow cycle. At this axial location the wall heat flux mean value, amplitude and phase shift with the flow are dependent upon the maximum Reynolds number, Valensi number and relative amplitude of fluid displacement. At other axial locations, the wall heat flux distribution is more complex.

19. Computational heat transfer analysis for oscillatory channel flows

NASA Technical Reports Server (NTRS)

Ibrahim, Mounir; Kannapareddy, Mohan

1993-01-01

An accurate finite-difference scheme has been utilized to investigate oscillatory, laminar and incompressible flow between two-parallel-plates and in circular tubes. The two-parallel-plates simulate the regenerator of a free-piston Stirling engine (foil type regenerator) and the channel wall was included in the analysis (conjugate heat transfer problem). The circular tubes simulate the cooler and heater of the engine with an isothermal wall. The study conducted covered a wide range for the maximum Reynolds number (from 75 to 60,000), Valensi number (from 2.5 to 700), and relative amplitude of fluid displacement (0.714 and 1.34). The computational results indicate a complex nature of the heat flux distribution with time and axial location in the channel. At the channel mid-plane we observed two thermal cycles (out of phase with the flow) per each flow cycle. At this axial location the wall heat flux mean value, amplitude and phase shift with the flow are dependent upon the maximum Reynolds number, Valensi number and relative amplitude of fluid displacement. At other axial locations, the wall heat flux distribution is more complex.

20. Travelers' Health: Problems with Heat and Cold

MedlinePlus

... for temperature swings. Prevention of Heat Disorders Heat Acclimatization Heat acclimatization is a process of physiologic adaptation ... there is no heat exposure. Physical Conditioning and Acclimatization Higher levels of physical fitness improve exercise tolerance ...

1. Heat Transfer Analysis of the NAHBE Piston Cap,

DTIC Science & Technology

1977-09-01

r~~~ U____________ ____s HEAT TRANSFER ANALYSIS :~ OF THE NAHBE PISTON CAP* Engineering and Wea pons Report EW-l1—77...transfer variations in thecap of a nodified piston engine (NN~BE) was made. The objective was to estimatethe regenerative heating effect d~e to the cap...ABSTRACT The piston modification for the NAHBE (Naval Academy Heat Bal ance Engine ) consists of a cap which extends above the standard piston used

2. Applications of Infrared Thermography in Convective Heat Transfer.

DTIC Science & Technology

1986-03-01

INFRARED THERMOGRAPHY IN CONVECTIVE HEAT TRANSFER by Timothy M. SpenceVX March 1986 Thesis Advisor: R.H. Nunn Approved for public release...Include Security Classfication) APPLICATIONS OF INFRARED THERMOGRAPHY IN CONVECTIVE HEAT TRANSFER !2 PERSONAL AUTHOR(S) Spence, Timothy M. 𔃽a TYPE...I18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) P:ELD GROUP SUB-GROUP Infrared Thermography ; TVC Convective Heat

3. Laser Measurement Of Convective-Heat-Transfer Coefficient

NASA Technical Reports Server (NTRS)

Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

1994-01-01

Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

4. Heat transfer from aluminum surfaces to pool boiling He I

SciTech Connect

Huang, Y.; Van Sciver, S.W.

1996-12-31

Heat transfer measurements between different aluminum surfaces and pool boiling He I at 4.21 K are reported. The samples are contained in a channel configuration similar to what might be found in a large bath cooled superconducting magnet. Results include heat transfer coefficients in the nucleate and film boiling regimes as well as values for the peak nucleate and minimum film boiling heat flux. The effects of sample orientation and surface condition are also studied.

5. Predicting spacecraft multilayer insulation performance from heat transfer measurements

NASA Technical Reports Server (NTRS)

Stimpson, L. D.; Hagemeyer, W. A.

1974-01-01

Multilayer insulation (MLI) ideally consists of a series of radiation shields with low-conductivity spacers. When MLI blankets were installed on cryogenic tanks or spacecraft, a large discrepancy between the calorimeter measurements and the performance of the installed blankets was discovered. It was found that discontinuities such as exposed edges coupled with high lateral heat transfer created 'heat leaks' which overshadowed the basic heat transfer of the insulation. Approaches leading to improved performance predictions of MLI units are discussed.

6. Laser Measurement Of Convective-Heat-Transfer Coefficient

NASA Technical Reports Server (NTRS)

Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.

1994-01-01

Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.

