Method to produce large, uniform hollow spherical shells
Hendricks, C.D.
1983-09-26
The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.
Heat transport system, method and material
Musinski, Donald L.
1987-01-01
A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.
Heat transport system, method and material
Musinski, D.L.
1987-04-28
A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.
Fabrication of precision glass shells by joining glass rods
Gac, Frank D.; Blake, Rodger D.; Day, Delbert E.; Haggerty, John S.
1988-01-01
A method for making uniform spherical shells. The present invention allows niform hollow spheres to be made by first making a void in a body of material. The material is heated so that the viscosity is sufficiently low so that the surface tension will transform the void into a bubble. The bubble is allowed to rise in the body until it is spherical. The excess material is removed from around the void to form a spherical shell with a uniform outside diameter.
Thermal invisibility based on scattering cancellation and mantle cloaking
Farhat, M.; Chen, P.-Y.; Bagci, H.; Amra, C.; Guenneau, S.; Alù, A.
2015-01-01
We theoretically and numerically analyze thermal invisibility based on the concept of scattering cancellation and mantle cloaking. We show that a small object can be made completely invisible to heat diffusion waves, by tailoring the heat conductivity of the spherical shell enclosing the object. This means that the thermal scattering from the object is suppressed, and the heat flow outside the object and the cloak made of these spherical shells behaves as if the object is not present. Thermal invisibility may open new vistas in hiding hot spots in infrared thermography, military furtivity, and electronics heating reduction. PMID:25928664
Hollow spherical shell manufacture
O'Holleran, T.P.
1991-11-26
A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.
Hollow spherical shell manufacture
O'Holleran, Thomas P.
1991-01-01
A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.
Greenhouse Effect: Temperature of a Metal Sphere Surrounded by a Glass Shell and Heated by Sunlight
ERIC Educational Resources Information Center
Nguyen, Phuc H.; Matzner, Richard A.
2012-01-01
We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the "z"-axis. This development is a generalization of the simple treatment of the…
NASA Astrophysics Data System (ADS)
Wang, H.; Yang, Z. Y.; Lu, Y. F.
2007-02-01
Laser-assisted chemical vapor deposition was applied in fabricating three-dimensional (3D) spherical-shell photonic band gap (PBG) structures by depositing silicon shells covering silica particles, which had been self-assembled into 3D colloidal crystals. The colloidal crystals of self-assembled silica particles were formed on silicon substrates using the isothermal heating evaporation approach. A continuous wave Nd:YAG laser (1064nm wavelength) was used to deposit silicon shells by thermally decomposing disilane gas. Periodic silicon-shell/silica-particle PBG structures were obtained. By removing the silica particles enclosed in the silicon shells using hydrofluoric acid, hollow spherical silicon-shell arrays were produced. This technique is capable of fabricating structures with complete photonic band gaps, which is predicted by simulations with the plane wave method. The techniques developed in this study have the potential to flexibly engineer the positions of the PBGs by varying both the silica particle size and the silicon-shell thickness. Ellipsometry was used to investigate the specific photonic band gaps for both structures.
NASA Astrophysics Data System (ADS)
Kirichok, I. F.
2017-09-01
Forced axisymmetric resonant vibrations and vibrational heating of viscoelastic, physically nonlinear, closed, spherical, and infinitely long cylindrical shells and ring with piezoelectric sensor and actuator are considered. The effect of physical nonlinearity of passive material on the vibration amplitude and vibrational heating temperature is studied. The possibility of active damping of vibrations by piezoelectric sensors and actuators is demonstrated.
Formation mechanism of monodispersed spherical core-shell ceria/polymer hybrid nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izu, Noriya, E-mail: n-izu@aist.go.jp; Uchida, Toshio; Matsubara, Ichiro
2011-08-15
Graphical abstract: The formation mechanism for core-shell nanoparticles is considered to be as follows: nucleation and particle growth occur simultaneously (left square); very slow particle growth occurs (middle square). Highlights: {yields} The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the PVP molecular weight. {yields} The size of the nanoparticles increased by a 2-step process as the reflux heating time increased. {yields} The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. -- Abstract: Very unique core-shell ceria (ceriummore » oxide)/polymer hybrid nanoparticles that have monodispersed spherical structures and are easily dispersed in water or alcohol without the need for a dispersant were reported recently. The formation mechanism of the unique nanoparticles, however, was not clear. In order to clarify the formation mechanism, these nanoparticles were prepared using a polyol method (reflux heating) under varied conditions of temperature, time, and concentration and molecular weight of added polymer (poly(vinylpyrrolidone)). The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the poly(vinylpyrrolidone) molecular weight. Furthermore, the size of the nanoparticles increased by a 2-step process as the reflux heating time increased. The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. From these results, the formation mechanism was discussed and proposed.« less
Method of forming cavitated objects of controlled dimension
Anderson, Paul R.; Miller, Wayne J.
1982-01-01
A method of controllably varying the dimensions of cavitated objects such as hollow spherical shells wherein a precursor shell is heated to a temperature above the shell softening temperature in an ambient atmosphere wherein the ratio of gases which are permeable through the shell wall at that temperature to gases which are impermeable through the shell wall is substantially greater than the corresponding ratio for gases contained within the precursor shell. As the shell expands, the partial pressures of permeable gases internally and externally of the shell approach and achieve equilibrium, so that the final shell size depends solely upon the difference in impermeable gas partial pressures and shell surface tension.
Fluidized bed calciner apparatus
Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.
1988-01-01
An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.
NASA Technical Reports Server (NTRS)
Hart, John E.
1996-01-01
Experiments designed to study the fluid dynamics of buoyancy driven circulations in rotating spherical shells were conducted on the United States Microgravity Laboratory 2 spacelab mission. These experiments address several aspects of prototypical global convection relevant to large scale motions on the Sun, Earth, and on the giant planets. The key feature is the consistent modeling of radially directed gravity in spherical geometry by using dielectric polarization forces. Imagery of the planforms of thermally driven flows for rapidly-rotating regimes shows an initial separation and eventual merger of equatorial and polar convection as the heating (i.e. the Rayleigh number) is increased. At low rotation rates, multiple-states of motion for the same external parameters were observed.
Method and apparatus for generating microshells of refractory materials
NASA Technical Reports Server (NTRS)
Lee, Mark C. (Inventor); Schilling, Christopher (Inventor); Ladner, Jr., George O. (Inventor); Wang, Taylor G. (Inventor)
1987-01-01
A system is described for forming accurately spherical and centered fluid-filled shells, especially of high melting temperature material. Material which is to form the shells is placed in a solid form in a container, and the material is rapidly heated to a molten temperature to avoid recrystallization and the possible generation of unwanted microbubbles in the melt. Immediately after the molten shells are formed, they drop through a drop tower whose upper end is heated along a distance of at least one foot to provide time for dissipation of surface waves on the shells while they cool to a highly viscous, or just above melting temperature so that the bubble within the shell will not rise and become off centered. The rest of the tower is cryogenically cooled to cool the shell to a solid state.
Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight
NASA Astrophysics Data System (ADS)
Nguyen, Phuc H.; Matzner, Richard A.
2012-01-01
We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.
Ocean-driven heating of Europa's icy shell at low latitudes
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Schmidt, B. E.; Wicht, J.; Blankenship, D. D.
2014-01-01
The ice shell of Jupiter's moon Europa is marked by regions of disrupted ice known as chaos terrains that cover up to 40% of the satellite's surface, most commonly occurring within 40° of the equator. Concurrence with salt deposits implies a coupling between the geologically active ice shell and the underlying liquid water ocean at lower latitudes. Europa's ocean dynamics have been assumed to adopt a two-dimensional pattern, which channels the moon's internal heat to higher latitudes. Here we present a numerical model of thermal convection in a thin, rotating spherical shell where small-scale convection instead adopts a three-dimensional structure and is more vigorous at lower latitudes. Global-scale currents are organized into three zonal jets and two equatorial Hadley-like circulation cells. We find that these convective motions transmit Europa's internal heat towards the surface most effectively in equatorial regions, where they can directly influence the thermo-compositional state and structure of the ice shell. We suggest that such heterogeneous heating promotes the formation of chaos features through increased melting of the ice shell and subsequent deposition of marine ice at low latitudes. We conclude that Europa's ocean dynamics can modulate the exchange of heat and materials between the surface and interior and explain the observed distribution of chaos terrains.
NASA Astrophysics Data System (ADS)
Tang, Xiaping; Churazov, Eugene
2018-04-01
We analyze the impact of thermal conduction on the appearance of a shock-heated gas shell which is produced when a spherically symmetric outburst of a supermassive black hole inflates bubbles of relativistic plasma at the center of a galaxy cluster. The presence of the hot and low-density shell can be used as an ancillary indicator for a high rate of energy release during the outburst, which is required to drive strong shocks into the gas. Here we show that conduction can effectively erase such shell, unless the diffusion of electrons is heavily suppressed. We conclude that a more robust proxy to the energy release rate is the ratio between the shock radius and bubble radius. We also revisited the issue of sound waves dissipation induced by thermal conduction in a scenario, where characteristic wavelength of the sound wave is set by the total energy of the outburst. For a fiducial short outburst model, the dissipation length does not exceed the cooling radius in a typical cluster, provided that the conduction is suppressed by a factor not larger than ˜100. For quasi-continuous energy injection neither the shock-heated shell nor the outgoing sound wave are important and the role of conduction is subdominant.
Optimization and design of pigments for heat-insulating coatings
NASA Astrophysics Data System (ADS)
Wang, Guang-Hai; Zhang, Yue
2010-12-01
This paper reports that heat insulating property of infrared reflective coatings is obtained through the use of pigments which diffuse near-infrared thermal radiation. Suitable structure and size distribution of pigments would attain maximum diffuse infrared radiation and reduce the pigment volume concentration required. The optimum structure and size range of pigments for reflective infrared coatings are studied by using Kubelka—Munk theory, Mie model and independent scattering approximation. Taking titania particle as the pigment embedded in an inorganic coating, the computational results show that core-shell particles present excellent scattering ability, more so than solid and hollow spherical particles. The optimum radius range of core-shell particles is around 0.3 ~ 1.6 μm. Furthermore, the influence of shell thickness on optical parameters of the coating is also obvious and the optimal thickness of shell is 100-300 nm.
The Geophysical Fluid Flow Cell Experiment
NASA Technical Reports Server (NTRS)
Hart, J. E.; Ohlsen, D.; Kittleman, S.; Borhani, N.; Leslie, F.; Miller, T.
1999-01-01
The Geophysical Fluid Flow Cell (GFFC) experiment performed visualizations of thermal convection in a rotating differentially heated spherical shell of fluid. In these experiments dielectric polarization forces are used to generate a radially directed buoyancy force. This enables the laboratory simulation of a number of geophysically and astrophysically important situations in which sphericity and rotation both impose strong constraints on global scale fluid motions. During USML-2 a large set of experiments with spherically symmetric heating were carried out. These enabled the determination of critical points for the transition to various forms of nonaxisymmetric convection and, for highly turbulent flows, the transition latitudes separating the different modes of motion. This paper presents a first analysis of these experiments as well as data on the general performance of the instrument during the USML-2 flight.
NASA Astrophysics Data System (ADS)
Wang, Guang-Hai; Zhang, Yue; Zhang, Da-Hai; Fan, Jin-Peng
2012-02-01
The infrared transmittance and emissivity of heat-insulating coatings pigmented with various structural particles were studied using Kubelka-Munk theory and Mie theory. The primary design purpose was to obtain the low transmittance and low emissivity coatings to reduce the heat transfer by thermal radiation for high-temperature applications. In the case of silica coating layers constituted with various structural titania particles (solid, hollow, and core-shell spherical), the dependence of transmittance and emissivity of the coating layer on the particle structure and the layer thickness was investigated and optimized. The results indicate that the coating pigmented with core-shell titania particles exhibits a lower infrared transmittance and a lower emissivity value than that with other structural particles and is suitable to radiative heat-insulating applications.
Cryogenic target formation using cold gas jets
Hendricks, Charles D.
1981-01-01
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.
Cryogenic target formation using cold gas jets
Hendricks, Charles D. [Livermore, CA
1980-02-26
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member.
Gravitational potential energy of the earth: A spherical harmonic approach
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1977-01-01
A spherical harmonic equation for the gravitational potential energy of the earth is derived for an arbitrary density distribution by conceptually bringing in mass-elements from infinity and building up the earth shell upon spherical shell. The zeroth degree term in the spherical harmonic equation agrees with the usual expression for the energy of a radial density distribution. The second degree terms give a maximum nonhydrostatic energy in the mantle and crust of -2.77 x 10 to the twenty-ninth power ergs, an order of magnitude. If the earth is assumed to be a homogeneous viscous oblate spheroid relaxing to an equilibrium shape, then a lower limit to the mantle viscosity of 1.3 x 10 to the twentieth power poises is found by assuming the total geothermal flux is due to viscous dissipation. If the nonequilibrium figure is dynamically maintained by the earth acting as a heat engine at one per cent efficiency, then the viscosity is ten to the twenty second power poises, a number preferred by some as the viscosity of the mantle.
Modes of mantle convection and the removal of heat from the earth's interior
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
Thermal histories for two-layer and whole-mantle convection models are calculated and presented, based on a parameterization of convective heat transport. The model is composed of two concentric spherical shells surrounding a spherical core. The models were constrained to yield the observed present-day surface heat flow and mantle viscosity, in order to determine parameters. These parameters were varied to determine their effects on the results. Studies show that whole-mantle convection removes three times more primordial heat from the earth interior and six times more from the core than does two-layer convection (in 4.5 billion years). Mantle volumetric heat generation rates for both models are comparable to that of a potassium-depleted chondrite, and thus surface heat-flux balance does not require potassium in the core. Whole and two-layer mantle convection differences are primarily due to lower mantle thermal insulation and the lower heat removal efficiency of the upper mantle as compared with that of the whole mantle.
Imperfection sensitivity of pressured buckling of biopolymer spherical shells
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ru, C. Q.
2016-06-01
Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.
Cryogenic target formation using cold gas jets
Hendricks, C.D.
1980-02-26
A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.
Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene
NASA Astrophysics Data System (ADS)
Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos
2017-07-01
Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.
Novel Architecture for a Long-Life, Lightweight Venus Lander
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugby, D.; Seghi, S.; Kroliczek, E.
2009-03-16
This paper describes a novel concept for an extended lifetime, lightweight Venus lander. Historically, to operate in the 480 deg. C, 90 atm, corrosive, mostly CO{sub 2} Venus surface environment, previous landers have relied on thick Ti spherical outer shells and thick layers of internal insulation. But even the most resilient of these landers operated for only about 2 hours before succumbing to the environment. The goal on this project is to develop an architecture that extends lander lifetime to 20-25 hours and also reduces mass compared to the Pioneer Venus mission architecture. The idea for reducing mass is to:more » (a) contain the science instruments within a spherical high strength lightweight polymer matrix composite (PMC) tank; (b) surround the PMC tank with an annular shell of high performance insulation pre-pressurized to a level that (after landing) will exceed the external Venus surface pressure; and (c) surround the insulation with a thin Ti outer shell that contains only a net internal pressure, eliminating buckling overdesign mass. The combination of the PMC inner tank and thin Ti outer shell is lighter than a single thick Ti outer shell. The idea for extending lifetime is to add the following three features: (i) an expendable water supply that is placed within the insulation or is contained in an additional vessel within the PMC tank; (ii) a thin spherical evaporator shell placed within the insulation a short radial distance from the outer shell; and (iii) a thin heat-intercepting liquid cooled shield placed inboard of the evaporator shell. These features lower the temperature of the insulation below what it would have been with the insulation alone, reducing the internal heat leak and lengthening lifetime. The use of phase change materials (PCMs) inside the PMC tank is also analyzed as a lifetime-extending design option. The paper describes: (1) analytical modeling to demonstrate reduced mass and extended life; (2) thermal conductivity testing of high performance insulation as a function of temperature and pressure; (3) a bench-top ambient pressure thermal test of the evaporation system; and (4) a higher fidelity test, to be conducted in a high pressure, high temperature inert gas test chamber, of a small-scale Venus lander prototype (made from two hemispherical interconnecting halves) that includes all of the aforesaid features.22 CFR 125.4(b)(13) applicable.« less
Heat capacity of a self-gravitating spherical shell of radiations
NASA Astrophysics Data System (ADS)
Kim, Hyeong-Chan
2017-10-01
We study the heat capacity of a static system of self-gravitating radiations analytically in the context of general relativity. To avoid the complexity due to a conical singularity at the center, we excise the central part and replace it with a regular spherically symmetric distribution of matters of which specifications we are not interested in. We assume that the mass inside the inner boundary and the locations of the inner and the outer boundaries are given. Then, we derive a formula relating the variations of physical parameters at the outer boundary with those at the inner boundary. Because there is only one free variation at the inner boundary, the variations at the outer boundary are related, which determines the heat capacity. To get an analytic form for the heat capacity, we use the thermodynamic identity δ Srad=β δ Mrad additionally, which is derived from the variational relation of the entropy formula with the restriction that the mass inside the inner boundary does not change. Even if the radius of the inner boundary of the shell goes to zero, in the presence of a central conical singularity, the heat capacity does not go to the form of the regular sphere. An interesting discovery is that another legitimate temperature can be defined at the inner boundary which is different from the asymptotic one β-1.
Ignition of deuterium-trtium fuel targets
Musinski, Donald L.; Mruzek, Michael T.
1991-01-01
A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.
Ignition of deuterium-tritium fuel targets
Musinski, D.L.; Mruzek, M.T.
1991-08-27
Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.
STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR
Busey, H.M.
1958-06-01
A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.
Resource Letter NSM-1: New insights into the nuclear shell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, David Jarvis; Hamilton, J. H.
2011-01-01
This Resource Letter provides a guide to the literature on the spherical shell model as applied to nuclei. The nuclear shell model describes the structure of nuclei starting with a nuclear core developed by the classical neutron and proton magic numbers N,Z=2,8,20,28,50,82, 126, where gaps occur in the single-particle energies as a shell is filled, and the interactions of valence nucleons that reside beyond that core. Various modern extensions of this model for spherical nuclei are likewise described. Significant extensions of the nuclear shell model include new magic numbers for spherical nuclei and now for deformed nuclei as well. Whenmore » both protons and neutrons have shell gaps at the same spherical or deformed shapes, they can reinforce each other to give added stability to that shape and lead to new magic numbers. The vanishings of the classical spherical shell model energy gaps and magic numbers in new neutron-rich nuclei are described. Spherical and deformed shell gaps are seen to be critical for the existence of elements with Z > 100.« less
NASA Astrophysics Data System (ADS)
Kumar, Anil; Mukhopadhyay, Santwana
2017-08-01
The present work is concerned with the investigation of thermoelastic interactions inside a spherical shell with temperature-dependent material parameters. We employ the heat conduction model with a single delay term. The problem is studied by considering three different kinds of time-dependent temperature and stress distributions applied at the inner and outer surfaces of the shell. The problem is formulated by considering that the thermal properties vary as linear function of temperature that yield nonlinear governing equations. The problem is solved by applying Kirchhoff transformation along with integral transform technique. The numerical results of the field variables are shown in the different graphs to study the influence of temperature-dependent thermal parameters in various cases. It has been shown that the temperature-dependent effect is more prominent in case of stress distribution as compared to other fields and also the effect is significant in case of thermal shock applied at the two boundary surfaces of the spherical shell.
A laboratory model of planetary and stellar convection
NASA Technical Reports Server (NTRS)
Hart, J. E.; Toomre, J.; Deane, A. E.; Hurlburt, N. E.; Glatzmaier, G. A.; Fichtl, G. H.; Leslie, F.; Fowlis, W. W.; Gilman, P. A.
1987-01-01
Experiments on thermal convection in a rotating, differentially-heated spherical shell with a radial buoyancy force were conducted in an orbiting microgravity laboratory. A variety of convective structures, or planforms, were observed depending on the magnitude of the rotation and the nature of the imposed heating distribution. The results are in agreement with numerical simulations that can be conducted at modest parameter values, and suggest possible regimes of motion in rotating planets and stars.
Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples
NASA Technical Reports Server (NTRS)
Lee, M. C.
1981-01-01
An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12 in. diameter and 0.6 in. thickness, 130 pieces of PZT transducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.
Global Curvature Buckling and Snapping of Spherical Shells.
NASA Astrophysics Data System (ADS)
Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark; Bade, Abdikhalaq; Trejo, Miguel; Holmes, Douglas
A spherical shell under external pressure will eventually buckle locally through the development of a dimple. However, when a free spherical shell is subject to variations in natural curvature, it will either buckle globally or snap towards a buckled configuration. We study the similarities and differences between pressure and curvature instabilities in spherical shells. We show how the critical buckling natural curvature is largely independent of the thinness and half-angle of the shell, while the critical snapping natural curvature grows linearly with the half-angle. As a result, we demonstrate how a critical half-angle, depending only on the thinness of the shell, sets the threshold between two different kinds of snapping: as a rule of thumb, shallow shells snap into everted shells, while deep shells snap into buckled shells. As the developed models are purely geometrical, the results are applicable to a large variety of stimuli and scales. NSF CAREER CMMI-1454153.
Whispering gallery modes in a spherical microcavity with a photoluminescent shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A.
2015-10-15
Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.
Post-buckling of a pressured biopolymer spherical shell with the mode interaction
NASA Astrophysics Data System (ADS)
Zhang, Lei; Ru, C. Q.
2018-03-01
Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.
Interior of black holes and information recovery
NASA Astrophysics Data System (ADS)
Kawai, Hikaru; Yokokura, Yuki
2016-02-01
We analyze time evolution of a spherically symmetric collapsing matter from a point of view that black holes evaporate by nature. We first consider a spherical thin shell that falls in the metric of an evaporating Schwarzschild black hole of which the radius a (t ) decreases in time. The important point is that the shell can never reach a (t ) but it approaches a (t )-a (t )d/a (t ) d t . This situation holds at any radius because the motion of a shell in a spherically symmetric system is not affected by the outside. In this way, we find that the collapsing matter evaporates without forming a horizon. Nevertheless, a Hawking-like radiation is created in the metric, and the object looks the same as a conventional black hole from the outside. We then discuss how the information of the matter is recovered. We also consider a black hole that is adiabatically grown in the heat bath and obtain the interior metric. We show that it is the self-consistent solution of Gμ ν=8 π G ⟨Tμ ν⟩ and that the four-dimensional Weyl anomaly induces the radiation and a strong angular pressure. Finally, we analyze the internal structures of the charged and the slowly rotating black holes.
Magnetic diagnostics for the lithium tokamak experiment.
Berzak, L; Kaita, R; Kozub, T; Majeski, R; Zakharov, L
2008-10-01
The lithium tokamak experiment (LTX) is a spherical tokamak with R(0)=0.4 m, a=0.26 m, B(TF) approximately 3.4 kG, I(P) approximately 400 kA, and pulse length approximately 0.25 s. The focus of LTX is to investigate the novel low-recycling lithium wall operating regime for magnetically confined plasmas. This regime is reached by placing an in-vessel shell conformal to the plasma last closed flux surface. The shell is heated and then coated with liquid lithium. An extensive array of magnetic diagnostics is available to characterize the experiment, including 80 Mirnov coils (single and double axis, internal and external to the shell), 34 flux loops, 3 Rogowskii coils, and a diamagnetic loop. Diagnostics are specifically located to account for the presence of a secondary conducting surface and engineered to withstand both high temperatures and incidental contact with liquid lithium. The diagnostic set is therefore fabricated from robust materials with heat and lithium resistance and is designed for electrical isolation from the shell and to provide the data required for highly constrained equilibrium reconstructions.
Plasma coating of nanoparticles in the presence of an external electric field
NASA Astrophysics Data System (ADS)
Ebadi, Zahra; Pourali, Nima; Mohammadzadeh, Hosein
2018-04-01
Film deposition onto nanoparticles by low-pressure plasma in the presence of an external electric field is studied numerically. The plasma discharge fluid model along with surface deposition and heating models for nanoparticles, as well as a dynamics model considering the motion of nanoparticles, are employed for this study. The results of the simulation show that applying external field during the process increases the uniformity of the film deposited onto nanoparticles and leads to that nanoparticles grow in a spherical shape. Increase in film uniformity and particles sphericity is related to particle dynamics that is controlled by parameters of the external field like frequency and amplitude. The results of this work can be helpful to produce spherical core-shell nanoparticles in nanomaterial industry.
The pick-up of cometary protons by the solar wind
NASA Technical Reports Server (NTRS)
Neugebauer, M.; Goldstein, B. E.; Goldstein, R.; Lazarus, A. J.; Altwegg, K.; Balsiger, H.
1987-01-01
The HERS detector of the Ion Mass Spectrometer on the Giotto spacecraft measured the 3-dimensional distribution of picked-up cometary protons over a distance of about 8 million km upstream of the bow shock of comet P/Hally. The protons were observed to be elastically scattered out of their original cycloidal trajectories such that they were nonuniformly distributed over a spherical shell in velocity space. The shell radius (relative to its expected radius) and thickness increased as the bow shock was approached. Down-stream of the shock, the cometary protons could not be distinguished from the heated solar wind protons.
Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facilitya)
NASA Astrophysics Data System (ADS)
Pak, A.; Divol, L.; Gregori, G.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Casey, D. T.; Dewald, E.; Döppner, T.; Edwards, M. J.; Frenje, J. A.; Glenn, S.; Grim, G. P.; Hicks, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Johnson, M. G.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Lindl, J.; Landen, O. L.; Le Pape, S.; Ma, T.; MacPhee, A.; MacGowan, B. J.; MacKinnon, A. J.; Masse, L.; Meezan, N. B.; Moody, J. D.; Olson, R. E.; Ralph, J. E.; Robey, H. F.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Tommasini, R.; Town, R. P. J.; Smalyuk, V.; Glenzer, S. H.; Moses, E. I.
2013-05-01
Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ˜20 μm and ˜ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ˜40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ˜100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ˜10 μm, as the shock propagates into the lower density (˜1 g/cc), hot (˜250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ˜300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of the luminosity from the shock-heated matter, is consistent with 1-D radiation hydrodynamic simulations. Analytic estimates indicate that the radiation energy flux from the shock-heated matter is of the same order as the in-flowing material energy flux, and suggests that this radiation energy flux modifies the shock front structure. Simulations support these estimates and show the formation of a radiative shock, with a precursor that raises the temperature ahead of the shock front, a sharp μm-scale thick spike in temperature at the shock front, followed by a post-shock cooling layer.
Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Glassell, M.; Robles, J.; Das, R.; Phan, M. H.; Srikanth, H.
Iron oxide nanoparticles especially Fe3O4, γ-Fe2O3 have been extensively studied for magnetic hyperthermia because of their tunable magnetic properties and stable suspension in superparamagnetic regime. However, their relatively low heating capacity hindered practical application. Recently, a large improvement in heating efficiency has been reported in exchange-coupled nanoparticles with exchange coupling between soft and hard magnetic phases. Here, we systematically studied the effect of core and shell size on the heating efficiency of the Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) showed formation of spherical shaped Fe3O4 and Fe3O-/CoFe2O4 nanoparticles. Magnetic measurements showed high magnetization (≅70 emu/g) and superparamagnetic behavior for the nanoparticles at room temperature. Magnetic hyperthermia results showed a large increase in specific absorption rate (SAR) for 8nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of the same size. The heating efficiency of the Fe3O4/CoFe2O4 with 1 nm CoFe2O4 (shell) increased from 207 to 220 W/g (for 800 Oe) with increase in core size from 6 to 8 nm. The heating efficiency of the Fe3O4/CoFe2O4 with 2 nm CoFe2O4 (shell) and core size of 8 nm increased from 220 to 460 W/g (for 800 Oe). These exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.
USSR Report, Engineering and Equipment, No. 98.
1983-11-09
Nonhomogeneous Cylinder During Convective Cooling (V. Ya. Belousov; PROBLEM PROCHNOSTI, No 5, May 83) 66 Deformation of Spherical Shells Under Wind...generator and turbine, condenser , deaerator, and tap-water or hot-water tank for heat storage. The electric power is regulated by varying the steam rate...indicators, relative to those of hybrid condensation - boiler atomic electric power plants already in existence, So far the VK-500 boiling^water
A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating
NASA Astrophysics Data System (ADS)
Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.
2018-05-01
A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.
Enceladus's south polar thermal anomaly in light of weak thermal convection
NASA Astrophysics Data System (ADS)
Besserer, Jonathan; Golabek, Gregor J.; Rozel, Antoine; Tackley, Paul J.
2014-05-01
The south polar thermal anomaly of Enceladus, contrasting with older and colder northern regions, suggests an asymmetrical heat transfer in the satellite's ice shell. Most of the current models that explain such a distribution prescribe an a priori asymmetry by mean of a mechanical or topographical anomaly in or below the south polar ice shell. We present here a series of simulations with a 2D-spherical convection model to investigate the possibility of self-consistently generating a localized mechanical anomaly in the ice shell. We focus on the non-Newtonian character of ice rheology, and on the stability of a single-plume (i.e. localized convection) and low-degree convection regimes. We show that the non-Newtonian rheology favors a localized (tidally heated) convection surrounded by a conductive ice mantle, even with a global, liquid water ocean at the base of the ice shell. We find that the single-plume state is very unlikely to remain stable if the rheology is Newtonian. The proposed thermal regime for Enceladus's ice shell is therefore weak, single-plume thermal convection focused at the south pole (e.g., remnant of a formerly more vigorous convection). Such weak-to-sub-critical regimes may be important for icy satellites, as recently pointed out by Solomatov (2012, PEPI). We will discuss the effects of ice plasticity on heat focusing in Enceladus's South Polar Terrain, together with the possibility of an ice shell a factor ~2 thinner than previously thought (Hemingway et al., AGU 2013; Stevenson et al., AGU 2013).
Nonlinear problems of the theory of heterogeneous slightly curved shells
NASA Technical Reports Server (NTRS)
Kantor, B. Y.
1973-01-01
An account if given of the variational method of the solution of physically and geometrically nonlinear problems of the theory of heterogeneous slightly curved shells. Examined are the bending and supercritical behavior of plates and conical and spherical cupolas of variable thickness in a temperature field, taking into account the dependence of the elastic parameters on temperature. The bending, stability in general and load-bearing capacity of flexible isotropic elastic-plastic shells with different criteria of plasticity, taking into account compressibility and hardening. The effect of the plastic heterogeneity caused by heat treatment, surface work hardening and irradiation by fast neutron flux is investigated. Some problems of the dynamic behavior of flexible shells are solved. Calculations are performed in high approximations. Considerable attention is given to the construction of a machine algorithm and to the checking of the convergence of iterative processes.
Geometry induced phase transitions in magnetic spherical shell
NASA Astrophysics Data System (ADS)
Sloika, Mykola I.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Pylypovskyi, Oleksandr V.; Gaididei, Yuri
2017-12-01
Equilibrium magnetization states in spherical shells of a magnetically soft ferromagnet form two out-of-surface vortices with codirectionally magnetized vortex cores at the sphere poles: (i) a whirligig state with the in-surface magnetization oriented along parallels is typical for thick shells; (ii) a three dimensional onion state with the in-surface meridional direction of the magnetization is realized in thin shells. The geometry of spherical shell prohibits an existence of spatially homogeneous magnetization distribution, even in the case of small sample radii. By varying geometrical parameters a continuous phase transition between the whirligig and onion states takes place. The detailed analytical description of the phase diagram is well confirmed by micromagnetic simulations.
Spherical-shell boundaries for two-dimensional compressible convection in a star
NASA Astrophysics Data System (ADS)
Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.
2016-10-01
Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so-called 321D link. We find that the inclusion in the spherical shell of the boundary between the radiative and convection zones decreases the amplitude of convective velocities in the convection zone. The inclusion of near-surface layers in the spherical shell can increase the amplitude of convective velocities, although the radial structure of the velocity profile established by deep convection is unchanged. The impact of including the near-surface layers depends on the speed and structure of small-scale convection in the near-surface layers. Larger convective velocities in the convection zone result in a commensurate increase in the overshooting layer width and a decrease in the convective turnover time. These results provide support for non-local aspects of convection.
Reynolds stress and heat flux in spherical shell convection
NASA Astrophysics Data System (ADS)
Käpylä, P. J.; Mantere, M. J.; Guerrero, G.; Brandenburg, A.; Chatterjee, P.
2011-07-01
Context. Turbulent fluxes of angular momentum and enthalpy or heat due to rotationally affected convection play a key role in determining differential rotation of stars. Their dependence on latitude and depth has been determined in the past from convection simulations in Cartesian or spherical simulations. Here we perform a systematic comparison between the two geometries as a function of the rotation rate. Aims: Here we want to extend the earlier studies by using spherical wedges to obtain turbulent angular momentum and heat transport as functions of the rotation rate from stratified convection. We compare results from spherical and Cartesian models in the same parameter regime in order to study whether restricted geometry introduces artefacts into the results. In particular, we want to clarify whether the sharp equatorial profile of the horizontal Reynolds stress found in earlier Cartesian models is also reproduced in spherical geometry. Methods: We employ direct numerical simulations of turbulent convection in spherical and Cartesian geometries. In order to alleviate the computational cost in the spherical runs, and to reach as high spatial resolution as possible, we model only parts of the latitude and longitude. The rotational influence, measured by the Coriolis number or inverse Rossby number, is varied from zero to roughly seven, which is the regime that is likely to be realised in the solar convection zone. Cartesian simulations are performed in overlapping parameter regimes. Results: For slow rotation we find that the radial and latitudinal turbulent angular momentum fluxes are directed inward and equatorward, respectively. In the rapid rotation regime the radial flux changes sign in accordance with earlier numerical results, but in contradiction with theory. The latitudinal flux remains mostly equatorward and develops a maximum close to the equator. In Cartesian simulations this peak can be explained by the strong "banana cells". Their effect in the spherical case does not appear to be as large. The latitudinal heat flux is mostly equatorward for slow rotation but changes sign for rapid rotation. Longitudinal heat flux is always in the retrograde direction. The rotation profiles vary from anti-solar (slow equator) for slow and intermediate rotation to solar-like (fast equator) for rapid rotation. The solar-like profiles are dominated by the Taylor-Proudman balance. Movies and Appendix A are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Prasad, Ravindra; Samria, N. K.
1989-01-01
The problem considered has applications in the transient thermal analysis and time for attaining the steady state of the cylinder wall and cylinder head of an air-cooled internal-combustion engine. Numerical calculations based on finite difference approximations are carried out to assess the thermal response in a system of thin cylindrical and spherical shells having hot gases inside with convective boundary conditions. The outside surface is exposed to cooling medium where it looses heat by natural convection and radiation. As a special case, when radius is large, the surface may be considered to be a plane wall. The cylinder cover and cylinder wall of an internal-combustion engine are considered to be a plane wall for a comparatively higher ratio of cylinder diameter to the thickness of the wall, i.e., whend/δ varies from 80 to 100. A plot of temperature-time history and heat flow rates have been obtained.
Magnetic field variation caused by rotational speed change in a magnetohydrodynamic dynamo.
Miyagoshi, Takehiro; Hamano, Yozo
2013-09-20
We have performed numerical magnetohydrodynamic dynamo simulations in a spherical shell with rotational speed or length-of-day (LOD) variation, which is motivated by correlations between geomagnetic field and climatic variations with ice and non-ice ages. The results show that LOD variation leads to magnetic field variation whose amplitude is considerably larger than that of LOD variation. The heat flux at the outer sphere and the zonal flow also change. The mechanism of the magnetic field variation due to LOD variation is also found. The keys are changes of dynamo activity and Joule heating.
NASA Astrophysics Data System (ADS)
Rodríguez-Magdaleno, K. A.; Pérez-Álvarez, R.; Martínez-Orozco, J. C.; Pernas-Salomón, R.
2017-04-01
In this work the generation of an intermediate band of energy levels from multi-shell spherical GaAs /AlxGa1-x As quantum dot shells-size distribution is reported. Within the effective mass approximation the electronic structure of a GaAs spherical quantum-dot surrounded by one, two and three shells is studied in detail using a numerically stable transfer matrix method. We found that a shells-size distribution characterized by continuously wider GaAs domains is a suitable mechanism to generate the intermediate band whose width is also dependent on the Aluminium concentration x. Our results suggest that this effective mechanism can be used for the design of wider intermediate band than reported in other quantum systems with possible solar cells enhanced performance.
NASA Astrophysics Data System (ADS)
Roberts, J. H.; Nimmo, F.
2007-12-01
Rapid strike-slip motion is predicted to be a consequence of diurnal tidal stresses in most satellites of the outer solar system with short orbital timescales [1]. Such motion can lead to near-surface heating through friction or viscous dissipation [2]. Here we discuss the effect of near-surface shear heating on convection in the underlying ice shells of icy satellites [3], with a focus on Enceladus and a possible origin of the south polar thermal anomaly [4]. We present models of convection in spherical ice shells including both spatially variable volumetric tidal heating [5] and regional shear heating localized in the top 5 km at either the pole or the equator. We observe that the presence of the near-surface heating strongly controls the convective pattern, increasing the wavelength, and promoting the formation of a hot upwelling beneath the shear zone. Our results suggest that localized near- surface heating may result in a degree-1 convective planform in an ice shell of a thickness that may be appropriate for a differentiated Enceladus (d < 0.36 Rsat). The near-surface heating and convection pattern will produce a localized heat flow anomaly. The upwelling beneath the shear zone also produces a few hundred meters of long-wavelength dynamic topography. The ℓ=2 component of the topography may cause reorientation of the satellite [6]. [1] Hoppa, G., B. R. Tufts, R. Greenberg, and P. Geissler, Icarus, 141, 287-298, 1999. [2] Nimmo, F., E. Gaidos, JGR, 107, 5021, 2002. [3] Han, L., A. P. Showman, LPSC XXXVIII, #2277, 2007. [4] Spencer, J. R., et al., Science, 311, 1401-1405. [5] Tobie, G., A. Mocquet, C. Sotin, Icarus, 177 534-549. [6] Nimmo, F., R. T. Pappalardo, Nature, 441, 614-616.
Glass shell manufacturing in space. [residual gases in spherical shells made from metal-organic gels
NASA Technical Reports Server (NTRS)
Nolen, R. J.; Ebner, M. A.; Downs, R. L.
1980-01-01
Residual gases always found in glass shells are CO2, O2 and N2. In those cases where high water vapor pressure is maintained in the furnace, water is also found in the shells. Other evidence for the existence of water in shells is the presence of water-induced surface weathering of the interior shell surface. Water and CO2 are the predominant volatiles generated by the pyrolysis of both inorganic and hydrolyzed metal-organic gels. The pyrolysates of unhydrolyzed metal-organic gels also contain, in addition to water and CO2, significant levels of organic volatiles, such as ethanol and some hydrocarbons; on complete oxidation, these produce CO2 and water as well. Water is most likely the initial blowing agent, it is produced copiously during the initial stages of heating. In the later stages, CO2 becomes the dominant gas as H2O is lost at increasing rates. Water in the shell arises mainly from gel dehydration, CO2 by sodium bicarbonate/carbonate decomposition and carbon oxidation, and O2 and N2 by permeation of the ambient furnace air through the molten shell wall.
Repeated crossing of two concentric spherical thin-shells with charge
NASA Astrophysics Data System (ADS)
Mazharimousavi, S. Habib; Halilsoy, M.
Interaction/collision of two concentric spherical thin-shells of linear fluid resulting in collapse has been considered recently. We show that addition of finely tuned electric charges on the shells apart from the cosmological constant serves to delay the collapse indefinitely, yielding an ever colliding system of two concentric fluid shells. Given the finely tuned charges, this provides an example of a perpetual two-body motion in general relativity.
Modeling mantle convection in the spherical annulus
NASA Astrophysics Data System (ADS)
Hernlund, John W.; Tackley, Paul J.
2008-12-01
Most methods for modeling mantle convection in a two-dimensional (2D) circular annular domain suffer from innate shortcomings in their ability to capture several characteristics of the spherical shell geometry of planetary mantles. While methods such as rescaling the inner and outer radius to reduce anomalous effects in a 2D polar cylindrical coordinate system have been introduced and widely implemented, such fixes may have other drawbacks that adversely affect the outcome of some kinds of mantle convection studies. Here we propose a new approach that we term the "spherical annulus," which is a 2D slice that bisects the spherical shell and is quantitatively formulated at the equator of a spherical polar coordinate system after neglecting terms in the governing equations related to variations in latitude. Spherical scaling is retained in this approximation since the Jacobian function remains proportional to the square of the radius. We present example calculations to show that the behavior of convection in the spherical annulus compares favorably against calculations performed in other 2D annular domains when measured relative to those in a fully three-dimensional (3D) spherical shell.
Leung, Ka-Ngo
2006-11-21
A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
Wang, Xianfeng; Guo, Yandong; Su, Junfeng; Zhang, Xiaolong; Han, Ningxu; Wang, Xinyu
2018-05-24
In recent decades, microcapsules containing phase change materials (microPCMs) have been the center of much attention in the field of latent thermal energy storage. The aim of this work was to prepare and investigate the microstructure and thermal conductivity of microPCMs containing self-assembled graphene/organic hybrid shells. Paraffin was used as a phase change material, which was successfully microencapsulated by graphene and polymer forming hybrid composite shells. The physicochemical characters of microPCM samples were investigated including mean size, shell thickness, and chemical structure. Scanning electron microscope (SEM) results showed that the microPCMs were spherical particles and graphene enhanced the degree of smoothness of the shell surface. The existence of graphene in the shells was proved by using the methods of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). It was found that graphene hybrid shells were constructed by forces of electric charge absorption and long-molecular entanglement. MicroPCMs with graphene had a higher degradation temperature of 300 °C. Graphene greatly enhanced the thermal stability of microPCMs. The thermal conductivity tests indicated that the phase change temperature of microPCMs was regulated by the graphene additive because of enhancement of the thermal barrier of the hybrid shells. Differential scanning calorimetry (DSC) tests proved that the latent thermal energy capability of microPCMs had been improved with a higher heat conduction rate. In addition, infrared thermograph observations implied that the microPCMs had a sensitivity response to heat during the phase change cycling process because of the excellent thermal conductivity of graphene.
Scattering theory derivation of a 3D acoustic cloaking shell.
