DOE Office of Scientific and Technical Information (OSTI.GOV)
French, David M.; Hayes, Timothy A.; Pope, Howard L.
In times of continuing fiscal constraints, a management and operation tool that is straightforward to implement, works as advertised, and virtually ensures compliant waste packaging should be carefully considered and employed wherever practicable. In the near future, the Department of Energy (DOE) will issue the first major update to DOE Order 435.1, Radioactive Waste Management. This update will contain a requirement for sites that do not have a Waste Isolation Pilot Plant (WIPP) waste certification program to use two newly developed technical standards: Contact-Handled Defense Transuranic Waste Packaging Instructions and Remote-Handled Defense Transuranic Waste Packaging Instructions. The technical standards aremore » being developed from the DOE O 435.1 Notice, Contact-Handled and Remote-Handled Transuranic Waste Packaging, approved August 2011. The packaging instructions will provide detailed information and instruction for packaging almost every conceivable type of transuranic (TRU) waste for disposal at WIPP. While providing specificity, the packaging instructions leave to each site's own discretion the actual mechanics of how those Instructions will be functionally implemented at the floor level. While the Technical Standards are designed to provide precise information for compliant packaging, the density of the information in the packaging instructions necessitates a type of Rosetta Stone that translates the requirements into concise, clear, easy to use and operationally practical recipes that are waste stream and facility specific for use by both first line management and hands-on operations personnel. The Waste Generator Instructions provide the operator with step-by-step instructions that will integrate the sites' various operational requirements (e.g., health and safety limits, radiological limits or dose limits) and result in a WIPP certifiable waste and package that can be transported to and emplaced at WIPP. These little known but widely productive Waste Generator Instructions (WGIs) have been used occasionally in the past at large sites for treatment and packaging of TRU waste. The WGIs have resulted in highly efficient waste treatment, packaging and certification for disposal of TRU waste at WIPP. For example, a single WGI at LANL, combined with an increase in gram loading, resulted in a mind boggling 6,400% increase in waste loading for {sup 238}Pu heat source waste. In fact, the WGI combined with a new Contact Handled (CH) TRU Waste Content (TRUCON) Code provided a massive increase in shippable wattage per Transuranic Package Transporter-II (TRUPACT-II) over the previously used and more restrictive TRUCON Code that have been used previously for the heat source waste. In fact, the use of the WGI process at LANL's TA-55 facility reduced non-compliant drums for WIPP certification and disposal from a 13% failure rate down to a 0.5% failure rate and is expected to further reduce the failure rate to zero drums per year. The inherent value of the WGI is that it can be implemented in a site's current procedure issuance process and it provides documented proof of what actions were taken for each waste stream packaged. The WGI protocol provides a key floor-level operational component to achieve goal alignment between actual site operations, the WIPP TRU waste packaging instructions, and DOE O 435.1. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
González Pericot, N., E-mail: natalia.gpericot@upm.es; Villoria Sáez, P., E-mail: paola.villoria@upm.es; Del Río Merino, M., E-mail: mercedes.delrio@upm.es
2014-11-15
Highlights: • On-site segregation level: 1.80%; training and motivation strategies were not effective. • 70% Cardboard waste: from switches and sockets during the building services stage. • 40% Plastic waste: generated during structures and partition works due to palletizing. • >50% Wood packaging waste, basically pallets, generated during the envelope works. - Abstract: The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste hasmore » been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites.« less
González Pericot, N; Villoria Sáez, P; Del Río Merino, M; Liébana Carrasco, O
2014-11-01
The construction sector is responsible for around 28% of the total waste volume generated in Europe, which exceeds the amount of household waste. This has led to an increase of different research studies focusing on construction waste quantification. However, within the research studies made, packaging waste has been analyzed to a limited extent. This article focuses on the packaging waste stream generated in the construction sector. To this purpose current on-site waste packaging management has been assessed by monitoring ten Mediterranean residential building works. The findings of the experimental data collection revealed that the incentive measures implemented by the construction company to improve on-site waste sorting failed to achieve the intended purpose, showing low segregation ratios. Subsequently, through an analytical study the generation patterns for packaging waste are established, leading to the identification of the prevailing kinds of packaging and the products responsible for their generation. Results indicate that plastic waste generation maintains a constant trend throughout the whole construction process, while cardboard becomes predominant towards the end of the construction works with switches and sockets from the electricity stage. Understanding the production patterns of packaging waste will be beneficial for adapting waste management strategies to the identified patterns for the specific nature of packaging waste within the context of construction worksites. Copyright © 2014 Elsevier Ltd. All rights reserved.
System analyses on advanced nuclear fuel cycle and waste management
NASA Astrophysics Data System (ADS)
Cheon, Myeongguk
To evaluate the impacts of accelerator-driven transmutation of waste (ATW) fuel cycle on a geological repository, two mathematical models are developed: a reactor system analysis model and a high-level waste (HLW) conditioning model. With the former, fission products and residual trans-uranium (TRU) contained in HLW generated from a reference ATW plant operations are quantified and the reduction of TRU inventory included in commercial spent-nuclear fuel (CSNF) is evaluated. With the latter, an optimized waste loading and composition in solidification of HLW are determined and the volume reduction of waste packages associated with CSNF is evaluated. WACOM, a reactor system analysis code developed in this study for burnup calculation, is validated by ORIGEN2.1 and MCNP. WACOM is used to perform multicycle analysis for the reference lead-bismuth eutectic (LBE) cooled transmuter. By applying the results of this analysis to the reference ATW deployment scenario considered in the ATW roadmap, the HLW generated from the ATW fuel cycle is quantified and the reduction of TRU inventory contained in CSNF is evaluated. A linear programming (LP) model has been developed for determination of an optimized waste loading and composition in solidification of HLW. The model has been applied to a US-defense HLW. The optimum waste loading evaluated by the LP model was compared with that estimated by the Defense Waste Processing Facility (DWPF) in the US and a good agreement was observed. The LP model was then applied to the volume reduction of waste packages associated with CSNF. Based on the obtained reduction factors, the expansion of Yucca Mountain Repository (YMR) capacity is evaluated. It is found that with the reference ATW system, the TRU contained in CSNF could be reduced by a factor of ˜170 in terms of inventory and by a factor of ˜40 in terms of toxicity under the assumed scenario. The number of waste packages related to CSNF could be reduced by a factor of ˜8 in terms of volume and by factor of ˜10 on the basis of electricity generation when a sufficient cooling time for discharged spent fuel and zero process chemicals in HLW are assumed. The expansion factor of Yucca Mountain Repository capacity is estimated to be a factor of 2.4, much smaller than the reduction factor of CSNF waste packages, due to the existence of DOE-owned spent fuel and HLW. The YMR, however, could support 10 times greater electricity generation as long as the statutory capacity of DOE-owned SNF and HLW remains unchanged. This study also showed that the reduction of the number of waste packages could strongly be subject to the heat generation rate of HLW and the amount of process chemicals contained in HLW. For a greater reduction of the number of waste packages, a sufficient cooling time for discharged fuel and efforts to minimize the amount of process chemicals contained in HLW are crucial.
Garcés, Diego; Díaz, Eva; Sastre, Herminio; Ordóñez, Salvador; González-LaFuente, José Manuel
2016-01-01
Solid recovered fuels constitute a valuable alternative for the management of those non-hazardous waste fractions that cannot be recycled. The main purpose of this research is to assess the suitability of three different wastes from the landfill of the local waste management company (COGERSA), to be used as solid recovered fuels in a cement kiln near their facilities. The wastes analyzed were: End of life vehicles waste, packaging and bulky wastes. The study was carried out in two different periods of the year: November 2013 and April 2014. In order to characterize and classify these wastes as solid recovered fuels, they were separated into homogeneous fractions in order to determine different element components, such as plastics, cellulosic materials, packagings or textile compounds, and the elemental analysis (including chlorine content), heavy metal content and the heating value of each fraction were determined. The lower heating value of the waste fractions on wet basis varies between 10 MJ kg(-1) and 42 MJ kg(-1). One of the packaging wastes presents a very high chlorine content (6.3 wt.%) due to the presence of polyvinylchloride from pipe fragments, being the other wastes below the established limits. Most of the wastes analyzed meet the heavy metals restrictions, except the fine fraction of the end of life vehicles waste. In addition, none of the wastes exceed the mercury limit content, which is one of the parameters considered for the solid recovered fuels classification. A comparison among the experimental higher heating values and empirical models that predict the heating value from the elemental analysis data was carried out. Finally, from the three wastes measured, the fine fraction of the end of life vehicles waste was discarded for its use as solid recovered fuels due to the lower heating value and its high heavy metals content. From the point of view of the heating value, the end of life vehicles waste was the most suitable residue with a lower heating value of 35.89 MJ kg(-1), followed by the packaging waste and the bulky waste, respectively. When mixing the wastes studied a global waste was obtained, whose classification as solid recovered fuels was NCV 1 Cl 3 Hg 3. From the empirical models used for calculating higher heating value from elemental content, Scheurer-Kestner was the model that best fit the experimental data corresponding to the wastes collected in November 2013, whereas Chang equation was the most approximate to the experimental heating values for April 2014 fractions. This difference is due to higher chlorine content of the second batch of wastes, since Chang equation is the only one that incorporates the chlorine content. Copyright © 2015 Elsevier Ltd. All rights reserved.
Selection of human consumables for future space missions
NASA Technical Reports Server (NTRS)
Bourland, C. T.; Smith, M. C.
1991-01-01
Consumables for human spaceflight include oxygen, water, food and food packaging, personal hygiene items, and clothing. This paper deals with the requirements for food and water, and their impact on waste product generation. Just as urbanization of society has been made possible by improved food processing and packaging, manned spaceflight has benefitted from this technology. The downside of this technology is increased food package waste product. Since consumables make up a major portion of the vehicle onboard stowage and generate most of the waste products, selection of consumables is a very critical process. Food and package waste comprise the majority of the trash generated on the current shuttle orbiter missions. Plans for future missions must include accurate assessment of the waste products to be generated, and the methods for processing and disposing of these wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.D. Francis
The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with thismore » single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.« less
SITE GENERATED RADIOLOGICAL WASTE HANDLING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. C. Khamankar
2000-06-20
The Site Generated Radiological Waste Handling System handles radioactive waste products that are generated at the geologic repository operations area. The waste is collected, treated if required, packaged for shipment, and shipped to a disposal site. Waste streams include low-level waste (LLW) in solid and liquid forms, as-well-as mixed waste that contains hazardous and radioactive constituents. Liquid LLW is segregated into two streams, non-recyclable and recyclable. The non-recyclable stream may contain detergents or other non-hazardous cleaning agents and is packaged for shipment. The recyclable stream is treated to recycle a large portion of the water while the remaining concentrated wastemore » is packaged for shipment; this greatly reduces the volume of waste requiring disposal. There will be no liquid LLW discharge. Solid LLW consists of wet solids such as ion exchange resins and filter cartridges, as-well-as dry active waste such as tools, protective clothing, and poly bags. Solids will be sorted, volume reduced, and packaged for shipment. The generation of mixed waste at the Monitored Geologic Repository (MGR) is not planned; however, if it does come into existence, it will be collected and packaged for disposal at its point of occurrence, temporarily staged, then shipped to government-approved off-site facilities for disposal. The Site Generated Radiological Waste Handling System has equipment located in both the Waste Treatment Building (WTB) and in the Waste Handling Building (WHB). All types of liquid and solid LLW are processed in the WTB, while wet solid waste from the Pool Water Treatment and Cooling System is packaged where received in the WHB. There is no installed hardware for mixed waste. The Site Generated Radiological Waste Handling System receives waste from locations where water is used for decontamination functions. In most cases the water is piped back to the WTB for processing. The WTB and WHB provide staging areas for storing and shipping LLW packages as well as any mixed waste packages. The buildings house the system and provide shielding and support for the components. The system is ventilated by and connects to the ventilation systems in the buildings to prevent buildup and confine airborne radioactivity via the high efficiency particulate air filters. The Monitored Geologic Repository Operations Monitoring and Control System will provide monitoring and supervisory control facilities for the system.« less
Device and Container for Reheating and Sterilization
NASA Technical Reports Server (NTRS)
Sastry, Sudhir K.; Heskitt, Brian F.; Jun, Soojin; Marcy, Joseph E.; Mahna, Ritesh
2012-01-01
Long-duration space missions require the development of improved foods and novel packages that do not represent a significant disposal issue. In addition, it would also be desirable if rapid heating technologies could be used on Earth as well, to improve food quality during a sterilization process. For this purpose, a package equipped with electrodes was developed that will enable rapid reheating of contents via ohmic heating to serving temperature during space vehicle transit. Further, the package is designed with a resealing feature, which enables the package, once used, to contain and sterilize waste, including human waste for storage prior to jettison during a long-duration mission. Ohmic heating is a technology that has been investigated on and off for over a century. Literature indicates that foods processed by ohmic heating are of superior quality to their conventionally processed counterparts. This is due to the speed and uniformity of ohmic heating, which minimizes exposure of sensitive materials to high temperatures. In principle, the material may be heated rapidly to sterilization conditions, cooled rapidly, and stored. The ohmic heating device herein is incorporated within a package. While this by itself is not novel, a reusable feature also was developed with the intent that waste may be stored and re-sterilized within the packages. These would then serve a useful function after their use in food processing and storage. The enclosure should be designed to minimize mass (and for NASA's purposes, Equivalent System Mass, or ESM), while enabling the sterilization function. It should also be electrically insulating. For this reason, Ultem high-strength, machinable electrical insulator was used.
Superheat recovery system shakes savings out of A/C systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-09-01
One of the most productive and least expensive methods of recovering waste heat is a system that reclaims the excess energy or superheat generated by closed-loop-air conditioning or refrigeration cycles. Installed recently in 72 Steak N' Shakes restaurants as part of a total energy conservation package, it has helped cut gas bills by more than 70%.
Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery
NASA Astrophysics Data System (ADS)
Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.
2010-09-01
Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.
NASA Astrophysics Data System (ADS)
Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.
2003-12-01
For the proposed Yucca Mountain geologic repository for high-level nuclear waste, the planned method of disposal involves the emplacement of cylindrical packages containing the waste inside horizontal tunnels, called emplacement drifts, bored several hundred meters below the ground surface. The emplacement drifts reside in highly fractured, partially saturated volcanic tuff. An important phenomenological consideration for the licensing of the proposed repository at Yucca Mountain is the generation of decay heat by the emplaced waste and the consequences of this decay heat. Changes in temperature will affect the hydrologic and chemical environment at Yucca Mountain. A thermohydrologic-modeling tool is necessary to support the performance assessment of the Engineered Barrier System (EBS) of the proposed repository. This modeling tool must simultaneously account for processes occurring at a scale of a few tens of centimeters around individual waste packages, for processes occurring around the emplacement drifts themselves, and for processes occurring at the multi-kilometer scale of the mountain. Additionally, many other features must be considered including non-isothermal, multiphase-flow in fractured porous rock of variable liquid-phase saturation and thermal radiation and convection in open cavities. The Multiscale Thermohydrologic Model (MSTHM) calculates the following thermohydrologic (TH) variables: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes. The TH variables are determined as a function of position along each of the emplacement drifts in the repository and as a function of waste-package (WP) type. These variables are determined at various generic locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert; they are also determined at various generic locations in the adjoining host rock; these variables are determined every 20 m for each emplacement drift in the repository. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow and captures the influence of the key engineering-design variables and natural-system factors affecting TH conditions in the emplacement drifts and adjoining host rock. Presented is a synopsis of recent MSTHM calculations conducted to support the Total System Performance Assessment for the License Application (TSPA-LA). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Packaging. 262.30 Section 262.30... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.30 Packaging. Before... the waste in accordance with the applicable Department of Transportation regulations on packaging...
NASA Astrophysics Data System (ADS)
Wardrop, Nicola A.; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Hill, Allan G.; Bain, Robert E. S.; Wright, Jim
2017-08-01
Packaged water consumption is growing in low- and middle-income countries, but the magnitude of this phenomenon and its environmental consequences remain unclear. This study aims to quantify both the volumes of packaged water consumed relative to household water requirements and associated plastic waste generated for three West African case study countries. Data from household expenditure surveys for Ghana, Nigeria and Liberia were used to estimate the volumes of packaged water consumed and thereby quantify plastic waste generated in households with and without solid waste disposal facilities. In Ghana, Nigeria and Liberia respectively, 11.3 (95% confidence interval: 10.3-12.4), 10.1 (7.5-12.5), and 0.38 (0.31-0.45) Ml day-1 of sachet water were consumed. This generated over 28 000 tonnes yr-1 of plastic waste, of which 20%, 63% and 57% was among households lacking formal waste disposal facilities in Ghana, Nigeria and Liberia respectively. Reported packaged water consumption provided sufficient water to meet daily household drinking-water requirements for 8.4%, less than 1% and 1.6% of households in Ghana, Nigeria and Liberia respectively. These findings quantify packaged water’s contribution to household water needs in our study countries, particularly Ghana, but indicate significant subsequent environmental repercussions.
Seal welded cast iron nuclear waste container
Filippi, Arthur M.; Sprecace, Richard P.
1987-01-01
This invention identifies methods and articles designed to circumvent metallurgical problems associated with hermetically closing an all cast iron nuclear waste package by welding. It involves welding nickel-carbon alloy inserts which are bonded to the mating plug and main body components of the package. The welding inserts might be bonded in place during casting of the package components. When the waste package closure weld is made, the most severe thermal effects of the process are restricted to the nickel-carbon insert material which is far better able to accommodate them than is cast iron. Use of nickel-carbon weld inserts should eliminate any need for pre-weld and post-weld heat treatments which are a problem to apply to nuclear waste packages. Although the waste package closure weld approach described results in a dissimilar metal combination, the relative surface area of nickel-to-iron, their electrochemical relationship, and the presence of graphite in both materials will act to prevent any galvanic corrosion problem.
Waste heat generation: A comprehensive review.
Yeşiller, Nazli; Hanson, James L; Yee, Emma H
2015-08-01
A comprehensive review of heat generation in various types of wastes and of the thermal regime of waste containment facilities is provided in this paper. Municipal solid waste (MSW), MSW incineration ash, and mining wastes were included in the analysis. Spatial and temporal variations of waste temperatures, thermal gradients, thermal properties of wastes, average temperature differentials, and heat generation values are provided. Heat generation was influenced by climatic conditions, mean annual earth temperatures, waste temperatures at the time of placement, cover conditions, and inherent heat generation potential of the specific wastes. Time to onset of heat generation varied between months and years, whereas timelines for overall duration of heat generation varied between years and decades. For MSW, measured waste temperatures were as high as 60-90°C and as low as -6°C. MSW incinerator ash temperatures varied between 5 and 87°C. Mining waste temperatures were in the range of -25 to 65°C. In the wastes analyzed, upward heat flow toward the surface was more prominent than downward heat flow toward the subsurface. Thermal gradients generally were higher for MSW and incinerator ash and lower for mining waste. Based on thermal properties, MSW had insulative qualities (low thermal conductivity), while mining wastes typically were relatively conductive (high thermal conductivity) with ash having intermediate qualities. Heat generation values ranged from -8.6 to 83.1MJ/m(3) and from 0.6 to 72.6MJ/m(3) for MSW and mining waste, respectively and was 72.6MJ/m(3) for ash waste. Conductive thermal losses were determined to range from 13 to 1111MJ/m(3)yr. The data and analysis provided in this review paper can be used in the investigation of heat generation and thermal regime of a wide range of wastes and waste containment facilities located in different climatic regions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Compaction of Space Mission Wastes
NASA Technical Reports Server (NTRS)
Fisher, John; Pisharody, Suresh; Wignarajah, K.
2004-01-01
The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.
Thermoelectric Waste Heat Recovery Program for Passenger Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovovic, Vladimir
2015-12-31
Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed moremore » modest potential.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biedscheid, J.; Stahl, S.; Devarakonda, M.
2002-02-26
The first remote-handled transuranic (RH-TRU) waste is expected to be permanently disposed of at the Waste Isolation Pilot Plant (WIPP) during Fiscal Year (FY) 2003. The first RH-TRU waste shipments are scheduled from the Battelle Columbus Laboratories (BCL) to WIPP in order to facilitate compliance with BCL Decommissioning Project (BCLDP) milestones. Milestones requiring RH-TRU waste containerization and removal from the site by 2004 in order to meet a 2006 site closure goal, established by Congress in the Defense Facilities Closure Projects account, necessitated the establishment and implementation of a site-specific program to direct the packaging of BCLDP RH-TRU waste priormore » to the finalization of WIPP RH-TRU waste characterization requirements. The program was designed to collect waste data, including audio and videotape records of waste packaging, such that upon completion of waste packaging, comprehensive data records exist from which compliance with final WIPP RH-TRU waste characterization requirements can be demonstrated. With the BCLDP data records generated to date and the development by the U.S. Department of Energy (DOE)-Carlsbad Field Office (CBFO) of preliminary documents proposing the WIPP RH-TRU waste characterization program, it is possible to evaluate the adequacy of the BCLDP program with respect to meeting proposed characterization objectives. The BCLDP characterization program uses primarily acceptable knowledge (AK) and visual examination (VE) during waste packaging to characterize RH-TRU waste. These methods are used to estimate physical waste parameters, including weight percentages of metals, cellulosics, plastics, and rubber in the waste, and to determine the absence of prohibited items, including free liquids. AK combined with computer modeling is used to estimate radiological waste parameters, including total activity on a waste container basis, for the majority of BCLDP RH-TRU waste. AK combined with direct analysis is used to characterize radiological parameters for the small populations of the RH-TRU waste generated by the BCLDP. All characterization based on AK is verified. Per its design for comprehensive waste data collection, the BCLDP characterization program using AK and waste packaging procedures, including VE during packaging, meets the proposed WIPP RH-TRU waste characterization objectives. The conservative program design implemented generates certification data that will be adequate to meet any additional program requirements that may be imposed by the CBFO.« less
Thermal valorization of post-consumer film waste in a bubbling bed gasifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Lera, S., E-mail: susanamartinezlera@gmail.com; Torrico, J.; Pallarés, J.
2013-07-15
Highlights: • Film waste from packaging is a common waste, a fraction of which is not recyclable. • Gasification can make use of the high energy value of the non-recyclable fraction. • This waste and two reference polymers were gasified in a bubbling bed reactor. • This experimental research proves technical feasibility of the process. • It also analyzes impact of composition and ER on the performance of the plant. - Abstract: The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes.more » A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m{sup 3} and cold gas efficiencies up to 60%.« less
Waste Management Information System (WMIS) User Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. E. Broz
2008-12-22
This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Persoff
The evaluation of impacts of potential volcanic eruptions on populations and facilities far in the future may involve detailed volcanological studies that differ from traditional hazards analyses. The proximity of Quaternary volcanoes to a proposed repository for disposal of the USA's high-level radioactive waste at Yucca Mountain, Nevada, has required in-depth study of probability and consequences of basaltic igneous activity. Because of the underground nature of the repository, evaluation of the potential effects of dike intrusion and interaction with the waste packages stored in underground tunnels (dnfts) as well as effects of eruption and ash dispersal have been important. Thesemore » studies include analyses of dike propagation, dike-drift intersection, flow of magma into dnfts, heat and volcanic gas migration, atmospheric dispersal of tephra, and redistribution of waste-contaminated tephra by surficial processes. Unlike traditional volcanic hazards studies that focus on impacts on housing, transportation, communications, etc. (to name a small subset), the igneous consequences studies at Yucca Mountain have focused on evaluation of igneous impacts on nuclear waste packages and implications for enhanced radioactive dose on a hypothetical future ({le} 10000 yrs) local population. Potential exposure pathways include groundwater (affected by in-situ degradation of waste packages by igneous heat and corrosion) and inhalation, ingestion, and external exposure due to deposition and redistribution of waste-contaminated tephra.« less
Adrados, A; De Marco, I; Lopez-Urionabarrenechea, A; Caballero, B M; Laresgoiti, M F
2013-01-01
In this paper rejected streams coming from a waste packaging material recovery facility have been characterized and separated into families of products of similar nature in order to determine the influence of different types of ingredients in the products obtained in the pyrolysis process. The pyrolysis experiments have been carried out in a non-stirred batch 3.5 dm(3) reactor, swept with 1 L min(-1) N(2), at 500°C for 30 min. Pyrolysis liquids are composed of an organic phase and an aqueous phase. The aqueous phase is greater as higher is the cellulosic material content in the sample. The organic phase contains valuable chemicals as styrene, ethylbenzene and toluene, and has high heating value (HHV) (33-40 MJ kg(-1)). Therefore they could be used as alternative fuels for heat and power generation and as a source of valuable chemicals. Pyrolysis gases are mainly composed of hydrocarbons but contain high amounts of CO and CO(2); their HHV is in the range of 18-46 MJ kg(-1). The amount of COCO(2) increases, and consequently HHV decreases as higher is the cellulosic content of the waste. Pyrolysis solids are mainly composed of inorganics and char formed in the process. The cellulosic materials lower the quality of the pyrolysis liquids and gases, and increase the production of char. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baker, Chad; Vuppuluri, Prem; Shi, Li; Hall, Matthew
2012-06-01
The performance and operating characteristics of a hypothetical thermoelectric generator system designed to extract waste heat from the exhaust of a medium-duty turbocharged diesel engine were modeled. The finite-difference model consisted of two integrated submodels: a heat exchanger model and a thermoelectric device model. The heat exchanger model specified a rectangular cross-sectional geometry with liquid coolant on the cold side, and accounted for the difference between the heat transfer rate from the exhaust and that to the coolant. With the spatial variation of the thermoelectric properties accounted for, the thermoelectric device model calculated the hot-side and cold-side heat flux for the temperature boundary conditions given for the thermoelectric elements, iterating until temperature and heat flux boundary conditions satisfied the convection conditions for both exhaust and coolant, and heat transfer in the thermoelectric device. A downhill simplex method was used to optimize the parameters that affected the electrical power output, including the thermoelectric leg height, thermoelectric n-type to p-type leg area ratio, thermoelectric leg area to void area ratio, load electrical resistance, exhaust duct height, coolant duct height, fin spacing in the exhaust duct, location in the engine exhaust system, and number of flow paths within the constrained package volume. The calculation results showed that the configuration with 32 straight fins was optimal across the 30-cm-wide duct for the case of a single duct with total height of 5.5 cm. In addition, three counterflow parallel ducts or flow paths were found to be an optimum number for the given size constraint of 5.5 cm total height, and parallel ducts with counterflow were a better configuration than serpentine flow. Based on the reported thermoelectric properties of MnSi1.75 and Mg2Si0.5Sn0.5, the maximum net electrical power achieved for the three parallel flow paths in a counterflow arrangement was 1.06 kW for package volume of 16.5 L and exhaust flow enthalpy flux of 122 kW.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, A.; Gordon, S.; Goldston, W.
2013-07-08
This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficientlymore » in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.« less
Prevention policies addressing packaging and packaging waste: Some emerging trends.
Tencati, Antonio; Pogutz, Stefano; Moda, Beatrice; Brambilla, Matteo; Cacia, Claudia
2016-10-01
Packaging waste is a major issue in several countries. Representing in industrialized countries around 30-35% of municipal solid waste yearly generated, this waste stream has steadily grown over the years even if, especially in Europe, specific recycling and recovery targets have been fixed. Therefore, an increasing attention starts to be devoted to prevention measures and interventions. Filling a gap in the current literature, this explorative paper is a first attempt to map the increasingly important phenomenon of prevention policies in the packaging sector. Through a theoretical sampling, 11 countries/states (7 in and 4 outside Europe) have been selected and analyzed by gathering and studying primary and secondary data. Results show evidence of three specific trends in packaging waste prevention policies: fostering the adoption of measures directed at improving packaging design and production through an extensive use of the life cycle assessment; raising the awareness of final consumers by increasing the accountability of firms; promoting collaborative efforts along the packaging supply chains. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermoelectric as recovery and harvesting of waste heat from portable generator
NASA Astrophysics Data System (ADS)
Mustafa, S. N.; Kamarrudin, N. S.; Hashim, M. S. M.; Bakar, S. A.; Razlan, Z. M.; Harun, A.; Ibrahim, I.; Faizi, M. K.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.
2017-10-01
Generation of waste heat was ineluctable especially during energy producing process. Waste heat falls into low temperature grade make it complicated to utilize. Thermoelectric generator (TEG) offers opportunity to harvest any temperature grade heat into useful electricity. This project is covered about recovery and utilizing waste heat from portable electric generator by using a TEG which placed at exhaust surface. Temperature difference at both surfaces of TEG was enhanced with supplying cold air from a wind blower. It is found that, even at low air speed, the TEG was successfully produced electricity with aid from DC-DC booster. Results shows possibility to harvest low temperature grade heat and still exist areas for continual improvement.
Sources and potential application of waste heat utilization at a gas processing facility
NASA Astrophysics Data System (ADS)
Alshehhi, Alyas Ali
Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.
Recycling potential of post-consumer plastic packaging waste in Finland.
Dahlbo, Helena; Poliakova, Valeria; Mylläri, Ville; Sahimaa, Olli; Anderson, Reetta
2018-01-01
Recycling of plastics is urged by the need for closing material loops to maintain our natural resources when striving towards circular economy, but also by the concern raced by observations of plastic scrap in oceans and lakes. Packaging industry is the sector using the largest share of plastics, hence packaging dominates in the plastic waste flow. The aim of this paper was to sum up the recycling potential of post-consumer plastic packaging waste in Finland. This potential was evaluated based on the quantity, composition and mechanical quality of the plastic packaging waste generated by consumers and collected as a source-separated fraction, within the mixed municipal solid waste (MSW) or within energy waste. Based on the assessment 86,000-117,000 tons (18 kg/person/a) of post-consumer plastic packaging waste was generated in Finland in 2014. The majority, 84% of the waste was in the mixed MSW flow in 2014. Due to the launching of new sorting facilities and separate collections for post-consumer plastic packaging in 2016, almost 40% of the post-consumer plastic packaging could become available for recycling. However, a 50% recycling rate for post-consumer plastic packaging (other than PET bottles) would be needed to increase the overall MSW recycling rate from the current 41% by around two percentage points. The share of monotype plastics in the overall MSW plastics fraction was 80%, hence by volume the recycling potential of MSW plastics is high. Polypropylene (PP) and low density polyethylene (LDPE) were the most common plastic types present in mixed MSW, followed by polyethylene terephthalate (PET), polystyrene (PS) and high density polyethylene (HDPE). If all the Finnish plastic packaging waste collected through the three collection types would be available for recycling, then 19,000-25,000 tons of recycled PP and 6000-8000 tons of recycled HDPE would be available on the local market. However, this assessment includes uncertainties due to performing the composition study only on mixed MSW plastic fraction. In order to obtain more precise figures of the recycling potential of post-consumer plastic packaging, more studies should be performed on both the quantities and the qualities of plastic wastes. The mechanical and rheological test results indicated that even plastic wastes originating from the mixed MSW, can be useful raw materials. Recycled HDPE showed a smaller decline in the mechanical properties than recycled PP. The origin and processing method of waste plastic seemed to have less effect on the mechanical quality than the type of plastic. The applicability of a plastic waste for a product needs to be assessed case by case, due to product specific quality requirements. In addition to mechanical properties, the chemical composition of plastic wastes is of major importance, in order to be able to restrict hazardous substances from being circulated undesirably. In addition to quantity and quality of plastic wastes, the sustainability of the whole recycling chain needs to be assessed prior to launching operations so that the chain can be optimized to generate both environmental and economic benefits to society and operators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Packaging, Transportation and Recycling of NPP Condenser Modules - 12262
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polley, G.M.
2012-07-01
Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ∼102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged inmore » inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ∼15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ∼15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ∼102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing facility. If any of these issues were not adequately resolved prior to the start of the outage, costly delays would result and the re-start of the power plant could be impacted. The main focus of this project was to find successful methods for keeping this material out of the landfills and preserving the natural resources. In addition, this operation provided a significant cost savings to the public utility by minimizing landfill disposal. The onsite portion of the project has been completed without impact to the overall outage schedule. By the date of presentation, the majority of the waste from the condenser replacement project will have been processed and recycled. The goals for this project included helping Energy Northwest maintain the outage schedule, package and characterize waste compliantly, perform transportation activities in compliance with 49CFR (Ref-1), and minimize the waste disposal volume. During this condenser replacement project, over three millions pounds of waste was generated, packaged, characterized and transported without injury or incident. It is anticipated that 95% of the waste generated during this project will not require landfill disposal. All of the waste is scheduled to be processed, decontaminated and recycled by June of 2012. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edjabou, Maklawe Essonanawe, E-mail: vine@env.dtu.dk; Jensen, Morten Bang; Götze, Ramona
Highlights: • Tiered approach to waste sorting ensures flexibility and facilitates comparison of solid waste composition data. • Food and miscellaneous wastes are the main fractions contributing to the residual household waste. • Separation of food packaging from food leftovers during sorting is not critical for determination of the solid waste composition. - Abstract: Sound waste management and optimisation of resource recovery require reliable data on solid waste generation and composition. In the absence of standardised and commonly accepted waste characterisation methodologies, various approaches have been reported in literature. This limits both comparability and applicability of the results. In thismore » study, a waste sampling and sorting methodology for efficient and statistically robust characterisation of solid waste was introduced. The methodology was applied to residual waste collected from 1442 households distributed among 10 individual sub-areas in three Danish municipalities (both single and multi-family house areas). In total 17 tonnes of waste were sorted into 10–50 waste fractions, organised according to a three-level (tiered approach) facilitating comparison of the waste data between individual sub-areas with different fractionation (waste from one municipality was sorted at “Level III”, e.g. detailed, while the two others were sorted only at “Level I”). The results showed that residual household waste mainly contained food waste (42 ± 5%, mass per wet basis) and miscellaneous combustibles (18 ± 3%, mass per wet basis). The residual household waste generation rate in the study areas was 3–4 kg per person per week. Statistical analyses revealed that the waste composition was independent of variations in the waste generation rate. Both, waste composition and waste generation rates were statistically similar for each of the three municipalities. While the waste generation rates were similar for each of the two housing types (single-family and multi-family house areas), the individual percentage composition of food waste, paper, and glass was significantly different between the housing types. This indicates that housing type is a critical stratification parameter. Separating food leftovers from food packaging during manual sorting of the sampled waste did not have significant influence on the proportions of food waste and packaging materials, indicating that this step may not be required.« less
1982-07-01
waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed
Integrated software system for low level waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worku, G.
1995-12-31
In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less
Thermal valorization of post-consumer film waste in a bubbling bed gasifier.
Martínez-Lera, S; Torrico, J; Pallarés, J; Gil, A
2013-07-01
The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes. A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m3 and cold gas efficiencies up to 60%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Management of packaging waste in Poland--development agenda and accession to the EU.
Grodzińska-Jurczak, Małgorzata; Zakowska, Hanna; Read, Adam
2004-06-01
In recent years the issue of the municipal waste in Poland has become increasingly topical, with a considerable rise in the waste generation, much of which can be attributed to a boom in product packaging (mainly plastic). The annual production of plastics packaging has been constantly increasing over the last 20 to 30 years, and now exceeds 3.7 million tons. Due to a lack of processing technologies and poorly developed selective segregation system, packaging waste is still treated as a part of the municipal solid waste (MSW) stream, most of which is landfilled. As a result of Poland's access to the European Union, previous legal regulations governing municipal waste management have been harmonized with those binding on the member countries. One of the main changes, the most revolutionary one, is to make entrepreneurs liable for environmental risks resulting from the introduction of packaging to the market, and for its recycling. In practice, all entrepreneurs are to ensure recovery, and recycling, of used packaging from products introduced to the market at the required level. In recent year, the required recycling levels were fulfilled for all types of materials but mainly by large institutions using grouped and transport packaging waste for that matter. Household packaging gathered in the selective segregation system at the municipalities was practically left alone. This paper is an attempt to describe the system and assess the first year of functioning of the new, revamped system of packaging waste management in Poland. Recommendations are made relating to those features that need to be included in packaging waste management systems in order to maximize their sustainability and harmonization with the EU legal system.
Utilization of Aluminum Waste with Hydrogen and Heat Generation
NASA Astrophysics Data System (ADS)
Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.
2017-10-01
A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.
33 Shafts Category of Transuranic Waste Stored Below Ground within Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargis, Kenneth Marshall; Monk, Thomas H
This report compiles information to support the evaluation of alternatives and analysis of regulatory paths forward for the 33 shafts. The historical information includes a form completed by waste generators for each waste package (Reference 6) that included a waste description, estimates of Pu-239 and uranium-235 (U-235) based on an accounting technique, and calculations of mixed fission products (MFP) based on radiation measurements. A 1979 letter and questionnaire (Reference 7) provides information on waste packaging of hot cell waste and the configuration of disposal shafts as storage in the 33 Shafts was initiated. Tables of data by waste package weremore » developed during a review of historical documents that was performed in 2005 (Reference 8). Radiological data was coupled with material-type data to estimate the initial isotopic content of each waste package and an Oak Ridge National Laboratory computer code was used to calculate 2009 decay levels. Other sources of information include a waste disposal logbook for the 33 shafts (Reference 9), reports that summarize remote-handled waste generated at the CMR facility (Reference 10) and placement of waste in the 33 shafts (Reference 11), a report on decommissioning of the LAMPRE reactor (Reference 12), interviews with an employee and manager involved in placing waste in the 33 shafts (References 13 and 14), an interview with a long-time LANL employee involved in waste operations (Reference 15), a 2002 plan for disposition of remote-handled TRU waste (Reference 16), and photographs obtained during field surveys of several shafts in 2007. The WIPP Central Characterization Project (CCP) completed an Acceptable Knowledge (AK) summary report for 16 canisters of remote-handled waste from the CMR Facility that contains information relevant to the 33 Shafts on hot-cell operations and timeline (Reference 17).« less
Potential ability of zeolite to generate high-temperature vapor using waste heat
NASA Astrophysics Data System (ADS)
Fukai, Jun; Wijayanta, Agung Tri
2018-02-01
In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.
Thermal Analysis of the Mound One Kilowatt Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Or, Chuen T.
The Mound One Kilowatt (1 KW) package was designed for the shipment of plutonium (Pu-238) with not more than 1 kW total heat dissipation. To comply with regulations, the Mound 1 kW package has to pass all the requirements under Normal Conditions of Transport (NCT; 38 degrees C ambient temperature) and Hypothetical Accident Conditions (HAC; package engulfed in fire for 30 minutes). Analytical and test results were presented in the Safety Analysis Report for Packaging (SARP) for the Mound 1 kW package, revision 1, April 1991. Some issues remained unresolved in that revision. In March 1992, Fairchild Space and Defensemore » Corporation was commissioned by the Department of Energy to perform the thermal analyses. 3-D thermal models were created to perform the NCT and HAC analyses. Four shipping configurations in the SARP revision 3 were analyzed. They were: (1) The GPHS graphite impact shell (GIS) in the threaded product can (1000 W total heat generation); (2) The fueled clads in the welded product can (1000 W total heat generation); (3) The General Purpose Heat Source (GPHS) module (750 W total heat generation); and (4) The Multi-Hundred Watt (MHW) spheres (810 W total heat generation). Results from the four cases show that the GIS or fuel clad in the product can is the worse case. The temperatures predicted under NCT and HAC in all four cases are within the design limits. The use of helium instead of argon as cover gas provides a bigger safety margin. There is a duplicate copy.« less
Navy Expeditionary Technology Transition Program (NETTP)
2012-03-02
water vapor from feed air using a zeolite membrane •Temperature/Humidity levels can be met in warm, humid climates without reheating •Allows higher...UNCLASSIFIED, Distribution Unlimited Modular Thermal Hub •Small, efficient absorption cooling •Energy source: Combustion, low- grade waste heat, solar... thermal energy •Reversible operation enables space cooling and heating, and water heating •Modular cooling and heating unit •Monolithic packaging offers
WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.C. Khamamkar
2000-06-23
The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less
Nessi, Simone; Rigamonti, Lucia; Grosso, Mario
2015-09-01
A life cycle assessment was carried out to evaluate the effects of two packaging waste prevention activities on the overall environmental performance of the integrated municipal waste management system of Lombardia region, Italy. The activities are the use of refined tap water instead of bottled water for household consumption and the substitution of liquid detergents packaged in single-use containers by those distributed 'loose' through self-dispensing systems and refillable containers. A 2020 baseline scenario without waste prevention is compared with different waste prevention scenarios, where the two activities are either separately or contemporaneously implemented, by assuming a complete substitution of the traditional product(s). The results show that, when the prevention activities are carried out effectively, a reduction in total waste generation ranging from 0.14% to 0.66% is achieved, corresponding to a 1-4% reduction of the affected packaging waste fractions (plastics and glass). However, the improvements in the overall environmental performance of the waste management system can be far higher, especially when bottled water is substituted. In this case, a nearly 0.5% reduction of the total waste involves improvements ranging mostly between 5 and 23%. Conversely, for the substitution of single-use packaged liquid detergents (0.14% reduction of the total waste), the achieved improvements do not exceed 3% for nearly all impact categories. © The Author(s) 2015.