7. Heat-Transfer Head For Stirling-Cycle Machine

NASA Technical Reports Server (NTRS)

Emigh, Stuart G.; Lehmann, Gregory A.; Noble, Jack E.

1995-01-01

New common heat-transfer head for two cylinders of opposed-cylinder Stirling-cycle machine performs function formerly performed by two heat acceptors-one for each cycle. Simplifies structure of machine and increases efficiency of operation by reducing resistance to flow of working gas and/or increasing transfer of heat to or from working gas during flow between compression and expansion spaces of machine.

8. Three-Dimensional Modelling of Heat Transfer from Slab Floors

DTIC Science & Technology

1989-07-01

a general change in heat transfer rate. Effects of thermal diffusivity, and lower boundary condition variation were small (on the order of 10%) for...ground surface conditions, foundation design, and floor shape/size are esseatial elcmnts rf a general change in heat transfer rate. N.Effec es of...11 5 111-12. Change in floor heat loss due to substitution of zero flux lower boundary for fixed temperature lower

9. Coupling radiative heat transfer in participating media with other heat transfer modes

SciTech Connect

Tencer, John; Howell, John R.

2015-09-28

The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

10. Coupling radiative heat transfer in participating media with other heat transfer modes

DOE PAGES

Tencer, John; Howell, John R.

2015-09-28

The common methods for finding the local radiative flux divergence in participating media through solution of the radiative transfer equation are outlined. The pros and cons of each method are discussed in terms of their speed, ability to handle spectral properties and scattering phenomena, as well as their accuracy in different ranges of media transport properties. The suitability of each method for inclusion in the energy equation to efficiently solve multi-mode thermal transfer problems is discussed. Lastly, remaining topics needing research are outlined.

11. Enhanced two phase flow in heat transfer systems

DOEpatents

Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

2013-12-03

A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

12. Anode heat transfer in a constricted tube arc.

NASA Technical Reports Server (NTRS)

Lukens, L. A.; Incropera, F. P.

1971-01-01

The complex energy exchange mechanisms occurring on the most severely heated component of an arc constrictor, the anode, have been investigated. Measurements performed to determine the anode heat flux for a cascade, atmospheric argon arc of the Maecker type are described. The results are used to check the validity of an existing anode heat transfer model.

13. Two-Dimensional Heat Transfer in a Heterogeneous Fracture Network

Gisladottir, V. R.; Roubinet, D.; Tartakovsky, D. M.

2015-12-01

Geothermal energy harvesting requires extraction and injection of geothermal fluid. Doing so in an optimal way requires a quantitative understanding of site-specific heat transfer between geothermal fluid and the ambient rock. We develop a heat transfer particle-tracking approach to model that interaction. Fracture-network models of heat transfer in fractured rock explicitly account for the presence of individual fractures, ambient rock matrix, and fracture-matrix interfaces. Computational domains of such models span the meter scale, whereas fracture apertures are on the millimeter scale. The computations needed to model these multi-scale phenomenon can be prohibitively expensive, even for methods using nonuniform meshes. Our approach appreciably decreases the computational costs. Current particle-tracking methods usually assume both infinite matrix and one-dimensional (1D) heat transfer in the matrix blocks. They rely on 1D analytical solutions for heat transfer in a single fracture, which can lead to large predictive errors. Our two-dimensional (2D) heat transfer simulation algorithm is mesh-free and takes into account both longitudinal and transversal heat conduction in the matrix. It uses a probabilistic model to transfer particle to the appropriate neighboring fracture unless it returns to the fracture of origin or remains in the matrix. We use this approach to look at the impact of a fracture-network topology (e.g. the importance of smaller scale fractures), as well as the matrix block distribution on the heat transport in heterogeneous fractured rocks.

14. Enhanced heat transfer in the entrance region of microchannels

SciTech Connect

Gui, F.; Scaringe, R.P.