Cummer, Steven A; Popa, Bogdan-Ioan; Schurig, David; Smith, David R; Pendry, John; Rahm, Marco; Starr, Anthony
2008-01-18
Through acoustic scattering theory we derive the mass density and bulk modulus of a spherical shell that can eliminate scattering from an arbitrary object in the interior of the shell--in other words, a 3D acoustic cloaking shell. Calculations confirm that the pressure and velocity fields are smoothly bent and excluded from the central region as for previously reported electromagnetic cloaking shells. The shell requires an anisotropic mass density with principal axes in the spherical coordinate directions and a radially dependent bulk modulus. The existence of this 3D cloaking shell indicates that such reflectionless solutions may also exist for other wave systems that are not isomorphic with electromagnetics.
Le Pape, S; Divol, L; Berzak Hopkins, L; Mackinnon, A; Meezan, N B; Casey, D; Frenje, J; Herrmann, H; McNaney, J; Ma, T; Widmann, K; Pak, A; Grimm, G; Knauer, J; Petrasso, R; Zylstra, A; Rinderknecht, H; Rosenberg, M; Gatu-Johnson, M; Kilkenny, J D
2014-06-06
A 200 μm radius hot spot at more than 2 keV temperature, 1 g/cm^{3} density has been achieved on the National Ignition Facility using a near vacuum hohlraum. The implosion exhibits ideal one-dimensional behavior and 99% laser-to-hohlraum coupling. The low opacity of the remaining shell at bang time allows for a measurement of the x-ray emission of the reflected central shock in a deuterium plasma. Comparison with 1D hydrodynamic simulations puts constraints on electron-ion collisions and heat conduction. Results are consistent with classical (Spitzer-Harm) heat flux.
How Spherical Is a Cube (Gravitationally)?
NASA Astrophysics Data System (ADS)
Sanny, Jeff; Smith, David
2015-02-01
An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center.1,2 By integrating over ring elements of a spherical shell, we show that the gravitational force on a point mass outside the shell is the same as that of a particle with the same mass as the shell at its center. This derivation works for objects with spherical symmetry while depending on the fact that the gravitational force between two point masses varies inversely as the square of their separation.3 If these conditions are not met, then the problem becomes more difficult. In this paper, we remove the condition of spherical symmetry and examine the gravitational force between two uniform cubes.
NASA Astrophysics Data System (ADS)
Matsui, H.; Buffett, B. A.
2017-12-01
The flow in the Earth's outer core is expected to have vast length scale from the geometry of the outer core to the thickness of the boundary layer. Because of the limitation of the spatial resolution in the numerical simulations, sub-grid scale (SGS) modeling is required to model the effects of the unresolved field on the large-scale fields. We model the effects of sub-grid scale flow and magnetic field using a dynamic scale similarity model. Four terms are introduced for the momentum flux, heat flux, Lorentz force and magnetic induction. The model was previously used in the convection-driven dynamo in a rotating plane layer and spherical shell using the Finite Element Methods. In the present study, we perform large eddy simulations (LES) using the dynamic scale similarity model. The scale similarity model is implement in Calypso, which is a numerical dynamo model using spherical harmonics expansion. To obtain the SGS terms, the spatial filtering in the horizontal directions is done by taking the convolution of a Gaussian filter expressed in terms of a spherical harmonic expansion, following Jekeli (1981). A Gaussian field is also applied in the radial direction. To verify the present model, we perform a fully resolved direct numerical simulation (DNS) with the truncation of the spherical harmonics L = 255 as a reference. And, we perform unresolved DNS and LES with SGS model on coarser resolution (L= 127, 84, and 63) using the same control parameter as the resolved DNS. We will discuss the verification results by comparison among these simulations and role of small scale fields to large scale fields through the role of the SGS terms in LES.
NASA Astrophysics Data System (ADS)
Choi, Seung Ho; Park, Sun Kyu; Lee, Jung-Kul; Kang, Yun Chan
2015-06-01
Multi-shell structured binary transition metal oxide powders with a Ni/Co mole ratio of 1:2 are prepared by a simple spray drying process. Precursor powder particles prepared by spray drying from a spray solution of citric acid and ethylene glycol have completely spherical shape, fine size, and a narrow size distribution. The precursor powders turn into multi-shell powders after a post heat-treatment at temperatures between 250 and 800 °C. The multi-shell structured powders are formed by repeated combustion and contraction processes. The multi-shell powders have mixed crystal structures of Ni1-xCo2O4-x and NiO phases regardless of the post-treatment temperature. The reversible capacities of the powders post-treated at 250, 400, 600, and 800 °C after 100 cycles are 584, 913, 808, and 481 mA h g-1, respectively. The low charge transfer resistance and high lithium ion diffusion rate of the multi-shell powders post-treated at 400 °C with optimum grain size result in superior electrochemical properties even at high current densities.
NASA Astrophysics Data System (ADS)
Şahan, Mehmet Fatih
2017-11-01
In this paper, the viscoelastic damped response of cross-ply laminated shallow spherical shells is investigated numerically in a transformed Laplace space. In the proposed approach, the governing differential equations of cross-ply laminated shallow spherical shell are derived using the dynamic version of the principle of virtual displacements. Following this, the Laplace transform is employed in the transient analysis of viscoelastic laminated shell problem. Also, damping can be incorporated with ease in the transformed domain. The transformed time-independent equations in spatial coordinate are solved numerically by Gauss elimination. Numerical inverse transformation of the results into the real domain are operated by the modified Durbin transform method. Verification of the presented method is carried out by comparing the results with those obtained by the Newmark method and ANSYS finite element software. Furthermore, the developed solution approach is applied to problems with several impulsive loads. The novelty of the present study lies in the fact that a combination of the Navier method and Laplace transform is employed in the analysis of cross-ply laminated shallow spherical viscoelastic shells. The numerical sample results have proved that the presented method constitutes a highly accurate and efficient solution, which can be easily applied to the laminated viscoelastic shell problems.
NASA Astrophysics Data System (ADS)
Okhovat, Reza; Boström, Anders
2017-04-01
Dynamic equations for an isotropic spherical shell are derived by using a series expansion technique. The displacement field is split into a scalar (radial) part and a vector (tangential) part. Surface differential operators are introduced to decrease the length of all equations. The starting point is a power series expansion of the displacement components in the thickness coordinate relative to the mid-surface of the shell. By using the expansions of the displacement components, the three-dimensional elastodynamic equations yield a set of recursion relations among the expansion functions that can be used to eliminate all but the four of lowest order and to express higher order expansion functions in terms of those of lowest orders. Applying the boundary conditions on the surfaces of the spherical shell and eliminating all but the four lowest order expansion functions give the shell equations as a power series in the shell thickness. After lengthy manipulations, the final four shell equations are obtained in a relatively compact form which are given to second order in shell thickness explicitly. The eigenfrequencies are compared to exact three-dimensional theory with excellent agreement and to membrane theory.
NASA Technical Reports Server (NTRS)
Yen, David A.; Zhang, Shuxia; Langenberger, Sherri E.
1988-01-01
Large temperature jumps at the interface of layered convection are important to the argument used against the likelihood of separate circulations in the upper and lower mantles. This problem was studied within the framework of a compressible, constant viscosity spherical-shell model. Both mechanical and thermal coupling configurations are considered. Although the temperature jumps are reduced by compressibility, their magnitudes remain quite large, in the case of mechanical coupling. For thermal coupling, the temperature jumps become smaller but still are substantial, between 500 to 1000 C. In layered spherical-shell convection, flows in the lower mantle are several times greater than the surface velocities.
Shape evolution of a core-shell spherical particle under hydrostatic pressure.
Colin, Jérôme
2012-03-01
The morphological evolution by surface diffusion of a core-shell spherical particle has been investigated theoretically under hydrostatic pressure when the shear modulii of the core and shell are different. A linear stability analysis has demonstrated that depending on the pressure, shear modulii, and radii of both phases, the free surface of the composite particle may be unstable with respect to a shape perturbation. A stability diagram finally emphasizes that the roughness development is favored in the case of a hard shell with a soft core.
The theory of spherically symmetric thin shells in conformal gravity
NASA Astrophysics Data System (ADS)
Berezin, Victor; Dokuchaev, Vyacheslav; Eroshenko, Yury
The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy-momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl-Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ( = massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl-Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.
Calculation of Thermally-Induced Displacements in Spherically Domed Ion Engine Grids
NASA Technical Reports Server (NTRS)
Soulas, George C.
2006-01-01
An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results that closely match the finite element model results. The simplified equation for the normal displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and simplified equation produce accurate results for materials with low thermal expansion coefficients.
Mitri, F G
2006-07-01
In this paper, analytical equations are derived for the time-averaged radiation force induced by progressive and standing acoustic waves incident on elastic spherical shells covered with a layer of viscoelastic and sound-absorbing material. The fluid surrounding the shells is considered compressible and nonviscous. The incident field is assumed to be moderate so that the scattered field from the shells is taken to linear approximation. The analytical results are illustrated by means of a numerical example in which the radiation force function curves are displayed, with particular emphasis on the coating thickness and the content of the hollow region of the shells. The fluid-loading on the radiation force function curves is analysed as well. This study attempts to generalize the various treatments of radiation force due to both progressive and standing waves on spherically-shaped structures immersed in ideal fluids. The results show that various ways can be effectively used for damping resonance peaks, such as by changing the fluid in the interior hollow region of the shells or by changing the coating thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bel’kov, S. A.; Bondarenko, S. V.; Vergunova, G. A.
Direct-drive fusion targets are considered at present as an alternative to targets of indirect compression at a laser energy level of about 2 MJ. In this approach, the symmetry of compression and ignition of thermonuclear fuel play the major role. We report on the results of theoretical investigation of compression and burning of spherical direct-drive targets in the conditions of spatial nonuniformity of heating associated with a shift of the target from the beam center of focusing and possible laser radiation energy disbalance in the beams. The investigation involves numerous calculations based on a complex of 1D and 2D codesmore » RAPID, SEND (for determining the target illumination and the dynamics of absorption), DIANA, and NUT (1D and multidimensional hydrodynamics of compression and burning of targets). The target under investigation had the form of a two-layer shell (ablator made of inertial material CH and DT ice) filled with DT gas. We have determined the range of admissible variation of compression and combustion parameters of the target depending on the variation of the spatial nonuniformity of its heating by a multibeam laser system. It has been shown that low-mode (long-wavelength) perturbations deteriorate the characteristics of the central region due to less effective conversion of the kinetic energy of the target shell into the internal energy of the center. Local initiation of burning is also observed in off-center regions of the target in the case of substantial asymmetry of irradiation. In this case, burning is not spread over the entire volume of the DT fuel as a rule, which considerably reduces the thermonuclear yield as compared to that in the case of spherical symmetry and central ignition.« less
Moment equations for chromatography using superficially porous spherical particles.
Miyabe, Kanji
2011-01-01
New moment equations were developed for chromatography using superficially porous (shell-type) spherical particles, which have recently attracted much attention as one of separation media for fast separation with high efficiency. At first, the moment equations of the first absolute and second central moments in the real time domain were derived from the analytical solution in the Laplace domain of a set of basic equations of the general rate model of chromatography, which represent the mass balance, mass-transfer rate, and reaction kinetics in the column packed with shell-type particles. Then, the moment equations were used for analyzing the experimental data of chromatography of kallidin in a Halo column, which were published in a previous paper written by other researchers. It was tried to predict the chromatographic behavior of shell-type particles having different shell thicknesses. The new moment equations are useful for a detailed analysis of the chromatographic behavior of shell-type spherical particles. It is also concluded that they can be used for the preliminarily optimization of their structural characteristics.
2016-12-24
D population-depopulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 AME Atomic Mass Evaluation...this mass region are important for validating models of nuclear structure and reactions. The ENSDF feeds a specific data library relevant to nuclear...spherically asymmetric. Spherical asymmetry is common for nuclei between shell closures, such as those in the mid-shell 150 A 190 mass range of interest
NASA Technical Reports Server (NTRS)
Leissa, A. W.
1973-01-01
The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.
Curvature-Induced Instabilities of Shells
NASA Astrophysics Data System (ADS)
Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark P.; Bade, Abdikhalaq J.; Holmes, Douglas P.
2018-01-01
Induced by proteins within the cell membrane or by differential growth, heating, or swelling, spontaneous curvatures can drastically affect the morphology of thin bodies and induce mechanical instabilities. Yet, the interaction of spontaneous curvature and geometric frustration in curved shells remains poorly understood. Via a combination of precision experiments on elastomeric spherical shells, simulations, and theory, we show how a spontaneous curvature induces a rotational symmetry-breaking buckling as well as a snapping instability reminiscent of the Venus fly trap closure mechanism. The instabilities, and their dependence on geometry, are rationalized by reducing the spontaneous curvature to an effective mechanical load. This formulation reveals a combined pressurelike term in the bulk and a torquelike term in the boundary, allowing scaling predictions for the instabilities that are in excellent agreement with experiments and simulations. Moreover, the effective pressure analogy suggests a curvature-induced subcritical buckling in closed shells. We determine the critical buckling curvature via a linear stability analysis that accounts for the combination of residual membrane and bending stresses. The prominent role of geometry in our findings suggests the applicability of the results over a wide range of scales.
Exciton in a spherical core/shell nanostructure: Influence of surface ligand
NASA Astrophysics Data System (ADS)
Anitha, B.; Nithiananthi, P.
2018-04-01
Studies on exciton in an inverted type I spherical GaAs/Al0.3Ga0.7As core/shell nanostructure (CSN) are made using variational method. Dielectric constant and effective mass mismatches of the core and shell materials are considered. The effect of core and the shell dimensions on the exciton binding energy (BE) are analyzed for different shell (Rs) and core radii (Rc). It is observed that with the core and the shell inducement, significant change in BE can be achieved. In addition, the influence of ligand enclosureon the BE as a function of shell thickness (ST) is reviewed. The result exhibits that the presence of ligand considerably affects the BE. Further the transmission probability of exciton for various Rc and Rs are reported. The notable changes are compared and examined with and without ligand inclusion.
Cooperative effects in spherical spasers: Ab initio analytical model
NASA Astrophysics Data System (ADS)
Bordo, V. G.
2017-06-01
A fully analytical semiclassical theory of cooperative optical processes which occur in an ensemble of molecules embedded in a spherical core-shell nanoparticle is developed from first principles. Both the plasmonic Dicke effect and spaser generation are investigated for the designs in which a shell/core contains an arbitrarily large number of active molecules in the vicinity of a metallic core/shell. An essential aspect of the theory is an ab initio account of the feedback from the core/shell boundaries which significantly modifies the molecular dynamics. The theory provides rigorous, albeit simple and physically transparent, criteria for both plasmonic superradiance and surface plasmon generation.
Metal shell technology based upon hollow jet instability. [for inertial confinement fusion
NASA Technical Reports Server (NTRS)
Kendall, J. M.; Lee, M. C.; Wang, T. G.
1982-01-01
Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. A technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal is described. Shells in the 0.7-2.0 mm size range have been produced using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold-lead-antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise.
On the shape and orientation control of an orbiting shallow spherical shell structure
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Reddy, A. S. S. R.
1982-01-01
The dynamics of orbiting shallow flexible spherical shell structures under the influence of control actuators was studied. Control laws are developed to provide both attitude and shape control of the structure. The elastic modal frequencies for the fundamental and lower modes are closely grouped due to the effect of the shell curvature. The shell is gravity stabilized by a spring loaded dumbbell type damper attached at its apex. Control laws are developed based on the pole clustering techniques. Savings in fuel consumption can be realized by using the hybrid shell dumbbell system together with point actuators. It is indicated that instability may result by not including the orbital and first order gravity gradient effects in the plant prior to control law design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebey, Peter S.; Asaki, Thomas J.; Hoffer, James K.
2000-01-15
Beta-layering of deuterium-tritium (D-T) ice in spherical shell geometries is numerically and analytically considered to investigate the relationship between temperature differences that arise because of inner-surface perturbations and the absolute shell thickness. The calculations use dimensions based on a proposed design of an inertial confinement fusion target for use at the National Ignition Facility. The temperature differences are calculated within D-T ice shells of varying total thicknesses, and the temperature differences calculated in three dimensions are compared both to the one-dimensional results and to the expected limits in three dimensions for long- and short-wavelength surface perturbations. The three-dimensional numeric resultsmore » agree well with both the long- and short-wavelength limits; the region of crossover from short- to long-wavelength behavior is mapped out. Temperature differences due to surface perturbations are proportional to D-T layer thickness in one-dimensional systems but not in three-dimensional spherical shells. In spherical shells, surface perturbations of long wavelength give rise to temperature perturbations that are approximately proportional to the total shell thickness, while for short-wavelength perturbations, the temperature differences are inversely related to total shell thickness. In contrast to the one-dimensional result, we find that in three dimensions there is not a general relationship between shell thickness and surface temperature differences.« less
NASA Technical Reports Server (NTRS)
Davis, Randall C.
1988-01-01
The design of a nose cap for a hypersonic vehicle is an iterative process requiring a rapid, easy to use and accurate stress analysis. The objective of this paper is to develop such a stress analysis technique from a direct solution of the thermal stress equations for a spherical shell. The nose cap structure is treated as a thin spherical shell with an axisymmetric temperature distribution. The governing differential equations are solved by expressing the stress solution to the thermoelastic equations in terms of a series of derivatives of the Legendre polynomials. The process of finding the coefficients for the series solution in terms of the temperature distribution is generalized by expressing the temperature along the shell and through the thickness as a polynomial in the spherical angle coordinate. Under this generalization the orthogonality property of the Legendre polynomials leads to a sequence of integrals involving powers of the spherical shell coordinate times the derivative of the Legendre polynomials. The coefficients of the temperature polynomial appear outside of these integrals. Thus, the integrals are evaluated only once and their values tabulated for use with any arbitrary polynomial temperature distribution.
Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.
Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre
2012-01-01
The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer. © 2012 Acoustical Society of America.
Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics
NASA Astrophysics Data System (ADS)
Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.
2018-05-01
Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.
Heating and scattering of ring-beam distributions by turbulence
NASA Technical Reports Server (NTRS)
Gray, P. C.; Pontius, D. H., Jr.; Matthaeus, W. H.
1995-01-01
Pickup ions in the solar wind are initially are born in ring-beam distributions, i.e. f(v) varies as delta(v(sub perpendicular) - V(sub sw)sin(Theta)) delta(v(sub parallel) - V(sub sw)cos(Theta)), where Theta is the angle between the solar wind velocity and the IMF(Interplanetary Magnetic Field), and V(sub sw) is the solar wind speed. Often the distribution has been presumed to relax to a distribution that is isotropic in Theta and essentially mono-energetic, a shell or a 'bi-spherical distribution.' However solar wind turbulence is capable of heating the ring distribution on the timescale of a few tens of gyroperiods, a timescale not greatly distinct from that required for pitch angle scattering to a shell. To describe this effect, we have performed test-particle studies of the heating/scattering of the ring beam distribution by MHD turbulence, adopting various models for the MHD fluctuations, including slab and fully dynamic 2D and 3D incompressible turbulence. Furthermore, a system composed of a cold ion ring and a background plasma is unstable to several kinetic plasma instabilities. We carried out kinetic simulations of the ring beam distribution, showing that plasma instabilities also rapidly energize and scatter particles. Results will be presented comparing relaxation and heating rates of the ring-beam distribution by the various mechanisms.
OWL: A code for the two-center shell model with spherical Woods-Saxon potentials
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis
2018-03-01
A Fortran-90 code for solving the two-center nuclear shell model problem is presented. The model is based on two spherical Woods-Saxon potentials and the potential separable expansion method. It describes the single-particle motion in low-energy nuclear collisions, and is useful for characterizing a broad range of phenomena from fusion to nuclear molecular structures.
Optical absorption of carbon-gold core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping
2018-01-01
In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.
Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghuwanshi, Vikram Singh, E-mail: vikram.raghuwanshi@helmholtz-berlin.de; Harizanova, Ruzha; Tatchev, Dragomir
2015-02-15
Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enrichedmore » in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.« less
NASA Astrophysics Data System (ADS)
El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2017-11-01
The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.
Family of spherical models with special gravitational properties
NASA Astrophysics Data System (ADS)
Kondratyev, B. P.
2015-03-01
A new method for studying the structural and gravitational properties of spherical systems based on an analysis of the ratio of the potentials for their subsystems and shells has been developed. It has been proven for the first time that the gravitational virial Z( r) of the subsystem without allowance for the influence of the outer shell is equal to twice the work done to disperce the subsystem's matter to infinity. A new class of spherical models has been constructed in which: (1) the ratio of the contribution to the potential at point r from the spherical subsystem to the contribution from the outer shell does not depend on radius and is equal to a constant γ; (2) the ratio of the gravitational energy W( r) to Z( r) for the spherical subsystem does not depend on r; and (3) the models are described by a power law of the density ρ = cr - κ and potential . Expressions for the gravitational energy W( r) and virial Z( r) have been found for the subsystem. The limiting case of ρ( r) ∝ r -5/2, where the subsystem's potential at any sampling point is exactly equal to the potential from the outer shell and Z( r) is equivalent to its gravitational energy W( r), is considered in detail. The results supplement the classical potential theory. The question about the application of the models to the superdense nuclear star cluster in the center of the Milky Way is discussed.
NASA Astrophysics Data System (ADS)
Hofmeister, A. M.; Criss, R. E.
2015-12-01
We quantitatively investigate the time-dependence of heat conduction for a post-core, spherical Earth that is not convecting, due to compositional layering, based on hundreds of measurements of thermal diffusivity (D) for insulators and metals. Consistency of our solutions for widely ranging input parameters indicates how additional heat transfer mechanisms (mantle magmatism and convection) affect thermal evolution of the core. We consider 1) interior starting temperatures (T) of 273-5000 K, which represent variations in primordial heat, 2) different distributions and decay of long-lived radioactive isotopes, 3) additional heat sources in the core (primordial or latent heat), and 4) variable depth-T dependence of D. Our new analytical solution for cooling of a constant D sphere validates our numerical results. The bottom line is that the thermally insulating nature of minerals, combined with constraints of spherical geometry, limits steep thermal gradients to the upper mantle, consistent with the short length scale (x ~700 km) of cooling over t = 4.5 Ga indicated by dimensional analysis [x2 ~ 4Dt], and with plate tectonics. Consequently, interior temperatures vary little so the core has remained hot and is possibly warming. Findings include: 1) Constant vs. variable D affects thermal profiles only in detail, with D for the metallic core being inconsequential. 2) The hottest zone in Earth may lie in the uppermost lower mantle; 3) Most radiogenic heat is released in Earth's outermost 1000 km thereby driving an active outer shell; 4) Earth's core is essentially isothermal and is thus best described by the liquid-solid phase boundary; 5) Deeply sequestered radioactivity or other heat will melt the core rather than by run the dynamo (note that the heat needed to have melted the outer core is 10% of radiogenic heat generated over Earth's history); 6) Inefficient cooling of an Earth-sized mass means that heat essentially remains where it is generated, until it is removed by magmatism; 7) Importantly, the observed plate velocities are consistent with a Nusselt number of 1, i.e. the present day cooling is essentially conductive. Conductive cooling plus magmatism largely governs Earth's thermal structure and dynamics, below a unicellular upper mantle. Core dynamics and magnetism are likely driven by rotational effects.
Early post-mortem formation of carbonate concretions around tusk-shells over week-month timescales
NASA Astrophysics Data System (ADS)
Yoshida, Hidekazu; Ujihara, Atsushi; Minami, Masayo; Asahara, Yoshihiro; Katsuta, Nagayoshi; Yamamoto, Koshi; Sirono, Sin-Iti; Maruyama, Ippei; Nishimoto, Shoji; Metcalfe, Richard
2015-09-01
Carbonate concretions occur in sedimentary rocks of widely varying geological ages throughout the world. Many of these concretions are isolated spheres, centered on fossils. The formation of such concretions has been variously explained by diffusion of inorganic carbon and organic matter in buried marine sediments. However, details of the syn-depositional chemical processes by which the isolated spherical shape developed and the associated carbon sources are little known. Here we present evidence that spherical carbonate concretions (diameters φ : 14 ~ 37 mm) around tusk-shells (Fissidentalium spp.) were formed within weeks or months following death of the organism by the seepage of fatty acid from decaying soft body tissues. Characteristic concentrations of carbonate around the mouth of a tusk-shell reveal very rapid formation during the decay of organic matter from the tusk-shell. Available observations and geochemical evidence have enabled us to construct a ‘Diffusion-growth rate cross-plot’ that can be used to estimate the growth rate of all kinds of isolated spherical carbonate concretions identified in marine formations. Results shown here suggest that isolated spherical concretions that are not associated with fossils might also be formed from carbon sourced in the decaying soft body tissues of non-skeletal organisms with otherwise low preservation potential.
Analysis of two colliding fractionally damped spherical shells in modelling blunt human head impacts
NASA Astrophysics Data System (ADS)
Rossikhin, Yury A.; Shitikova, Marina V.
2013-06-01
The collision of two elastic or viscoelastic spherical shells is investigated as a model for the dynamic response of a human head impacted by another head or by some spherical object. Determination of the impact force that is actually being transmitted to bone will require the model for the shock interaction of the impactor and human head. This model is indended to be used in simulating crash scenarios in frontal impacts, and provide an effective tool to estimate the severity of effect on the human head and to estimate brain injury risks. The model developed here suggests that after the moment of impact quasi-longitudinal and quasi-transverse shock waves are generated, which then propagate along the spherical shells. The solution behind the wave fronts is constructed with the help of the theory of discontinuities. It is assumed that the viscoelastic features of the shells are exhibited only in the contact domain, while the remaining parts retain their elastic properties. In this case, the contact spot is assumed to be a plane disk with constant radius, and the viscoelastic features of the shells are described by the fractional derivative standard linear solid model. In the case under consideration, the governing differential equations are solved analytically by the Laplace transform technique. It is shown that the fractional parameter of the fractional derivative model plays very important role, since its variation allows one to take into account the age-related changes in the mechanical properties of bone.
Nuclear mass formula with the shell energies obtained by a new method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koura, H.; Tachibana, T.; Yamada, M.
1998-12-21
Nuclear shapes and masses are estimated by a new method. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies by mixing them with appropriate weights. The spherical shell energies are calculated from single-particle potentials, and, till now, two mass formulas have been constructed from two different sets of potential parameters. The standard deviation of the calculated masses from all the experimental masses of the 1995 Mass Evaluation is about 760 keV. Contrary to the mass formula by Tachibana, Uno, Yamada and Yamada in the 1987-1988 Atomic Mass Predictions, the present formulasmore » can give nuclear shapes and predict on super-heavy elements.« less
Faraday Wave Turbulence on a Spherical Liquid Shell
NASA Technical Reports Server (NTRS)
Holt, R. Glynn; Trinh, Eugene H.
1996-01-01
Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.
Ion beam inertial confinement target
Bangerter, Roger O.; Meeker, Donald J.
1985-01-01
A target for implosion by ion beams composed of a spherical shell of frozen DT surrounded by a low-density, low-Z pusher shell seeded with high-Z material, and a high-density tamper shell. The target has various applications in the inertial confinement technology. For certain applications, if desired, a low-density absorber shell may be positioned intermediate the pusher and tamper shells.
Light-weight spherical submergence vessel
NASA Technical Reports Server (NTRS)
Baker, I.
1974-01-01
Design vessel with very low thickness-to-radius ratio to obtain low weight, and fabricate it with aid of precision tracer-lathe to limit and control imperfections in spherical shape. Vessel is thin-walled, spherical, monocoque shell constructed from hemispheres joined with sealed and bolted meridional flange.
Confinement dynamics of a semiflexible chain inside nano-spheres
NASA Astrophysics Data System (ADS)
Fathizadeh, A.; Heidari, Maziar; Eslami-Mossallam, B.; Ejtehadi, M. R.
2013-07-01
We study the conformations of a semiflexible chain, confined in nano-scaled spherical cavities, under two distinct processes of confinement. Radial contraction and packaging are employed as two confining procedures. The former method is performed by gradually decreasing the diameter of a spherical shell which envelopes a confined chain. The latter procedure is carried out by injecting the chain inside a spherical shell through a hole on the shell surface. The chain is modeled with a rigid body molecular dynamics simulation and its parameters are adjusted to DNA base-pair elasticity. Directional order parameter is employed to analyze and compare the confined chain and the conformations of the chain for two different sizes of the spheres are studied in both procedures. It is shown that for the confined chains in the sphere sizes of our study, they appear in spiral or tennis-ball structures, and the tennis-ball structure is more likely to be observed in more compact confinements. Our results also show that the dynamical procedure of confinement and the rate of the confinement are influential parameters of the structure of the chain inside spherical cavities.
NASA Astrophysics Data System (ADS)
Kapania, R. K.; Mohan, P.
1996-09-01
Finite element static, free vibration and thermal analysis of thin laminated plates and shells using a three noded triangular flat shell element is presented. The flat shell element is a combination of the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element derived from the Linear Strain Triangular (LST) element with a total of 18 degrees of freedom (3 translations and 3 rotations per node). Explicit formulations are used for the membrane, bending and membrane-bending coupling stiffness matrices and the thermal load vector. Due to a strong analogy between the induced strain caused by the thermal field and the strain induced in a structure due to an electric field the present formulation is readily applicable for the analysis of structures excited by surface bonded or embedded piezoelectric actuators. The results are presented for (i) static analysis of (a) simply supported square plates under doubly sinusoidal load and uniformly distributed load (b) simply supported spherical shells under a uniformly distributed load, (ii) free vibration analysis of (a) square cantilever plates, (b) skew cantilever plates and (c) simply supported spherical shells; (iii) Thermal deformation analysis of (a) simply supported square plates, (b) simply supported-clamped square plate and (c) simply supported spherical shells. A numerical example is also presented demonstrating the application of the present formulation to analyse a symmetrically laminated graphite/epoxy laminate excited by a layer of piezoelectric polyvinylidene flouride (PVDF). The results presented are in good agreement with those available in the literature.
Search for the Exotic Wobbling Mode in Rhenium-171
2011-05-13
USB hard drive. The decay sequences mentioned above release all of their γ rays within a nanosecond (ns). Data will be recorded when multiple ...events in which multiple detectors measured γ rays within a 120 ns window. An event in which three detectors fired within the coincidence window is...spherical nuclei; however, if the nucleus is axially deformed (non-spherical), the shell model cannot accurately describe its features . The shell model
MagIC: Fluid dynamics in a spherical shell simulator
NASA Astrophysics Data System (ADS)
Wicht, J.; Gastine, T.; Barik, A.; Putigny, B.; Yadav, R.; Duarte, L.; Dintrans, B.
2017-09-01
MagIC simulates fluid dynamics in a spherical shell. It solves for the Navier-Stokes equation including Coriolis force, optionally coupled with an induction equation for Magneto-Hydro Dynamics (MHD), a temperature (or entropy) equation and an equation for chemical composition under both the anelastic and the Boussinesq approximations. MagIC uses either Chebyshev polynomials or finite differences in the radial direction and spherical harmonic decomposition in the azimuthal and latitudinal directions. The time-stepping scheme relies on a semi-implicit Crank-Nicolson for the linear terms of the MHD equations and a Adams-Bashforth scheme for the non-linear terms and the Coriolis force.
Double-shell CuS nanocages as advanced supercapacitor electrode materials
NASA Astrophysics Data System (ADS)
Guo, Jinxue; Zhang, Xinqun; Sun, Yanfang; Zhang, Xiaohong; Tang, Lin; Zhang, Xiao
2017-07-01
Metal sulfides hollow structures are advanced materials for energy storage applications of lithium-ion batteries and supercapacitors. However, constructing hollow metal sulfides with specific features, such as multi-shell and non-spherical shape, still remains great challenge. In this work, we firstly demonstrate the synthesis of CuS double-shell hollow nanocages using Cu2O nanocubes as precursors. The synthesis processes involve the repeated anion exchange reaction with Na2S and the controllable etching using hydrochloric acid. The whole synthesis processes are well revealed and the obtained double-shell CuS is tested as pseudocapacitive electrode material for supercapacitors. As expected, the CuS double-shell hollow nanocages deliver high specific capacitance, good rate performance and excellent cycling stability due to their unique nano-architecture. The present work contributes greatly to the exploration of hollow metal sulfides with complex architecture and non-spherical shape, as well as their promising application in high-performance electrochemical supercapacitors.
Electronic effects on melting: Comparison of aluminum cluster anions and cations
NASA Astrophysics Data System (ADS)
Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.
2009-07-01
Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.
Nuclear tetrahedral symmetry: possibly present throughout the periodic table.
Dudek, J; Goźdź, A; Schunck, N; Miśkiewicz, M
2002-06-24
More than half a century after the fundamental, spherical shell structure in nuclei had been established, theoretical predictions indicated that the shell gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TD(d) ("double-tetrahedral") symmetry group. Strong shell-gap structure is enhanced by the existence of the four-dimensional irreducible representations of TD(d); it can be seen as a geometrical effect that does not depend on a particular realization of the mean field. Possibilities of discovering the TD(d) symmetry in experiment are discussed.
Jeong, Byeong Guk; Park, Young-Shin; Chang, Jun Hyuk; Cho, Ikjun; Kim, Jai Kyeong; Kim, Heesuk; Char, Kookheon; Cho, Jinhan; Klimov, Victor I; Park, Philip; Lee, Doh C; Bae, Wan Ki
2016-10-02
Thick inorganic shell endows colloidal nanocrystals (NCs) with enhanced photochemical stability and suppression of photoluminescence intermittency (also known as blinking). However, the progress of using thick-shell heterostructure NCs in applications has been limited, due to low photoluminescence quantum yield (PL QY 60%) at room temperature. Here, we demonstrate thick-shell NCs with CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) geometry that exhibit near-unity PL QY at room temperature and suppression of blinking. In SQW NCs, the lattice mismatch is diminished between the emissive CdSe layer and the surrounding CdS layers as a result of coherent strain, which suppresses the formation of misfit defects and consequently permits ~ 100% PL QY for SQW NCs with thick CdS shell (≥ 5 nm). High PL QY of thick-shell SQW NCs are preserved even in concentrated dispersion and in film under thermal stress, which makes them promising candidates for applications in solid-state lightings and luminescent solar concentrators.
The Case of the Disappearing Magnetic Dipole
ERIC Educational Resources Information Center
Gough, W.
2008-01-01
The problem of an oscillating magnetic dipole at the centre of a lossless dielectric spherical shell is considered. For simplicity, the free-space wavelength is taken to be much greater than the shell radii, but the relative permittivity [epsilon][subscript r] of the shell is taken as much greater than unity, so the wavelength in the shell could…
NASA Astrophysics Data System (ADS)
Yanagisawa, Takatoshi; Kameyama, Masanori; Ogawa, Masaki
2016-09-01
We explore thermal convection of a fluid with a temperature-dependent viscosity in a basally heated 3-D spherical shell using linear stability analyses and numerical experiments, while considering the application of our results to terrestrial planets. The inner to outer radius ratio of the shell f assumed in the linear stability analyses is in the range of 0.11-0.88. The critical Rayleigh number Rc for the onset of thermal convection decreases by two orders of magnitude as f increases from 0.11 to 0.88, when the viscosity depends sensitively on the temperature, as is the case for real mantle materials. Numerical simulations carried out in the range of f = 0.11-0.55 show that a thermal boundary layer (TBL) develops both along the surface and bottom boundaries to induce cold and hot plumes, respectively, when f is 0.33 or larger. However, for smaller f values, a TBL develops only on the bottom boundary. Convection occurs in the stagnant-lid regime where the root mean square velocity on the surface boundary is less than 1 per cent of its maximum at depth, when the ratio of the viscosity at the surface boundary to that at the bottom boundary exceeds a threshold that depends on f. The threshold decreases from 106.5 at f = 0.11 to 104 at f = 0.55. If the viscosity at the base of the convecting mantle is 1020-1021 Pa s, the Rayleigh number exceeds Rc for Mars, Venus and the Earth, but does not for the Moon and Mercury; convection is unlikely to occur in the latter planets unless the mantle viscosity is much lower than 1020 Pa s and/or the mantle contains a strong internal heat source.
Mössbauer Studies of Core-Shell FeO/Fe3O4 Nanoparticles
NASA Astrophysics Data System (ADS)
Kamzin, A. S.; Valiullin, A. A.; Khurshid, H.; Nemati, Z.; Srikanth, H.; Phan, M. H.
2018-02-01
FeO/Fe3O4 nanoparticles were synthesized by thermal decomposition. Electron microscopy revealed that these nanoparticles were of the core-shell type and had a spherical shape with an average size of 20 nm. It was found that the obtained FeO/Fe3O4 nanoparticles had exchange coupling. The effect of anisotropy on the efficiency of heating (hyperthermic effect) of FeO/Fe3O4 nanoparticles by an external alternating magnetic field was examined. The specific absorption rate (SAR) of the studied nanoparticles was 135 W/g in the experiment with an external alternating magnetic field with a strength of 600 Oe and a frequency of 310 kHz. These data led to an important insight: the saturation magnetization is not the only factor governing the SAR, and the efficiency of heating of magnetic FeO/Fe3O4 nanoparticles may be increased by enhancing the effective anisotropy. Mössbauer spectroscopy of the phase composition of the synthesized nanoparticles clearly revealed the simultaneous presence of three phases: magnetite Fe3O4, maghemite γ-Fe2O3, and wustite FeO.
Spherical shells buckling to the sound of music
NASA Astrophysics Data System (ADS)
Lee, Anna; Marthelot, Joel; Reis, Pedro
We study how the critical buckling load of spherical elastic shells can be modified by a fluctuating external pressure field. In our experiments, we employ thin elastomeric shells of nearly uniform thickness fabricated by the coating of a hemispherical mold with a polymer solution, which upon curing yields elastic structures. A shell is submerged in a water bath and loaded quasi-statically until buckling occurs by reducing its inner volume with a syringe pump. Simultaneously, a plunger connected to an electromagnetic shaker is placed above the shell and driven sinusoidally to create a fluctuating external pressure field that can excite dynamic vibration modes of the shell. These dynamic modes induce effective compressive stresses, in addition to those from the inner pressure loading, which can modify the critical conditions for the onset of buckling. We systematically quantify how the frequency and amplitude of the external driving affects the buckling strength of our shells. In specific regions of the parameter space, we find that pressure fluctuations can result in large reductions of the critical buckling pressure. This is analogous to the classic knock-down effect in shells due to intrinsic geometric imperfections, albeit now in a way that can be controlled externally.
Liquid Crystal Mediated Nano-assembled Gold Micro-shells
NASA Astrophysics Data System (ADS)
Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani
We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.
Origin and thermal evolution of Mars
NASA Technical Reports Server (NTRS)
Schubert, Gerald; Soloman, S. C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.
1990-01-01
The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the compositon and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented.
Thermal effectiveness of multiple shell and tube pass TEMA E heat exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pignotti, A.; Tamborenea, P.I.
1988-02-01
The thermal effectiveness of a TEMAE shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual simplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a functions of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.
How Spherical Is a Cube (Gravitationally)?
ERIC Educational Resources Information Center
Sanny, Jeff; Smith, David
2015-01-01
An important concept that is presented in the discussion of Newton's law of universal gravitation is that the gravitational effect external to a spherically symmetric mass distribution is the same as if all of the mass of the distribution were concentrated at the center. By integrating over ring elements of a spherical shell, we show that the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, M.M.
1979-11-01
A simple method for reconstructing spherically symmetric objects from slit-imaged emission was recently described by Vest and Steel. Although this method is valid for infinitesimal slit widths and practically noise-free irradiance data, it is shown here that its validity does not extend to slits of practical width in the laser-fusion program. However, a method is given for reducing the Vest--Steel plots with practical apertures to obtain information on core diameter, shell diameter, and shell thickness.
Spherical thin-shell wormholes and modified Chaplygin gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com
2013-05-01
The purpose of this paper is to construct spherical thin-shell wormhole solutions through cut and paste technique and investigate the stability of these solutions in the vicinity of modified Chaplygin gas. The Darmois-Israel formalism is used to formulate the stresses of the surface concentrating the exotic matter. We explore the stability of the wormhole solutions by using the standard potential method. We conclude that there exist more stable as well as unstable solutions than the previous study with generalized Chaplygin gas [19].
NASA Astrophysics Data System (ADS)
Chafai, A.; Essaoudi, I.; Ainane, A.; Dujardin, F.; Ahuja, R.
2018-07-01
The recombination energy of isolated neutral exciton and that of isolated negatively charged exciton inside a type-II core/shell spherical quantum dot are studied. Our investigation considers the charge-carriers effective mass discontinuity at the surface contact between the core and shell materials. Although our model omits the effect of the surface polarization, the dielectric-constant mismatch at the nanodot boundaries was taken into account. In order to achieve the exciton and negative trion energies, we proceed by a variational calculation in the framework of the envelope approximation. Our results reveal a strong correlation between the nanodot morphology and the energy spectrum of the neutral and negatively charged exciton.
Kozinszky, Zoltan; Surányi, Andrea; Péics, Hajnalka; Molnár, András; Pál, Attila
2015-08-01
The aim of this study was to determine the utility of a new mathematical model in volumetric assessment of the placenta using 2-D ultrasound. Placental volumetry was performed in a prospective cross-sectional survey by virtual organ computer-aided analysis (VOCAL) with the help of a shell-off method in 346 uncomplicated pregnancies according to STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. Furthermore, placental thickness, length and height were measured with the 2-D technique to estimate placental volume based on the mathematical formula for the volume of "the shell of the spherical sector." Fetal size was also assessed by 2-D sonography. The placental volumes measured by 2-D and 3-D techniques had a correlation of 0.86. In the first trimester, the correlation was 0.82, and later during pregnancy, it was 0.86. Placental volumetry using "the circle-shaped shell of the spherical sector" mathematical model with 2-D ultrasound technique may be introduced into everyday practice to screen for placental volume deviations associated with adverse pregnancy outcome. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Quasi-spherical accretion in High Mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Postnov, Konstantin
2016-07-01
Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.
NASA Astrophysics Data System (ADS)
Ahmed, A. S.; Christopher, W.