Control of stacking loads in final waste disposal according to the borehole technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feuser, W.; Barnert, E.; Vijgen, H.
1996-12-01
The semihydrostatic model has been developed in order to assess the mechanical toads acting on heat-generating ILW(Q) and HTGR fuel element waste packages to be emplaced in vertical boreholes according to the borehole technique in underground rock salt formations. For the experimental validation of the theory, laboratory test stands reduced in scale are set up to simulate the bottom section of a repository borehole. A comparison of the measurement results with the data computed by the model, a correlation between the test stand results, and a systematic determination of material-typical crushed salt parameters in a separate research project will servemore » to derive a set of characteristic equations enabling a description of real conditions in a future repository.« less
In-Package Chemistry Abstraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Thomas
2004-11-09
This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, amore » batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.« less
Using Waste Heat for External Processes (English/Chinese) (Fact Sheet) (in Chin3se; English)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used inmore » petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.« less
Waste heat utilization in industrial processes
NASA Technical Reports Server (NTRS)
Weichsel, M.; Heitmann, W.
1978-01-01
A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.
Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.
2016-12-01
A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi
2015-01-01
Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to choose the heat source first and then design the most appropriate structure for the source by applying analytical methods. This report describes how to design a prototype of a thermoelectric power generator using the analytical approach and the results of performance evaluation tests carried out in the field.
Solid Waste Activity Packet for Teachers.
ERIC Educational Resources Information Center
Illinois Univ., Urbana. Cooperative Extension Service.
This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
Plastic flexible films waste management - A state of art review.
Horodytska, O; Valdés, F J; Fullana, A
2018-04-21
Plastic flexible films are increasingly used in many applications due to their lightness and versatility. In 2014, the amount of plastic films represented 34% of total plastic packaging produced in UK. The flexible film waste generation rises according to the increase in number of applications. Currently, in developed countries, about 50% of plastics in domestic waste are films. Moreover, about 615,000 tonnes of agricultural flexible waste are generated in the EU every year. A review of plastic films recycling has been conducted in order to detect the shortcomings and establish guidelines for future research. This paper reviews plastic films waste management technologies from two different sources: post-industrial and post-consumer. Clean and homogeneous post-industrial waste is recycled through closed-loop or open-loop mechanical processes. The main differences between these methods are the quality and the application of the recycled materials. Further research should be focused on closing the loops to obtain the highest environmental benefits of recycling. This could be accomplished through minimizing the material degradation during mechanical processes. Regarding post-consumer waste, flexible films from agricultural and packaging sectors have been assessed. The agricultural films and commercial and industrial flexible packaging are recycled through open-loop mechanical recycling due to existing selective waste collection routes. Nevertheless, the contamination from the use phase adversely affects the quality of recycled plastics. Therefore, upgrading of current washing lines is required. On the other hand, household flexible packaging shows the lowest recycling rates mainly because of inefficient sorting technologies. Delamination and compatibilization methods should be further developed to ensure the recycling of multilayer films. Finally, Life Cycle Assessment (LCA) studies on waste management have been reviewed. A lack of thorough LCA on plastic films waste management systems was identified. Copyright © 2018 Elsevier Ltd. All rights reserved.
Thermoelectric harvesting of low temperature natural/waste heat
NASA Astrophysics Data System (ADS)
Rowe, David Michael
2012-06-01
Apart from specialized space requirements current development in applications of thermoelectric generation mainly relate to reducing harmful carbon emissions and decreasing costly fuel consumption through the recovery of exhaust heat from fossil fuel powered engines and emissions from industrial utilities. Focus on these applications is to the detriment of the wider exploitations of thermoelectrics with other sources of heat energy, and in particular natural occurring and waste low temperature heat, receiving little, if any, attention. In this presentation thermoelectric generation applications, both potential and real in harvesting low temperature waste/natural heat are reviewed. The use of thermoelectrics to harvest solar energy, ocean thermal energy, geothermal heat and waste heat are discussed and their credibility as future large-scale sources of electrical power assessed.
NREL Reveals Potential for Capturing Waste Heat via Nanotubes | News | NREL
Reveals Potential for Capturing Waste Heat via Nanotubes News Release: NREL Reveals Potential for Capturing Waste Heat via Nanotubes April 4, 2016 A finely tuned carbon nanotube thin film has the potential to act as a thermoelectric power generator that captures and uses waste heat, according to
Conceptual waste packaging options for deep borehole disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Jiann -Cherng; Hardin, Ernest L.
This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to sealmore » the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low-profile threaded connections at each end. The internal-flush design would be suitable for loading waste that arrives from the originating site in weld-sealed, cylindrical canisters. Internal, tapered plugs with sealing filet welds would seal the tubing at each end. The taper would be precisely machined onto both the tubing and the plug, producing a metal-metal sealing surface that is compressed as the package is subjected to hydrostatic pressure. The lower plug would be welded in place before loading, while the upper plug would be placed and welded after loading. Conceptual Waste Packaging Options for Deep Borehole Disposal July 30, 2015 iv Threaded connections between packages would allow emplacement singly or in strings screwed together at the disposal site. For emplacement on a drill string the drill pipe would be connected directly into the top package of a string (using an adapter sub to mate with premium semi-flush tubing threads). Alternatively, for wireline emplacement the same package designs could be emplaced singly using a sub with wireline latch, on the upper end. Threaded connections on the bottom of the lowermost package would allow attachment of a crush box, instrumentation, etc.« less
Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management
NASA Technical Reports Server (NTRS)
Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.
2005-01-01
An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of waste heat utilization in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander). The advantages associated with the SRG110 as they relate to ease of assembly, less complex interfaces, and overall mass savings for a spacecraft will be highlighted.
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units...
40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units...
Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko
2012-03-01
Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
WILLIS, W.L.
This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.
Hazardous Waste Management for the Small Quantity Generator. Teacher Edition.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This instructional package for teaching about the regulations imposed on small quantity generators by the Environmental Protection Agency (EPA) under the Resource Conservation Recovery Act is organized around ll program objectives: students will be able to (l) determine a hazardous waste from lists or by identifying characteristics; (2) identify…
NASA Astrophysics Data System (ADS)
Blanco Martin, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J. T.
2015-12-01
Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, such as its ability to creep and heal fractures and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste and we consider a generic salt repository with in-drift emplacement of waste packages and crushed salt backfill. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created [1]. The safety requirements for such a repository impose that long time scales be considered, during which the integrity of the natural and engineered barriers have to be demonstrated. In order to evaluate this long-term integrity, we perform numerical modeling based on state-of-the-art knowledge. Here, we analyze the impacts of halite dissolution and precipitation within the backfill and the host rock. For this purpose, we use an enhanced equation-of-state module of TOUGH2 that properly includes temperature-dependent solubility constraints [2]. We perform coupled thermal-hydraulic-mechanical modeling and we investigate the influence of the mentioned impacts. The TOUGH-FLAC simulator, adapted for large strains and creep, is used [3]. In order to quantify the importance of salt dissolution and precipitation on the effective porosity, permeability, pore pressure, temperature and stress field, we compare numerical results that include or disregard fluids of variable salinity. The sensitivity of the results to some parameters, such as the initial saturation within the backfill, is also addressed. References: [1] Bechthold, W. et al. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project). Report EUR20621 EN: European Atomic Energy Community, 2004. [2] Battistelli A. Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. Proceedings, TOUGH Symposium 2012, Lawrence Berkeley National Laboratory, Berkeley, California, Sept. 17-19, 2012. [3] Blanco-Martín L, Rutqvist J, Birkholzer JT. Long-term modelling of the thermal-hydraulic-mechanical response of a generic salt repository for heat generating nuclear waste. Eng Geol 2015;193:198-211. doi:10.1016/j.enggeo.2015.04.014.
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE
This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.
Using dairy ingredients to produce edible films and biodegradable packaging materials
USDA-ARS?s Scientific Manuscript database
Food packaging is comprised of multi-layers of films which are thin continuous sheets of synthetic polymers. Recently, major food retailers and consumers have become concerned about the waste that packaging generates and the scarce natural resources and energy used in its manufacture. They are deman...
Waste reduction through consumer education. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, E.Z.
The Waste Reduction through Consumer Education research project was conducted to determine how environmental educational strategies influence purchasing behavior in the supermarket. The objectives were to develop, demonstrate, and evaluate consumer education strategies for waste reduction. The amount of waste generated by packaging size and form, with an adjustment for local recyclability of waste, was determined for 14 product categories identified as having more waste generating and less waste generating product choices (a total of 484 products). Using supermarket scan data and shopper identification numbers, the research tracked the purchases of shoppers in groups receiving different education treatments for 9more » months. Statistical tests applied to the purchase data assessed patterns of change between the groups by treatment period. Analysis of the data revealed few meaningful statistical differences between study groups or changes in behavior over time. Findings suggest that broad brush consumer education about waste reduction is not effective in changing purchasing behaviors in the short term. However, it may help create a general awareness of the issues surrounding excess packaging and consumer responsibility. The study concludes that the answer to waste reduction in the future may be a combination of voluntary initiatives by manufacturers and retailers, governmental intervention, and better-informed consumers.« less
Independent Power Generation in a Modern Electrical Substation Based on Thermoelectric Technology
NASA Astrophysics Data System (ADS)
Li, Z. M.; Zhao, Y. Q.; Liu, W.; Wei, B.; Qiu, M.; Lai, X. K.
2017-05-01
Because of many types of electrical equipment with high power in substations, the potentiality of energy conservation is quite large. From this viewpoint, thermoelectric materials may be chosen to produce electrical energy using the waste heat produced in substations. Hence, a thermoelectric generation system which can recycle the waste heat from electric transformers was proposed to improve the energy efficiency and reduce the burden of the oil cooling system. An experimental prototype was fabricated to perform the experiment and to verify the feasibility. The experimental results showed that the output power could achieve 16 W from waste heat of 900 W, and that the power conversion efficiency was approximately 1.8%. Therefore, power generation is feasible by using the waste heat from the transformers based on thermoelectric technology.
Li, Liang; Diederick, Ryan; Flora, Joseph R V; Berge, Nicole D
2013-11-01
Hydrothermal carbonization (HTC) is a thermal conversion technique that converts food wastes and associated packaging materials to a valuable, energy-rich resource. Food waste collected from local restaurants was carbonized over time at different temperatures (225, 250 and 275°C) and solids concentrations to determine how process conditions influence carbonization product properties and composition. Experiments were also conducted to determine the influence of packaging material on food waste carbonization. Results indicate the majority of initial carbon remains integrated within the solid-phase at the solids concentrations and reaction temperatures evaluated. Initial solids concentration influences carbon distribution because of increased compound solubilization, while changes in reaction temperature imparted little change on carbon distribution. The presence of packaging materials significantly influences the energy content of the recovered solids. As the proportion of packaging materials increase, the energy content of recovered solids decreases because of the low energetic retention associated with the packaging materials. HTC results in net positive energy balances at all conditions, except at a 5% (dry wt.) solids concentration. Carbonization of food waste and associated packaging materials also results in net positive balances, but energy needs for solids post-processing are significant. Advantages associated with carbonization are not fully realized when only evaluating process energetics. A more detailed life cycle assessment is needed for a more complete comparison of processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R
2014-01-01
This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electricmore » arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.« less
Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management
NASA Technical Reports Server (NTRS)
Pantano, David R.; Dottore, Frank; Geng, Steven M.; Schrieber, Jeffrey G.; Tobery, E. Wayne; Palko, Joseph L.
2005-01-01
One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings.
Design Evolution Study - Aging Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. McDaniel
The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential agingmore » location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new subsurface area (high cost); surface aging in the complete waste package (risk to the waste package and impact on the Waste Handling Facility); and aging in the stainless steel liner (impact on the waste package design and new high risk operations added to the waste packaging process). The selection of a design basis for aging will be made in conjunction with the other design re-evaluation studies.« less
Study on heat pipe assisted thermoelectric power generation system from exhaust gas
NASA Astrophysics Data System (ADS)
Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock
2017-11-01
Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.
WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
F. Habashi
2000-06-22
The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less
Megalla, Dina; Van Geel, Paul J; Doyle, James T
2016-09-01
A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Collection of low-grade waste heat for enhanced energy harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming
Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less
It is estimated that nationally, over 76 million tons of containers and packaging make up the largest portion of municipal solid waste generated, and 39 percent of those discards are sent to landfills. While the specific statistics on takeout waste tonnage
Accumulation and subsequent utilization of waste heat
NASA Astrophysics Data System (ADS)
Koloničný, Jan; Richter, Aleš; Pavloková, Petra
2016-06-01
This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.
NASA Astrophysics Data System (ADS)
Pruess, K.; Wang, J. S. Y.; Tsang, Y. W.
1990-06-01
We have performed modeling studies on the simultaneous transport of heat, liquid water, vapor, and air in partially saturated, fractured porous rock. Formation parameters were chosen as representative of the potential nuclear waste repository site in the Topopah Spring unit of the Yucca Mountain tuffs. The presence of fractures makes the transport problem very complex, both in terms of flow geometry and physics. The numerical simulator used for our flow calculations takes into account most of the physical effects believed to be important in multiphase fluid and heat flow. It has provisions for handling the extreme nonlinearities that arise in phase transitions, component disappearances, and capillary discontinuities at fracture faces. We model a region around an infinite linear string of nuclear waste canisters, taking into account both the discrete fractures and the porous matrix. Thermohydrologic conditions in the vicinity of the waste packages are found to depend strongly on relative permeability and capillary pressure characteristics of the fractures, which are unknown at the present time. If liquid held on the rough walls of drained fractures is assumed to be mobile, strong heat pipe effects are predicted. Under these conditions the host rock will remain in two-phase conditions right up to the emplacement hole, and formation temperatures will peak near 100°C. If it is assumed that liquid cannot move along drained fractures, the region surrounding the waste packages is predicted to dry up, and formation temperatures will rise beyond 200°C. A substantial fraction of waste heat can be removed if emplacement holes are left open and ventilated, as opposed to backfilled and sealed emplacement conditions. Comparing our model predictions with observations from in situ heater experiments reported by Zimmerman and coworkers, some intriguing similarities are noted. However, for a quantitative evaluation, additional carefully controlled laboratory and field experiments will be needed.
NASA 50 amp hour nickel cadmium battery waste heat determination
NASA Technical Reports Server (NTRS)
Mueller, V. C.
1980-01-01
A process for determining the waste heat generated in a 50-ampere-hour, nickel cadmium battery as a function of the discharge rate is described and results are discussed. The technique involved is essentially calibration of the battery as a heat transfer rate calorimeter. The tests are run at three different levels of battery activity, one at 40-watts of waste heat generated, one at 60, and one at 100. Battery inefficiency ranges from 14 to 18 percent at discharge rates of 284 to 588 watts, respectively and top-of-cell temperatures of 20 C.
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin
2018-02-01
The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.
Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas
NASA Astrophysics Data System (ADS)
Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan
2011-05-01
The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.
Benbow, Steven J; Rivett, Michael O; Chittenden, Neil; Herbert, Alan W; Watson, Sarah; Williams, Steve J; Norris, Simon
2014-10-15
A safety case for the disposal of Intermediate Level (radioactive) Waste (ILW) in a deep geological disposal facility (GDF) requires consideration of the potential for waste-derived light non-aqueous phase liquid (LNAPL) to migrate under positive buoyancy from disposed waste packages. Were entrainment of waste-derived radionuclides in LNAPL to occur, such migration could result in a shorter overall travel time to environmental or human receptors than radionuclide migration solely associated with the movement of groundwater. This paper provides a contribution to the assessment of this issue through multiphase-flow numerical modelling underpinned by a review of the UK's ILW inventory and literature to define the nature of the associated ILW LNAPL source term. Examination has been at the waste package-local GDF environment scale to determine whether proposed disposal of ILW would lead to significant likelihood of LNAPL migration, both from waste packages and from a GDF vault into the local host rock. Our review and numerical modelling support the proposition that the release of a discrete free phase LNAPL from ILW would not present a significant challenge to the safety case even with conservative approximations. 'As-disposed' LNAPL emplaced with the waste is not expected to pose a significant issue. 'Secondary LNAPL' generated in situ within the disposed ILW, arising from the decomposition of plastics, in particular PVC (polyvinyl chloride), could form the predominant LNAPL source term. Released high molecular weight phthalate plasticizers are judged to be the primary LNAPL potentially generated. These are expected to have low buoyancy-based mobility due to their very low density contrast with water and high viscosity. Due to the inherent uncertainties, significant conservatisms were adopted within the numerical modelling approach, including: the simulation of a deliberately high organic material--PVC content wastestream (2D03) within an annular grouted waste package vulnerable to LNAPL release; upper bound inventory estimates of LNAPLs; incorporating the lack of any hydraulic resistance of the package vent; the lack of any degradation of dissolved LNAPL; and, significantly, the small threshold displacement pressure assumed at which LNAPL is able to enter initially water-saturated pores. Initial scoping calculations on the latter suggested that the rate at which LNAPL is able to migrate from a waste package is likely to be very small and insignificant for likely representative displacement pressure data: this represents a key result. Adopting a conservative displacement pressure, however, allowed the effect of other features and processes in the system to be assessed. High LNAPL viscosity together with low density contrast with water reduces LNAPL migration potential. Migration to the host rock is less likely if waste package vent fluxes are small, solubility limits are high and path lengths through the backfill are short. The capacity of the system to dissolve all of the free LNAPL will, however, depend on groundwater availability. Even with the conservatisms invoked, the overall conclusion of model simulations of intact and compromised (cracked or corroded) waste packages, for a range of realistic ILW LNAPL scenarios, is that it is unlikely that significant LNAPL would be able to migrate from the waste packages and even more unlikely it would be sufficiently persistent to reach the host rock immediately beyond the GDF. Copyright © 2014. Published by Elsevier B.V.
Development of numerical model for predicting heat generation and temperatures in MSW landfills.
Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A
2013-10-01
A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.
A Feasibility Study on Reactor Based Fission Neutron Radiography of 200-l Waste Packages
NASA Astrophysics Data System (ADS)
Bücherl, T.; Kalthoff, O.; von Gostomski, Ch. Lierse
This feasibility study investigates the applicability of fission neutrons for the non-destructive characterization of radioactive waste packages by means of neutron radiography. Based on a number of mock-up drums of different non-radioactive matrices, but being typical for radioactive waste generated in Europe, radiography measurements at the NECTAR and the ITS facility using fission neutrons and 60Co-gamma-rays, respectively, are performed. The resulting radiographs are compared and qualitatively assessed. In addition, a first approach for the stitching of the fission neutron radiographs to visualize the complete area of 200-l waste drums is performed. While the feasibility of fission neutrons is demonstrated successfully, fields for further improvements are identified.
NASA Astrophysics Data System (ADS)
Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu
2017-12-01
Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.
Modeling of a Thermoelectric Generator for Thermal Energy Regeneration in Automobiles
NASA Astrophysics Data System (ADS)
Tatarinov, Dimitri; Koppers, M.; Bastian, G.; Schramm, D.
2013-07-01
In the field of passenger transportation a reduction of the consumption of fossil fuels has to be achieved by any measures. Advanced designs of internal combustion engine have the potential to reduce CO2 emissions, but still suffer from low efficiencies in the range from 33% to 44%. Recuperation of waste heat can be achieved with thermoelectric generators (TEGs) that convert heat directly into electric energy, thus offering a less complicated setup as compared with thermodynamic cycle processes. During a specific driving cycle of a car, the heat currents and temperature levels of the exhaust gas are dynamic quantities. To optimize a thermoelectric recuperation system fully, various parameters have to be tested, for example, the electric and thermal conductivities of the TEG and consequently the heat absorbed and rejected from the system, the generated electrical power, and the system efficiency. A Simulink model consisting of a package for dynamic calculation of energy management in a vehicle, coupled with a model of the thermoelectric generator system placed on the exhaust system, determines the drive-cycle-dependent efficiency of the heat recovery system, thus calculating the efficiency gain of the vehicle. The simulation also shows the temperature drop at the heat exchanger along the direction of the exhaust flow and hence the variation of the voltage drop of consecutively arranged TEG modules. The connection between the temperature distribution and the optimal electrical circuitry of the TEG modules constituting the entire thermoelectric recuperation system can then be examined. The simulation results are compared with data obtained from laboratory experiments. We discuss error bars and the accuracy of the simulation results for practical thermoelectric systems embedded in cars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinet, Damien; Chah, Karima; Megret, Patrice
Nuclear power plants have been generating electricity for more than 50 years. In Belgium, 55% of the current energy supply comes from nuclear power. Providing for the safe storage of nuclear waste, including spent fuel (SF) and vitrified high level radioactive waste (HLW), remains an important challenge in the life cycle of nuclear fuel. In this context, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) is investigating a reference conceptual design called the Supercontainer (SC) for the packaging of SF and HLW. This conceptual design is based on a multiple-barrier system consisting of a hermetically-sealed carbon steelmore » overpack and a surrounding highly-alkaline concrete buffer. The first one is developed to retain the radionuclides. The two main functions of the buffer are (a) to create a high pH environment around the carbon steel overpack in order to passivate the metal surface and so to slow down the corrosion propagation during the thermal phase and (b) to provide a radiological shielding during the construction and the handling of the Supercontainer. A recent test has been performed to investigate the feasibility to construct the SC. This test incorporated several kinds of sensors including Digital Image Correlation (DIC), Acoustic Emission (AE), corrosion sensing techniques and optical fibers with and without fiber Bragg gratings (FBGs). In particular, several single-mode optical fibers with 4 mm long FBGs with different Bragg wavelengths and distributed along the optical fibers were used. For casting and curing condition monitoring, a number of gratings were incorporated inside the concrete buffer during the first stage of construction. Then other sensors were embedded near a heat source installed in the second stage to simulate the effects of heat generated by radioactive waste. The FBGs were designed to measure both temperature and strain effects in the concrete. To discriminate between these effects special packaging was used for some sensors that were installed very close to the unpackaged ones. Sensors placed in plastic tubes have reduced sensitivity to strain, while the ones inserted in metal tubes are only temperature sensitive and their readings can be directly compared with those obtained from thermocouples located nearby. In addition to monitoring temperature and strain behaviour, embedding also had as objective to determine the impact of the high alkaline environment on the silica fibers over a very long time. This article presents the preliminary results obtained with the different FBGs and provides recommendations for future improvement. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thekdi, Arvind; Nimbalkar, Sachin U.
2015-01-01
The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.
Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)
NASA Astrophysics Data System (ADS)
Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar
2017-05-01
This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.
Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Per F. Peterson
2012-10-01
Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 60.135 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES... for the waste package and its components. (a) High-level-waste package design in general. (1) Packages... package's permanent written records. (c) Waste form criteria for HLW. High-level radioactive waste that is...
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2017-01-17
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2015-12-29
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Thermal stress control using waste steel fibers in massive concretes
NASA Astrophysics Data System (ADS)
Sarabi, Sahar; Bakhshi, Hossein; Sarkardeh, Hamed; Nikoo, Hamed Safaye
2017-11-01
One of the important subjects in massive concrete structures is the control of the generated heat of hydration and consequently the potential of cracking due to the thermal stress expansion. In the present study, using the waste turnery steel fibers in the massive concretes, the amount of used cement was reduced without changing the compressive strength. By substituting a part of the cement with waste steel fibers, the costs and the generated hydration heat were reduced and the tensile strength was increased. The results showed that by using 0.5% turnery waste steel fibers and consequently, reducing to 32% the cement content, the hydration heat reduced to 23.4% without changing the compressive strength. Moreover, the maximum heat gradient reduced from 18.5% in the plain concrete sample to 12% in the fiber-reinforced concrete sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voelzke, Holger; Nieslony, Gregor; Ellouz, Manel
Since the license for the Konrad repository was finally confirmed by legal decision in 2007, the Federal Institute for Radiation Protection (BfS) has been performing further planning and preparation work to prepare the repository for operation. Waste conditioning and packaging has been continued by different waste producers as the nuclear industry and federal research institutes on the basis of the official disposal requirements. The necessary prerequisites for this are approved containers as well as certified waste conditioning and packaging procedures. The Federal Institute for Materials Research and Testing (BAM) is responsible for container design testing and evaluation of quality assurancemore » measures on behalf of BfS under consideration of the Konrad disposal requirements. Besides assessing the container handling stability (stacking tests, handling loads), design testing procedures are performed that include fire tests (800 deg. C, 1 hour) and drop tests from different heights and drop orientations. This paper presents the current state of BAM design testing experiences about relevant container types (box shaped, cylindrical) made of steel sheets, ductile cast iron or concrete. It explains usual testing and evaluation methods which range from experimental testing to analytical and numerical calculations. Another focus has been laid on already existing containers and packages. The question arises as to how they can be evaluated properly especially with respect to lack of completeness of safety assessment and fabrication documentation. At present BAM works on numerous applications for container design testing for the Konrad repository. Some licensing procedures were successfully finished in the past and BfS certified several container types like steel sheet, concrete until cast iron containers which are now available for waste packaging for final disposal. However, large quantities of radioactive wastes had been placed into interim storage using containers which are not already licensed for the Konrad repository. Safety assessment of these so-called 'old' containers is a big challenge for all parties because documentation sheets about container design testing and fabrication often contain gaps or have not yet been completed. Appropriate solution strategies are currently under development and discussion. Furthermore, BAM has successfully initiated and established an information forum, called 'ERFA QM Konrad Containers', which facilitates discussions on various issues of common interest with respect to Konrad container licensing procedures as well as the interpretation of disposal requirements under consideration of operational needs. Thus, it provides additional, valuable supports for container licensing procedures. (authors)« less
Thermoelectric power generator with intermediate loop
Bell, Lon E; Crane, Douglas Todd
2013-05-21
A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.
Thermoelectric power generator with intermediate loop
Bel,; Lon, E [Altadena, CA; Crane, Douglas Todd [Pasadena, CA
2009-10-27
A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.
Temperature-package power correlations for open-mode geologic disposal concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest.
2013-02-01
Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in amore » repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.« less
A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns
NASA Astrophysics Data System (ADS)
Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie
2015-06-01
Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.
NASA Astrophysics Data System (ADS)
Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.
2013-12-01
Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.
Lessons Learned in the Design and Use of IP1 / IP2 Flexible Packaging - 13621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Mike; Reeves, Wendall; Smart, Bill
2013-07-01
For many years in the USA, Low Level Radioactive Waste (LLW), contaminated soils and construction debris, have been transported, interim stored, and disposed of, using IP1 / IP2 metal containers. The performance of these containers has been more than adequate, with few safety occurrences. The containers are used under the regulatory oversight of the US Department of Transportation (DOT), 49 Code of Federal Regulations (CFR). In the late 90's the introduction of flexible packaging for the transport, storage, and disposal of low level contaminated soils and construction debris was introduced. The development of flexible packaging came out of a needmore » for a more cost effective package, for the large volumes of waste generated by the decommissioning of many of the US Department of Energy (DOE) legacy sites across the US. Flexible packaging had to be designed to handle a wide array of waste streams, including soil, gravel, construction debris, and fine particulate dust migration. The design also had to meet all of the IP1 requirements under 49CFR 173.410, and be robust enough to pass the IP2 testing 49 CFR 173.465 required for many LLW shipments. Tens of thousands of flexible packages have been safely deployed and used across the US nuclear industry as well as for hazardous non-radioactive applications, with no recorded release of radioactive materials. To ensure that flexible packages are designed properly, the manufacturer must use lessons learned over the years, and the tests performed to provide evidence that these packages are suitable for transporting low level radioactive wastes. The design and testing of flexible packaging for LLW, VLLW and other hazardous waste streams must be as strict and stringent as the design and testing of metal containers. The design should take into consideration the materials being loaded into the package, and should incorporate the right materials, and manufacturing methods, to provide a quality, safe product. Flexible packaging can be shown to meet the criteria for safe and fit for purpose packaging, by meeting the US DOT regulations, and the IAEA Standards for IP-1 and IP-2 including leak tightness. (authors)« less
Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal
2016-10-01
In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Nevada Test Site Waste Acceptance Criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office
This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.
Gu, Binxian; Zhu, Weimo; Wang, Haikun; Zhang, Rongrong; Liu, Miaomiao; Chen, Yangqing; Wu, Yi; Yang, Xiayu; He, Sheng; Cheng, Rong; Yang, Jie; Bi, Jun
2014-11-01
A four-stage systematic tracking survey of 240 households was conducted from the summer of 2011 to the spring of 2012 in a Chinese city of Suzhou to determine the characteristics of household hazardous waste (HHW) generated by the city. Factor analysis and a regression model were used to study the major driving forces of HHW generation. The results indicate that the rate of HHW generation was 6.16 (0.16-31.74, 95% CI) g/person/day, which accounted for 2.23% of the household solid waste stream. The major waste categories contributing to total HHW were home cleaning products (21.33%), medicines (17.67%) and personal care products (15.19%). Packaging and containers (one-way) and products (single-use) accounted for over 80% of total HHW generation, implying a considerable potential to mitigate HHW generation by changing the packaging design and materials used by manufacturing enterprises. Strong correlations were observed between HHW generation (g/person/day) and the driving forces group of "household structure" and "consumer preferences" (among which the educational level of the household financial manager has the greatest impact). Furthermore, the HHW generation stream in Suzhou suggested the influence of another set of variables, such as local customs and culture, consumption patterns, and urban residential life-style. This study emphasizes that HHW should be categorized at its source (residential households) as an important step toward controlling the HHW hazards of Chinese cities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermoelectric Power Generation Utilizing the Waste Heat from a Biomass Boiler
NASA Astrophysics Data System (ADS)
Brazdil, Marian; Pospisil, Jiri
2013-07-01
The objective of the presented work is to test the possibility of using thermoelectric power to convert flue gas waste heat from a small-scale domestic pellet boiler, and to assess the influence of a thermoelectric generator on its function. A prototype of the generator, able to be connected to an existing device, was designed, constructed, and tested. The performance of the generator as well as the impact of the generator on the operation of the boiler was investigated under various operating conditions. The boiler gained auxiliary power and could become a combined heat and power unit allowing self-sufficient operation. The created unit represents an independent source of electricity with effective use of fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorries, Alison M
2010-11-09
Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2011 CFR
2011-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2013 CFR
2013-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2014 CFR
2014-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
10 CFR 60.135 - Criteria for the waste package and its components.
Code of Federal Regulations, 2012 CFR
2012-01-01
... IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Waste Package § 60.135 Criteria for the waste package and its components. (a) High-level-waste package design in general. (1) Packages for HLW shall be designed so that the in situ chemical, physical, and nuclear properties of the waste...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyacke, M.
1993-08-01
This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less
VITRIFICATION SYSTEM FOR THE TREATMENT OF PLUTONIUM-BEARING WASTE AT LOS ALAMOS NATIONAL LABORATORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. NAKAOKA; G. VEAZEY; ET AL
2001-05-01
A glove box vitrification system is being fabricated to process aqueous evaporator bottom waste generated at the Plutonium Facility (TA-55) at Los Alamos National Laboratory (LANL). The system will be the first within the U.S. Department of Energy Complex to routinely convert Pu{sup 239}-bearing transuranic (TRU) waste to a glass matrix for eventual disposal at the Waste Isolation Pilot Plant (WIPP). Currently at LANL, this waste is solidified in Portland cement. Radionuclide loading in the cementation process is restricted by potential radiolytic degradation (expressed as a wattage limit), which has been imposed to prevent the accumulation of flammable concentrations ofmore » H{sub 2} within waste packages. Waste matrixes with a higher water content (e.g., cement) are assigned a lower permissible wattage limit to compensate for their potential higher generation of H{sub 2}. This significantly increases the number of waste packages that must be prepared and shipped, thus driving up the costs of waste handling and disposal. The glove box vitrification system that is under construction will address this limitation. Because the resultant glass matrix produced by the vitrification process is non-hydrogenous, no H{sub 2} can be radiolytically evolved, and drums could be loaded to the maximum allowable limit of 40 watts. In effect, the glass waste form shifts the limiting constraint for loading disposal drums from wattage to the criticality limit of 200 fissile gram equivalents, thus significantly reducing the number of drums generated from this waste stream. It is anticipated that the number of drums generated from treatment of evaporator bottoms will be reduced by a factor of 4 annually when the vitrification system is operational. The system is currently undergoing non-radioactive operability testing, and will be fully operational in the year 2003.« less
Initial Radionuclide Inventories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, H
The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclearmore » fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently identified as 2030 and 2033, depending on the type of waste. TSPA-LA uses the results of this analysis to decay the inventory to the year of repository closure projected for the year of 2060.« less
Yan, Dahai; Peng, Zheng; Liu, Yuqiang; Li, Li; Huang, Qifei; Xie, Minghui; Wang, Qi
2015-01-01
The consumption of milk in China is increasing as living standards rapidly improve, and huge amounts of aseptic composite milk packaging waste are being generated. Aseptic composite packaging is composed of paper, polyethylene, and aluminum. It is difficult to separate the polyethylene and aluminum, so most of the waste is currently sent to landfill or incinerated with other municipal solid waste, meaning that enormous amounts of resources are wasted. A wet process technique for separating the aluminum and polyethylene from the composite materials after the paper had been removed from the original packaging waste was studied. The separation efficiency achieved using different separation reagents was compared, different separation mechanisms were explored, and the impacts of a range of parameters, such as the reagent concentration, temperature, and liquid-solid ratio, on the separation time and aluminum loss ratio were studied. Methanoic acid was found to be the optimal separation reagent, and the suitable conditions were a reagent concentration of 2-4 mol/L, a temperature of 60-80°C, and a liquid-solid ratio of 30 L/kg. These conditions allowed aluminum and polyethylene to be separated in less than 30 min, with an aluminum loss ratio of less than 3%. A mass balance was produced for the aluminum-polyethylene separation system, and control technique was developed to keep the ion concentrations in the reaction system stable. This allowed a continuous industrial-scale process for separating aluminum and polyethylene to be developed, and a demonstration facility with a capacity of 50t/d was built. The demonstration facility gave polyethylene and aluminum recovery rates of more than 98% and more than 72%, respectively. Separating 1t of aluminum-polyethylene composite packaging material gave a profit of 1769 Yuan, meaning that an effective method for recycling aseptic composite packaging waste was achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-23
This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRAmore » regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Byoung Yoon; Hansen, Francis D.
2005-07-01
This report develops a series of porosity surfaces for the Waste Isolation Pilot Plant. The concept of a porosity surface was developed for performance assessment and comprises calculation of room closure as salt creep processes are mitigated by gas generation and back stress created by the waste packages within the rooms. The physical and mechanical characteristics of the waste packaging that has already been disposed--such as the pipe overpack--and new waste packaging--such as the advanced mixed waste compaction--are appreciably different than the waste form upon which the original compliance was based and approved. This report provides structural analyses of roommore » closure with various waste inventories. All of the underlying assumptions pertaining to the original compliance certification including the same finite element code are implemented; only the material parameters describing the more robust waste packages are changed from the certified baseline. As modeled, the more rigid waste tends to hold open the rooms and create relatively more void space in the underground than identical calculations run on the standard waste packages, which underpin the compliance certification. The several porosity surfaces quantified within this report provide possible ranges of pressure and porosity for performance assessment analyses.3 Intentionally blank4 AcknowledgementsThis research is funded by WIPP programs administered by the U.S. Department of Energy. The authors would like to acknowledge the valuable contributions to this work provided by others. Dr. Joshua S. Stein helped explain the hand off between these finite element porosity surfaces and implementation in the performance calculations. Dr. Leo L. Van Sambeek of RESPEC Inc. helped us understand the concepts of room closure under the circumstances created by a rigid waste inventory. Dr. T. William Thompson and Tom W. Pfeifle provided technical review and Mario J. Chavez provided a Quality Assurance review. The paper has been improved by these individuals.Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94Al850005 Intentionally Blank6« less
Waste heat recovery options in a large gas-turbine combined power plant
NASA Astrophysics Data System (ADS)
Upathumchard, Ularee
This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat recovery during the power plant's life span. Furthermore, the recommendation from this research will be submitted to the Electricity Generating Authority of Thailand (EGAT) for implementation. This study will also be used as an example for other power plants in Thailand to consider waste energy utilization to improve plant efficiency and sustain fuel resources in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronowski, D.R.; Madsen, M.M.
The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in threemore » orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.« less
Quantity, Quality, and Availability of Waste Heat from United States Thermal Power Generation.
Gingerich, Daniel B; Mauter, Meagan S
2015-07-21
Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJ(th) of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.
Equilibrium Temperature Profiles within Fission Product Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, Michael D.
2016-10-01
We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.
Tua, Camilla; Nessi, Simone; Rigamonti, Lucia; Dolci, Giovanni; Grosso, Mario
2017-04-01
In recent years, alternative food supply chains based on short distance production and delivery have been promoted as being more environmentally friendly than those applied by the traditional retailing system. An example is the supply of seasonal and possibly locally grown fruit and vegetables directly to customers inside a returnable crate (the so-called 'box scheme'). In addition to other claimed environmental and economic advantages, the box scheme is often listed among the packaging waste prevention measures. To check whether such a claim is soundly based, a life cycle assessment was carried out to verify the real environmental effectiveness of the box scheme in comparison to the Italian traditional distribution. The study focused on two reference products, carrots and apples, which are available in the crate all year round. An experience of a box scheme carried out in Italy was compared with some traditional scenarios where the product is distributed loose or packaged at the large-scale retail trade. The packaging waste generation, 13 impact indicators on environment and human health and energy consumptions were calculated. Results show that the analysed experience of the box scheme, as currently managed, cannot be considered a packaging waste prevention measure when compared with the traditional distribution of fruit and vegetables. The weaknesses of the alternative system were identified and some recommendations were given to improve its environmental performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebersorger, S.; Beigl, P., E-mail: peter.beigl@boku.ac.at
Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions aremore » met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).« less
Lebersorger, S; Beigl, P
2011-01-01
Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Badwe, Sunil
In the nuclear repository conditions, the nuclear waste package wall surfaces will be at elevated temperatures because of the heat generated by fission reactions within the waste. It is anticipated that the ground water may contain varying levels of anions such as chloride, nitrate, sulfate picked up from the rocks. The ground waters could seep through the rock faults and drip on to the waste packages. The dripped water will evaporate due to the heat from the nuclear waste leaving behind concentrated brine which eventually becomes dry salt deposit. The multi-ionic salts in the ground water are expected to be hygroscopic in nature. The next drop of water falling at the same place or the humidity in the repository will transform the hygroscopic salt deposit into a more concentrated brine. This cycle will continue for years and eventually a potentially corrosive brine will be formed on the waste package surface. Hence the waste package surface goes through the alternate wet-dry cycles. These conditions indicate that the concentration and pH of the environment in the repository vary considerably. The conventional corrosion tests hardly simulate these varying environmental conditions. Hence there has been a need to develop an electrochemical test that could closely simulate the anticipated repository conditions stated above. In this research, a new electrochemical method, called as Heated Surface Corrosion testing (HSCT) has been devised and tested. In the conventional testing the electrolyte is heated and in HSCT the working electrode is heated. The present study employs the temperature of 80°C which may be one of the temperatures of the waste package surface. The new HSCT was validated by testing stainless steel type 304. The HSCT was observed to be more aggressive than the conventional tests. Initiation of pitting of SS 304 in chloride solution (pH 3) occurred at much shorter exposure times in the HSCT condition than the exposure time required for pitting in conventional testing. The reduced time to pitting demonstrated the capability of HSCT to impose repository more corrosive conditions. The stability of the passive film of stainless alloys under the hygroscopic salt layers could be determined using this technique. Alloy 22, a nickel base Ni-22Cr-13Mo-3W alloy has an excellent corrosion resistance in oxidizing and reducing environments. Corrosion behavior of Alloy 22 was evaluated using the newly devised HSCT method in simulated acidified water (SAW), simulated concentrated water (SCW) and in pure chloride (pH 3 and 8) environments. In this method, the concentration of the environment varied with test duration. Alloy 22 was evaluated in four different heat treated conditions viz. (a) mill annealed, (b) 610°C/1 h-representing Cr depletion, (c) 650°C/100 h-representing Mo+Cr depletion, (d) 800°C/100 h-representing Mo depletion. The corrosion rate of mill annealed Alloy 22 was not affected by the continuous increase in ionic strength of the SAW (pH 3) environment. Passivation kinetics was faster with increase in concentration of the electrolytes. The major difference between the conventional test and HSCT was the aging characteristics of the passive film of Alloy 22. Cyclic polarization was carried out on Alloy 22 in conventional ASTM G61 and HSCT method to compare. The electrochemical response of Alloy 22 was the same by heating the electrolyte or heating the electrode. The corrosion behavior of Alloy 22 was investigated in three different aged conditions using HSCT approach in two different electrolytes. The thermal aging conditions of the specimens introduced depletion of chromium and molybdenum near the grain boundaries/phase boundaries. Long-term exposure tests (up to 850 h) were conducted in simulated acidified water (SAW, pH 3) and simulated concentrated water (SCW, pH 8) at 80°C. Corrosion potential, corrosion current and passive current decay exponent were determined at regular intervals. The specimens aged at 610°C/1 h and 800°C/100 h showed almost identical corrosion behaviors in the SAW environment. The specimen aged at 650°C/100 h showed lower corrosion resistance in the SAW environment indicating the effect of Mo-depletion profile near the grain boundaries. The specimen aged at 800°C for 100 h showed lower corrosion resistance in the SCW environment because of possible dissolution of the Mo-rich precipitates. Compared to the mill annealed condition, the aged specimens showed approximately an order of magnitude higher corrosion current in the SAW environment and almost similar corrosion currents in the SCW environment. Results also indicate that the passivity of Alloy 22, both in mill annealed and in aged conditions was not hampered during dry-out/rewet cycles. Presence of nitrate and other oxyanions in the SAW environment reduced the charge required to form a stable passive film of alloy 22 aged samples as compared to the charge passed in the pure chloride pH 3 environments. The passive film of the aged Alloy 22 specimens exposed to pure chloride solutions showed predominantly n-type semiconducting behavior and the on-set of p-type semiconductivity at higher potentials. The charge carrier density of the passive film of Alloy 22 varied in the range 1.5-9.0 x 10 21/cm3. The predominant charge carriers could be oxygen vacancies. Increase in the charge carrier density was observed in the specimen aged at 800°C/100 h when exposed to pH 3 solution as compared to exposure in pH 8 solution. In Summary, Alloy 22 sustained the heated surface corrosion test without any appreciable surface attack in the simulated repository environments as well as the more corrosive chloride environments.