1995-12-31

A detailed heat transfer analysis has been performed on the data from previously-reported experiments (Rahman and Gui 1993) to investigate the characteristics of high-heat-flux (10{sup 6} W/m{sup 2}) microchannel cooling in electronic chips. The use of microchannel directly etched into a silicon wafer has shortened the cooling path and improved the performance by significantly minimizing the thickness of the heat transfer layer. Experimental convective heat transfer coefficients (up to 45 kW/m{sup 2} K) for low temperature single-phase flow was an order of magnitude higher than conventional heat transfer coefficients; and reached the level of two-phase boiling heat transfer. The flow and heat transfer modes and their transitions in the experiments were investigated. The influence of the microchannel passage geometry, fluid property variation, and the fluid flow mode on the local Nusselt number in the entrance region of the microchannel has been analyzed. The analysis indicates that the significant enhancement obtained in microchannel cooling results from four key aspects: a thinner thermal boundary layer, entry effects, the roughness of the channel, and strong pre-existing turbulence at the inlet. The preexisting turbulence delayed the formation of the thermal boundaries, thereby increasing the entry effects on heat transfer. The critical Re shifted from 2,300 to 1,400 in microchannels, possibly due to the wall roughness which does not affect the Re{sub c} otherwise in normal size tubes.

15. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

NASA Technical Reports Server (NTRS)

Yang, H. Q.; West, Jeff

2015-01-01

Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

16. Heat transfer and flow in solar energy and bioenergy systems

Xu, Ben

The demand for clean and environmentally benign energy resources has been a great concern in the last two decades. To alleviate the associated environmental problems, reduction of the use of fossil fuels by developing more cost-effective renewable energy technologies becomes more and more significant. Among various types of renewable energy sources, solar energy and bioenergy take a great proportion. This dissertation focuses on the heat transfer and flow in solar energy and bioenergy systems, specifically for Thermal Energy Storage (TES) systems in Concentrated Solar Power (CSP) plants and open-channel algal culture raceways for biofuel production. The first part of this dissertation is the discussion about mathematical modeling, numerical simulation and experimental investigation of solar TES system. First of all, in order to accurately and efficiently simulate the conjugate heat transfer between Heat Transfer Fluid (HTF) and filler material in four different solid-fluid TES configurations, formulas of an e?ective heat transfer coe?cient were theoretically developed and presented by extending the validity of Lumped Capacitance Method (LCM) to large Biot number, as well as verifications/validations to this simplified model. Secondly, to provide design guidelines for TES system in CSP plant using Phase Change Materials (PCM), a general storage tank volume sizing strategy and an energy storage startup strategy were proposed using the enthalpy-based 1D transient model. Then experimental investigations were conducted to explore a novel thermal storage material. The thermal storage performances were also compared between this novel storage material and concrete at a temperature range from 400 °C to 500 °C. It is recommended to apply this novel thermal storage material to replace concrete at high operating temperatures in sensible heat TES systems. The second part of this dissertation mainly focuses on the numerical and experimental study of an open-channel algae

17. Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems

Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish

2015-12-01

This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.

18. Heat transfer between immiscible liquids enhanced by gas bubbling. [PWR; BWR

SciTech Connect

Greene, G.A.; Schwarz, C.E.; Klages, J.; Klein, J.

1982-08-01

The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments have been performed with non-reactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies have been performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non-entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model. However heat transfer data for fluid pairs which are found to entrain (water-oil), believed to be characteristic of molten reactor core-concrete conditions, were measured to be up to two orders of magnitude greater than surface renewal predictions and are calculated by a simple entrainment heat transfer model.

19. Incident energy transfer equation and its solution by collocation spectral method for one-dimensional radiative heat transfer

Hu, Zhang-Mao; Tian, Hong; Li, Ben-Wen; Zhang, Wei; Yin, Yan-Shan; Ruan, Min; Chen, Dong-Lin

2017-10-01

The ray-effect is a major discretization error in the approximate solution method for the radiative transfer equation (RTE). To overcome this problem, the incident energy transfer equation (IETE) is proposed. The incident energy, instead of radiation intensity, is obtained by directly solving this new equation. Good numerical properties are found for the incident energy transfer equation. To show the properties of numerical solution, the collocation spectral method (CSM) is employed to solve the incident energy transfer equation. Three test cases are taken into account to verify the performance of the incident energy transfer equation. The result shows that the radiative heat flux obtained based on IETE is much more accurate than that based on RTE, which means that the IETE is very effective in eliminating the impacts of ray-effect on the heat flux. However, on the contrary, the radiative intensity obtained based on IETE is less accurate than that based on RTE due to the ray-effect. So, this equation is more suitable for those radiative heat transfer problems, in which the radiation heat flux and incident energy are needed rather than the radiation intensity.

20. The Experimental Analysis of Local Heat and Mass Transfer Data for Vertical Falling Film Absorption

SciTech Connect

Keyhani, M.; Miller, W.A.