2018-03-01
Nanocrystalline semiconductors exhibit different properties due to two basic factors. They possess high surface to volume ratio and the actual size of particle can determine the electronic and physical properties of the material. The small size results in an observable quantum confinement effect, defined by the increasing bandgap accompanied by the quantization of the energy levels to discrete values. In present work we have synthesized the series of cadmium selenide/cadmium telluride (CdSe/CdTe) core/shell and CdSe/CdTe/CdS core/shell/shell to investigate the biexciton energy through transient absorption measurements. These structures are type II nanocrystals are with a hole in the shell and the electron confined to the core. We specifically investigate the effect of nanoparticle shape on the electronic structure and ultrafast electronic dynamics in the band-edge exciton states of CdSe quantum dots, nanorods, and nanoplatelets. Particle size was chosen to enable straightforward comparisons of the effects of particle shape on the spectra and dynamics without retuning the laser source. In our results the Uv-vis showed only a mild redshift in the first excitonic an elongated tail with increasing shell thickness. High resolution Transmission Electron Microscopy (HRTEM) shows the slight agglomeration of the nanocrystals but still the size distribution was calculate able. Spherical small crystals ranging from 5.9 nm to 10 nm are observed. CdTe/CdSe structures were quasi spherical with a rough diameter 6 nm with some little agglomerated structure. . The spherical nanocrystals could be peanut shaped oriented along the c axis or the spherical only, which could explain the two peak emission. p-XRD results indicate the predominant wurtzite structure throughout.
Solar-thermal reaction processing
Weimer, Alan W; Dahl, Jaimee K; Lewandowski, Allan A; Bingham, Carl; Raska Buechler, Karen J; Grothe, Willy
2014-03-18
In an embodiment, a method of conducting a high temperature chemical reaction that produces hydrogen or synthesis gas is described. The high temperature chemical reaction is conducted in a reactor having at least two reactor shells, including an inner shell and an outer shell. Heat absorbing particles are included in a gas stream flowing in the inner shell. The reactor is heated at least in part by a source of concentrated sunlight. The inner shell is heated by the concentrated sunlight. The inner shell re-radiates from the inner wall and heats the heat absorbing particles in the gas stream flowing through the inner shell, and heat transfers from the heat absorbing particles to the first gas stream, thereby heating the reactants in the gas stream to a sufficiently high temperature so that the first gas stream undergoes the desired reaction(s), thereby producing hydrogen or synthesis gas in the gas stream.
Collapsing shells and black holes: a quantum analysis
NASA Astrophysics Data System (ADS)
Leal, P.; Bernardini, A. E.; Bertolami, O.
2018-06-01
The quantization of a spherically symmetric null shells is performed and extended to the framework of phase-space noncommutative (NC) quantum mechanics. This shell is considered to be inside a black hole event horizon. The encountered properties are investigated making use of the Israel junction conditions on the shell, considering that it is the boundary between two spherically symmetric spacetimes. Using this method, and considering two different Kantowski–Sachs spacetimes as a representation for the Schwarzschild spacetime, the relevant quantities on the shell are computed, such as its stress-energy tensor and the action for the whole spacetime. From the obtained action, the Wheeler–deWitt equation is deduced in order to provide the quantum framework for the system. Solutions for the wave function of the system are found on both the commutative and NC scenarios. It is shown that, on the commutative version, the wave function has a purely oscillatory behavior in the interior of the shell. In the NC setting, it is shown that the wave function vanishes at the singularity, as well as, at the event horizon of the black hole.
Role of membrane stresses in the support of planetary topography
NASA Technical Reports Server (NTRS)
Turcotte, D. L.; Willemann, R. J.; Haxby, W. F.; Norberry, J.
1981-01-01
The role of membrane stresses and bending stresses in supporting topographic loads on planetary elastic lithospheres is examined. A dimensionless parameter is introduced in order to determine the ability of a spherical shell to support loads through membrane stresses. It is determined that when this parameter is large, membrane stresses can fully support topographic loads with flexure, and when it is small the influence of the membrane stresses can be neglected. Equations governing the behavior of a spherical shell are solved for a topographic load expressed in terms of spherical harmonics, and spherical harmonic expansions of the measured gravity and topography for Mars and the moon are compared with the theory. It is concluded that membrane stresses play an important role in the support of topographic loads on the moon and Mars. The correlation of observed gravitational potential anomalies with the topography on Mars is explained by membrane stresses in the elastic lithosphere.
Axisymmetric inertial modes in a spherical shell at low Ekman numbers
NASA Astrophysics Data System (ADS)
Rieutord, M.; Valdettaro, L.
2018-06-01
We investigate the asymptotic properties of axisymmetric inertial modes propagating in a spherical shell when viscosity tends to zero. We identify three kinds of eigenmodes whose eigenvalues follow very different laws as the Ekman number $E$ becomes very small. First are modes associated with attractors of characteristics that are made of thin shear layers closely following the periodic orbit traced by the characteristic attractor. Second are modes made of shear layers that connect the critical latitude singularities of the two hemispheres of the inner boundary of the spherical shell. Third are quasi-regular modes associated with the frequency of neutral periodic orbits of characteristics. We thoroughly analyse a subset of attractor modes for which numerical solutions point to an asymptotic law governing the eigenvalues. We show that three length scales proportional to $E^{1/6}$, $E^{1/4}$ and $E^{1/3}$ control the shape of the shear layers that are associated with these modes. These scales point out the key role of the small parameter $E^{1/12}$ in these oscillatory flows. With a simplified model of the viscous Poincar\\'e equation, we can give an approximate analytical formula that reproduces the velocity field in such shear layers. Finally, we also present an analysis of the quasi-regular modes whose frequencies are close to $\\sin(\\pi/4)$ and explain why a fluid inside a spherical shell cannot respond to any periodic forcing at this frequency when viscosity vanishes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirdel-Havar, A. H., E-mail: Amir.hushang.shirdel@gmail.com; Masoudian Saadabad, R.
2015-03-21
Based on ballistic-diffusive approximation, a method is presented to model heat transfer in nanocomposites containing metal nanoparticles. This method provides analytical expression for the temperature dynamics of metallic nanoparticles embedded in a dielectric medium. In this study, nanoparticles are considered as spherical shells, so that Boltzmann equation is solved using ballistic-diffusive approximation to calculate the electron and lattice thermal dynamics in gold nanoparticles, while thermal exchange between the particles is taken into account. The model was used to investigate the influence of particle size and metal concentration of the medium on the electron and lattice thermal dynamics. It is shownmore » that these two parameters are crucial in determining the nanocomposite thermal behavior. Our results showed that the heat transfer rate from nanoparticles to the matrix decreases as the nanoparticle size increases. On the other hand, increasing the metal concentration of the medium can also decrease the heat transfer rate.« less
Westerik, Nieke; Scholten, Elke; Corredig, Milena
2015-06-15
Protein microparticles were formed through emulsification of 25% (w/w) whey protein isolate (WPI) solutions containing various concentrations of calcium (0.0-400.0mM) in an oil phase stabilized by polyglycerol polyricinoleate (PGPR). The emulsions were heated (at 80°C) and the microparticles subsequently re-dispersed in an aqueous phase. Light microscopy and scanning electron microscopy (SEM) images revealed that control particles and those prepared with 7.4mM calcium were spherical and smooth. Particles prepared with 15.0mM calcium gained an irregular, cauliflower-like structure, and at concentrations larger than 30.0mM, shells formed and the particles were no longer spherical. These results describe, for the first time, the potential of modulating the properties of dense whey protein particles by using calcium, and may be used as structuring agents for the design of functional food matrices with increased protein and calcium content. Copyright © 2015. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Fujimoto, Masayuki Y.; Sztajno, Mirek; Lewin, Walter H. G.; Vanparadijs, Jan
1986-01-01
The observed properties of type 1 X-ray bursts from 4U/MXB 1636-53 and those of models of thermonuclear flashes on accreting neutron stars are compared. Ways to explain variations in the burst recurrence properties without an apparent correlation with the accretion rate, including the rapid succession of bursts at intervals 10 min are discussed. The strongest X-ray bursts, which occur after a very long interval, are well described by thermonuclear flash models with simple accumulation of accreted fuel, and a spherically symmetric structure in the burning shell. The majority of observed bursts, however, occur after much shorter intervals, and radiate much smaller amounts of energy, by a factor of up to 10 times that predicted by the spherical models. An ignition mechanism of the bursts is proposed in terms of elemental mixing and dissipative heating associated with hydrodynamical instabilities in the neutron star envelope caused by angular momentum carried inward by accreted gas.
Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia.
Giordano, Mauricio A; Gutierrez, Gustavo; Rinaldi, Carlos
2010-01-01
Methods of predicting temperature profiles during local hyperthermia treatment are very important to avoid damage to healthy tissue. With this aim, fundamental solutions of Pennes' bioheat equation are derived in rectangular, cylindrical, and spherical coordinates. The medium is idealised as isotropic with effective thermal properties. Temperature distributions due to space- and time-dependent heat sources are obtained by the solution method presented. Applications of the fundamental solutions are addressed with emphasis on a particular problem of Magnetic Fluid Hyperthermia (MFH) consisting of a thin shell of magnetic nanoparticles in the outer surface of a spherical solid tumour. It is observed from the solution of this particular problem that the temperature profiles are strongly dependent on the distribution of the magnetic nanoparticles within the tissue. An almost uniform temperature profile is obtained inside the tumour with little penetration of therapeutic temperatures to the outer region of healthy tissue. The fundamental solutions obtained can be used to develop boundary element methods to predict temperature profiles with more complicated geometries.
Accurate image-charge method by the use of the residue theorem for core-shell dielectric sphere
NASA Astrophysics Data System (ADS)
Fu, Jing; Xu, Zhenli
2018-02-01
An accurate image-charge method (ICM) is developed for ionic interactions outside a core-shell structured dielectric sphere. Core-shell particles have wide applications for which the theoretical investigation requires efficient methods for the Green's function used to calculate pairwise interactions of ions. The ICM is based on an inverse Mellin transform from the coefficients of spherical harmonic series of the Green's function such that the polarization charge due to dielectric boundaries is represented by a series of image point charges and an image line charge. The residue theorem is used to accurately calculate the density of the line charge. Numerical results show that the ICM is promising in fast evaluation of the Green's function, and thus it is useful for theoretical investigations of core-shell particles. This routine can also be applicable for solving other problems with spherical dielectric interfaces such as multilayered media and Debye-Hückel equations.
Curvature-driven morphing of non-Euclidean shells
NASA Astrophysics Data System (ADS)
Pezzulla, Matteo; Stoop, Norbert; Jiang, Xin; Holmes, D. P.
2017-05-01
We investigate how thin structures change their shape in response to non-mechanical stimuli that can be interpreted as variations in the structure's natural curvature. Starting from the theory of non-Euclidean plates and shells, we derive an effective model that reduces a three-dimensional stimulus to the natural fundamental forms of the mid-surface of the structure, incorporating expansion, or growth, in the thickness. Then, we apply the model to a variety of thin bodies, from flat plates to spherical shells, obtaining excellent agreement between theory and numerics. We show how cylinders and cones can either bend more or unroll, and eventually snap and rotate. We also study the nearly isometric deformations of a spherical shell and describe how this shape change is ruled by the geometry of a spindle. As the derived results stem from a purely geometrical model, they are general and scalable.
NASA Astrophysics Data System (ADS)
Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M.; Lu, Ming-Chang; Chueh, Yu-Lun
2014-04-01
We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiOx core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiOx core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiOx core-shell NPs during cyclic heating processes. The latent heat of ~29 J g-1 for Sn/SiOx core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g-1 K-1 for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiOx core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiOx core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiOx core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiOx core-shell NPs during cyclic heating processes. The latent heat of ~29 J g-1 for Sn/SiOx core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g-1 K-1 for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiOx core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants. Electronic supplementary information (ESI) available: Detailed experimental results are included for the following: SEM images of the HITEC molten salt with and without a mixture of Sn/SiOx core-shell NPs; statistical diameter distribution of pure Sn and Sn/SiOx core-shell NPs; the HAADF image and EDS linescan profile of a Sn/SiOx core-shell NP; XRD analysis for Sn NPs annealing at different heating temperatures; the XRD spectra of Sn/SiOx core-shell NPs before and after RTA for the shell protection test. See DOI: 10.1039/c3nr06810b
NASA Astrophysics Data System (ADS)
Ibragimov, Ranis N.
2018-03-01
The nonlinear Euler equations are used to model two-dimensional atmosphere dynamics in a thin rotating spherical shell. The energy balance is deduced on the basis of two classes of functorially independent invariant solutions associated with the model. It it shown that the energy balance is exactly the conservation law for one class of the solutions whereas the second class of invariant solutions provides and asymptotic convergence of the energy balance to the conservation law.
Effect of multiple spin species on spherical shell neutron transmission analysis
NASA Technical Reports Server (NTRS)
Semler, T. T.
1972-01-01
A series of Monte Carlo calculations were performed in order to evaluate the effect of separated against merged spin statistics on the analysis of spherical shell neutron transmission experiments for gold. It is shown that the use of separated spin statistics results in larger average capture cross sections of gold at 24 KeV. This effect is explained by stronger windows in the total cross section caused by the interference between potential and J(+) resonances and by J(+) and J(-) resonance overlap allowed by the use of separated spin statistics.
NASA Technical Reports Server (NTRS)
Mullenmeister, Paul
1988-01-01
The quasi-geostrophic omega-equation in flux form is developed as an example of a Poisson problem over a spherical shell. Solutions of this equation are obtained by applying a two-parameter Chebyshev solver in vector layout for CDC 200 series computers. The performance of this vectorized algorithm greatly exceeds the performance of its scalar analog. The algorithm generates solutions of the omega-equation which are compared with the omega fields calculated with the aid of the mass continuity equation.
Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA
NASA Astrophysics Data System (ADS)
Radha, P. B.
2004-11-01
Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ < 10) and intermediate modes (20 < ℓ < 50) occurring from single-beam laser nonuniformities. The neutron production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The neutron-rate curves for the thinner shells, however, have significantly lower amplitudes and widths closer to 1-D results, indicating shell breakup during the acceleration phase. The simulation results are consistent with experimental observations. Previously, the stability of plastic-shell implosions had been correlated to a static ``mix-width'' at the boundary of the gas and plastic pusher estimated using a variety of experimental observables and an assumption of spherical symmetry. Results of these 2-D simulations provide a comprehensive understanding of warm-target implosion dynamics without assumptions of spherical symmetry and serve to answer the question of the hydrodynamic surrogacy between these plastic-shell implosions and the cryogenic ignition designs.
Waltzing route toward double-helix formation in cholesteric shells
NASA Astrophysics Data System (ADS)
Darmon, Alexandre; Benzaquen, Michael; Seč, David; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa
2016-08-01
Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials. Liquid crystals with helical cholesteric order offer a promising, yet unexplored way of controlling the shell defect configuration. In this paper, we study cholesteric shells with monovalent and bivalent defect configurations. By bringing together experiments and numerical simulations, we show that the defects appearing in these two configurations have a complex inner structure, as recently reported for simulated droplets. Bivalent shells possess two highly structured defects, which are composed of a number of smaller defect rings that pile up through the shell. Monovalent shells have a single radial defect, which is composed of two nonsingular defect lines that wind around each other in a double-helix structure. The stability of the bivalent configuration against the monovalent one is controlled by c = h/p, where h is the shell thickness and p the cholesteric helical pitch. By playing with the shell geometry, we can trigger the transition between the two configurations. This transition involves a fascinating waltz dynamics, where the two defects come closer while turning around each other.
Stratification and energy fluxes in the anelastic convection model
NASA Astrophysics Data System (ADS)
Hejda, Pavel; Reshetnyak, Maxim
2013-04-01
Convection in the planetary cores is usually connected with the geostrophic state. At the onset of convection, the ratio of horizontal scale to the scale along the axis of rotation is proportional to the cube root of the Ekman number, which characterises the ratio of the viscous forces to the Coriolis force. The Ekman number is extremely small in the liquid cores, which is a source of strong anisotropy. Even if further increase of the heat sources leads to decrease of anisotropy, the final state is still highly anisotropic. The influence of the rapid rotation on the structure of the flows in the physical space is also manifested by a substantial change of the spectral properties of the turbulence in the core (Reshetnyak and Hejda, 2008; Hejda and Reshetnyak, 2009). If for the non-rotating flow the kinetic energy in the wave space propagates from the large scales to the small dissipative scales (the so-called direct Richardson-Kolmogorov cascade), then in presence of rotation the turbulence degenerates to the quasi two-dimensional state and the inverse cascade of the kinetic energy is observed. Having in mind that Cartesian and spherical geometries exhibit similar results and reproduce the inverse cascades of the kinetic energy (Reshetnyak and Hejda, 2012), there is an open question how this cascade contributes to the more general energy balance, which includes the heat flux equation. As the heat energy definition in the Boussinesq model is quite questionable, we consider the anelastic model, where the heat fluxes can be compared with the kinetic energy fluxes in the adequate way. Here we consider the spherical geometry model in the shell that limits our study to the cascades in the azimuthal wave-number. As the self-consistent anelastic model includes new term, the adiabatic cooling, which produces "stratification" in the outer part of the core, we consider its influence on convection in the physical and wave spaces. We show that even small cooling can change the convection substantially, shifting maximum of convection to the inner part of the liquid core. Similar to the Boussinesq model the both direct and inverse cascades of the kinetic energy as well as the direct cascade of the specific entropy in the wave space occur. Reshetnyak, M. and Hejda, P., 2008. Direct and inverse cascades in the geodynamo. Nonlin. Proc. Geophys. 15, 873-880. Hejda, P. and Reshetnyak, M., 2009. Effect of anisotropy in the geostrophic turbulence. Phys. Earth Planet. Inter. 177, 152-160, doi: 10.1016/j.pepi.2009.08.006. Reshetnyak, M. and Hejda, P., 2012. Kinetic energy cascades in quasi-geostrophic convection in a spherical shell. Physica Scripta 86, article No. 018408, doi: 10.1088/0031-8949/86/01/018408.
Polar-direct-drive experiments with contoured-shell targets on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. J.; Radha, P. B.; Bonino, M. J.
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.
Polar-direct-drive experiments with contoured-shell targets on OMEGA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. J.; Radha, P. B.; Bonino, M. J.
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. Fusion yields were increased by more than a factor of ∼2 without increasing the energy of the laser by the use of contoured shells.
Polar-direct-drive experiments with contoured-shell targets on OMEGA
Marshall, F. J.; Radha, P. B.; Bonino, M. J.; ...
2016-01-28
Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.
Yeoh, Keat-Hor; Shafie, S A; Al-Attab, K A; Zainal, Z A
2018-06-15
In this study, three different methods for high quality solid fuel production were tested and compared experimentally. Oil palm empty fruit bunches, mesocarp fibers, palm kernel shells and rubber seeds shells were treated using thermal (TC), hydrothermal (HTC) and vapothermal (VTC) carbonization. All thermochemical methods were accomplished by using a custom made batch-type reactor. Utilization of novel single reactor equipped with suspended internal container provided efficient operation since both steam generator and raw materials were placed inside the same reactor. Highest energy densification was achieved by VTC process followed by TC and HTC processes. The heating value enhancement in VTC and TC was achieved by the increase in fixed carbon content and reduction in volatile matter. The formation of the spherical components in HTC hydrochar which gave a sharp peak at 340 °C in the DTG curves was suggested as the reason that led to the increment in energy content. Copyright © 2018 Elsevier Ltd. All rights reserved.
Equatorially trapped convection in a rapidly rotating shallow shell
NASA Astrophysics Data System (ADS)
Miquel, Benjamin; Xie, Jin-Han; Featherstone, Nicholas; Julien, Keith; Knobloch, Edgar
2018-05-01
Motivated by the recent discovery of subsurface oceans on planetary moons and the interest they have generated, we explore convective flows in shallow spherical shells of dimensionless gap width ɛ2≪1 in the rapid rotation limit E ≪1 , where E is the Ekman number. We employ direct numerical simulation (DNS) of the Boussinesq equations to compute the local heat flux Nu (λ ) as a function of the latitude λ and use the results to characterize the trapping of convection at low latitudes, around the equator. We show that these results are quantitatively reproduced by an asymptotically exact nonhydrostatic equatorial β -plane convection model at a much more modest computational cost than DNS. We identify the trapping parameter β =ɛ E-1 as the key parameter that controls the vigor and latitudinal extent of convection for moderate thermal forcing when E ˜ɛ and ɛ ↓0 . This model provides a theoretical paradigm for nonlinear investigations.
A Nonlinear Theory of Bending and Buckling of Thin Elastic Shallow Spherical Shells
NASA Technical Reports Server (NTRS)
Kaplan, A; Fung, Y C
1954-01-01
The problem of the finite displacement and buckling, of a shallow spherical dome is investigated both theoretically and experimentally. Experimental results seem to indicate that the classical criterion of buckling is applicable to very shallow spherical domes for which the theoretical calculation was made. A transition to energy criterion for higher domes is also indicated.
Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)
NASA Astrophysics Data System (ADS)
Lugovoi, P. Z.; Meish, V. F.
2017-09-01
Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.
One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel
2017-10-01
One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.
Laser heating tunability by off-resonant irradiation of gold nanoparticles.
Hormeño, Silvia; Gregorio-Godoy, Paula; Pérez-Juste, Jorge; Liz-Marzán, Luis M; Juárez, Beatriz H; Arias-Gonzalez, J Ricardo
2014-01-29
Temperature changes in the vicinity of a single absorptive nanostructure caused by local heating have strong implications in technologies such as integrated electronics or biomedicine. Herein, the temperature changes in the vicinity of a single optically trapped spherical Au nanoparticle encapsulated in a thermo-responsive poly(N-isopropylacrylamide) shell (Au@pNIPAM) are studied in detail. Individual beads are trapped in a counter-propagating optical tweezers setup at various laser powers, which allows the overall particle size to be tuned through the phase transition of the thermo-responsive shell. The experimentally obtained sizes measured at different irradiation powers are compared with average size values obtained by dynamic light scattering (DLS) from an ensemble of beads at different temperatures. The size range and the tendency to shrink upon increasing the laser power in the optical trap or by increasing the temperature for DLS agree with reasonable accuracy for both approaches. Discrepancies are evaluated by means of simple models accounting for variations in the thermal conductivity of the polymer, the viscosity of the aqueous solution and the absorption cross section of the coated Au nanoparticle. These results show that these parameters must be taken into account when considering local laser heating experiments in aqueous solution at the nanoscale. Analysis of the stability of the Au@pNIPAM particles in the trap is also theoretically carried out for different particle sizes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The jump-off velocity of an impulsively loaded spherical shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabaud, Brandon M.; Brock, Jerry S.
2012-04-13
We consider a constant temperature spherical shell of isotropic, homogeneous, linearly elastic material with density {rho} and Lame coefficients {lambda} and {mu}. The inner and outer radii of the shell are r{sub i} and r{sub o}, respectively. We assume that the inside of the shell is a void. On the outside of the shell, we apply a uniform, time-varying pressure p(t). We also assume that the shell is initially at rest. We want to compute the jump-off time and velocity of the pressure wave, which are the first time after t = 0 at which the pressure wave from themore » outer surface reaches the inner surface. This analysis computes the jump-off velocity and time for both compressible and incompressible materials. This differs substantially from [3], where only incompressible materials are considered. We will consider the behavior of an impulsively loaded, exponentially decaying pressure wave p(t) = P{sub 0{sup e}}{sup -{alpha}t}, where {alpha} {ge} 0. We notice that a constant pressure wave P(t) = P{sub 0} is a special case ({alpha} = 0) of a decaying pressure wave. Both of these boundary conditions are considered in [3].« less
Wang, H; Yu, M; Lin, C K; Lin, J
2006-08-01
Spherical SiO(2) particles have been coated with YVO(4):Dy(3+)/Sm(3+) phosphor layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO(2)@YVO(4):Dy(3+)/Sm(3+) particles. X-ray diffraction (XRD), Fourier-transform IR spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting SiO(2)@YVO(4):Dy(3+)/Sm(3+) core-shell phosphors. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 300 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (20 nm for one deposition cycle). The core-shell particles show strong characteristic emission from Dy(3+) for SiO(2)@YVO(4):Dy(3+) and from Sm(3+) for SiO(2)@YVO(4):Sm(3+) due to an efficient energy transfer from YVO(4) host to them. The PL intensity of Dy(3+) and Sm(3+) increases with raising the annealing temperature and the number of coating cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Lianxia; Yang Haibin; Fu Wuyou
W/WS{sub 2} inorganic fullerene-like (IF) nanoparticles with core-shell structure are synthesized by the reaction of tungsten nanospheres and sulfur at relatively low temperatures (380-600 deg. C) under hydrogen atmosphere, in which tungsten nanospheres were prepared by wire electrical explosion method. Images of transmission electron microscopy and high-resolution transmission electron microscopy show that the composite particles are of core-shell structure with spherical shape and the shell thickness is about 10 nm. X-ray powder diffraction results indicate that the interlayer spacing of IF-WS{sub 2} shell decreases and approaches that of 2H-WS{sub 2} with increasing annealing temperatures, representing an expansion of 3.3-1.6%. Amore » mechanism of IF-WS{sub 2} formation via sulfur diffusion into fullerene nanoparticles is discussed. Thermal analysis shows that the nanoparticles obtained at different temperatures exhibit similar thermal stability and the onset temperature of oxidization is about 410 deg. C. Encapsulating hard tungsten core into IF-WS{sub 2} and the spherical shape of the core-shell structures may enhance their performance in tribological applications.« less
First-Ply-Failure Performance of Composite Clamped Spherical Shells
NASA Astrophysics Data System (ADS)
Ghosh, A.; Chakravorty, D.
2018-05-01
The failure aspects of composites are available for plates, but studies of the literature on shells unveils that similar reports on them are very limited in number. The aim of this work was to investigate the first-ply-failure of industrially and aesthetically important spherical shells under uniform loadings. Apart from solving benchmark problems, numerical experiments were carried out with different variations of their parameters to obtain the first-ply-failure stresses by using the finite-element method. The load was increased in steps, and the lamina strains and stresses were put into well-established failure criteria to evaluate their first-ply-failure stress, the failed ply, the point of initiation of failure, and failure modes and tendencies. The results obtained are analyzed to extract the points of engineering significance.
Spherical collapse in chameleon models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brax, Ph.; Rosenfeld, R.; Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr
2010-08-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in themore » presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.« less
Mitri, F G
2005-08-01
The theory of the acoustic radiation force acting on elastic spherical shells suspended in a plane standing wave field is developed in relation to their thickness and the content of their hollow regions. The theory is modified to include the effect of a hysteresis type of absorption of compressional and shear waves in the material. The fluid-loading effect on the acoustic radiation force function Y(st) is analyzed as well. Results of numerical calculations are presented for a number of elastic and viscoelastic materials, with the hollow region filled with water or air. These results show how the damping due to absorption, the change of the interior fluid inside the shells' hollow regions, and the exterior fluid surrounding their structures, affect the acoustic radiation force.
Magnetization processes in core/shell exchange-spring structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J. S.
2015-03-27
The magnetization reversal processes in cylindrical and spherical soft core/hard shell exchange-spring structures are investigated via the analytical nucleation theory, and are verified with numerical micromagnetic simulations. At small core sizes, the nucleation of magnetic reversal proceeds via the modified bulging mode, where the transverse component of the magnetization is only semi-coherent in direction and the nucleation field contains a contribution from self-demagnetization. For large core sizes, the modified curling mode, where the magnetization configuration is vortex-like, is favored at nucleation. The preference for the modified curling mode is beneficial in that the fluxclosure allows cylindrical and spherical core/shell exchange-springmore » elements to be densely packed into bulk permanent magnets without affecting the nucleation field, thereby offering the potential for high energy product.« less
SOME ENGINEERING PROPERTIES OF SHELLED AND KERNEL TEA (Camellia sinensis) SEEDS.
Altuntas, Ebubekir; Yildiz, Merve
2017-01-01
Camellia sinensis is the source of tea leaves and it is an economic crop now grown around the World. Tea seed oil has been used for cooking in China and other Asian countries for more than a thousand years. Tea is the most widely consumed beverages after water in the world. It is mainly produced in Asia, central Africa, and exported throughout the World. Some engineering properties (size dimensions, sphericity, volume, bulk and true densities, friction coefficient, colour characteristics and mechanical behaviour as rupture force of shelled and kernel tea ( Camellia sinensis ) seeds were determined in this study. This research was carried out for shelled and kernel tea seeds. The shelled tea seeds used in this study were obtained from East-Black Sea Tea Cooperative Institution in Rize city of Turkey. Shelled and kernel tea seeds were characterized as large and small sizes. The average geometric mean diameter and seed mass of the shelled tea seeds were 15.8 mm, 10.7 mm (large size); 1.47 g, 0.49 g (small size); while the average geometric mean diameter and seed mass of the kernel tea seeds were 11.8 mm, 8 mm for large size; 0.97 g, 0.31 g for small size, respectively. The sphericity, surface area and volume values were found to be higher in a larger size than small size for the shelled and kernel tea samples. The shelled tea seed's colour intensity (Chroma) were found between 59.31 and 64.22 for large size, while the kernel tea seed's chroma values were found between 56.04 68.34 for large size, respectively. The rupture force values of kernel tea seeds were higher than shelled tea seeds for the large size along X axis; whereas, the rupture force values of along X axis were higher than Y axis for large size of shelled tea seeds. The static coefficients of friction of shelled and kernel tea seeds for the large and small sizes higher values for rubber than the other friction surfaces. Some engineering properties, such as geometric mean diameter, sphericity, volume, bulk and true densities, the coefficient of friction, L*, a*, b* colour characteristics and rupture force of shelled and kernel tea ( Camellia sinensis ) seeds will serve to design the equipment used in postharvest treatments.
Problems in understanding the structure and assembly of viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.
1997-12-01
Though viruses infect the cells of all groups of animals, plants, and microorganisms, their structures follow a limited number of general themes; spherical or cylindrical shells built of hundreds of repeated protein subunits enclosing a nucleic acid - DNA or RNA - genome. Since the 1960s it has been known that the protein shells of spherical viruses in fact conform to icosahedral symmetry or to subtle deviations from icosahedral symmetry. The construction of the shell lattices and the transformations they go through in the different stages of the viral life cycle are not fully understood. The shells contain the nucleicmore » in a highly condensed state, of unknown coiling/organization. Features of the well studied bacterial viruses will be reviewed, with examples from adenoviruses, herpesviruses, poliovirus, and HIV. The emergence of new viral disease has led to increased interest in the development of agents which interfere with virus reproduction at the level of the assembly or function of the organized particle. Recently computational approaches to the problem of virus assembly have made important contributions to clarifying shell assembly processes. 1 ref.« less
Mitri, F G; Fellah, Z E A
2006-07-01
The dynamic acoustic radiation force resulting from a dual-frequency beam incident on spherical shells immersed in an inviscid fluid is examined theoretically in relation to their thickness and the contents of their interior hollow regions. The theory is modified to include a hysteresis type of absorption inside the shells' material. The results of numerical calculations are presented for stainless steel and absorbing lucite (PolyMethyMethacrylAte) shells with the hollow region filled with water or air. Significant differences occur when the interior fluid inside the hollow region is changed from water to air. It is shown that the dynamic radiation force function Yd deviates from the static radiation force function Yp when the modulation size parameter deltax = mid R:x2 - x1mid R: (x1 = k1a, x2 = k2a, k1 and k2 are the wave vectors of the incident ultrasound waves, and a is the outer radius of the shell) starts to exceed the width of the resonance peaks in the Yp curves.
Models of Interacting Stellar Winds
NASA Astrophysics Data System (ADS)
Wilkin, Francis Patrick
Stars drive supersonic winds which interact violently with their surroundings. Analytic and numerical models of hypersonic, interacting circumstellar flows are presented for several important astrophysical problems. A new solution method for steady-state, axisymmetric, wind collision problems is applied to radiative bow shocks from moving stars and to the collision of two spherical winds in a binary star system. The solutions obtained describe the shape of the geometrically thin, shocked shell of matter, as well as its mass surface density and the tangential velocity within it. Analytic solutions are also obtained for non-axisymmetric bow shocks, where the asymmetry arises due to either a transverse gradient in the ambient medium, or a misaligned, axisymmetric stellar wind. While the solutions are all easily scaled in terms of their relevant dimensional parameters, the important assumption of radiative shocks implies that the models are most applicable towards systems with dense environments and low preshock velocities. The bow shock model has previously been applied to cometary, ultracompact HII regions by Van Buren et al. (1990), who discussed extensively the applicability of the thin shell approximation. I next model the collision between a protostellar wind and supersonic infall from a rotating cloud, employing a quasi-steady, thin-shell formulation. The spherical wind is initially crushed to the protostellar surface by nearly spherical infall. The centrifugal distortion of infalling matter eventually permits a wind-supported, trapped bubble to slowly expand on an evolutionary (~ 105 yr) time. The shell becomes progressively more extended along the rotational axis, due to the asymmetry of the infall. When the quasi-steady assumption breaks down, the shell has become a needle-like, bipolar configuration that may represent a precursor to protostellar jets. I stress, however, the likelihood of instability for the shell, and the possibility of oscillatory behavior in a fully time-dependent model.
-dimensional thin shell wormhole with deformed throat can be supported by normal matter
NASA Astrophysics Data System (ADS)
Mazharimousavi, S. Habib; Halilsoy, M.
2015-06-01
From the physics standpoint the exotic matter problem is a major difficulty in thin shell wormholes (TSWs) with spherical/cylindrical throat topologies. We aim to circumvent this handicap by considering angle dependent throats in dimensions. By considering the throat of the TSW to be deformed spherical, i.e., a function of and , we present general conditions which are to be satisfied by the shape of the throat in order to have the wormhole supported by matter with positive density in the static reference frame. We provide particular solutions/examples to the constraint conditions.
A Study of the Nearfield of an Excited Spherical Shell.
1980-03-17
8217 tte exact wave harmonic series and the approximate Geometrical Theory of Diffraction (GTD) were used to predict the acoustic near field of an elastic...rr) )1/3 n 4 n14 XV e i+ (424 (ka) (2h (ka) nn an1 % Tte SkaI/ rA’ (k)2 nn in Ap ndi B]. =Q (ikc)~ (4.25)h(1 (a n Tn whee i adeayftore fo acosi prpaa3o...Approach to Scattering from Elastic Spherical Shells," NUC TP425, September 1974, Naval Undersea Center, San Diego, California. 36. Pathak, P. H. and
Müller, Achim; Krickemeyer, Erich; Bögge, Hartmut; Schmidtmann, Marc; Peters, Frank
1998-12-31
Plato and Kepler would have been pleased. Despite the large number of atoms present the cluster anion 1 resembles an icosahedral-type structure. This represents definitively an unprecedented event in chemistry! The structure is made up of 12 {Mo 11 } fragments such that the fivefold symmetry axes are retained in the resulting spherical object. As an inscribed icosahedron can be recognized in the spherical shell of 1 (see picture), similarities with Kepler's famous shell model of the cosmos can be seen. © 1998 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
NASA Technical Reports Server (NTRS)
Lebiedzik, Catherine
1995-01-01
Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.
Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells
Steinman, D.A.
1980-05-30
Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.
Method and apparatus for determining diameter and wall thickness of minute hollow spherical shells
Steinman, David A.
1982-01-01
Method and apparatus for determining diameter and wall thickness of hollow microspheres or shells wherein terminal velocities of shells traveling in fluid-filled conduits of differing diameters are measured. A wall-effect factor is determined as a ratio of the terminal velocities, and shell outside diameter may then be ascertained as a predetermined empirical function of wall-effect factor. For shells of known outside diameter, wall thickness may then be ascertained as a predetermined empirical function of terminal velocity in either conduit.
Influence of Non-spherical Initial Stellar Structure on the Core-Collapse Supernova Mechanism
NASA Astrophysics Data System (ADS)
Couch, Sean M.
I review the state of investigation into the impact that nonspherical stellar progenitor structure has on the core-collapse supernova mechanism. Although modeling stellar evolution relies on 1D spherically symmetric calculations, massive stars are not truly spherical. In the stellar evolution codes, this fact is accounted for by "fixes" such as mixing length theory and attendant modifications. Of particular relevance to the supernova mechanism, the Si- and O-burning shells surrounding the iron core at the point of collapse can be violently convective, with convective speeds of hundreds of km s-1. It has recently been shown by a number of groups that the presence of nonspherical perturbations in the layers surrounding the collapsing iron core can have a favorable impact on the likelihood for shock revival and explosion via the neutrino heating mechanism. This is due in large part to the strengthening of turbulence behind the stalled shock due to the presence of finite amplitude seed perturbations to speed the growth of convection which drives the post-shock turbulence. Efforts are now underway to simulate the final minutes of stellar evolution to core-collapse in 3D with the aim to generate realistic multidimensional initial conditions for use in simulations of the supernova mechanism.
Type II shell evolution in A = 70 isobars from the N ≥ 40 island of inversion
NASA Astrophysics Data System (ADS)
Morales, A. I.; Benzoni, G.; Watanabe, H.; Tsunoda, Y.; Otsuka, T.; Nishimura, S.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; de Angelis, G.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoybjor, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Sakurai, H.; Sahin, E.; Sohler, D.; Schaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Valiente-Dobón, J. J.; Wieland, O.; Yalcinkaya, M.
2017-02-01
The level structures of 70Co and 70Ni, populated from the β decay of 70Fe, have been investigated using β-delayed γ-ray spectroscopy following in-flight fission of a 238U beam. The experimental results are compared to Monte-Carlo Shell-Model calculations including the pf +g9/2 +d5/2 orbitals. The strong population of a (1+) state at 274 keV in 70Co is at variance with the expected excitation energy of ∼1 MeV from near spherical single-particle estimates. This observation indicates a dominance of prolate-deformed intruder configurations in the low-lying levels, which coexist with the normal near spherical states. It is shown that the β decay of the neutron-rich A = 70 isobars from the new island of inversion to the Z = 28 closed-shell regime progresses in accordance with a newly reported type of shell evolution, the so-called Type II, which involves many particle-hole excitations across energy gaps.
Tank measurements of scattering from a resin-filled fiberglass spherical shell with internal flaws.
Tesei, Alessandra; Guerrini, Piero; Zampolli, Mario
2008-08-01
This paper presents results of acoustic inversion and structural health monitoring achieved by means of low to midfrequency elastic scattering analysis of simple, curved objects, insonified in a water tank. Acoustic elastic scattering measurements were conducted between 15 and 100 kHz on a 60-mm-radius fiberglass spherical shell, filled with a low-shear-speed epoxy resin. Preliminary measurements were conducted also on the void shell before filling, and on a solid sphere of the same material as the filler. These data were used to estimate the constituent material parameters via acoustic inversion. The objects were measured in the backscatter direction, suspended at midwater, and insonified by a broadband directional transducer. From the inspection of the response of the solid-filled shell it was possible to detect and characterize significant inhomogeneities of the interior (air pockets), the presence of which were later confirmed by x-ray CT scan and ultrasound measurements. Elastic wave analysis and a model-data comparison study support the physical interpretation of the measurements.
Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles
NASA Astrophysics Data System (ADS)
Walton, Nathan I.; Gao, Zhe; Eygeris, Yulia; Ghandehari, Hamidreza; Zharov, Ilya
2018-04-01
Water dispersible boron nanoparticles have great potential as materials for boron neutron capture therapy of cancer and magnetic resonance imaging, if they are prepared on a large scale with uniform size and shape and hydrophilic modifiable surface. We report the first method to prepare spherical, monodisperse, water dispersible boron core silica shell nanoparticles (B@SiO2 NPs) suitable for aforementioned biomedical applications. In this method, 40 nm elemental boron nanoparticles, easily prepared by mechanical milling and carrying 10-undecenoic acid surface ligands, are hydrosilylated using triethoxysilane, followed by base-catalyzed hydrolysis of tetraethoxysilane, which forms a 10-nm silica shell around the boron core. This simple two-step process converts irregularly shaped hydrophobic boron particles into the spherically shaped uniform nanoparticles. The B@SiO2 NPs are dispersible in water and the silica shell surface can be modified with primary amines that allow for the attachment of a fluorophore and, potentially, of targeting moieties. [Figure not available: see fulltext.
Spherical and tubule nanocarriers for sustained drug release
Shutava, T.; Fakhrullin, R.; Lvov, Y.
2014-01-01
We discuss new trends in Layer-by-Layer (LbL) encapsulation of spherical and tubular cores of 50–150 nm diameter and loaded with drugs. This core size decrease (from few micrometers to a hundred of nanometers) for LbL encapsulation required development of sonication assistant non-washing technique and shell PEGylation to reach high colloidal stability of drug nanocarriers at 2–3 mg/mL concentration in isotonic buffers and serum. For 120–170 nm spherical LbL nanocapsules of low soluble anticancer drugs, polyelectrolyte shell thickness controls drug dissolution. As for nanotube carriers, we concentrated on natural halloysite clay nanotubes as cores for LbL encapsulation that allows high drug loading and sustains its release over tens and hundreds hours. Further drug release prolongation was reached with formation of the tube-end stoppers. PMID:25450068
Simulation Analysis of Temperature Field in the Heat Transfer Process of Shell
NASA Astrophysics Data System (ADS)
Zhang, Di; Luo, Zhen; Xuan, Wenbo
Sea temperature is the key factors that determines whether shellfish can maintain normal growth development and survival, as protective film, the shell is a very important part of structure of shellfish, so the research of heat transfer characteristics become very important. In this paper, we firstly make a comprehensive analysis on the appearance of the shell, for the next simulation builds a good foundation, and based on the large general finite element analysis software ANSYS, we analyze the thermodynamics of shells, study the effect of the shell thickness and structure on heat transfer time. And through apply different temperature load, analyze the heat transfer characteristics and temperature distribution of the shells, It is expected that the results is useful at the biological heat transfer of shellfish.
Interacting shells in AdS spacetime and chaos
NASA Astrophysics Data System (ADS)
Brito, Richard; Cardoso, Vitor; Rocha, Jorge V.
2016-07-01
We study the simplest two-body problem in asymptotically anti-de Sitter spacetime: two, infinitely thin, concentric spherical shells of matter. We include only gravitational interaction between the two shells, but we show that the dynamics of this system is highly nontrivial. We observe prompt collapse to a black hole, delayed collapse and even perpetual oscillatory motion, depending on the initial location of the shells (or their energy content). The system exhibits critical behavior, and we show strong hints that it is also chaotic.
NASA Astrophysics Data System (ADS)
Eid, A.
2017-11-01
In the framework of Darmois-Israel formalism, the dynamics of motion equations of spherically symmetric thin shell wormholes that are supported by a modified Chaplygin gas in Einstein-Hoffman-Born-Infeld theory are constructed. The stability analysis of a thin shell wormhole is also discussed using a linearized radial perturbation around static solutions at the wormhole throat. The existence of stable static solutions depends on the value of some parameters of dynamical shell.