46 CFR 63.01-3 - Scope and applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY... automatic auxiliary boilers, automatic heating boilers, automatic waste heat boilers, donkey boilers... control systems) used for the generation of steam and/or oxidation of ordinary waste materials and garbage...
46 CFR 63.01-3 - Scope and applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY... automatic auxiliary boilers, automatic heating boilers, automatic waste heat boilers, donkey boilers... control systems) used for the generation of steam and/or oxidation of ordinary waste materials and garbage...
Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun
2015-06-01
Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.
Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.
2017-08-01
Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.
IN-PACKAGE CHEMISTRY ABSTRACTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Thomas
2005-07-14
This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6more » geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.« less
Household hazardous wastes as a potential source of pollution: a generation study.
Ojeda-Benítez, Sara; Aguilar-Virgen, Quetzalli; Taboada-González, Paul; Cruz-Sotelo, Samantha E
2013-12-01
Certain domestic wastes exhibit characteristics that render them dangerous, such as explosiveness, flammability, spontaneous combustion, reactivity, toxicity and corrosiveness. The lack of information about their generation and composition hinders the creation of special programs for their collection and treatment, making these wastes a potential threat to human health and the environment. We attempted to quantify the levels of hazardous household waste (HHW) generated in Mexicali, Mexico. The analysis considered three socioeconomic strata and eight categories. The sampling was undertaken on a house-by-house basis, and hypothesis testing was based on differences between two proportions for each of the eight categories. In this study, HHW comprised 3.49% of the total generated waste, which exceeded that reported in previous studies in Mexico. The greatest quantity of HHW was generated by the middle stratum; in the upper stratum, most packages were discarded with their contents remaining. Cleaning products represent 45.86% of the HHW generated. Statistical differences were not observed for only two categories among the three social strata. The scarcity of studies on HHW generation limits direct comparisons. Any decrease in waste generation within the middle social stratum will have a large effect on the total amount of waste generated, and decrease their impact on environmental and human health.
NASA Astrophysics Data System (ADS)
Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.; VanPelt, C. E.; Reimus, M. A.; Spengler, D.; Matonic, J.; Garcia, L.; Rios, E.; Sandoval, F.; Herman, D.; Hart, R.; Ewing, B.; Lovato, M.; Romero, J. P.
2005-02-01
Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt as the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.
2005-02-06
Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt asmore » the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.« less
Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive
NASA Technical Reports Server (NTRS)
Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya
2015-01-01
Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various thermoelectric (TE) waste heat 3 recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.
NASA Astrophysics Data System (ADS)
Griffiths, K. R.; Hicks, B. J.; Keogh, P. S.; Shires, D.
2016-08-01
In general, vehicle vibration is non-stationary and has a non-Gaussian probability distribution; yet existing testing methods for packaging design employ Gaussian distributions to represent vibration induced by road profiles. This frequently results in over-testing and/or over-design of the packaging to meet a specification and correspondingly leads to wasteful packaging and product waste, which represent 15bn per year in the USA and €3bn per year in the EU. The purpose of the paper is to enable a measured non-stationary acceleration signal to be replaced by a constructed signal that includes as far as possible any non-stationary characteristics from the original signal. The constructed signal consists of a concatenation of decomposed shorter duration signals, each having its own kurtosis level. Wavelet analysis is used for the decomposition process into inner and outlier signal components. The constructed signal has a similar PSD to the original signal, without incurring excessive acceleration levels. This allows an improved and more representative simulated input signal to be generated that can be used on the current generation of shaker tables. The wavelet decomposition method is also demonstrated experimentally through two correlation studies. It is shown that significant improvements over current international standards for packaging testing are achievable; hence the potential for more efficient packaging system design is possible.
BWR ASSEMBLY SOURCE TERMS FOR WASTE PACKAGE DESIGN
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.L. Lotz
1997-02-15
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide boiling water reactor (BWR) assembly radiation source term data for use during Waste Package (WP) design. The BWR assembly radiation source terms are to be used for evaluation of radiolysis effects at the WP surface, and for personnel shielding requirements during assembly or WP handling operations. The objectives of this evaluation are to generate BWR assembly radiation source terms that bound selected groupings of BWR assemblies, with regard to assembly average burnup and cooling time, which comprise the anticipated MGDS BWR commercialmore » spent nuclear fuel (SNF) waste stream. The source term data is to be provided in a form which can easily be utilized in subsequent shielding/radiation dose calculations. Since these calculations may also be used for Total System Performance Assessment (TSPA), with appropriate justification provided by TSPA, or radionuclide release rate analysis, the grams of each element and additional cooling times out to 25 years will also be calculated and the data included in the output files.« less
Innovative thermal energy harvesting for future autonomous applications
NASA Astrophysics Data System (ADS)
Monfray, Stephane
2013-12-01
As communicating autonomous systems market is booming, the role of energy harvesting will be a key enabler. As example, heat is one of the most abundant energy sources that can be converted into electricity in order to power circuits. Harvesting systems that use wasted heat open new ways to power autonomous sensors when the energy consumption is low, or to create systems of power generators when the conversion efficiency is high. The combination of different technologies (low power μ-processors, μ-batteries, radio, sensors...) with new energy harvesters compatible with large varieties of use-cases with allow to address this booming market. Thanks to the conjunction of ultra-low power electronic development, 3D technologies & Systems in Package approaches, the integration of autonomous sensors and electronics with ambient energy harvesting will be achievable. The applications are very wide, from environment and industrial sensors to medical portable applications, and the Internet of things may also represent in the future a several billions units market.
Comparison of two total energy systems for a diesel power generation plant. [deep space network
NASA Technical Reports Server (NTRS)
Chai, V. W.
1979-01-01
The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.
NASA Astrophysics Data System (ADS)
Liu, Tongjun; Wang, Tongcai; Luan, Weiling; Cao, Qimin
2017-05-01
Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.
Generic repository design concepts and thermal analysis (FY11).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Robert; Dupont, Mark; Blink, James A.
2011-08-01
Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generatedmore » in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.« less
Gallardo, A; Carlos, M; Colomer, F J; Edo-Alcón, N
2018-01-01
There are several factors which have an influence in the selective collection of the municipal waste. To define a selective collection system, the waste generation pattern should be firstly determined and these factors should be analyzed in depth. This paper tries to analyze the economic income level and the seasonal variation on the collection and the purity of light-packaging waste to determine actions to improve the waste management plan of a town. In the first stage of the work, waste samples of the light-packaging containers were collected in two zones of the town with different economic characteristics in different seasons during one year. In the second stage, the samples were characterized to analyze the composition and purity of the waste. They were firstly separated into four fractions: metals; plastic; beverage cartons; and misplaced materials. The misplaced fraction was in its turn separated into cardboard, rubber and leather, inert waste, organic matter, paper, hazardous waste, clothes and shoes, glass and others. The plastic fraction was separated into five types of plastics and the metal fraction into three. In the third stage, the data have been analyzed and conclusions have been extracted. The main result is that the quality of the light-packaging fraction collected in these zones during both seasons were similar. This methodology can be extrapolated to towns with similar characteristics. It will be useful when implementing a system to collect the waste selectively and to develop actions to achieve a good participation in the selective collection of the waste.
Energy Efficient Waste Heat Recovery from an Engine Exhaust System
2016-12-01
targets. Since solar panels and wind turbines will not work for ships; the energy savings must come from making the existing power generation...achieve an approximate solution to the problem . The research for this thesis involved design by analysis of heat exchange in a gas turbine exhaust...effectiveness of a new style of heat exchanger for waste heat recovery. The new design sought to optimize heat recovery from a gas turbine engine exhaust as
Volume reduction of hot cell plastic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, F W; Henscheid, J P; Lewis, L C
1989-09-19
The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.
Heat of Hydration of Low Activity Cementitious Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasol, D.
2015-07-23
During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulantsmore » of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.« less
Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi
2011-04-01
Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.
Groundwork for Universal Canister System Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Laura L.; Gross, Mike; Prouty, Jeralyn L.
2015-09-01
The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used formore » handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.« less
Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joan F. Brennecke; Mihir Sen; Edward J. Maginn
2009-01-11
The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILsmore » appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.« less
Secondary Waste Form Down Selection Data Package – Ceramicrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Westsik, Joseph H.
2011-08-31
As part of high-level waste pretreatment and immobilized low activity waste processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed in the Integrated Disposal Facility. Currently, four waste forms are being considered for stabilization and solidification of the liquid secondary wastes. These waste forms are Cast Stone, Ceramicrete, DuraLith, and Fluidized Bed Steam Reformer. The preferred alternative will be down selected from these four waste forms. Pacific Northwest National Laboratorymore » is developing data packages to support the down selection process. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilization and solidification of the liquid secondary wastes. The information included will be based on information available in the open literature and from data obtained from testing currently underway. This data package is for the Ceramicrete waste form. Ceramicrete is a relatively new engineering material developed at Argonne National Laboratory to treat radioactive and hazardous waste streams (e.g., Wagh 2004; Wagh et al. 1999a, 2003; Singh et al. 2000). This cement-like waste form can be used to treat solids, liquids, and sludges by chemical immobilization, microencapsulation, and/or macroencapsulation. The Ceramicrete technology is based on chemical reaction between phosphate anions and metal cations to form a strong, dense, durable, low porosity matrix that immobilizes hazardous and radioactive contaminants as insoluble phosphates and microencapsulates insoluble radioactive components and other constituents that do not form phosphates. Ceramicrete is a type of phosphate-bonded ceramic, which are also known as chemically bonded phosphate ceramics. The Ceramicrete binder is formed through an acid-base reaction between calcined magnesium oxide (MgO; a base) and potassium hydrogen phosphate (KH{sub 2}PO{sub 4}; an acid) in aqueous solution. The reaction product sets at room temperature to form a highly crystalline material. During the reaction, the hazardous and radioactive contaminants also react with KH{sub 2}PO{sub 4} to form highly insoluble phosphates. In this data package, physical property and waste acceptance data for Ceramicrete waste forms fabricated with wastes having compositions that were similar to those expected for secondary waste effluents, as well as secondary waste effluent simulants from the Hanford Tank Waste Treatment and Immobilization Plant were reviewed. With the exception of one secondary waste form formulation (25FA+25 W+1B.A. fabricated with the mixed simulant did not meet the compressive strength requirement), all the Ceramicrete waste forms that were reviewed met or exceeded Integrated Disposal Facility waste acceptance criteria.« less
Assessment and quantification of plastics waste generation in major 60 cities of India.
Nalini, R; Srinivasulu, B; Shit, Subhas C; Nigam, Suneel Kumar; Akolkar, A B; Dwivedfi, R K
2013-04-01
Polymers or plastics materials registered rapid growth in 1970s, 1980s and 1990s at the rate of 2-2.5 times the GDP growth in India. The demand for plastic raw material got more than doubled from 3.3 Million Metric Ton to 6.8 Million Metric Tons in 2010 attributed mainly to rapid urbanization, spread of retail chains, plastics based packaging from grocery to food and vegetable products to cosmetics and consumer items. Plastics packages have its merits over many of conventional materials in the related sector but unless they are collected back effectively after their use to go into recycling process, they become an eyesore in the stream of Municipal Solid Waste (MSW) due to high visibility. As the synthetic and conventional plastics are non-biodegradable in nature, these remain in the dump yards/ landfills for several years, if not collected properly. Due to non- biodegradability, plastics waste remains in the environment for several years, if not collected and disposing plastics wastes at landfills are unsafe since toxic chemicals leach out into the soil and as they contaminate soil and underground water quality. The municipal solid waste also increasing day-by-day due to the inefficient source collection, segregation and transmission of plastics waste for recycling and reusing. In order to find out the realistic plastics waste generation, a study on assessment and quantification of plastics waste has been carried out by CPCB in collaboration with CIPET on selected 60 major cities of India.
Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, John; Smutzer, Chad; Sinha, Jayanti
The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies ofmore » having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.« less
Advancement of Double Effect Absorption Cycle by Input of Low Temperature Waste Heat
NASA Astrophysics Data System (ADS)
Kojima, Hiroshi; Edera, Masaru; Nakamura, Makoto; Oka, Masahiro; Akisawa, Atsushi; Kashiwagi, Takao
Energy conservation is becoming important for global environmental protection. New simple techniques of more efficient1y using the waste heat of gas co-generation systems for refrigerationare required. In first report, a new method of using the low temperature waste heat for refrigeration was proposed, and the basic characteristics of the promising methods of recovering waste heat were c1arified. In this report, the more detailed simulation model of the series flow type double effect absorption refrigerator with auxiliary heat exchanger was constructed and the static characteristics were investigated. Then experiments on this advanced absorption refrigerator were carried out, and the results of the calculation and experiments were compared and discussed. Moreover, the betterment of the simulation model of this advanced absorption refrigerator was carried out.
Microturbine and Thermoelectric Generator Combined System: A Case Study.
Miozzo, Alvise; Boldrini, Stefano; Ferrario, Alberto; Fabrizio, Monica
2017-03-01
Waste heat recovery is one of the suitable industrial applications of thermoelectrics. Thermoelectric generators (TEG) are used, commonly, only for low-mid size power generation systems. The low efficiency of thermoelectric modules generally does not encourage their combination with high power and temperature sources, such as gas turbines. Nevertheless, the particular features of thermoelectric technology (no moving parts, scalability, reliability, low maintenance costs) are attractive for many applications. In this work, the feasibility of the integration of a TE generator into a cogeneration system is evaluated. The cogeneration system consists of a microturbine and heat exchangers for the production of electrical and thermal energy. The aim is to improve electric power generation by using TE modules and the “free” thermal energy supplied by the cogeneration system, through the exhaust pipe of the microturbine. Three different solutions for waste heat recovery from the exhausts gas are evaluated, from the fluid dynamics and heat transfer point of view, to find out a suitable design strategy for a combined power generation system.
The use of urban wood waste as an energy resource
NASA Astrophysics Data System (ADS)
Khudyakova, G. I.; Danilova, D. A.; Khasanov, R. R.
2017-06-01
The capabilities use of wood waste in the Ekaterinburg city, generated during the felling of trees and sanitation in the care of green plantations in the streets, parks, squares, forest parks was investigated in this study. In the cities at the moment, all the wood, that is removed from city streets turns into waste completely. Wood waste is brought to the landfill of solid household waste, and moreover sorting and evaluation of the quantitative composition of wood waste is not carried out. Several technical solutions that are used in different countries have been proposed for the energy use of wood waste: heat and electrical energy generation, liquid and solid biofuel production. An estimation of the energy potential of the city wood waste was made, for total and for produced heat and electrical energy based on modern engineering developments. According to our estimates total energy potential of wood waste in the city measure up more 340 thousand GJ per year.
RTG Waste Heat System for the Cassini Propulsion Module
NASA Technical Reports Server (NTRS)
Mireles, V.; Stultz, J.
1994-01-01
This paper describes the thermal design for the propulsion module subsystem (PMS), and presents the results from the radioisotope thermoelectric generator (RTG) waste heat thermal test, and it summarizes the adjustment techniques and their relative effectiveness; it also shows the resulting predicted PMS flight temperatures relative to the requirements.
Performance Assessments of Generic Nuclear Waste Repositories in Shale
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Mariner, P. E.; Hammond, G. E.; Frederick, J.
2017-12-01
Simulations of deep geologic disposal of nuclear waste in a generic shale formation showcase Geologic Disposal Safety Assessment (GDSA) Framework, a toolkit for repository performance assessment (PA) whose capabilities include domain discretization (Cubit), multiphysics simulations (PFLOTRAN), uncertainty and sensitivity analysis (Dakota), and visualization (Paraview). GDSA Framework is used to conduct PAs of two generic repositories in shale. The first considers the disposal of 22,000 metric tons heavy metal of commercial spent nuclear fuel. The second considers disposal of defense-related spent nuclear fuel and high level waste. Each PA accounts for the thermal load and radionuclide inventory of applicable waste types, components of the engineered barrier system, and components of the natural barrier system including the host rock shale and underlying and overlying stratigraphic units. Model domains are half-symmetry, gridded with Cubit, and contain between 7 and 22 million grid cells. Grid refinement captures the detail of individual waste packages, emplacement drifts, access drifts, and shafts. Simulations are run in a high performance computing environment on as many as 2048 processes. Equations describing coupled heat and fluid flow and reactive transport are solved with PFLOTRAN, an open-source, massively parallel multiphase flow and reactive transport code. Additional simulated processes include waste package degradation, waste form dissolution, radioactive decay and ingrowth, sorption, solubility, advection, dispersion, and diffusion. Simulations are run to 106 y, and radionuclide concentrations are observed within aquifers at a point approximately 5 km downgradient of the repository. Dakota is used to sample likely ranges of input parameters including waste form and waste package degradation rates and properties of engineered and natural materials to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017- 8305 A
Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Aguilar
This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less
Chemical heat pump and chemical energy storage system
Clark, Edward C.; Huxtable, Douglas D.
1985-08-06
A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.
Performance study of thermo-electric generator
NASA Astrophysics Data System (ADS)
Rohit, G.; Manaswini, D.; Kotebavi, Vinod; R, Nagaraja S.
2017-07-01
Devices like automobiles, stoves, ovens, boilers, kilns and heaters dissipate large amount of waste heat. Since most of this waste heat goes unused, the efficiency of these devices is drastically reduced. A lot of research is being conducted on the recovery of the waste heat, among which Thermoelectric Generators (TEG) is one of the popular method. TEG is a semiconductor device that produces electric potential difference when a thermal gradient develops on it. This paper deals with the study of performance of a TEG module for different hot surface temperatures. Performance characteristics used here are voltage, current and power developed by the TEG. One side of the TEG was kept on a hot plate where uniform heat flux was supplied to that. And the other side was cooled by supplying cold water. The results show that the output power increases significantly with increase in the temperature of the hot surface.
Potential availability of diesel waste heat at Echo Deep Space Station (DSS 12)
NASA Technical Reports Server (NTRS)
Hughes, R. D.
1982-01-01
Energy consumption at the Goldstone Echo Deep Space Station (DSS 12) is predicted and quantified for a future station configuration which will involve implementation of proposed energy conservation modifications. Cogeneration by the utilization of diesel waste-heat to satisfy site heating and cooling requirements of the station is discussed. Scenarios involving expanded use of on-site diesel generators are presented.
NASA Astrophysics Data System (ADS)
de Souza, Gabriel Fernandes; Tan, Lippong; Singh, Baljit; Ding, Lai Chet; Date, Abhijit
2017-04-01
The paper presents a sustainable hybrid system, which is capable of generating electricity and producing freshwater from seawater using low grade heat source. This proposed system uses low grade heat that can be supplied from solar radiation, industrial waste heat or any other waste heat sources where the temperature is less than 150°C. The concept behind this system uses the Seebeck effect for thermoelectricity generation via incorporating the low boiling point of seawater under sub-atmospheric ambient pressure. A lab-test prototype of the proposed system was built and experimentally tested in RMIT University. The prototype utilised four commercial available thermoelectric generators (Bi2Te3) and a vacuum vessel to achieve the simultaneous production of electricity and freshwater. The temperature profiles, thermoelectric powers and freshwater productions were determined at several levels of salinity to study the influence of different salt concentrations. The theoretical description of system design and experimental results were analysed and discussed in detailed. The experiment results showed that 0.75W of thermoelectricity and 404g of freshwater were produced using inputs of 150W of simulated waste heat and 500g of 3% saline water. The proposed hybrid concept has demonstrated the potential to become the future sustainable system for electricity and freshwater productions.
Thermally driven electrokinetic energy conversion with liquid water microjets
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...
2015-11-01
One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Thermally driven electrokinetic energy conversion with liquid water microjets
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.
2015-11-01
A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Car companies look to generate power from waste heat
NASA Astrophysics Data System (ADS)
Schirber, Michael
2008-04-01
You might think that the steam engine is an outdated technology that had its heyday centuries ago, but in fact steam is once again a hot topic with vehicle manufacturers. Indeed, the next generation of hybrid cars and trucks may incorporate some form of steam power. Honda, for example, has just released details of a new prototype hybrid car that recharges its battery using a steam engine that exploits waste heat from the exhaust pipe.
Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Chen, Hua; Zhang, Yong
2017-09-01
The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.
Zou, Shiqiang; Kanimba, Eurydice; Diller, Thomas E; Tian, Zhiting; He, Zhen
2018-04-22
The thermal energy represents a significant portion of energy potential in municipal wastewater and may be recovered as electricity by a thermoelectric generator (TEG). Converting heat to all-purpose electricity by TEG has been demonstrated with large heat gradients, but its application in waste heat recovery from wastewater has not been well evaluated. Herein, a bench-scale Bi 2 Te 3 -based waste heat recovery system was employed to generate electricity from a low temperature gradient through a combination of experiments and mathematical modeling. With an external resistance of 7.8 Ω and a water (hot side) flow rate of 75 mL min -1 , a maximum normalized energy recovery of 4.5 × 10 -4 kWh m -3 was achieved under a 2.8 °C temperature gradient (ΔT). Model simulation indicated a boost in both power output and energy conversion efficiency from 0.76 mW and 0.13% at ΔT = 2.8 °C to 61.83 mW and 1.15% at ΔT = 25 °C. Based on the data of two-year water/air temperature obtained from the Christiansburg Wastewater Treatment Plant, an estimated energy generation of 1094 to 70,986 kWh could be expected annually with a saving of $163 to $6076. Those results have revealed a potential for TEG-centered direct electricity generation from low-grade heat towards enhanced resource recovery from wastewater and encouraged further exploration of this approach. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.
2013-04-01
A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.
Recent development of anaerobic digestion processes for energy recovery from wastes.
Nishio, Naomichi; Nakashimada, Yutaka
2007-02-01
Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mac Dougall, James
2016-02-05
Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, andmore » pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO 2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.« less
Thermal-powered reciprocating pump
NASA Technical Reports Server (NTRS)
Sabelman, E. E.
1972-01-01
Waste heat from radioisotope thermal generators in spacecraft is transported to keep instruments warm by two-cylinder reciprocating pump powered by energy from warm heat exchange fluid. Each cylinder has thermally nonconductive piston, heat exchange coil, and heat sink surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss.more » The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.« less
Evaluation of Pad 18 Spent Mercury Gold Trap Stainless Steel Container Failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skidmore, E.
Failure of the Pad 18 spent mercury gold trap stainless steel waste container is principally attributed to corrosion induced by degradation of plasticized polyvinyl chloride (pPVC) waste packaging material. Dehydrochlorination of pPVC polymer by thermal and/or radiolytic degradation is well-known to evolve HCl gas, which is highly corrosive to stainless steel and other metals in the presence of moisture. Degradation of the pPVC packaging material was likely caused by radiolysis in the presence of tritium gas within the waste container, though other degradation mechanisms (aging, thermo-oxidation, plasticizer migration) over 30 years storage may have contributed. Corrosion was also likely enhancedmore » by the crevice in the container weld design, and may have been enhanced by the presence of tritiated water. Similar non-failed spent mercury gold trap waste containers did not show radiographic evidence of plastic packaging or trapped free liquid within the container. Therefore, those containers are not expected to exhibit similar failures. Halogenated polymers such as pPVC subject to degradation can evolve halide gases such as HCl, which is corrosive in the presence of moisture and can generate pressure in sealed systems.« less
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Roelke, R. J.; Steinthorsson, E.
1991-01-01
In order to study numerically details of the flow and heat transfer within coolant passages of turbine blades, a method must first be developed to generate grid systems within the very complicated geometries involved. In this study, a grid generation package was developed that is capable of generating the required grid systems. The package developed is based on an algebraic grid generation technique that permits the user considerable control over how grid points are to be distributed in a very explicit way. These controls include orthogonality of grid lines next to boundary surfaces and ability to cluster about arbitrary points, lines, and surfaces. This paper describes that grid generation package and shows how it can be used to generate grid systems within complicated-shaped coolant passages via an example.
Assessment of microwave-based clinical waste decontamination unit.
Hoffman, P N; Hanley, M J
1994-12-01
A clinical waste decontamination unit that used microwave-generated heat was assessed for operator safety and efficacy. Tests with loads artificially contaminated with aerosol-forming particles showed that no particles were detected outside the machine provided the seals and covers were correctly seated. Thermometric measurement of a self-generated steam decontamination cycle was used to determine the parameters needed to ensure heat disinfection of the waste reception hopper, prior to entry for maintenance or repair. Bacterial and thermometric test pieces were passed through the machine within a full load of clinical waste. These test pieces, designed to represent a worst case situation, were enclosed in aluminium foil to shield them from direct microwave energy. None of the 100 bacterial test pieces yielded growth on culture and all 100 thermal test pieces achieved temperatures in excess of 99 degrees C during their passage through the decontamination unit. It was concluded that this method may be used to render safe the bulk of of ward-generated clinical waste.
Rigamonti, L; Grosso, M; Giugliano, M
2009-02-01
This life cycle assessment study analyses material and energy recovery within integrated municipal solid waste (MSW) management systems, and, in particular, the recovery of the source-separated materials (packaging and organic waste) and the energy recovery from the residual waste. The recovery of materials and energy are analysed together, with the final aim to evaluate possible optimum levels of source-separated collection that lead to the most favourable energetic and environmental results; this method allows identification of an optimum configuration of the MSW management system. The results show that the optimum level of source-separated collection is about 60%, when all the materials are recovered with high efficiency; it decreases to about 50%, when the 60% level is reached as a result of a very high recovery efficiency for organic fractions at the expense of the packaging materials, or when this implies an appreciable reduction of the quality of collected materials. The optimum MSW management system is thus characterized by source-separated collection levels as included in the above indicated range, with subsequent recycling of the separated materials and energy recovery of the residual waste in a large-scale incinerator operating in combined heat and power mode.
Usapein, Parnuwat; Chavalparit, Orathai
2014-06-01
Sustainable waste management was introduced more than ten years ago, but it has not yet been applied to the Thai petrochemical industry. Therefore, under the philosophy of sustainable waste management, this research aims to apply the reduce, reuse, and recycle (3R) concept at the petrochemical factory level to achieve a more sustainable industrial solid waste management system. Three olefin plants in Thailand were surveyed for the case study. The sources and types of waste and existing waste management options were identified. The results indicate that there are four sources of waste generation: (1) production, (2) maintenance, (3) waste treatment, and (4) waste packaging, which correspond to 45.18%, 36.71%, 9.73%, and 8.37% of the waste generated, respectively. From the survey, 59 different types of industrial wastes were generated from the different factory activities. The proposed 3R options could reduce the amount of landfill waste to 79.01% of the amount produced during the survey period; this reduction would occur over a period of 2 years and would result in reduced disposal costs and reduced consumption of natural resources. This study could be used as an example of an improved waste management system in the petrochemical industry. © The Author(s) 2014.
Naval Waste Package Design Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. Schmitt
2006-12-13
The purpose of this calculation is to determine the sensitivity of the structural response of the Naval waste packages to varying inner cavity dimensions when subjected to a comer drop and tip-over from elevated surface. This calculation will also determine the sensitivity of the structural response of the Naval waste packages to the upper bound of the naval canister masses. The scope of this document is limited to reporting the calculation results in terms of through-wall stress intensities in the outer corrosion barrier. This calculation is intended for use in support of the preliminary design activities for the license applicationmore » design of the Naval waste package. It examines the effects of small changes between the naval canister and the inner vessel, and in these dimensions, the Naval Long waste package and Naval Short waste package are similar. Therefore, only the Naval Long waste package is used in this calculation and is based on the proposed potential designs presented by the drawings and sketches in References 2.1.10 to 2.1.17 and 2.1.20. All conclusions are valid for both the Naval Long and Naval Short waste packages.« less
Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste
NASA Technical Reports Server (NTRS)
Hummerick, Mary P.; Strayer, Richard; McCoy, LaShelle; Richard, Jeffrey; Ruby, Anna; Wheeler, Raymond
2012-01-01
One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature, required to achieve a sterile, stable product. The work reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Ceo bacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180 C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180 C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130 C-150 C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment. The two organisms inoculated into the waste were among those isolated and identified from the HMC surfaces indicating the possibility of cross contamination.
Depleted uranium as a backfill for nuclear fuel waste package
Forsberg, Charles W.
1998-01-01
A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.
Depleted uranium as a backfill for nuclear fuel waste package
Forsberg, C.W.
1998-11-03
A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.
NASA Astrophysics Data System (ADS)
Korzhuev, M. A.
2011-02-01
It is shown that an internal combustion engine and a thermoelectric generator (TEG) arranged on the exhaust pipe of this engine come into the conflict of thermal machines that is related to using the same energy resource. The conflict grows with increasing useful electric power W e of the TEG, which leads to the limitation of both the maximum TEG output power ( W {e/max}) and the possibility of waste heat recovery in cars.
Mechanical degradation temperature of waste storage materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fink, M.C.; Meyer, M.L.
1993-05-13
Heat loading analysis of the Solid Waste Disposal Facility (SWDF) waste storage configurations show the containers may exceed 90{degrees}C without any radioactive decay heat contribution. Contamination containment is primarily controlled in TRU waste packaging by using multiple bag layers of polyvinyl chloride and polyethylene. Since literature values indicate that these thermoplastic materials can begin mechanical degradation at 66{degrees}C, there was concern that the containment layers could be breached by heating. To better define the mechanical degradation temperature limits for the materials, a series of heating tests were conducted over a fifteen and thirty minute time interval. Samples of a low-densitymore » polyethylene (LDPE) bag, a high-density polyethylene (HDPE) high efficiency particulate air filter (HEPA) container, PVC bag and sealing tape were heated in a convection oven to temperatures ranging from 90 to 185{degrees}C. The following temperature limits are recommended for each of the tested materials: (1) low-density polyethylene -- 110{degrees}C; (2) polyvinyl chloride -- 130{degrees}C; (3) high-density polyethylene -- 140{degrees}C; (4) sealing tape -- 140{degrees}C. Testing with LDPE and PVC at temperatures ranging from 110 to 130{degrees}C for 60 and 120 minutes also showed no observable differences between the samples exposed at 15 and 30 minute intervals. Although these observed temperature limits differ from the literature values, the trend of HDPE having a higher temperature than LDPE is consistent with the reference literature. Experimental observations indicate that the HDPE softens at elevated temperatures, but will retain its shape upon cooling. In SWDF storage practices, this might indicate some distortion of the waste container, but catastrophic failure of the liner due to elevated temperatures (<185{degrees}C) is not anticipated.« less
Onset of thermally induced gas convection in mine wastes
Lu, N.; Zhang, Y.
1997-01-01
A mine waste dump in which active oxidation of pyritic materials occurs can generate a large amount of heat to form convection cells. We analyze the onset of thermal convection in a two-dimensional, infinite horizontal layer of waste rock filled with moist gas, with the top surface of the waste dump open to the atmosphere and the bedrock beneath the waste dump forming a horizontal and impermeable boundary. Our analysis shows that the thermal regime of a waste rock system depends heavily on the atmospheric temperature, the strength of the heat source and the vapor pressure. ?? 1997 Elsevier Science Ltd. All rights reserved.
Design Analysis of a Prepackaged Nuclear Power Plant for an Ice Cap Location
1959-01-15
requirements and heating load 1.3 Site Conditions 1,U Air Transportability 1.5 Standby Power Availability 1.6 Building Structuree and Foundations 2,0...Skid with Reactor and Steam Generator Generator Weight Distribution Foundation Load Diagram (Secondary) Turbine Generator Package - Typical...Requirements and Heating Load The plant shall be capable of producing a minimum of 1500 Kw net ^ electrical energy at 4160/2400 volts, three phase
Swedish recovered wood waste: linking regulation and contamination.
Krook, J; Mårtensson, A; Eklund, M; Libiseller, C
2008-01-01
In Sweden, large amounts of wood waste are generated annually from construction and demolition activities, but also from other discarded products such as packaging and furniture. A large share of this waste is today recovered and used for heat production. However, previous research has found that recovered wood waste (RWW) contains hazardous substances, which has significant implications for the environmental performance of recycling. Improved sorting is often suggested as a proper strategy to decrease such implications. In this study, we aim to analyse the impacts of waste regulation on the contamination of RWW. The occurrence of industrial preservative-treated wood, which contains several hazardous substances, was used as an indicator for contamination. First the management of RWW during 1995-2004 was studied through interviews with involved actors. We then determined the occurrence of industrial preservative-treated wood in RWW for that time period for each supplier (actor). From the results, it can be concluded that a substantially less contaminated RWW today relies on extensive source separation. The good news is that some actors, despite several obstacles for such upstream efforts, have already today proved capable of achieving relatively efficient separation. In most cases, however, the existing waste regulation has not succeeded in establishing strong enough incentives for less contaminated waste in general, nor for extensive source separation in particular. One important factor for this outcome is that the current market forces encourage involved actors to practice weak quality requirements and to rely on end-of-pipe solutions, rather than put pressure for improvements on upstream actors. Another important reason is that there is a lack of communication and oversight of existing waste regulations. Without such steering mechanisms, the inherent pressure from regulations becomes neutralized.
Heising, Jenneke K; Claassen, G D H; Dekker, Matthijs
2017-10-01
Optimising supply chain management can help to reduce food waste. This paper describes how intelligent packaging can be used to reduce food waste when used in supply chain management based on quality-controlled logistics (QCL). Intelligent packaging senses compounds in the package that correlate with the critical quality attribute of a food product. The information on the quality of each individual packaged food item that is provided by the intelligent packaging can be used for QCL. In a conceptual approach it is explained that monitoring food quality by intelligent packaging sensors makes it possible to obtain information about the variation in the quality of foods and to use a dynamic expiration date (IP-DED) on a food package. The conceptual approach is supported by quantitative data from simulations on the effect of using the information of intelligent packaging in supply chain management with the goal to reduce food waste. This simulation shows that by using the information on the quality of products that is provided by intelligent packaging, QCL can substantially reduce food waste. When QCL is combined with dynamic pricing based on the predicted expiry dates, a further waste reduction is envisaged.
Waste Package Component Design Methodology Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.C. Mecham
2004-07-12
This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and usemore » of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1.« less
Development of Electric Power Units Driven by Waste Heat
NASA Astrophysics Data System (ADS)
Inoue, Naoyuki; Takeuchi, Takao; Kaneko, Atsushi; Uchimura, Tomoyuki; Irie, Kiichi; Watanabe, Hiroyoshi
For the development of a simple and compact power generator driven by waste heat, working fluids and an expander were studied, then a practical electric power unit was put to test. Many working fluids were calculated with the low temperature power cycle (evaporated at 77°C, condensed at 42°C),and TFE,R123,R245fa were selected to be suitable for the cycle. TFE(Trifluoroethanol CF3CH2OH) was adopted to the actual power generator which was tested. A radial turbine was adopted as an expander, and was newly designed and manufactured for working fluid TFE. The equipment was driven by hot water as heat source and cooling water as cooling source, and generated power was connected with electric utility. Characteristics of the power generating cycle and characteristics of the turbine were obtained experimentally.
Testing of candidate waste-package backfill and canister materials for basalt
NASA Astrophysics Data System (ADS)
Wood, M. I.; Anderson, W. J.; Aden, G. D.
1982-09-01
The Basalt Waste Isolation Project (BWIP) is developing a multiple-barrier waste package to contain high-level nuclear waste as part of an overall system (e.g., waste package, repository sealing system, and host rock) designed to isolate the waste in a repository located in basalt beneath the Hanford Site, Richland, Washington. The three basic components of the waste package are the waste form, the canister, and the backfill. An extensive testing program is under way to determine the chemical, physical, and mechanical properties of potential canister and backfill materials. The data derived from this testing program will be used to recommend those materials that most adequately perform the functions assigned to the canister and backfill.
DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Radulesscu; J.S. Tang
The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.« less
Nondestructive determination of activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabalier, B.
1996-08-01
Characterization and appraisal tests include the measurement of activity in raw waste and waste packages. After conditioning, variations in density, matrix composition, and geometry make evaluation of the radionuclide activity in a package destined for storage nearly impossible without measurements and with a low uncertainty. Various nondestructive measuring techniques that use ionizing radiation are employed to characterize waste packages and raw waste. Gamma spectrometry is the most widely used technique because of its simple operation and low cost. This technique is used to quantify the beta-gamma and alpha activity of gamma-emitting radionuclides as well as to check the radioactive homogeneitymore » of the waste packages. Numerous systems for directly measuring waste packages have been developed. Two types of methods may be distinguished, depending on whether results that come from the measurements are weighted by an experimentally determined corrective term or by calculation. Through the MARCO and CARACO measuring systems, a method is described that allows one to quantify the activity of the beta-gamma and alpha radionuclides contained in either a waste package or raw waste whose geometries and material compositions are more or less accurately known. This method is based on (a) measurement by gamma spectrometry of the beta-gamma and alpha activity of the gamma-emitting radionuclides contained in the waste package and (b) the application of calculated corrections; thus, the limitations imposed by reference package geometry and matrix are avoided.« less
NASA Astrophysics Data System (ADS)
Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat
2017-09-01
Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.
Analysis of the Effect of Module Thickness Reduction on Thermoelectric Generator Output
NASA Astrophysics Data System (ADS)
Brito, F. P.; Figueiredo, L.; Rocha, L. A.; Cruz, A. P.; Goncalves, L. M.; Martins, J.; Hall, M. J.
2016-03-01
Conventional thermoelectric generators (TEGs) used in applications such as exhaust heat recovery are typically limited in terms of power density due to their low efficiency. Additionally, they are generally costly due to the bulk use of rare-earth elements such as tellurium. If less material could be used for the same output, then the power density and the overall cost per kilowatt (kW) of electricity produced could drop significantly, making TEGs a more attractive solution for energy harvesting of waste heat. The present work assesses the effect of reducing the amount of thermoelectric (TE) material used (namely by reducing the module thickness) on the electrical output of conventional bismuth telluride TEGs. Commercial simulation packages (ANSYS CFX and thermal-electric) and bespoke models were used to simulate the TEGs at various degrees of detail. Effects such as variation of the thermal and electrical contact resistance and the component thickness and the effect of using an element supporting matrix (e.g., eggcrate) instead of having air conduction in void areas have been assessed. It was found that indeed it is possible to reduce the use of bulk TE material while retaining power output levels equivalent to thicker modules. However, effects such as thermal contact resistance were found to become increasingly important as the active TE material thickness was decreased.
The Role of Packaging in Solid Waste Management 1966 to 1976.
ERIC Educational Resources Information Center
Darnay, Arsen; Franklin, William E.
The goals of waste processors and packagers obviously differ: the packaging industry seeks durable container material that will be unimpaired by external factors. Until recently, no systematic analysis of the relationship between packaging and solid waste disposal had been undertaken. This three-part document defines these interactions, and the…
López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J
2015-09-01
This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Martinho, Graça; Gomes, Ana; Ramos, Mário; Santos, Pedro; Gonçalves, Graça; Fonseca, Miguel; Pires, Ana
2018-01-01
Research on waste prevention and management at green festivals is scarce. The present study helps to fill this gap by analyzing waste prevention/reduction and management measures implemented at the Andanças festival, Portugal. Waste characterization campaigns and a questionnaire survey were conducted during the festival. The results show that the largest amount of waste generated was residual waste, followed by food and kitchen waste and packaging waste. The amount of waste generated per person per day at the festival was lower than that of other festivals for both the entire venue and the canteen. Concerning food and kitchen waste generated at the canteen, the amounts are in accordance with the findings of previous studies, but the amount of the edible fraction is comparatively low. Source separation rates are high, in line with other festivals that engage in food-waste source separation. Factors affecting the participation of attendees in waste prevention measures at the festival are the type of participant, their region of origin, the frequency of visits, and whether they are attending as a family. Efforts must be made to increase the awareness of attendees about waste prevention measures, to develop guidelines and methods to quantify the waste prevention measures, and to formulate policies aimed at increasing the application of the zero-waste principle at festivals. Copyright © 2017 Elsevier Ltd. All rights reserved.