1999-11-14

In pure heat transfer, specifications of effectiveness, fluid properties, and flows enable calculation of the heat exchanger area. In the case of falling film absorption, a simultaneous heat and mass transfer governs the performance of the absorber. The exchange of mass across the liquid-vapor interface involves the generation of heat. The heat effects associated with the mass exchange increase the temperature, which affects the equilibrium state of the pressure and composition and in turn affects the mass. The falling film flow rate coupled to the physical properties of kinematic viscosity and surface tension govern the flow regime of a vertical falling film. Wavy-laminar, roll-wave laminar, and turbulent flows will develop convective contributions that can enhance the transfer of mass into the film. The combined interaction of all these factors makes the absorption process very difficult to analyze and predict. A study of simultaneous heat and mass transfer was therefore conduct ed on a vertical falling film absorber to better understand the mechanisms driving the heat and mass transfer processes. Falling films are characteristically unstable, and a wavy-laminar flow was observed during the experimental study. The wavy flow further complicates the problem; therefore, only limited information is known about the temperature and concentration profiles along the length of the absorber that describe the local heat and mass transfer rates.

1. Analytical approach for the effect of melting heat transfer on nanofluid heat transfer

Sheikholeslami, M.; Nimafar, M.; Ganji, D. D.

2017-09-01

In this article, the impact of melting heat transfer on nanofluid flow in the presence of Lorentz forces is reported. Different shapes of nanoparticles are considered. The impacts of Joule heating, viscous dissipation and thermal radiation are added in the governing equations. The Homotopy Analysis Method (HAM) is selected to solve Ordinary Differential Equations (ODEs). The roles of nanofluid volume fraction, shape of the nanoparticles, Hartmann number, porosity parameter, melting parameter, Eckert number are presented graphically. The results reveal that choosing a platelet shape leads to the maximum Nusselt number. The temperature reduces with the rise of the melting parameter but velocity increases with the increase of the melting parameter. Nu augments with the increase of the Lorentz forces while it reduces with the augment of porosity and melting parameters.

2. Simulation of Heat Transfer of Heating-System and Water Pipelines Under Northern Conditions

Stepanov, A. V.; Egorova, G. N.

2016-09-01

A mathematical model of joint laying of water pipelines and of city-block heating-system pipelines is considered. The effect of radiation on the process of combined heat transfer in the heat insulation jacket between the construction elements is investigated. The results of mathematical simulation of heat losses with account of the radiant component are given.

3. Green's function solution to radiative heat transfer between longitudinal gray fins

NASA Technical Reports Server (NTRS)

Frankel, J. I.; Silvestri, J. J.

1991-01-01

A demonstration is presented of the applicability and versatility of a pure integral formulation for radiative-conductive heat-transfer problems. Preliminary results have been obtained which indicate that this formulation allows an accurate, fast, and stable computation procedure to be implemented. Attention is given to the accessory problem defining Green's function.

4. Finite element analyses of two dimensional, anisotropic heat transfer in wood

Treesearch

John F. Hunt; Hongmei Gu

2004-01-01

The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Inputting basic orthogonal properties of the wood material alone are not sufficient for accurate modeling because wood is a combination of porous fiber cells that are aligned and mis-...

5. SIMULATION OF BOILING HEAT TRANSFER AROUND MICRO PIN-FIN HEAT EXCHANGER: PROGRESS AND CHALLENGES

SciTech Connect

Tyagi, M.; Maha, A.; Singh, K. V.; Li, G.; and Pang, S.S.

2006-07-01

Boiling at microscales is a challenging problem for the computational models as well as the resources. During boiling, the formation and departure of vapor bubbles from the heated surface involves the physics from nano/micro level to the macro level. Therefore, a hierarchical methodology is needed to incorporate the nano/microscale physics with the macroscale system performance. Using micro-fabrication techniques, microstructures (micropin-fins) can be fabricated around the tubes in the heat exchanger of Pressurized Water Reactors (PWRs) to increase the heat-exchanging efficiency and reduce the overall size of the heat-exchanger for the given heat transfer rates. Combined with high fidelity simulations of the thermal transport in the entire system, optimal design of microstructure patterns and layouts can be worked out pragmatically. Properly patterned microstructures on the pipe in the steam generation zone should create more nuclei for bubble to form and result in a reduced average bubble size and shorter retention time, i.e. the time for the vapor phase sticking on the pipe surface. The smaller average steam bubble size and shorter bubble retention time will enhance the overall thermal efficiency. As a preliminary step, a periodic arrangement of micropin-fins containing four in-line cylindrical fins was modeled. The governing equations for the mass, momentum and energy transport were solved in the fluid in a conjugate heat transfer mode. In the future, several studies will be conducted to simulate different geometric arrangements, different fin cross-sections, and realistic operating conditions including phase-change with boiling by adding complexities in simple steps.

6. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms

SciTech Connect

Jacobi, A.M.; Shah, R.K.

1998-10-01

The behavior of air flows in complex heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in heat transfer enhancement strategies.

7. Heat transfer during the boiling of liquids in heat pipe wicks

NASA Technical Reports Server (NTRS)

Gontarev, Yu. K.; Navruzov, Yu. V.; Prisnyakov, V. F.; Serebryanskiy, N.

1987-01-01

Data in the literature on heat transfer in the case of nucleate boiling of various liquids in the wicks of heat pipes are reviewed. It is shown that none of the known analytical relationships can be used to generalize, with sufficient accuracy, the experimental data found in the literature. It is further shown that the exponent of the specific heat flux in the heat transfer law changes as a function of the liquid and wick properties. A relationship is obtained which generalizes experimental data for heat transfer agents of moderate temperatures (water, acetone, ethanol, and R-11 and R-113 coolants) and ammonia.

8. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

PubMed

de Jong, J A; Wijnant, Y H; de Boer, A

2014-03-01

A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

9. GAM-HEAT -- a computer code to compute heat transfer in complex enclosures. Revision 1

SciTech Connect

Cooper, R.E.; Taylor, J.R.; Kielpinski, A.L.; Steimke, J.L.

1991-02-01

The GAM-HEAT code was developed for heat transfer analyses associated with postulated Double Ended Guillotine Break Loss Of Coolant Accidents (DEGB LOCA) resulting in a drained reactor vessel. In these analyses the gamma radiation resulting from fission product decay constitutes the primary source of energy as a function of time. This energy is deposited into the various reactor components and is re- radiated as thermal energy. The code accounts for all radiant heat exchanges within and leaving the reactor enclosure. The SRS reactors constitute complex radiant exchange enclosures since there are many assemblies of various types within the primary enclosure and most of the assemblies themselves constitute enclosures. GAM-HEAT accounts for this complexity by processing externally generated view factors and connectivity matrices, and also accounts for convective, conductive, and advective heat exchanges. The code is applicable for many situations involving heat exchange between surfaces within a radiatively passive medium. The GAM-HEAT code has been exercised extensively for computing transient temperatures in SRS reactors with specific charges and control components. Results from these computations have been used to establish the need for and to evaluate hardware modifications designed to mitigate results of postulated accident scenarios, and to assist in the specification of safe reactor operating power limits. The code utilizes temperature dependence on material properties. The efficiency of the code has been enhanced by the use of an iterative equation solver. Verification of the code to date consists of comparisons with parallel efforts at Los Alamos National Laboratory and with similar efforts at Westinghouse Science and Technology Center in Pittsburgh, PA, and benchmarked using problems with known analytical or iterated solutions. All comparisons and tests yield results that indicate the GAM-HEAT code performs as intended.

10. Radiative heat transfer in low-dimensional systems -- microscopic mode

Woods, Lilia; Phan, Anh; Drosdoff, David

2013-03-01

Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.

11. Heat transfer and flow characteristics on a gas turbine shroud.

PubMed

Obata, M; Kumada, M; Ijichi, N

2001-05-01

The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.

12. Heat Transfer For Subcooled Flow Boiling In Hypervapotron Configuration

SciTech Connect

Chena, Peipei; Wua, Wen; Jonesa, Barclay G.; Newell, Ty A

2006-07-01

This work reports on experimental studies that examine subcooled boiling on the enhanced heat transfer surface of hypervapotron structures. The use of simulant fluid (refrigerant R134a) instead of prototypic water allows examination of a full range of subcooled boiling, including up to critical heat flux (CHF). The experimental results are compared to Bjorge's model and Kandlikar's heat transfer correlation in the subcooled boiling region. It is found that the fully developed boiling curve has a slope of about 2.96 (q{sup {approx}} {delta}{sub sat} {sup 2}.{sup 96}), which shows good agreement with Bjorge's recognition for flat surface channels. In addition, Kandlikar's correlation is also able to predict the heat transfer coefficient for the range from net vapor generation (NVG) to the fully developed boiling region with acceptable accuracy. However, the heat transfer curve shows a significant deviation when subcooled boiling approaches CHF. (authors)

13. Heat transfer near spacer grids in rod bundles

SciTech Connect

Yoder, G.L.