NASA Astrophysics Data System (ADS)
Sasaki, Youhei; Takehiro, Shin-ichi; Ishiwatari, Masaki; Yamada, Michio
2018-03-01
Linear stability analysis of anelastic thermal convection in a rotating spherical shell with entropy diffusivities varying in the radial direction is performed. The structures of critical convection are obtained in the cases of four different radial distributions of entropy diffusivity; (1) κ is constant, (2) κT0 is constant, (3) κρ0 is constant, and (4) κρ0T0 is constant, where κ is the entropy diffusivity, T0 is the temperature of basic state, and ρ0 is the density of basic state, respectively. The ratio of inner and outer radii, the Prandtl number, the polytropic index, and the density ratio are 0.35, 1, 2, and 5, respectively. The value of the Ekman number is 10-3 or 10-5 . In the case of (1), where the setup is same as that of the anelastic dynamo benchmark (Jones et al., 2011), the structure of critical convection is concentrated near the outer boundary of the spherical shell around the equator. However, in the cases of (2), (3) and (4), the convection columns attach the inner boundary of the spherical shell. A rapidly rotating annulus model for anelastic systems is developed by assuming that convection structure is uniform in the axial direction taking into account the strong effect of Coriolis force. The annulus model well explains the characteristics of critical convection obtained numerically, such as critical azimuthal wavenumber, frequency, Rayleigh number, and the cylindrically radial location of convection columns. The radial distribution of entropy diffusivity, or more generally, diffusion properties in the entropy equation, is important for convection structure, because it determines the distribution of radial basic entropy gradient which is crucial for location of convection columns.
Fraas, A.P.; Wislicenus, G.F.
1961-07-11
A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.
Thermal evolution and differentiation of planetesimals and planetary embryos
NASA Astrophysics Data System (ADS)
Šrámek, Ondřej; Milelli, Laura; Ricard, Yanick; Labrosse, Stéphane
2012-01-01
In early Solar System during the runaway growth stage of planetary formation, the distribution of planetary bodies progressively evolved from a large number of planetesimals to a smaller number of objects with a few dominant embryos. Here, we study the possible thermal and compositional evolution of these planetesimals and planetary embryos in a series of models with increasing complexities. We show that the heating stages of planetesimals by the radioactive decay of now extinct isotopes (in particular 26Al) and by impact heating can occur in two stages or simultaneously. Depending on the accretion rate, melting occurs from the center outward, in a shallow outer shell progressing inward, or in the two locations. We discuss the regime domains of these situations and show that the exponent β that controls the planetary growth rate R˙∝Rβ of planetesimals plays a crucial role. For a given terminal radius and accretion duration, the increase of β maintains the planetesimals very small until the end of accretion, and therefore allows radioactive heating to be radiated away before a large mass can be accreted. To melt the center of ˜500 km planetesimal during its runaway growth stage, with the value β = 2 predicted by astrophysicists, it needs to be formed within a couple of million years after condensation of the first solids. We then develop a multiphase model where the phase changes and phase separations by compaction are taken into account in 1-D spherical geometry. Our model handles simultaneously metal and silicates in both solid and liquid states. The segregation of the protocore decreases the efficiency of radiogenic heating by confining the 26Al in the outer silicate shell. Various types of planetesimals partly differentiated and sometimes differentiated in multiple metal-silicate layers can be obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hellinger, Petr; Trávníček, Pavel M., E-mail: petr.hellinger@asu.cas.cz
Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton–electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that timemore » owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.« less
Berzak, L; Jones, A D; Kaita, R; Kozub, T; Logan, N; Majeski, R; Menard, J; Zakharov, L
2010-10-01
The lithium tokamak experiment (LTX) is a modest-sized spherical tokamak (R(0)=0.4 m and a=0.26 m) designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 °C. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasjev, A.V.; Laboratory of Radiation Physics, Institute of Solid State Physics, University of Latvia, LV 2169 Salaspils, Miera str. 31; Frauendorf, S.
The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean-field theory. A large depression leads to the shell gaps at the proton Z=120 and neutron N=172 numbers, whereas a flatter density distribution favors N=184 and leads to the appearance of a Z=126 shell gap and to the decrease of the size of the Z=120 shell gap. The correlations between the magic shell gaps and the magnitude of the central depression are discussed for relativistic and nonrelativistic mean field theories.
Method of fabricating nested shells and resulting product
Henderson, Timothy M.; Kool, Lawrence B.
1982-01-01
A multiple shell structure and a method of manufacturing such structure wherein a hollow glass microsphere is surface treated in an organosilane solution so as to render the shell outer surface hydrophobic. The surface treated glass shell is then suspended in the oil phase of an oil-aqueous phase dispersion. The oil phase includes an organic film-forming monomer, a polymerization initiator and a blowing agent. A polymeric film forms at each phase boundary of the dispersion and is then expanded in a blowing operation so as to form an outer homogeneously integral monocellular substantially spherical thermoplastic shell encapsulating an inner glass shell of lesser diameter.
Li, Jin; Lindley-Start, Jack; Porch, Adrian; Barrow, David
2017-07-24
High specification, polymer capsules, to produce inertial fusion energy targets, were continuously fabricated using surfactant-free, inertial centralisation, and ultrafast polymerisation, in a scalable flow reactor. Laser-driven, inertial confinement fusion depends upon the interaction of high-energy lasers and hydrogen isotopes, contained within small, spherical and concentric target shells, causing a nuclear fusion reaction at ~150 M°C. Potentially, targets will be consumed at ~1 M per day per reactor, demanding a 5000x unit cost reduction to ~$0.20, and is a critical, key challenge. Experimentally, double emulsions were used as templates for capsule-shells, and were formed at 20 Hz, on a fluidic chip. Droplets were centralised in a dynamic flow, and their shapes both evaluated, and mathematically modeled, before subsequent shell solidification. The shells were photo-cured individually, on-the-fly, with precisely-actuated, millisecond-length (70 ms), uniform-intensity UV pulses, delivered through eight, radially orchestrated light-pipes. The near 100% yield rate of uniform shells had a minimum 99.0% concentricity and sphericity, and the solidification processing period was significantly reduced, over conventional batch methods. The data suggest the new possibility of a continuous, on-the-fly, IFE target fabrication process, employing sequential processing operations within a continuous enclosed duct system, which may include cryogenic fuel-filling, and shell curing, to produce ready-to-use IFE targets.
NASA Astrophysics Data System (ADS)
Eurov, Daniil A.; Kurdyukov, Dmitry A.; Kirilenko, Demid A.; Kukushkina, Julia A.; Nashchekin, Alexei V.; Smirnov, Alexander N.; Golubev, Valery G.
2015-02-01
Core-shell nanoparticles with diameters in the range 100-500 nm have been synthesized as monodisperse spherical mesoporous (pore diameter 3 nm) silica particles with size deviation of less than 4 %, filled with gadolinium and europium oxides and coated with a mesoporous silica shell. It is shown that the melt technique developed for filling with gadolinium and europium oxides provides a nearly maximum filling of mesopores in a single-run impregnation, with gadolinium and europium uniformly distributed within the particles and forming no bulk oxides on their surface. The coating with a shell does not impair the monodispersity and causes no coagulation. The coating technique enables controlled variation of the shell thickness within the range 5-100 % relative to the core diameter. The thus produced nanoparticles are easily dispersed in water, have large specific surface area (300 m2 g-1) and pore volume (0.3 cm3 g-1), and are bright solid phosphor with superior stability in aqueous media. The core-shell structured particles can be potentially used for cancer treatment as a therapeutic agent (gadolinium neutron-capture therapy and drug delivery system) and, simultaneously, as a multimodal diagnostic tool (fluorescence and magnetic resonance imaging), thereby serving as a multifunctional theranostic agent.
High-temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
A study has been completed on the development of a high-temperature ceramic heat exchanger element to be integrated into a solar reciver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The ceramic shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. Fabrication of a one-half scale demonstrator ceramic receiver has been completed.
NASA Astrophysics Data System (ADS)
Ma, Hua; Qu, Shao-Bo; Xu, Zhuo; Zhang, Jie-Qiu; Wang, Jia-Fu
2009-01-01
By using the coordinate transformation method, we have deduced the material parameter equation for rotating elliptical spherical cloaks and carried out simulation as well. The results indicate that the rotating elliptical spherical cloaking shell, which is made of meta-materials whose permittivity and permeability are governed by the equation deduced in this paper, can achieve perfect invisibility by excluding electromagnetic fields from the internal region without disturbing any external field.
Composite Materials for Maxillofacial Prostheses.
1981-08-01
necessary and Identify byv block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES 2,. ABSTRACT...used as fillers in the fabrication of maxillofacial prostheses. The projected systems are elastomeric-shelled, liquid-filled microcapsules . Improvements...elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules
Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review
Mammeri, Fayna; Ammar, Souad
2018-01-01
Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i) their synthesis from simple “one-step” to complex “multi-step” routes, including seed-mediated and non-seed-mediated methods; and (ii) the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology—namely spherical and non-spherical, core-satellite and core-shell, and the desired applications. PMID:29518969
Radiative transfer in spherical shell atmospheres. I - Rayleigh scattering
NASA Technical Reports Server (NTRS)
Adams, C. N.; Kattawar, G. W.
1978-01-01
The plane-parallel approximation and the more realistic spherical shell approximation for the radiance reflected from a planetary atmosphere are compared and are applied to the study of a planet the size of the earth with a homogeneous conservative Rayleigh scattering atmosphere extending to a height of 100 km. Inadequacies of the approximations are considered. Radiance versus height distributions for both single and multiple scattering are presented, as are results for the fractional radiance from altitudes in the atmosphere which contribute to the total unidirectional reflected radiance at the top of the atmosphere. The data can be used for remote sensing applications and planetary spectroscopy.
Local-area simulations of rotating compressible convection and associated mean flows
NASA Technical Reports Server (NTRS)
Hurlburt, Neal E.; Brummell, N. H.; Toomre, Juri
1995-01-01
The dynamics of compressible convection within a curved local segment of a rotating spherical shell are considered in relation to the turbulent redistribution of angular momentum within the solar convection zone. Current supercomputers permit fully turbulent flows to be considered within the restricted geometry of local area models. By considering motions in a curvilinear geometry in which the Coriolos parameters vary with latitude, Rossby waves which couple with the turbulent convection are thought of as being possible. Simulations of rotating convection are presented in such a curved local segment of a spherical shell using a newly developed, sixth-order accurate code based on compact finite differences.
Coulomb matrix elements in multi-orbital Hubbard models.
Bünemann, Jörg; Gebhard, Florian
2017-04-26
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.
Nonlinear generation of large-scale magnetic fields in forced spherical shell dynamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livermore, P. W.; Hughes, D. W.; Tobias, S. M.
2010-03-15
In an earlier paper [P. W. Livermore, D. W. Hughes, and S. M. Tobias, ''The role of helicity and stretching in forced kinematic dynamos in a spherical shell'', Phys. Fluids 19, 057101 (2007)], we considered the kinematic dynamo action resulting from a forced helical flow in a spherical shell. Although mean field electrodynamics suggests that the resulting magnetic field should have a significant mean (axisymmetric) component, we found no evidence for this; the dynamo action was distinctly small scale. Here we extend our investigation into the nonlinear regime in which the magnetic field reacts back on the velocity via themore » Lorentz force. Our main result is somewhat surprising, namely, that nonlinear effects lead to a considerable change in the structure of the magnetic field, its final state having a significant mean component. By investigating the dominant flow-field interactions, we isolate the dynamo mechanism and show schematically how the generation process differs between the kinematic and nonlinear regimes. In addition, we are able to calculate some components of the transport coefficient {alpha} and thus discuss our results within the context of mean field electrodynamics.« less
Tearing of thin spherical shells adhered to equally curved rigid substrates
NASA Astrophysics Data System (ADS)
McMahan, Connor; Lee, Anna; Marthelot, Joel; Reis, Pedro
Lasik (Laser-Assisted in Situ Keratomileusis) eye surgery involves the tearing of the corneal epithelium to remodel the corneal stroma for corrections such as myopia, hyperopia and astigmatism. One issue with this procedure is that during the tearing of the corneal epithelium, if the two propagating cracks coalesce, a flap detaches which could cause significant complications in the recovery of the patient. We seek to gain a predictive physical understanding of this process by performing precision desktop experiments on an analogue model system. First, thin spherical shells of nearly uniform thickness are fabricated by the coating of hemispherical molds with a polymer solution, which upon curing yields an elastic and brittle structure. We then create two notches near the equator of the shell and tear a flap by pulling tangentially to the spherical substrate, towards its pole. The resulting fracture paths are characterized by high-resolution 3D digital scanning. Our primary focus is on establishing how the positive Gaussian curvature of the system affects the path of the crack tip. Our results are directly contrasted against previous studies on systems with zero Gaussian curvature, where films were torn from planar and cylindrical substrates.
ShellFit: Reconstruction in the MiniCLEAN Detector
NASA Astrophysics Data System (ADS)
Seibert, Stanley
2010-02-01
The MiniCLEAN dark matter experiment is an ultra-low background liquid cryogen detector with a fiducial volume of approximately 150 kg. Dark matter candidate events produce ultraviolet scintillation light in argon at 128 nm and in neon at 80 nm. In order to detect this scintillation light, the target volume is enclosed by acrylic plates forming a spherical shell upon which an organic fluor, tetraphenyl butadiene (TPB), has been applied. TPB absorbs UV light and reemits visible light isotropically which can be detected by photomultiplier tubes. Two significant sources of background events in MiniCLEAN are decays of radon daughters embedded in the acrylic surface and external sources of neutrons, such as the photomultiplier tubes themselves. Both of these backgrounds can be mitigated by reconstructing the origin of the scintillation light and cutting events beyond a particular radius. The scrambling of photon trajectories at the TPB surface makes this task very challenging. The ``ShellFit'' algorithm for reconstructing event position and energy in a detector with a spherical wavelength-shifting shell will be described. The performance of ShellFit will be demonstrated using Monte Carlo simulation of several event types in the MiniCLEAN detector. )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Schmit, P. F.
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikovich, A. L.; Schmit, P. F.
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less
Velikovich, A. L.; Schmit, P. F.
2015-12-28
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining themore » “instantaneous growth rate” are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. As a result, in the limit of small shell thickness, exact thin-shell perturbationequations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].« less
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Schmit, P. F.
2015-12-01
Bell-Plesset (BP) effects account for the influence of global convergence or divergence of the fluid flow on the evolution of the interfacial perturbations embedded in the flow. The development of the Rayleigh-Taylor instability in radiation-driven spherical capsules and magnetically-driven cylindrical liners necessarily includes a significant contribution from BP effects due to the time dependence of the radius, velocity, and acceleration of the unstable surfaces or interfaces. An analytical model is presented that, for an ideal incompressible fluid and small perturbation amplitudes, exactly evaluates the BP effects in finite-thickness shells through acceleration and deceleration phases. The time-dependent dispersion equations determining the "instantaneous growth rate" are derived. It is demonstrated that by integrating this approximate growth rate over time, one can accurately evaluate the number of perturbation e-foldings during the inward acceleration phase of the implosion. In the limit of small shell thickness, exact thin-shell perturbation equations and approximate thin-shell dispersion equations are obtained, generalizing the earlier results [E. G. Harris, Phys. Fluids 5, 1057 (1962); E. Ott, Phys. Rev. Lett. 29, 1429 (1972); A. B. Bud'ko et al., Phys. Fluids B 2, 1159 (1990)].
Final report SI 08-SI-004: Fusion application targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biener, J; Kucheyev, S O; Wang, M Y
2010-12-03
Complex target structures are necessary to take full advantage of the unique laboratory environment created by inertial confinement fusion experiments. For example, uses-of-ignition targets that contain a thin layer of a low density nanoporous material inside a spherical ablator shell allow placing dopants in direct contact with the DT fuel. The ideal foam for this application is a low-density hydrocarbon foam that is strong enough to survive wetting with cryogenic hydrogen, and low enough in density (density less than {approx}30 mg/cc) to not reduce the yield of the target. Here, we discuss the fabrication foam-lined uses-of-ignition targets, and the developmentmore » of low-density foams that can be used for this application. Much effort has been directed over the last 20 years toward the development of spherical foam targets for direct-drive and fast-ignition experiments. In these targets, the spherical foam shell is used to define the shape of the cryogenic DT fuel layer, or acts as a surrogate to simulate the cryogenic fuel layer. These targets are fabricated from relatively high-density aerogels (>100 mg/cc) and coated with a few micron thick permeation barrier. With exception of the above mentioned fast ignition targets, the wall of these targets is typically larger than 100 microns. In contrast, the fusion application targets for indirect-drive experiments on NIF will require a much thinner foam shell surrounded by a much thicker ablator shell. The design requirements for both types of targets are compared in Table 1. The foam shell targets for direct-drive experiments can be made in large quantities and with reasonably high yields using an encapsulation technique pioneered by Takagi et al. in the early 90's. In this approach, targets are made by first generating unsupported foam shells using a triple-orifice droplet generator, followed by coating the dried foam shells with a thin permeation barrier. However, this approach is difficult, if not impossible, to transfer to the lower density and thinner wall foam shells required for indirect-drive uses-of-ignition targets for NIF that then would have to be coated with an at least hundred-micron-thick ablator film. So far, the thinnest shells that have been fabricated using the triple-orifice-droplet generator technique had a wall thickness of {approx}20 microns, but despite of being made from a higher-density foam formulation, the shells were mechanically very sensitive, difficult to dry, and showed large deviations from roundness. We thus decided to explore a different approach based on using prefabricated thick-walled spherical ablator shells as templates for the thin-walled foam shell. As in the case of the above mentioned encapsulation technique, the foam is made by sol-gel chemistry. However, our approach removes much the requirements on the mechanical stability of the foam shell as the foam shell is never handled in its free-standing form, and promises superior ablator uniformity and surface roughness. As discussed below, the success of this approach depends strongly on the availability of suitable aerogel chemistries (ideally pure hydrocarbon (CH)-based systems) with suitable rheological properties (high viscosity and high modulus near the gel point) that produce low-density and mechanically strong foams.« less
Defect Implosion Experiments (DIME) at OMEGA
NASA Astrophysics Data System (ADS)
Cobble, J. A.; Schmitt, M. J.; Tregillis, I. L.; Obrey, K. D.; Magelssen, G. R.; Wilke, M. D.; Glebov, V.; Marshall, F. J.; Kim, Y. H.; Bradley, P. A.; Batha, S. H.
2010-11-01
The Los Alamos DIME campaign involves perturbed spherical implosions, driven by 60 OMEGA beams with uniform, symmetrical illumination. D-T-filled CH-shell targets with equatorial-plane defects are designed to produce a non-spherical neutron burn region. The objectives of the DIME series are to observe the non-spherical burn with the neutron imaging system (NIS) and to simulate the physics of the neutron and x-ray production. We have demonstrated adequate neutron yield for NIS imaging with targets of diameter 860 μm. All targets are filled with 5 atm of DT. We used two separate shell thicknesses: 8 μm and 15 μm, thus testing both exploding pusher and ablative designs. Defect channel depth ranges from 0 -- 8 μm. Width is 20 -- 40 μm. Perfect targets have no defect. Numerical simulations predict enhanced x-ray emission, that is suggested by experiment. Results from a recent DIME campaign will be discussed.
The influence of ozone and aerosols on the brightness and color of the twilight zone
NASA Technical Reports Server (NTRS)
Adams, C. N.; Plass, G. N.; Kattawar, G. W.
1973-01-01
The radiance and color of the twilight sky are calculated for single scattered radiation with the use of spherically symmetric models of the earth's atmosphere. Spherical geometry is used throughout the calculations with no plane parallel approximations. Refraction effects are taken into account through fine subdivision of the atmosphere into spherical shells of fixed index of refraction. Shell's law of refraction is used to calculate a direction of travel each time that a photon traverses the interface between layers. Five different models of the atmosphere were used: a pure molecular scattering atmosphere; molecular atmosphere plus ozone absorption; and three models with aerosol concentrations of 1, 3, and 10 times normal together with molecular scattering and ozone absorption. The results of the calculations are shown for various observation positions and local viewing angles in the solar plane for wavelengths in the range of 0.40 microns to 0.75 microns.
Acoustical scattering by multilayer spherical elastic scatterer containing electrorheological layer.
Cai, Liang-Wu; Dacol, Dacio K; Orris, Gregory J; Calvo, David C; Nicholas, Michael
2011-01-01
A computational procedure for analyzing acoustical scattering by multilayer concentric spherical scatterers having an arbitrary mixture of acoustic and elastic materials is proposed. The procedure is then used to analyze the scattering by a spherical scatterer consisting of a solid shell and a solid core encasing an electrorheological (ER) fluid layer, and the tunability in the scattering characteristics afforded by the ER layer is explored numerically. Tunable scatterers with two different ER fluids are analyzed. One, corn starch in peanut oil, shows that a significant increase in scattering cross-section is possible in moderate frequencies. Another, fine poly-methyl methacrylate (PMMA) beads in dodecane, shows only slight change in scattering cross-sections overall. But, when the shell is thin, a noticeable local resonance peak can appear near ka=1, and this resonance can be turned on or off by the external electric field.
Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun
2014-05-07
We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.
Son, Intae; Lee, Byungsun; Kim, Jae Hong; Kim, Chunho; Yoo, Ji Yong; Ahn, Byung Wook; Hwang, Jeongho; Lee, Jonghyuk; Lee, Jun Hyup
2018-05-23
The spontaneous separation of a polymer thin film from a substrate is an innovative technology that will enable material recycling and reduce manufacturing cost in the film industry, and this can be applied in a wide range of applications, from optical films to wearable devices. Here, we present an unprecedented spontaneous strategy for separating transparent polymer films from substrates on the basis of microbubble generation using nanocapsules containing an evaporable material. The core-shell nanocapsules are prepared from poly(methyl methacrylate)-polyethyleneimine nanoparticles via the encapsulation of methylcyclohexane (MCH). A spherical nanostructure with a vaporizable core is obtained, with the heat-triggered gas release ability leading to the formation of microbubbles. Our separation method applied to transparent polymer films doped with a small amount of the nanocapsules encapsulating evaporable MCH enables spontaneous detachment of thin films from substrates via vacuum-assisted rapid vaporization of MCH over a short separation time, and clear detachment of the film is achieved with no deterioration of the inherent optical transparency and adhesive property compared to a pristine film.
Acoustically excited surface waves on empty or fluid-filled cylindrical and spherical shells
NASA Astrophysics Data System (ADS)
Ahyi, A. Claude; Cao, H.; Raju, P. K.; Werby, M. F.; Bao, X. L.; Überall, H.
2002-05-01
A comparative study is presented of the acoustical excitation of circumferential (surface) waves on fluid-immersed cylindrical or spherical metal shells, which may be either evacuated, or filled with the same or a different fluid. The excited surface waves can manifest themselves by the resonances apparent in the sound scattering amplitude, which they cause upon phase matching following repeated circumnavigations of the target object, or by their re-radiation into the external fluid in the manner of head waves. We plot dispersion curves versus frequency of the surface waves, which for evacuated shells have a generally rising character, while the fluid filling adds an additional set of circumferential waves that descend with frequency. The resonances of these latter waves may also be interpreted as being due to phase matching, but they may alternately be interpreted as constituting the eigenfrequencies of the internal fluid contained in an elastic enclosure.
NASA Astrophysics Data System (ADS)
Mach-Batlle, Rosa; Navau, Carles; Sanchez, Alvaro
2018-04-01
Sensing magnetic fields is essential in many applications in biomedicine, transportation, or smart cities. The distortion magnetic sensors create in response to the field they are detecting may hinder their use, for example, in applications requiring dense packaging of sensors or accurately shaped field distributions. For sensing electromagnetic waves, cloaking shells that reduce the scattering of sensors have been introduced. However, the problem of making a magnetic sensor undetectable remains unsolved. Here, we present a general strategy on how to make a sensor magnetically invisible while keeping its ability to sense. The sensor is rendered undetectable by surrounding it with a spherical shell having a tailored magnetic permeability. Our method can be applied to arbitrary shaped magnetic sensors in arbitrary magnetic fields. The invisibility can be made exact when the sensor is spherical and the probed field is uniform. A metasurface composed of superconducting pieces is presented as a practical realization of the ideal invisibility shell.
Experimental study of inertial waves in a spherical shell induced by librations of the inner sphere
NASA Astrophysics Data System (ADS)
Hoff, Michael; Harlander, Uwe; Jahangir, Saad; Egbers, Christoph
2015-04-01
Many planetary bodies do not rotate with a constant velocity but undergo rotations with superposed oscillations called longitudinal librations. This is the case e.g. for the Earth's moon, Mars' moon, Mercury and many other moons of Jupiter and Saturn and some of them have a solid inner core and a molten outer core. It is worth to know the interaction between the libration of the core and the interior of the fluid to understand tidal heating, fluid mixing, and the generation of magnetic fields. Here we present an experimental investigation of inertial waves in a spherical shell. The shell rotates with a mean angular velocity Ω around its vertical axis overlaid by a time periodic oscillation of the inner sphere in the range 0 < ω < 2Ω, in order to excite inertial waves with a known frequency. We want to show the influence of the libration amplitude ɛ on different libration frequencies ω and how efficient libration is, to excite inertial waves in the given frequency range. For low ω and high ɛ instability starts to grow and, beside the excited inertial waves, several low frequency structures can be found. Quantitative PIV analyses of the horizontal plane in the co-rotation frame show clear spiral structures with different wave numbers for high libration amplitudes due to strong shear, similar to differential rotation. Another question, we like to address, is whether high libration amplitudes can also excite very low frequency Rossby wave structures? If the frequency increases, it can be seen from Poincaré plots that large attractor windows for inertial waves appear. We want to show PIV analyses for such flows dominated by wave attractors. It is known that for large excitation frequencies subharmonic parametric instability starts to grow and triads will be excited. Our experimental data show hints for the existence of triads and preliminary results will be discussed.
Computer Simulation of Magnetic Nova Shell Expantion
NASA Astrophysics Data System (ADS)
Dudnikova, Galina; Nikitin, Sergei; Snytnikov, Valeri; Vshivkov, Vitali
2000-10-01
An asymmetrical character of the shell expantion observed at many Nova may be associated with infuence of an inherent star magnetic field. Magneto-dipole energy of a Nova is much less than a kinetic energy of an exploding envelope. By this reason the conventional hydrodynamic models of point-like explosion with a spherical outward-directed shock wave do not consider effect of star magnetic field on the plasma movement. We used the numerical model based on the system of equations of the hybrid type( MHD approximation for electrons and Vlasov kinetic equations for ions). PIC-method for solving Vlasov equations was used. It gives an opportunaty to consider a complicated multi-flow motion of particles in plasma at super-Alfven velocity. At the beginning there is an immobile (cold) background plasma of a homogeneous concentration in a cylindrical region with a dipole magnetic field. Into the central spherical region of radius R, where the magnetic field remains uniform and constant , the external plasma does not penetrate with elastic reflections of ions at the spherical core surface. This boundary is spaced at r<
NASA Astrophysics Data System (ADS)
Mori, Yoshitaka; Hanayama, Ryohei; Ishii, Katsuhiro; Kitagawa, Yoneyoshi; Sekine, Takashi; Takeuchi, Yasuki; Kurita, Takashi; Katoh, Yoshinori; Satoh, Nakahiro; Kurita, Norio; Kawashima, Toshiyuki; Komeda, Osamu; Hioki, Tatsumi; Motohiro, Tomoyoshi; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke; Iwamoto, Akifumi; Sakagami, Hitoshi
2017-10-01
Fast ignition (FI) is a form of inertial confinement fusion in which the ignition step and the compression step are separate processes resulting in a reduction of the symmetry requirement for hot spot generation. One of the problems of FI so far are the accessibility of an ignition laser pulse into the assembled core in which the driver energy is converted into relativistic electrons produced in the laser-plasma interaction. We have experimentally demonstrated that a tailored-pulse-assembled core with a diameter of 70 μ m, originally a deuterated polystyrene spherical shell of 500 μ m diameter, is flashed by directly counter irradiating 0.8 J/110 fs laser pulses [Y. MORI et al., PRL 2016]. This result indicates that once the assembled core is squeezed into the target center, the heating lasers can access the core's; edges and deposit their energy into the core. In this talk, we will discuss the heating effects in relation to formation of the assembled core.
X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates
Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...
2016-02-05
A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less
Synthesis and Manipulation of Biofunctional Magnetic Particles
2007-06-18
G. M., J Am. Chem. Soc., 2003, 125, 12704-12705. 6. "Asymmetric Dimers Can be Formed by Dewetting Half-Shells of Gold Deposited on the Surfaces of...Be Formed by Dewetting Half-Shells of Gold Deposited on the Surfaces of Spherical Silica Colloids", Lu, Y., Xiong, H. Jing, X., Xia, Y., Prentiss, M
Composite Materials for Maxillofacial Prostheses.
1980-08-01
projected composite systems are elastomeric-shelled, liquid-filled * microcapsules . Experiments continued on the interfacial polymerization process with...filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules achieved. Needs identified are...consists of liquid-filled, elastomeric-shelled microcapsules held together to form a deformable mass; this is to simulate the semi-liquid cellular structure
NASA Astrophysics Data System (ADS)
Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Lipman, E. A.; Tuthill, P. G.; Townes, C. H.
2000-11-01
The University of California Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC +10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time variable, and these new data are used to probe the evolution of the dust shells on a decade timescale, complementing contemporaneous studies at other wavelengths. Self-consistent, spherically symmetric models at maximum and minimum light both show the inner radius of the IRC +10216 dust shell to be much larger (150 mas) than expected from the dust-condensation temperature, implying that dust production has slowed or stopped in recent years. Apparently, dust does not form every pulsational cycle (638 days), and these mid-infrared results are consistent with recent near-infrared imaging, which indicates little or no new dust production in the last 3 yr. Spherically symmetric models failed to fit recent VY CMa data, implying that emission from the inner dust shell is highly asymmetric and/or time variable.
First fossil gravid turtle provides insight into the evolution of reproductive traits in turtles.
Zelenitsky, Darla K; Therrien, Franc Ois; Joyce, Walter G; Brinkman, Donald B
2008-12-23
Here we report on the first discovery of shelled eggs inside the body cavity of a fossil turtle and on an isolated egg clutch, both referable to the Cretaceous turtle Adocus. These discoveries provide a unique opportunity to gain insight into the reproductive traits of an extinct turtle and to understand the evolution of such traits among living turtles. The gravid adult and egg clutch indicate that Adocus laid large clutches of rigid-shelled spherical eggs and established their nests near rivers, traits that are shared by its closest living relatives, the soft-shelled turtles. Adocus eggshell, however, was probably more rigid than that of living turtles, based on its great thickness and structure, features that may represent unique adaptations to intense predation or to arid nest environments. In light of the reproductive traits observed in Adocus, the distribution of reproductive traits among turtles reveals that large clutches of rigid-shelled eggs are primitive for hidden-necked turtles (cryptodirans) and that spherical eggs may have evolved independently within this group.
Inertial modes and their transition to turbulence in a differentially rotating spherical gap flow
NASA Astrophysics Data System (ADS)
Hoff, Michael; Harlander, Uwe; Andrés Triana, Santiago; Egbers, Christoph
2016-04-01
We present a study of inertial modes in a spherical shell experiment. Inertial modes are Coriolis-restored linear wave modes, often arise in rapidly-rotating fluids (e.g. in the Earth's liquid outer core [1]). Recent experimental works showed that inertial modes exist in differentially rotating spherical shells. A set of particular inertial modes, characterized by (l,m,ˆω), where l, m is the polar and azimuthal wavenumber and ˆω = ω/Ωout the dimensionless frequency [2], has been found. It is known that they arise due to eruptions in the Ekman boundary layer of the outer shell. But it is an open issue why only a few modes develop and how they get enhanced. Kelley et al. 2010 [3] showed that some modes draw their energy from detached shear layers (e.g. Stewartson layers) via over-reflection. Additionally, Rieutord et al. (2012) [4] found critical layers within the shear layers below which most of the modes cannot exist. In contrast to other spherical shell experiments, we have a full optical access to the flow. Therefore, we present an experimental study of inertial modes, based on Particle-Image-Velocimetry (PIV) data, in a differentially rotating spherical gap flow where the inner sphere is subrotating or counter-rotating at Ωin with respect to the outer spherical shell at Ωout, characterized by the Rossby number Ro = (Ωin - Ωout)/Ωout. The radius ratio of η = 1/3, with rin = 40mm and rout = 120mm, is close to that of the Earth's core. Our apparatus is running at Ekman numbers (E ≈ 10-5, with E = ν/(Ωoutrout2), two orders of magnitude higher than most of the other experiments. Based on a frequency-Rossby number spectrogram, we can partly confirm previous considerations with respect to the onset of inertial modes. In contrast, the behavior of the modes in the counter-rotation regime is different. We found a triad interaction between three dominant inertial modes, where one is a slow axisymmetric Rossby mode [5]. We show that the amplitude of the most dominant mode (l,m,ˆω) = (3,2,˜ 0.71) is increasing with increasing |Ro| until a critical Rossby number Rocrit. Accompanying with this is an increase of the zonal mean flow outside the tangent cylinder, leading to enhanced angular momentum transport. At the particular Rocrit, the wave mode, and the entire flow, breaks up into smaller-scale turbulence [6], together with a strong increase of the zonal mean flow inside the tangent cylinder. We found that the critical Rossby number scales approximately with E1/5. References [1] Aldridge, K. D.; Lumb, L. I. (1987): Inertial waves identified in the Earth's fluid outer core. Nature 325 (6103), S. 421-423. DOI: 10.1038/325421a0. [2] Greenspan, H. P. (1968): The theory of rotating fluids. London: Cambridge U.P. (Cambridge monographs on mechanics and applied mathematics). [3] Kelley, D. H.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2010): Selection of inertial modes in spherical Couette flow. Phys. Rev. E 81 (2), 26311. DOI: 10.1103/PhysRevE.81.026311. [4] Rieutord, M.; Triana, S. A.; Zimmerman, D. S.; Lathrop, D. P. (2012): Excitation of inertial modes in an experimental spherical Couette flow. Phys. Rev. E 86 (2), 026304. DOI: 10.1103/PhysRevE.86.026304. [5] Hoff, M., Harlander, U., Egbers, C. (2016): Experimental survey of linear and nonlinear inertial waves and wave instabilities in a spherical shell. J. Fluid Mech., (in print) [6] Kerswell, R. R. (1999): Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. Journal of Fluid Mechanics 382, S. 283-306. DOI: 10.1017/S0022112098003954.
NASA Astrophysics Data System (ADS)
Ximendes, Erving Clayton; Rocha, Uéslen; Kumar, Kagola Upendra; Jacinto, Carlos; Jaque, Daniel
2016-06-01
We report on Ytterbium and Neodymium codoped LaF3 core/shell nanoparticles capable of simultaneous heating and thermal sensing under single beam infrared laser excitation. Efficient light-to-heat conversion is produced at the Neodymium highly doped shell due to non-radiative de-excitations. Thermal sensing is provided by the temperature dependent Nd3+ → Yb3+ energy transfer processes taking place at the core/shell interface. The potential application of these core/shell multifunctional nanoparticles for controlled photothermal subcutaneous treatments is also demonstrated.
Gravity darkening in late-type stars. I. The Coriolis effect
NASA Astrophysics Data System (ADS)
Raynaud, R.; Rieutord, M.; Petitdemange, L.; Gastine, T.; Putigny, B.
2018-02-01
Context. Recent interferometric data have been used to constrain the brightness distribution at the surface of nearby stars, in particular the so-called gravity darkening that makes fast rotating stars brighter at their poles than at their equator. However, good models of gravity darkening are missing for stars that posses a convective envelope. Aim. In order to better understand how rotation affects the heat transfer in stellar convective envelopes, we focus on the heat flux distribution in latitude at the outer surface of numerical models. Methods: We carry out a systematic parameter study of three-dimensional, direct numerical simulations of anelastic convection in rotating spherical shells. As a first step, we neglect the centrifugal acceleration and retain only the Coriolis force. The fluid instability is driven by a fixed entropy drop between the inner and outer boundaries where stress-free boundary conditions are applied for the velocity field. Restricting our investigations to hydrodynamical models with a thermal Prandtl number fixed to unity, we consider both thick and thin (solar-like) shells, and vary the stratification over three orders of magnitude. We measure the heat transfer efficiency in terms of the Nusselt number, defined as the output luminosity normalised by the conductive state luminosity. Results: We report diverse Nusselt number profiles in latitude, ranging from brighter (usually at the onset of convection) to darker equator and uniform profiles. We find that the variations of the surface brightness are mainly controlled by the surface value of the local Rossby number: when the Coriolis force dominates the dynamics, the heat flux is weakened in the equatorial region by the zonal wind and enhanced at the poles by convective motions inside the tangent cylinder. In the presence of a strong background density stratification however, as expected in real stars, the increase of the local Rossby number in the outer layers leads to uniformisation of the surface heat flux distribution.
Beta-decay rate and beta-delayed neutron emission probability of improved gross theory
NASA Astrophysics Data System (ADS)
Koura, Hiroyuki
2014-09-01
A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. This work is a result of Comprehensive study of delayed-neutron yields for accurate evaluation of kinetics of high-burn up reactors entrusted to Tokyo Institute of Technology by the Ministry of Education, Culture, Sports, Science and Technology of Japan.
NASA Astrophysics Data System (ADS)
Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing
2017-08-01
The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.
Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition.
Kodama, R; Norreys, P A; Mima, K; Dangor, A E; Evans, R G; Fujita, H; Kitagawa, Y; Krushelnick, K; Miyakoshi, T; Miyanaga, N; Norimatsu, T; Rose, S J; Shozaki, T; Shigemori, K; Sunahara, A; Tampo, M; Tanaka, K A; Toyama, Y; Yamanaka, T; Zepf, M
2001-08-23
Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics, equation-of-state studies and fusion energy research. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately; however, this 'fast ignitor' approach also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.
Enhanced direct-drive implosions with thin high-Z ablation layers.
Mostovych, Andrew N; Colombant, Denis G; Karasik, Max; Knauer, James P; Schmitt, Andrew J; Weaver, James L
2008-02-22
New direct-drive spherical implosion experiments with deuterium filled plastic shells have demonstrated significant and absolute (2x) improvements in neutron yield when the shells are coated with a very thin layer ( approximately 200-400 A) of high-Z material such as palladium. This improvement is interpreted as resulting from increased stability of the imploding shell. These results provide for a possible path to control laser imprint and stability in laser-fusion-energy target designs.
Radially Symmetric Motions of Nonlinearly Viscoelastic Bodies Under Live Loads
NASA Astrophysics Data System (ADS)
Stepanov, Alexey B.; Antman, Stuart S.
2017-12-01
This paper treats radially symmetric motions of nonlinearly viscoelastic circular-cylindrical and spherical shells subjected to the live loads of centrifugal force and (time-dependent) hydrostatic pressures. The governing equations are exact versions of those for 3-dimensional continuum mechanics (so shell does not connote an approximate via some shell theory). These motions are governed by quasilinear third-order parabolic-hyperbolic equations having but one independent spatial variable. The principal part of such a partial differential equation is determined by a general family of nonlinear constitutive equations. The presence of strains in two orthogonal directions requires a careful treatment of constitutive restrictions that are physically natural and support the analysis. The interaction of geometrically exact formulations, the compatible use of general constitutive equations for material response, and the presence of live loads show how these factors play crucial roles in the behavior of solutions. In particular, for different kinds of live loads there are thresholds separating materials that produce qualitatively different dynamical behavior. The analysis (using classical methods) covers infinite-time blowup for cylindrical shells subject to centrifugal forces, infinite-time blowup for cylindrical shells subject to steady and time-dependent hydrostatic pressures, finite-time blowup for spherical shells subject to steady and time-dependent hydrostatic pressures, and the preclusion of total compression. This paper concludes with a sketch (using some modern methods) of the existence of regular solutions until the time of blowup.
Casimir self-entropy of a spherical electromagnetic δ -function shell
NASA Astrophysics Data System (ADS)
Milton, Kimball A.; Kalauni, Pushpa; Parashar, Prachi; Li, Yang
2017-10-01
In this paper we continue our program of computing Casimir self-entropies of idealized electrical bodies. Here we consider an electromagnetic δ -function sphere ("semitransparent sphere") whose electric susceptibility has a transverse polarization with arbitrary strength. Dispersion is incorporated by a plasma-like model. In the strong-coupling limit, a perfectly conducting spherical shell is realized. We compute the entropy for both low and high temperatures. The transverse electric self-entropy is negative as expected, but the transverse magnetic self-entropy requires ultraviolet and infrared renormalization (subtraction), and, surprisingly, is only positive for sufficiently strong coupling. Results are robust under different regularization schemes. These rather surprising findings require further investigation.
Monostatic lidar/radar invisibility using coated spheres.
Zhai, Peng-Wang; You, Yu; Kattawar, George W; Yang, Ping
2008-02-04
The Lorenz-Mie theory is revisited to explicitly include materials whose permeability is different from unity. The expansion coefficients of the scattered field are given for light scattering by both homogeneous and coated spheres. It is shown that the backscatter is exactly zero if the impedance of the spherical particles is equal to the intrinsic impedance of the surrounding medium. If spherical particles are sufficiently large, the zero backscatter can be explained as impedance matching using the asymptotic expression for the radar backscattering cross section. In the case of a coated sphere, the shell can be regarded as a cloak if the product of the thickness and the imaginary part of the refractive index of the outer shell is large.
NASA Astrophysics Data System (ADS)
Tackley, P. J.; Aurnou, J. M.; Aubert, J.