CHP is on-site electricity generation that captures the heat that would otherwise be wasted to provide useful thermal energy such as steam or hot water than can be used for space heating, cooling, domestic hot water and industrial processes.
Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System
Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank
2017-01-01
Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer. PMID:28145516
Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System.
Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank
2017-02-01
Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer.
NASA Technical Reports Server (NTRS)
Beckham, W. S., Jr.; Keune, F. A.
1974-01-01
The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.
Feasibility Study of Food Waste Co-Digestion at U.S. Army Installations
2017-03-01
sludge and food these, waste materials can create energy in the form of electric power for the plant. The extra heat and power generated from this... formed at Fort Huachuca provided detailed analyses of the waste stream, primary generators of each waste component, and a measured sample from the...tanks. The second tank will be the current first tank, where the majority of methane will be formed , and the last tank will remain as the final rest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandt, G.; Spicher, G.; Steyer, St.
2008-07-01
Since the 1998 termination of LLW and ILW emplacement in the Morsleben repository (ERAM), Germany, the treatment, conditioning and documentation of radioactive waste products and packages have been continued on the basis of the waste acceptance requirements as of 1995, prepared for the Konrad repository near Salzgitter in Lower Saxony, Germany. The resulting waste products and packages are stored in interim storage facilities. Due to the Konrad license issued in 2002 the waste acceptance requirements have to be completed by additional requirements imposed by the licensing authority, e. g. for the declaration of chemical waste package constituents. Therefore, documentation ofmore » waste products and packages which are checked by independent experts and are in parts approved by the responsible authority (Office for Radiation Protection, BfS) up to now will have to be checked again for fulfilling the final waste acceptance requirements prior to disposal. In order to simplify these additional checks, databases are used to ensure an easy access to all known facts about the waste packages. A short balance of the existing waste products and packages which are already checked and partly approved by BfS as well as an overview on the established databases ensuring a fast access to the known facts about the conditioning processes is presented. (authors)« less
Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B
2016-11-15
A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. Copyright © 2016. Published by Elsevier B.V.
Heat-Pipe-Associated Localized Thermoelectric Power Generation System
NASA Astrophysics Data System (ADS)
Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo
2014-06-01
The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.
NASA Astrophysics Data System (ADS)
Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson
2017-03-01
In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.
Safety evaluation for packaging (onsite) concrete-lined waste packaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romano, T.
1997-09-25
The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.
Investigation of waste heat recovery of binary geothermal plants using single component refrigerants
NASA Astrophysics Data System (ADS)
Unverdi, M.
2017-08-01
In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.
Gutierrez, Michele Mario; Meleddu, Marta; Piga, Antonio
2017-01-01
Packaging is associated with a high environmental impact. This is also the case in the food industry despite packaging being necessary for maintaining food quality, safety assurance and preventing food waste. The aim of the present study was to identify improvements in food packaging solutions able to minimize environmental externalities while maximizing the economic sustainability. To this end, the life cycle assessment (LCA) methodology was applied to evaluate the environmental performance of new packaging solutions. The environmental impact of packaging and food losses and the balance between the two were examined in relation to a cheesecake that is normally packaged in low density polyethylene film and has a limited shelf life due to microbial growth. A shelf life extension was sought via application of the well-established modified atmosphere packaging (MAP) technique. Samples for MAP (N 2 /CO 2 : 70/30) were placed inside multilayer gas barrier trays, which were then wrapped with a multilayer gas and water barrier film (i.e. AerPack packaging); control batches were packaged in gas barrier recycled polyethylene terephthalate (XrPet) trays and wrapped with a XrPet film. Samples were then stored at 20°C and inspected at regular intervals for chemical-physical, microbiological and sensory parameters. Results show that the new packaging solution could considerably extend the shelf life of cheesecakes, thereby reducing food waste and decreasing the overall environmental impact. Moreover, the new packaging allows one to minimize transport costs and to generate economies of scale in manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gohlke, Oliver
2009-11-01
Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.
Evaluating the operational risks of biomedical waste using failure mode and effects analysis.
Chen, Ying-Chu; Tsai, Pei-Yi
2017-06-01
The potential problems and risks of biomedical waste generation have become increasingly apparent in recent years. This study applied a failure mode and effects analysis to evaluate the operational problems and risks of biomedical waste. The microbiological contamination of biomedical waste seldom receives the attention of researchers. In this study, the biomedical waste lifecycle was divided into seven processes: Production, classification, packaging, sterilisation, weighing, storage, and transportation. Twenty main failure modes were identified in these phases and risks were assessed based on their risk priority numbers. The failure modes in the production phase accounted for the highest proportion of the risk priority number score (27.7%). In the packaging phase, the failure mode 'sharp articles not placed in solid containers' had the highest risk priority number score, mainly owing to its high severity rating. The sterilisation process is the main difference in the treatment of infectious and non-infectious biomedical waste. The failure modes in the sterilisation phase were mainly owing to human factors (mostly related to operators). This study increases the understanding of the potential problems and risks associated with biomedical waste, thereby increasing awareness of how to improve the management of biomedical waste to better protect workers, the public, and the environment.
Creating Methane from Plastics: Recycling at a Lunar Outpost
NASA Technical Reports Server (NTRS)
Captain, Janine; Santiago, Eddie; Wheeler, Ray; Strayer, RIchard; Garland, Jay; Parrish, Clyde
2010-01-01
The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste, into fuel. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. The goal of this project is to determine the feasibility of recycling waste into methane on the lunar outpost by performing engineering assessments and lab demonstrations of the technology. The first goal of the project was to determine how recycling could influence lunar exploration. Table I shows an estimation of the typical dried waste stream generated each day for a crew of four. Packaging waste accounts for nearly 86% of the dry waste stream and is a significant source of carbon on the lunar surface. This is important because methane (CH4) can be used as fuel and no other source of carbon is available on the lunar surface. With the initial assessment indicating there is sufficient resources in the waste stream to provide refueling capabilities, the project was designed to examine the conversion of plastics into methane.
Abedini, Ali R; Atwater, James W; Fu, George Yuzhu
2012-08-01
Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented.
Ground Vehicle Power and Mobility (GVPM) Powertrain Overview
2011-08-11
efficient on-board electrical power generation • Improved Fuel Efficiency • Thermoelectric Waste Heat Recovery • Advanced Engine Cycle Demo...Thermal Management • Militarized Power train Control Module and strategies devices for military vehicle transmissions FY11 FY12 FY13...Transmission): - Medium Combat Application (20-40 tons) - Medium Tactical Application (15-30 tons) Thermoelectric Waste Heat Recovery Energy Analysis
Papageorgiou, A; Barton, J R; Karagiannidis, A
2009-07-01
Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the other hand Mass Burn Incineration generates greenhouse gas emission savings when it recovers electricity and heat. Moreover the study found that the expected increase on the amount of Municipal Solid Waste treated for energy recovery in England by 2020 could save greenhouse gas emission, if certain Energy from Waste technologies would be applied, under certain conditions.
Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive
NASA Astrophysics Data System (ADS)
Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya
2016-03-01
Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the /W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of 1/W it is necessary to achieve heat exchanger costs of 1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various TE waste heat recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacRae, W.T.
The Donald C. Cook nuclear plant is located in Bridgman, Michigan. As such, no low-level radioactive waste from the facility has been sent to burial since November 1990. The only option is storage. The plant is well prepared for storage. A new facility was built, so the plant now has >2265 M3 (80 000 ft 3 ) of storage capacity. There are a number of issues that have had to be addressed during the period of storage. These items include storage capacity and waste generation rates, the waste form and the packages used, and the regulatory issues.
On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas
NASA Astrophysics Data System (ADS)
Meisner, G. P.
2013-03-01
The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect thatmore » packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.« less
Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Huang, Shouyuan; Xu, Xianfan
2016-10-01
This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.
NASA Technical Reports Server (NTRS)
Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.
1975-01-01
This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.
Waste forms, packages, and seals working group summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridhar, N.
1995-09-01
This article is a summary of the proceedings of a group discussion which took place at the Workshop on the Role of Natural Analogs in Geologic Disposal of High-Level Nuclear Waste in San Antonio, Texas on July 22-25, 1991. The working group concentrated on the subject of radioactive waste forms and packaging. Also included is a description of the use of natural analogs in waste packaging, container materials and waste forms.
1980-12-01
augmentation techniques, entropy generation, irreversibility, exergy . 20. ABSTRACT (Continue on rovers. side If necessary and Identify by block number...35 3.5 Internally finned tubes ...... ................. .. 37 3.6 Internally roughened tubes ..... ............... . 41 3.7 Other heat transfer...irreversibility and entropy generation as fundamental criterion for evaluating and, eventually, minimizing the waste of usable energy ( exergy ) in energy
NASA Technical Reports Server (NTRS)
1987-01-01
The United States and other countries face the problem of waste disposal in an economical, environmentally safe manner. A widely applied solution adopted by Americans is "waste to energy," incinerating the refuse and using the steam produced by trash burning to drive an electricity producing generator. NASA's computer program PRESTO II, (Performance of Regenerative Superheated Steam Turbine Cycles), provides power engineering companies, including Blount Energy Resources Corporation of Alabama, with the ability to model such features as process steam extraction, induction and feedwater heating by external sources, peaking and high back pressure. Expansion line efficiency, exhaust loss, leakage, mechanical losses and generator losses are used to calculate the cycle heat rate. The generator output program is sufficiently precise that it can be used to verify performance quoted in turbine generator supplier's proposals.
Automotive absorption air conditioner utilizing solar and motor waste heat
NASA Technical Reports Server (NTRS)
Popinski, Z. (Inventor)
1981-01-01
In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.
Simulation Analysis of Tilted Polyhedron-Shaped Thermoelectric Elements
NASA Astrophysics Data System (ADS)
Meng, Xiangning; Suzuki, Ryosuke O.
2015-06-01
The generation of thermoelectricity is considered a promising approach to harness the waste heat generated in industries, automobiles, gas fields, and other man-made processes. The waste heat can be converted to electricity via a thermoelectric (TE) generator. In this light, the generator performance depends on the geometric configuration of its constituent elements as well as their material properties. Our previous work reported TE behaviors for modules consisting of parallelogram-shaped elements, because elements with tilted laminate structures provide increased mechanical stability and efficient heat-transferring ability from the hot surface to the cold surface. Here, we study TE elements in the shape of a polyhedron that is obtained by mechanically truncating the edges of a parallelogram element in order to further enhance the generator performance and reduce TE material usage. The TE performance of the modules consisting of these polyhedron elements is numerically simulated by using the finite-volume method. The output power, voltage, and current of the polyhedral TE module are greater than those of the parallelogram-element module. The polyhedron shape positively affects heat transfer and the flow of electric charges in the light of increasing the efficiency of conversion from heat to electricity. By varying the shape of the truncated portions, we determine the optimal shape that enables homogeneous heat flux distribution and slow diffusion of thermal energy to obtain the better efficiency of conversion of heat into electricity. We believe that the findings of our study can significantly contribute to the design policy in TE generation.
Al-Khatib, Issam A; Eleyan, Derar; Garfield, Joy
2016-09-01
Hospitals and health centers provide a variety of healthcare services and normally generate hazardous waste as well as general waste. General waste has a similar nature to that of municipal solid waste and therefore could be disposed of in municipal landfills. However, hazardous waste poses risks to public health, unless it is properly managed. The hospital waste management system encompasses many factors, i.e., number of beds, number of employees, level of service, population, birth rate, fertility rate, and not in my back yard (NIMBY) syndrome. Therefore, this management system requires a comprehensive analysis to determine the role of each factor and its influence on the whole system. In this research, a hospital waste management simulation model is presented based on the system dynamics technique to determine the interaction among these factors in the system using a software package, ithink. This model is used to estimate waste segregation as this is important in the hospital waste management system to minimize risk to public health. Real data has been obtained from a case study of the city of Nablus, Palestine to validate the model. The model exhibits wastes generated from three types of hospitals (private, charitable, and government) by considering the number of both inpatients and outpatients depending on the population of the city under study. The model also offers the facility to compare the total waste generated among these different types of hospitals and anticipate and predict the future generated waste both infectious and non-infectious and the treatment cost incurred.
Advances in Geologic Disposal System Modeling and Application to Crystalline Rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, Paul E.; Stein, Emily R.; Frederick, Jennifer M.
The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic mediamore » (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANN, F.M.
Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided.
Modular package for cooling a laser diode array
Mundinger, David C.; Benett, William J.; Beach, Raymond J.
1992-01-01
A laser diode array is disclosed that includes a plurality of planar packages and active cooling. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar package having the laser diode bar located proximate to one edge. In an array, a number of such thin planar packages are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink that is attached proximate to the laser bar so that it absorbs heat generated by laser operation. To provide the coolant to the microchannels, each thin planar package comprises a thin inlet manifold and a thin outlet manifold connected to an inlet corridor and an outlet corridor. The inlet corridor comprises a hole extending through each of the packages in the array, and the outlet corridor comprises a hole extending through each of the packages in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has application as an optical pump for high power solid state lasers. Further, it can be incorporated in equipment such as communications devices and active sensors, and in military and space applications, and it can be useful in applications having space constraints and energy limitations.
Technologies and Materials for Recovering Waste Heat in Harsh Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Thekdi, Arvind; Rogers, Benjamin M.
2014-12-15
A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hotmore » exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.« less
NASA Astrophysics Data System (ADS)
Guo, Yuan
2017-05-01
This paper proposed a new concept named airborne power generation system based on Rankine cycle by heat energy, namely, the presented system combined the Rankine cycle with environmental control system in aircraft to recycle the waste heat of engine bleed air with high temperature and generate power. This paper mainly discussed the choosing of optimum working fluid which could apply in the combined power generation system mentioned above when the temperature of the coming bleed air was about 400 degree centigrade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingerich, Daniel B; Bartholomew, Timothy V; Mauter, Meagan S
With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient tomore » passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon capture and sequestration, the NETL 550 MW model coal fired power plant with carbon capture and sequestration, and Plant Bowen in Eularhee, Georgia. For each case, we identify the design that minimizes the cost of wastewater treatment given the safely recoverable waste heat. We benchmark the cost minimum waste-heat forward osmosis solutions to two conventional options that rely on electricity, reverse osmosis and mechanical vapor recompression. Furthermore, we quantify the environmental damages from the emissions of carbon dioxide and criteria air pollutants for each treatment option. With this information we can assess the trade-offs between treatment costs, energy consumption, and air emissions between the treatment options.« less
Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste
NASA Technical Reports Server (NTRS)
Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John
2013-01-01
One of the technologies being tested at Ames Research Center as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste to reduce volume, remove water and render a biologically stable and safe product. Studies at Kennedy Space Center have focused on the efficacy of the heat melt compaction process for killing microorganisms in waste and specific compacter operation protocols, i.e., time and temperature required to achieve a sterile, stable product. The work. reported here includes a controlled study to examine the survival and potential re-growth of specific microorganisms over a 6-month period of storage after heating and compaction. Before heating and compaction, ersatz solid wastes were inoculated with Bacillus amyloliquefaciens and Rhodotorula mucilaginosa, previously isolated from recovered space shuttle mission food and packaging waste. Compacted HMC tiles were sampled for microbiological analysis at time points between 0 and 180 days of storage in a controlled environment chamber. In addition, biological indicator strips containing spores of Bacillus atrophaeus and Geobacillus stearothermophilus were imbedded in trash to assess the efficacy of the HMC process to achieve sterilization. Analysis of several tiles compacted at 180deg C for times of 40 minutes to over 2 hours detected organisms in all tile samples with the exception of one exposed to 180deg C for approximately 2 hours. Neither of the inoculated organisms was recovered, and the biological indicator strips were negative for growth in all tiles indicating at least local sterilization of tile areas. The findings suggest that minimum time/temperature combination is required for complete sterilization. Microbial analysis of tiles processed at lower temperatures from 130deg C-150deg C at varying times will be discussed, as well as analysis of the bacteria and fungi present on the compactor hardware as a result of exposure to the waste and the surrounding environment. The two organisms inoculated into the waste were among those isolated and identified from the HMC surfaces indicating the possibility of cross contamination.
Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio
2017-01-01
Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid–solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology. PMID:29094038
Biasetti, Jacopo; Pustavoitau, Aliaksei; Spazzini, Pier Giorgio
2017-01-01
Mechanical circulatory support devices, such as total artificial hearts and left ventricular assist devices, rely on external energy sources for their continuous operation. Clinically approved power supplies rely on percutaneous cables connecting an external energy source to the implanted device with the associated risk of infections. One alternative, investigated in the 70s and 80s, employs a fully implanted nuclear power source. The heat generated by the nuclear decay can be converted into electricity to power circulatory support devices. Due to the low conversion efficiencies, substantial levels of waste heat are generated and must be dissipated to avoid tissue damage, heat stroke, and death. The present work computationally evaluates the ability of the blood flow in the descending aorta to remove the locally generated waste heat for subsequent full-body distribution and dissipation, with the specific aim of investigating methods for containment of local peak temperatures within physiologically acceptable limits. To this aim, coupled fluid-solid heat transfer computational models of the blood flow in the human aorta and different heat exchanger architectures are developed. Particle tracking is used to evaluate temperature histories of cells passing through the heat exchanger region. The use of the blood flow in the descending aorta as a heat sink proves to be a viable approach for the removal of waste heat loads. With the basic heat exchanger design, blood thermal boundary layer temperatures exceed 50°C, possibly damaging blood cells and proteins. Improved designs of the heat exchanger, with the addition of fins and heat guides, allow for drastically lower blood temperatures, possibly leading to a more biocompatible implant. The ability to maintain blood temperatures at biologically compatible levels will ultimately allow for the body-wise distribution, and subsequent dissipation, of heat loads with minimum effects on the human physiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moak, Don J.; Grondin, Richard L.; Triner, Glen C.
CH2M Hill Plateau Remediation Company (CHRPC) is a prime contractor to the U.S. Department of Energy (DOE) focused on the largest ongoing environmental remediation project in the world at the DOE Hanford Site Central Plateau, i.e. the DOE Hanford Plateau Remediation Contract. The East Tennessee Materials and Energy Corporation (M and EC); a wholly owned subsidiary of Perma-Fix Environmental Services, Inc. (PESI), is a small business team member to CHPRC. Our scope includes project management; operation and maintenance of on-site storage, repackaging, treatment, and disposal facilities; and on-site waste management including waste receipt from generators and delivery to on-site andmore » off-site treatment, storage, and disposal facilities. As part of this scope, M and EC staffs the centralized Waste Support Services organization responsible for all waste characterization and acceptance required to support CHPRC and waste generators across the Hanford Site. At the time of the CHPRC contract award (August 2008) slightly more than 9,000 cubic meters (m{sup 3}) of legacy waste was defined as 'no-path-forward waste'. A significant portion of this waste (7,650 m{sup 3}) comprised wastes with up to 50 grams of special nuclear materials (SNM) in oversized packages recovered during retrieval operations and large glove boxes removed from the Plutonium Finishing Plant (PFP). Through a collaborative effort between the DOE, CHPRC, and Perma-Fix Environmental Services, Inc. (PESI), pathways for these problematic wastes were developed that took advantage of commercial treatment capabilities at a nearby vendor facility, Perma-Fix Northwest (PFNW). In the spring of 2009, CHPRC initiated a pilot program under which they began shipping large package, low gram suspect TRU (<15 g SNM per container), and large package contact and remote handled MLLW to the off-site PFNW facility for treatment. PFNW is restricted by the SNM limits set for the total quantity of SNM allowed at the facility in accordance with the facility's radioactive materials license(s) (RML). While both CHPRC and PFNW maintain waste databases to track all waste movements, it became evident early in the process that a tool was needed that married the two systems to better track SNM inventories and sequence waste from the point of generation, through the PFNW facility, and back to the Hanford site for final disposition. This tool, known as the Treatment Integration and Planning Tool (TIPT), has become a robust planning tool that provides real-time data to support compliant and efficient waste generation, transportation, treatment, and disposition. TIPT is developing into the next generation tool that will change the way in which legacy wastes, retrieval wastes and decontamination and decommissioning operations are conducted on the Plateau Remediation Contract (PRC). The real value of the TIPT is its predictive capability. It allows the W and FMP to map out optimal windows for processing waste through the PFNW facility, or through any process that is in some way resource limited. It allows project managers to identify and focus on problem areas before shipments are affected. It has been modified for use in broader applications to predict turnaround times and identify windows of opportunity for processing higher gram wastes through PFNW and to allow waste generators, site-wide, to accurately predict scope, cost, and schedule for waste generation to optimize processing and eliminate storage, double handling, and related costs and unnecessary safety risks. The TIPT addresses the years old problem of how to effectively predict not only what needs to be done, but when. 'When' is the key planning parameter that has been ignored by the generator and processor for many years, but has proven to be the most important parameter for both parties. While further refinement is a natural part of any development process, the current improvements on the TIPT have shown that prediction is a powerful consideration. Even in lean times expected for the foreseeable future, the improved TIPT continues to play a central role in managing our way through those times to assure facilities remain viable and available. It is recommended that other major remediation projects and waste processing facilities incorporate a tool such as TIPT to improve customer-commercial supplier communications and better optimization of resources. (authors)« less
Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayancsik, B.A.
1994-10-13
During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less
Motorcycle waste heat energy harvesting
NASA Astrophysics Data System (ADS)
Schlichting, Alexander D.; Anton, Steven R.; Inman, Daniel J.
2008-03-01
Environmental concerns coupled with the depletion of fuel sources has led to research on ethanol, fuel cells, and even generating electricity from vibrations. Much of the research in these areas is stalling due to expensive or environmentally contaminating processes, however recent breakthroughs in materials and production has created a surge in research on waste heat energy harvesting devices. The thermoelectric generators (TEGs) used in waste heat energy harvesting are governed by the Thermoelectric, or Seebeck, effect, generating electricity from a temperature gradient. Some research to date has featured platforms such as heavy duty diesel trucks, model airplanes, and automobiles, attempting to either eliminate heavy batteries or the alternator. A motorcycle is another platform that possesses some very promising characteristics for waste heat energy harvesting, mainly because the exhaust pipes are exposed to significant amounts of air flow. A 1995 Kawasaki Ninja 250R was used for these trials. The module used in these experiments, the Melcor HT3-12-30, produced an average of 0.4694 W from an average temperature gradient of 48.73 °C. The mathematical model created from the Thermoelectric effect equation and the mean Seebeck coefficient displayed by the module produced an average error from the experimental data of 1.75%. Although the module proved insufficient to practically eliminate the alternator on a standard motorcycle, the temperature data gathered as well as the examination of a simple, yet accurate, model represent significant steps in the process of creating a TEG capable of doing so.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. John, C.M.
1977-04-01
An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel.
Biodegradable and compostable alternatives to conventional plastics.
Song, J H; Murphy, R J; Narayan, R; Davies, G B H
2009-07-27
Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.
Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey
2011-09-30
One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to havemore » a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.« less
Advanced sensible heat solar receiver for space power
NASA Technical Reports Server (NTRS)
Bennett, Timothy J.; Lacy, Dovie E.
1988-01-01
NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis was conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.
Advanced sensible heat solar receiver for space power
NASA Technical Reports Server (NTRS)
Bennett, Timothy J.; Lacy, Dovie E.
1988-01-01
NASA Lewis, through in-house efforts, has begun a study to generate a conceptual design of a sensible heat solar receiver and to determine the feasibility of such a system for space power applications. The sensible heat solar receiver generated in this study uses pure lithium as the thermal storage medium and was designed for a 7 kWe Brayton (PCS) operating at 1100 K. The receiver consists of two stages interconnected via temperature sensing variable conductance sodium heat pipes. The lithium is contained within a niobium vessel and the outer shell of the receiver is constructed of third generation rigid, fibrous ceramic insulation material. Reradiation losses are controlled with niobium and aluminum shields. By nature of design, the sensible heat receiver generated in this study is comparable in both size and mass to a latent heat system of similar thermal capacitance. The heat receiver design and thermal analysis were conducted through the combined use of PATRAN, SINDA, TRASYS, and NASTRAN software packages.
Life cycle assessment of a packaging waste recycling system in Portugal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira, S.; Cabral, M.; Cruz, N.F. da, E-mail: nunocruz@tecnico.ulisboa.pt
Highlights: • We modeled a real packaging waste recycling system. • The analysis was performed using the life cycle assessment methodology. • The 2010 situation was compared with scenarios where the materials were not recycled. • The “Baseline” scenario seems to be more beneficial to the environment. - Abstract: Life Cycle Assessment (LCA) has been used to assess the environmental impacts associated with an activity or product life cycle. It has also been applied to assess the environmental performance related to waste management activities. This study analyses the packaging waste management system of a local public authority in Portugal. Themore » operations of selective and refuse collection, sorting, recycling, landfilling and incineration of packaging waste were considered. The packaging waste management system in operation in 2010, which we called “Baseline” scenario, was compared with two hypothetical scenarios where all the packaging waste that was selectively collected in 2010 would undergo the refuse collection system and would be sent directly to incineration (called “Incineration” scenario) or to landfill (“Landfill” scenario). Overall, the results show that the “Baseline” scenario is more environmentally sound than the hypothetical scenarios.« less
Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calmus, D.B.
1994-08-25
A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less
The U.S. Environmental Protection Agency (EPA) has funded a pilot project to assist small- and medium-size manufacturers who want to minimize their generation of hazardous waste but lack the expertise to do so. Waste Minimization Assessment Centers (WMACs) were established at sel...
10 CFR 60.143 - Monitoring and testing waste packages.
Code of Federal Regulations, 2010 CFR
2010-01-01
... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long as...
10 CFR 60.143 - Monitoring and testing waste packages.
Code of Federal Regulations, 2011 CFR
2011-01-01
... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long as...
10 CFR 60.143 - Monitoring and testing waste packages.
Code of Federal Regulations, 2012 CFR
2012-01-01
... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long as...
10 CFR 60.143 - Monitoring and testing waste packages.
Code of Federal Regulations, 2013 CFR
2013-01-01
... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long as...
10 CFR 60.143 - Monitoring and testing waste packages.
Code of Federal Regulations, 2014 CFR
2014-01-01
... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long as...
A Fruit of Yucca Mountain: The Remote Waste Package Closure System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Skinner; Greg Housley; Colleen Shelton-Davis
2011-11-01
Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? Without caution, this debate could lure us away from capitalizing on the fruits of the project. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System, a full-scale prototype system for closing waste packages that were to be entombed in the now abandoned Yucca Mountain repository. This article describes the system, which INL designed and built, to weld the closure lids on the waste packages, nondestructively examine the welds using four different techniques, repair the welds if necessary,more » mitigate crack initiating stresses in the surfaces of the welds, evacuate and backfill the packages with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear waste packages for long term storage—regardless of whether or not the future destination for these packages will be an underground repository. Additionally, many of the system’s features and concepts may benefit other remote nuclear applications.« less
Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.
2013-03-21
Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation ofmore » hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.« less
Recovery of exhaust waste heat for a hybrid car using steam turbine
NASA Astrophysics Data System (ADS)
Ababatin, Yasser
A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.
Current status of circularity for aluminum from household waste in Austria.
Warrings, R; Fellner, J
2018-02-20
Aluminum (Al) represents the metal with the highest consumption growth in the last few decades. Beside its increasing usage in the transport (lightweight construction of vehicles) and building sector, Al is used ever more frequently for household goods like packaging material, which represents a readily available source for secondary aluminum due to its short lifetime. The present paper investigates the extent to which this potential source for recycling of Al is already utilized in Austria and highlights areas for future improvements. Thereto a detailed material flow analysis for Al used in packaging & household non-packaging in 2013 was conducted. In practice, all Al flows starting from market entrance through waste collection and processing until its final recycling or disposal have been investigated. The results indicate that about 25,100 t/a (2.96 kg/cap/a) of Al packaging & household non-packaging arose as waste. At present about 9800 t/a, or 39%, are recycled as secondary Al, of which 26% is regained from separate collection and sorting, 8% from bottom ash and 5% from mechanical treatment. The type of Al packaging & household non-packaging affects the recycling rate: 82% of the total recycled quantities come from rigid packaging & household non-packaging, while only 3% of the total recycled Al derives from flexible materials. A significant amount of Al was lost during thermal waste treatment due to oxidation (10%) and insufficient recovery of Al from both waste incineration bottom ash and municipal solid waste treated in mechanical biological treatment plants (49%). Overall it can be concluded that once Al ends up in commingled waste the recovery of Al becomes less likely and its material quality is reduced. Although Austria can refer to a highly developed recycling system, the Austrian packaging industry, collection and recovery systems and waste management need to increase their efforts to comply with future recycling targets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Turbo-Electric Compressor/Generator Using Halbach Arrays
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J. (Inventor)
2016-01-01
The present invention is a turbojet design that integrates power generation into the turbojet itself, rather than use separate generators attached to the turbojet for power generation. By integrating the power generation within the jet engine, the weight of the overall system is significantly reduced, increasing system efficiency. Also, by integrating the power generating elements of the system within the air flow of the jet engine, the present invention can use the heat generated by the power generating elements (which is simply expelled waste heat in current designs) to increase the engine performance.
Updraft gasification of salmon processing waste.
Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles
2009-10-01
The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, T.; Kawasaki, T.; Sakamoto, H.
2003-02-27
We have been developing a radioactive waste package made of high-strength and ultra low-permeability concrete (HSULPC) for geological disposal of TRU wastes, which is expected to be much more impervious to water than conventional concrete. In this study, basic data for the HSULPC regarding its the impervious character and the thermodynamics during cement hydration were obtained through water permeability measurements using cold isostatic pressing (CIP) and adiabatic concrete hydration experiments, respectively. Then, a prediction tool to find concrete package construction conditions to avoid thermal cracking was developed, which could deal with coupled calculations of cement hydration, heat transfer, stress, andmore » cracking. The developed tool was applied to HSULPC hydration on a small-scale cylindrical model to examine whether there was any effect on cracking which depended on the ratio of concrete cylinder thickness to its inner diameter. The results were compared to experiments. For concrete with a compressive strength of 200MPa, the water permeability coefficient was 4 x 10{sup 19} m/s. Dependences of activation energy and frequency factor on degree of cement hydration had a sharp peaking due to the nucleation rate-determining step, and a gradual increase region due to the diffusion rate-determining step. From analyses of the small-scale cylindrical model, dependences of the maximum principal stress on the radius were obtained. When the ratio of the concrete thickness to the heater diameter was around 1, the risk of cracking was predicted to be minimized. These numerical predictions from the developed tool were verified by experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldston, W.
On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and thenmore » dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.« less
Polyethylene recycling: Waste policy scenario analysis for the EU-27.
Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter
2015-08-01
This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. Copyright © 2015 Elsevier Ltd. All rights reserved.
Radwaste desk reference - Volume 3, Part 2: Liquid waste management. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deltete, D.; Fisher, S.; Kelly, J.J.
1994-05-01
EPRI began, in late in 1987, to produce a Radwaste Desk Reference that would allow each of the member utilities access to the available information and expertise on radwaste management. EPRI considers this important because radwaste management involves a wide variety of scientific and engineering disciplines. These include chemical and mechanical engineering, chemistry, and health physics. Radwaste management also plays a role in implementing a wide variety of regulatory requirements. These include plant-specific technical specifications, NRC standards for protection against radiation, DOT transportation regulations and major environmental legislation such as the Resource Conservation and Recovery Act. EPRI chose a questionmore » and answer format because it could be easily accessed by radwaste professionals with a variety of interests. The questions were generated at two meetings of utility radwaste professionals and EPRI contractors. Volume 1, which is already in publication, addresses dry active waste generation, processing and measurement. Volume 2 addresses low level waste storage, transportation and disposal. This volume, Volume 3, is being issued in two parts. Part 1 concentrates on the processing of liquid radioactive waste, whereas Part 2, included here, addresses liquid waste management. It includes extensive information and operating practices related to liquid waste generation and control, liquid waste processing systems at existing U.S. nuclear plants, processes for managing wet wastes (handling, dewatering, solidifying, processing, and packaging), and liquid waste measurement and analysis.« less
Use of photovoltaics for waste heat recovery
Polcyn, Adam D
2013-04-16
A device for recovering waste heat in the form of radiated light, e.g. red visible light and/or infrared light includes a housing having a viewing window, and a photovoltaic cell mounted in the housing in a relationship to the viewing window, wherein rays of radiated light pass through the viewing window and impinge on surface of the photovoltaic cell. The housing and/or the cell are cooled so that the device can be used with a furnace for an industrial process, e.g. mounting the device with a view of the interior of the heating chamber of a glass making furnace. In this manner, the rays of the radiated light generated during the melting of glass batch materials in the heating chamber pass through the viewing window and impinge on the surface of the photovoltaic cells to generate electric current which is passed onto an electric load.
Goldsberry, Fred L.
1989-01-01
All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
Characterisation of imperial college reactor centre legacy waste using gamma-ray spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shuhaimi, Alif Imran Mohd
Waste characterisation is a principal component in waste management strategy. The characterisation includes identification of chemical, physical and radiochemical parameters of radioactive waste. Failure to determine specific waste properties may result in sentencing waste packages which are not compliant with the regulation of long term storage or disposal. This project involved measurement of intensity and energy of gamma photons which may be emitted by radioactive waste generated during decommissioning of Imperial College Reactor Centre (ICRC). The measurement will use High Purity Germanium (HPGe) as Gamma-ray detector and ISOTOPIC-32 V4.1 as analyser. In order to ensure the measurements provide reliable results,more » two quality control (QC) measurements using difference matrices have been conducted. The results from QC measurements were used to determine the accuracy of the ISOTOPIC software.« less
Heat-Powered Pump for Liquid Metals
NASA Technical Reports Server (NTRS)
Campana, R. J.
1986-01-01
Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.
Solid Waste Reduction--A Hands-on Study.
ERIC Educational Resources Information Center
Wiessinger, Diane
1991-01-01
This lesson plan uses grocery shopping to demonstrate the importance of source reduction in the handling of solid waste problems. Students consider different priorities in shopping (convenience, packaging, and waste reduction) and draw conclusions about the relationship between packaging techniques and solid waste problems. (MCO)
Kranzinger, Lukas; Schopf, Kerstin; Pomberger, Roland; Punesch, Elisabeth
2017-02-01
Austria's performance in the collection of separated waste is adequate. However, the residual waste still contains substantial amounts of recyclable materials - for example, plastics, paper and board, glass and composite packaging. Plastics (lightweight packaging and similar non-packaging materials) are detected at an average mass content of 13% in residual waste. Despite this huge potential, only 3% of the total amount of residual waste (1,687,000 t y -1 ) is recycled. This implies that most of the recyclable materials contained in the residual waste are destined for thermal recovery and are lost for recycling. This pilot project, commissioned by the Land of Lower Austria, applied a holistic approach, unique in Europe, to the Lower Austrian waste management system. It aims to transfer excess quantities of plastic packaging and non-packaging recyclables from the residual waste system to the separately collected waste system by introducing a so-called 'catch-all-plastics bin'. A quantity flow model was constructed and the results showed a realistic increase in the amount of plastics collected of 33.9 wt%. This equals a calculated excess quantity of 19,638 t y -1 . The increased plastics collection resulted in a positive impact on the climate footprint (CO 2 equivalent) in line with the targets of EU Directive 94/62/EG (Circular Economy Package) and its Amendments. The new collection system involves only moderate additional costs.
Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka
2013-01-01
Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out.
Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka
2013-01-01
Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi0.5Sb1.5Te3/Ni provides a promising solution. The Bi0.5Sb1.5Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m2K and a volume power density of 10 kW/m3 using low-grade heat sources below 100°C. The Bi0.5Sb1.5Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out. PMID:23511347
Sewage sludge drying by energy recovery from OFMSW composting: preliminary feasibility evaluation.
Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano; Torretta, Vincenzo
2014-05-01
In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
5. 7 MW Tornados for Dunn Paper mill power CHP plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffs, E.
The first commercial installation in the United States of Ruston's high efficiency Tornado gas turbine is now fully operational at the Dunn Paper Company's Port Huron, Michigan paper mill where they make special light weight papers for packaging and business forms. It's a cogeneration installation powered by three Tornados and two waste heat recovery boilers which provide the mill with all of its electricity and process steam requirements - at high overall thermal efficiency.
Life-Cycle Evaluation of Domestic Energy Systems
NASA Astrophysics Data System (ADS)
Bando, Shigeru; Hihara, Eiji
Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.
DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
T.L. Mitchell
2000-05-31
The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The objective of this analysis is to describe themore » naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS M&O 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS M&O 2000a).« less
Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid
NASA Astrophysics Data System (ADS)
Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha
2017-03-01
Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.
Biodegradable and compostable alternatives to conventional plastics
Song, J. H.; Murphy, R. J.; Narayan, R.; Davies, G. B. H.
2009-01-01
Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all ‘good’ or petrochemical-based products are all ‘bad’. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated ‘home’ composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted. PMID:19528060
K-Basins Sludge Treatment and Packaging at the Hanford Site - 13585
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogwell, Thomas W.; Honeyman, James O.; Stegen, Gary
Highly radioactive sludge resulting from the storage of degraded spent nuclear fuel has been consolidated in Engineered Containers (ECs) in the 105-K West Storage Basin located on the Hanford site near the Columbia River in Washington State. CH2M Hill Plateau Remediation Company (CHPRC) is proceeding with a project to retrieve the sludge, place it in Sludge Transport and Storage Containers (STSCs) and store those filled containers within the T Plant Canyon facility on the Hanford Site Central Plateau (Phase 1). Retrieval and transfer of the sludge material will enable removal of the 105-K West Basin and allow remediation of themore » subsurface contamination plumes under the basin. The U.S. Department of Energy (DOE) plans to treat and dispose of this K Basins sludge (Phase 2) as Remote Handled Transuranic Waste (RH TRU) at the Waste Isolation Pilot Plant (WIPP) located in New Mexico. The K Basin sludge currently contains uranium metal which reacts with water present in the stored slurry, generating hydrogen and other byproducts. The established transportation and disposal requirements require the transformation of the K Basins sludge to a chemically stable, liquid-free, packaged waste form. The Treatment and Packaging Project includes removal of the containerised sludge from T Plant, the treatment of the sludge as required, and packaging of all the sludge into a form that is certifiable for transportation to and disposal at WIPP. Completion of this scope will require construction and operation of a Sludge Treatment and Packaging Facility (STPF), which could be either a completely new facility or a modification of an existing Hanford Site facility. A Technology Evaluation and Alternatives Analysis (TEAA) for the STP Phase 2 was completed in 2011. A Request for Technology Information (RFI) had been issued in October 2009 to solicit candidate technologies for use in Phase 2. The RFI also included a preliminary definition of Phase 2 functions and requirements. Potentially applicable technologies were identified through a commercial procurement process, technical workshops, and review of the numerous previous sludge treatment technology studies. The identified technology approaches were screened using the criteria established in the Decision Plan, and focused bench top feasibility testing was conducted. Engineering evaluations of the costs, schedules, and technical maturity were developed and evaluated. Recommendations were developed based on technical evaluations. The criteria used in the evaluation process were as follows: (1) Safety, (2) Regulatory/stakeholder acceptance, (3) Technical maturity, (4) Operability and maintainability, (5) Life cycle cost and schedule, (6) Potential for beneficial integration with ongoing STP-Phase 1 activities, and (7) Integration with Site-wide RH-TRU processing/packaging, planning, schedule, and approach. The TEAA recommended Warm Water Oxidation (WWO) as the baseline treatment technology and two risk reduction enhancement options for further consideration during development of the process - size reduction and chemical oxidation (Fenton's reagent). The enhancement options would potentially allow a useful reduction in the total operating time required to process the K Basins sludge. The U.S. Department of Energy's Richland Field Office (DOE-RL) has approved this recommended technical approach. The baseline process can be broken down into the following main process steps: (1) STSC transfer from T Plant to the Sludge Treatment and Packaging Facility (STPF). (2) Retrieval of sludge from the STSCs and transfer to the Receipt and Reaction Tank (RRT). (3) Preparation for immobilization by oxidation using heated water (i.e., WWO) for those batches that require it and concentration by evaporating water at about atmospheric pressure in the RRT. (4) Immobilization by using additives to eliminate free liquids and packaging of the treated sludge into drums. (5) Inspection and handling of the filled drums prior to transfer to a separate storage and shipping facility. (6) Handling of vapor, condensate, and other waste streams generated by the process. Each of these steps is discussed in the paper, together with the current state of progress in developing the technology and requirements for continued development. A schematic of the recommended baseline WWO treatment process is given below. (authors)« less
Strategic Minimization of High Level Waste from Pyroprocessing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Michael F.; Benedict, Robert W.