1985-01-01

Heat transfer data from several sources have been assembled which show the effect of spacer grids on local heat transfer within a rod bundle. Both single phase (air and steam) data and two phase (steam/water) data show heat transfer augmentation in the grid region. Heat transfer improvement immediately beyond the grid ranges from a few percent to over fifty percent in these experiments, depending on flow conditions. The data are examined using several nondimensional parameters which relate the above effects to known quantities. The relative effect of the grid on local heat transfer is altered by both the Reynolds number and blockage ratio. Twenty to thirty hydraulic diameters are required before the local effect of the grid dissipates. Locally, both the single phase and two phase data show the same trends. Comparison of the single and two phase data also shown some differences. Some film boiling data indicate that an altered heat transfer regime may exist near the grid. High rod heat transfer coefficients at the grid locations indicate either a rewet of the rods or at least a change from film boiling to transition boiling near the spacer. The comparison also indicates that the film boiling data is affected on a global as well as local basis. This is due to the effect of the grid on the liquid distribution.

14. Boiling and quenching heat transfer advancement by nanoscale surface modification.

PubMed

Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

2017-07-21

All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

15. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

NASA Technical Reports Server (NTRS)

Cross, M. F.

2011-01-01

A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

16. Radiation Heat Transfer Procedures for Space-Related Applications

NASA Technical Reports Server (NTRS)

Chai, John C.

2000-01-01

Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.

17. Radiative heat transfer in the extreme near field

Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M. T. Homer; García-Vidal, Francisco J.; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

2015-12-01

Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4, 5, 6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

18. An analytical and experimental investigation of melting heat transfer

Wen, C.; Sheffield, J. W.; O'dell, M. P.; Leland, J. E.

1988-01-01

A computational model is presented for the prediction of the heat transfer between a heat transfer fluid (HTF) and a phase change material (PCM) of a latent heat storage unit. Two models of flow, hydrodynamically fully developed flow and developing flow, of the HTF were proposed in this study. A two-dimensional enthalpy method was used for the computation of the phase change heat transfer in the PCM. A fully implicit finite difference scheme was utilized for the calculation of convective heat transfer in the HTF. The unknown time dependent boundary condition between the HTF and the PCM was found iteratively. The predictions are substantiated by their excellent agreement with experimental data. Factors which affect the heat transfer rates between the HTF and the PCM were studied numerically for both hydrodynamically fully developed flow and developing flow. It is found that the Nusselt number is significantly increased by the developing temperature profiles. The developing velocity profiles also will increase the Nusselt number. However, the influence on Nusselt number due to the developing temperature profiles. Other factors which affect the Nusselt number are discussed. The heat transfer of this latent heat storage unit was also studied experimentally. The experimental results were compared with the numerical results for P116, a sun wax.

19. Cryogenic apparatus for study of near-field heat transfer

SciTech Connect

Kralik, T.; Hanzelka, P.; Musilova, V.; Srnka, A.; Zobac, M.

2011-05-15

For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 10{sup 0} to 10{sup 3} {mu}m. The heat transferred from the hot (10 - 100 K) to the cold sample ({approx}5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within {approx}2 nW/cm{sup 2} and {approx}30 {mu}W/cm{sup 2} is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer.

20. Survey of computer programs for heat transfer analysis

NASA Technical Reports Server (NTRS)

Noor, Ahmed K.

1986-01-01

An overview is given of the current capabilities of thirty-three computer programs that are used to solve heat transfer problems. The programs considered range from large general-purpose codes with broad spectrum of capabilities, large user community, and comprehensive user support (e.g., ABAQUS, ANSYS, EAL, MARC, MITAS II, MSC/NASTRAN, and SAMCEF) to the small, special-purpose codes with limited user community such as ANDES, NTEMP, TAC2D, TAC3D, TEPSA and TRUMP. The majority of the programs use either finite elements or finite differences for the spatial discretization. The capabilities of the programs are listed in tabular form followed by a summary of the major features of each program. The information presented herein is based on a questionnaire sent to the developers of each program. This information is preceded by a brief background material needed for effective evaluation and use of computer programs for heat transfer analysis. The present survey is useful in the initial selection of the programs which are most suitable for a particular application. The final selection of the program to be used should, however, be based on a detailed examination of the documentation and the literature about the program.