2009-04-01
Due to the absence of an atmosphere and proximity to the Sun, Mercury's surface temperature varies laterally by several 100s K, even when averaged over long time periods. The dominant variation in time-averaged surface T occurs from pole to equator (~225 K) [1]. The resonant relationship between Mercury's orbit and rotation results in a smaller longitudinal variation (~100 K) [1]. Here we demonstrate, using models of mantle convection in a 3-D spherical shell, that this stationary lateral variation in surface temperature has a small but significant influence on mantle convection and on the lateral variation of heat flux across the core-mantle boundary (CMB). We evaluate the possible observational signature of this laterally-varying convection in terms of boundary topography, stress distribution, gravity and moment of inertia tensor. We furthermore test whether the lateral variation in CMB flux is capable of driving a thermal wind dynamo, i.e., weak dynamo action with no internally-driven core convective motions. For Mercury's mantle we assume a dry olivine rheology including both diffusion creep and disclocation creep with rheological parameters such as activation energy and volume taken from the synthesis of [2]. We assume decaying radiogenic heat sources with the same concentration as in the bulk silicate Earth, and a parameterised model of core cooling. The models are run for 4.5 Ga from a relatively hot initial state with random initial perturbations. We use the code StagYY, which uses a finite-volume discretization on a spherical yin-yang grid and a multigrid solver [3]. Results in spherical axisymmetric geometry, compare a case with constant surface temperature to one with a latitude-dependent surface temperature. The system forms about 3 convection cells from pole to equator. Although the results look similar to first order, in the latitude-dependent case the convection is noticably more sluggish and colder towards the pole. In CMB flux, both cases display large oscillations due to convection cells. A pole-to-equator trend is superimposed on this for the case with laterally-varying surface temperature. Although the amplitude of this long-wavelength variation is smaller than that of the within-cell variation, its long-wavelength nature might be effective in driving thermal winds in the core. Results in a full 3-D spherical shell indicate that convection adopts a cellular structure with a polygonal network of downwellings and plume-like upwellings, as is usually obtained for stagnant lid convection, for example, in the recent 3-D spherical Mercury models of [4]. This is in notable contrast to the models of [5], in which linear upwellings were obtained. This difference could be because the initial perturbations used by [5] used a small number of low-order spherical harmonics, i.e., a long-wavelength pattern with particular symmetries, whereas our initial perturbations are random white noise. The origin of this difference requires further investigation. The pattern of CMB heat flux shows a strong l=2, m=0 pattern, again with superimposed small-scale variations due to convection cells. The surface geoid displays an very dominant (2,0) pattern, which would be a strong diagnostic of this behaviour. These models are being further analysed for boundary topography and stress distribution. Models of planetary dynamos have traditionally depended upon the concept that secular cooling and internal radioactive decay are responsible for genererating convective fluid motions within the core [e.g. 6]. Some models, of Earth's dynamo in particular, also include thermal winds --shear flows driven by heat flux variations along the core-mantle boundary -- that modify the dynamo process [e.g. 7]. We have now shown, following the work of [8], that thermal winds themselves are capable of driving dynamo action in planetary cores (Fig. 4). In fully self-consistent, three-dimensional models, we find that thermal wind dynamos do not require a net heat flux to emanate from the core and can operate even when the core fluid is neutrally stratified. In these models, the dynamo is powered externally by thermal energy stored in the mantle. This dynamo mechanism can occur on planetary bodies, such as Mercury, which are likely to have weak net heat fluxes from their cores but possess significant core-mantle boundary heat flux variations (Figures 1 - 3). We plan to use the pattern of CMB heat flux from the mantle models as a boundary condition for core models, in order to determine the feasibility of thermal wind dynamo action occurring in Mercury's core. References [1] Aharonson, O., et al. (2004) EPSL, 218, 261-268. [2] Karato, S. and Wu, P. (1993) Sci., 260, 771-778. [3] Tackley, P. J. (2008) PEPI, doi: 10.1016/j.pepi.2008.08.005.. [4] Breuer, D. et al. (2007) Sp. Sci. Rev., 132, 229-260. [5] King, S. D. (2008) Nature Geoscience, 1, 229-232. [5] Heimpel, M. H. et al. (2005) EPSL, 236, 542-557. [7] Willis, A., et al. (2007) PEPI, 165, 83-92. [8] Sarson, G., (2003) PRSL A, 459, 1241-1259. [9] Aubert, J., et al. (2008) GJI, 172, 945-956.
Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Robles, J.; Das, R.; Glassell, M.; Phan, M. H.; Srikanth, H.
2018-05-01
We report a systematic study of the effects of core and shell size on the magnetic properties and heating efficiency of exchange-coupled Fe3O4/CoFe2O4 core/shell nanoparticles. The nanoparticles were synthesized using thermal decomposition of organometallic precursors. Transmission electron microscopy (TEM) confirmed the formation of spherical Fe3O4 and Fe3O4/CoFe2O4 nanoparticles. Magnetic measurements showed high saturation magnetization for the nanoparticles at room temperature. Increasing core diameter (6.4±0.7, 7.8±0.1, 9.6±1.2 nm) and/or shell thickness (˜1, 2, 4 nm) increased the coercive field (HC), while an optimal value of saturation magnetization (MS) was achieved for the Fe3O4 (7.8±0.1nm)/CoFe2O4 (2.1±0.1nm) nanoparticles. Magnetic hyperthermia measurements indicated a large increase in specific absorption rate (SAR) for 8.2±1.1 nm Fe3O4/CoFe2O4 compared to Fe3O4 nanoparticles of same size. The SAR of the Fe3O4/CoFe2O4 nanoparticles increased from 199 to 461 W/g for 800 Oe as the thickness of the CoFe2O4 shell was increased from 0.9±0.5 to 2.1±0.1 nm. The SAR enhancement is attributed to a combination of the large MS and the large HC. Therefore, these Fe3O4/CoFe2O4 core/shell nanoparticles can be a good candidate for advanced hyperthermia application.
NASA Astrophysics Data System (ADS)
Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko
2018-03-01
A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.
Localized tidal deformations and dissipation in Enceladus
NASA Astrophysics Data System (ADS)
Beuthe, M.
2017-12-01
The geologic activity at Enceladus's south pole remains unexplained, though tidal deformations are probably the ultimate cause. Recent gravity and libration data indicate that Enceladus's icy crust floats on a global ocean, is rather thin, and has a strongly non-uniform thickness. Tidal effects are enhanced by crustal thinning at the south pole, so that realistic models of tidal tectonics and dissipation should include lateral variations of shell structure. I solve this problem with a new theory of non-uniform viscoelastic thin shells, allowing for large lateral variations of crustal thickness as well as large 3D variations of crustal rheology. The coupling to tidal forcing takes into account self-gravity, density stratification below the shell, core viscoelasticity, and crustal compressibility. The resulting tidal thin shell equations are two partial differential equations defined on the spherical surface, which can be solved numerically much faster than 3D Finite Element Methods. The error on tidal displacements is less than 5% if the thickness is less than 10% of the radius while the error on the deviatoric stress varies between 0 and 10%. If Enceladus's shell is conductive with isostatic thickness variations, crustal thinning increases surface stresses by 60% at the north pole and by a factor of more than 3 at the south pole. Similarly, the surface flux resulting from crustal dissipation increases by a factor of 3 at the south pole. If dissipation is an order of magnitude higher than predicted by the Maxwell model (as suggested by recent experimental data), the power dissipated in the crust could reach 50% of the total power required to maintain the crust in thermal equilibrium, and most of the surface flux variation could be explained by latitudinal variations of crustal dissipation. In all cases, a large part of the heat budget must be generated below the crust.
G7 BiSpherical Acetabular Shell PMCF Study
2017-11-22
Rheumatoid Arthritis; Osteoarthritis; Noninflammatory Degenerative Joint Disease; Avascular Necrosis; Correction of Functional Deformity; Non-Union Fracture; Femoral Neck Fractures; Trochanteric Fractures
NASA Astrophysics Data System (ADS)
Lee, Shih-Chi; Fu, Chao-Ming; Chang, Fu-Hsiung
2013-10-01
Fe3O4/γ-Fe2O3 core-shell magnetic nanoparticles have demonstrated superior heating efficiency by applying the alternating magnetic field. The magnetic induction heating properties of core-shell magnetic nanoparticles were analyzed by the rate-dependent hysteresis model, taken into account the magnetic anisotropies and actual size distribution of particles. The analyzed results have disclosed the significance of magnetic anisotropies and shell-thickness to the promotion of magnetic induction heating performance. Further experiments about the cancer cells with uptake of these core-shell magnetic nanoparticles conjugated biocompatible cationic liposomes have achieved in vitro intracellular magnetically induced hyperthermia under a weak alternating magnetic field.
NASA Astrophysics Data System (ADS)
Ibral, Asmaa; Zouitine, Asmaa; Assaid, El Mahdi; El Achouby, Hicham; Feddi, El Mustapha; Dujardin, Francis
2015-02-01
Poisson equation is solved analytically in the case of a point charge placed anywhere in a spherical core/shell nanostructure, immersed in aqueous or organic solution or embedded in semiconducting or insulating matrix. Conduction and valence band-edge alignments between core and shell are described by finite height barriers. Influence of polarization charges induced at the surfaces where two adjacent materials meet is taken into account. Original expressions of electrostatic potential created everywhere in the space by a source point charge are derived. Expressions of self-polarization potential describing the interaction of a point charge with its own image-charge are deduced. Contributions of double dielectric constant mismatch to electron and hole ground state energies as well as nanostructure effective gap are calculated via first order perturbation theory and also by finite difference approach. Dependencies of electron, hole and gap energies against core to shell radii ratio are determined in the case of ZnS/CdSe core/shell nanostructure immersed in water or in toluene. It appears that finite difference approach is more efficient than first order perturbation method and that the effect of polarization charge may in no case be neglected as its contribution can reach a significant proportion of the value of nanostructure gap.
Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris
NASA Astrophysics Data System (ADS)
Ziurys, L. M.; Milam, S. N.; Apponi, A. J.; Woolf, N. J.
2007-06-01
The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.
Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris.
Ziurys, L M; Milam, S N; Apponi, A J; Woolf, N J
2007-06-28
The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.
Planetary Ice-Oceans: Numerical Modeling Study of Ice-Shell Growth in Convecting Two-Phase Systems
NASA Astrophysics Data System (ADS)
Allu Peddinti, Divya; McNamara, Allen
2017-04-01
Several icy bodies in the Solar system such as the icy moons Europa and Enceladus exhibit signs of subsurface oceans underneath an ice-shell. For Europa, the geologically young surface, the presence of surface features and the aligned surface chemistry pose interesting questions about formation of the ice-shell and its interaction with the ocean below. This also ties in with its astrobiological potential and implications for similar ice-ocean systems elsewhere in the cosmos. The overall thickness of the H2O layer on Europa is estimated to be 100-150 km while the thickness of the ice-shell is debated. Additionally, Europa is subject to tidal heating due to interaction with Jupiter's immense gravity field. It is of interest to understand how the ice-shell thickness varies in the presence of tidal internal heating and the localization of heating in different regions of the ice-shell. Thus this study aims to determine the effect of tidal internal heating on the growth rate of the ice-shell over time. We perform geodynamic modeling of the ice-ocean system in order to understand how the ice-shell thickness changes with time. The convection code employs the ice Ih-water phase diagram in order to model the two-phase convecting ice-ocean system. All the models begin from an initial warm thick ocean that cools from the top. The numerical experiments analyze three cases: case 1 with no tidal internal heating in the system, case 2 with constant tidal internal heating in the ice and case 3 with viscosity-dependent tidal internal heating in the ice. We track the ice-shell thickness as a function of time as the system cools. Modeling results so far have identified that the shell growth rate changes substantially at a point in time that coincides with a change in the planform of ice-convection cells. Additionally, the velocity vs depth plots indicate a shift from a conduction dominant to a convection dominant ice regime. We compare the three different cases to provide a comprehensive understanding of the temporal variation in the ice-shell thickness due to the addition of heating in the ice.
Core-Shell Magnetic Morphology of Structurally Uniform Magnetite Nanoparticles
NASA Astrophysics Data System (ADS)
Krycka, K. L.; Booth, R. A.; Hogg, C. R.; Ijiri, Y.; Borchers, J. A.; Chen, W. C.; Watson, S. M.; Laver, M.; Gentile, T. R.; Dedon, L. R.; Harris, S.; Rhyne, J. J.; Majetich, S. A.
2010-05-01
A new development in small-angle neutron scattering with polarization analysis allows us to directly extract the average spatial distributions of magnetic moments and their correlations with three-dimensional directional sensitivity in any magnetic field. Applied to a collection of spherical magnetite nanoparticles 9.0 nm in diameter, this enhanced method reveals uniformly canted, magnetically active shells in a nominally saturating field of 1.2 T. The shell thickness depends on temperature, and it disappears altogether when the external field is removed, confirming that these canted nanoparticle shells are magnetic, rather than structural, in origin.
Quasi-static axisymmetric eversion hemispherical domes made of elastomers
NASA Astrophysics Data System (ADS)
Kabrits, Sergey A.; Kolpak, Eugeny P.
2016-06-01
The paper considers numerical solution for the problem of quasi-static axisymmetric eversion of a spherical shell (hemisphere) under action of external pressure. Results based on the general nonlinear theory of shells made of elastomers, proposed by K. F. Chernykh. It is used two models of shells based on the hypotheses of the Kirchhoff and Timoshenko, modified K.F. Chernykh for the case of hyperelastic rubber-like material. The article presents diagrams of equilibrium states of eversion hemispheres for both models as well as the shape of the shell at different points in the diagram.
Core-Shell-Corona Micelles with a Responsive Shell.
Gohy, Jean-François; Willet, Nicolas; Varshney, Sunil; Zhang, Jian-Xin; Jérôme, Robert
2001-09-03
A reactor for the synthesis of gold nanoparticles is one of the uses of a poly(styrene)-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) triblock copolymer (PS-b-P2VP-b-PEO) which forms core-shell-corona micelles in water. Very low polydispersity spherical micelles are observed that consist of a PS core surrounded by a pH-sensitive P2VP shell and a corona of PEO chains end-capped by a hydroxyl group. The corona can act as a site for attaching responsive or sensing molecules. © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.
Review of high convergence implosion experiments with single and double shell targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delamater, N. D.; Watt, R. G.; Varnum, W. S.
2002-01-01
Experiments have been been performed in recent years at the Omega laser studying double shell capsules as an a1 teinative, 11011 cryogenic, path towards ignition at NTF. Double shell capsules designed to mitigate the Au M-band radiation asymmetries, were experimentally found to perform well in both spherical and cylindrical hohlraums, achieving near 1-D (-90 %) clean calculated yield at convergence comparable to that required for NIF ignition. Near-term plans include directly driven double shell experiments at Omega, which eliminates Au M-band radiation as a yield degradation m ec h an i s in.
Tidal deformation of Enceladus' ice shell with variable thickness and Maxwell rheology
NASA Astrophysics Data System (ADS)
Soucek, Ondrej; Behounkova, Marie; Cadek, Ondrej; Tobie, Gabriel; Choblet, Gael
2017-04-01
Tidal deformation of icy moons has been traditionally studied using the spectral approach which is very efficient for perfectly spherical bodies with radially dependent rheological structure. Measurements of Enceladus' topography (Nimmo et al., 2011) and low-degree gravity (Iess et al., 2014) indicate that the ice shell is significantly thinned in the southern hemisphere (Iess et al., 2014; McKinnon, 2015) and according to recent gravity, shape and libration inversion, it may be only a few kilometers thick at the south pole (Cadek et al., 2016). These variations may potentially have a significant effect on the amplitude and pattern of tidal deformation, stress and associated heating inside the shell, but cannot be straightforwardly incorporated into the existing spectral codes. In order to circumvent this difficulty and to quantify the effects of ice-shell thickness variations, we have developed a three-dimensional finite element code in the framework of FEniCS package (Alnaes et al., 2015). Using this numerical tool, we address the changes in tidally-induced deformation amplitude, stresses and tidal heating for structural models of Enceladus' ice shell of various complexity. Considering Maxwell viscoelastic rheology of the shell, we compare models with uniform thickness consistent with the libration data and with constant viscosity, synthetic models with analytically parameterized thinning in the south polar region and depth-dependent viscosity varying over several orders of magnitude, and finally, models with the shell topography and thickness based on the recent model of Cadek et al. (2016). We find that the thinning of the ice shell around the south pole may lead to amplification of the stress and displacement in this region region by a factor of up to 2 and 4, respectively, depending on the average ice shell thickness, the amplitude of thinning and the viscosity structure. Our results also suggest that lateral variations of ice thickness can induce significant anomalies of the surface heat flux and, together with other effects (e.g. Souček et al., 2016), may thus contribute to the hemispheric dichotomy observed on Enceladus. Alnaes, M. S., Blechta, J., Hake, J., Johansson, J., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M. E.,Wells, G. N., 2015. The FEniCS Project Version 1.5. Archive of Numerical Software 3 (100), 9-23. Cadek, O., Tobie, G., van Hoolst, T., Masse, M., Choblet, G., Lefevre, A., Mitri, G., Baland, R.-M., Behounkova, M., Bourgeois, O., Trinh, A., 2016. Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Let. 46, 5653-5660. Iess, L., Stevenson, D. J., Parisi, M., Hemingway, D., Jacobson, R. A., Lunine, J. I., Nimmo, F., Armstrong, J. W., Asmar, S. W., Ducci, M., Tortora, P., Apr. 2014. The Gravity Field and Interior Structure of Enceladus. Science 344, 78-80. McKinnon, W. B., Apr. 2015. Effect of Enceladus's rapid synchronous spin on interpretation of Cassini gravity. Geophys. Res. Let. 42, 2137-2143. Nimmo, F., Bills, B. G., Thomas, P. C., 2011. Geophysical implications of the long-wavelength topography of the Saturnian satellites. J. Geophys. Res. 116 (E15), E11001. Soucek, O., Hron, J., Behounkova, M., Cadek, O., 2016. Effect of the tiger stripes on the deformation of Saturn's moon Enceladus. Geophys. Res. Let. 43, 7417-7423.
Addendum to ''Thin-shell wormholes supported by ordinary matter in Einstein-Gauss-Bonnet gravity''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simeone, Claudio
2011-04-15
Thin-shell wormholes are constructed starting from the exotic branch of the Wiltshire spherically symmetric solution of Einstein-Gauss-Bonnet gravity. The energy-momentum tensor of the shell is studied, and it is shown that configurations supported by matter satisfying the energy conditions exist for certain values of the parameters. Differing from the previous result associated with the normal branch of the Wiltshire solution, this is achieved for small positive values of the Gauss-Bonnet parameter and for vanishing charge.
Cushing, Scott Kevin; Chen, Chih-Jung; Dong, Chung Li; Kong, Xiang-Tian; Govorov, Alexander O; Liu, Ru-Shi; Wu, Nianqiang
2018-06-26
For semiconductors photosensitized with organic dyes or quantum dots, transferred electrons are usually considered thermalized at the conduction band edge. This study suggests that the electrons injected from a plasmonic metal into a thin semiconductor shell can be non-thermal with energy up to the plasmon frequency. In other words, the electrons injected into the semiconductor are still hot carriers. Photomodulated x-ray absorption measurements of the Ti L 2,3 edge are compared before and after excitation of the plasmon in Au@TiO 2 core shell nanoparticles. Comparison with theoretical predictions of the x-ray absorption, which include the heating and state-filling effects from injected hot carriers, suggest that the electrons transferred from the plasmon remain non-thermal in the ~10 nm TiO 2 shell, due in part to a slow trapping in defect states. By repeating the measurements for spherical, rod-like, and star-like metal nanoparticles, the magnitude of the non-thermal distribution, peak energy, and number of injected hot electrons are confirmed to be tuned by the plasmon frequency and the sharp corners of the plasmonic nanostructure. The results suggest that plasmonic photosensitizers can not only extend the sunlight absorption spectral range of semiconductor-based devices, but could also result in increased open circuit voltages and elevated thermodynamic driving forces for solar fuel generation in photoelectrochemical cells.
Numerical study of heat transfer characteristics in BOG heat exchanger
NASA Astrophysics Data System (ADS)
Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin
2016-12-01
In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.
NASA Astrophysics Data System (ADS)
Guo, Xiaoxia; Zhao, Kongshuang
2017-02-01
We report here a dielectric study on three kinds of anionic spherical polyelectrolyte brush (SPBs, consisting of a polystyrene (PS) core and three different poly (acrylic acid) chains grafted onto the core) suspensions over a frequency ranging from 40 Hz to 110 MHz. The relaxation behavior of the SPB suspensions shows significant changes in the brush-layer properties when the mass fraction of SPBs and the pH of the suspensions change. Two definite relaxations related to the interfacial polarization are observed around 100 kHz and 10 MHz. A single-layer spherical-shell model is applied to describe the SPB suspensions wherein the suspended SPB is modeled as a spherical-shell composite particle in which an insulated PS sphere is surrounded by a conducting ion-permeable shell (the polyelectrolyte chain layer). We developed the curve-fitting procedure to analyze the dielectric spectrum in order to obtain the dielectric properties of the components of the SPBs, especially the properties of the polyelectrolyte brush. Based on this method and model, the permittivity and conductivity of the brush layer, ζ potential, etc are calculated. The ordered orientation of the water molecules in the layer leads to an additional electrical dipole moment; increasing pH causes the brush layer to swell. In addition, the repulsive force between the SPB particles are evaluated using the brush-layer thickness, which is obtained by fitting dielectric spectra, combined with relative theoretical formulas. Increasing PH values or SPB concentration would improve the stability of the SPBs dispersion.
Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes
NASA Astrophysics Data System (ADS)
Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.
2015-11-01
We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.
Ariel 6 measurements of ultra-heavy cosmic ray fluxes in the region 34 or = Z or = 48
NASA Technical Reports Server (NTRS)
Fowler, P. H.; Masheder, M. R. W.; Moses, R. T.; Walker, R. N. F.; Worley, A.; Gay, A. M.
1985-01-01
The Ariel VI satellite was launched by NASA on a Scout rocket on 3rd June 1979 from Wallops Island, Virginia, USA, into a near circular 625 km orbit inclined at 55 deg. It carried a spherical cosmic ray detector designed by a group from Bristol University. A spherical aluminum vessel of diameter 75 cm contains a gas scintillation mixture and a thin spherical shell of Pilot 425 plastic, and forms a single optical cavity viewed by 16 photomultipliers. Particle tracks through the detector may be characterized by their impact parameter p and by whether or not they pass through the cup of plastic scintillator placed between the sphere and the spacecraft body (referred to below as the Anti-Coincidence Detector or ACD). Individual particle charges are determined by separately measuring the gas scintillation and the Cerenkov emission from the plastic shell. This is possible because of the quite different distribution in time of these emissions.
NASA Astrophysics Data System (ADS)
Bao, Minle; Wang, Lu; Li, Wenyao; Gao, Tianze
2017-09-01
Fluid elastic excitation in shell side of heat exchanger was deduced theoretically in this paper. Model foundation was completed by using Pro / Engineer software. The finite element model was constructed and imported into the FLUENT module. The flow field simulation adopted the dynamic mesh model, RNG k-ε model and no-slip boundary conditions. Analysing different positions vibration of tube bundles by selecting three regions in shell side of heat exchanger. The results show that heat exchanger tube bundles at the inlet of the shell side are more likely to be failure due to fluid induced vibration.
Sheet-like assemblies of spherical particles with point-symmetrical patches.
Mani, Ethayaraja; Sanz, Eduardo; Roy, Soumyajit; Dijkstra, Marjolein; Groenewold, Jan; Kegel, Willem K
2012-04-14
We report a computational study on the spontaneous self-assembly of spherical particles into two-dimensional crystals. The experimental observation of such structures stabilized by spherical objects appeared paradoxical so far. We implement patchy interactions with the patches point-symmetrically (icosahedral and cubic) arranged on the surface of the particle. In these conditions, preference for self-assembly into sheet-like structures is observed. We explain our findings in terms of the inherent symmetry of the patches and the competition between binding energy and vibrational entropy. The simulation results explain why hollow spherical shells observed in some Keplerate-type polyoxometalates (POM) appear. Our results also provide an explanation for the experimentally observed layer-by-layer growth of apoferritin--a quasi-spherical protein.
NASA Astrophysics Data System (ADS)
Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.
2017-05-01
A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.
Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.
Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru
2015-11-10
The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.
Coulomb excitations for a short linear chain of metallic shells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhemchuzhna, Liubov, E-mail: lzhemchuzhna@unm.edu; Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106; Gumbs, Godfrey
2015-03-15
A self-consistent-field theory is given for the electronic collective modes of a chain containing a finite number, N, of Coulomb-coupled spherical two-dimensional electron gases arranged with their centers along a straight line, for simulating electromagnetic response of a narrow-ribbon of metallic shells. The separation between nearest-neighbor shells is arbitrary and because of the quantization of the electron energy levels due to their confinement to the spherical surface, all angular momenta L of the Coulomb excitations, as well as their projections M on the quantization axis, are coupled. However, for incoming light with a given polarization, only one angular momentum quantummore » number is usually required. Therefore, the electromagnetic response of the narrow-ribbon of metallic shells is expected to be controlled externally by selecting different polarizations for incident light. We show that, when N = 3, the next-nearest-neighbor Coulomb coupling is larger than its value if they are located at opposite ends of a right-angle triangle forming the triad. Additionally, the frequencies of the plasma excitations are found to depend on the orientation of the line joining them with respect to the axis of quantization since the magnetic field generated from the induced oscillating electric dipole moment on one sphere can couple to the induced magnetic dipole moment on another. Although the transverse inter-shell electromagnetic coupling can be modeled by an effective dynamic medium, the longitudinal inter-shell Coulomb coupling, on the other hand, can still significantly modify the electromagnetic property of this effective medium between shells.« less
A high temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
The development of a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air was studied. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by a innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F air at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver was completed.
Benchmark solution of the dynamic response of a spherical shell at finite strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versino, Daniele; Brock, Jerry S.
2016-09-28
Our paper describes the development of high fidelity solutions for the study of homogeneous (elastic and inelastic) spherical shells subject to dynamic loading and undergoing finite deformations. The goal of the activity is to provide high accuracy results that can be used as benchmark solutions for the verification of computational physics codes. Furthermore, the equilibrium equations for the geometrically non-linear problem are solved through mode expansion of the displacement field and the boundary conditions are enforced in a strong form. Time integration is performed through high-order implicit Runge–Kutta schemes. Finally, we evaluate accuracy and convergence of the proposed method bymore » means of numerical examples with finite deformations and material non-linearities and inelasticity.« less
Humpal, H.H.
1987-11-10
A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors. 5 figs.
Humpal, H.H.
1986-03-21
A mirror mount is provided that allows free pitch, yaw and roll motion of the mirror while keeping the location of a point on the surface of the mirror fixed in the rest frame of reference of the mount. Yaw movement is provided by two yaw cylinders that are bearing mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell that is air bearing mounted to move between a clamp and an upper pedestal bearing. The centers of curvature of the spherical surfaces of the shell lie upon the point. Pitch motion and roll motion are separately and independently imparted to mirror by a pair of pitch paddles and a pair of roll paddles that are independently and separately moved by control rods driven by motors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobel, R.
TRUMP is a general finite difference computer program for the solution of transient and steady state heat transfer problems. It is a very general program capable of solving heat transfer problems in one, two or three dimensions for plane, cylindrical or spherical geometry. Because of the variety of possible geometries, the effort required to describe the geometry can be large. GIFT was written to minimize this effort for one-dimensional heat flow problems. After describing the inner and outer boundaries of a region made of a single material along with the modes of heat transfer which thermally connect different regions, GIFTmore » will calculate all the geometric data (BLOCK 04) and thermal network data (BLOCK 05) required by TRUMP for one-dimensional problems. The heat transfer between layers (or shells) of a material may be by conduction or radiation; also, an interface resistance between layers can be specified. Convection between layers can be accounted for by use of an effective thermal conductivity in which the convection effect is included or by a thermal conductance coefficient. GIFT was written for the Sigma 7 computer, a small digital computer with a versatile graphic display system. This system makes it possible to input the desired data in a question and answer mode and to see both the input and the output displayed on a screen in front of the user at all times. (auth)« less
1994-03-01
products of radial Hankel functions and spherical harmonics. The chosen driving frequency was 474 Hz, corresponding to a value of ka 1, where k is the...spherical harmonics. The chosen driving frequency was 474 Hz, corresponding to a value of ka = 1, where k is the wavenumber of sound in water and a is...wife Adriana for her support, understanding, and for her help in typing this thesis. vi I. INTRODUCTION The utilization of sonar systems in
Strongly localized image states of spherical graphitic particles.
Gumbs, Godfrey; Balassis, Antonios; Iurov, Andrii; Fekete, Paula
2014-01-01
We investigate the localization of charged particles by the image potential of spherical shells, such as fullerene buckyballs. These spherical image states exist within surface potentials formed by the competition between the attractive image potential and the repulsive centripetal force arising from the angular motion. The image potential has a power law rather than a logarithmic behavior. This leads to fundamental differences in the nature of the effective potential for the two geometries. Our calculations have shown that the captured charge is more strongly localized closest to the surface for fullerenes than for cylindrical nanotube.
Lightweight bladder lined pressure vessels
Mitlitsky, F.; Myers, B.; Magnotta, F.
1998-08-25
A lightweight, low permeability liner is described for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using tori spherical or near tori spherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film sealed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life. 19 figs.
Laboratory and theoretical models of planetary-scale instabilities and waves
NASA Technical Reports Server (NTRS)
Hart, John E.; Toomre, Juri
1990-01-01
Meteorologists and planetary astronomers interested in large-scale planetary and solar circulations recognize the importance of rotation and stratification in determining the character of these flows. In the past it has been impossible to accurately model the effects of sphericity on these motions in the laboratory because of the invariant relationship between the uni-directional terrestrial gravity and the rotation axis of an experiment. Researchers studied motions of rotating convecting liquids in spherical shells using electrohydrodynamic polarization forces to generate radial gravity, and hence centrally directed buoyancy forces, in the laboratory. The Geophysical Fluid Flow Cell (GFFC) experiments performed on Spacelab 3 in 1985 were analyzed. Recent efforts at interpretation led to numerical models of rotating convection with an aim to understand the possible generation of zonal banding on Jupiter and the fate of banana cells in rapidly rotating convection as the heating is made strongly supercritical. In addition, efforts to pose baroclinic wave experiments for future space missions using a modified version of the 1985 instrument led to theoretical and numerical models of baroclinic instability. Rather surprising properties were discovered, which may be useful in generating rational (rather than artificially truncated) models for nonlinear baroclinic instability and baroclinic chaos.
THREE-DIMENSIONAL MODELING OF THE DYNAMICS OF THERAPEUTIC ULTRASOUND CONTRAST AGENTS
Hsiao, Chao-Tsung; Lu, Xiaozhen; Chahine, Georges
2010-01-01
A 3-D thick-shell contrast agent dynamics model was developed by coupling a finite volume Navier-Stokes solver and a potential boundary element method flow solver to simulate the dynamics of thick-shelled contrast agents subjected to pressure waves. The 3-D model was validated using a spherical thick-shell model validated by experimental observations. We then used this model to study shell break-up during nonspherical deformations resulting from multiple contrast agent interaction or the presence of a nearby solid wall. Our simulations indicate that the thick viscous shell resists the contrast agent from forming a re-entrant jet, as normally observed for an air bubble oscillating near a solid wall. Instead, the shell thickness varies significantly from location to location during the dynamics, and this could lead to shell break-up caused by local shell thinning and stretching. PMID:20950929
Expanding relativistic shells and gamma-ray burst temporal structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenimore, E.E.; Madras, C.D.; Nayakshin, S.
1996-12-01
Many models of gamma-ray bursts (GRBs) involve a shell expanding at extreme relativistic speeds. The shell of material expands in a photon-quiet phase for a period {ital t}{sub 0} and then becomes gamma-ray active, perhaps due to inhomogeneities in the interstellar medium or the generation of shocks. Based on kinematics, we relate the envelope of the emission of the event to the characteristics of the photon-quiet and photon-active phases. We initially assume local spherical symmetry wherein, on average, the same conditions prevail over the shell`s surface within angles the order of {Gamma}{sup {minus}1}, where {Gamma} is the Lorentz factor formore » the bulk motion. The contribution of the curvature to the temporal structure is comparable to the contribution from the overall expansion. As a result, GRB time histories from a shell should have an envelope similar to {open_quotes}FRED{close_quotes} (fast rise, exponential decay) events in which the rise time is related to the duration of the photon-active phase and the fall time is related to the duration of the photon-quiet phase. This result depends only on local spherical symmetry and, since most GRBs do not have such envelopes, we introduce the {open_quotes}shell symmetry{close_quotes} problem: the observed time history envelopes of most GRBs do not agree with that expected for a relativistic expanding shell. Although FREDs have the signature of a relativistic shell, they may not be due to a single shell, as required by some cosmological models. Some FREDs have precursors in which the peaks are separated by more than the expansion time required to explain FRED shape. Such a burst is most likely explained by a central engine; that is, the separation of the multiple peaks occurs because the central site produced multiple releases of energy on timescales comparable to the duration of the event. (Abstract Truncated)« less
Park, Gi Dae; Kang, Yun Chan
2018-03-01
Micrometer-sized spherical aggregates of Sn and Co components containing core-shell, yolk-shell, hollow nanospheres are synthesized by applying nanoscale Kirkendall diffusion in the large-scale spray drying process. The Sn 2 Co 3 -Co 3 SnC 0.7 -C composite microspheres uniformly dispersed with Sn 2 Co 3 -Co 3 SnC 0.7 mixed nanocrystals are formed by the first-step reduction of spray-dried precursor powders at 900 °C. The second-step oxidation process transforms the Sn 2 Co 3 -Co 3 SnC 0.7 -C composite into the porous microsphere composed of Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 core-shell, Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 yolk-shell, and CoSnO 3 -Co 3 O 4 hollow nanospheres at 300, 400, and 500 °C, respectively. The discharge capacity of the microspheres with Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 core-shell, Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 yolk-shell, and CoSnO 3 -Co 3 O 4 hollow nanospheres for the 200 th cycle at a current density of 1 A g -1 is 1265, 987, and 569 mA h g -1 , respectively. The ultrafine primary nanoparticles with a core-shell structure improve the structural stability of the porous-structured microspheres during repeated lithium insertion and desertion processes. The porous Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 microspheres with core-shell primary nanoparticles show excellent cycling and rate performances as anode materials for lithium-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrodynamic stability and Ti-tracer distribution in low-adiabat OMEGA direct-drive implosions
NASA Astrophysics Data System (ADS)
Joshi, Tirtha R.
We discuss the hydrodynamic stability of low-adiabat OMEGA direct-drive implosions based on results obtained from simultaneous emission and absorption spectroscopy of a titanium tracer added to the target. The targets were deuterium filled, warm plastic shells of varying thicknesses and filling gas pressures with a submicron Ti-doped tracer layer initially located on the inner surface of the shell. The spectral features from the titanium tracer are observed during the deceleration and stagnation phases of the implosion, and recorded with a time integrated spectrometer (XRS1), streaked crystal spectrometer (SSCA) and three gated, multi-monochromatic X-ray imager (MMI) instruments fielded along quasi-orthogonal lines-of-sight. The time-integrated, streaked and gated data show simultaneous emission and absorption spectral features associated with titanium K-shell line transitions but only the MMI data provides spatially resolved information. The arrays of gated spectrally resolved images recorded with MMI were processed to obtain spatially resolved spectra characteristic of annular contour regions on the image. A multi-zone spectroscopic analysis of the annular spatially resolved spectra permits the extraction of plasma conditions in the core as well as the spatial distribution of tracer atoms. In turn, the titanium atom distribution provides direct evidence of tracer penetration into the core and thus of the hydrodynamic stability of the shell. The observations, timing and analysis indicate that during fuel burning the titanium atoms have migrated deep into the core and thus shell material mixing is likely to impact the rate of nuclear fusion reactions, i.e. burning rate, and the neutron yield of the implosion. We have found that the Ti atom number density decreases towards the center in early deceleration phase, but later in time the trend is just opposite, i.e., it increases towards the center of the implosion core. This is in part a consequence of the convergent effect of spherical geometry. The spatial profiles of Ti areal densities in the implosion core are extracted from space-resolved spectra and also evaluated using 1D spherical scaling. The trends are similar to the Ti number density spatial profiles. The areal densities extracted from data and 1D spherical scaling are very comparable in the outer spherical zones of the implosion core but significantly deviate in the innermost zone. We have observed that approximately 85% of the Ti atoms migrate into the hot core, while 15% of the atoms are still on the shell-fuel interface and contributing to the absorption. In addition, a method to extract the hot spot size based on the formation of the absorption feature in a sequence of annular spectra will be discussed. Results and trends are discussed as a function of target shell thickness and filling pressure, and laser pulse shape.
Removable inner turbine shell with bucket tip clearance control
Sexton, Brendan F.; Knuijt, Hans M.; Eldrid, Sacheverel Q.; Myers, Albert; Coneybeer, Kyle E.; Johnson, David Martin; Kellock, Iain R.
2000-01-01
A turbine includes a plurality of inner shell sections mounting first and second stage nozzle and shroud portions. The inner shell sections are pinned to an outer containment shell formed of sections to preclude circumferential movement of the inner shell relative to the outer shell and enable thermal expansion and contraction of the inner shell relative to the outer shell. Positive bucket tip clearance control is afforded by passing a thermal medium about the inner shell in heat transfer relation with the shrouds about the first and second stage bucket tips, the thermal medium being provided from a source of heating/cooling fluid independent of the turbine. Access is provided to the rotor and turbine buckets by removing the outer and inner shell sections.
Cloaks for suppression or enhancement of scattering of diffuse photon density waves
NASA Astrophysics Data System (ADS)
Renthlei, Lalruatfela; Ramakrishna, S. Anantha; Wanare, Harshawardhan
2018-07-01
Enhancement of wave-like characteristics of heavily damped diffuse photon density waves in a random medium by amplification can induce strongly localised resonances. These resonances can be used to either suppress or enhance scattering from an inhomogeneity in the random medium by cloaking the inhomogeneous region by a shell of random medium with the correct levels of absorption or amplification. A spherical core-shell structure consisting of a shell of a random amplifying medium is shown to enhance or suppress specific resonant modes. A shell with an absorbing random medium is also shown to suppress scattering which can also be used for cloaking the core region.
Response of moderately thick laminated cross-ply composite shells subjected to random excitation
NASA Technical Reports Server (NTRS)
Elishakoff, Isaak; Cederbaum, Gabriel; Librescu, Liviu
1989-01-01
This study deals with the dynamic response of transverse shear deformable laminated shells subjected to random excitation. The analysis encompasses the following problems: (1) the dynamic response of circular cylindrical shells of finite length excited by an axisymmetric uniform ring loading, stationary in time, and (2) the response of spherical and cylindrical panels subjected to stationary random loadings with uniform spatial distribution. The associated equations governing the structural theory of shells are derived upon discarding the classical Love-Kirchhoff (L-K) assumptions. In this sense, the theory is formulated in the framework of the first-order transverse shear deformation theory (FSDT).
NASA Astrophysics Data System (ADS)
Travis, B. J.; Schubert, G.
2012-12-01
Despite its small size, Enceladus emits considerable heat, especially at its south pole, even long after simple thermal models predict it should be frozen. A number of energy mechanisms have been proposed as responsible for this heating, such as TDH (tidal dissipative heating), and convection and shearing in the ice shell, but why energy outflow is primarily at the south pole is still debated. It is not known if TDH has operated continuously at Enceladus. Crater relaxation simulations suggest considerable heat flow has occurred over long stretches of its history. One process missing from previous models is fluid flow, both in an ocean layer and in the silicate core. The simulations described here are part of a study to estimate the impact of hydrothermal flow and to explore under what conditions, and for how long, an ocean layer could persist on Enceladus, with or without TDH. Our model geometry is 2-D spherical (radius and latitude) for most simulations, with one 3-D spherical simulation. We assume a silicate core of about 160 km radius, overlain by an H2O layer out to 250 km radius. Ice shell thickness is initially 15 km. Flow in an ocean layer is represented by a simplified Navier-Stokes model, and porous flow occurs in the core. Surface temperature distribution follows observed values. Radiogenic heating produces about 0.3 GW in the model. A simple TDH model is active in some simulations. Salts and/or NH3 may be present in the interior of Enceladus, and would strongly depress freezing; our model uses a low eutectic salt as an analog. The ice shell's thickness is not required to remain fixed, but can change dynamically, in response to local thermodynamics. Initial core temperature and permeability are unknowns. Initial core temperature is varied over several hundred oC, and permeability is varied over 1-100 millidarcies. In our simulations, typically, a flow field develops characterized by sinking flow at the equator and rising plumes at the poles. A broad thickening of ice in the equatorial region occurs, so much so that flow is gradually restricted to the polar regions, with the south pole flow stronger than at the northern pole. A feedback develops; cooler, sinking flow at the equator results in thickening of the ice there which in turn tends to isolate flow to the deeper ocean plus core region at the poles. The rate at which this pattern develops depends on the presence or absence of TDH. Except at the surface, a nearly cylindrical region from north to south through the model remains fluid. The presence of salt and/or NH3 allows liquid conditions and flow even as the ocean temperature falls well below 0 oC. At higher initial core temperatures, boiling occurs deep in the core because of the low overburden pressure. An approximately 70 km thick difference in ice thickness can develop between equator and poles. However, due to the low gravity of Enceladus, this would give rise to a buoyant pressure difference of only about 5 bars, which is less than shear strength measurements in ice. The core slowly cools, and eventually the ocean may freeze completely without TDH, but that can take on the order of several hundred million years or more. If episodes of strong TDH occurred on that time scale or shorter, a polar ocean might then persist indefinitely.
Li, G Z; Liu, F H; Chu, Z S; Wu, D M; Yang, L B; Li, J L; Wang, M N; Wang, Z L
2016-04-01
SiO2@Y2MoO6:Eu3+ core-shell phosphors were prepared by the sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays were used to characterize the resulting SiO2@Y2MoO6:Eu3+ core-shell phosphors. The XRD results demonstrated that the Y2MoO6:Eu3+ layers on the SiO2 spheres crystallized after being annealed at 700 °C and the crystallinity increased with raising the annealing temperature. The obtained core-shell phosphors have spherical shape with narrow size distribution (average size ca. 640 nm), non-agglomeration, and smooth surface. The thickness of the Y2MoO6:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (70 nm for four deposition cycles). The Eul+ shows a strong PL emission (dominated by 5D0-7F2 red emission at 614 nm) under the excitation of 347 nm UV light. The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.
Glass shell manufacturing in space
NASA Technical Reports Server (NTRS)
Downs, R. L.; Ebner, M. A.; Nolen, R. L., Jr.
1981-01-01
Highly-uniform, hollow glass spheres (shells), which are used for inertial confinement fusion targets, were formed from metal-organic gel powder feedstock in a vertical furnace. As a result of the rapid pyrolysis caused by the furnace, the gel is transformed to a shell in five distinct stages: (a) surface closure of the porous gel; (b) generation of a closed-cell foam structure in the gel; (c) spheridization of the gel and further expansion of the foam; (d) coalescence of the closed-cell foam to a single-void shell; and (e) fining of the glass shell. The heat transfer from the furnace to the falling gel particle was modeled to determine the effective heating rate of the gel. The model predicts the temperature history for a particle as a function of mass, dimensions, specific heat, and absorptance as well as furnace temperature profile and thermal conductivity of the furnace gas. A model was developed that predicts the gravity-induced degradation of shell concentricity in falling molten shells as a function of shell characteristics and time.