The pyroprocessing of spent nuclear fuel results in two high-level waste streams--ceramic and metal waste. Ceramic waste contains active metal fission product-loaded salt from the electrorefining, while the metal waste contains cladding hulls and undissolved noble metals. While pyroprocessing was successfully demonstrated for treatment of spent fuel from Experimental Breeder Reactor-II in 1999, it was done so without a specific objective to minimize high-level waste generation. The ceramic waste process uses “throw-away” technology that is not optimized with respect to volume of waste generated. In looking past treatment of EBR-II fuel, it is critical to minimize waste generation for technologymore » developed under the Global Nuclear Energy Partnership (GNEP). While the metal waste cannot be readily reduced, there are viable routes towards minimizing the ceramic waste. Fission products that generate high amounts of heat, such as Cs and Sr, can be separated from other active metal fission products and placed into short-term, shallow disposal. The remaining active metal fission products can be concentrated into the ceramic waste form using an ion exchange process. It has been estimated that ion exchange can reduce ceramic high-level waste quantities by as much as a factor of 3 relative to throw-away technology.« less
Optimal Design of an Automotive Exhaust Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Fagehi, Hassan; Attar, Alaa; Lee, Hosung
2018-07-01
The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).
Optimal Design of an Automotive Exhaust Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Fagehi, Hassan; Attar, Alaa; Lee, Hosung
2018-04-01
The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2012 CFR
2012-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2013 CFR
2013-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2011 CFR
2011-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-25
... Document for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps AGENCY: Office of Energy... must identify the framework document for packaged terminal air conditioners and packaged terminal heat... packaged terminal air conditioners and packaged terminal heat pumps. 78 FR 12252. The document provided for...
Solid industrial wastes and their management in Asegra (Granada, Spain)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casares, M.L.; Ulierte, N.; Mataran, A.
ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both themore » type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping.« less
Edjabou, Maklawe Essonanawe; Martín-Fernández, Josep Antoni; Scheutz, Charlotte; Astrup, Thomas Fruergaard
2017-11-01
Data for fractional solid waste composition provide relative magnitudes of individual waste fractions, the percentages of which always sum to 100, thereby connecting them intrinsically. Due to this sum constraint, waste composition data represent closed data, and their interpretation and analysis require statistical methods, other than classical statistics that are suitable only for non-constrained data such as absolute values. However, the closed characteristics of waste composition data are often ignored when analysed. The results of this study showed, for example, that unavoidable animal-derived food waste amounted to 2.21±3.12% with a confidence interval of (-4.03; 8.45), which highlights the problem of the biased negative proportions. A Pearson's correlation test, applied to waste fraction generation (kg mass), indicated a positive correlation between avoidable vegetable food waste and plastic packaging. However, correlation tests applied to waste fraction compositions (percentage values) showed a negative association in this regard, thus demonstrating that statistical analyses applied to compositional waste fraction data, without addressing the closed characteristics of these data, have the potential to generate spurious or misleading results. Therefore, ¨compositional data should be transformed adequately prior to any statistical analysis, such as computing mean, standard deviation and correlation coefficients. Copyright © 2017 Elsevier Ltd. All rights reserved.
Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.
2011-09-12
The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less
NASA Astrophysics Data System (ADS)
Wallace, M. G.; Iuzzolina, H.
2005-12-01
A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analysis includes disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift was intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in association with a volcanic eruption through the repository. Mathematical relations were built between the resulting conduit areas and the fraction of the repository area occupied by waste packages. This relation was used in conjunction with a joint distribution incorporating variability in eruptive conduit diameters and in the number of eruptive conduits that could intersect the repository.
Experiments and Modeling to Support Field Test Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Peter Jacob; Bourret, Suzanne Michelle; Zyvoloski, George Anthony
Disposition of heat-generating nuclear waste (HGNW) remains a continuing technical and sociopolitical challenge. We define HGNW as the combination of both heat generating defense high level waste (DHLW) and civilian spent nuclear fuel (SNF). Numerous concepts for HGNW management have been proposed and examined internationally, including an extensive focus on geologic disposal (c.f. Brunnengräber et al., 2013). One type of proposed geologic material is salt, so chosen because of its viscoplastic deformation that causes self-repair of damage or deformation induced in the salt by waste emplacement activities (Hansen and Leigh, 2011). Salt as a repository material has been tested atmore » several sites around the world, notably the Morsleben facility in Germany (c.f. Fahland and Heusermann, 2013; Wollrath et al., 2014; Fahland et al., 2015) and at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Evaluating the technical feasibility of a HGNW repository in salt is an ongoing process involving experiments and numerical modeling of many processes at many facilities.« less
Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Swami Nathan
Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach tomore » reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.J. Orchard; L.A. Harvego; T.L. Carlson
The Idaho National Laboratory (INL) is a multipurpose national laboratory delivering specialized science and engineering solutions for the U.S. Department of Energy (DOE). Sponsorship of INL was formally transferred to the DOE Office of Nuclear Energy, Science and Technology (NE) by Secretary Spencer Abraham in July 2002. The move to NE, and designation as the DOE lead nuclear energy laboratory for reactor technology, supports the nation’s expanding nuclear energy initiatives, placing INL at the center of work to develop advanced Generation IV nuclear energy systems; nuclear energy/hydrogen coproduction technology; advanced nuclear energy fuel cycle technologies; and providing national security answersmore » to national infrastructure needs. As a result of the Laboratory’s NE mission, INL generates both contact-handled and remote-handled transuranic (TRU) waste from ongoing operations. Generation rates are relatively small and fluctuate based on specific programs and project activities being conducted; however, the Laboratory will continue to generate TRU waste well into the future in association with the NE mission. Currently, plans and capabilities are being established to transfer INL’s contact-handled TRU waste to the Advanced Mixed Waste Treatment Plant (AMWTP) for certification and disposal to the Waste Isolation Pilot Plant (WIPP). Remote-handled TRU waste is currently placed in storage at the Materials and Fuels Complex (MFC). In an effort to minimize future liabilities associated with the INL NE mission, INL is evaluating and assessing options for the management and disposition of all its TRU waste on a real-time basis at time of generation. This paper summarizes near-term activities to minimize future re handling of INL’s TRU waste, as well as, potential complications associated with the long-term disposition of newly-generated TRU waste. Potential complications impacting the disposition of INL newly-generated TRU waste include, but are not limited to: 1) required remote-handled TRU packaging configuration(s) vs. current facility capabilities, 2) long-term NE mission activities, 3) WIPP certification requirements, and 4) budget considerations.« less
An experimental investigation of thermoacoustic lasers operating in audible frequency range
NASA Astrophysics Data System (ADS)
Kolhe, Sanket Anil
Thermoacoustic lasers convert heat from a high-temperature heat source into acoustic power while rejecting waste heat to a low temperature sink. The working fluids involved can be air or noble gases which are nontoxic and environmentally benign. Simple in construction due to absence of moving parts, thermoacoustic lasers can be employed to achieve generation of electricity at individual homes, water-heating for domestic purposes, and to facilitate space heating and cooling. The possibility of utilizing waste heat or solar energy to run thermoacoustic devices makes them technically promising and economically viable to generate large quantities of acoustic energy. The research presented in this thesis deals with the effects of geometric parameters (stack position, stack length, tube length) associated with a thermoacoustic laser on the output sound wave. The effects of varying input power on acoustic output were also studied. Based on the experiments, optimum operating conditions were identified and qualitative and/or quantitative explanations were provided to justify our observations. It was observed that the maximum sound pressure level was generated for the laser with the stack positioned at a distance of quarter lengths of a resonator from the closed end. Higher sound pressure levels were recorded for the laser with longer stack lengths and longer resonator lengths. Efforts were also made to develop high-frequency thermoacoustic lasers.
Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel and J. M. Capron
2007-07-25
This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singledecker, Steven John
The purpose of this document is to describe the waste stream from Z-Pinch Residual Waste Project that due to worker safety concerns and operational efficiency is a candidate for blending Transuranic and low level waste together and can be safely packaged as low-level waste consistent with DOE Order 435.1 requirements and NRC guidance 10 CFR 61.42. This waste stream consists of the Pu-ICE post-shot containment systems, including plutonium targets, generated from the Z Machine experiments requested by LANL and conducted by SNL/NM. In the past, this TRU waste was shipped back to LANL after Sandia sends the TRU data packagemore » to LANL to certify the characterization (by CCP), transport and disposition at WIPP (CBFO) per LANL MOU-0066. The Low Level Waste is managed, characterized, shipped and disposed of at NNSS by SNL/NM per Sandia MOU # 11-S-560.« less
Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John R.; Hardin, Ernest
2015-07-01
This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portionsmore » of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has benefited greatly from review principally by Steve Pye, and also by Paul Eslinger, Dave Sevougian and Jiann Su.« less
Modeling and Simulations on the Intramural Thermoelectric Generator of Lower-Re-fluid
NASA Astrophysics Data System (ADS)
Zhang, Zheng; Zheng, Ding; Chen, Yushan
The thermoelectric conversion with lower Renault number (Re) fluid, such as waste heat from industry boiler, and engine's circled cooling water, which can be designed as intramural generator structure. In this research, a thermoelectric project analysis model and the description of an intensified system are presented, its generator with the aligned or staggered platoon structure has strengthened heat-transfer property, and the heat convection coefficient ratio has increased times than plain tube; For the fluid kinetic energy's loss is influenced by the whirlpool, the pressure difference is several hundred Pa level which changes along with geometric parameters of transform components; what's more, heat transfer area increase distinctly under the same generator volume, which has built the foundation for the enhancement output electric power.
Smith, M.J.
1985-06-19
This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.
Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano
2014-05-01
Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tacklemore » the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.« less
Packaging waste recycling in Europe: is the industry paying for it?
da Cruz, Nuno Ferreira; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha
2014-02-01
This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the "recycling system" are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and Portugal the industry is paying local authorities more than just the incremental costs of recycling (full costs of selective collection and sorting minus the avoided costs). To provide a more definitive judgment on the fairness of the systems it will be necessary to assess the cost efficiency of waste management operators (and judge whether operators are claiming costs or eliciting "prices"). Copyright © 2013 Elsevier Ltd. All rights reserved.
SAS2H Generated Isotopic Concentrations For B&W 15X15 PWR Assembly (SCPB:N/A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.W. Davis
This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to provide pressurized water reactor (PWR) isotopic composition data as a function of time for use in criticality analyses. The objectives of this evaluation are to generate burnup and decay dependant isotopic inventories and to provide these inventories in a form which can easily be utilized in subsequent criticality calculations.
Chu, J P; Chen, Y T; Mahalingam, T; Tzeng, C C; Cheng, T W
2006-12-01
Fiber reinforced plastic (FRP) composite material has widespread use in general tank, special chemical tank and body of yacht, etc. The purpose of this study is directed towards the volume reduction of non-combustible FRP by thermal plasma and recycling of vitrified slag with specific procedures. In this study, we have employed three main wastes such as, FRP, gill net and waste glass. The thermal molten process was applied to treat vitrified slag at high temperatures whereas in the post-heat treatment vitrified slags were mixed with specific additive and ground into powder form and then heat treated at high temperatures. With a two-stage heat treatment, the treated sample was generated into four crystalline phases, cristobalite, albite, anorthite and wollastonite. Fine and relatively high dense structures with desirable properties were obtained for samples treated by the two-stage heating treatment. Good physical and mechanical properties were achieved after heat treatment, and this study reveals that our results could be comparable with the commercial products.
NASA Astrophysics Data System (ADS)
Aji, Wijayanto Setyo; Purwanto; Suherman, S.
2018-02-01
Cassava starch industry is one of the leading small-medium enterprises (SMEs) in Pati Regency. Cassava starch industry released waste that reduces the quantity of final product and potentially contamined the environment. This study was conducted to observe the feasibility of good housekeeping implementation to reduce waste and at the same time improve efficiency of production process. Good housekeeping opportunities are consideration by three aspect, technical, economy and environmental. Good housekeeping opportunities involved water conservation and waste reduction. These included reuse of water in washing process, improving workers awareness in drying section and packaging section. Implementation of these opportunities can reduce water consumption, reduce wastewater and solid waste generation also increased quantity of final product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aponte, C.I.
F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Evenmore » after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.« less
Teaching Old Packaging New Tricks - 12593
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, Jeffery L.; Shuler, James M.
2012-07-01
Waste disposition campaigns have been an industry and government focus area since the mid- 1970's. With increased focus on this issue, and a lot of hard work, most waste packaging and transportation issues have been addressed. The material has been successfully shipped and dis-positioned. DOE has successfully de-inventoried materials from multiple sites to meet material consolidation, footprint reduction, nonproliferation, and regulatory obligations with cost savings from reduced maintenance and regulatory compliance. There has been a wide range of certified shipping packagings for the transportation of hazardous materials to meet most of the waste needs. The remaining materials are problematic, generallymore » low volume, and do not meet the certified content of the existing inventory of packaging. Designing, testing and certifying new packaging designs can be a long and expensive process and for small volumes of material it is cost prohibitive. One very cost effective option is to lease and use a certified packaging to overpack waste containers. There are many robust certified packagings available with the capability to envelope the waste content. The capability to use inner containers, inside the current fleet of certified casks or packaging, to address specific content problems of additional shielding (e.g., U-233) or containment (e.g., sodium bonded nuclear material) has successfully expanded the capability for timely cost effective shipment of unique contents. This option has been used successfully in the NAC-LWT, T-3 and other packagings. (authors)« less
NASA Astrophysics Data System (ADS)
Kubasco, A. J.
1991-07-01
The objective of Gas Engine Heat Recovery Unit was to design, fabricate, and test an efficient, compact, and corrosion resistant heat recovery unit (HRU) for use on exhaust of natural gas-fired reciprocating engine-generator sets in the 50-500 kW range. The HRU would be a core component of a factory pre-packaged cogeneration system designed around component optimization, reliability, and efficiency. The HRU uses finned high alloy, stainless steel tubing wound into a compact helical coil heat exchanger. The corrosion resistance of the tubing allows more heat to be taken from the exhaust gas without fear of the effects of acid condensation. One HRU is currently installed in a cogeneration system at the Henry Ford Hospital Complex in Dearborn, Michigan. A second unit underwent successful endurance testing for 850 hours. The plan was to commercialize the HRU through its incorporation into a Caterpillar pre-packaged cogeneration system. Caterpillar is not proceeding with the concept at this time because of a downturn in the small size cogeneration market.
Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
Vanneste, J; Van Gerven, T; Vander Putten, E; Van der Bruggen, B; Helsen, L
2011-09-01
This paper investigates the potential CO(2) emission reductions related to a partial switch from fossil fuel-based heat and electricity generation to renewable wood waste-based systems in Flanders. The results show that valorization in large-scale CHP (combined heat and power) systems and co-firing in coal plants have the largest CO(2) reduction per TJ wood waste. However, at current co-firing rates of 10%, the CO(2) reduction per GWh of electricity that can be achieved by co-firing in coal plants is five times lower than the CO(2) reduction per GWh of large-scale CHP. Moreover, analysis of the effect of government support for co-firing of wood waste in coal-fired power plants on the marginal costs of electricity generation plants reveals that the effect of the European Emission Trading Scheme (EU ETS) is effectively counterbalanced. This is due to the fact that biomass integrated gasification combined cycles (BIGCC) are not yet commercially available. An increase of the fraction of coal-based electricity in the total electricity generation from 8 to 10% at the expense of the fraction of gas-based electricity due to the government support for co-firing wood waste, would compensate entirely for the CO(2) reduction by substitution of coal by wood waste. This clearly illustrates the possibility of a 'rebound' effect on the CO(2) reduction due to government support for co-combustion of wood waste in an electricity generation system with large installed capacity of coal- and gas-based power plants, such as the Belgian one. Copyright © 2011 Elsevier B.V. All rights reserved.
CAPE-OPEN simulation of waste-to-energy technologies for urban cities
NASA Astrophysics Data System (ADS)
Andreadou, Christina; Martinopoulos, Georgios
2018-01-01
Uncontrolled waste disposal and unsustainable waste management not only damage the environment, but also affect human health. In most urban areas, municipal solid waste production is constantly increasing following the everlasting increase in energy consumption. Technologies aim to exploit wastes in order to recover energy, decrease the depletion rate of fossil fuels, and reduce waste disposal. In this paper, the annual amount of municipal solid waste disposed in the greater metropolitan area of Thessaloniki is taken into consideration, in order to size and model a combined heat and power facility for energy recovery. From the various waste-to-energy technologies available, a fluidised bed combustion boiler combined heat and power plant was selected and modelled through the use of COCO, a CAPE-OPEN simulation software, to estimate the amount of electrical and thermal energy that could be generated for different boiler pressures. Although average efficiency was similar in all cases, providing almost 15% of Thessaloniki's energy needs, a great variation in the electricity to thermal energy ratio was observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, Christi D.; Hansen, Francis D.
This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principlesmore » of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.« less
Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.
1986-11-01
The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less
Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.
2011-06-21
A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.
Comparison of waste composition in a continuing-care retirement community.
Kim, T; Shanklin, C W; Su, A Y; Hackes, B L; Ferris, D
1997-04-01
To determine the composition of wastes generated in a continuing-care retirement community (CCRC) and to analyze the effects of source-reduction activities and meal delivery system change on the amount of waste generated in the facility. A waste stream analysis was conducted at the same CCRC during spring 1994 (period 1: baseline), spring 1995 (period 2: source reduction intervention), and fall 1995 (period 3: service delivery intervention). Weight, volume, and collapsed volume were determined for food and packaging wastes. Tray service and wait staff service are provided to 70 residents in a health care unit, and family-style service is an optional service available to 130 residents in the independent-living units. A mean of 229 meals are served per day. Intervention included the implementation of source-reduction activities and a change in a service-delivery system in periods 2 and 3, respectively. Descriptive statistics were used to determine the composition of waste. Analysis of variance and a multiple comparison method (least significant difference) were used to compare mean weight and volume of waste generated in period 1 with data collected during periods 2 and 3. Mean waste generated per meal by weight and volume ranged from 0.93 to 1.00 lb and 1.44 to 1.65 gal, respectively. Significantly less production waste by weight (0.18 lb/meal) and volume (0.12 gal/meal) was generated in period 2 than in period 1 (0.32 lb/meal and 0.16 gal/meal, respectively). Significantly less service waste by weight (0.31 lb/meal) and volume (0.05 gal/meal) was discarded in period 3 than in period 1 (0.37 lb/meal and 0.15 gal/meal, respectively). Significantly less total waste and plastic by weight was disposed of after the interventions. The study conclusions indicated that implementing source-reduction practices and changing the meal-delivery system affected the composition of waste generated. Knowledge of waste stream composition can help other foodservice professionals and consulting dietitians identify waste-reduction activities and recycling opportunities. The quantity and type of waste generated should be considered when operational decisions are made relative to market form of food, menu choices, service-delivery systems, and production forecast and controls.
WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.D. Sudan
2000-06-22
The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to themore » Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.« less
Design and Preliminary Thermal Performance of the Mars Science Laboratory Rover Heat Exchangers
NASA Technical Reports Server (NTRS)
Mastropietro, A. J.; Beatty, John; Kelly, Frank; Birur, Gajanana; Bhandari, Pradeep; Pauken, Michael; Illsley, Peter; Liu, Yuanming; Bame, David; Miller, Jennifer
2010-01-01
The challenging range of proposed landing sites for the Mars Science Laboratory Rover requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 degrees Centigrade and as warm as 38 degrees Centigrade, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 degrees Centigrade to 50 degrees Centigrade range. The MPFL also manages significant waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG). The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Two similar Heat Exchanger (HX) assemblies were designed to both acquire the heat from the MMRTG and radiate waste heat from the onboard electronics to the surrounding Martian environment. Heat acquisition is accomplished on the interior surface of each HX while heat rejection is accomplished on the exterior surface of each HX. Since these two surfaces need to be at very different temperatures in order for the MPFL to perform efficiently, they need to be thermally isolated from one another. The HXs were therefore designed for high in-plane thermal conductivity and extremely low through-thickness thermal conductivity by using aerogel as an insulator inside composite honeycomb sandwich panels. A complex assembly of hand welded and uniquely bent aluminum tubes are bonded onto the HX panels and were specifically designed to be easily mated and demated to the rest of the Rover Heat Recovery and Rejection System (RHRS) in order to ease the integration effort. During the cruise phase to Mars, the HX assemblies serve the additional function of transferring heat from the Rover MPFL to the separate Cruise Stage MPFL so that heat generated deep inside the Rover can be dissipated via the Cruise Stage radiators. Significant fabrication challenges had to be overcome in order to make the HX design a reality. The cruise phase thermal performance of the Rover HXs was verified in the cruise phase system level thermal vacuum test that was performed at JPL in January of 2009. The Rover HXs were modeled in I-DEAS TMG and predictions are compared to actual data from the test.
Performance evaluation of an automotive thermoelectric generator
NASA Astrophysics Data System (ADS)
Dubitsky, Andrei O.
Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.
Active cooling of microvascular composites for battery packaging
NASA Astrophysics Data System (ADS)
Pety, Stephen J.; Chia, Patrick X. L.; Carrington, Stephen M.; White, Scott R.
2017-10-01
Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m-2 heat flux below 40 °C.
Environmental evaluation of municipal waste prevention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentil, Emmanuel C.; Gallo, Daniele; Christensen, Thomas H., E-mail: thho@env.dtu.dk
Highlights: > Influence of prevention on waste management systems, excluding avoided production, is relatively minor. > Influence of prevention on overall supply chain, including avoided production is very significant. > Higher relative benefits of prevention are observed in waste management systems relying mainly on landfills. - Abstract: Waste prevention has been addressed in the literature in terms of the social and behavioural aspects, but very little quantitative assessment exists of the environmental benefits. Our study evaluates the environmental consequences of waste prevention on waste management systems and on the wider society, using life-cycle thinking. The partial prevention of unsolicited mail,more » beverage packaging and food waste is tested for a 'High-tech' waste management system relying on high energy and material recovery and for a 'Low-tech' waste management system with less recycling and relying on landfilling. Prevention of 13% of the waste mass entering the waste management system generates a reduction of loads and savings in the waste management system for the different impacts categories; 45% net reduction for nutrient enrichment and 12% reduction for global warming potential. When expanding our system and including avoided production incurred by the prevention measures, large savings are observed (15-fold improvement for nutrient enrichment and 2-fold for global warming potential). Prevention of food waste has the highest environmental impact saving. Prevention generates relatively higher overall relative benefit for 'Low-tech' systems depending on landfilling. The paper provides clear evidence of the environmental benefits of waste prevention and has specific relevance in climate change mitigation.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
..., packaged terminal air conditioners, and packaged terminal heat pumps. 431.96 Section 431.96 Energy... EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the... heating equipment, packaged terminal air conditioners, and packaged terminal heat pumps. (a) Scope. This...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., packaged terminal air conditioners, and packaged terminal heat pumps. 431.96 Section 431.96 Energy... EQUIPMENT Commercial Air Conditioners and Heat Pumps Test Procedures § 431.96 Uniform test method for the... heating equipment, packaged terminal air conditioners, and packaged terminal heat pumps. (a) Scope. This...
A Novel Electro Conductive Graphene/Silicon-Dioxide Thermo-Electric Generator
NASA Astrophysics Data System (ADS)
Rahman, Ataur; Abdi, Yusuf
2017-03-01
Thermoelectric generators are all solid-state devices that convert heat energy into electrical energy. The total energy (fuel) supplied to the engine, approximately 30 to 40% is converted into useful mechanical work; whereas the remaining is expelled to the environment as heat through exhaust gases and cooling systems, resulting in serious green house gas (GHG) emission. By converting waste energy into electrical energy is the aim of this manuscript. The technologies reported on waste heat recovery from exhaust gas of internal combustion engines (ICE) are thermo electric generators (TEG) with finned type, Rankine cycle (RC) and Turbocharger. This paper has presented an electro-conductive graphene oxide/silicon-dioxide (GO-SiO2) composite sandwiched by phosphorus (P) and boron (B) doped silicon (Si) TEG to generate electricity from the IC engine exhaust heat. Air-cooling and liquid cooling techniques adopted conventional TEG module has been tested individually for the electricity generation from IC engine exhausts heat at engine speed of 1000-3000rpm. For the engine speed of 7000 rpm, the maximum voltage was recorded as 1.12V and 4.00V for the air-cooling and liquid cooling respectively. The GO-SiO2 simulated result shows that it’s electrical energy generation is about 80% more than conventional TEG for the exhaust temperature of 500°C. The GO-SiO2 composite TEG develops 524W to 1600W at engine speed 1000 to 5000 rpm, which could contribute to reduce the 10-12% of engine total fuel consumption and improve emission level by 20%.
Regional Renewable Energy Cooperatives
NASA Astrophysics Data System (ADS)
Hazendonk, P.; Brown, M. B.; Byrne, J. M.; Harrison, T.; Mueller, R.; Peacock, K.; Usher, J.; Yalamova, R.; Kroebel, R.; Larsen, J.; McNaughton, R.
2014-12-01
We are building a multidisciplinary research program linking researchers in agriculture, business, earth science, engineering, humanities and social science. Our goal is to match renewable energy supply and reformed energy demands. The program will be focused on (i) understanding and modifying energy demand, (ii) design and implementation of diverse renewable energy networks. Geomatics technology will be used to map existing energy and waste flows on a neighbourhood, municipal, and regional level. Optimal sites and combinations of sites for solar and wind electrical generation (ridges, rooftops, valley walls) will be identified. Geomatics based site and grid analyses will identify best locations for energy production based on efficient production and connectivity to regional grids and transportation. Design of networks for utilization of waste streams of heat, water, animal and human waste for energy production will be investigated. Agriculture, cities and industry produce many waste streams that are not well utilized. Therefore, establishing a renewable energy resource mapping and planning program for electrical generation, waste heat and energy recovery, biomass collection, and biochar, biodiesel and syngas production is critical to regional energy optimization. Electrical storage and demand management are two priorities that will be investigated. Regional scale cooperatives may use electric vehicle batteries and innovations such as pump storage and concentrated solar molten salt heat storage for steam turbine electrical generation. Energy demand management is poorly explored in Canada and elsewhere - our homes and businesses operate on an unrestricted demand. Simple monitoring and energy demand-ranking software can easily reduce peaks demands and move lower ranked uses to non-peak periods, thereby reducing the grid size needed to meet peak demands. Peak demand strains the current energy grid capacity and often requires demand balancing projects and infrastructure that is highly inefficient due to overall low utilization.
Cleanup Verification Package for the 618-2 Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. S. Thompson
2006-12-28
This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.
The role of a detailed aqueous phase source release model in the LANL area G performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E.L.; Shuman, R.; Hollis, D.K.
1995-12-31
A preliminary draft of the Performance Assessment for the Los Alamos National Laboratory (LANL) low-level radioactive waste disposal facility at Area G is currently being completed as required by Department of Energy orders. A detailed review of the inventory data base records and the existing models for source release led to the development of a new modeling capability to describe the liquid phase transport from the waste package volumes. Nuclide quantities are sorted down to four waste package release categories for modeling: rapid release, soil, concrete/sludge, and corrosion. Geochemistry for the waste packages was evaluated in terms of the equilibriummore » coefficients, Kds, and elemental solubility limits, Csl, interpolated from the literature. Percolation calculations for the base case closure cover show a highly skewed distribution with an average of 4 mm/yr percolation from the disposal unit bottom. The waste release model is based on a compartment representation of the package efflux, and depends on package size, percolation rate or Darcy flux, retardation coefficient, and moisture content.« less
Trash-to-Gas: Using Waste Products to Minimize Logistical Mass During Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Hintze, Paul E.; Caraccio, A. J.; Anthony, S. M.; Tsoras, A. N.; Devor, Robert; Captain, James G.; Nur, Mononita
2013-01-01
Just as waste-to-energy processes utilizing municipal landftll and biomass wastes are finding increased terrestrial uses, the Trash-to-Gas (TtG) project seeks to convert waste generated during spaceflight into high value commodities. These include methane for propulsion and water for life support in addition to a variety of other gasses. TtG is part of the Logistic Reduction and Repurposing (LRR) project under the NASA Advanced Exploration Systems Program. The LRR project will enable a largely mission-independent approach to minimize logistics contributions to total mission architecture mass. LRR includes technologies that reduce the amount of consumables that need to be sent to space, repurpose items sent to space, or convert wastes to commodities. Currently, waste generated on the International Space Station is stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The waste consists of food packaging, food, clothing and other items. This paper will discuss current results on incineration as a waste processing method. Incineration is part of a two step process to produce methane from waste: first the waste is converted to carbon oxides; second, the carbon oxides are fed to a Sabatier reactor where they are converted to methane. The quantities of carbon dioxide, carbon monoxide, methane and water were measured under the different thermal degradation conditions. The overall carbon conversion efficiency and water recovery are discussed
Trash-to-Gas: Using Waste Products to Minimize Logistical Mass During Long Duration Space Missions
NASA Technical Reports Server (NTRS)
Hintze, Paul. E.; Caraccio, Anne J.; Anthony, Stephen M.; Tsoras, Alexandra N.; Nur, Monoita; Devor, Robert; Captain, James G.
2013-01-01
Just as waste-to-energy processes utilizing municipal landftll and biomass wastes are finding increased terrestrial uses, the Trash-to-Gas (TtG) project seeks to convert waste generated during spaceflight into high value commodities. These include methane for propulsion and water for life support in addition to a variety of other gasses. TtG is part of the Logistic Reduction and Repurposing (LRR) project under the NASA Advanced Exploration Systems Program. The LRR project will enable a largely mission-independent approach to minimize logistics contributions to total mission architecture mass. LRR includes technologies that reduce the amount of consumables that need to be sent to space, repurpose items sent to space, or convert wastes to commodities. Currently, waste generated on the International Space Station is stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The waste consists of food packaging, food, clothing and other items. This paper will discuss current results on incineration as a waste processing method. Incineration is part of a two step process to produce methane from waste: first the waste is converted to carbon oxides; second, the carbon oxides are fed to a Sabatier reactor where they are converted to methane. The quantities of carbon dioxide, carbon monoxide, methane and water were measured under the different thermal degradation conditions. The overall carbon conversion efficiency and water recovery are discussed.
Practices of pharmaceutical waste generation and discarding in households across Portugal.
Dias-Ferreira, Celia; Valente, Susana; Vaz, João
2016-10-01
This work is the first nationwide study in Portugal on pharmaceutical waste generated at households, exploring people's attitudes and risk perception. The waste audit was carried out from September to November 2014, targeting pharmaceutical products kept by a sample of families (n = 244). This campaign was an assignment of VALORMED, the non-profit association that manages waste and packaging from expired and unused pharmaceutical products collected by the pharmacies. On average, each household kept at home 1097 g of pharmaceutical products, of which 20% were in use, 72% were not in use, and 8% were mostly expired products ready to discard. Face-to-face interviews with householders showed that 69% of the respondents claimed returning pharmaceutical waste to the local pharmacy. However, this figure is overrated, probably owing to a possible 'good answer' effect. The barriers identified to proper disposal were mainly established routines and lack of close disposal points. This study also provides an insight into the Portuguese awareness and daily practices concerning pharmaceutical waste, which is the cornerstone of any future strategy to reduce the release of active pharmaceutical ingredients into ecosystems. © The Author(s) 2016.
Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay.
Singh, I B; Chaturvedi, K; Morchhale, R K; Yegneswaran, A H
2007-03-06
Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 degrees C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 degrees C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 degrees C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.
A Study on the Heat Flow Characteristics of IRSS
NASA Astrophysics Data System (ADS)
Cho, Yong-Jin; Ko, Dae-Eun
2017-11-01
The infrared signatures emitted from the hot waste gas generated by the combustion engine and generator of a naval ship and from the metal surface around the funnel are the targets of the enemy threatening weapon system, thereby reducing the survivability of the ship. Such infrared signatures are reduced by installing an infrared signature suppression system (IRSS) in the naval ship. An IRSS consists of three parts: an eductor that creates a turbulent flow in the waste gas, a mixing tube that mixes the waste gas with the ambient air, and a diffuser that forms an air film using the pressure difference between the waste gas and the outside air. This study analyzed the test model of the IRSS developed by an advanced company and, based on this, conducted heat flow analyses as a basic study to improve the performance of the IRSS. The results were compared and analyzed considering various turbulence models. As a result, the temperatures and velocities of the waste gas at the eductor inlet and the diffuser outlet as well as the temperature of the diffuser metal surface were obtained. It was confirmed that these results were in good agreement with the measurement results of the model test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Darrell; Poinssot, Christophe; Begg, Bruce
Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less
Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)
The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data in Materials and Products in the Municipal Waste Stream, 1960 to 2012, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2008, 2010, 2011, and 2012. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. Details may not add to totals due to rounding.
Apparatus and method for radioactive waste screening
Akers, Douglas W.; Roybal, Lyle G.; Salomon, Hopi; Williams, Charles Leroy
2012-09-04
An apparatus and method relating to screening radioactive waste are disclosed for ensuring that at least one calculated parameter for the measurement data of a sample falls within a range between an upper limit and a lower limit prior to the sample being packaged for disposal. The apparatus includes a radiation detector configured for detecting radioactivity and radionuclide content of the of the sample of radioactive waste and generating measurement data in response thereto, and a collimator including at least one aperture to direct a field of view of the radiation detector. The method includes measuring a radioactive content of a sample, and calculating one or more parameters from the radioactive content of the sample.
Thermal Analysis of the PediaFlow pediatric ventricular assist device.
Gardiner, Jeffrey M; Wu, Jingchun; Noh, Myounggyu D; Antaki, James F; Snyder, Trevor A; Paden, David B; Paden, Brad E
2007-01-01
Accurate modeling of heat dissipation in pediatric intracorporeal devices is crucial in avoiding tissue and blood thermotrauma. Thermal models of new Maglev ventricular assist device (VAD) concepts for the PediaFlow VAD are developed by incorporating empirical heat transfer equations with thermal finite element analysis (FEA). The models assume three main sources of waste heat generation: copper motor windings, active magnetic thrust bearing windings, and eddy currents generated within the titanium housing due to the two-pole motor. Waste heat leaves the pump by convection into blood passing through the pump and conduction through surrounding tissue. Coefficients of convection are calculated and assigned locally along fluid path surfaces of the three-dimensional pump housing model. FEA thermal analysis yields a three-dimensional temperature distribution for each of the three candidate pump models. Thermal impedances from the motor and thrust bearing windings to tissue and blood contacting surfaces are estimated based on maximum temperature rise at respective surfaces. A new updated model for the chosen pump topology is created incorporating computational fluid dynamics with empirical fluid and heat transfer equations. This model represents the final geometry of the first generation prototype, incorporates eddy current heating, and has 60 discrete convection regions. Thermal analysis is performed at nominal and maximum flow rates, and temperature distributions are plotted. Results suggest that the pump will not exceed a temperature rise of 2 degrees C during normal operation.
NASA Technical Reports Server (NTRS)
Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Sims, Gerard; Li, Jun; Meyyappa, M.; Yang, Cary Y.
2005-01-01
Efforts in integrated circuit (IC) packaging technologies have recently been focused on management of increasing heat density associated with high frequency and high density circuit designs. While current flip-chip package designs can accommodate relatively high amounts of heat density, new materials need to be developed to manage thermal effects of next-generation integrated circuits. Multiwall carbon nanotubes (MWNT) have been shown to significantly enhance thermal conduction in the axial direction and thus can be considered to be a candidate for future thermal interface materials by facilitating efficient thermal transport. This work focuses on fabrication and characterization of a robust MWNT-copper composite material as an element in IC package designs. We show that using vertically aligned MWNT arrays reduces interfacial thermal resistance by increasing conduction surface area, and furthermore, the embedded copper acts as a lateral heat spreader to efficiently disperse heat, a necessary function for packaging materials. In addition, we demonstrate reusability of the material, and the absence of residue on the contacting material, both novel features of the MWNT-copper composite that are not found in most state-of-the-art thermal interface materials. Electrochemical methods such as metal deposition and etch are discussed for the creation of the MWNT-Cu composite, detailing issues and observations with using such methods. We show that precise engineering of the composite surface affects the ability of this material to act as an efficient thermal interface material. A thermal contact resistance measurement has been designed to obtain a value of thermal contact resistance for a variety of different thermal contact materials.
González-Briones, Alfonso; Chamoso, Pablo; Yoe, Hyun; Corchado, Juan M
2018-03-14
The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user's energy bill is greatly reduced with the implemented system.
Yoe, Hyun
2018-01-01
The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user’s energy bill is greatly reduced with the implemented system. PMID:29538351
NASA Technical Reports Server (NTRS)
Suh, Jong-ook; Dillon, R. Peter; Tseng, Stephen
2015-01-01
The heat from high-power microdevices for space, such as Xilinx Virtex 4 and 5 (V4 and V5), has to be removed mainly through conduction in the space vacuum environment. The class-Y type packages are designed to remove the heat from the top of the package, and the most effective method to remove heat from the class-Y type packages is to attach a heat transfer device on the lid of the package and to transfer the heat to frame or chassis. When a heat transfer device is attached to the package lid, the surfaces roughness of the package lid and the heat transfer device reduces the effective contact area between the two. The reduced contact area results in increased thermal contact resistance, and a thermal interface material is required to reduce the thermal contact resistance by filling in the gap between the surfaces of the package lid and the heat transfer device. The current report describes JPL's FY14 NEPP task study on property requirements of TIM and impact of TIM properties on the packaging reliability. The current task also developed appratuses to investigate the performances of TIMs in the actual mission environment.
Biological Production of Methane from Lunar Mission Solid Waste: An Initial Feasibility Assessment
NASA Astrophysics Data System (ADS)
Strayer, Richard; Garland, Jay; Janine, Captain
A preliminary assessment was made of the potential for biological production of methane from solid waste generated during an early planetary base mission to the moon. This analysis includes: 1) estimation of the amount of biodegradable solid waste generated, 2) background on the potential biodegradability of plastics given their significance in solid wastes, and 3) calculation of potential methane production from the estimate of biodegradable waste. The completed analysis will also include the feasibility of biological methane production costs associated with the biological processing of the solid waste. NASA workshops and Advanced Life Support documentation have estimated the projected amount of solid wastes generated for specific space missions. From one workshop, waste estimates were made for a 180 day transit mission to Mars. The amount of plastic packaging material was not specified, but our visual examination of trash returned from stocktickerSTS missions indicated a large percentage would be plastic film. This plastic, which is not biodegradable, would amount to 1.526 kgdw crew-1 d-1 or 6.10 kgdw d-1 for a crew of 4. Over a mission of 10 days this would amount to 61 kgdw of plastics and for an 180 day lunar surface habitation it would be nearly 1100 kgdw . Approx. 24 % of this waste estimate would be biodegradable (human fecal waste, food waste, and paper), but if plastic packaging was replaced with biodegradable plastic, then 91% would be biodegradable. Plastics are man-made long chain polymeric molecules, and can be divided into two main groups; thermoplastics and thermoset plastics. Thermoplastics comprise over 90% of total plastic use in the placecountry-regionUnited States and are derived from polymerization of olefins via breakage of the double bond and subsequent formation of additional carbon to carbon bonds. The resulting sole-carbon chain polymers are highly resistant to biodegradation and hydrolytic cleavage. Common thermoplastics include low density polyethylene (packaging, bags), high density polyethylene (bottles, containers, pipes), polystyrene (tanks, containers), polypropylene (tanks, containers), and polyvinylchloride (pipes, containers). Thermoset plastics are formed by the condensation of alcohols or amines to form polyesters or polyamides, and are typically solidified after heating. As opposed to the linear structure of thermoplastic, thermoset plastics have a cross-linked structure which results in higher strength. The most common thermoset plastic is polyurethane which is used for coatings, insulation, paints, and packing. Given both the concerns over pollution reduction and energy conservation, significant efforts are underway on Earth to evaluate biodegradable plastics made from renewable feedstocks; the following summarizes the current state of these efforts. Production of biodegradable plastics involves either the introduction of biodegradable or photo-oxidizable components into the polymer chain or the use of biodegradable polymers themselves. The first approach is based on the observation that polyolefins of low molecular weight (<500 Da) are biodegradable. Insertion of structures susceptible to either photoor chemical degradation within the overall polyolefins chain (which are of 4 - 28 kDa molecular weight), can produce segments sufficiently small to be assimilated and degraded by microorganisms. Biodegradable polymers based strictly on nonpetroleum, biologically-based material have been developed, including some which are used to make currently marketed products. Polyhydroxyalkanoates (PHAs) are polyesters which are accumulated as carbon storage materials by microorganisms under nutrient limiting conditions. MirelTM , a "bioplastic" based on stocktickerPHA produced from microbial fermentation of sugars or oils from vegetables crops, is being produced by TellesTM . The company markets MirelTM bioplastics for use in molding, coatings, films, adhesives, and fibers. Another type of bioplastic is based on polylactic acid, or stocktickerPLA. Starch, typically from corn, is fermented by bacteria to yield lactic acid which is then used to synthesize the stocktickerPLA polymer. stocktickerPLA can be degraded via a combination of abiotic hydrolysis and microbial degradation. NatureWorks LLC markets stocktickerPLA-based plastics (NatureWorks R , IngeoTM ) for a variety of applications, including high-value films, rigid thermoformed food and beverage containers, coated papers and boards and other packaging applications. This review suggests that biodegradable plastics may be feasible for use on near-term lunar missions. Biodegradable plastics products are commercially available, and cost, the main limitation to terrestrial use, is not an issue for the small-scale, specialty use by NASA. If the plastic content of the lunar mission solid waste stream is biodegradable, then a potential yield of methane from the waste can be estimated. Investigators at the placePlaceTypeUniversity of PlaceNameFlorida have reported on a three-stage anaerobic composting system for treatment of solid wastes expected in an Advanced Life Support System for space surface habitation. Their system, a sequential batch anaerobic composter (SEBAC) has been demonstrated for a variety of terrestrial solid wastes. Results for methane production rate from a simulated stocktickerALS solid waste of inedible rice crop debris, paper, and simulated feces averaged 0.30 L CH4 per gdw volatile solids (VS, i.e., organic matter) added. If we extrapolate from their results and assume that the VS in space mission solid waste is 100% biodegradable, then a potential for 620 LCH4 crew-1 d-1 might be obtained with a comparable SEBAC. For a crew of four, 2480 LCH4 d-1 (or 110.7 molesCH4 d-1 , 1772 gCH4 d-1 , or 3.90 lbCH4 d-1 )., would be produced. Over a 180 day surface habitation, this generation rate would yield a total of 446,000 LCH4 (319 kgCH4 , 702 lbCH4 ). The next step in this effort is to estimate the costs of biological processing system required to convert the solid waste steam to methane. We will employ equivalent system mass (ESM) analysis to define the costs of the system in terms of energy, mass, and manpower required for processing, allowing for a better estimation of the net benefit of this in situ resource utilization approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McTeer, Jennifer; Morris, Jenny; Wickham, Stephen
Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. Duringmore » the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)« less
Blanco-Martín, Laura; Wolters, Ralf; Rutqvist, Jonny; ...
2016-04-28
The Thermal Simulation for Drift Emplacement heater test is modeled with two simulators for coupled thermal-hydraulic-mechanical processes. Results from the two simulators are in very good agreement. The comparison between measurements and numerical results is also very satisfactory, regarding temperature, drift closure and rock deformation. Concerning backfill compaction, a parameter calibration through inverse modeling was performed due to insufficient data on crushed salt reconsolidation, particularly at high temperatures. We conclude that the two simulators investigated have the capabilities to reproduce the data available, which increases confidence in their use to reliably investigate disposal of heat-generating nuclear waste in saliferous geosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco-Martín, Laura; Wolters, Ralf; Rutqvist, Jonny
The Thermal Simulation for Drift Emplacement heater test is modeled with two simulators for coupled thermal-hydraulic-mechanical processes. Results from the two simulators are in very good agreement. The comparison between measurements and numerical results is also very satisfactory, regarding temperature, drift closure and rock deformation. Concerning backfill compaction, a parameter calibration through inverse modeling was performed due to insufficient data on crushed salt reconsolidation, particularly at high temperatures. We conclude that the two simulators investigated have the capabilities to reproduce the data available, which increases confidence in their use to reliably investigate disposal of heat-generating nuclear waste in saliferous geosystems.
40 CFR 98.30 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... useful heat or energy for industrial, commercial, or institutional use, or reducing the volume of waste... generators and emergency equipment, as defined in § 98.6. (3) Irrigation pumps at agricultural operations. (4... unit that combusts hazardous waste (as defined in § 261.3 of this chapter), reporting of GHG emissions...
40 CFR 98.30 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... useful heat or energy for industrial, commercial, or institutional use, or reducing the volume of waste... generators and emergency equipment, as defined in § 98.6. (3) Irrigation pumps at agricultural operations. (4... unit that combusts hazardous waste (as defined in § 261.3 of this chapter), reporting of GHG emissions...
When siting works, Canada-style.
Rabe, B G
1992-01-01
Hazardous waste management poses increasing problems for Canadian provinces and American states, given the vast quantities and types of wastes generated and the virtual inability to open new storage, treatment, or disposal facilities. The Canadian experience is very similar to the American one in many respects, except for the fact that three provinces (Alberta, Manitoba, and Quebec) have devised alternative approaches to siting that appear successful in moving beyond the political gridlock so common on this issue. In each of these cases, traditional, top-down approaches to siting have been eschewed in favor of a more comprehensive approach that includes extensive public participation, economic and social compensation packages, formal partnerships between public and private organizations, and direct links between siting proposals and other aspects of waste management, including waste reduction, recycling, and export/import control.
Potential for energy generation from anaerobic digestion of food waste in Australia.
Lou, Xian Fang; Nair, Jaya; Ho, Goen
2013-03-01
Published national and state reports have revealed that Australia deposits an average of 16 million Mg of solid waste into landfills yearly, of which approximately 12.6% is comprised of food. Being highly biodegradable and possessing high energy content, anaerobic digestion offers an attractive treatment option alternative to landfilling. The present study attempted to identify the theoretical maximum benefit of food waste digestion in Australia with regard to energy recovery and waste diversion from landfills. The study also assessed the scope for anaerobic process to utilize waste for energy projects through various case study scenarios. Results indicated anaerobic digestion of total food waste generated across multiple sites in Australia could generate 558 453 dam(3) of methane which translated to 20.3 PJ of heating potential or 1915 GWe in electricity generation annually. This would contribute to 3.5% of total current energy supply from renewable sources. Energy contribution from anaerobic digestion of food waste to the total energy requirement in Australia remains low, partially due to the high energy consumption of the country. However its appropriateness in low density regions, which are prevalent in Australia, may allow digesters to have a niche application in the country.
Energy recovery from solid waste. [production engineering model
NASA Technical Reports Server (NTRS)
Dalton, C.; Huang, C. J.
1974-01-01
A recent group study on the problem of solid waste disposal provided a decision making model for a community to use in determining the future for its solid waste. The model is a combination of the following factors: technology, legal, social, political, economic and environmental. An assessment of local or community needs determines what form of energy recovery is desirable. A market for low pressure steam or hot water would direct a community to recover energy from solid waste by incineration to generate steam. A fuel gas could be produced by a process known as pyrolysis if there is a local market for a low heating value gaseous fuel. Solid waste can also be used directly as a fuel supplemental to coal in a steam generator. An evaluation of these various processes is made.
Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John R.; Hardin, Ernest
2015-11-01
Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubingmore » was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.« less
NASA Astrophysics Data System (ADS)
Wang, Yiping; Tang, Yulin; Deng, Yadong; Su, Chuqi
2018-06-01
Energy conservation and environmental protection have typically been a concern of research. Researchers have confirmed that in automotive engines, just 12-25% of the fuel energy converts into effective work and 30-40% gets wasted in the form of exhaust. Saidur et al. (Energy Policy 37:3650, 2009) and Hasanuzzaman et al. (Energy 36:233, 2011). It will be significant to enhance fuel availability and decrease environmental pollution if the waste heat in the exhaust could be recovered. Thermoelectric generators (TEGs), which can translate heat into electricity, have become a topic of interest for vehicle exhaust waste heat recovery. In conventional automotive TEGs, the thermoelectric modules (TEMs) are arranged between the exhaust tank and the coolant tank. The TEMs do not contact the hot exhaust and coolant, which leads to low heat transfer efficiency. Moreover, to provide enough packing force to keep good contact with the exhaust tank and the coolant tank, the framework required is so robust that the TEGs become too heavy. Therefore, in current study, an automotive TEG was designed which included one exhaust channel, one coolant channel and several TEMs. In the TEG, the TEMs which contacted the exhaust and coolant directly were inserted into the walls of each coolant channel. To evaluate the performance of the automotive TEG, the flow field and temperature field were computed by computational fluid dynamics (CFD). Based on the temperature distribution obtained by CFD and the performance parameters of the modules, the total power generation was obtained by some proved empirical formulas. Compared with conventional automotive TEGs, the power generation per unit volume exhaust was boosted.
NASA Astrophysics Data System (ADS)
Wang, Yiping; Tang, Yulin; Deng, Yadong; Su, Chuqi
2017-12-01
Energy conservation and environmental protection have typically been a concern of research. Researchers have confirmed that in automotive engines, just 12-25% of the fuel energy converts into effective work and 30-40% gets wasted in the form of exhaust. Saidur et al. (Energy Policy 37:3650, 2009) and Hasanuzzaman et al. (Energy 36:233, 2011). It will be significant to enhance fuel availability and decrease environmental pollution if the waste heat in the exhaust could be recovered. Thermoelectric generators (TEGs), which can translate heat into electricity, have become a topic of interest for vehicle exhaust waste heat recovery. In conventional automotive TEGs, the thermoelectric modules (TEMs) are arranged between the exhaust tank and the coolant tank. The TEMs do not contact the hot exhaust and coolant, which leads to low heat transfer efficiency. Moreover, to provide enough packing force to keep good contact with the exhaust tank and the coolant tank, the framework required is so robust that the TEGs become too heavy. Therefore, in current study, an automotive TEG was designed which included one exhaust channel, one coolant channel and several TEMs. In the TEG, the TEMs which contacted the exhaust and coolant directly were inserted into the walls of each coolant channel. To evaluate the performance of the automotive TEG, the flow field and temperature field were computed by computational fluid dynamics (CFD). Based on the temperature distribution obtained by CFD and the performance parameters of the modules, the total power generation was obtained by some proved empirical formulas. Compared with conventional automotive TEGs, the power generation per unit volume exhaust was boosted.
Experimental investigation of a supersonic micro turbine running with hexamethyldisiloxane
NASA Astrophysics Data System (ADS)
Weiß Andreas, P.; Josef, Hauer; Tobias, Popp; Markus, Preißinger
2017-09-01
Experimentally determined efficiency characteristics of a supersonic micro turbine are discussed in the present paper. The micro turbine is a representative of a "micro-turbine-generator-construction-kit" for ORC small scale waste heat recovery. The isentropic total-to-static efficiency of the 12 kW turbine reaches an excellent design point performance of 73.4 %. Furthermore, its off-design operating behavior is very advantageous for small waste heat recovery plants: the turbine efficiency keeps a high level over a wide range of pressure ratio and rotational speed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mildenberger, Frank; Mauerhofer, Eric
2015-07-01
In Germany, radioactive waste with negligible heat production has to pass through a process of quality checking in order to check its conformance with national regulations prior to its transport, intermediate storage and final disposal. Additionally to its radioactive components, the waste may contain non-radioactive chemically toxic substances that can adversely affect human health and pollute the environment, especially the ground water. After an adequate decay time, the waste radioactivity will become harmless but the non-radioactive substances will persist over time. In principle, these hazardous substances may be quantified from traceability and quality controls performed during the production of themore » waste packages. As a consequence, a research and development program was initiated in 2007 with the aim to develop a nondestructive analytical technique for radioactive waste packages based on prompt and delayed gamma neutron activation analysis (P and DGNAA) employing a DT-neutron generator in pulsed mode. In a preliminary study it was experimentally demonstrated that P and DGNAA is suitable to determine the chemical composition of large samples. In 2010 a facility called MEDINA (Multi Element Detection based on Instrumental Neutron Activation) was developed for the qualitative and quantitative determination of nonradioactive, toxic elements and substances in 200-l steel drums. The determination of hazardous substances and elements is generally achieved measuring the prompt gamma-rays induced by thermal neutrons. Additional information about the composition of the waste matrix could be derived measuring the delayed gamma-rays from short life activation products. However a sensitive detection of these delayed gamma-rays requires that thermal neutrons have almost vanished. Therefore, the thermal neutron die-away-time has to be known in order to achieve an optimal discrimination between prompt and delayed gamma-ray spectra acquisition. Measurements Thermal neutron die-away times have been determined for the following cases: a) the empty chamber, b ) an empty 200-l steel drum, for a 200-l steel drum filled c) with concrete d) with polyethylene and e) with a mixture of polyethylene and concrete by measuring the prompt-gamma ray count rate of relevant isotopes like of {sup 1}H, {sup 10}B, {sup 12}C, {sup 28}Si, {sup 35}Cl, {sup 40}Ca and {sup 56}Fe which are emitted from different parts of the facility and the sample. Additionally, the average die-away-time was determined from the total detector count rate. The neutron generator was operated with a neutron emission of 8x10{sup 7} n.s{sup -1}, a neutron pulse with a length of 250 μs and a repetition time of 5 ms. The spectra were acquired between the neutron pulses over t{sub c}=500 μs after a pre-defined waiting time t{sub D} (multiple of 500 μs). The thermal neutron die-away time was ranging between 0.9 ms and 5 ms according to the sample composition. As an example the measured thermal neutron die-away-time Λ [μs] of a drum filled with concrete is presented. Detailed results of this study will be presented and discussed. (authors)« less
Effects of Heat Generation on Nuclear Waste Disposal in Salt
NASA Astrophysics Data System (ADS)
Clayton, D. J.
2008-12-01
Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to reduce costs, as well as decrease the overall footprint of the repository. Higher temperatures increase the rate of salt creep which then effectively seals the waste quicker. Data of the thermal-mechanical response of salt at these higher temperatures is needed to further validate the exploratory modeling and provide meaningful constraints on the repository design. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael
2006-01-01
This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.
Cleanup Verification Package for the 300-18 Waste Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. M. Capron
This cleanup verification package documents completion of remedial action for the 300-18 waste site. This site was identified as containing radiologically contaminated soil, metal shavings, nuts, bolts, and concrete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Some of the major technical questions associated with the burial of radioactive high-level wastes in geologic formations are related to the thermal environments generated by the waste and the impact of this dissipated heat on the surrounding environment. The design of a high level waste storage facility must be such that the temperature variations that occur do not adversely affect operating personnel and equipment. The objective of this investigation was to assist OWI by determining the thermal environment that would be experienced by personnel and equipment in a waste storage facility in salt. Particular emphasis was placed on determining themore » maximum floor and air temperatures with and without ventilation in the first 30 years after waste emplacement. The assumed facility design differs somewhat from those previously analyzed and reported, but many of the previous parametric surveys are useful for comparison. In this investigation a number of 2-dimensional and 3-dimensional simulations of the heat flow in a repository have been performed on the HEATING5 and TRUMP heat transfer codes. The representative repository constructs used in the simulations are described, as well as the computational models and computer codes. Results of the simulations are presented and discussed. Comparisons are made between the recent results and those from previous analyses. Finally, a summary of study limitations, comparisons, and conclusions is given.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-02
... the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste and Reactor-Related... receive, transfer, package and possess power reactor spent fuel, high-level waste, and other radioactive..., package, and possess power reactor spent fuel and high-level radioactive waste, and other associated...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... INTERNATIONAL TRADE COMMISSION [DN 2886] Certain Food Waste Disposers and Components and Packaging...: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Food Waste Disposers and Components and...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-20
... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-838] Certain Food Waste Disposers and Components... States after importation of certain food waste disposers and components and packaging thereof by reason... an industry in the United States exists as required by subsections (a)(1)(A) and (a)(2) of section...
Razouk, R; Beaumont, O; Failleau, G; Hay, B; Plumeri, S
2018-03-01
The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m 3 ) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.
NASA Astrophysics Data System (ADS)
Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.
2018-03-01
The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.
The disposal of nuclear waste in space
NASA Technical Reports Server (NTRS)
Burns, R. E.
1978-01-01
The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.
NASA Astrophysics Data System (ADS)
Pak, Pyong Sik
This paper evaluates two proposed repowering systems together with a conventional repowering system. A power generation system utilizing waste heat produced by a garbage incineration plant (GIP), which treats 45 t/d of garbage, was taken as an objective power generation system to be repowered. As the conventional repowering system (Sys-C), a gas turbine system with waste heat boiler was adopted. In the proposed system 1 (Sys-P1), temperature of the low temperature steam generated at the GIP is raised in the gas combustor by burning fuel, and used to drive a gas turbine generator. Hence, required power for compressing the air becomes remarkably small and expected to be high efficient compared with Sys-C. In the proposed system 2 (Sys-P2), the low temperature steam generated at the GIP is superheated by using regenerative burner and used to drive a steam turbine generator, and hence making steam condition optimal becomes easy. Various basic characteristics of the three repowering systems were estimated through computer simulation, such as repowering efficiency, energy saving characteristics, and amount of CO2 reduction. It was shown that Sys-P1 and Sys-P2 were both superior to the conventional repowering system Sys-C in the all characteristics, and Sys-P1 to Sys-P2 in repowering efficiency, and that Sys-P2 to Sys-P1 in energy saving characteristics and CO2 reduction effect. It has also been estimated that all the repowering systems are economically feasible, and that the proposed systems Sys-P1 and Sys-P2 are both superior to the Sys-C in the three economical indices of unit cost of power, annual gross profit and depreciation year.
Reimers, Mallory; Ernst, Neysa; Bova, Gregory; Nowakowski, Elaine; Bukowski, James; Ellis, Brandon C.; Smith, Chris; Sauer, Lauren; Dionne, Kim; Carroll, Karen C.; Maragakis, Lisa L.; Parrish, Nicole M.
2016-01-01
ABSTRACT In response to the Ebola outbreak in 2014, many hospitals designated specific areas to care for patients with Ebola and other highly infectious diseases. The safe handling of category A infectious substances is a unique challenge in this environment. One solution is on-site waste treatment with a steam sterilizer or autoclave. The Johns Hopkins Hospital (JHH) installed two pass-through autoclaves in its biocontainment unit (BCU). The JHH BCU and The Johns Hopkins biosafety level 3 (BSL-3) clinical microbiology laboratory designed and validated waste-handling protocols with simulated patient trash to ensure adequate sterilization. The results of the validation process revealed that autoclave factory default settings are potentially ineffective for certain types of medical waste and highlighted the critical role of waste packaging in successful sterilization. The lessons learned from the JHH validation process can inform the design of waste management protocols to ensure effective treatment of highly infectious medical waste. PMID:27927920
Garibaldi, Brian T; Reimers, Mallory; Ernst, Neysa; Bova, Gregory; Nowakowski, Elaine; Bukowski, James; Ellis, Brandon C; Smith, Chris; Sauer, Lauren; Dionne, Kim; Carroll, Karen C; Maragakis, Lisa L; Parrish, Nicole M
2017-02-01
In response to the Ebola outbreak in 2014, many hospitals designated specific areas to care for patients with Ebola and other highly infectious diseases. The safe handling of category A infectious substances is a unique challenge in this environment. One solution is on-site waste treatment with a steam sterilizer or autoclave. The Johns Hopkins Hospital (JHH) installed two pass-through autoclaves in its biocontainment unit (BCU). The JHH BCU and The Johns Hopkins biosafety level 3 (BSL-3) clinical microbiology laboratory designed and validated waste-handling protocols with simulated patient trash to ensure adequate sterilization. The results of the validation process revealed that autoclave factory default settings are potentially ineffective for certain types of medical waste and highlighted the critical role of waste packaging in successful sterilization. The lessons learned from the JHH validation process can inform the design of waste management protocols to ensure effective treatment of highly infectious medical waste. Copyright © 2017 American Society for Microbiology.
Ciplak, Nesli; Barton, John R
2012-06-01
Healthcare waste consists of various types of waste materials generated at hospitals, medical research centres, clinics and laboratories. Although 75-90% of this waste is classified as 'domestic' in nature, 20-25% is deemed to be hazardous, which if not disposed of appropriately, poses a risk to healthcare workers, patients, the environment and even the whole community. As long as healthcare waste is mixed with municipal waste and not segregated prior to disposal, costs will increase substantially. In this study, healthcare waste increases along with the potential to decrease the amounts by implementing effective segregation at healthcare facilities are projected to 2040. Our long-term aim is to develop a system to support selection and planning of the future treatment capacity. Istanbul in Turkey was used as the case study area. In order to identify the factors affecting healthcare waste generation in Istanbul, observations were made and interviews conducted in Istanbul over a 3 month period. A system dynamics approach was adopted to build a healthcare waste management model using a software package, Vensim Ple Plus. Based on reported analysis, the non-hazardous municipal fraction co-disposed with healthcare waste is around 65%. Using the projected waste generation flows, reducing a municipal fraction to 30% has the potential to avoid some 8000 t year(-1) of healthcare waste by 2025 and almost 10 000 t year(-1) by 2035. Furthermore, if segregation practices ensured healthcare waste requiring incineration was also selectively managed, 77% of healthcare waste could be diverted to alternative treatment technologies. As the throughput capacity of the only existing healthcare waste treatment facility in Istanbul, Kemerburgaz Incinerator, has already been exceeded, it is evident that improved management could not only reduce overall flows and costs but also permit alternative and cheaper treatment systems (e.g. autoclaving) to be adopted for the healthcare waste.
NASA Astrophysics Data System (ADS)
Zulkifli, Muhammad Nubli; Ilias, Izzudin; Abas, Amir; Muhamad, Wan Mansor Wan
2017-09-01
Thermoelectric generator (TEG) is the solid state device that converts the thermal gradient into electrical energy. TEG is widely used as the renewable energy source especially for the electronic equipment that operates with the small amount of electrical power. In the present analysis, the finite element analysis (FEA) using ANSYS is conducted on a model of the TEG attached with the aluminium, Al plate on the hot side of the TEG. This simple construction of TEG model was built in order to be used in the waste heat recovery of solar application. It was shown that the changes of the area and thickness of the Al plate increased the temperature gradient between hot and cold sides of TEG. This directly increase the voltage produced by the TEG based on the Seeback effect. The increase of the thermal gradient due to the increment of thickness and width of Al plate might be because of the increase of thermal resistance of Al plate. This finding provides a valuable data in design process to build a good TEG attached with Al plate for the waste heat recovery of solar application.
Method of Generating Transient Equivalent Sink and Test Target Temperatures for Swift BAT
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2004-01-01
The NASA Swift mission has a 600-km altitude and a 22 degrees maximum inclination. The sun angle varies from 45 degrees to 180 degrees in normal operation. As a result, environmental heat fluxes absorbed by the Burst Alert Telescope (BAT) radiator and loop heat pipe (LHP) compensation chambers (CCs) vary transiently. Therefore the equivalent sink temperatures for the radiator and CCs varies transiently. In thermal performance verification testing in vacuum, the radiator and CCs radiated heat to sink targets. This paper presents an analytical technique for generating orbit transient equivalent sink temperatures and a technique for generating transient sink target temperatures for the radiator and LHP CCs. Using these techniques, transient target temperatures for the radiator and LHP CCs were generated for three thermal environmental cases: worst hot case, worst cold case, and cooldown and warmup between worst hot case in sunlight and worst cold case in the eclipse, and three different heat transport values: 128 W, 255 W, and 382 W. The 128 W case assumed that the two LHPs transport 255 W equally to the radiator. The 255 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator. The 382 W case assumed that one LHP fails so that the remaining LHP transports all the waste heat from the detector array to the radiator, and has a 50% design margin. All these transient target temperatures were successfully implemented in the engineering test unit (ETU) LHP and flight LHP thermal performance verification tests in vacuum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1989-12-01
In the Report of the Senate Committee on Appropriations accompanying the Energy and Water Appropriation Act for 1989, the Committee directed the Department of Energy (DOE) to evaluate the use of lead in the waste packages to be used in geologic repositories for spent nuclear fuel and high-level waste. The evaluation that was performed in response to this directive is presented in this report. This evaluation was based largely on a review of the technical literature on the behavior of lead, reports of work conducted in other countries, and work performed for the waste-management program being conducted by the DOE.more » The initial evaluation was limited to the potential use of lead in the packages to be used in the repository. Also, the focus of this report is post closure performance and not on retrievability and handling aspects of the waste package. 100 refs., 8 figs., 15 tabs.« less
Influence of preheating on grindability of coal
Lytle, J.; Choi, N.; Prisbrey, K.
1992-01-01
Enormous quantities of coal must be ground as feed to power generation facilities. The energy cost of grinding is significant at 5 to 15 kWh/ton. If grindability could be increased by preheating the coal with waste heat, energy costs could be reduced. The objective of this work was to determine how grindability was affected by preheating. The method was to use population balance grinding models to interpret results of grinding coal before and after a heat treatment. Simulation of locked cycle tests gave a 40% increase in grindability. Approximately 40% grinding energy saving can be expected. By using waste heat for coal treatment, the targeted energy savings would be maintained. ?? 1992.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.
1978-01-01
A mathematical model package for thermal pollution analyses and prediction is presented. These models, intended as user's manuals, are three dimensional and time dependent using the primitive equation approach. Although they have sufficient generality for application at sites with diverse topographical features; they also present specific instructions regarding data preparation for program execution and sample problems. The mathematical formulation of these models is presented including assumptions, approximations, governing equations, boundary and initial conditions, numerical method of solution, and same results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. A. Carlson
2006-04-24
The 118-C-3:3 french drains received condensate from the steam heating system in the 105-C Reactor Building. The 118-C-3:3 french drain meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin
2013-01-01
The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.
Rethink Disposable: Packaging Waste Source Reduction Pilot Project
Information about the SFBWQP Rethink Disposable: Packaging Waste Source Reduction Pilot Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.
Impacts of geothermal energy developments on hydrological environment in hot spring areas
NASA Astrophysics Data System (ADS)
Taniguchi, M.
2015-12-01
Water-energy nexus such as geothermal energy developments and its impacts on groundwater, river water, and coastal water is one of the key issues for the sustainable society. This is because the demand of both water and energy resources will be increasing in near future, and the tradeoff between both resources and conflict between stakeholders will be arisen. Geothermal power generation, hot springs heat power generation, and steam power generation, are developing in hot spring areas in Ring of Fire countries including Japan, as renewable and sustainable energy. Impacts of the wasted hot water after using hot springs heat and steam power generation on ecosystem in the rivers have been observed in Beppu, Oita prefecture, Japan. The number of the fish species with wasted hot water in the Hirata river is much less than that without wasted hot water in Hiyakawa river although the dominant species of tilapia was found in the Hirata river with wasted hot water. The water temperature in Hirata rive is increased by wasted hot water by 10 degree C. The impacts of the developments of steam power generations on hot spring water and groundwater in downstream are also evaluated in Beppu. The decreases in temperature and volume of the hot spring water and groundwater after the development are concerning. Stakeholder analysis related to hot spa and power generation business and others in Beppu showed common interests in community development among stakeholders and gaps in prerequisite knowledge and recognition of the geothermal resource in terms of economic/non-economic value and utilization as power generation/hot-spring. We screened stakeholders of four categories (hot spring resorts inhabitants, industries, supporters, environmentalists), and set up three communities consisting of 50 persons of the above categories. One remarkable result regarding the pros and cons of geothermal power in general terms was that the supporter count increased greatly while the neutralities count decreased greatly after deliberation, suggesting a response from providing scientific evidence on the issue.
Lemieux, P; Wood, J; Drake, J; Minamyer, S; Silvestri, E; Yund, C; Nichols, T; Ierardi, M; Amidan, B
2016-01-01
The Bio-response Operational Testing and Evaluation (BOTE) Project was a cross-government effort designed to operationally test and evaluate a response to a biological incident (release of Bacillus anthracis [Ba] spores, the causative agent for anthrax) from initial public health and law enforcement response through environmental remediation. The BOTE Project was designed to address site remediation after the release of a Ba simulant, Bacillus atrophaeus spp. globigii (Bg), within a facility, drawing upon recent advances in the biological sampling and decontamination areas. A key component of response to a biological contamination incident is the proper management of wastes and residues, which is woven throughout all response activities. Waste is generated throughout the response and includes items like sampling media packaging materials, discarded personal protective equipment, items removed from the facility either prior to or following decontamination, aqueous waste streams, and materials generated through the application of decontamination technologies. The amount of residual contaminating agent will impact the available disposal pathways and waste management costs. Waste management is an integral part of the decontamination process and should be included through "Pre-Incident" response planning. Overall, the pH-adjusted bleach decontamination process generated the most waste from the decontamination efforts, and fumigation with chlorine dioxide generated the least waste. A majority of the solid waste generated during pH-adjusted bleach decontamination was the nonporous surfaces that were removed, bagged, decontaminated ex situ, and treated as waste. The waste during the two fumigation rounds of the BOTE Project was associated mainly with sampling activities. Waste management activities may represent a significant contribution to the overall cost of the response/recovery operation. This paper addresses the waste management activities for the BOTE field test. Management of waste is a critical element of activities dealing with remediation of buildings and outdoor areas following a biological contamination incident. Waste management must be integrated into the overall remediation process, along with sampling, decontamination, resource management, and other important response elements, rather than being a stand-alone activity. The results presented in this paper will provide decision makers and emergency planners at the federal/state/tribal/local level information that can be used to integrate waste management into an overall systems approach to planning and response activities.
Environmental Assessment of Packaging: The Consumer Point of View
Van Dam YK
1996-09-01
When marketing environmentally responsible packaged products, the producer is confronted with consumer beliefs concerning the environmental friendliness of packaging materials. When making environmentally conscious packaging decisions, these consumer beliefs should be taken into account alongside the technical guidelines. Dutch consumer perceptions of the environmental friendliness of packaged products are reported and compared with the results of a life-cycle analysis assessment. It is shown that consumers judge environmental friendliness mainly from material and returnability. Furthermore, the consumer perception of the environmental friendliness of packaging material is based on the postconsumption waste, whereas the environmental effects of production are ignored. From the consumer beliefs concerning environmental friendliness implications are deduced for packaging policy and for environmental policy.KEY WORDS: Consumer behavior; Environment; Food; Packaging; Perception; Waste
Packaging waste recycling in Europe: Is the industry paying for it?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira da Cruz, Nuno, E-mail: nunocruz@ist.utl.pt; Ferreira, Sandra; Cabral, Marta
Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowedmore » the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the “recycling system” are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and Portugal the industry is paying local authorities more than just the incremental costs of recycling (full costs of selective collection and sorting minus the avoided costs). To provide a more definitive judgment on the fairness of the systems it will be necessary to assess the cost efficiency of waste management operators (and judge whether operators are claiming costs or eliciting “prices”)« less
Trash to Gas (TtG) Simulant Analysis
NASA Technical Reports Server (NTRS)
Miles, John D., II; Hintze, Paul E.
2014-01-01
Space exploration in outer earths orbit is a long-term commitment, where the reuse of discarded materials is a critical component for its success. The Logistics Reduction and Repurposing (LRR) project under the NASA Advanced Exploration System Program is a project focused on technologies that reduce the amount of consumables that are needed to be sent into space, repurpose items sent to space, or convert wastes to commodities. In particular, Trash to Gas (TtG), part of the LRR project, is a novel space technology capable of converting raw elements from combustible waste including food waste and packaging, paper, wipes and towels, nitrile gloves, fecal matter, urine brine, maximum absorbency garments, and other organic wastes from human space exploration into useful gases. Trash to gas will ultimately reduce mission cost by producing a portion of important consumables in situ. This paper will discuss results of waste processing by steam reforming. Steam reforming is a thermochemical process developed as part of TtG, where waste is heated in the presence of oxygen and steam to produce carbon dioxide, carbon monoxide, hydrogen, methane and water. The aim of this experiment is to investigate the processing of different waste simulants and their gaseous products. This will lay a foundation for understating and optimizing the production of useful gases for propulsion and recovery of water for life support.
Radioactive waste disposal package
Lampe, Robert F.
1986-11-04
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
Radioactive waste disposal package
Lampe, Robert F.
1986-01-01
A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.
NASA Technical Reports Server (NTRS)
Sagerman, G. D.; Barna, G. J.; Burns, R. K.
1979-01-01
The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.
VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.
Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R
2018-01-29
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.
Thermal storage for electric utilities
NASA Technical Reports Server (NTRS)
Swet, C. J.; Masica, W. J.
1977-01-01
Applications of the thermal energy storage (TES) principle (storage of sensible heat or latent heat, or heat storage in reversible chemical reactions) in power systems are evaluated. Load leveling behind the meter, load following at conventional thermal power plants, solar thermal power generation, and waste heat utilization are the principal TES applications considered. Specific TES examples discussed include: storage heaters for electric-resistance space heating, air conditioning TES in the form of chilled water or eutectic salt baths, hot water TES, and trans-seasonal storage in heated water in confined aquifers.
Legislative aspects of hazardous waste management.
Friedman, M
1983-01-01
In the fall of 1976 Congress enacted the Resource Conservation and Recovery Act, commonly referred to as RCRA. The objective of the statute is to create an orderly system for the generation, handling and disposal of hazardous waste by means of a comprehensive tracking and record keeping mechanism. RCRA does not regulate directly by statute so much as it delegates rule making authority to the U.S. Environmental Protection Agency. Pursuant to its mandate to develop regulations in accordance with the broad criteria of RCRA, EPA has published extensive regulations. These regulations address hazardous waste generation, transportation, treatment, storage and handling and its final disposal. The statute also offers remedies available to both EPA and the public at large to ensure enforcement of the provisions of RCRA and the EPA regulations. Additionally, it sets guidelines for states to implement their own hazardous waste management programs. This article is intended to introduce this complicated statutory/regulatory package to scientists and health professionals. It outlines the provisions of RCRA and the EPA regulations, abbreviates early judicial decisions interpreting these provisions and sets forth a brief description of various state approaches to hazardous waste management. PMID:6825630
Use of acceptable knowledge to demonstrate TRAMPAC compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitworth, J.; Becker, B.; Guerin, D.
2004-01-01
Recently, Los Alamos National Laboratory-Carlsbad Operations (LANL-CO) has supported the Central Characterization Project (CCP) managed by the U.S. Department of Energy (DOE) in the shipment of transuranic (TRU) waste from various small-quantity TRU waste generators to hub sites or other DOE sites in TRUPACT-II shipping containers. This support has involved using acceptable knowledge (AK) to demonstrate compliance with various requirements of Revision 19 of the TRUPACT-II Authorized Methods of Payload Compliance (TRAMPAC). LANL-CO has worked to facilitate TRUPACT-II shipments from the University of Missouri Research Reactor (MURR) and Lovelace Respiratory Research Institute (LRRI) to Argonne National Laboratory-East (ANL-E) and Losmore » Alamos National Laboratory (LANL), respectively. The latter two sites have TRU waste certification programs approved to ship waste to the Waste Isolation Pilot Plant (WIPP) for disposal. In each case, AK was used to satisfy the necessary information to ship the waste to other DOE facilities. For the purposes of intersite shipment, AK provided data to WIPP Waste Information System (WWIS) transportation modules to ensure that required information was obtained prior to TRUPACT-II shipments. The WWIS modules were used for the intersite shipments, not to enter certification data into WWIS, but rather to take advantage of a validated system to ensure that the containers to be shipped were compliant with TRAMPAC requirements, particularly in the evaluation of quantitative criteria. LANL-CO also assisted with a TRAMPAC compliance demonstration for homogeneous waste containers shipped in TRUPACT-II containers from ANL-E to Idaho National Engineering and Environmental Laboratory (INEEL) for the purpose of core sampling. The basis for the TRAMPAC compliance determinations was AK regarding radiological composition, chemical composition, TRU waste container packaging, and absence of prohibited items. Also, even in the case where AK is not used to fully demonstrate TRAMPAC compliance, it may be used to identify problem areas for shippability of different waste streams. An example is the case of Pu-238-contaminated waste from the Savannah River Site that had a low probability of meeting decay heat limits and aspiration times due to several factors including large numbers of confinement layers. This paper will outline 17 TRAMPAC compliance criteria assessed and the types of information used to show compliance with all criteria other than dose rate and container weight, which are normally easily measured at load preparation.« less
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
9 CFR 590.548 - Drying, blending, packaging, and heat treatment rooms and facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Drying, blending, packaging, and heat..., blending, packaging, and heat treatment rooms and facilities. (a) General. Processing rooms shall be... vacuum cleaned daily. (c) The heat treatment room shall be of an approved construction and be maintained...
NASA Technical Reports Server (NTRS)
1976-01-01
Energy utilization and cost payback analyses were prepared for proposed modifications. A 50,000 CFM standard compact packaged solid desiccant dehumidifier utilizing high temperature hot water (HTHW) for desiccant regeneration was added. The HTHW is generated by utilizing solar energy and is stored in a storage tank. A steam boiler is provided as a back-up for the solar system. A 50,000 CFM standard compact package solid desiccant dehumidifier utilizing high temperature hot water (HTHW) for desiccant regeneration was added. The HTHW is generated by utilizing a steam boiler and a heat exchanger and is stored in a storage tank.
Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat
NASA Astrophysics Data System (ADS)
Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.
2011-05-01
Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.
A Simulation Study on a Thermoelectric Generator for Waste Heat Recovery from a Marine Engine
NASA Astrophysics Data System (ADS)
Ji, Dongxu; Tseng, King Jet; Wei, Zhongbao; Zheng, Yun; Romagnoli, Alessandro
2017-05-01
In this study, a marine engine has been evaluated for waste heat recovery (WHR) using thermoelectric generators (TEG). The feasibility of Mg2Sn0.75Ge0.25, Cu2Se, and Cu1.98Se as potential thermoelectric (TE) material were investigated. A straight fin heat exchanger is used to enhance the heat transfer between the hot exhaust gas and TE modules. To facility the analysis, a system level thermal resistance model is built and validated with experiments. After the model is validated, a small marine engine with rated power of 1.7-3 MW is taken as baseline model and it is found that around 2-4 KW electrical power can be extracted from exhaust gas by the TEG at varying design and operating parameters. The back pressure effect induced by the heat exchanger is also considered in this study. Finally, a parameter study is conducted regarding the impact of the TE module height on the output power. It is shown that the height of the TE leg could play a significant role in the module geometry design, and that the optimal height varies between 1 mm and 2 mm under different heat exchangers and exhaust gas flow rates.
Review of waste package verification tests. Semiannual report, October 1982-March 1983
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soo, P.
1983-08-01
The current study is part of an ongoing task to specify tests that may be used to verify that engineered waste package/repository systems comply with NRC radionuclide containment and controlled release performance objectives. Work covered in this report analyzes verification tests for borosilicate glass waste forms and bentonite- and zeolite-based packing mateials (discrete backfills). 76 references.
NASA Technical Reports Server (NTRS)
Birur, Gajanana C.; Siebes, Georg; Swanson, Theodore D.; Powers, Edward I. (Technical Monitor)
2001-01-01
Thermal control of the spacecraft is typically achieved by removing heat from the spacecraft parts that tend to overheat and adding heat to the parts that tend get too cold. The equipment on the spacecraft can get very hot if it is exposed to the sun or have internal heat generation. The pans also can get very cold if they are exposed to the cold of deep space. The spacecraft and instruments must be designed to achieve proper thermal balance. The combination of the spacecraft's external thermal environment, its internal heat generation (i.e., waste heat from the operation of electrical equipment), and radiative heat rejection will determine this thermal balance. It should also be noted that this is seldom a static situation, external environmental influences and internal heat generation are normally dynamic variables which change with time. Topics discussed include thermal control system components, spacecraft mission categories, spacecraft thermal requirements, space thermal environments, thermal control hardware, launch and flight operations, advanced technologies for future spacecraft,
Dehydration as a Cause of Chronic Kidney Disease: Role of Fructokinase
2015-10-01
required generating a mouse whose fructokinase gene is floxed (the floxed fructokinase mouse) and then selectively knocking fructokinase from the renal... sports drinks and rehydration packages for the hydration of individuals who are exposed to heat and dehydration. 5. CHANGES/PROBLEMS: Changes in
Mesophilic anaerobic digestion: first option for waste treatment in tropical regions.
Suryawanshi, P C; Chaudhari, A B; Kothari, R M
2010-12-01
Rural India derives its energy needs for cooking and heating through the use of fuel wood and for lighting and agricultural operations through kerosene and diesel. Use of fuel wood has aggravated the problem of de-forestation, while availability of kerosene and diesel cannot be guaranteed due to corrupt practices in the public distribution systems. In contrast, urban India derives its energy needs through LPG cylinders, petrol, and electricity. However, their cost and uncertainty rendered them beyond the reach of lower income population. This scenario is more or less true with many developing countries. To meet these objectives, biogas generation from biodegradable waste using anaerobic digestion (AD) appears to be a sustainable avenue as it could be used for (a) water and space heating of farmhouses, animal shelters, (b) generating steam for food processing plants, and (c) electricity generation, in addition to reducing the pollution/hazard potential of these wastes. Many of the underdeveloped and developing countries are in the temperate zone and thus mesophilic AD could provide a desired pathway to achieve a long delayed need of energy for comfortable living, farming, and industrial operations. Efforts made in this direction are reviewed in the present article.