Gravastars in f (R ,T ) gravity
NASA Astrophysics Data System (ADS)
Das, Amit; Ghosh, Shounak; Guha, B. K.; Das, Swapan; Rahaman, Farook; Ray, Saibal
2017-06-01
We propose a unique stellar model under the f (R ,T ) gravity by using the conjecture of Mazur-Mottola [P. Mazur and E. Mottola, Report No.
Heat resistant protective hand covering
NASA Technical Reports Server (NTRS)
Tschirch, R. P.; Sidman, K. R.; Arons, I. J. (Inventor)
1984-01-01
A heat-resistant aromatic polyamide fiber is described. The outer surface of the shell is coated with a fire-resistant elastomer and liner. Generally conforming and secured to the shell and disposed inwardly of the shell, the liner is made of a felt fabric of temperature-resistant aromatic polymide fiber.
Process for manufacture of inertial confinement fusion targets and resulting product
Masnari, Nino A.; Rensel, Walter B.; Robinson, Merrill G.; Solomon, David E.; Wise, Kensall D.; Wuttke, Gilbert H.
1982-01-01
An ICF target comprising a spherical pellet of fusion fuel surrounded by a concentric shell; and a process for manufacturing the same which includes the steps of forming hemispheric shells of a silicon or other substrate material, adhering the shell segments to each other with a fuel pellet contained concentrically therein, then separating the individual targets from the parent substrate. Formation of hemispheric cavities by deposition or coating of a mold substrate is also described. Coatings or membranes may also be applied to the interior of the hemispheric segments prior to joining.
NASA Astrophysics Data System (ADS)
Allu Peddinti, D.; McNamara, A. K.
2016-12-01
Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.
High-temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
A study was performed by AiResearch Manufacturing Company, a division of The Garrett Corporation, on the development a high-temperature ceramic heat exchanger element to be integrated into a solar receiver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is to be fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. The unit is sized to produce 2150 F ar at 2.7 atm pressure, with a pressure drop of about 2 percent of the inlet pressure. This size is compatible with a solar collector providing a receiver input of 85 kw(th). Fabrication of a one-half scale demonstrator ceramic receiver has been completed.
Radiant vessel auxiliary cooling system
Germer, John H.
1987-01-01
In a modular liquid-metal pool breeder reactor, a radiant vessel auxiliary cooling system is disclosed for removing the residual heat resulting from the shutdown of a reactor by a completely passive heat transfer system. A shell surrounds the reactor and containment vessel, separated from the containment vessel by an air passage. Natural circulation of air is provided by air vents at the lower and upper ends of the shell. Longitudinal, radial and inwardly extending fins extend from the shell into the air passage. The fins are heated by radiation from the containment vessel and convect the heat to the circulating air. Residual heat from the primary reactor vessel is transmitted from the reactor vessel through an inert gas plenum to a guard or containment vessel designed to contain any leaking coolant. The containment vessel is conventional and is surrounded by the shell.
Inactivation of salmonella in shell eggs by hot water immersion and its effect on quality
USDA-ARS?s Scientific Manuscript database
Thermal inactivation kinetics of heat resistant strains of Salmonella Enteritidis in shell eggs processed by hot water immersion were determined, and the effects of the processing on egg quality were evaluated. Shell eggs were inoculated with a composite of heat resistant Salmonella Enteritidis (SE)...
Small bending and stretching of sandwich-type shells
NASA Technical Reports Server (NTRS)
Reissner, Eric
1950-01-01
A theory has been developed for small bending and stretching of sandwich-type shells. This theory is an extension of the known theory of homogeneous thin elastic shells. It was found that two effects are important in the present problem, which are not normally of importance in the theory of curved shells: (1) the effect of transverse shear deformation and (2) the effect of transverse normal stress deformation. The first of these two effects has been known to be of importance in the theory of plates and beams. The second effect was found to occur in a manner which is typical for shells and has no counterpart in flat-plate theory. The general results of this report have been applied to the solution of problems concerning flat plates, circular rings, circular cylindrical shells, and spherical shells. In each case numerical examples have been given, illustrating the magnitude of the effects of transverse shear and normal stress deformation.
Shock ignition of thermonuclear fuel with high areal density.
Betti, R; Zhou, C D; Anderson, K S; Perkins, L J; Theobald, W; Solodov, A A
2007-04-13
A novel method by C. Zhou and R. Betti [Bull. Am. Phys. Soc. 50, 140 (2005)] to assemble and ignite thermonuclear fuel is presented. Massive cryogenic shells are first imploded by direct laser light with a low implosion velocity and on a low adiabat leading to fuel assemblies with large areal densities. The assembled fuel is ignited from a central hot spot heated by the collision of a spherically convergent ignitor shock and the return shock. The resulting fuel assembly features a hot-spot pressure greater than the surrounding dense fuel pressure. Such a nonisobaric assembly requires a lower energy threshold for ignition than the conventional isobaric one. The ignitor shock can be launched by a spike in the laser power or by particle beams. The thermonuclear gain can be significantly larger than in conventional isobaric ignition for equal driver energy.
Tailoring sphere density for high pressure physical property measurements on liquids
NASA Astrophysics Data System (ADS)
Secco, R. A.; Tucker, R. F.; Balog, S. P.; Rutter, M. D.
2001-04-01
We present a new method of tailoring the density of a sphere for use as a probe in high pressure-temperature physical property experiments on liquids. The method consists of a composite sphere made of an inner, high density, metallic, spherical core and an exterior, low density, refractory, spherical shell or mantle. Micromechanical techniques are used to fabricate the composite sphere. We describe a relatively simple mechanical device that can grind hemispherical recesses as small as 200 μm in diameter in sapphire and as small as 500 μm in diameter in ruby hemispheres. Examples of composite spheres made with a Pt or WC core and Al2O3 shell used in metallic liquids pressurized to 16 GPa and 1900 K are shown.
Nonsymmetric dynamical thin-shell wormhole in Robinson-Trautman class
NASA Astrophysics Data System (ADS)
Svítek, O.; Tahamtan, T.
2018-02-01
The thin-shell wormhole created using the Darmois-Israel formalism applied to Robinson-Trautman family of spacetimes is presented. The stress energy tensor created on the throat is interpreted in terms of two dust streams and it is shown that asymptotically this wormhole settles to the Schwarzschild wormhole with a throat located at the position of the horizon. This behavior shows a nonlinear stability (within the Robinson-Trautman class) of this spherically symmetric wormhole. The gravitational radiation emitted by the Robinson-Trautman wormhole during the transition to spherical symmetry is indistinguishable from that of the corresponding black hole Robinson-Trautman spacetime. Subsequently, we show that the higher-dimensional generalization of Robinson-Trautman geometry offers a possibility of constructing wormholes without the need to violate the energy conditions for matter induced on the throat.
NASA Astrophysics Data System (ADS)
Franus, D. V.
2018-05-01
Research is conducted into variation in the stress-strain state of the corneoscleral shell of the human eye under loading by a flat base stamp of varying weight. A three-dimensional finite-element model of the contact problem of loading of the corneoscleral shell in the ANSYS program package is presented. Cornea and sclera are modeled as conjugated transversely isotropic spherical shells. The cornea is modeled as a multilayer shell with variable thickness in which all modeled layers have their own individual elastic properties. The research deals with the numerical calculation of the diameter of the contact zone between the shell and the stamp. Values of correction coefficients for intraocular pressure are obtained depending on the thickness of the corneal shell in its center, allowing the true intraocular pressure to be determined more accurately.
Three-dimensional spherical models of convection in the earth's mantle
NASA Technical Reports Server (NTRS)
Bercovici, Dave; Schubert, Gerald; Glatzmaier, Gary A.
1989-01-01
Three-dimensional spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hot spots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation.
Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility
Pak, A.; Divol, L.; Gregori, G.; ...
2013-05-20
Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-11-02
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.
Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu
2015-01-01
Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701
Self-consistent description of the SHFB equations for 112Sn
NASA Astrophysics Data System (ADS)
Ghafouri, M.; Sadeghi, H.; Torkiha, M.
2018-03-01
The Hartree-Fock (HF) method is an excellent approximation of the closed shell magic nuclei. Pair correlation is essential for the description of open shell nuclei and has been derived for even-even, odd-odd and even-odd nuclei. These effects are reported by Hartree-Fock with BCS (HFBCS) or Hartree-Fock-Bogolyubov (HFB). These issues have been investigated, especially in the nuclear charts, and such studies have been compared with the observed information. We compute observations such as total binding energy, charge radius, densities, separation energies, pairing gaps and potential energy surfaces for neutrons and protons, and compare them with experimental data and the result of the spherical codes. In spherical even-even neutron-rich nuclei are considered in the Skyrme-Hartree-Fock-Bogolyubov (SHFB) method with density-dependent pairing interaction. Zero-range density-dependent interactions is used in the pairing channel. We solve SHF or SHFB equations in the spatial coordinates with spherical symmetry for tin isotopes such as 112Sn. The numerical accuracy of solving equations in the coordinate space is much greater than the fundamental extensions, which yields almost precise results.
Thick or Thin Ice Shell on Europa?
NASA Technical Reports Server (NTRS)
2007-01-01
Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)Zhang, Siyuan; Zong, Yujin; Wan, Mingxi; Yu, Xiaojun; Fu, Quanyou; Ding, Ting; Zhou, Fanyu; Wang, Supin
2012-06-01
This paper compares the efficiency of flowing polymer- and lipid-shelled microbubbles (MBs) in the heating and cavitation during focused ultrasound exposures. Temperature and cavitation activity were simultaneously measured as the two types of shelled MBs and saline flowing through a 3 mm diameter vessel in the phantom with varying flow velocities (0-20 cm/s) at different acoustic power levels (0.6-20 W) with each exposure for 5 s. Temperature and cavitation for the lipid-shelled MBs were higher than those for the polymer-shelled MBs. Temperature rise decreased with increasing flow velocities for the two types of shelled MBs and saline at acoustic power 1.5 W. At acoustic power 11.1 W, temperature rise increased with increasing flow velocities for the lipid-shelled MBs. For the polymer-shelled MBs, the temperature rise increased with increasing flow velocities from 3-15 cm/s and decreased at 20 cm/s. Cavitation increased with increasing flow velocity for the two shelled MBs and there were no significant changes of cavitation with increasing flow velocities for saline. These results suggested that lipid-shelled MBs may have a greater efficiency than polymer-shelled MBs in heating and cavitation during focused ultrasound exposures.
Compact Transducers and Arrays
2005-05-01
Batra A, Priya S, Uchino K, Markley D, Newnham RE, Hofmann HF, "Energy harvesting using a piezoelectric "cymbal" transducer in dynamic environment...transducers, the flexural vibration of the metal shell causes an extensional vibration of the piezoelectric ceramic, or vice versa. Cymbal elements are...34On Axi-Symmetrical Vibrations of Shallow Spherical Shells," Quart. Appl. Math, 13 279 (1950). 19.R.S. Woollett, "Theory of the Piezoelectric Flexural
Self-monitored photothermal nanoparticles based on core-shell engineering
NASA Astrophysics Data System (ADS)
Ximendes, Erving C.; Rocha, Uéslen; Jacinto, Carlos; Kumar, Kagola Upendra; Bravo, David; López, Fernando J.; Rodríguez, Emma Martín; García-Solé, José; Jaque, Daniel
2016-01-01
The continuous development of nanotechnology has resulted in the actual possibility of the design and synthesis of nanostructured materials with pre-tailored functionabilities. Nanostructures capable of simultaneous heating and local thermal sensing are in strong demand as they would constitute a revolutionary solution to several challenging problems in bio-medicine, including the achievement of real time control during photothermal therapies. Several approaches have been demonstrated to achieve simultaneous heating and thermal sensing at the nanoscale. Some of them lack of sufficient thermal sensitivity and others require complicated synthesis procedures for heterostructure fabrication. In this study, we demonstrate how single core/shell dielectric nanoparticles with a highly Nd3+ ion doped shell and an Yb3+,Er3+ codoped core are capable of simultaneous thermal sensing and heating under an 808 nm single beam excitation. The spatial separation between the heating shell and sensing core provides remarkable values of the heating efficiency and thermal sensitivity, enabling their application in single beam-controlled heating experiments in both aqueous and tissue environments.
NASA Technical Reports Server (NTRS)
Borden, David; Ostriker, Jeremiah P.; Weinberg, David H.
1989-01-01
If galaxies form on shells, then clusters of galaxies should form at the vertices where three shells intersect. Weinberg, Ostriker, and Dekel (WOD, 1989) studied this picture quantitatively and found that an intersecting spherical shell model reproduces many of the properties of the observed distribution of galaxy clusters, but that too much superclustering is produced. In this paper, the WOD analysis is repeated with prolate spheroids that could be created by superconducting cosmic strings. It is found that most of the attractive features of the WOD model are maintained in the more general case and there is slight improvement in some aspects, but that the overall problem of excessive superclustering is not really alleviated.
Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard
2016-11-01
A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.
NASA Astrophysics Data System (ADS)
Ahmed, Asif; Ferdous, Imam Ul.; Saha, Sumon
2017-06-01
In the present study, three-dimensional numerical simulation of two shell-and-tube heat exchangers (STHXs) with conventional segmental baffles (STHXsSB) and continuous helical baffle (STHXsHB) is carried out and a comparative study is performed based on the simulation results. Both of the STHXs contain 37 tubes inside a 500 mm long and 200 mm diameter shell and mass flow rate of shell-side fluid is varied from 0.5 kg/s to 2 kg/s. At first, physical and mathematical models are developed and numerically simulated using finite element method (FEM). For the validation of the computational model, shell-side average nusselt number (Nus) is calculated from the simulation results and compared with the available experimental results. The comparative study shows that STHXsHB has 72-127% higher heat transfer coefficient per unit pressure drop compared to the conventional STHXsSB for the same shell-side mass flow rate. Moreover, STHXsHB has 59-63% lower shell-side pressure drop than STHXsSB.
Factors affecting the yield of bio-oil from the pyrolysis of coconut shell.
Gao, Yun; Yang, Yi; Qin, Zhanbin; Sun, Yi
2016-01-01
Coconut is a high-quality agricultural product of the Asia-Pacific region. In this paper, coconut shell which mainly composed of cellulose, hemicellulose, lignin was used as a raw material for coconut shell oil from coconut shell pyrolysis. The influence of the pyrolysis temperature, heating rate and particle size on coconut oil yield was investigated, and the effect of heating rate on coconut oil components was discussed. Experimental results show that the maximum oil yield of 75.74 wt% (including water) were obtained under the conditions that the final pyrolysis temperature 575 °C, heating rate 20 °C/min, coconut shell diameter about 5 mm. Thermal gravimetric analysis was used and it can be seen that coconut shell pyrolysis process can be divided into three stages: water loss, pyrolysis and pyrocondensation. The main components of coconut-shell oil are water (about 50 wt%), aromatic, phenolic, acid, ketone and ether containing compounds.
Application of a stepwise method for analyzing fouling in shell-and-tube exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prieto, M.M.; Miranda, J.; Sigales, B.
1999-12-01
This article presents the results of the application of a quite simple method for analyzing shell-side fouling in shell-and-tube exchangers, capable of taking into account the formation or irregular fouling deposits with variable thermal conductivity. This method, based on the utilization of elementary heat exchangers, has been implemented for E-shell TEMA-type heat exchangers with two tube passes. Several fouling deposit distributions have been simulated so as to ascertain their effects on the heat transfer rate. These distributions consider that fouling is concentrated in zones where the temperature of the fluids is maximum or minimum.
Thermodynamic Theory of Spherically Trapped Coulomb Clusters
NASA Astrophysics Data System (ADS)
Wrighton, Jeffrey; Dufty, James; Bonitz, Michael; K"{A}Hlert, Hanno
2009-11-01
The radial density profile of a finite number of identical charged particles confined in a harmonic trap is computed over a wide ranges of temperatures (Coulomb coupling) and particle numbers. At low temperatures these systems form a Coulomb crystal with spherical shell structure which has been observed in ultracold trapped ions and in dusty plasmas. The shell structure is readily reproduced in simulations. However, analytical theories which used a mean field approachfootnotetext[1]C. Henning et al., Phys. Rev. E 74, 056403 (2006) or a local density approximationfootnotetext[2]C. Henning et al., Phys. Rev. E 76, 036404 (2007) have, so far, only been able to reproduce the average density profile. Here we present an approach to Coulomb correlations based on the hypernetted chain approximation with additional bridge diagrams. It is demonstrated that this model reproduces the correct shell structure within a few percent and provides the basis for a thermodynamic theory of Coulomb clusters in the strongly coupled fluid state.footnotetext[3]J. Wrighton, J.W. Dufty, H. K"ahlert and M. Bonitz, J. Phys. A 42, 214052 (2009) and Phys. Rev. E (2009) (to be submitted)
Conserved charges of black holes in Weyl and Einstein-Gauss-Bonnet gravities
NASA Astrophysics Data System (ADS)
Peng, Jun-Jin
2014-11-01
An off-shell generalization of the Abbott-Deser-Tekin (ADT) conserved charge was recently proposed by Kim et al. They achieved this by introducing off-shell Noether currents and potentials. In this paper, we construct the crucial off-shell Noether current by the variation of the Bianchi identity for the expression of EOM, with the help of the property of Killing vector. Our Noether current, which contains an additional term that is just one half of the Lie derivative of a surface term with respect to the Killing vector, takes a different form in comparison with the one in their work. Then we employ the generalized formulation to calculate the quasi-local conserved charges for the most general charged spherically symmetric and the dyonic rotating black holes with AdS asymptotics in four-dimensional conformal Weyl gravity, as well as the charged spherically symmetric black holes in arbitrary dimensional Einstein-Gauss-Bonnet gravity coupled to Maxwell or nonlinear electrodynamics in AdS spacetime. Our results confirm those obtained through other methods in the literature.
Design of efficient stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Majumder, D. K.; Thornton, W. A.
1976-01-01
A method to produce efficient piecewise uniform stiffened shells of revolution is presented. The approach uses a first order differential equation formulation for the shell prebuckling and buckling analyses and the necessary conditions for an optimum design are derived by a variational approach. A variety of local yielding and buckling constraints and the general buckling constraint are included in the design process. The local constraints are treated by means of an interior penalty function and the general buckling load is treated by means of an exterior penalty function. This allows the general buckling constraint to be included in the design process only when it is violated. The self-adjoint nature of the prebuckling and buckling formulations is used to reduce the computational effort. Results for four conical shells and one spherical shell are given.
NASA Astrophysics Data System (ADS)
Zhang, Zhaohui; Liu, Li; Li, Hui; Yao, Shouzhuo
2009-09-01
A novel core-shell molecularly imprinting microspheres (MIMs) with trans-resveratrol as the template molecule; acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, was prepared based on SiO 2 microspheres with surface imprinting technique. These core-shell trans-resveratrol imprinted microspheres were characterized by infrared spectra (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and high performance liquid chromatography (HPLC). The results showed that these core-shell imprinted microspheres, which take on perfect spherical shape with average shell thickness of 150 nm, exhibit especially selective recognition for trans-resveratrol. These imprinted microspheres were applied as solid-phase extraction materials for selective extraction of trans-resveratrol from giant knotweed extracting solution successfully.
Spherical loudspeaker array for local active control of sound.
Rafaely, Boaz
2009-05-01
Active control of sound has been employed to reduce noise levels around listeners' head using destructive interference from noise-canceling sound sources. Recently, spherical loudspeaker arrays have been studied as multiple-channel sound sources, capable of generating sound fields with high complexity. In this paper, the potential use of a spherical loudspeaker array for local active control of sound is investigated. A theoretical analysis of the primary and secondary sound fields around a spherical sound source reveals that the natural quiet zones for the spherical source have a shell-shape. Using numerical optimization, quiet zones with other shapes are designed, showing potential for quiet zones with extents that are significantly larger than the well-known limit of a tenth of a wavelength for monopole sources. The paper presents several simulation examples showing quiet zones in various configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunawidjaja, Ray; Diez-y-Riega, Helena; Eilers, Hergen, E-mail: eilers@wsu.edu
2015-09-15
Amorphous precursors of Eu-doped-ZrO{sub 2}/Tb-doped-Y{sub 2}O{sub 3} (p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3}) core/shell nanoparticles are rapidly heated to temperatures between 200 °C and 950 °C for periods between 2 s and 60 s using a CO{sub 2} laser. During this heating process the nanoparticles undergo irreversible phase changes. The fluorescence spectra due to Eu{sup 3+} dopants in the core and Tb{sup 3+} dopants in the shell are used to identify distinct phases within the material and to generate time/temperature phase diagrams. Such phase diagrams can potentially help to determine unknown time/temperature histories in thermosensor applications. - Graphical abstract: A CO{sub 2}more » laser is used for rapid heating of p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3} core/shell nanoparticles. Optical spectra are used to identify distinct phases and to determine its thermal history. - Highlights: • Synthesized oxide precursors of lanthanide doped core/shell nanoparticles. • Heated core/shell nanoparticles via laser-based T-jump technique. • Observed time- and temperature-dependent irreversible phase transition.« less
Influence of shell thickness on thermal stability of bimetallic Al-Pd nanoparticles
NASA Astrophysics Data System (ADS)
Wen, John Z.; Nguyen, Ngoc Ha; Rawlins, John; Petre, Catalin F.; Ringuette, Sophie
2014-07-01
Aluminum-based bimetallic core-shell nanoparticles have shown promising applications in civil and defense industries. This study addresses the thermal stability of aluminum-palladium (Al-Pd) core/shell nanoparticles with a varying shell thickness of 5, 6, and 7 Å, respectively. The classic molecular dynamics (MD) simulations are performed in order to investigate the effects of the shell thickness on the ignition mechanism and subsequent energetic processes of these nanoparticles. The histograms of temperature change and structural evolution clearly show the inhibition role of the Pd shell during ignition. While the nanoparticle with a thicker shell is more thermally stable and hence requires more excess energy, stored as the potential energy of the nanoparticle and provided through numerically heating, to initiate the thermite reaction, a higher adiabatic temperature can be produced from this nanoparticle, thanks to its greater content of Pd. The two-stage thermite reactions are discussed with their activation energy based on the energy balance processes during MD heating and production. Analyses of the simulation results reveal that the inner pressure of the core-shell nanoparticle increases with both temperature and the absorbed thermal energy during heating, which may result in a breakup of the Pd shell.
Zone heated diesel particulate filter electrical connection
Gonze, Eugene V.; Paratore, Jr., Michael J.
2010-03-30
An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.
Nuclear shapes: Quest for triaxiality in 86Ge and the shape of 98Zr
NASA Astrophysics Data System (ADS)
Werner, V.; Lettmann, M.; Lizarazo, C.; Witt, W.; Cline, D.; Carpenter, M.; Doornenbal, P.; Obertelli, A.; Pietralla, N.; Savard, G.; Söderström, P.-A.; Wu, C.-Y.; Zhu, S.
2018-05-01
The region of neutron-rich nuclei above the N = 50 magic neutron shell closure encompasses a rich variety of nuclear structure, especially shapeevolutionary phenomena. This can be attributed to the complexity of sub-shell closures, their appearance and disappearance in the region, such as the N = 56 sub shell or Z = 40 for protons. Structural effects reach from a shape phase transition in the Zr isotopes, over shape coexistence between spherical, prolate, and oblate shapes, to possibly rigid triaxial deformation. Recent experiments in this region and their main physics viewpoints are summarized.
The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core
NASA Astrophysics Data System (ADS)
Davies, C. J.; Mound, J. E.
2017-12-01
Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.
Reversible patterning of spherical shells through constrained buckling
NASA Astrophysics Data System (ADS)
Marthelot, J.; Brun, P.-T.; Jiménez, F. López; Reis, P. M.
2017-07-01
Recent advances in active soft structures envision the large deformations resulting from mechanical instabilities as routes for functional shape morphing. Numerous such examples exist for filamentary and plate systems. However, examples with double-curved shells are rarer, with progress hampered by challenges in fabrication and the complexities involved in analyzing their underlying geometrical nonlinearities. We show that on-demand patterning of hemispherical shells can be achieved through constrained buckling. Their postbuckling response is stabilized by an inner rigid mandrel. Through a combination of experiments, simulations, and scaling analyses, our investigation focuses on the nucleation and evolution of the buckling patterns into a reticulated network of sharp ridges. The geometry of the system, namely, the shell radius and the gap between the shell and the mandrel, is found to be the primary ingredient to set the surface morphology. This prominence of geometry suggests a robust, scalable, and tunable mechanism for reversible shape morphing of elastic shells.
Sinha, Tanur; Ahmaruzzaman, M
2015-09-01
The common household material, egg shell of Anas platyrhynchos is utilized for the synthesis of Silver and Gold-Silver core shell nanoparticles using greener, environment friendly and economic way. The egg shell extracts were acting as a stabilizing and reducing agents. This method avoids the use of external reducing and stabilizing agents, templates and solvents. The effects of various reaction parameters, such as reaction temperature, concentration in the formation of nanoparticles have also been investigated. The compositional abundance of gelatin may be envisaged for the effective reductive as well as stabilizing potency. The mechanisms for the formation of NPs have also been presented. The synthesized Ag NPs formed were predominantly spherical in nature with an average size of particles in the range of 6-26 nm. While, Au-Ag core shell nanoparticles formed were spherical and oval shaped, within a narrow size spectrum of 9-18 nm. Both the Ag NPs Au-and Ag core shell nanoparticles showed characteristic Bragg's reflection planes of fcc structure and surface plasmon resonance at 430 nm and 365 nm, respectively. The NPs were utilized for the removal of toxic and hazardous dyes, such as Rose Bengal, Methyl Violet 6 B and Methylene Blue from aqueous phase. Approximately 98.2%, 98.4% and 97% degradations of Rose Bengal, Methyl Violet 6 B, and Methylene Blue were observed with Ag NPs, while the percentage degradation of these dyes was 97.3%, 97.6% and 96% with Au-Ag NPs, respectively. Therefore, the present study has opened up an innovative way for synthesizing Ag NPs and Au-Ag bimetallic nanostructures of different morphologies and sizes involving the utilization of egg shell extract. The high efficiency of the NPs as photocatalysts has opened a promising application for the removal of hazardous dyes from the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.
Tidal dissipation in the subsurface ocean of Enceladus
NASA Astrophysics Data System (ADS)
Matsuyama, I.; Hay, H.; Nimmo, F.; Kamata, S.
2017-12-01
Icy satellites of the outer solar system have emerged as potential habitable worlds due to the presence of subsurface oceans. As a long-term energy source, tidal heating in these oceans can influence the survivability of subsurface oceans, and the thermal, rotational, and orbital evolution of these satellites. Additionally, the spatial and temporal variation of tidal heating has implications for the interior structure and spacecraft observations. Previous models for dissipation in thin oceans are not generally applicable to icy satellites because either they ignore the presence of an overlying solid shell or use a thin shell membrane approximation. We present a new theoretical treatment for tidal dissipation in thin oceans with overlying shells of arbitrary thickness and apply it to Enceladus. The shell's resistance to ocean tides increases with shell thickness, reducing tidal dissipation as expected. Both the magnitude of energy dissipation and the resonant ocean thicknesses decrease as the overlying shell thickness increases, as previously shown using a membrane approximation. In contrast to previous work based on the traditional definition of the tidal quality factor, Q, our new definition is consistent with higher energy dissipation for smaller Q, and introduces a lower limit on Q. The dissipated power and tides are not in phase with the forcing tidal potential due to the delayed ocean response. The phase lag depends on the Rayleigh friction coefficient and ocean and shell thicknesses, which implies that phase lag observations can be used to constrain these parameters. Eccentricity heating produces higher dissipation near the poles, while obliquity heating produces higher dissipation near the equator, in contrast to the dissipation patterns in the shell. The time-averaged surface distribution of tidal heating can generate lateral shell thickness variations, providing an additional constraint on the Rayleigh friction coefficient. Explaining the endogenic power radiated from the south polar terrain requires shell thicknesses smaller than about 1 km, a value that is not consistent with recent libration, gravity and topography constraints.
Numerical study on microbubble-enhanced heating for various parameters in EUS-FUS
NASA Astrophysics Data System (ADS)
Okita, Kohei; Maezawa, Miyuki; Takagi, Shu; Matsumoto, Yoichiro
2012-11-01
Endoscopic ultrasonography guided focused ultrasound surgery (EUS-FUS) have been developed as a less-invasive treatment for pancreatic cancer. In the present study, microbubble-enhanced heating for various parameters in EUS-FUS is investigated numerically. Mass and momentum equations for bubbly mixture are solved to reproduce the propagation of ultrasound of 4.8MHz through the gel containing microbubbles as Sonazoid®. The dynamics of bubble is governed by the equation which considers the elasticity of both shell and surrounding media. Additionally, the heat equation with the time averaged heat source is solved to obtain a temperature distribution. The basic equations are discretized by the 6th-order finite difference method and developed based on FDTD method. The mixture and bubbles are coupled by Euler-Lagrange method. As the results, the temperature around the target increased due to the microbubble oscillation with increasing the initial void fraction fG0 from 10-5 to 10-4%. However, at fG0=10-3%, ultrasounds were too attenuated to heat the target. The heating region moved from the target to the transducer side. By comparing the results with and without shell, the shell of bubble induced the heating around focus. This is because the decrease of the attenuation due to the elasticity of the shell and the increase of the viscous dissipation rate due to the viscosity of the shell.
NASA Astrophysics Data System (ADS)
Selvi, N.; Sankar, S.; Dinakaran, K.
2014-12-01
Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.
Supercontinent cycles, true polar wander, and very long-wavelength mantle convection
NASA Astrophysics Data System (ADS)
Zhong, Shijie; Zhang, Nan; Li, Zheng-Xiang; Roberts, James H.
2007-09-01
We show in this paper that mobile-lid mantle convection in a three-dimensional spherical shell with observationally constrained mantle viscosity structure, and realistic convective vigor and internal heating rate is characterized by either a spherical harmonic degree-1 planform with a major upwelling in one hemisphere and a major downwelling in the other hemisphere when continents are absent, or a degree-2 planform with two antipodal major upwellings when a supercontinent is present. We propose that due to modulation of continents, these two modes of mantle convection alternate within the Earth's mantle, causing the cyclic processes of assembly and breakup of supercontinents including Rodinia and Pangea in the last 1 Ga. Our model suggests that the largely degree-2 structure for the present-day mantle with the Africa and Pacific antipodal superplumes, is a natural consequence of this dynamic process of very long-wavelength mantle convection interacting with supercontinent Pangea. Our model explains the basic features of true polar wander (TPW) events for Rodinia and Pangea including their equatorial locations and large variability of TPW inferred from paleomagnetic studies. Our model also suggests that TPW is expected to be more variable and large during supercontinent assembly, but small after a supercontinent acquires its equatorial location and during its subsequent dispersal.
Hosseinbor, Ameer Pasha; Chung, Moo K; Wu, Yu-Chien; Alexander, Andrew L
2011-01-01
The estimation of the ensemble average propagator (EAP) directly from q-space DWI signals is an open problem in diffusion MRI. Diffusion spectrum imaging (DSI) is one common technique to compute the EAP directly from the diffusion signal, but it is burdened by the large sampling required. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed. One, in particular, is Diffusion Propagator Imaging (DPI) which is based on the Laplace's equation estimation of diffusion signal for each shell acquisition. Viewed intuitively in terms of the heat equation, the DPI solution is obtained when the heat distribution between temperatuere measurements at each shell is at steady state. We propose a generalized extension of DPI, Bessel Fourier Orientation Reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition. That is, the heat distribution between shell measurements is no longer at steady state. In addition to being analytical, the BFOR solution also includes an intrinsic exponential smootheing term. We illustrate the effectiveness of the proposed method by showing results on both synthetic and real MR datasets.
Externally triggered microcapsules
NASA Technical Reports Server (NTRS)
Mosier, Benjamin (Inventor); Morrison, Dennis R. (Inventor)
2011-01-01
Disclosed are microcapsules comprising a polymer shell enclosing one or more immiscible liquid phases in which a drug or drug precursor are contained in a liquid phase. The microparticles also contain magnetic particles that can be heated by application of an external magnetic field and thus heated to a predetermined Curie temperature. Heating of the particles melts the polymer shell and releases the drug without causing heating of surrounding tissues.
Sayell, E.H.
1973-10-23
A radioisotopic heat source is described which includes a core of heat productive, radioisotopic material, an impact resistant layer of graphite surrounding said core, and a shell of iridium metal intermediate the core and the impact layer. The source may also include a compliant mat of iridium between the core and the iridium shell, as well as an outer covering of iridium metal about the entire heat source. (Official Gazette)
Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K
2018-06-01
In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.
Cheng, Jian; Deriche, Rachid; Jiang, Tianzi; Shen, Dinggang; Yap, Pew-Thian
2014-11-01
Spherical Deconvolution (SD) is commonly used for estimating fiber Orientation Distribution Functions (fODFs) from diffusion-weighted signals. Existing SD methods can be classified into two categories: 1) Continuous Representation based SD (CR-SD), where typically Spherical Harmonic (SH) representation is used for convenient analytical solutions, and 2) Discrete Representation based SD (DR-SD), where the signal profile is represented by a discrete set of basis functions uniformly oriented on the unit sphere. A feasible fODF should be non-negative and should integrate to unity throughout the unit sphere S(2). However, to our knowledge, most existing SH-based SD methods enforce non-negativity only on discretized points and not the whole continuum of S(2). Maximum Entropy SD (MESD) and Cartesian Tensor Fiber Orientation Distributions (CT-FOD) are the only SD methods that ensure non-negativity throughout the unit sphere. They are however computational intensive and are susceptible to errors caused by numerical spherical integration. Existing SD methods are also known to overestimate the number of fiber directions, especially in regions with low anisotropy. DR-SD introduces additional error in peak detection owing to the angular discretization of the unit sphere. This paper proposes a SD framework, called Non-Negative SD (NNSD), to overcome all the limitations above. NNSD is significantly less susceptible to the false-positive peaks, uses SH representation for efficient analytical spherical deconvolution, and allows accurate peak detection throughout the whole unit sphere. We further show that NNSD and most existing SD methods can be extended to work on multi-shell data by introducing a three-dimensional fiber response function. We evaluated NNSD in comparison with Constrained SD (CSD), a quadratic programming variant of CSD, MESD, and an L1-norm regularized non-negative least-squares DR-SD. Experiments on synthetic and real single-/multi-shell data indicate that NNSD improves estimation performance in terms of mean difference of angles, peak detection consistency, and anisotropy contrast between isotropic and anisotropic regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Gridless particle technique for the Vlasov-Poisson system in problems with high degree of symmetry
NASA Astrophysics Data System (ADS)
Boella, E.; Coppa, G.; D'Angola, A.; Peiretti Paradisi, B.
2018-03-01
In the paper, gridless particle techniques are presented in order to solve problems involving electrostatic, collisionless plasmas. The method makes use of computational particles having the shape of spherical shells or of rings, and can be used to study cases in which the plasma has spherical or axial symmetry, respectively. As a computational grid is absent, the technique is particularly suitable when the plasma occupies a rapidly changing space region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang Yazhuo; Hu Jun; Liu Honglai, E-mail: yazhuoshang@ecust.edu.c
Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 deg. C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centeredmore » at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail. - Graphical abstract: A proposed growth mechanism of large scale hollow ZnO. Bubbles provide the aggregation center for ionic liquids that leads to the formation of hollow Zn particle-dotted shells, buoyancy promotes shells to go upward, the breach occurs when shells are subjected to overpressure.« less
Coulomb energy of uniformly charged spheroidal shell systems.
Jadhao, Vikram; Yao, Zhenwei; Thomas, Creighton K; de la Cruz, Monica Olvera
2015-03-01
We provide exact expressions for the electrostatic energy of uniformly charged prolate and oblate spheroidal shells. We find that uniformly charged prolate spheroids of eccentricity greater than 0.9 have lower Coulomb energy than a sphere of the same area. For the volume-constrained case, we find that a sphere has the highest Coulomb energy among all spheroidal shells. Further, we derive the change in the Coulomb energy of a uniformly charged shell due to small, area-conserving perturbations on the spherical shape. Our perturbation calculations show that buckling-type deformations on a sphere can lower the Coulomb energy. Finally, we consider the possibility of counterion condensation on the spheroidal shell surface. We employ a Manning-Oosawa two-state model approximation to evaluate the renormalized charge and analyze the behavior of the equilibrium free energy as a function of the shell's aspect ratio for both area-constrained and volume-constrained cases. Counterion condensation is seen to favor the formation of spheroidal structures over a sphere of equal area for high values of shell volume fractions.
Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.
Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa
2017-04-26
As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.
Steady state model for the thermal regimes of shells of airships and hot air balloons
NASA Astrophysics Data System (ADS)
Luchev, Oleg A.
1992-10-01
A steady state model of the temperature regime of airships and hot air balloons shells is developed. The model includes three governing equations: the equation of the temperature field of airships or balloons shell, the integral equation for the radiative fluxes on the internal surface of the shell, and the integral equation for the natural convective heat exchange between the shell and the internal gas. In the model the following radiative fluxes on the shell external surface are considered: the direct and the earth reflected solar radiation, the diffuse solar radiation, the infrared radiation of the earth surface and that of the atmosphere. For the calculations of the infrared external radiation the model of the plane layer of the atmosphere is used. The convective heat transfer on the external surface of the shell is considered for the cases of the forced and the natural convection. To solve the mentioned set of the equations the numerical iterative procedure is developed. The model and the numerical procedure are used for the simulation study of the temperature fields of an airship shell under the forced and the natural convective heat transfer.
NASA Astrophysics Data System (ADS)
Kabeel, A. E.; Abdelgaied, Mohamed
2016-08-01
Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.
NASA Astrophysics Data System (ADS)
Hruba, J.; Kletetschka, G.
2017-12-01
Heat transport across the ice shell of Europa controls the thermal evolution of its interior. Such process involves energy sources that drive ice resurfacing (1). More importantly, heat flux through the ice shell controls the thickness of the ice (2), that is poorly constrained between 1 km to 30+ km (3). Thin ice would allow ocean water to be affected by radiation from space. Thick ice would limit the heat ocean sources available to the rock-ocean interface at the ocean's bottom due to tidal dissipation and potential radioactive sources. The heat flux structures control the development of geometrical configurations on the Europa's surface like double ridges, ice diapirs, chaos regions because the rheology of ice is temperature dependent (4).Analysis of temperature record of growing ice cover over a pond and water below revealed the importance of solar radiation during the ice growth. If there is no snow cover, a sufficient amount of solar radiation can penetrate through the ice and heat the water below. Due to temperature gradient, there is a heat flux from the water to the ice (Qwi), which may reduce ice growth at the bottom. Details and variables that constrain the heat flux through the ice can be utilized to estimate the ice thickness. We show with this analog analysis provides the forth step towards measurement strategy on the surface of Europa. We identify three types of thermal profiles (5) and fourth with combination of all three mechanisms.References:(1) Barr, A. C., A. P. Showman, 2009, Heat transfer in Europa's icy shell, University of Arizona Press, p. 405-430.(2) Ruiz, J., J. A. Alvarez-Gómez, R. Tejero, and N. Sánchez, 2007, Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies: Icarus, v. 190, p. 145-154.(3) Billings, S. E., S. A. Kattenhorn, 2005, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges: Icarus, v. 177, p. 397-412.(4) Quick, L. C., B. D. Marsh, 2016, Heat transfer of ascending cryomagma on Europa: Journal of Volcanology and Geothermal Research, v. 319, p. 66-77.(5) Mitri, G., A. P. Showman, 2005, Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa: Icarus, v. 177, p. 447-460.
NASA Astrophysics Data System (ADS)
Wang, Qianxi; Manmi, Kawa; Calvisi, Michael L.
2015-02-01
Ultrasound contrast agents (UCAs) are microbubbles stabilized with a shell typically of lipid, polymer, or protein and are emerging as a unique tool for noninvasive therapies ranging from gene delivery to tumor ablation. While various models have been developed to describe the spherical oscillations of contrast agents, the treatment of nonspherical behavior has received less attention. However, the nonspherical dynamics of contrast agents are thought to play an important role in therapeutic applications, for example, enhancing the uptake of therapeutic agents across cell membranes and tissue interfaces, and causing tissue ablation. In this paper, a model for nonspherical contrast agent dynamics based on the boundary integral method is described. The effects of the encapsulating shell are approximated by adapting Hoff's model for thin-shell, spherical contrast agents. A high-quality mesh of the bubble surface is maintained by implementing a hybrid approach of the Lagrangian method and elastic mesh technique. The numerical model agrees well with a modified Rayleigh-Plesset equation for encapsulated spherical bubbles. Numerical analyses of the dynamics of UCAs in an infinite liquid and near a rigid wall are performed in parameter regimes of clinical relevance. The oscillation amplitude and period decrease significantly due to the coating. A bubble jet forms when the amplitude of ultrasound is sufficiently large, as occurs for bubbles without a coating; however, the threshold amplitude required to incite jetting increases due to the coating. When a UCA is near a rigid boundary subject to acoustic forcing, the jet is directed towards the wall if the acoustic wave propagates perpendicular to the boundary. When the acoustic wave propagates parallel to the rigid boundary, the jet direction has components both along the wave direction and towards the boundary that depend mainly on the dimensionless standoff distance of the bubble from the boundary. In all cases, the jet directions for the coated and uncoated bubble are similar but the jet width and jet velocity are smaller for a coated bubble. The effects of shell thickness and shell viscosity are analyzed and determined to affect the bubble dynamics, including jet development.