Next Generation Waste Tracking: Linking Legacy Systems with Modern Networking Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Randy M.; Resseguie, David R.; Shankar, Mallikarjun
2010-01-01
This report describes results from a preliminary analysis to satisfy the Department of Energy (DOE) objective to ensure the safe, secure, efficient packaging and transportation of materials both hazardous and non hazardous [1, 2]. The DOE Office of Environmental Management (OEM) through Oak Ridge National Laboratory (ORNL) has embarked on a project to further this objective. OEM and ORNL have agreed to develop, demonstrate and make available modern day cost effective technologies for characterization, identification, tracking, monitoring and disposal of radioactive waste when transported by, or between, motor, air, rail, and water modes. During the past 8 years ORNL hasmore » investigated and deployed Web 2.0 compliant sensors into the transportation segment of the supply chain. ORNL has recently demonstrated operational experience with DOE Oak Ridge Operations Office (ORO) and others in national test beds and applications within this domain of the supply chain. Furthermore, in addition to DOE, these hazardous materials supply chain partners included Federal and State enforcement agencies, international ports, and commercial sector shipping operations in a hazardous/radioactive materials tracking and monitoring program called IntelligentFreight. IntelligentFreight is an ORNL initiative encompassing 5 years of research effort associated with the supply chain. The ongoing ORNL SmartFreight programs include RadSTraM [3], GRadSTraM , Trusted Corridors, SensorPedia [4], SensorNet, Southeastern Transportation Corridor Pilot (SETCP) and Trade Data Exchange [5]. The integration of multiple technologies aimed at safer more secure conveyance has been investigated with the core research question being focused on testing distinctly different distributed supply chain information sharing systems. ORNL with support from ORO have demonstrated capabilities when transporting Environmental Management (EM) waste materials for disposal over an onsite haul road. ORNL has unified the operations of existing legacy hazardous, radioactive and related informational databases and systems using emerging Web 2.0 technologies. These capabilities were used to interoperate ORNL s waste generating, packaging, transportation and disposal with other DOE ORO waste management contractors. Importantly, the DOE EM objectives were accomplished in a cost effective manner without altering existing information systems. A path forward is to demonstrate and share these technologies with DOE EM, contractors and stakeholders. This approach will not alter existing DOE assets, i.e. Automated Traffic Management Systems (ATMS), Transportation Tracking and Communications System (TRANSCOM), the Argonne National Laboratory (ANL) demonstrated package tracking system, etc« less
Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)
The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data on Materials Discarded in the Municipal Waste Stream, 1960 to 2009, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2007, 2008, and 2009. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. The Other category includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.
A Spanish model for quantification and management of construction waste.
Solís-Guzmán, Jaime; Marrero, Madelyn; Montes-Delgado, Maria Victoria; Ramírez-de-Arellano, Antonio
2009-09-01
Currently, construction and demolition waste (C&D waste) is a worldwide issue that concerns not only governments but also the building actors involved in construction activity. In Spain, a new national decree has been regulating the production and management of C&D waste since February 2008. The present work describes the waste management model that has inspired this decree: the Alcores model implemented with good results in Los Alcores Community (Seville, Spain). A detailed model is also provided to estimate the volume of waste that is expected to be generated on the building site. The quantification of C&D waste volume, from the project stage, is essential for the building actors to properly plan and control its disposal. This quantification model has been developed by studying 100 dwelling projects, especially their bill of quantities, and defining three coefficients to estimate the demolished volume (CT), the wreckage volume (CR) and the packaging volume (CE). Finally, two case studies are included to illustrate the usefulness of the model to estimate C&D waste volume in both new construction and demolition projects.
NASA Astrophysics Data System (ADS)
Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.
2013-12-01
Salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its ability to creep and heal fractures generated by excavation and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste (such as spent fuel) and we consider a generic salt repository with in-drift emplacement of waste packages and subsequent backfill of the drifts with run-of-mine crushed salt. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created. In order to evaluate the integrity of the natural and engineered barriers over the long-term, it is important to consider the coupled effects of the thermal, hydraulic and mechanical processes that take place. In particular, the results obtained so far show how the porosity reduction of the crushed salt affects the saturation and pore pressure evolution throughout the repository, both in time and space. Such compaction is induced by the stress and temperature regime within the natural salt. Also, transport properties of the host rock are modified not only by thermo-mechanically and hydraulically-induced damaged processes, but also by healing/sealing of existing fractures. In addition, the THM properties of the backfill evolve towards those of the natural salt during the compaction process. All these changes are based on dedicated laboratory experiments and on theoretical considerations [1-3]. Different scenarios are modeled and compared to evaluate the relevance of different processes from the perspective of effective nuclear waste repositories. The sensitivity of the results to some parameters, such as capillarity, is also addressed. The simulations are conducted using an updated version of the TOUGH2-FLAC3D simulator, which is based on a sequential explicit method to couple flow and geomechanics [4]. A new capability for large strains and creep has been introduced and validated. The time-dependent geomechanical response of salt is determined using the Lux/Wolters constitutive model, developed at Clausthal University of Technology (Germany). References: [1] R. Wolters, and K.-H. Lux. Evaluation of Rock Salt Barriers with Respect to Tightness: Influence of Thermomechanical Damage, Fluid Infiltration and Sealing/Healing. Proceedings of the 7th International Conference on the Mechanical Behavior of Salt (SaltMech7). Paris: Balkema, Rotterdam (2012). [2] W. Bechthold et al., Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS Project), European Atomic Energy Community, Report EUR19124 EN (1999). [3] J. Kim, E.L Sonnenthal and J. Rutqvist, 'Formulation and sequential numerical algorithms of coupled fluid/heat flow and geomechanics for multiple porosity materials', Int. J. Numer. Meth. Engng., 92, 425 (2012). [4] J. Rutqvist. Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Computational Geosciences, 37, 739-750 (2011).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2013-01-01
The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilitiesmore » (biorefineries).« less
Thermal Analysis of a Nuclear Waste Repository in Argillite Host Rock
NASA Astrophysics Data System (ADS)
Hadgu, T.; Gomez, S. P.; Matteo, E. N.
2017-12-01
Disposal of high-level nuclear waste in a geological repository requires analysis of heat distribution as a result of decay heat. Such an analysis supports design of repository layout to define repository footprint as well as provide information of importance to overall design. The analysis is also used in the study of potential migration of radionuclides to the accessible environment. In this study, thermal analysis for high-level waste and spent nuclear fuel in a generic repository in argillite host rock is presented. The thermal analysis utilized both semi-analytical and numerical modeling in the near field of a repository. The semi-analytical method looks at heat transport by conduction in the repository and surroundings. The results of the simulation method are temperature histories at selected radial distances from the waste package. A 3-D thermal-hydrologic numerical model was also conducted to study fluid and heat distribution in the near field. The thermal analysis assumed a generic geological repository at 500 m depth. For the semi-analytical method, a backfilled closed repository was assumed with basic design and material properties. For the thermal-hydrologic numerical method, a repository layout with disposal in horizontal boreholes was assumed. The 3-D modeling domain covers a limited portion of the repository footprint to enable a detailed thermal analysis. A highly refined unstructured mesh was used with increased discretization near heat sources and at intersections of different materials. All simulations considered different parameter values for properties of components of the engineered barrier system (i.e. buffer, disturbed rock zone and the host rock), and different surface storage times. Results of the different modeling cases are presented and include temperature and fluid flow profiles in the near field at different simulation times. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-8295 A.
Trash-to-Gas: Converting Space Trash into Useful Products
NASA Technical Reports Server (NTRS)
Caraccio, Anne J.; Hintze, Paul E.
2013-01-01
NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of CO2, CO, CH4, and H2O were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.
Trash to Gas: Converting Space Trash into Useful Products
NASA Technical Reports Server (NTRS)
Nur, Mononita
2013-01-01
NASA's Logistical Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is determined to reduce total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. LRR is focusing on four distinct advanced areas of study: Advanced Clothing System, Logistics-to-Living, Heat Melt Compactor and Trash to Supply Gas (TtSG). The objective of TtSG is to develop technologies that convert material waste, human waste and food waste into high-value products. High-value products include life support oxygen and water, rocket fuels, raw material production feedstocks, and other energy sources. There are multiple pathways for converting waste to products involving single or multi-step processes. This paper discusses thermal oxidation methods of converting waste to methane. Different wastes, including food, food packaging, Maximum Absorbent Garments (MAGs), human waste simulants, and cotton washcloths have been evaluated in a thermal degradation reactor under conditions promoting pyrolysis, gasification or incineration. The goal was to evaluate the degradation processes at varying temperatures and ramp cycles and to maximize production of desirable products and minimize high molecular weight hydrocarbon (tar) production. Catalytic cracking was also evaluated to minimize tar production. The quantities of C02, CO, CH4, and H20 were measured under the different thermal degradation conditions. The conversion efficiencies of these products were used to determine the best methods for producing desired products.
Hla, San Shwe; Roberts, Daniel
2015-07-01
The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Raval, A H; Solanki, S C; Yadav, Rajvir
2013-04-01
A simple analytical heat flow model for a closed rectangular food package containing fruits or vegetables is proposed for predicting time temperature distribution during transient cooling in a controlled environment cold room. It is based on the assumption of only conductive heat transfer inside a closed food package with effective thermal properties, and convective and radiative heat transfer at the outside of the package. The effective thermal conductivity of the food package is determined by evaluating its effective thermal resistance to heat conduction in the packages. Food packages both as an infinite slab and a finite slab have been investigated. The finite slab solution has been obtained as the product of three infinite slab solutions describe in ASHRAE guide and data book. Time temperature variation has been determined and is presented graphically. The cooling rate and the half cooling time were also obtained. These predicted values, are compared with the experimentally measured values for both the finite and infinite closed packages containing oranges. An excellent agreement between them validated the simple proposed model.
Ragossnig, A M; Wartha, C; Pomberger, R
2009-11-01
A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.
Thermoelectric System Absorbing Waste Heat from a Steel Ladle
NASA Astrophysics Data System (ADS)
Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.
2018-06-01
China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.
Thermoelectric System Absorbing Waste Heat from a Steel Ladle
NASA Astrophysics Data System (ADS)
Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.
2018-01-01
China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.
A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2005-01-01
Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.
Fluid cooled electrical assembly
Rinehart, Lawrence E.; Romero, Guillermo L.
2007-02-06
A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.
TRANSIENT SUPPRESSION PACKAGING FOR REDUCED EMISSIONS FROM ROTARY KILN INCINERATORS
Experiments were performed on a 73 kW rotary kiln incinerator simulator to determine whether innovative waste packaging designs might reduce transient emissions of products of incomplete combustion due to batch charging of containerized liquid surrogate waste compounds bound on g...
10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.
Code of Federal Regulations, 2014 CFR
2014-01-01
... measurement. Commercial package air-conditioning and heating equipment means air-cooled, water-cooled... Conditioner means a basic model of commercial package air-conditioning and heating equipment (packaged or split) that is: Used in computer rooms, data processing rooms, or other information technology cooling...
Landfill alternative offers powerful case.
Baillie, Jonathan
2011-04-01
With many of Europe's landfill sites now close to capacity, and the EU Landfill Directive requiring that, by 2020, the amount of waste sent to landfill should be just 35% of the volume similarly disposed of in 1995, pressure is mounting to find environmentally acceptable waste disposal alternatives. At a recent IHEEM waste seminar, Gary Connelly, a technical consultant at environmental technology consultancy the Cameron Corporation, described a technology which he explained can effectively convert 85% of the European Waste Catalogue of materials into an inert residue, is "cleaner and cheaper" than incineration, and can generate both electricity an waste heat. As HEJ editor Jonathan Baillie reports, a key target market is healthcare facilities.
Optimal PGU operation strategy in CHP systems
NASA Astrophysics Data System (ADS)
Yun, Kyungtae
Traditional power plants only utilize about 30 percent of the primary energy that they consume, and the rest of the energy is usually wasted in the process of generating or transmitting electricity. On-site and near-site power generation has been considered by business, labor, and environmental groups to improve the efficiency and the reliability of power generation. Combined heat and power (CHP) systems are a promising alternative to traditional power plants because of the high efficiency and low CO2 emission achieved by recovering waste thermal energy produced during power generation. A CHP operational algorithm designed to optimize operational costs must be relatively simple to implement in practice such as to minimize the computational requirements from the hardware to be installed. This dissertation focuses on the following aspects pertaining the design of a practical CHP operational algorithm designed to minimize the operational costs: (a) real-time CHP operational strategy using a hierarchical optimization algorithm; (b) analytic solutions for cost-optimal power generation unit operation in CHP Systems; (c) modeling of reciprocating internal combustion engines for power generation and heat recovery; (d) an easy to implement, effective, and reliable hourly building load prediction algorithm.
Li, Xingang; Gao, Yujie; Ding, Hui
2013-10-01
The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Design of a High Temperature Radiator for the Variable Specific Impulse Magnetoplasma Rocket
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.
2012-01-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company (Webster, TX), is a unique propulsion system that could change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduces the propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station (ISS). The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster core generates 27 kW of waste heat during its 15 minute firing time. The rocket core will be maintained between 283 and 573 K by a pumped thermal control loop. The design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient-based radiator design. The paper will describe the radiator design option selected for the VASIMR thermal control system for use on ISS, and how the system relates to future exploration vehicles.
10 CFR 431.92 - Definitions concerning commercial air conditioners and heat pumps.
Code of Federal Regulations, 2013 CFR
2013-01-01
... expressed in identical units of measurement. Commercial package air-conditioning and heating equipment means... application. Computer Room Air Conditioner means a basic model of commercial package air-conditioning and heating equipment (packaged or split) that is: Used in computer rooms, data processing rooms, or other...
Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.
Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B
2015-03-21
How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robitz, E.S. Jr.; McAninch, M.D. Jr.; Edmonds, D.P.
1990-09-01
This report summarizes Phase 1 activities for closure development of the high-level nuclear waste package task for the tuff repository. Work was conducted under U.S. Department of Energy (DOE) Contract 9172105, administered through the Lawrence Livermore National Laboratory (LLNL), as part of the Yucca Mountain Project (YMP), funded through the DOE Office of Civilian Radioactive Waste Management (OCRWM). The goal of this phase was to select five closure processes for further evaluation in later phases of the program. A decision tree methodology was utilized to perform an objective evaluation of 15 potential closure processes. Information was gathered via a literaturemore » survey, industrial contacts, and discussions with project team members, other experts in the field, and the LLNL waste package task staff. The five processes selected were friction welding, electron beam welding, laser beam welding, gas tungsten arc welding, and plasma arc welding. These are felt to represent the best combination of weldment material properties and process performance in a remote, radioactive environment. Conceptual designs have been generated for these processes to illustrate how they would be implemented in practice. Homopolar resistance welding was included in the Phase 1 analysis, and developments in this process will be monitored via literature in Phases 2 and 3. Work was conducted in accordance with the YMP Quality Assurance Program. 223 refs., 20 figs., 9 tabs.« less
Implementation of lean manufacturing for frozen fish process at PT. XYZ
NASA Astrophysics Data System (ADS)
Setiyawan, D. T.; Pertiwijaya, H. R.; Effendi, U.
2018-03-01
PT. XYZ is a company specialized in the processing of fishery products particularly in frozen fish fillet. The purpose of this research was to identify the type of waste and determine the recommendations of minimizing waste Lean manufacturing approach was used in the identification of waste by describing the Value Stream Mapping (VSM) and selecting tools in the Value Stream Analysis Tools (VALSAT). The results of this research showed that the highest waste that generated was the defect of leak packaging on fillet products with an average of 1.21%. In addition to defect, other insufficiencies were found such as: unnecessary motion, unnecessary overhead, and waiting time. Recommendations for improvements that given include reduction of time at several stages of the process, making production schedules, and conducting regular machine maintenance. VSM analysis shows reduced lead time of 582.04 minutes to 572.01 minutes.
Acoustic barriers obtained from industrial wastes.
Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M
2008-07-01
Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.
Automotive Thermoelectric Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Meisner, Gregory P.
2015-03-01
Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M.G. Reynolds, K. Rober, F.R. Stabler; Marlow, JPL, Dana, Delphi E&S, Eberspaecher, Molycorp, University of Washington, Purdue University, Michigan State University, ORNL, BNL. Supported by US DOE.
Chang, Ho; Yu, Zhi-Rong
2012-08-01
This study self-develops a novel type of photothermoelectric power generation modules. Dye-sensitized solar cells (DSSCs) serve as the photoelectric conversion system and a copper (Cu) heat-transfer nanofilm coating on both sides of the thermoelectric generator (TEG) acts as a thermoelectric conversion system. Thus module assembly absorbs light and generates electricity by DSSCs, and also recycles waste heat and generates power by the TEG. In addition, a set of pulsating heat pipes (PHP) filled with Cu nanofluid is placed on the cooling side to increase cooling effects and enhance the power generation efficiency. Results show that when the heat source of thermoelectric modules reaches 90 degrees C, TEG power output is increased by 85.7%. Besides, after thermoelectric modules are heated by additional heat source at 80 degrees C, the electrical energy generated by them can let a NiMH cell (1.25 V) be sufficiently charged in about 30 minutes. When photothermoelectric modules is illumined by simulated light, the temperature difference of two sides of TEG can reach 7 degrees C and the thermoelectric conversion efficiency is 2.17%. Furthermore, the power output of the thermoelectric modules is 11.48 mW/cm2, enhancing 1.4 % compared to merely using DSSCs module.
Segregation for reduction of regulated medical waste in the operating room: a case report
Shinn, Helen Ki; Kim, Byung-Gun; Yang, Chunwoo; Na, WonJu; Song, Jang-Ho
2017-01-01
One-third of all hospital-regulated medical waste (RMW) comes from the operating room (OR), and it considerably consists of disposable packaging and wrapping materials for the sterilization of surgical instruments. This study sought to identify the amount and type of waste produced by ORs in order to reduce the RMW so as to achieve environmentally-friendly waste management in the OR. We performed an initial waste segregation of 4 total knee replacement arthroplasties (TKRAs) and 1 total hip replacement arthroplasty, and later of 1 extra TKRA, 1 laparoscopic anterior resection of the colon, and 1 pelviscopy (with radical vaginal hysterectomy), performed at our OR. The total mass of non-regulated medical waste (non-RMW) and blue wrap amounted to 30.5 kg (24.9%), and that of RMW to 92.1 kg (75.1%). In the course of the study, we noted that the non-RMW included recyclables, such as papers, plastics, cardboards, and various wrapping materials. The study showed that a reduction in RMW generation can be achieved through the systematic segregation of OR waste. PMID:28184276
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, S.C.; Townsend, Y.E.
1997-02-01
The Nevada Test Site (NTS), located in southern Nevada, has been the primary location for testing of nuclear explosives in the continental US. Testing began in 1951 and continued until the moratorium in 1992. Waste storage and disposal facilities for defense radioactive and mixed waste are located in Areas 3 and 5. At the Area 5 Radioactive Waste Management Site (RWMS-5), low-level wastes (LLW) from US Department of Energy (DOE) affiliated onsite and offsite generators are disposed of using standard shallow land disposal techniques. Transuranic wastes are retrievably stored at the RWMS-5 in containers on a surface pad, pending shipmentmore » to the Waste Isolation Pilot Plant facility in New Mexico. Nonradioactive hazardous wastes are accumulated at a special site before shipment to a licensed offsite disposal facility. Non-standard packages of LLW are buried in subsidence craters in the Area 3 RWMS. This report describes these activities on and around the NTS and includes a listing of the results obtained from environmental surveillance activities during the second calendar quarter of 1996.« less
Environmental Compliance Assessment Army Reserve (ECAAR)
1993-09-01
and water Spent mixed acid Spent caustic Spent sulfuric acid Potential Consequences: Heat generation, violent reaction. Group 2-A Group 2-B Aluminum Any...methane reforming furnaces, pulping liquor recovery furnaces, combustion devices used in the recovery of sulfur values from spent sulfuric acid...Industry and USEPA Hazardous Waste Hazard No. Hazardous Waste Code* Generic FOO1 The spent halogenated solvents used in degreasing: Trichloroethylene, (t
NASA Astrophysics Data System (ADS)
Rahman, Mir Mustafizur
In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic variability within a thermal flight line based on varying road temperatures; (b) Automated Polynomial Relative Radiometric Normalization (RRN)---which mitigates the between flight line radiometric variability; and (c) Object Based Mosaicking (OBM)---which minimizes the geometric distortion along the mosaic edge between each flight line. A modified Emissivity Modulation technique is also described to correct H-res TIR images for emissivity. This combined radiometric and geometric post-processing protocol (i) increases the visual agreement between TABI-1800 flight lines, (ii) improves radiometric agreement within/between flight lines, (iii) produces a visually seamless mosaic, (iv) improves hot-spot detection and landcover classification accuracy, and (v) provides accurate data for thermal-based HEAT energy models. Keywords: Thermal Infrared, Post-Processing, High Spatial Resolution, Airborne, Thermal Urban Road Normalization (TURN), Relative Radiometric Normalization (RRN), Object Based Mosaicking (OBM), TABI-1800, HEAT, and Automation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanton, P.; Eberl, K.
2013-10-10
This paper summarizes the development, testing, and certification of the 9979 Type A Fissile Packaging that replaces the UN1A2 Specification Shipping Package eliminated from Department of Transportation (DOT) 49 CFR 173. The DOT Specification Package was used for many decades by the U.S. nuclear industry as a fissile waste container until its removal as an authorized container by DOT. This paper will discuss stream lining procurement of high volume radioactive material packaging manufacturing, such as the 9979, to minimize packaging production costs without sacrificing Quality Assurance. The authorized content envelope (combustible and non-combustible) as well as planned content envelope expansionmore » will be discussed.« less
NASA Astrophysics Data System (ADS)
Fedors, R. W.; Painter, S. L.
2004-12-01
Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This abstract is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of the Nuclear Regulatory Commission.
Uncertainty quantification applied to the radiological characterization of radioactive waste.
Zaffora, B; Magistris, M; Saporta, G; Chevalier, J-P
2017-09-01
This paper describes the process adopted at the European Organization for Nuclear Research (CERN) to quantify uncertainties affecting the characterization of very-low-level radioactive waste. Radioactive waste is a by-product of the operation of high-energy particle accelerators. Radioactive waste must be characterized to ensure its safe disposal in final repositories. Characterizing radioactive waste means establishing the list of radionuclides together with their activities. The estimated activity levels are compared to the limits given by the national authority of the waste disposal. The quantification of the uncertainty affecting the concentration of the radionuclides is therefore essential to estimate the acceptability of the waste in the final repository but also to control the sorting, volume reduction and packaging phases of the characterization process. The characterization method consists of estimating the activity of produced radionuclides either by experimental methods or statistical approaches. The uncertainties are estimated using classical statistical methods and uncertainty propagation. A mixed multivariate random vector is built to generate random input parameters for the activity calculations. The random vector is a robust tool to account for the unknown radiological history of legacy waste. This analytical technique is also particularly useful to generate random chemical compositions of materials when the trace element concentrations are not available or cannot be measured. The methodology was validated using a waste population of legacy copper activated at CERN. The methodology introduced here represents a first approach for the uncertainty quantification (UQ) of the characterization process of waste produced at particle accelerators. Copyright © 2017 Elsevier Ltd. All rights reserved.
Waste management to improve food safety and security for health advancement.
Lin, Angela Yu-Chen; Huang, Susana Tzy-Ying; Wahlqvist, Mark L
2009-01-01
Economic growth inevitably influences the food chain. Growing demand with changes in lifestyle and health consciousness encourage use of packaged and pre-prepared foods. The needs of environmental protection from waste generated are largely overlooked, and a lack of knowledge about the impact on the environment and its health effects constitute food security/safety problems. Food production and waste generation directly affect resource (i.e., energy and water) consumption and often contaminate the environment. More pressure on food production has inculcated the use of pesticides, herbicides, antibiotics and chemical fertilizers which add to current global pollution. At least half of food grown is discarded before and after it reaches consumers. It is estimated that one third to half of landfill waste comes from the food sector. This landfill releases green house gases (GHG) as well as leachate which worsen soil and water quality and safety. Pharmaceutical and chemical contaminations from residential, industrial and agricultural sources make their way into nearby water and soil and can eventually affect our food systems. Phthalates, PFOA, BPA, commonly used in plastics and personal care products, are found in unacceptable concentrations in Taiwanese waters. They, too, contribute to food contamination and long-term health risk. Existing waste management strategies warrant more stringent norms for waste reduction at source. Awareness through education could reduce food waste and its consequences. This review encompasses impacts of food production systems on the environment, pollution which results from food waste, costs and economic advantages in food waste management, and health consequences of waste.
NASA Astrophysics Data System (ADS)
Defrianto; Tambunan, W.; Lazuardi
2017-07-01
The use of waste heat from exhaust gas and converting it to electricity is now an alternative to harvest a cheap and clean energy. Thermoelectric generator (TEG) has the ability to directly recover such waste heat and generate electricity. The aim of this study is to simulate the heat transfer on the aluminum adapter plate for homogeneity temperature distribution coupled with hot side of TEG type 40-40-10/100 from Firma Eureka and adjust their high temperatures to the TEG operating temperature to avoid the element damage. Modelling was carried out using MATLAB modified diffusion equation with Dirichlet boundary conditions at defined temperature which has been set at the ends of the heat source at 463K and 373K ± 10% on the hot side of the TEG element. The use of nylon insulated material is modeled after Neumann boundary condition in which the temperature gradient is ∂T/∂n = 0 out of boundary. Realization of the modelling is done by designing a heat conductive plate using software ACAD 2015 and converted into a binary file format of Mathlab to form a finite element mesh with geometry variations of solid model. The solid cubic model of aluminum adapter plate has a dimension of 40mm length, 40mm width and also 20mm, 30mm and 40mm thickness arranged in two arrays of 2×2 and 2×3 of TEG elements. Results showed a temperature decrease about 40.95% and 50.02% respectively from the initial source and appropriate with TEG temperature tolerance.
Cleanup Verification Package for the 618-8 Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel
2006-08-10
This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.
Deep Borehole Field Test Conceptual Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, Ernest L.
This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBDmore » concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.« less
Evaluation of Used Fuel Disposition in Clay-Bearing Rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jove-Colon, Carlos F.; Weck, Philippe F.; Hammond, Glenn Edward
Deep geological disposal of nuclear waste in clay/shale/argillaceous rock formations has received much consideration given its desirable attributes such as isolation properties (low permeability), geochemically reduced conditions, slow diffusion, sorbtive mineralogy, and geologically widespread (Jové Colón et al., 2014). There is a wealth of gained scientific expertise on the behavior of clay/shale/ argillaceous rock given its focus in international nuclear waste repository programs that includes underground research laboratories (URLs) in Switzerland, France, Belgium, and Japan. Jové Colón et al. (2014) have described some of these investigative efforts in clay rock ranging from site characterization to research on the engineered barriermore » system (EBS). Evaluations of disposal options that include nuclear waste disposition in clay/shale/argillaceous rock have determined that this host media can accommodate a wide range of waste types. R&D work within the Used Fuel Disposition Campaign (UFDC) assessing thermal effects and fluid-mineral interactions for the disposition of heat-generating waste have so far demonstrated the feasibility for the EBS and clay host rock to withstand high thermal loads. This report represents the continuation of disposal R&D efforts on the advancement and refinement of coupled Thermal-Hydrological-Mechanical-Chemical (THMC), hydrothermal experiments on clay interactions, used fuel degradation (source term), and thermodynamic modeling and database development. The development and implementation of a clay/shale/argillite reference case described in Jové Colón et al. (2014) for FY15 will be documented in another report (Mariner et al. 2015) – only a brief description will be given here. This clay reference case implementation is the result of integration efforts between the GDSA PA and disposal in argillite work packages. The assessment of sacrificial zones in the EBS is being addressed through experimental work along with 1D reactive-transport and reaction path modeling. The focus of these investigations into the nature of sacrificial zones is to evaluate the chemical effects of heterogeneous chemical reactions at EBS interfaces. The difference in barrier material types and the extent of chemical reactions within these interfacial domains generates changes in mineral abundances. These mineralogical alterations also result in volume changes that, although small, could affect the interface bulk porosity. As in previous deliverables, this report is structured according to various national laboratory contributions describing R&D activities applicable to clay/shale/argillite media.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
H. Marr
2006-10-25
The purpose of this calculation is to evaluate the thermal performance of the Naval Long and Naval Short spent nuclear fuel (SNF) waste packages (WP) in the repository emplacement drift. The scope of this calculation is limited to the determination of the temperature profiles upon the surfaces of the Naval Long and Short SNF waste package for up to 10,000 years of emplacement. The temperatures on the top of the outside surface of the naval canister are the thermal interfaces for the Naval Nuclear Propulsion Program (NNPP). The results of this calculation are intended to support Licensing Application design activities.
Nanotechnology for the Solid Waste Reduction of Military Food Packaging
2016-06-01
WP-200816) Nanotechnology for the Solid Waste Reduction of Military Food Packaging June 2016 This document has been cleared for public release...NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 01/06/2016 Cost and Performance Report 04/01/2008 - 01/01/2015 Nanotechnology for... nanotechnology packaging. The PIs have been dedicated to these efforts, and it is anticipated that this technology will be used someday by the Warfighter
NASA Astrophysics Data System (ADS)
Adams, Mike; Smalian, Silva
2017-09-01
For nuclear waste packages the expected dose rates and nuclide inventory are beforehand calculated. Depending on the package of the nuclear waste deterministic programs like MicroShield® provide a range of results for each type of packaging. Stochastic programs like "Monte-Carlo N-Particle Transport Code System" (MCNP®) on the other hand provide reliable results for complex geometries. However this type of program requires a fully trained operator and calculations are time consuming. The problem here is to choose an appropriate program for a specific geometry. Therefore we compared the results of deterministic programs like MicroShield® and stochastic programs like MCNP®. These comparisons enable us to make a statement about the applicability of the various programs for chosen types of containers. As a conclusion we found that for thin-walled geometries deterministic programs like MicroShield® are well suited to calculate the dose rate. For cylindrical containers with inner shielding however, deterministic programs hit their limits. Furthermore we investigate the effect of an inhomogeneous material and activity distribution on the results. The calculations are still ongoing. Results will be presented in the final abstract.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-838] Certain Food Waste Disposers and Components and Packaging Thereof; Notice of the Commission's Determination Not To Review Initial Determinations Granting Complainant's Motions To Partially Terminate the Investigation and To Withdraw the...
Cleanup Verification Package for the 300 VTS Waste Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. W. Clark and T. H. Mitchell
2006-03-13
This cleanup verification package documents completion of remedial action for the 300 Area Vitrification Test Site, also known as the 300 VTS site. The site was used by Pacific Northwest National Laboratory as a field demonstration site for in situ vitrification of soils containing simulated waste.
Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton
2013-10-15
Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.
Ohmic Heating of an Electrically Conductive Food Package.
Kanogchaipramot, Kanyawee; Tongkhao, Kullanart; Sajjaanantakul, Tanaboon; Kamonpatana, Pitiya
2016-12-01
Ohmic heating through an electrically conductive food package is a new approach to heat the food and its package as a whole after packing to avoid post-process contamination and to serve consumer needs for convenience. This process has been successfully completed using polymer film integrated with an electrically conductive film to form a conductive package. Orange juice packed in the conductive package surrounded with a conductive medium was pasteurized in an ohmic heater. A mathematical model was developed to simulate the temperature distribution within the package and its surroundings. A 3-D thermal-electric model showed heating uniformity inside the food package while the hot zone appeared in the orange juice adjacent to the conductive film. The accuracy of the model was determined by comparing the experimental results with the simulated temperature and current drawn; the model showed good agreement between the actual and simulated results. An inoculated pack study using Escherichia coli O157:H7 indicated negative growth of viable microorganisms at the target and over target lethal process temperatures, whereas the microorganism was present in the under target temperature treatment. Consequently, our developed ohmic heating system with conductive packaging offers potential for producing safe food. © 2016 Institute of Food Technologists®.
Bian, Bo; Zhang, Limin; Zhang, Qin; Zhang, Shaopeng; Yang, Zhen; Yang, Weiben
2018-08-01
A cost-effective approach for pretreatment of chemical sludge for further dewatering, based on the idea of "using waste to treat waste", is provided. It is a coupled heating/acidification pretreatment method, where waste sulfuric acid is employed and relatively low temperatures (<100 °C) are applied. Effects of reaction time, temperature, and dosage of waste acid on dewatering performance (both dewatering speed and degree) are studied. Under the optimal conditions (reaction time: 30 min; temperature: 90 °C; waste acid dosage: 0.175 g/(g dried sludge)), the method of this work demonstrates three advantages compared to the conventional method using lime+polyacrylamide: lower moisture content of treated sludge; higher calorific value for incineration process; and lower cost. Detailed mechanism of the pretreatment for dewatering is investigated via characterizations and statistical analyses of various parameters, among which zeta potential, particle size, protein and polysaccharide contents, soluble chemical oxygen demand (SCOD), reduction of combined water and volatile suspended solid (VSS), are associated with dewatering performance. Both heating and acidification generate disintegration of cells in sludge, giving rise to two phenomena: more organic matters are released into solution and more bound water turns into free water. Meantime, the released organic polymers flocculate sludge particles, further accelerating the solid-liquid separation process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Conceptual approach on harvesting PV dissipated heat for enhancing water evaporation
NASA Astrophysics Data System (ADS)
Latiff, N. Abdul; Ya'acob, M. E.; Yunos, Khairul Faezah Md.
2017-09-01
The fluctuating sun radiation in tropical climate conditions has significantly affected the output performance of the PV array and also processes related to direct-sun drying. Apart from this, the dissipated heat under PV array projected from photonic effects of generating electricity is currently wasted to the environment. This study shares some conceptual idea on a new approach for harvesting the dissipated heat energy from PV arrays for the purpose of enhancing water evaporation process. Field measurements for ambient temperature (Ta) and PV bottom surface temperature (FFb) are measured and recorded for calculating the evaporation rates at different condition in real time. The waste heat dissipated in this condition is proposed as a medium to increase evaporation thru speeding up the water condensation process. The significant increase of water evaporation rate based on Penman equation supports the idea of integration with landed PV array structures.
NASA Technical Reports Server (NTRS)
Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheller, Raymond M.
2011-01-01
The project reported here provides microbial characterization support to the Waste Management Systems (WMS) element of NASA's Life Support and Habitation Systems (LSHS) program. Conventional microbiological methods were used to detect and enumerate microorganisms in STS Volume F Compartment trash for three shuttle missions: STS 133, 134, and 135. This trash was usually made available within 2 days of landing at KSC. The Volume F bag was weighed, opened and the contents were cataloged and placed into categories: personal hygiene items - inclUding EVA maximum absorbent garments (MAGs) and Elbow packs (daily toilet wipes, etc), drink containers, food waste (and containers), office waste (paper), and packaging materials - plastic film and duct tape. The average wet trash generation rate for the three STS missions was 0.362 % 0.157 kgwet crew 1 d-1 . This was considerably lower and more variable than the average rate for 4 STS missions reported for FY10. Trash subtotals by category: personal hygiene wastes, 56%; drink items, 11 %; food wastes, 18%; office waste, 3%; and plastic film, 12%. These wastes have an abundance of easily biodegraded compounds that can support the growth of microorganisms. Microbial characterization of trash showed that large numbers of bacteria and fungi have taken advantage of this readily available nutrient source to proliferate. Exterior and interior surfaces of plastic film bags containing trash were sampled and counts of cultivatable microbes were generally low and mostly occurred on trash bundles within the exterior trash bags. Personal hygiene wastes, drink containers, and food wastes and packaging all contained high levels of, mostly, aerobic heterotrophic bacteria and lower levels of yeasts and molds. Isolates from plate count media were obtained and identified .and were mostly aerobic heterotrophs with some facultative anaerobes. These are usually considered common environmental isolates on Earth. However, several pathogens were also isolated: Staphylococcus aureus and Escherichia coli.
An Experimental Study of Diffusivity of Technetium-99 in Hanford Vadose Zone Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.; Bovaird, Chase C.; Wellman, Dawn M.
2012-11-01
One of the methods being considered at the Hanford site in Washington for safely disposing of low-level radioactive wastes (LLW) is to encase the waste in concrete and entomb the packages in the Hanford vadose zone sediments. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages with concrete. Any failure of the concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion andmore » move into the surrounding subsurface sediments. It is therefore necessary to conduct an assessment of the performance of the concrete encasement structure and the surrounding soil’s ability to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Because of their anionic nature in aqueous solutions, the radionuclides, 99Tc and 129I were identified as long-term dose contributors in LLW. The leachability and/or diffusion of these radionuclide species must be measured in order to assess the long-term performance of waste grouts when contacted with vadose-zone porewater or groundwater. To measure the diffusivity, a set of experiments were conducted using 99Tc-spiked concrete (with 0 and 4% metallic iron additions) in contact with unsaturated soil half-cells that reflected the typical moisture contents of Hanford vadose zone sediments. The 99Tc diffusion profiles in the soil half cells were measured after a time lapse of ~1.9 yr. Using the concentration profiles, the 99Tc diffusivity coefficients were calculated based on Fick’s Second Law.« less
Janjarasskul, Theeranun; Krochta, John M
2010-01-01
Research groups and the food and pharmaceutical industries recognize edible packaging as a useful alternative or addition to conventional packaging to reduce waste and to create novel applications for improving product stability, quality, safety, variety, and convenience for consumers. Recent studies have explored the ability of biopolymer-based food packaging materials to carry and control-release active compounds. As diverse edible packaging materials derived from various by-products or waste from food industry are being developed, the dry thermoplastic process is advancing rapidly as a feasible commercial edible packaging manufacturing process. The employment of nanocomposite concepts to edible packaging materials promises to improve barrier and mechanical properties and facilitate effective incorporation of bioactive ingredients and other designed functions. In addition to the need for a more fundamental understanding to enable design to desired specifications, edible packaging has to overcome challenges such as regulatory requirements, consumer acceptance, and scaling-up research concepts to commercial applications.
Investigation of thermolytic hydrogen generation rate of tank farm simulated and actual waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martino, C.; Newell, D.; Woodham, W.
To support resolution of Potential Inadequacies in the Safety Analysis for the Savannah River Site (SRS) Tank Farm, Savannah River National Laboratory conducted research to determine the thermolytic hydrogen generation rate (HGR) with simulated and actual waste. Gas chromatography methods were developed and used with air-purged flow systems to quantify hydrogen generation from heated simulated and actual waste at rates applicable to the Tank Farm Documented Safety Analysis (DSA). Initial simulant tests with a simple salt solution plus sodium glycolate demonstrated the behavior of the test apparatus by replicating known HGR kinetics. Additional simulant tests with the simple salt solutionmore » excluding organics apart from contaminants provided measurement of the detection and quantification limits for the apparatus with respect to hydrogen generation. Testing included a measurement of HGR on actual SRS tank waste from Tank 38. A final series of measurements examined HGR for a simulant with the most common SRS Tank Farm organics at temperatures up to 140 °C. The following conclusions result from this testing.« less
Natural additives and agricultural wastes in biopolymer formulations for food packaging.
Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso
2014-01-01
The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.
Natural additives and agricultural wastes in biopolymer formulations for food packaging
NASA Astrophysics Data System (ADS)
Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso
2014-02-01
The main directions in food packaging research are targeted towards improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed.
Natural additives and agricultural wastes in biopolymer formulations for food packaging
Valdés, Arantzazu; Mellinas, Ana Cristina; Ramos, Marina; Garrigós, María Carmen; Jiménez, Alfonso
2014-01-01
The main directions in food packaging research are targeted toward improvements in food quality and food safety. For this purpose, food packaging providing longer product shelf-life, as well as the monitoring of safety and quality based upon international standards, is desirable. New active packaging strategies represent a key area of development in new multifunctional materials where the use of natural additives and/or agricultural wastes is getting increasing interest. The development of new materials, and particularly innovative biopolymer formulations, can help to address these requirements and also with other packaging functions such as: food protection and preservation, marketing and smart communication to consumers. The use of biocomposites for active food packaging is one of the most studied approaches in the last years on materials in contact with food. Applications of these innovative biocomposites could help to provide new food packaging materials with improved mechanical, barrier, antioxidant, and antimicrobial properties. From the food industry standpoint, concerns such as the safety and risk associated with these new additives, migration properties and possible human ingestion and regulations need to be considered. The latest innovations in the use of these innovative formulations to obtain biocomposites are reported in this review. Legislative issues related to the use of natural additives and agricultural wastes in food packaging systems are also discussed. PMID:24790975
Material for electrodes of low temperature plasma generators
Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich
2008-12-09
Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.
Material for electrodes of low temperature plasma generators
Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich; Shiryaev, Vasili Nikolaevich
2010-03-02
Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron:3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.