Sasidharan, Manickam; Nakashima, Kenichi
2014-01-21
Hollow, inorganic nanoscale capsules have many applications, from the delivery of encapsulated products for cosmetic and medicinal purposes to use as lightweight composite materials. Early methods for producing inorganic hollow nanospheres using hard templates suffered from low product yield and shell weakness upon template removal. In the past decade, researchers have turned to amphiphilic copolymers to synthesize hollow nanostructures and ordered mesoporous materials. Amphiphilic molecules self-assemble into well-defined nanostructures including spherical micelles. Micelles formed from simple, two-component AB diblock and ABA triblock copolymers, however, have been difficult to work with to construct inorganic hollow nanoparticles, because the corona of the micelle, which serves as the template for the shell, becomes unstable as it absorbs inorganic shell precursors, causing aggregates to form. Newly developed, three-component ABC triblock copolymers may solve this problem. They provide nanoassemblies with more diverse morphological and functional features than AB diblock and ABA triblock copolymers. Micelles formed from ABC triblock copolymers in selective solvents that dissolve only one or two of the blocks provide templates for these improved nanoassemblies. By manipulating individual polymer blocks, one can "encode" additional features at the molecular level. For instance, modifying the functional groups or substitution patterns of the blocks allows better morphological and size control. Insights into polymer self-assembly gained over years of work in our group have set the stage to systematically engineer inorganic spherical hollow nanoparticles using ABC triblock copolymers. In this Account, we report our recent progress in producing diverse, inorganic hollow spherical nanospheres from asymmetric triblock copolymeric micelles with core-shell-corona architecture as templates. We discuss three classes of polymeric micelles-with neutral, cationic, and anionic shell structures-that allow fabrication of a variety of hollow nanoparticles. Importantly, we synthesized all of these particles in water, avoiding use of hazardous organic solvents. We have designed the precursor of the inorganic material to be selectively sorbed into the shell domain, leaving the corona free from the inorganic precursors that would destabilize the micelle. The core, meanwhile, is the template for the formation of the hollow void. By rationally tailoring experimental parameters, we readily and selectively obtained a variety of hollow nanoparticles including silica, hybrid silicas, metal-oxides, metal-carbonates, metal-sulfates, metal-borates, and metal-phosphates. Finally, we highlight the state-of-the-art techniques we used to characterize these nanoparticles, and describe experiments that demonstrate the potential of these hollow particles in drug delivery, and as anode and cathode materials for lithium-ion batteries.
Hosseinbor, A. Pasha; Chung, Moo K.; Wu, Yu-Chien; Alexander, Andrew L.
2012-01-01
The ensemble average propagator (EAP) describes the 3D average diffusion process of water molecules, capturing both its radial and angular contents. The EAP can thus provide richer information about complex tissue microstructure properties than the orientation distribution function (ODF), an angular feature of the EAP. Recently, several analytical EAP reconstruction schemes for multiple q-shell acquisitions have been proposed, such as diffusion propagator imaging (DPI) and spherical polar Fourier imaging (SPFI). In this study, a new analytical EAP reconstruction method is proposed, called Bessel Fourier orientation reconstruction (BFOR), whose solution is based on heat equation estimation of the diffusion signal for each shell acquisition, and is validated on both synthetic and real datasets. A significant portion of the paper is dedicated to comparing BFOR, SPFI, and DPI using hybrid, non-Cartesian sampling for multiple b-value acquisitions. Ways to mitigate the effects of Gibbs ringing on EAP reconstruction are also explored. In addition to analytical EAP reconstruction, the aforementioned modeling bases can be used to obtain rotationally invariant q-space indices of potential clinical value, an avenue which has not yet been thoroughly explored. Three such measures are computed: zero-displacement probability (Po), mean squared displacement (MSD), and generalized fractional anisotropy (GFA). PMID:22963853
Resistance of nanobacteria isolated from urinary and kidney stones to broad-spectrum antibiotics.
Sardarabadi, Hadi; Mashreghi, Mansour; Jamialahmadi, Khadijeh; Dianat, Tahere
2014-08-01
Nanoscopic life forms called Nanobacteria or calcifying nanoparticles (CNP) are unconventional agents. These novel organisms are very small (0.1 to 0.5 microns) and possess unusual properties such as high resistance to heat and routine antimicrobial agents. Nanobacteria are 100 times smaller than bacteria and protected by a shell of apatite, so they could be as candidate for emerging and progress of in vivo pathological calcification. In this study, the inhibitory effect of broad-spectrum antibiotics on growth of these new forms of life has been investigated. Powdered urinary and kidney stones were demineralized with HCl and neutralized with appropriate buffers and became filtered. Finally suspension was incubated in DMEM medium with Fetal Bovine Serum (FBS) and broad-spectrum antibiotics (100U/ml for penicillin and 100μg/ml for streptomycin) for 60 days. In the presence of broad-spectrum antibiotics, Scanning Electron Micrographs (SEM) showed a spherical shape of these nanobacteria. Also, Energy Dispersive X-ray spectroscopy (EDS) showed a pick for calcium and phosphor. Transmission Electron Microscopy (TEM) results illustrated cover around the nanobacteria. The growth of calcifying nanoparticles after adding the broad-spectrum antibiotics may be due to their apatite hard shells supporting them against penetration of the antibiotics.
NASA Astrophysics Data System (ADS)
An, Chongwei; Ding, Penghui; Ye, Baoyun; Geng, Xiaoheng; Wang, Jingyu
2017-03-01
Carbon-coated copper nanoparticles (CCNPs) were prepared by initiating a high-density charge pressed with a mixture of microcrystalline wax, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and copper nitrate hydrate (Cu(NO3)2.3H2O) in an explosion vessel filled with nitrogen gas. The detonation products were characterized by transmission electron microcopy (TEM), high resolution transmission electron microcopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy. The effects of CCNPs on thermal decomposition of ammonium perchlorate (AP) were also investigated by differential scanning calorimeter (DSC). Results indicated that the detonation products were spherical, 25-40 nm in size, and had an apparent core-shell structure. In this structure, the carbon shell was 3-5 nm thick and mainly composed of graphite, C8 (a kind of carbyne), and amorphous carbon. When 5 wt.% CCNPs was mixed with 95 wt.% AP, the high-temperature decomposition peak of AP decreased by 95.97, 96.99, and 96.69 °Cat heating rates of 5, 10, and 20 °C/min, respectively. Moreover, CCNPs decreased the activation energy of AP as calculated through Kissinger's method by 25%, which indicated outstanding catalysis for the thermal decomposition of AP.
The NIF x-ray spectrometer calibration campaign at Omega.
Pérez, F; Kemp, G E; Regan, S P; Barrios, M A; Pino, J; Scott, H; Ayers, S; Chen, H; Emig, J; Colvin, J D; Bedzyk, M; Shoup, M J; Agliata, A; Yaakobi, B; Marshall, F J; Hamilton, R A; Jaquez, J; Farrell, M; Nikroo, A; Fournier, K B
2014-11-01
The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the Omega laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2-18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.
Iron Oxide Nanospheres and Nanocubes for Magnetic Hyperthermia Therapy: A Comparative Study
NASA Astrophysics Data System (ADS)
Nemati, Z.; Das, R.; Alonso, J.; Clements, E.; Phan, M. H.; Srikanth, H.
2017-06-01
Improving the heating capacity of magnetic nanoparticles (MNPs) for hyperthermia therapy is an important but challenging task. Through a comparative study of the inductive heating properties of spherical and cubic Fe3O4 MNPs with two distinct average volumes (˜7000 nm3 and 80,000 nm3), we demonstrate that, for small size (˜7000 nm3), the cubic MNPs heat better compared with the spherical MNPs. However, the opposite trend is observed for larger size (˜80,000 nm3). The improvement in heating efficiency in cubic small-sized MNPs (˜7000 nm3) can be attributed to enhanced anisotropy and the formation of chain-like aggregates, whereas the decrease of the heating efficiency in cubic large-sized MNPs (˜80,000 nm3) has been attributed to stronger aggregation of particles. Physical motion is shown to contribute more to the heating efficiency in case of spherical than cubic MNPs, when dispersed in water. These findings are of crucial importance in understanding the role of shape anisotropy and optimizing the heating response of magnetic nano-structures for advanced hyperthermia.
Laser Heating of the Core-Shell Nanowires
NASA Astrophysics Data System (ADS)
Astefanoaei, Iordana; Dumitru, Ioan; Stancu, Alexandru
2016-12-01
The induced thermal stress in a heating process is an important parameter to be known and controlled in the magnetization process of core-shell nanowires. This paper analyses the stress produced by a laser heating source placed at one end of a core-shell type structure. The thermal field was computed with the non-Fourier heat transport equation using a finite element method (FEM) implemented in Comsol Multiphysics. The internal stresses are essentially due to thermal gradients and different expansion characteristics of core and shell materials. The stress values were computed using the thermo elastic formalism and are depending on the laser beam parameters (spot size, power etc.) and system characteristics (dimensions, thermal characteristics). Stresses in the GPa range were estimated and consequently we find that the magnetic state of the system can be influenced significantly. A shell material as the glass which is a good thermal insulator induces in the magnetic core, the smaller stresses and consequently the smaller magnetoelastic energy. These results lead to a better understanding of the switching process in the magnetic materials.
Shokati, Elnaz; Granpayeh, Nosrat; Danaeifar, Mohammad
2017-04-10
The ultrathin graphene metasurface is proposed as a mantle cloak to achieve wideband tunable scattering reduction around the spherical (three-dimensional) objects. The cloaking shell over the metallic or dielectric sphere is structured by a periodic array of graphene nanodisks that operate at infrared frequencies. By using the polarizability of the graphene nanodisks and equivalent conductivity method, the metasurface reactance is obtained. To achieve the cloaking shell for both dielectric and conducting spheres, the metasurface reactance as a function of nanodisks dimensions, graphene's Fermi energy, and permittivity of the surrounding areas can be tuned from the inductive to capacitive situation. Inhomogeneous metasurfaces including graphene nanodisks with different radii provide wideband invisibility due to extra resonances. We could significantly increase the 3-dB bandwidth more than the homogenous case by simpler realistic designs compared to the multi-layer structures. The analytical results are confirmed with full-wave numerical simulations.
Quantification of Processing Effects on Filament Wound Pressure Vessels
NASA Technical Reports Server (NTRS)
Aiello, Robert A.; Chamis, Christos C.
1999-01-01
A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the C C! end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be sued to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament would pressure vessels of all types of shells-of-revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.
Quantification of Processing Effects on Filament Wound Pressure Vessels. Revision
NASA Technical Reports Server (NTRS)
Aiello, Robert A.; Chamis, Christos C.
2002-01-01
A computational simulation procedure is described which is designed specifically for the modeling and analysis of filament wound pressure vessels. Cylindrical vessels with spherical or elliptical end caps can be generated automatically. End caps other than spherical or elliptical may be modeled by varying circular sections along the x-axis according to the end cap shape. The finite element model generated is composed of plate type quadrilateral shell elements on the entire vessel surface. This computational procedure can also be used to generate grid, connectivity and material cards (bulk data) for component parts of a larger model. These bulk data are assigned to a user designated file for finite element structural/stress analysis of composite pressure vessels. The procedure accommodates filament wound pressure vessels of all types of shells-of -revolution. It has provisions to readily evaluate initial stresses due to pretension in the winding filaments and residual stresses due to cure temperature.
Humpal, Harold H.
1987-01-01
A mirror mount (10) is provided that allows free pitch, yaw and roll motion of the mirror (28) while keeping the location of a point (56) on the surface of the mirror (28) fixed in the rest frame of reference of the mount (10). Yaw movement is provided by two yaw cylinders (30,32) that are bearing (52) mounted to provide rotation. Pitch and roll motion is provided by a spherically annular shell (42) that is air bearing (72,74) mounted to move between a clamp (60) and an upper pedestal bearing (44). The centers of curvature of the spherical surfaces of the shell (42) lie upon the point (56). Pitch motion and roll motion are separately and independently imparted to mirror (28) by a pair of pitch paddles (34) and a pair of roll paddles (36) that are independently and separately moved by control rods (76,80) driven by motors (78,82).
NASA Technical Reports Server (NTRS)
Santoro, R. T.; Claiborne, H. C.; Alsmiller, R. G., Jr.
1972-01-01
Calculations have been made using the nucleon-meson transport code NMTC to estimate the absorbed dose and dose equivalent distributions in astronauts inside space vehicles bombarded by solar flare and Van Allen protons. A spherical shell shield of specific radius and thickness with a 30-cm-diam. tissue ball at the geometric center was used to simulate the spacecraft-astronaut configuration. The absorbed dose and the dose equivalent from primary protons, secondary protons, heavy nuclei, charged pions, muons, photons, and positrons and electrons are given as a function of depth in the tissue phantom. Results are given for solar flare protons with a characteristic rigidity of 100 MV and for Van Allen protons in a 240-nautical-mile circular orbit at 30 degree inclination angle incident on both 20-g/sq cm-thick aluminum and polyethylene spherical shell shields.
NASA Astrophysics Data System (ADS)
Kiranda, Hanan Karimah; Mahmud, Rozi; Abubakar, Danmaigoro; Zakaria, Zuki Abubakar
2018-01-01
The evolution of nanomaterial in science has brought about a growing increase in nanotechnology, biomedicine, and engineering fields. This study was aimed at fabrication and characterization of conjugated gold-cockle shell-derived calcium carbonate nanoparticles (Au-CSCaCO3NPs) for biomedical application. The synthetic technique employed used gold nanoparticle citrate reduction method and a simple precipitation method coupled with mechanical use of a Programmable roller-ball mill. The synthesized conjugated nanomaterial was characterized for its physicochemical properties using transmission electron microscope (TEM), field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR). However, the intricacy of cellular mechanisms can prove challenging for nanomaterial like Au-CSCaCO3NPs and thus, the need for cytotoxicity assessment. The obtained spherical-shaped nanoparticles (light-green purplish) have an average diameter size of 35 ± 16 nm, high carbon and oxygen composition. The conjugated nanomaterial, also possesses a unique spectra for aragonite polymorph and carboxylic bond significantly supporting interactions between conjugated nanoparticles. The negative surface charge and spectra absorbance highlighted their stability. The resultant spherical shaped conjugated Au-CSCaCO3NPs could be a great nanomaterial for biomedical applications.
Electromagnetic δ -function sphere
NASA Astrophysics Data System (ADS)
Parashar, Prachi; Milton, Kimball A.; Shajesh, K. V.; Brevik, Iver
2017-10-01
We develop a formalism to extend our previous work on the electromagnetic δ -function plates to a spherical surface. The electric (λe) and magnetic (λg) couplings to the surface are through δ -function potentials defining the dielectric permittivity and the diamagnetic permeability, with two anisotropic coupling tensors. The formalism incorporates dispersion. The electromagnetic Green's dyadic breaks up into transverse electric and transverse magnetic parts. We derive the Casimir interaction energy between two concentric δ -function spheres in this formalism and show that it has the correct asymptotic flat-plate limit. We systematically derive expressions for the Casimir self-energy and the total stress on a spherical shell using a δ -function potential, properly regulated by temporal and spatial point splitting, which are different from the conventional temporal point splitting. In the strong-coupling limit, we recover the usual result for the perfectly conducting spherical shell but in addition there is an integrated curvature-squared divergent contribution. For finite coupling, there are additional divergent contributions; in particular, there is a familiar logarithmic divergence occurring in the third order of the uniform asymptotic expansion that renders it impossible to extract a unique finite energy except in the case of an isorefractive sphere, which translates into λg=-λe.
Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties.
Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei
2018-05-04
In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.
Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties
NASA Astrophysics Data System (ADS)
Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei
2018-05-01
In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.
Dynamos in asymptotic-giant-branch stars as the origin of magnetic fields shaping planetary nebulae.
Blackman, E G; Frank, A; Markiel, J A; Thomas, J H; Van Horn, H M
2001-01-25
Planetary nebulae are thought to be formed when a slow wind from the progenitor giant star is overtaken by a subsequent fast wind generated as the star enters its white dwarf stage. A shock forms near the boundary between the winds, creating the relatively dense shell characteristic of a planetary nebula. A spherically symmetric wind will produce a spherically symmetric shell, yet over half of known planetary nebulae are not spherical; rather, they are elliptical or bipolar in shape. A magnetic field could launch and collimate a bipolar outflow, but the origin of such a field has hitherto been unclear, and some previous work has even suggested that a field could not be generated. Here we show that an asymptotic-giant-branch (AGB) star can indeed generate a strong magnetic field, having as its origin a dynamo at the interface between the rapidly rotating core and the more slowly rotating envelope of the star. The fields are strong enough to shape the bipolar outflows that produce the observed bipolar planetary nebulae. Magnetic braking of the stellar core during this process may also explain the puzzlingly slow rotation of most white dwarf stars.
Compact Q-balls and Q-shells in a scalar electrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arodz, H.; Lis, J.
2009-02-15
We investigate spherically symmetric nontopological solitons in electrodynamics with a scalar field self-interaction U{approx}|{psi}| taken from the complex signum-Gordon model. We find Q-balls for small absolute values of the total electric charge Q, and Q-shells when |Q| is large enough. In both cases the charge density exactly vanishes outside certain compact regions in the three-dimensional space. The dependence of the total energy E of small Q-balls on the total electric charge has the form E{approx}|Q|{sup 5/6}, while in the case of very large Q-shells, E{approx}|Q|{sup 7/6}.
NASA Astrophysics Data System (ADS)
Qureshi, M. Zubair Akbar; Ali, Kashif; Iqbal, M. Farooq; Ashraf, Muhammad; Ahmad, Shazad
2017-01-01
The numerical study of heat and mass transfer for an incompressible magnetohydrodynamics (MHD) nanofluid flow containing spherical shaped nanoparticles through a channel with moving porous walls is presented. Further, another endeavour is to study the effect of two types of fluids, namely the metallic nanofluid (Au + water) and metallic-oxides nanofluid (TiO2 + water) are studied. The phenomena of spherical metallic and metallic-oxides nanoparticles have been also mathematically modelled by using the Hamilton-Crosser model. The influence of the governing parameters on the flow, heat and mass transfer aspects of the problem is discussed. The outcome of the investigation may be beneficial to the application of biotechnology and industrial purposes. Numerical solutions for the velocity, heat and mass transfer rate at the boundary are obtained and analysed.
NASA Astrophysics Data System (ADS)
Mert, Suha Orçun; Reis, Alper
2016-06-01
Heat exchangers are used extensively in many industrial branches, primarily so in chemical and energy sectors. They also have important household usage as they are used in central and local heating systems. Any betterment on heat exchangers will serve greatly in preserving our already dwindling and costly energy resources. Strong approach of exergy analysis -which helps find out where the first steps should be taken in determining sources of inefficiencies and how to remedy them- will be used as a means to this end. The maximum useful work that can be harnessed from systems relationships with its environment is defined as exergy. In this study, the inlet and outlet flow rate values of fluids and temperature of hot stream both on shell and tube parts of a shell-tube heat exchange system have been inspected and their effects on the exergy efficiency of this thermal system have been analyzed. It is seen that the combination of high tube side inlet temperature, low shell side flow rate and high tube side flow rate are found to be the optimum for this experimental system with reaching 75, 65, and 32 % efficiencies respectively. Selecting operating conditions suitable to this behavior will help to increase the overall efficiency of shell-tube heat exchange systems and cause an increment in energy conservation.
Sarma, Dominik; Gawlitza, Kornelia; Rurack, Knut
2016-04-19
The need for rapid and high-throughput screening in analytical laboratories has led to significant growth in interest in suspension array technologies (SATs), especially with regard to cytometric assays targeting a low to medium number of analytes. Such SAT or bead-based assays rely on spherical objects that constitute the analytical platform. Usually, functionalized polymer or silica (SiO2) microbeads are used which each have distinct advantages and drawbacks. In this paper, we present a straightforward synthetic route to highly monodisperse SiO2-coated polystyrene core-shell (CS) beads for SAT with controllable architectures from smooth to raspberry- and multilayer-like shells by varying the molecular weight of poly(vinylpyrrolidone) (PVP), which was used as the stabilizer of the cores. The combination of both organic polymer core and a structurally controlled inorganic SiO2 shell in one hybrid particle holds great promises for flexible next-generation design of the spherical platform. The particles were characterized by electron microscopy (SEM, T-SEM, and TEM), thermogravimetry, flow cytometry, and nitrogen adsorption/desorption, offering comprehensive information on the composition, size, structure, and surface area. All particles show ideal cytometric detection patterns and facile handling due to the hybrid structure. The beads are endowed with straightforward modification possibilities through the defined SiO2 shells. We successfully implemented the particles in fluorometric SAT model assays, illustrating the benefits of tailored surface area which is readily available for small-molecule anchoring. Very promising assay performance was shown for DNA hybridization assays with quantification limits down to 8 fmol.
Proton-neutron sdg boson model and spherical-deformed phase transition
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu; Sugita, Michiaki
1988-12-01
The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.
Two-component dark-bright solitons in three-dimensional atomic Bose-Einstein condensates.
Wang, Wenlong; Kevrekidis, P G
2017-03-01
In the present work, we revisit two-component Bose-Einstein condensates in their fully three-dimensional (3D) form. Motivated by earlier studies of dark-bright solitons in the 1D case, we explore the stability of these structures in their fully 3D form in two variants. In one the dark soliton is planar and trapping a planar bright (disk) soliton. In the other case, a dark spherical shell soliton creates an effective potential in which a bright spherical shell of atoms is trapped in the second component. We identify these solutions as numerically exact states (up to a prescribed accuracy) and perform a Bogolyubov-de Gennes linearization analysis that illustrates that both structures can be dynamically stable in suitable intervals of sufficiently low chemical potentials. We corroborate this finding theoretically by analyzing the stability via degenerate perturbation theory near the linear limit of the system. When the solitary waves are found to be unstable, we explore their dynamical evolution via direct numerical simulations which, in turn, reveal wave forms that are more robust. Finally, using the SO(2) symmetry of the model, we produce multi-dark-bright planar or shell solitons involved in pairwise oscillatory motion.
Efficient color mixing through étendue conservation using freeform optics
NASA Astrophysics Data System (ADS)
Sorgato, Simone; Mohedano, Rubén.; Chaves, Julio; Cvetkovic, Aleksandra; Hernández, Maikel; Benitez, Pablo; Miñano, Juan C.; Thienpont, Hugo; Duerr, Fabian
2015-08-01
Today's SSL illumination market shows a clear trend to high flux packages with higher efficiency and higher CRI, realized by means of multiple color chips and phosphors. Such light sources require the optics to provide both near- and far-field color mixing. This design problem is particularly challenging for collimated luminaries, since traditional diffusers cannot be employed without enlarging the exit aperture and reducing brightness. Furthermore, diffusers compromise the light output ratio (efficiency) of the lamps to which they are applied. A solution, based on Köhler integration, consisting of a spherical cap comprising spherical microlenses on both its interior and exterior sides was presented in 2012. The diameter of this so-called Shell-Mixer was 3 times that of the chip array footprint. A new version of the Shell-Mixer, based on the Edge Ray Principle and conservation of etendue, where neither the outer shape of the cap nor the surfaces of the lenses are constrained to spheres or 2D Cartesian ovals will be shown in this work. The new shell is freeform, only twice as large as the original chip-array and equals the original model in terms of color uniformity, brightness and efficiency.
Rotational Splittings of Acoustic Modes in an Experimental Model of a Planetary Core
NASA Astrophysics Data System (ADS)
Adams, M. M.; Stone, D.; Lathrop, D. P.
2014-12-01
Planetary zonal flows can be probed in principle using the tools of helioseismology. We explore this technique using laboratory experiments where the measurement of zonal flows is also of geophysical relevance. The experiments are carried out in a device with a geometry similar to that of Earth's core. It consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter inner sphere. Air between the inner sphere and outer shell is used as the working fluid. A turbulent shear flow is driven in the air by independently rotating the inner sphere and outer shell. Acoustic modes are excited in the vessel with a speaker, and microphones are used to measure the rotational splittings of these modes. The radial profile of azimuthal velocities is inferred from these splittings, in an approach analogous to that used in helioseismology to determine solar velocity profiles. By varying the inner and outer rotation rates, different turbulent states can be investigated. Comparison is made to previous experimental investigations of turbulent spherical Couette flow. These experiments also serve as a test of this diagnostic, which may be used in the future in liquid sodium experiments, providing information on zonal flows in hydromagnetic experiments.
NASA Astrophysics Data System (ADS)
Błażejewski, Paweł; Marcinowski, Jakub
2017-06-01
Existing provisions leading to the assessment of the buckling resistance of pressurised spherical shells were published in the European Design Recommendations (EDR) [
A comprehensive alpha-heating model for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopherson, A. R.; Betti, R.; Bose, A.
In this paper, a comprehensive model is developed to study alpha-heating in inertially confined plasmas. It describes the time evolution of a central low-density hot spot confined by a compressible shell, heated by fusion alphas, and cooled by radiation and thermal losses. The model includes the deceleration, stagnation, and burn phases of inertial confinement fusion implosions, and is valid for sub-ignited targets with ≤10× amplification of the fusion yield from alpha-heating. The results of radiation-hydrodynamic simulations are used to derive realistic initial conditions and dimensionless parameters for the model. It is found that most of the alpha energy (~90%) producedmore » before bang time is deposited within the hot spot mass, while a small fraction (~10%) drives mass ablation off the inner shell surface and its energy is recycled back into the hot spot. Of the bremsstrahlung radiation emission, ~40% is deposited in the hot spot, ~40% is recycled back in the hot spot by ablation off the shell, and ~20% leaves the hot spot. We show here that the hot spot, shocked shell, and outer shell trajectories from this analytical model are in good agreement with simulations. Finally, a detailed discussion of the effect of alpha-heating on the hydrodynamics is also presented.« less
A comprehensive alpha-heating model for inertial confinement fusion
NASA Astrophysics Data System (ADS)
Christopherson, A. R.; Betti, R.; Bose, A.; Howard, J.; Woo, K. M.; Campbell, E. M.; Sanz, J.; Spears, B. K.
2018-01-01
A comprehensive model is developed to study alpha-heating in inertially confined plasmas. It describes the time evolution of a central low-density hot spot confined by a compressible shell, heated by fusion alphas, and cooled by radiation and thermal losses. The model includes the deceleration, stagnation, and burn phases of inertial confinement fusion implosions, and is valid for sub-ignited targets with ≤10 × amplification of the fusion yield from alpha-heating. The results of radiation-hydrodynamic simulations are used to derive realistic initial conditions and dimensionless parameters for the model. It is found that most of the alpha energy (˜90%) produced before bang time is deposited within the hot spot mass, while a small fraction (˜10%) drives mass ablation off the inner shell surface and its energy is recycled back into the hot spot. Of the bremsstrahlung radiation emission, ˜40% is deposited in the hot spot, ˜40% is recycled back in the hot spot by ablation off the shell, and ˜20% leaves the hot spot. We show here that the hot spot, shocked shell, and outer shell trajectories from this analytical model are in good agreement with simulations. A detailed discussion of the effect of alpha-heating on the hydrodynamics is also presented.
A comprehensive alpha-heating model for inertial confinement fusion
Christopherson, A. R.; Betti, R.; Bose, A.; ...
2018-01-08
In this paper, a comprehensive model is developed to study alpha-heating in inertially confined plasmas. It describes the time evolution of a central low-density hot spot confined by a compressible shell, heated by fusion alphas, and cooled by radiation and thermal losses. The model includes the deceleration, stagnation, and burn phases of inertial confinement fusion implosions, and is valid for sub-ignited targets with ≤10× amplification of the fusion yield from alpha-heating. The results of radiation-hydrodynamic simulations are used to derive realistic initial conditions and dimensionless parameters for the model. It is found that most of the alpha energy (~90%) producedmore » before bang time is deposited within the hot spot mass, while a small fraction (~10%) drives mass ablation off the inner shell surface and its energy is recycled back into the hot spot. Of the bremsstrahlung radiation emission, ~40% is deposited in the hot spot, ~40% is recycled back in the hot spot by ablation off the shell, and ~20% leaves the hot spot. We show here that the hot spot, shocked shell, and outer shell trajectories from this analytical model are in good agreement with simulations. Finally, a detailed discussion of the effect of alpha-heating on the hydrodynamics is also presented.« less
NASA Astrophysics Data System (ADS)
McBride, James R.
This project involved the characterization of CdSe nanocrystals. Through the use of Atomic Number Contrast Scanning Transmission Electron Microscopy (Z-STEM) and Rutherford Backscattering Spectroscopy (RBS), atomic level structure and chemical information was obtained. Specifically, CdSe nanocrystals produced using a mixture of hexadecylamine (HDA) and trioctylphosphine oxide (TOPO) were determined to be spherical compared to nanocrystals produced in TOPO only, which had elongated (101) facets. Additionally, the first Z-STEM images of CdSe/ZnS core/shell nanocrystals were obtained. From these images, the growth mechanism of the ZnS shell was determined and the existence of non-fluorescent ZnS particles was confirmed. Through collaboration with Quantum Dot Corp., core/shell nanocrystals with near unity quantum yield were developed. These core/shell nanocrystals included a US intermediate layer to improve shell coverage.
NASA Astrophysics Data System (ADS)
Ciaravella, A.; Raymond, J. C.; Kahler, S. W.
2006-11-01
We present UV spectral information for 22 halo or partial halo CMEs observed by UVCS. The CME fronts show broad line profiles, while the line intensities are comparable to the background corona. The Doppler shifts of the front material are generally small, showing that the motion of gas in the fronts is mostly transverse to the line of sight. This indicates that, at least in halo CMEs, the fronts generally correspond to coronal plasma swept up by a shock or compression wave, rather than plasma carried outward by magnetic loops. This favors an ice cream cone (or a spherical shell) model, as opposed to an expanding arcade of loops. We use the line widths to discriminate between shock heating and bulk expansion. Of 14 cases where we detected the CME front, the line broadening in 7 cases can be attributed to shock heating, while in 3 cases it is the line-of-sight component of the CME expansion. For the CME cores we determine the angles between the motion and the plane of the sky, along with the actual heliocentric distances, in order to provide quantitative estimates of projection effects.
NASA Astrophysics Data System (ADS)
Feddi, E.; Talbi, A.; Mora-Ramos, M. E.; El Haouari, M.; Dujardin, F.; Duque, C. A.
2017-11-01
Using the effective mass approximation and a variational procedure, we have investigated the nonlinear optical absorption coefficient and the relative refractive index changes associated to a single dopant confined in core/shell quantum dots considering the influences of the core/shell dimensions, externally applied magnetic field, and dielectric mismatch. The results show that the optical absorption coefficient and the coefficients of relative refractive index change depend strongly on the core/shell sizes and they are blue shifted when the spatial confinement increases so this effect is magnified by higher structural dimensions. Additionally, it is obtained that both studied optical properties are sensitive to the dielectric environment in such a way that their amplitudes are very affected by the local field corrections.
CVD graphene sheets electrochemically decorated with "core-shell" Co/CoO nanoparticles
NASA Astrophysics Data System (ADS)
Bayev, V. G.; Fedotova, J. A.; Kasiuk, J. V.; Vorobyova, S. A.; Sohor, A. A.; Komissarov, I. V.; Kovalchuk, N. G.; Prischepa, S. L.; Kargin, N. I.; Andrulevičius, M.; Przewoznik, J.; Kapusta, Cz.; Ivashkevich, O. A.; Tyutyunnikov, S. I.; Kolobylina, N. N.; Guryeva, P. V.
2018-05-01
The paper reports on the first successful fabrication of Co-graphene composites by electrochemical deposition of Co nanoparticles (NPs) on the sheets of twisted graphene. Characterization of the surface morphology and element mapping of twisted graphene decorated with Co NPs by transmission and scanning electron microscopy in combination with the energy-dispersive X-ray spectroscopy reveals the formation of isolated quasi-spherical oxidized Co NPs with the mean diameter 〈 d〉 ≈ 220 nm and core-shell structure. X-ray photoelectron spectroscopy indicates that the core of deposited NPs consists of metal Co while the shell is CoO. Composite Co-graphene samples containing core-shell NPs reveal an exchange bias field up to 160 Oe at 4 K as detected by vibrating sample magnetometry after the field cooling procedure.
Theoretical and experimental design studies for the Atmospheric General Circulation Experiment
NASA Technical Reports Server (NTRS)
Fowlis, W. W.; Hathaway, D. H.; Miller, T. L.; Roberts, G. O.; Kopecky, K. J.
1985-01-01
The major criterion for the Atmospheric General Circulation Experiment (AGCE) design is that it be possible to realize strong baroclinic instability in the spherical configuration chosen. A configuration was selected in which a hemispherical shell of fluid is subjected to latitudinal temperature gradients on its spherical boundaries and the latitudinal boundaries are insulators. Work in the laboratory with a cylindrical version of this configuration revealed more instabilities than baroclinic instability. Since researchers fully expect these additional instabilities to appear in the spherical configuration also, they decided to continue the laboratory cylindrical annulus studies. Four flow regimes were identified: an axisymmetric Hadley circulation, boundary layer convection, baroclinic waves and deep thermal convection. Regime diagrams were prepared.
Impact of a nonuniform charge distribution on virus assembly
NASA Astrophysics Data System (ADS)
Li, Siyu; Erdemci-Tandogan, Gonca; Wagner, Jef; van der Schoot, Paul; Zandi, Roya
2017-08-01
Many spherical viruses encapsulate their genomes in protein shells with icosahedral symmetry. This process is spontaneous and driven by electrostatic interactions between positive domains on the virus coat proteins and the negative genomes. We model the effect of the nonuniform icosahedral charge distribution from the protein shell instead using a mean-field theory. We find that this nonuniform charge distribution strongly affects the optimal genome length and that it can explain the experimentally observed phenomenon of overcharging of virus and viruslike particles.
The Union’s Naval War in Louisiana, 1861-1863
2006-11-06
Navy,” 2 December 1861, in Appendix to the Congressional Globe , 37th Cong., 2d Sess., 1861, 18. In his report, Welles referred to the blockade as...were pouring into the Forts a perfect storm of shot, shell, grape , Cannister, and spherical can. The roar of the artillery was deafening; the rushing...sound of the descending bombs, the sharp, whizzing noise made by the jagged fragments of exploded shells, the whirring of grape shot and hissing of
Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods.
Demortière, Arnaud; Leonard, Donovan N; Petkov, Valeri; Chapman, Karena; Chattopadhyay, Soma; She, Chunxing; Cullen, David A; Shibata, Tomohiro; Pelton, Matthew; Shevchenko, Elena V
2018-04-19
Colloidal semiconductor nanocrystals are commonly grown with a shell of a second semiconductor material to obtain desired physical properties, such as increased photoluminescence quantum yield. However, the growth of a lattice-mismatched shell results in strain within the nanocrystal, and this strain has the potential to produce crystalline defects. Here, we study CdSe/CdS core/shell nanorods as a model system to investigate the influence of core size and shape on the formation of stacking faults in the nanocrystal. Using a combination of high-angle annular dark-field scanning transmission electron microscopy and pair-distribution-function analysis of synchrotron X-ray scattering, we show that growth of the CdS shell on smaller, spherical CdSe cores results in relatively small strain and few stacking faults. By contrast, growth of the shell on larger, prolate spheroidal cores leads to significant strain in the CdS lattice, resulting in a high density of stacking faults.
NASA Astrophysics Data System (ADS)
Ermolaev, V. V.; Zhuchenko, L. A.; Lyubimov, A. A.; Gladshtein, V. I.; Kremer, V. L.
2018-06-01
Experience in reconstructing the PT-60-90 turbine at Salavatskaya CHPP upon the operation for more than 350000 h is described. In the course of reconstruction, the life of the turbine was restored, its economic efficiency was increased, process extraction of 1.27-1.57 MPa was changed to uncontrolled extraction, and additional extraction of 3.43 MPa was arranged. The high-pressure cylinder (HPC) shell was restored by reconditioning heat treatment (RHT), and the rotor was replaced by a new modernized one. To select the optimal conditions of the reconditioning heat treatment of the HPC shell (of the PT-60-90 turbine) manufactured from 20CrMoPL grade steel, the results of previously conducted tests of the shell metal of the same grade were integrated. The heat treatment was carried out on modernized furnace equipment using means of and methods for controlling the temperature and heating and cooling rates. Detailed nondestructive inspection of the upper and lower HPC halves was performed. The locations, distribution, sizes, and types of the defects were identified. The detected defects and austenitic build-ups were removed, welded with pearlite electrodes, examined, and subjected to heat treatment (tempering). The actual heat treatment conditions were analyzed and, based on the obtained data on the mechanical properties of the metal, the tempering temperature and time were specified. Complete investigation of the metal of both HPC halves was conducted prior to the reconditioning heat treatment. The reliability of the metal of the cylinder shell after RHT was evaluated by the mechanical properties, such as tensile strength, critical ductile-to-brittle transition temperature (crack resistance), and stress-rupture strength. It was established that, after RHT, the characteristics of the metal, such as yield strength, ultimate strength, elongation per unit length, contraction ratio, hardness, and impact toughness, significantly improved and, on the whole, the quality of the metal met the requirements of the normative documentation for newly manufactured castings. The heat resistance of the metal of the cylinder shell after RHT also increased, which can ensure the operation of the HPC shell for more than 200 000 h provided that the recommendations for regular inspections of its condition are followed.
2014-01-01
CdTe is an important compound semiconductor for solar cells, and its use in nanowire-based heterostructures may become a critical requirement, owing to the potential scarcity of tellurium. The effects of the CdCl2 heat treatment are investigated on the physical properties of vertically aligned ZnO/CdTe core-shell nanowire arrays grown by combining chemical bath deposition with close space sublimation. It is found that recrystallization phenomena are induced by the CdCl2 heat treatment in the CdTe shell composed of nanograins: its crystallinity is improved while grain growth and texture randomization occur. The presence of a tellurium crystalline phase that may decorate grain boundaries is also revealed. The CdCl2 heat treatment further favors the chlorine doping of the CdTe shell with the formation of chlorine A-centers and can result in the passivation of grain boundaries. The absorption properties of ZnO/CdTe core-shell nanowire arrays are highly efficient, and more than 80% of the incident light can be absorbed in the spectral range of the solar irradiance. The resulting photovoltaic properties of solar cells made from ZnO/CdTe core-shell nanowire arrays covered with CuSCN/Au back-side contact are also improved after the CdCl2 heat treatment. However, recombination and trap phenomena are expected to operate, and the collection of the holes that are mainly photo-generated in the CdTe shell from the CuSCN/Au back-side contact is presumably identified as the main critical point in these solar cells. PMID:24910576
NASA Astrophysics Data System (ADS)
Multhaup, K.; Spohn, T.
2007-08-01
A thermal history model developed for medium-sized icy satellites containing silicate rock at low volume fractions is applied to Charon and five satellites of Uranus. The model assumes stagnant lid convection in homogeneously accreted bodies either confined to a spherical shell or encompassing the whole interior below the immobile surface layer. We employ a simple model for accretion assuming that infalling planetesimals deposit a fraction of their kinetic energy as heat at the instantaneous surface of the growing moon. Rheology parameters are chosen to match those of ice I, although the satellites under consideration likely contain admixtures of lighter constituents. Consequences thereof are discussed. Thermal evolution calculations considering radiogenic heating by long-lived isotopes suggest that Ariel, Umbriel, Titania, Oberon and Charon may have started to differentiate after a few hundred million years of evolution. Results for Miranda - the smallest satellite of Uranus - however, indicate that it never convected or differentiated. Miranda's interior temperature was found to be not even close to the melting temperatures of reasonable mixtures of water and ammonia. This finding is in contrast to its heavily modified surface and supports theories that propose alternative heating mechanisms such as early tidal heating. Except for Miranda, our results lend support to differentiated icy satellite models. We also point out parallels to previously published results obtained for several of Saturn's icy satellites (Multhaup and Spohn, 2007). The predicted early histories of Ariel, Umbriel and Charon are evocative of Dione's and Rhea's, while Miranda's resembles that of Mimas.
Collisionless relaxation in spiral galaxy models
NASA Technical Reports Server (NTRS)
Hohl, F.
1974-01-01
The increase in random kinetic energy of stars by rapidly fluctuating gravitational fields (collisionless or violent relaxation) in disk galaxy models is investigated for three interaction potentials of the stars corresponding to (1) point stars, (2) rod stars of length 2 kpc, and (3) uniform density spherical stars of radius 2 kpc. To stabilize the galaxy against the large scale bar forming instability, a fixed field corresponding to a central core or halo component of stars was added with the stars containing at most 20 percent of the total mass of the galaxy. Considerable heating occurred for both the point stars and the rod stars, whereas the use of spherical stars resulted in a very low heating rate. The use of spherical stars with the resulting low heating rate will be desirable for the study of large scale galactic stability or density wave propagation, since collective heating effects will no longer mask the phenomena under study.
NASA Astrophysics Data System (ADS)
Běhounková, Marie; Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej
2017-09-01
We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 10^{13} Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life.
Thermal Convection in a Creeping Solid With Melting/Freezing Interfaces at Either or Both Boundaries
NASA Astrophysics Data System (ADS)
Labrosse, S.; Morison, A.; Deguen, R.; Alboussiere, T.; Tackley, P. J.; Agrusta, R.
2017-12-01
Thermal convection in the solid mantles of the Earth, other terrestrial planets and icy satellites sets in while it is still crystallising from a liquid layer (see abstract by Morison et al, this conference). The existence of an ocean (water or magma) either or both below and above the solid mantle modifies the conditions applying at the boundary since matter can flow through it by changing phase. Adapting the boundary conditions developed for the dynamics of the inner core by Deguen et al (GJI 2013) to the plane layer and the spherical shell, we solve the linear stability problem and obtain weakly non-linear solutions as well as direct numerical solutions in both geometries, with a liquid-solid phase change at either or both boundaries. The phase change boundary condition is controlled by a dimensionless number, Φ , which when small, allows easy flow through the boundary while the classical non-penetrating boundary condition is recovered for large values. If both boundaries have a phase change, the preferred wavelength of the flow is large, i.e. λ ∝Φ -1/2 in a plane layer and degree 1 in a spherical shell, and the critical Rayleigh number is of order Φ . The heat transfer efficiency, as measured by the dependence of the Nusselt number on the Rayleigh number also increases indefinitely for decreasing values of Φ . If only one boundary has a phase change condition, the critical wavelength is increased by about a factor 2 and the critical Rayleigh number is decreased by about a factor 4. The dynamics is controlled entirely by the boundary layer opposite to the phase change interface and the geometry of the flow. This model provides a natural explanation for the emergence of degree 1 convection in thin ice layers and implies a style of early mantle dynamics on Earth very different from what is classically envisioned.