Optimisation of the Management of Higher Activity Waste in the UK - 13537
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Ciara; Buckley, Matthew
2013-07-01
The Upstream Optioneering project was created in the Nuclear Decommissioning Authority (UK) to support the development and implementation of significant opportunities to optimise activities across all the phases of the Higher Activity Waste management life cycle (i.e. retrieval, characterisation, conditioning, packaging, storage, transport and disposal). The objective of the Upstream Optioneering project is to work in conjunction with other functions within NDA and the waste producers to identify and deliver solutions to optimise the management of higher activity waste. Historically, optimisation may have occurred on aspects of the waste life cycle (considered here to include retrieval, conditioning, treatment, packaging, interimmore » storage, transport to final end state, which may be geological disposal). By considering the waste life cycle as a whole, critical analysis of assumed constraints may lead to cost savings for the UK Tax Payer. For example, it may be possible to challenge the requirements for packaging wastes for disposal to deliver an optimised waste life cycle. It is likely that the challenges faced in the UK are shared in other countries. It is therefore likely that the opportunities identified may also apply elsewhere, with the potential for sharing information to enable value to be shared. (authors)« less
NASA Astrophysics Data System (ADS)
Hossain, Md Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Jamalipour, Abbas
2017-04-01
Degradation of olive oil under light and heat are analysed using an optical fibre based low-cost portable smartphone spectrofluorimeter. Visible fluorescence bands associated with phenolic acids, vitamins and chlorophyll centred at λ 452, 525 and 670 nm respectively are generated using near-UV excitation (LED λex 370 nm), of extra virgin olive oil are degraded more likely than refined olive oil under light and heat exposure. Packaging is shown to be critical when assessing the origin of degradation.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Anderson, Kevin
2013-01-01
The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to 50 C range. The RHRS harnesses some of the waste heat generated from the rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 W of electrical power while generating waste heat equivalent to approximately 2000 W. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer. Winds on Mars can be as fast as 15 m/s for extended periods. They can lead to significant heat loss from the MMRTG and the hot plates due to convective heat pick up from these surfaces. Estimation of this convective heat loss cannot be accurately and adequately achieved by simple textbook based calculations because of the very complicated flow fields around these surfaces, which are a function of wind direction and speed. Accurate calculations necessitated the employment of sophisticated Computational Fluid Dynamics (CFD) computer codes. This paper describes the methodology and results of these CFD calculations. Additionally, these results are compared to simple textbook based calculations that served as benchmarks and sanity checks for them. And finally, the overall RHRS system performance predictions will be shared to show how these results affected the overall rover thermal performance.
Cleanup Verification Package for the 118-F-1 Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. J. Farris and H. M. Sulloway
2008-01-10
This cleanup verification package documents completion of remedial action for the 118-F-1 Burial Ground on the Hanford Site. This burial ground is a combination of two locations formerly called Minor Construction Burial Ground No. 2 and Solid Waste Burial Ground No. 2. This waste site received radioactive equipment and other miscellaneous waste from 105-F Reactor operations, including dummy elements and irradiated process tubing; gun barrel tips, steel sleeves, and metal chips removed from the reactor; filter boxes containing reactor graphite chips; and miscellaneous construction solid waste.
NASA Astrophysics Data System (ADS)
Parra, Duclerc F.; Rodrigues, Juliana A. F. R.; Lugão, Ademar B.
2005-07-01
Gamma irradiation is an alternative method for the manufacture of sterilized packaging with increased storage stability and microbiological safety. Biopolymer-based packaging films are a potential solution to many environmental problems that have emerged from the production and accumulation of significant amounts of synthetic polymeric waste. This work was undertaken to verify the effectiveness of low-dose gamma-irradiation in obtaining biopolymer-based packaging films for shelf-stable foods. PHB polyester poly(3-hydroxybutyrate) is an interesting biodegradable polymer that has been intensely investigated as cast and sheet films, with applications in the food industry and medicine. The films obtained are, however, typically brittle, and many scientists have attempted to reduce this brittleness by blending PHB with other polymers. In the present work, PHB was blended with PEG (polyethyleneglycol) to obtain films by the casting method that were then irradiated at a dose rate of 5.72 kGy/h with a 60Co source. Samples were melted at 200 °C and quenched to 0 °C in order to evaluate film crystallinity levels by differential scanning calorimetry (DSC). DSC analyses were performed with the samples (10 mg) under N2 atmosphere, heating from -50 to 200 °C (10 °C min-1), cooling from 200 to -50 °C (10 °C min-1); and heating from -50 to 200 °C (10 °C min-1). The thermal and mechanical resistances of the films after irradiation at low doses (5, 10, 20 kGy) are discussed. Water vapour transmission decreased with increasing irradiation dose, indicating that the films' performance as water vapour barrier had improved. Critical loss of the mechanical properties was observed at 40 kGy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olander, Jonathan; Myers, Corey
2013-07-01
Studsviks' Processing Facility Erwin (SPFE) has been treating Low-Level Radioactive Waste using its patented THOR process for over 13 years. Studsvik has been mixing and processing wastes of the same waste classification but different chemical and isotopic characteristics for the full extent of this period as a general matter of operations. Studsvik utilizes the accountability method to track the movement of radionuclides from acceptance of waste, through processing, and finally in the classification of waste for disposal. Recently the NRC has proposed to revise the 1995 Branch Technical Position on Concentration Averaging and Encapsulation (1995 BTP on CA) with additionalmore » clarification (draft BTP on CA). The draft BTP on CA has paved the way for large scale blending of higher activity and lower activity waste to produce a single waste for the purpose of classification. With the onset of blending in the waste treatment industry, there is concern from the public and state regulators as to the robustness of the accountability method and the ability of processors to prevent the inclusion of hot spots in waste. To address these concerns and verify the accountability method as applied by the SPFE, as well as the SPFE's ability to control waste package classification, testing of actual waste packages was performed. Testing consisted of a comprehensive dose rate survey of a container of processed waste. Separately, the waste package was modeled chemically and radiologically. Comparing the observed and theoretical data demonstrated that actual dose rates were lower than, but consistent with, modeled dose rates. Moreover, the distribution of radioactivity confirms that the SPFE can produce a radiologically homogeneous waste form. The results of the study demonstrate: 1) the accountability method as applied by the SPFE is valid and produces expected results; 2) the SPFE can produce a radiologically homogeneous waste; and 3) the SPFE can effectively control the waste package classification. (authors)« less
NASA Technical Reports Server (NTRS)
Mastropietro, A. J.; Beatty, John S.; Kelly, Frank P.; Bhandari, Pradeep; Bame, David P.; Liu, Yuanming; Birux, Gajanana C.; Miller, Jennifer R.; Pauken, Michael T.; Illsley, Peter M.
2012-01-01
The addition of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to the Mars Science Laboratory (MSL) Rover requires an advanced thermal control system that is able to both recover and reject the waste heat from the MMRTG as needed in order to maintain the onboard electronics at benign temperatures despite the extreme and widely varying environmental conditions experienced both on the way to Mars and on the Martian surface. Based on the previously successful Mars landed mission thermal control schemes, a mechanically pumped fluid loop (MPFL) architecture was selected as the most robust and efficient means for meeting the MSL thermal requirements. The MSL heat recovery and rejection system (HRS) is comprised of two Freon (CFC-11) MPFLs that interact closely with one another to provide comprehensive thermal management throughout all mission phases. The first loop, called the Rover HRS (RHRS), consists of a set of pumps, thermal control valves, and heat exchangers (HXs) that enables the transport of heat from the MMRTG to the rover electronics during cold conditions or from the electronics straight to the environment for immediate heat rejection during warm conditions. The second loop, called the Cruise HRS (CHRS), is thermally coupled to the RHRS during the cruise to Mars, and provides a means for dissipating the waste heat more directly from the MMRTG as well as from both the cruise stage and rover avionics by promoting circulation to the cruise stage radiators. A multifunctional structure was developed that is capable of both collecting waste heat from the MMRTG and rejecting the waste heat to the surrounding environment. It consists of a pair of honeycomb core sandwich panels with HRS tubes bonded to both sides. Two similar HX assemblies were designed to surround the MMRTG on the aft end of the rover. Heat acquisition is accomplished on the interior (MMRTG facing) surface of each HX while heat rejection is accomplished on the exterior surface of each HX. Since these two surfaces need to be at very different temperatures in order for the fluid loops to perform efficiently, they need to be thermally isolated from one another. The HXs were therefore designed for high in-plane thermal conductivity and extremely low through-thickness thermal conductivity by using aluminum facesheets and aerogel as insulation inside a composite honeycomb core. Complex assemblies of hand-welded and uniquely bent aluminum tubes are bonded onto each side of the HX panels, and are specifically designed to be easily mated and demated to the rest of the RHRS in order to ease the integration effort.
Natural biopolimers in organic food packaging
NASA Astrophysics Data System (ADS)
Wieczynska, Justyna; Cavoski, Ivana; Chami, Ziad Al; Mondelli, Donato; Di Donato, Paola; Di Terlizzi, Biagio
2014-05-01
Concerns on environmental and waste problems caused by use of non-biodegradable and non-renewable based plastic packaging have caused an increase interest in developing biodegradable packaging using renewable natural biopolymers. Recently, different types of biopolymers like starch, cellulose, chitosan, casein, whey protein, collagen, egg white, soybean protein, corn zein, gelatin and wheat gluten have attracted considerable attention as potential food packaging materials. Recyclable or biodegradable packaging material in organic processing standards is preferable where possible but specific principles of packaging are not precisely defined and standards have to be assessed. There is evidence that consumers of organic products have specific expectations not only with respect to quality characteristics of processed food but also in social and environmental aspects of food production. Growing consumer sophistication is leading to a proliferation in food eco-label like carbon footprint. Biopolymers based packaging for organic products can help to create a green industry. Moreover, biopolymers can be appropriate materials for the development of an active surfaces designed to deliver incorporated natural antimicrobials into environment surrounding packaged food. Active packaging is an innovative mode of packaging in which the product and the environment interact to prolong shelf life or enhance safety or sensory properties, while maintaining the quality of the product. The work will discuss the various techniques that have been used for development of an active antimicrobial biodegradable packaging materials focusing on a recent findings in research studies. With the current focus on exploring a new generation of biopolymer-based food packaging materials with possible applications in organic food packaging. Keywords: organic food, active packaging, biopolymers , green technology
77 FR 56241 - Board Meeting; October 17, 2012; Idaho Falls, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
.... Nuclear Waste Technical Review Board will meet to discuss DOE work on packaging, transporting, and...) plans for the packaging, transportation, and disposition of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). Among the topics that will be discussed are current activities being undertaken by...
Cleanup Verification Package for the 100-F-20, Pacific Northwest Laboratory Parallel Pits
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel
2007-01-22
This cleanup verification package documents completion of remedial action for the 100-F-20, Pacific Northwest Laboratory Parallel Pits waste site. This waste site consisted of two earthen trenches thought to have received both radioactive and nonradioactive material related to the 100-F Experimental Animal Farm.
Thermoelectric-Driven Sustainable Sensing and Actuation Systems for Fault-Tolerant Nuclear Incidents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longtin, Jon
2016-02-08
The Fukushima Daiichi nuclear incident in March 2011 represented an unprecedented stress test on the safety and backup systems of a nuclear power plant. The lack of reliable information from key components due to station blackout was a serious setback, leaving sensing, actuation, and reporting systems unable to communicate, and safety was compromised. Although there were several independent backup power sources for required safety function on site, ultimately the batteries were drained and the systems stopped working. If, however, key system components were instrumented with self-powered sensing and actuation packages that could report indefinitely on the status of the system,more » then critical system information could be obtained while providing core actuation and control during off-normal status for as long as needed. This research project focused on the development of such a self-powered sensing and actuation system. The electrical power is derived from intrinsic heat in the reactor components, which is both reliable and plentiful. The key concept was based around using thermoelectric generators that can be integrated directly onto key nuclear components, including pipes, pump housings, heat exchangers, reactor vessels, and shielding structures, as well as secondary-side components. Thermoelectric generators are solid-state devices capable of converting heat directly into electricity. They are commercially available technology. They are compact, have no moving parts, are silent, and have excellent reliability. The key components to the sensor package include a thermoelectric generator (TEG), microcontroller, signal processing, and a wireless radio package, environmental hardening to survive radiation, flooding, vibration, mechanical shock (explosions), corrosion, and excessive temperature. The energy harvested from the intrinsic heat of reactor components can be then made available to power sensors, provide bi-directional communication, recharge batteries for other safety systems, etc. Such an approach is intrinsically fault tolerant: in the event that system temperatures increase, the amount of available energy will increase, which will make more power available for applications. The system can also be used during normal conditions to provide enhanced monitoring of key system components.« less
Potentially hazardous waste produced at home.
Chaves, Loide Corina; de Campos, Ligia Mara Daros; Filipini, Rosangela; de Abreu, Luiz Carlos; Valenti, Vitor E; Azzalis, Ligia Ajaime; Junqueira, Virginia Berlanga Campos; Sena, Dayse F; Goulart, Flávia C; Fonseca, Fernando Luiz Affonso
2013-06-27
The purpose of this study was to identify the sources of waste generation household consisting of biological material and to investigate the knowledge presented by those responsible for the generation of waste in the home environment on the potential health risk human and environmental. It is a quantitative survey performed in Parque Capuava, Santo André (SP). The questionnaire was administered by the community employers and nursing students during the consultation with nursing supervision through interview question/answer. The exclusion criteria were patients who were not in the area served by the Basic Health Unit which covers the area of Pq Capuava. The sample was consisted of 99 persons and the data collection a questionnaire was used. We observed that 63.3% of people said to use disposables, with the majority (58.7%) of these use the public collection as the final destination of these materials. It was reported that 73.7% of those surveyed reported having knowledge about the risk of disease transmission. Public awareness of the importance of proper packaging and disposal of potentially hazardous household waste may contribute significantly to the preservation of human and environmental health and this procedure can be performed and supervised by professional nurses. We suggest implementation of workshops for community health workers and the general population in order to enhance their knowledge about the storage and disposal of potentially infectious waste generated at home, thereby reducing the potential risk of disease transmission by improper management.
Potentially hazardous waste produced at home
2013-01-01
Background The purpose of this study was to identify the sources of waste generation household consisting of biological material and to investigate the knowledge presented by those responsible for the generation of waste in the home environment on the potential health risk human and environmental. Method It is a quantitative survey performed in Parque Capuava, Santo André (SP). The questionnaire was administered by the community employers and nursing students during the consultation with nursing supervision through interview question/answer. The exclusion criteria were patients who were not in the area served by the Basic Health Unit which covers the area of Pq Capuava. The sample was consisted of 99 persons and the data collection a questionnaire was used. Results We observed that 63.3% of people said to use disposables, with the majority (58.7%) of these use the public collection as the final destination of these materials. It was reported that 73.7% of those surveyed reported having knowledge about the risk of disease transmission. Public awareness of the importance of proper packaging and disposal of potentially hazardous household waste may contribute significantly to the preservation of human and environmental health and this procedure can be performed and supervised by professional nurses. Conclusion We suggest implementation of workshops for community health workers and the general population in order to enhance their knowledge about the storage and disposal of potentially infectious waste generated at home, thereby reducing the potential risk of disease transmission by improper management. PMID:23806043
NASA Astrophysics Data System (ADS)
Kim, Myoung-Soo; Kim, Min-Ki; Kim, Kyongtae; Kim, Yong-Jun
2017-09-01
We developed a prototype of a wearable hybrid generator (WHG) that is used for harvesting the heat energy of the human body. This WHG is constructed by integrating a thermoelectric generator (TEG) in a circular mesh polyester knit fabric, circular-shaped pyroelectric generator (PEG), and quick sweat-pickup/dry-fabric. The fabric packaging enables the TEG part of the WHG to generate energy steadily while maintaining a temperature difference in extreme temperature environments. Moreover, when the body sweats, the evaporation heat of the sweat leads to thermal fluctuations in the WHG. This phenomenon further leads to an increase in the output power of the WHG. These characteristics of the WHG make it possible to produce electrical energy steadily without reduction in the conversion efficiency, as both TEG and PEG use the same energy source of the human skin and the ambient temperature. Under a temperature difference of ˜6.5 °C and temperature change rate of ˜0.62 °C s-1, the output power and output power density of the WHG, respectively, are ˜4.5 nW and ˜1.5 μW m-2. Our hybrid approach will provide a framework to enhance the output power of the wearable generators that harvest heat energy from human body in various environments.
Basic repository environmental assessment design basis, Lavender Canyon site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-01-01
This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling andmore » packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs.« less
Pomberger, R; Sarc, R; Lorber, K E
2017-03-01
This contribution describes the dynamic visualisation of European (EU 28) municipal waste management performance, using the Ternary Diagram Method. Municipal waste management performance depends primarily on three treatment categories: recycling & composting, incineration and landfilling. The framework of current municipal waste management including recycling targets, etc. is given by the Waste Framework Directive - 2008/98/EC. The proposed Circular Economy Package should stimulate Europe's transition towards more sustainable resources and energy oriented waste management. The Package also includes a revised legislative proposal on waste that sets ambitious recycling rates for municipal waste for 2025 (60%) and 2030 (65%). Additionally, the new calculation method for monitoring the attainment of the targets should be applied. In 2014, ca. 240 million tonnes of municipal waste were generated in the EU. While in 1995, 17% were recycled and composted, 14% incinerated and 64% landfilled, in 2014 ca. 71% were recovered but 28% landfilled only. Considering the treatment performance of the individual EU member states, the EU 28 can be divided into three groups, namely: "Recovery Countries", "Transition Countries" and "Landfilling Countries". Using Ternary Diagram Method, three types of visualization for the municipal waste management performance have been investigated and extensively described. Therefore, for better understanding of municipal waste management performance in the last 20years, dynamic visualisation of the Eurostat table-form data on all 28 member states of the EU has been carried out in three different ways: 1. "Performance Positioning" of waste management unit(s) at a specific date; 2. "Performance dynamics" over a certain time period and; 3. "Performance development" expressed as a track(s). Results obtained show that the Ternary Diagram Method is very well suited to be used for better understanding of past developments and coherences, for monitoring of current situations and prognosis of future paths. One of the interesting coherences shown by the method is the linked development of recycling & composting (60-65%) with incineration (40-35%) performance over the last 20years in the EU 28. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kawai, Kosuke; Osako, Masahiro; Matsui, Saburo; Dong, Nguyen The
2012-07-01
Even in developing countries, the amount of containers and packaging waste are increasing in line with population concentration and lifestyle changes in urban areas. This can cause serious problems for the disposal of municipal solid waste. Through a physical composition analysis of household waste in Hanoi, the capital of Vietnam, this study aimed to identify the contribution made by junk buyers to recycling. Interviews on the handling of recyclable waste by households were conducted. About 232 kg of recyclable waste was sampled from a total of 115 households, and about 230 kg of municipal solid waste was sampled from a total of 101 households and sorted into 69 categories for measurement by volume and weight. The interview survey revealed that a high proportion of households tended to routinely store recyclable waste for sale or donation to junk buyers. Junk buyers accounted for 8.8% of recycling by weight or 26.0% by volume according to the results of the physical composition analysis. In addition, the results suggested that containers and packaging waste accounted for the largest proportion of household waste by volume. Junk buyers recycled 25.5% by weight of containers and packaging waste. In the formulation of new plans for municipal solid waste management to improve the current situation and handle future challenges, the role of the informal sector should be monitored carefully and reliable data on recyclable waste should be collected continuously.
Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.
2010-09-01
The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less
Thermal properties of simulated Hanford waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Carmen P.; Chun, Jaehun; Crum, Jarrod V.
The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will vitrify the mixed hazardous wastes generated from 45 years of plutonium production. The molten glasses will be poured into stainless steel containers or canisters and subsequently quenched for storage and disposal. Such highly energy-consuming processes require precise thermal properties of materials for appropriate facility design and operations. Key thermal properties (heat capacity, thermal diffusivity, and thermal conductivity) of representative high-level and low-activity waste glasses were studied as functions of temperature in the range of 200 to 800°C (relevant to the cooling process), implementing simultaneous differential scanning calorimetry-thermal gravimetry (DSC-TGA), Xe-flashmore » diffusivity, pycnometry, and dilatometry. The study showed that simultaneous DSC-TGA would be a reliable method to obtain heat capacity of various glasses at the temperature of interest. Accurate thermal properties from this study were shown to provide a more realistic guideline for capacity and time constraint of heat removal process, in comparison to the design basis conservative engineering estimates. The estimates, though useful for design in the absence measured physical properties, can now be supplanted and the measured thermal properties can be used in design verification activities.« less
49 CFR 173.197 - Regulated medical waste.
Code of Federal Regulations, 2010 CFR
2010-10-01
... (bio) medical waste must be rigid containers meeting the provisions of subpart B of this part. (b) Non... medical waste or clinical waste or (bio) medical waste must be UN standard packagings conforming to the... filled. (2) Liquids. Liquid regulated medical waste or clinical waste or (bio) medical waste transported...
Alternatives for Disposal of Depleted Uranium Waste.
1985-11-01
spontaneous increase in heat or pressure o No significant chemical or galvanic reaction o Closures to prevent inadvertent leakage 20 iL-i MI.....Nq...Ignition stops when the mass of the remaining metal can absorb the energy generated by the oxidation without reaching reaction temperatures. Thin sections...Compliance Worksheet i. Completion of Solid Waste Burial Record j. Structural Analysis of Special Containers k. Handling Procedures and Use of Forklifts 1
Biogas and energy production from cattle waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakravarthi, J.
1997-12-31
Biomass is one of the longest used energy sources employed in human activity. The bioconversion of organic matter to biogas is a complex anaerobic fermentation process involving the action of microorganisms such as methane producing bacteria. In this paper, biogas and energy production from cattle waste is investigated. There are two significant reasons that motivate this study. First, treating animal waste with the technology of anaerobic digestion can reduce environmental pollution and generate a relatively cheap and easily available source of energy in dairy farms. The gas produced can be used for space and water heating of farm houses, cooking,more » lighting, grain drying and as a fuel for heating greenhouses during cold weather. It also has the potential to run other small industries. Second, it is an effective way of managing cattle waste as well as producing a quick acting, non-toxic fertilizer for agricultural use. A working model of biogas plant is studied in this paper and its economic value as an alternative energy source is examined. An alternative to direct generation of electricity, is to convert the methane from the biomass to methanol. Methanol is an excellent fuel for internal combustion engines and can easily compete with gasoline in many nations where gasoline costs over $4 per US gallon.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consonni, Stefano, E-mail: stefano.consonni@polimi.it; Giugliano, Michele; Massarutto, Antonio
Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW)more » in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.« less
X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses
Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav; ...
2017-05-10
The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less
X-ray tomography of feed-to-glass transition of simulated borosilicate waste glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, William H.; Guillen, Donna P.; Klouzek, Jaroslav
The feed composition of a high level nuclear waste (HLW) glass melter affects the overall melting rate by influencing the chemical, thermophysical, and morphological properties of a relatively insulating cold cap layer over the molten phase where the primary feed vitrification reactions occur. Data from X ray computed tomography imaging of melting pellets comprised of a simulated high-aluminum HLW feed heated at a rate of 10°C/min reveal the distribution and morphology of bubbles, collectively known as primary foam, within this layer for various SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fractions at temperatures between 600°C and 1040°C. Tomore » track melting dynamics, cross-sections obtained through the central profile of the pellet were digitally segmented into primary foam and a condensed phase. Pellet dimensions were extracted using Photoshop CS6 tools while the DREAM.3D software package was used to calculate pellet profile area, average and maximum bubble areas, and two-dimensional void fraction. The measured linear increase in the pellet area expansion rates – and therefore the increase in batch gas evolution rates – with SiO 2/(Li 2CO 3+H 3BO 3+Na 2CO 3) mass fraction despite an exponential increase in viscosity of the final waste glass at 1050°C and a lower total amount of gas-evolving species suggest that the retention of primary foam with large average bubble size at higher temperatures results from faster reaction kinetics rather than increased viscosity. However, viscosity does affect the initial foam collapse temperature by supporting the growth of larger bubbles. Because the maximum bubble size is limited by the pellet dimensions, larger scale studies are needed to understand primary foam morphology at high temperatures. This temperature-dependent morphological data can be used in future investigations to synthetically generate cold cap structures for use in models of heat transfer within a HLW glass melter.« less
Heat recovery, ice storage to cut user's energy costs 40%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponczak, G.
1985-12-02
A new recovery system which uses waste heat generated by an Illinois ice rink's compressors for space heating and domestic hot water will benefit from low off-peak electricity rates at a time when demand rates for the rink will be increasing 30%. The thermal storage system uses the same compressors to build ice. The Wilmette Centennial Park Recreation Complex expects to reduce gas and electricity costs by 40%, or about $100,000 per year. Part of the project involved installing new, high-efficiency compressor motors. A preliminary energy audit revealed that the old compressors were throwing off 2.25 million Btu of heatmore » per hour. An air-to-water heat exchanger now provides space heating as needed. Two double-vented heat exchangers generate hot water for swimming pools and the ice-making machine. The ice storage tank is used for cooling. An energy management system controls these and other building systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolková, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk; Holubčík, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk
All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz’s Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain themore » waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.« less
NASA Astrophysics Data System (ADS)
Kolková, Zuzana; Holubčík, Michal; Malcho, Milan
2016-06-01
All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz's Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain the waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.
WTP Waste Feed Qualification: Hydrogen Generation Rate Measurement Apparatus Testing Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M. E.; Newell, J. D.; Smith, T. E.
The generation rate of hydrogen gas in the Hanford tank waste will be measured during the qualification of the staged tank waste for processing in the Hanford Tank Waste Treatment and Immobilization Plant. Based on a review of past practices in measurement of the hydrogen generation, an apparatus to perform this measurement has been designed and tested for use during waste feed qualification. The hydrogen generation rate measurement apparatus (HGRMA) described in this document utilized a 100 milliliter sample in a continuously-purged, continuously-stirred vessel, with measurement of hydrogen concentration in the vent gas. The vessel and lid had a combinedmore » 220 milliliters of headspace. The vent gas system included a small condenser to prevent excessive evaporative losses from the sample during the test, as well as a demister and filter to prevent particle migration from the sample to the gas chromatography system. The gas chromatograph was an on line automated instrument with a large-volume sample-injection system to allow measurement of very low hydrogen concentrations. This instrument automatically sampled the vent gas from the hydrogen generation rate measurement apparatus every five minutes and performed data regression in real time. The fabrication of the hydrogen generation rate measurement apparatus was in accordance with twenty three (23) design requirements documented in the conceptual design package, as well as seven (7) required developmental activities documented in the task plan associated with this work scope. The HGRMA was initially tested for proof of concept with physical simulants, and a remote demonstration of the system was performed in the Savannah River National Laboratory Shielded Cells Mockup Facility. Final verification testing was performed using non-radioactive simulants of the Hanford tank waste. Three different simulants were tested to bound the expected rheological properties expected during waste feed qualification testing. These simulants were tested at different temperatures using purge gas spiked with varying amounts of hydrogen to provide verification that the system could accurately measure the hydrogen in the vent gas at steady state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, Arne; Lidar, Per; Bergh, Niklas
2013-07-01
Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the designmore » basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)« less
Impact of pedagogical method on Brazilian dental students' waste management practice.
Victorelli, Gabriela; Flório, Flávia Martão; Ramacciato, Juliana Cama; Motta, Rogério Heládio Lopes; de Souza Fonseca Silva, Almenara
2014-11-01
The purpose of this study was to conduct a qualitative analysis of waste management practices among a group of Brazilian dental students (n=64) before and after implementing two different pedagogical methods: 1) the students attended a two-hour lecture based on World Health Organization standards; and 2) the students applied the lessons learned in an organized group setting aimed toward raising their awareness about socioenvironmental issues related to waste. All eligible students participated, and the students' learning was evaluated through their answers to a series of essay questions, which were quantitatively measured. Afterwards, the impact of the pedagogical approaches was compared by means of qualitative categorization of wastes generated in clinical activities. Waste categorization was performed for a period of eight consecutive days, both before and thirty days after the pedagogical strategies. In the written evaluation, 80 to 90 percent of the students' answers were correct. The qualitative assessment revealed a high frequency of incorrect waste disposal with a significant increase of incorrect disposal inside general and infectious waste containers (p<0.05). Although the students' theoretical learning improved, it was not enough to change behaviors established by cultural values or to encourage the students to adequately segregate and package waste material.
Lyophilization for Water Recovery From Solid Waste
NASA Technical Reports Server (NTRS)
Flynn, Michael; Litwiller, Eric; Reinhard, Martin
2003-01-01
This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.
Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland
NASA Astrophysics Data System (ADS)
Misz-Kennan, Magdalena
2010-01-01
Self-heating and self-combustion are currently taking place in some coal waste dumps in the Upper Silesian Coal Basin, Poland, e.g. the dumps at Rymer Cones, Starzykowiec, and the Marcel Coal Mine, all in the Rybnik area. These dumps are of similar age and self-heating and combustion have been occurring in all three for many years. The tools of organic petrography (maceral composition, rank, etc.), gas chromatography-mass spectrometry, and proximate and ultimate analysis are used to investigate the wastes. Organic matter occurs in quantities up to 85 vol.%, typically a few to several vol.%, in the wastes. All three maceral groups (vitrinite, liptinite, and inertinite) are present as unaltered and variously-altered constituents associated with newly-formed petrographic components (bitumen expulsions, pyrolytic carbon). The predominant maceral group is vitrinite with alterations reflected in the presence of irregular cracks, oxidation rims and, rarely, devolatilisation pores. In altered wastes, paler grey-vitrinite and/or coke dominates. The lack of plasticity, the presence of paler-coloured particles, isotropic massive coke, dispersed coked organic matter, and expulsions of bitumens all indicate that heating was slow and extended over a long time. Macerals belonging to other groups are present in unaltered form or with colours paler than the colours of the parent macerals. Based on the relative contents of organic compounds, the most important groups of these identified in the wastes are
Flexible thermoelectric device to harvest waste heat from the laptop
NASA Astrophysics Data System (ADS)
Salhi, Imane; Belhora, Fouad; Hajjaji, Abdelowahed; Jay, Jacques; Boughaleb, Yahia
2017-05-01
Recovering waste heat from integrated circuits of a laptop using thermoelectricity effects seems to be an appropriate process to enhance its efficiency. Thermoelectricity, as an energy harvesting process, helps to gain on both sides: financially as it reduces the energy consumption and environmentally as it minimizes the carbon footprint. This paper presents a flexible thermoelectric generator module which is developed to harvest waste heat of the laptop to power up some external loads. First, a theoretical analysis of the system is provided where both thermal and electrical models are exposed. Second, an estimation of the power density harvested by only one thermoelectric leg is given. This estimation can reach 0.01 µW/cm2 and it is confirmed by a numerical simulation based on the finite element method. Afterwards, this power density is improved to become 0.4 µW/cm2 by adding a heat sink in the cold side showing that the thermal resistances of the air and of the heat sink play a crucial role in transferring the temperature gradient to the thermoelectric (TE) material. Finally, it is indicated that the power harvested can be enough to power up portion of the circuitry or other important micro-accessories by using numerous thermoelectric modules.
Microwave pyrolysis of multilayer plastic waste (LDPE) using zeolite catalyst
NASA Astrophysics Data System (ADS)
Juliastuti, Sri Rachmania; Hendrianie, Nuniek; Ramadhan, Pandu Jati; Satria, Dama Husin
2017-05-01
To overcome the problem of garbage, especially plastic waste, environmental experts and scholars from various disciplines have conducted various studies and actions. One way to degrade the multilayer packaging plastic waste LDPE (Low Density Poliethylene) with microwave pyrolysis process by using natural zeolite catalysts. The purpose of this experiment was to determine the effect of temperature and time of microwave pyrolysis process by using natural zeolite catalyst to degrade the plastic waste LDPE and compare them. Pyrolysis process was done by using a closed glass reactor with a capacity of 500 ml, operated at a pressure of 1 atm and flowed nitrogen 0.5 1 / min. Plastic waste was LDPE, and natural zeolite was used as its catalyst. Sample was heated at temperature 300, 400, 500 or 550 °C and was kept during time variables of 45, 60, 75 and 90 minutes. Liquid product was analyzed by Gas Chromatography-Mass Spectrometry (GC-MS), raw material was analyzed by Fourier Transform Infrared (FTIR), and solid product was analyzed by X-Ray Fluorescene (XRF). From the experimental resulted in the best yield products of pyrolisis using natural zeolite at 550 °C and 90 minutes was 2.88 % of solid yield, 28.12 % of liquid yield and the highest hydrocarbon concentration of 19.02 %.
Pires, Ana; Sargedas, João; Miguel, Mécia; Pina, Joaquim; Martinho, Graça
2017-03-01
An understanding of the environmental impacts and costs related to waste collection is needed to ensure that existing waste collection schemes are the most appropriate with regard to both environment and cost. This paper is Part II of a three-part study of a mixed packaging waste collection system (curbside plus bring collection). Here, the mixed collection system is compared to an exclusive curbside system and an exclusive bring system. The scenarios were assessed using life cycle assessment and an assessment of costs to the waste management company. The analysis focuses on the collection itself so as to be relevant to waste managers and decision-makers who are involved only in this step of the packaging life cycle. The results show that the bring system has lower environmental impacts and lower economic costs, and is capable of reducing the environmental impacts of the mixed system. However, a sensitivity analysis shows that these results could differ if the curbside collection were to be optimized. From economic and environmental perspectives, the mixed system has few advantages. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuliah, Y.; Kartawidjaja, M.; Suryaningsih, S.; Ulfi, K.
2017-05-01
Rice husk and coconut shell have been disposed or burned as waste. As biomass, both of materials are the potential sources of carbon which can be utilized as alternative energy sources. The energy content can be exploited more intensively when packaged in a brief and convenient. In this work, the mixtures of rice husks and coconut shells charcoal were prepared as briquettes. After going through the carbonization process, several measurements have been taken to find out the factors that determine the value of heat energy contains by each component of the charcoals. The basic ingredients briquettes prepared from rice husk and coconut shell charcoal with varying composition and addition of tapioca starch gradually as adhesive material to obtain briquettes in solid with the maximum heat energy content. After going through pressing and drying process, the briquettes with 50:50 percent of composition and the 6% addition of adhesive was found has the highest heat energy content, equal to 4966 cal/g.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gigase, Yves
2007-07-01
Available in abstract form only. Full text of publication follows: The uncertainty on characteristics of radioactive LILW waste packages is difficult to determine and often very large. This results from a lack of knowledge of the constitution of the waste package and of the composition of the radioactive sources inside. To calculate a quantitative estimate of the uncertainty on a characteristic of a waste package one has to combine these various uncertainties. This paper discusses an approach to this problem, based on the use of the log-normal distribution, which is both elegant and easy to use. It can provide asmore » example quantitative estimates of uncertainty intervals that 'make sense'. The purpose is to develop a pragmatic approach that can be integrated into existing characterization methods. In this paper we show how our method can be applied to the scaling factor method. We also explain how it can be used when estimating other more complex characteristics such as the total uncertainty of a collection of waste packages. This method could have applications in radioactive waste management, more in particular in those decision processes where the uncertainty on the amount of activity is considered to be important such as in probability risk assessment or the definition of criteria for acceptance or categorization. (author)« less
Evaluation of trade-offs in costs and environmental impacts for returnable packaging implementation
NASA Astrophysics Data System (ADS)
Jarupan, Lerpong; Kamarthi, Sagar V.; Gupta, Surendra M.
2004-02-01
The main thrust of returnable packaging these days is to provide logistical services through transportation and distribution of products and be environmentally friendly. Returnable packaging and reverse logistics concepts have converged to mitigate the adverse effect of packaging materials entering the solid waste stream. Returnable packaging must be designed by considering the trade-offs between costs and environmental impact to satisfy manufacturers and environmentalists alike. The cost of returnable packaging entails such items as materials, manufacturing, collection, storage and disposal. Environmental impacts are explicitly linked with solid waste, air pollution, and water pollution. This paper presents a multi-criteria evaluation technique to assist decision-makers for evaluating the trade-offs in costs and environmental impact during the returnable packaging design process. The proposed evaluation technique involves a combination of multiple objective integer linear programming and analytic hierarchy process. A numerical example is used to illustrate the methodology.
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Edward
The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less
Rock Smelting of Copper Ores with Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Norgate, Terry; Jahanshahi, Sharif; Haque, Nawshad
It is generally recognised that the grades of metallic ores are falling globally. This trend can be expected to increase the life cycle-based energy requirement for primary metal production due to the additional amount of material that must be handled and treated in the mining and mineral processing stages of the metal production life cycle. Rock (or whole ore) smelting has been suggested as a possible alternative processing route for low grade ores with a potentially lower energy intensity and environmental impact than traditional processing routes. In this processing route, the beneficiation stage is eliminated along with its associated energy consumption and greenhouse gas emissions, but this is partially offset by the need for more solid material to be handled and heated up to smelting temperatures. A life cycle assessment study was carried out to assess the potential energy and greenhouse gas benefits of a conceptual flowsheet of the rock smelting process, using copper ore as an example. Recovery and utilisation of waste heat in the slag (via dry slag granulation) and offgas streams from the smelting step was also included in the study, with the waste heat being utilised either for thermal applications or electricity generation.
Special Test Methods for Batteries
NASA Technical Reports Server (NTRS)
Gross, S.
1984-01-01
Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.
Special test methods for batteries
NASA Astrophysics Data System (ADS)
Gross, S.
1984-09-01
Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.
Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing
NASA Technical Reports Server (NTRS)
Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)
1997-01-01
The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.
Water treatment capacity of forward osmosis systems utilizing power plant waste heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.
Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less
Water treatment capacity of forward osmosis systems utilizing power plant waste heat
Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.
2015-06-11
Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less
Generic Degraded Congiguration Probability Analysis for DOE Codisposal Waste Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.F.A. Deng; M. Saglam; L.J. Gratton
2001-05-23
In accordance with the technical work plan, ''Technical Work Plan For: Department of Energy Spent Nuclear Fuel Work Packages'' (CRWMS M&O 2000c), this Analysis/Model Report (AMR) is developed for the purpose of screening out degraded configurations for U.S. Department of Energy (DOE) spent nuclear fuel (SNF) types. It performs the degraded configuration parameter and probability evaluations of the overall methodology specified in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000, Section 3) to qualifying configurations. Degradation analyses are performed to assess realizable parameter ranges and physical regimes for configurations. Probability calculations are then performed for configurations characterized by k{submore » eff} in excess of the Critical Limit (CL). The scope of this document is to develop a generic set of screening criteria or models to screen out degraded configurations having potential for exceeding a criticality limit. The developed screening criteria include arguments based on physical/chemical processes and probability calculations and apply to DOE SNF types when codisposed with the high-level waste (HLW) glass inside a waste package. The degradation takes place inside the waste package and is long after repository licensing has expired. The emphasis of this AMR is on degraded configuration screening and the probability analysis is one of the approaches used for screening. The intended use of the model is to apply the developed screening criteria to each DOE SNF type following the completion of the degraded mode criticality analysis internal to the waste package.« less
Harvesting dissipated energy with a mesoscopic ratchet
NASA Astrophysics Data System (ADS)
Roche, B.; Roulleau, P.; Jullien, T.; Jompol, Y.; Farrer, I.; Ritchie, D. A.; Glattli, D. C.
2015-04-01
The search for new efficient thermoelectric devices converting waste heat into electrical energy is of major importance. The physics of mesoscopic electronic transport offers the possibility to develop a new generation of nanoengines with high efficiency. Here we describe an all-electrical heat engine harvesting and converting dissipated power into an electrical current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional conductor form the hot source and the cold converter of our device. In the former, controlled Joule heating generated by a voltage-biased quantum point contact results in thermal voltage fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold chaotic cavity connected to external leads by two quantum point contacts. For unequal quantum point contact transmissions, a net electrical current is observed proportional to the heat produced.
CO2 Reduction Effect of the Utilization of Waste Heat and Solar Heat in City Gas System
NASA Astrophysics Data System (ADS)
Okamura, Tomohito; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Hasegawa, Hideo; Ishitani, Hisashi
We evaluate total energy consumption and CO2 emissions in the phase of the city gas utilization system from obtaining raw materials to consuming the product. First, we develop a simulation model which calculates CO2 emissions for monthly and hourly demands of electricity, heats for air conditioning and hot-water in a typical hospital. Under the given standard capacity and operating time of CGS, energy consumption in the equipments is calculated in detail considering the partial load efficiency and the control by the temperature of exhaust heat. Then, we explored the optimal size and operation of city gas system that minimizes the life cycle CO2 emissions or total cost. The cost-effectiveness is compared between conventional co-generation, solar heat system, and hybrid co-generation utilizing solar heat. We formulate a problem of mixed integer programming that includes integral parameters that express the state of system devices such as on/off of switches. As a result of optimization, the hybrid co-generation can reduce annual CO2 emissions by forty-three percent compared with the system without co-generation. Sensitivity for the scale of CGS on CO2 reduction and cost is also analyzed.