Special Form Testing of Sealed Source Encapsulation for High-Alpha-Activity Actinide Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Oscar A
In the United States all transportation of radioactive material is regulated by the U.S. Department of Transportation (DOT). Beginning in 2008 a new type of sealed-source encapsulation package was developed and tested by Oak Ridge National Laboratory (ORNL). These packages contain high-alpha-activity actinides and are regulated and transported in accordance with the requirements for DOT Class 7 hazardous material. The DOT provides specific regulations pertaining to special form encapsulation designs. The special form designation indicates that the encapsulated radioactive contents have a very low probability of dispersion even when subjected to significant structural events. The special form designs have beenmore » shown to simplify the delivery, transport, acceptance, and receipt processes. It is intended for these sealed-source encapsulations to be shipped to various facilities making it very advantageous for them to be certified as special form. To this end, DOT Certificates of Competent Authority (CoCAs) have been sought for the design suitable for containing high-alpha-activity actinide materials. This design consists of the high-alpha-activity material encapsulated within a triangular zirconia canister, referred to as a ZipCan, tile that is then enclosed by a spherical shell. The spherical shell design, with ZipCan tile inside, was tested for compliance with the special form regulations found in 49 CFR 173.469. The spherical enclosure was subjected to 9-m impact, 1 m percussion, and 10-minute thermal tests at the Packaging Evaluation Facility located at the National Transportation Research Center in Knoxville, TN USA and operated by ORNL. Before and after each test, the test units were subjected to a helium leak check and a bubble test. The ZipCan tiles and core were also subjected to the tests required for ISO 2919:2012(E), including a Class IV impact test and heat test and subsequently subjected to helium leakage rate tests [49 CFR 173.469(a)(4)(i)]. The impact-tile test unit contained a nonradioactive surrogate; however, the thermal test unit contained a radioactive source. This paper describes the regulatory special form tests and presents detailed impact and leak test results that demonstrate that the sealed source encapsulation designs satisfy the regulatory tests.« less
NASA Astrophysics Data System (ADS)
Zhang, X. F.; Hu, S. D.; Tzou, H. S.
2014-12-01
Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.
Heat transfer and thermal management of electric vehicle batteries with phase change materials
NASA Astrophysics Data System (ADS)
Ramandi, M. Y.; Dincer, I.; Naterer, G. F.
2011-07-01
This paper examines a passive thermal management system for electric vehicle batteries, consisting of encapsulated phase change material (PCM) which melts during a process to absorb the heat generated by a battery. A new configuration for the thermal management system, using double series PCM shells, is analyzed with finite volume simulations. A combination of computational fluid dynamics (CFD) and second law analysis is used to evaluate and compare the new system against the single PCM shells. Using a finite volume method, heat transfer in the battery pack is examined and the results are used to analyse the exergy losses. The simulations provide design guidelines for the thermal management system to minimize the size and cost of the system. The thermal conductivity and melting temperature are studied as two important parameters in the configuration of the shells. Heat transfer from the surroundings to the PCM shell in a non-insulated case is found to be infeasible. For a single PCM system, the exergy efficiency is below 50%. For the second case for other combinations, the exergy efficiencies ranged from 30-40%. The second shell content did not have significant influence on the exergy efficiencies. The double PCM shell system showed higher exergy efficiencies than the single PCM shell system (except a case for type PCM-1). With respect to the reference environment, it is found that in all cases the exergy efficiencies decreased, when the dead-state temperatures rises, and the destroyed exergy content increases gradually. For the double shell systems for all dead-state temperatures, the efficiencies were very similar. Except for a dead-state temperature of 302 K, with the other temperatures, the exergy efficiencies for different combinations are well over 50%. The range of exergy efficiencies vary widely between 15 and 85% for a single shell system, and between 30-80% for double shell systems.
NASA Astrophysics Data System (ADS)
Golovin, Yuri I.; Gribanovsky, Sergey L.; Golovin, Dmitry Y.; Zhigachev, Alexander O.; Klyachko, Natalia L.; Majouga, Alexander G.; Sokolsky, Marina; Kabanov, Alexander V.
2017-02-01
In the past decade, magneto-nanomechanical approach to biochemical systems stimulation has been studied intensively. This method involves macromolecule structure local deformation via mechanical actuation of functionalized magnetic nanoparticles (f-MNPs) by non-heating low frequency (LF) alternating magnetic field (AMF). Specificity at cellular or molecular level and spatial locality in nanometer scale are its key advantages as compared to magnetic fluid hyperthermia. However, current experimental studies have weak theoretical basis. Several models of magneto-nanomechanical actuation of macromolecules and cells in non-heating uniform LF AMF are presented in the article. Single core-shell spherical, rod-like, and Janus MNPs, as well as dimers consisting of two f-MNPs with macromolecules immobilized on their surfaces are considered. AMF-induced rotational oscillations of MNPs can affect properties and functioning of macromolecules or cellular membranes attached to them via periodic deformations in nanometer scale. This could be widely used in therapy, in particular for targeted drug delivery, controlled drug release, and cancer cell killing. An aggregate composed of MNPs can affect associated macromolecules by force up to several hundreds of piconewton in the case of MNPs of tens of nanometers in diameter and LF AMF below 1 T. AMF parameters and MNP design requirements for effective in vitro and in vivo magneto-nanomechanical treatment are presented.
Dutta Pal, Gopa; Paul, Somnath; Bardhan, Munmun; De, Asish; Ganguly, Tapan
2017-06-05
UV-vis absorption, steady state and time resolved fluorescence and absorption spectroscopic investigations demonstrate that the short chain dyad MNTMA when combined with gold-silver core-shell (Au@Ag) nanocomposite , forms elongated conformers in the excited state whereas for the dyad - Ag (spherical) system the majority of dyads remains in a folded conformation. In the dyad-core-shell nanocomposite system, energy wasting charge recombination rate slows down primarily due to elongated conformation and thus it may be anticipated that this hybrid nanocomposite system may serve as a better light energy conversion device. Copyright © 2017 Elsevier B.V. All rights reserved.
A molecular dynamics study of the relaxation of an excited molecule in crystalline nitromethane
NASA Astrophysics Data System (ADS)
Rivera-Rivera, Luis A.; Siavosh-Haghighi, Ali; Sewell, Thomas D.; Thompson, Donald L.
2014-07-01
Classical molecular dynamics simulations were used to study the relaxation of an excited nitromethane molecule in perfect crystalline nitromethane at 250 K and 1 atm pressure. The molecule was instantaneously excited by statistically distributing energy E∗ between 25.0 kcal/mol and 125.0 kcal/mol among the 21 degrees of freedom of the molecule. The relaxation occurs exponentially with time constants between 11.58 ps and 13.57 ps. Energy transfer from the excited molecule to surrounding quasi-spherical shells of molecules occurs concurrently to both the nearest and next-nearest neighbor shells, but with more energy per molecule transferred more rapidly to the first shell.
Monodisperse core-shell particles composed of magnetite and dye-functionalized mesoporous silica
NASA Astrophysics Data System (ADS)
Eurov, D. A.; Kurdyukov, D. A.; Medvedev, A. V.; Kirilenko, D. A.; Yakovlev, D. R.; Golubev, V. G.
2017-08-01
Hybrid particles with a core-shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.
Method for preparing spherical thermoplastic particles of uniform size
Day, J.R.
1975-11-17
Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.
NASA Astrophysics Data System (ADS)
Andrzejczyk, Rafał; Muszyński, Tomasz
2016-12-01
The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.
Influence of a finite number of baffles on shell-and-tube heat exchanger performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, R.K.; Pignotti, A.
1997-01-01
In single-phase shell-and-tube heat exchangers, thermal performance prediction is customarily accomplished with an idealization that the number of baffles used is very large and can be assumed to approach infinity. Under this idealization, the temperature change within each baffle compartment is very small in comparison with the total temperature change of the shell fluid through the heat exchanger. Thus the shell fluid can be considered as uniform (perfectly mixed) at every cross section (in a direction normal to the shell axis). It is with this model that the mean temperature difference correction factor is normally derived for single-phase exchangers. Inmore » reality, a finite number of baffles are used, and the condition stated above can be achieved only partially. In this article, a comprehensive review is made and new results are derived where needed to assess the influence of a finite number of baffles on heat transfer performance for 1-1, 1-2, and 1-N TEMA E, 1-2 TEMA J, and 1-2 TEMA G and H single-phase shell-and-tube exchangers. It is shown that the number of baffles required to achieve the performance within about 2% of an exchanger with an infinite number of baffles varies with the type of exchanger and the performance parameters. The new results are presented in tabular form.« less
NASA Astrophysics Data System (ADS)
Gauger, A.; Balega, Y. Y.; Irrgang, P.; Osterbart, R.; Weigelt, G.
1999-06-01
We present the first diffraction-limited speckle masking observations of the oxygen-rich AGB star AFGL 2290. The speckle interferograms were recorded with the Russian 6 m SAO telescope. At the wavelength 2.11 microns a resolution of 75 milli-arcsec (mas) was obtained. The reconstructed diffraction-limited image reveals that the circumstellar dust shell (CDS) of AFGL 2290 is at least slightly non-spherical. The visibility function shows that the stellar contribution to the total 2.11 microns flux is less than ~ 40%, indicating a rather large optical depth of the circumstellar dust shell. The 2-dimensional Gaussian visibility fit yields a diameter of AFGL 2290 at 2.11 microns of 43 masx51 mas, which corresponds to a diameter of 42 AUx50 AU for an adopted distance of 0.98 kpc. Our new observational results provide additional constraints on the CDS of AFGL 2290, which supplement the information from the spectral energy distribution (SED). To determine the structure and the properties of the CDS we have performed radiative transfer calculations for spherically symmetric dust shell models. The observed SED approximately at phase 0.2 can be well reproduced at all wavelengths by a model with T_eff=2000 K, a dust temperature of 800 K at the inner boundary r1, an optical depth tau_ {V}=100 and a radius for the single-sized grains of a_gr=0.1 microns . However, the 2.11 microns visibility of the model does not match the observation. Exploring the parameter space, we found that grain size is the key parameter in achieving a fit of the observed visibility while retaining the match of the SED, at least partially. Both the slope and the curvature of the visibility strongly constrain the possible grain radii. On the other hand, the SED at longer wavelengths, the silicate feature in particular, determines the dust mass loss rate and, thereby, restricts the possible optical depths of the model. With a larger grain size of 0.16 microns and a higher tau_ {V}=150, the observed visibility can be reproduced preserving the match of the SED at longer wavelengths. Nevertheless, the model shows a deficiency of flux at short wavelengths, which is attributed to the model assumption of a spherically symmetric dust distribution, whereas the actual structure of the CDS around AFGL 2290 is in fact non-spherical. Our study demonstrates the possible limitations of dust shell models which are constrained solely by the spectral energy distribution, and emphasizes the importance of high spatial resolution observations for the determination of the structure and the properties of circumstellar dust shells around evolved stars. Based on data collected at the 6~m telescope of the Special Astrophysical Observatory in Russia
Probing Shells Against Buckling: A Nondestructive Technique for Laboratory Testing
NASA Astrophysics Data System (ADS)
Thompson, J. Michael T.; Hutchinson, John W.; Sieber, Jan
2017-12-01
This paper addresses testing of compressed structures, such as shells, that exhibit catastrophic buckling and notorious imperfection sensitivity. The central concept is the probing of a loaded structural specimen by a controlled lateral displacement to gain quantitative insight into its buckling behavior and to measure the energy barrier against buckling. This can provide design information about a structure’s stiffness and robustness against buckling in terms of energy and force landscapes. Developments in this area are relatively new but have proceeded rapidly with encouraging progress. Recent experimental tests on uniformly compressed spherical shells, and axially loaded cylinders, show excellent agreement with theoretical solutions. The probing technique could be a valuable experimental procedure for testing prototype structures, but before it can be used a range of potential problems must be examined and solved. The probing response is highly nonlinear and a variety of complications can occur. Here, we make a careful assessment of unexpected limit points and bifurcations, that could accompany probing, causing complications and possibly even collapse of a test specimen. First, a limit point in the probe displacement (associated with a cusp instability and fold) can result in dynamic buckling as probing progresses, as demonstrated in the buckling of a spherical shell under volume control. Second, various types of bifurcations which can occur on the probing path which result in the probing response becoming unstable are also discussed. To overcome these problems, we outline the extra controls over the entire structure that may be needed to stabilize the response.
Souček, Ondřej; Hron, Jaroslav; Čadek, Ondřej
2017-01-01
Abstract We investigated the effect of variations in ice shell thickness and of the tiger stripe fractures crossing Enceladus' south polar terrain on the moon's tidal deformation by performing finite element calculations in three-dimensional geometry. The combination of thinning in the polar region and the presence of faults has a synergistic effect that leads to an increase of both the displacement and stress in the south polar terrain by an order of magnitude compared to that of the traditional model with a uniform shell thickness and without faults. Assuming a simplified conductive heat transfer and neglecting the heat sources below the ice shell, we computed the global heat budget of the ice shell. For the inelastic properties of the shell described by a Maxwell viscoelastic model, we show that unrealistically low average viscosity of the order of 1013 Pa s is necessary for preserving the volume of the ocean, suggesting the important role of the heat sources in the deep interior. Similarly, low viscosity is required to predict the observed delay of the plume activity, which hints at other delaying mechanisms than just the viscoelasticity of the ice shell. The presence of faults results in large spatial and temporal heterogeneity of geysering activity compared to the traditional models without faults. Our model contributes to understanding the physical mechanisms that control the fault activity, and it provides potentially useful information for future missions that will sample the plume for evidence of life. Key Words: Enceladus—Tidal deformation—Faults—Variable ice shell thickness—Tidal heating—Plume activity and timing. Astrobiology 17, 941–954. PMID:28816521
Enceladus' tidal dissipation revisited
NASA Astrophysics Data System (ADS)
Tobie, Gabriel; Behounkova, Marie; Choblet, Gael; Cadek, Ondrej; Soucek, Ondrej
2016-10-01
A series of chemical and physical evidence indicates that the intense activity at Enceladus' South Pole is related to a subsurface salty water reservoir underneath the tectonically active ice shell. The detection of a significant libration implies that this water reservoir is global and that the average ice shell thickness is about 20-25km (Thomas et al. 2016). The interpretation of gravity and topography data further predicts large variations in ice shell thickness, resulting in a shell potentially thinner than 5 km in the South Polar Terrain (SPT) (Cadek et al. 2016). Such an ice shell structure requires a very strong heat source in the interior, with a focusing mechanism at the SPT. Thermal diffusion through the ice shell implies that at least 25-30 GW is lost into space by passive diffusion, implying a very efficient dissipation mechanism in Enceladus' interior to maintain such an ocean/ice configuration thermally stable.In order to determine in which conditions such a large dissipation power may be generated, we model the tidal response of Enceladus including variable ice shell thickness. For the rock core, we consider a wide range of rheological parameters representative of water-saturated porous rock materials. We demonstrate that the thinning toward the South Pole leads to a strong increase in heat production in the ice shell, with a optimal thickness obtained between 1.5 and 3 km, depending on the assumed ice viscosity. Our results imply that the heat production in the ice shell within the SPT may be sufficient to counterbalance the heat loss by diffusion and to power eruption activity. However, outside the SPT, a strong dissipation in the porous core is required to counterbalance the diffusive heat loss. We show that about 20 GW can be generated in the core, for an effective viscosity of 1012 Pa.s, which is comparable to the effective viscosity estimated in water-saturated glacial tills on Earth. We will discuss the implications of this revisited tidal budget for the activity of Enceladus and the long-term evolution of its interior.
Heat resistant protective hand covering
NASA Technical Reports Server (NTRS)
Sidman, K. R.; Arons, I. J. (Inventor)
1984-01-01
The heat resistant, protective glove is made up of first and second shell sections which define a palm side and a backside, respectively. The first shell section is made of a twill wave fabric of a temperature-resistant aromatic polyamide fiber. The second shell section is made of a knitted fabric of a temperature-resistant aromatic polyamide fiber. The first and second shell sections are secured to one another, e.g., by sewing, to provide the desired glove configuration and an opening for insertion of the wearer's hand. The protective glove also includes a first liner section which is secured to and overlies the inner surface of the first shell section and is made of a felt fabric of a temperature-resistant aromatic polyamide fiber and has a flame resistant, elastomenic coating on the surface facing and overlying the inner surface of the first shell section.
The initiation and persistence of cracks in Enceladus' ice shell
NASA Astrophysics Data System (ADS)
Rudolph, M. L.; Jordan, J.; Manga, M.; Hawkins, E. K.; Grannan, A. M.; Reinhard, A.; Farough, A.; Mittal, T.; Hernandez, J. A.
2016-12-01
The eruption of water from a global ocean underlying Enceladus' ice shell requires; i. a mechanism to create stresses sufficient to produce cracks that reach the ocean, ii. that the ascent of water through the crack must be fast enough to keep the crack from freezing. We develop models for the evolution of stresses in the ice shell and overpressure in the ocean, the propagation of cracks into the ice shell, and the melting of ice caused by the eruption of water through the cracks. We show that modest cooling of Enceladus' interior can produce extensional stresses in the ice shell sufficient to overcome the tensile strength of ice. We show that the resultant ice shell cracks can penetrate to depths greater than 10 km. Cracks of 10 km are required to reach the interior oceans of Enceladus in the polar regions. After crack formation, we show that the present eruption rate is sufficient to keep cracks from freezing below the water-table, at which water boils and subsequently erupts. The ascent of warm water from Enceladus' ocean widens the cracks and thins the ice shell in the South Polar Terrain (SPT). Model predictions show that a crack with the minimum, sufficient heat flow to persist without freezing, would thin the surrounding ice shell by about a factor of two. This calculation for heat flow is consistent with observed heat fluxes at the surface and recent inferences of the ice shell thickness in the SPT based on the shape and gravity of Enceladus.
Black holes in massive gravity as heat engines
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Liu, H.; Meng, X.-H.
2018-06-01
The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters modify the efficiency of engine on a significant level. Furthermore, it will be pointed out that it is possible to have a heat engine for non-spherical black holes in massive gravity, and therefore, we will study the effects of horizon topology on the properties of heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with the hyperbolic horizon, while the lowest one belongs to the spherical black holes.
Designing single- and multiple-shell sampling schemes for diffusion MRI using spherical code.
Cheng, Jian; Shen, Dinggang; Yap, Pew-Thian
2014-01-01
In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method introduced in dMRI by Jones et al. However, the electrostatic energy formulation in EEM is not directly related to the goal of optimal sampling-scheme design, i.e., achieving large angular separation between sampling points. A mathematically more natural approach is to consider the Spherical Code (SC) formulation, which aims to achieve uniform sampling by maximizing the minimal angular difference between sampling points on the unit sphere. Although SC is well studied in the mathematical literature, its current formulation is limited to a single shell and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC (CSC), currently can only be applied on the continuous unit sphere and hence cannot be used in situations where one or several subsets of sampling points need to be determined from an existing sampling scheme. In this case, discrete SC (DSC) is required. In this paper, we propose novel DSC and CSC methods for designing uniform single-/multi-shell sampling schemes. The DSC and CSC formulations are solved respectively by Mixed Integer Linear Programming (MILP) and a gradient descent approach. A fast greedy incremental solution is also provided for both DSC and CSC. To our knowledge, this is the first work to use SC formulation for designing sampling schemes in dMRI. Experimental results indicate that our methods obtain larger angular separation and better rotational invariance than the generalized EEM (gEEM) method currently used in the Human Connectome Project (HCP).
46 CFR 59.15-10 - Bagged or blistered shell plates.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Bagged or blistered shell plates. 59.15-10 Section 59.15... shell plates. (a) When the shell plates of cylindrical boilers which are exposed to the radiant heat of... boiler. (b) Where the shell plate is bagged due to overheating, the Officer in Charge, Marine Inspection...
46 CFR 59.15-10 - Bagged or blistered shell plates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Bagged or blistered shell plates. 59.15-10 Section 59.15... shell plates. (a) When the shell plates of cylindrical boilers which are exposed to the radiant heat of... boiler. (b) Where the shell plate is bagged due to overheating, the Officer in Charge, Marine Inspection...
NASA Astrophysics Data System (ADS)
Wang, Wanlin; Lou, Zhican; Zhang, Haihui
2018-03-01
With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.
NASA Astrophysics Data System (ADS)
Wang, Wanlin; Lou, Zhican; Zhang, Haihui
2018-06-01
With the mold simulator technique, the effect of slag-steel reaction on the initial shell solidification as well as the heat transfer and lubrication behavior of the infiltrated mold/shell slag film was studied in this article. The results showed that the Al2O3 content, the CaO/SiO2 ratio, and the viscosity of mold flux were increased with the progress of the slag-steel reaction during casting. The slag-steel reaction has two major effects on the initial shell solidification: one is increasing the mold heat flux and shell thickness by the decrease of slag film thickness. The other is the reduction of mold heat flux by the increase of crystal fraction in slag film. Mold flux with a lower basicity, viscosity, and crystallization temperature would result in a larger liquid slag consumption and the uneven infiltration of slag into the mold and shell gap that eventually leads to the irregular solidification of initial shell with a poor surface quality, such as slag entrapment and depressions as well as glaciation marks. Conversely, mold flux with a higher viscosity, basicity, and crystallization temperature would result in a smaller liquid slag consumption, which would cause the poor mold lubrication, the longitudinal shell surface defects, and drag marks.
Fundamental study of transpiration cooling. [pressure drop and heat transfer data from porous metals
NASA Technical Reports Server (NTRS)
Koh, J. C. Y.; Dutton, J. L.; Benson, B. A.
1973-01-01
Isothermal and non-isothermal pressure drop data and heat transfer data generated on porous 304L stainless steel wire forms, sintered spherical stainless steel powder, and sintered spherical OFHC copper powder are reported and correlated. Pressure drop data was collected over a temperature range from 500 R to 2000 R and heat transfer data collected over a heat flux range from 5 to 15 BTU/in2/sec. It was found that flow data could be correlated independently of transpirant temperature and type (i.e., H2, N2). It was also found that no simple relation between heat transfer coefficient and specimen porosity was obtainable.
Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography
NASA Astrophysics Data System (ADS)
Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.
2018-05-01
The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabau, Adrian S.; Nejad, Ali H.; Klett, James W.
Here in this article, a novel geometry is proposed for evaporators that are used in Supercritical Organic Rankine Cycles. The proposed geometry consists of successive plenums at several length-scale levels, creating a multi-scale heat exchanger (HX). The channels at the lowest length-scale levels were considered to have their length determined by the thermal entrance-length. Numerical simulations based on turbulent flow correlations for supercritical R134a and water were used to evaluate the performance of heat exchangers. Using the data on pumping power and area of heat exchange, the total present cost was evaluated using a cost model for shell-and-tube heat exchangers.more » With respect to the shell-and-tube baseline case, the cost per heat load and total costs of new HXs is lowered by approximately 20–26% and 15–30%, respectively. This reduction in present costs of the new HXs were found to be attributed to higher operational costs for the shell-and-tube HXs, as evidenced by the higher pumping power, as well their capital investment costs. The cost savings in the new HX designs compared to those of the shell-and-tube HXs, at similar heat load performance, indicate that the new HX architectures proposed in this paper are valid alternatives to traditional HX designs.« less
Radiative transfer in spherical shell atmospheres. 2: Asymmetric phase functions
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Adams, C. N.
1977-01-01
The effects are investigated of sphericity on the radiation reflected from a planet with a homogeneous, conservative scattering atmosphere of optical thicknesses of 0.25 and 1.0. A Henyey-Greenstein phase function with asymmetry factors of 0.5 and 0.7 is considered. Significant differences were found when these results were compared with the plane-parallel calculations. Also large violations of the reciprocity theorem, which is only true for plane-parallel calculations, were noted. Results are presented for the radiance versus height distributions as a function of planetary phase angle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yitian; Tian Bo; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100083
2006-11-15
The spherical modified Kadomtsev-Petviashvili (smKP) model is hereby derived with symbolic computation for the dust-ion-acoustic waves with zenith-angle perturbation in a cosmic dusty plasma. Formation and properties of both dark and bright smKP nebulons are obtained and discussed. The relevance of those smKP nebulons to the supernova shells and Saturn's F-ring is pointed out, and possibly observable nebulonic effects for the future cosmic plasma experiments are proposed. The difference of the smKP nebulons from other types of nebulons is also analyzed.
Black hole evaporation in conformal gravity
NASA Astrophysics Data System (ADS)
Bambi, Cosimo; Modesto, Leonardo; Porey, Shiladitya; Rachwał, Lesław
2017-09-01
We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.
The AGCE related studies of baroclinic flows in spherical geometry
NASA Technical Reports Server (NTRS)
Hyun, J. M.
1983-01-01
Steady state, axisymmetric motions of a Boussineaq fluid continued in rotating spherical anmulus are considered. The motions are driven by latitudinally varying temperature gradient at the shells. Linearized formulations for a narrow gap are derived and the flow field is divided into the Ekman layers and the geostrophic interior. The Ekman layer flows are consistent with the known results for cylindrical geometries. Within the framework of rather restrictive assumptions, the interior flows are solved by a series of associated Legendre polynomials. The solutions show qualitative features valid at midlatitudes.
Black hole evaporation in conformal gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bambi, Cosimo; Rachwał, Lesław; Modesto, Leonardo
We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.
Time-dependent response of filamentary composite spherical pressure vessels
NASA Technical Reports Server (NTRS)
Dozier, J. D.
1983-01-01
A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.
Impact of spherical nanoparticles on nematic order parameters
NASA Astrophysics Data System (ADS)
Kyrou, C.; Kralj, S.; Panagopoulou, M.; Raptis, Y.; Nounesis, G.; Lelidis, I.
2018-04-01
We study experimentally the impact of spherical nanoparticles on the orientational order parameters of a host nematic liquid crystal. We use spherical core-shell quantum dots that are surface functionalized to promote homeotropic anchoring on their interface with the liquid crystal host. We show experimentally that the orientational order may be strongly affected by the presence of spherical nanoparticles even at low concentrations. The orientational order of the composite system is probed by means of polarized micro-Raman spectroscopy and by optical birefringence measurements as function of temperature and concentration. Our data show that the orientational order depends on the concentration in a nonlinear way, and the existence of a crossover concentration χc≈0.004 pw . It separates two different regimes exhibiting pure-liquid crystal like (χ <χc ) and distorted-nematic ordering (χ >χc ), respectively. In the latter phase the degree of ordering is lower with respect to the pure-liquid crystal nematic phase.
NASA Astrophysics Data System (ADS)
Zhou, Q.; Michailovich, O.; Rathi, Y.
2014-03-01
High angular resolution diffusion imaging (HARDI) improves upon more traditional diffusion tensor imaging (DTI) in its ability to resolve the orientations of crossing and branching neural fibre tracts. The HARDI signals are measured over a spherical shell in q-space, and are usually used as an input to q-ball imaging (QBI) which allows estimation of the diffusion orientation distribution functions (ODFs) associated with a given region-of interest. Unfortunately, the partial nature of single-shell sampling imposes limits on the estimation accuracy. As a result, the recovered ODFs may not possess sufficient resolution to reveal the orientations of fibre tracts which cross each other at acute angles. A possible solution to the problem of limited resolution of QBI is provided by means of spherical deconvolution, a particular instance of which is sparse deconvolution. However, while capable of yielding high-resolution reconstructions over spacial locations corresponding to white matter, such methods tend to become unstable when applied to anatomical regions with a substantial content of isotropic diffusion. To resolve this problem, a new deconvolution approach is proposed in this paper. Apart from being uniformly stable across the whole brain, the proposed method allows one to quantify the isotropic component of cerebral diffusion, which is known to be a useful diagnostic measure by itself.
Scope of inextensible frame hypothesis in local action analysis of spherical reservoirs
NASA Astrophysics Data System (ADS)
Vinogradov, Yu. I.
2017-05-01
Spherical reservoirs, as objects perfect with respect to their weight, are used in spacecrafts, where thin-walled elements are joined by frames into multifunction structures. The junctions are local, which results in origination of stress concentration regions and the corresponding rigidity problems. The thin-walled elements are reinforced by frame to decrease the stresses in them. To simplify the analysis of the mathematical model of common deformation of the shell (which is a mathematical idealization of the reservoir) and the frame, the assumption that the frame axial line is inextensible is used widely (in particular, in the manual literature). The unjustified use of this assumption significantly distorts the concept of the stress-strain state. In this paper, an example of a lens-shaped structure formed as two spherical shell segments connected by a frame of square profile is used to carry out a numerical comparative analysis of the solutions with and without the inextensible frame hypothesis taken into account. The scope of the hypothesis is shown depending on the structure geometric parameters and the load location degree. The obtained results can be used to determine the stress-strain state of the thin-walled structure with an a priori prescribed error, for example, in research and experimental design of aerospace systems.
NASA Astrophysics Data System (ADS)
Takehiro, Shin-ichi; Sasaki, Youhei
2018-03-01
Penetration of steady magneto-hydrodynamic (MHD) disturbances into an upper strongly stratified stable layer excited by MHD thermal convection in rotating spherical shells is investigated. The theoretical model proposed by Takehiro (2015) is reexamined in the case of steady fluid motion below the bottom boundary. Steady disturbances penetrate into a density stratified MHD fluid existing in the semi-infinite region in the vertical direction. The axis of rotation of the system is tilted with respect to the vertical. The basic magnetic field is uniform and may be tilted with respect to the vertical and the rotation axis. Linear dispersion relation shows that the penetration distance with zero frequency depends on the amplitude of Alfvén wave speed. When Alfvén wave speed is small, viscous diffusion becomes dominant and penetration distance is similar to the horizontal scale of the disturbance at the lower boundary. In contrast, when Alfvén wave speed becomes larger, disturbance can penetrate deeper, and penetration distance becomes proportional to the Alfvén wave speed and inversely proportional to the geometric average of viscous and magnetic diffusion coefficients and to the total horizontal wavenumber. The analytic expression of penetration distance is in good agreement with the extent of penetration of mean zonal flow induced by finite amplitude convection in a rotating spherical shell with an upper stably stratified layer embedded in an axially uniform basic magnetic field. The theory expects that the stable layer suggested in the upper part of the outer core of the earth could be penetrated completely by mean zonal flows excited by thermal/compositional convection developing below the stable layer.
NASA Astrophysics Data System (ADS)
Tan, Yunkai; He, Zhenbin; Xu, Tao; Fang, Xiaoming; Gao, Xuenong; Zhang, Zhengguo
2017-09-01
An aqueous solution of Xanthan Gum (XG) at a weight fraction as high as 0.2% was used as the base liquid, the stable MWCNTs-dispersed non-Newtonian nanofluids at different weight factions of MWCNTs was prepared. The base fluid and all nanofluids show pseudoplastic (shear-thinning) rheological behavior. Experiments were performed to compare the shell-side forced convective heat transfer coefficient and pressure drop of non-Newtonian nanofluids to those of non-Newtonian base fluid in an integrally helical baffle heat exchanger with low-finned tubes. The experimental results showed that the enhancement of the convective heat transfer coefficient increases with an increase in the Peclet number and the nanoparticle concentration. For nanofluids with 1.0, 0.5 and 0.2 wt% of multi-walled carbon nanotubes (MWCNTs), the heat transfer coefficients respectively augmented by 24.3, 13.2 and 4.7% on average and the pressure drops become larger than those of the base fluid. The comprehensive thermal performance factor is higher than one and increases with an increasing weight fraction of MWCNTs. A remarkable heat transfer enhancement in the shell side of helical baffle heat exchanger with low-finned tubes can be obtained by adding MWCNTs into XG aqueous solution based on thermal resistance analysis. New correlations have been suggested for the shell-side friction coefficient and the Nusselt numbers of non-Newtonian nanofluids and give very good agreement with experimental data.
Zhou, Xiang; Xu, Daguo; Zhang, Qiaobao; Lu, Jian; Zhang, Kaili
2013-08-14
We report a facile green method for the in situ synthesis of Mg/CuO core/shell nanoenergetic arrays on silicon, with Mg nanorods as the core and CuO as the shell. Mg nanorods are first prepared by glancing angle deposition. CuO is then deposited around the Mg nanorods by reactive magnetron sputtering to realize the core/shell structure. Various characterization techniques are used to investigate the prepared Mg/CuO core/shell nanoenergetic arrays, including scanning electron microscopy, transmission electron microscopy, X-ray energy dispersive spectroscopy, X-ray diffraction, and thermal analysis. Uniform mixing and intimate contact between the Mg nanorods and CuO are confirmed from both visual inspection of the morphological images and analyses of the heat-release curves. The nanoenergetic arrays exhibit a low-onset reaction temperature (∼300 °C) and high heat of reaction (∼3400 J/g). Most importantly, the nanoenergetic arrays possess long-term storage stability resulting from the stable CuO shell. This study provides a potential general strategy for the synthesis of various Mg nanorod-based stable nanoenergetic arrays.
Enceladus: three-act play and current state
NASA Astrophysics Data System (ADS)
Luan, J.; Goldreich, P.
2017-12-01
Eccentricity (e) growth as Enceladus migrates deeper into mean motion resonance with Dione results in increased tidal heating. As the bottom of the ice shell melts, the rate of tidal heating jumps and runaway melting ensues. At the end of run-away melting, the shell's thickness has fallen below the value at which the frequency of free libration equals the orbital mean motion and e has damped to well below its current value. Subsequently, both the shell thickness and e partake in a limit cycle. As e damps toward its minimum value, the shell's thickness asymptotically approaches its resonant value from below. After minimum e, the shell thickens quickly and e grows even faster. This cycle is likely to have been repeated multiple times in the past. Currently, e is much smaller than its equilibrium value corresponding to the shell thickness. Physical libration resonance resolves this mystery, it ensures that the low-e and medium-thickness state is present for most of the time between consecutive limit cycles. It is a robust scenario that avoids fine tuning or extreme parameter choice, and naturally produces episodic stages of high heating, consistent with softening of topographical features on Enceladus.
Determination of the temperature field of shell structures
NASA Astrophysics Data System (ADS)
Rodionov, N. G.
1986-10-01
A stationary heat conduction problem is formulated for the case of shell structures, such as those found in gas-turbine and jet engines. A two-dimensional elliptic differential equation of stationary heat conduction is obtained which allows, in an approximate manner, for temperature changes along a third variable, i.e., the shell thickness. The two-dimensional problem is reduced to a series of one-dimensional problems which are then solved using efficient difference schemes. The approach proposed here is illustrated by a specific example.
NASA Astrophysics Data System (ADS)
Carrião, Marcus S.; Bakuzis, Andris F.
2016-04-01
The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy.The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. Here, a magnetic hyperthermia model for core-shell nanoparticles is developed. The theoretical calculation, different from previous models, highlights the importance of heterogeneity by identifying the role of surface and core spins on nanoparticle heat generation. We found that the most efficient nanoparticles should be obtained by selecting materials to reduce the surface to core damping factor ratio, increasing the interface exchange parameter and tuning the surface to core anisotropy ratio for each material combination. From our results we propose a novel heat-based hyperthermia strategy with the focus on improving the heating efficiency of small sized nanoparticles instead of larger ones. This approach might have important implications for cancer treatment and could help improving clinical efficacy. Electronic supplementary information (ESI) available: Unit cells per region calculation; core-shell Hamiltonian; magnetisation description functions; energy argument of Brillouin function; polydisperse models; details of experimental procedure; LRT versus core-shell model; model calculation software; and shell thickness study. See DOI: 10.1039/C5NR09093H
Fang, Baizeng; Kim, Jung Ho; Kim, Minsik; Kim, Minwoo; Yu, Jong-Sung
2009-03-07
Hierarchical nanostructured spherical carbon with hollow macroporous core in combination with mesoporous shell has been explored to support Pt cathode catalyst with high metal loading in proton exchange membrane fuel cell (PEMFC). The hollow core-mesoporous shell carbon (HCMSC) has unique structural characteristics such as large specific surface area and mesoporous volume, ensuring uniform dispersion of the supported high loading (60 wt%) Pt nanoparticles with small particle size, and well-developed three-dimensionally interconnected hierarchical porosity network, facilitating fast mass transport. The HCMSC-supported Pt(60 wt%) cathode catalyst has demonstrated markedly enhanced catalytic activity toward oxygen reduction and greatly improved PEMFC polarization performance compared with carbon black Vulcan XC-72 (VC)-supported ones. Furthermore, the HCMSC-supported Pt(40 wt%) or Pt(60 wt%) outperforms the HCMSC-supported Pt(20 wt%) even at a low catalyst loading of 0.2 mg Pt cm(-2) in the cathode, which is completely different from the VC-supported Pt catalysts. The capability of supporting high loading Pt is supposed to accelerate the commercialization of PEMFC due to the anticipated significant reduction in the amount of catalyst support required, diffusion layer thickness and fabricating cost of the supported Pt catalyst electrode.
Suppression of an acoustic mode by an elastic mode of a liquid-filled spherical shell resonator.
Lonzaga, Joel B; Raymond, Jason L; Mobley, Joel; Gaitan, D Felipe
2011-02-01
The purpose of this paper is to report on the suppression of an approximately radial (radially symmetric) acoustic mode by an elastic mode of a water-filled, spherical shell resonator. The resonator, which has a 1-in. wall thickness and a 9.5-in. outer diameter, was externally driven by a small transducer bolted to the external wall. Experiments showed that for the range of drive frequencies (19.7-20.6 kHz) and sound speeds in water (1520-1570 m/s) considered in this paper, a nonradial (radially nonsymmetric) mode was also excited, in addition to the radial mode. Furthermore, as the sound speed in the liquid was changed, the resonance frequency of the nonradial mode crossed with that of the radial one and the amplitude of the latter was greatly reduced near the crossing point. The crossing of the eigenfrequency curves of these two modes was also predicted theoretically. Further calculations demonstrated that while the radial mode is an acoustic one associated with the interior fluid, the nonradial mode is an elastic one associated with the shell. Thus, the suppression of the radial acoustic mode is apparently caused by the overlapping with the nonradial elastic mode near the crossing point.
Three-phase flow? Consider helical-coil heat exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraburda, S.S.
1995-07-01
In recent years, chemical process plants are increasingly encountering processes that require heat exchange in three-phase fluids. A typical application, for example, is heating liquids containing solid catalyst particles and non-condensable gases. Heat exchangers designed for three-phase flow generally have tubes with large diameters (typically greater than two inches), because solids can build-up inside the tube and lead to plugging. At the same time, in order to keep heat-transfer coefficients high, the velocity of the process fluid within the tube should also be high. As a result, heat exchangers for three-phase flow may require less than five tubes -- eachmore » having a required linear length that could exceed several hundred feet. Given these limitations, it is obvious that a basic shell-and-tube heat exchanger is not the most practical solution for this purpose. An alternative for three-phase flow is a helical-coil heat exchanger. The helical-coil units offer a number of advantages, including perpendicular, counter-current flow and flexible overall dimensions for the exchanger itself. The paper presents equations for: calculating the tube-side heat-transfer coefficient; calculating the shell-side heat-transfer coefficient; calculating the heat-exchanger size; calculating the tube-side pressure drop; and calculating shell-side pressure-drop.« less
NASA Astrophysics Data System (ADS)
Qureshi, M. Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M.
2016-10-01
Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.
Qureshi, M Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M
2016-12-01
Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.
Exploration of high harmonic fast wave heating on the National Spherical Torus Experiment
NASA Astrophysics Data System (ADS)
Wilson, J. R.; Bell, R. E.; Bernabei, S.; Bitter, M.; Bonoli, P.; Gates, D.; Hosea, J.; LeBlanc, B.; Mau, T. K.; Medley, S.; Menard, J.; Mueller, D.; Ono, M.; Phillips, C. K.; Pinsker, R. I.; Raman, R.; Rosenberg, A.; Ryan, P.; Sabbagh, S.; Stutman, D.; Swain, D.; Takase, Y.; Wilgen, J.
2003-05-01
High harmonic fast wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [M. Ono, S. M. Kaye, S. Neumeyer et al., in Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999 (IEEE, Piscataway, NJ, 1999), p. 53] is such a device. An rf heating system has been installed on the NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the ST concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.
Effect of shear stress on cell cultures and other reactor problems
NASA Technical Reports Server (NTRS)
Schleier, H.
1981-01-01
Anchorage dependent cell cultures in fluidized beds are tested. Feasibility calculations indicate the allowed parameters and estimate the shear stresses therein. In addition, the diffusion equation with first order reaction is solved for the spherical shell (double bubble) reactor with various constraints.
The Confinement and Breakout of Protostellar Winds: Time-Dependent Solution
NASA Technical Reports Server (NTRS)
Wilkin, F.; Stahler, S.
2000-01-01
Jets from embedded young stars may be collimated by the anisotropic infall of their cloud envelopes. To model this effect, we have followed numerically the motion of the shocked shell created by the impact of a spherical wind and a rotating, collapsing cloud.
Experimental Study of Unsupported Nonane fuel Droplet Combustion in Microgravity
NASA Technical Reports Server (NTRS)
Callahan, B. J.; Avedisian, C. T.; Hertzog, D. E.; Berkery, J. W.
1999-01-01
Soot formation in droplet flames is the basic component of the particulate emission process that occurs in spray combustion. The complexity of soot formation motivates a one-dimensional transport condition which has obvious advantages in modeling. Recent models of spherically symmetric droplet combustion have made this assumption when incorporating such aspects as detailed chemistry and radiation. Interestingly, spherical symmetry does not necessarily restrict the results because it has been observed that the properties of carbon formed in flames are not strongly affected by the nature of the fuel or flaming configuration. What is affected, however, are the forces acting on the soot aggregates and where they are trapped by a balance of drag and thermophoretic forces. The distribution of these forces depends on the transport conditions of the flame. Prior studies of spherical droplet flames have examined the droplet burning history of alkanes, alcohols and aromatics. Data are typically the evolution of droplet, flame, extinction, and soot shell diameters. These data are only now just beginning to find their way into comprehensive numerical models of droplet combustion to test proposed oxidation schemes for fuels such as methanol and heptane. In the present study, we report new measurements on the burning history of unsupported nonane droplets in a convection-free environment to promote spherical symmetry. The far-field gas is atmospheric pressure air at room temperature. The evolution of droplet diameter was measured using high speed cine photography of a spark-ignited, droplet within a confined volume in a drop tower. The initial droplet diameters varied between 0.5 mm and 0.6 mm. The challenge of unsupported droplets is to form, deploy and ignite them with minimal disturbance, and then to keep them in the camera field of view. Because of the difficulty of this undertaking, more sophisticated diagnostics for studying soot than photographic were not used. Supporting the test droplet by a fiber fixes the droplet position but the fiber can perturb the burning process especially for a sooting fuel. Prior studies on heptane showed little evidence for soot formation due to g-droplets of similar size the relationship between sooting and droplet diameter. For nonane droplets we expect increased sooting due to the greater number of carbon atoms. As a sooting droplet burns and its diameter decreases, proportionally less soot should form. This reduced soot, as well as the influence of soot formed earlier in the burning process which collects in a 'shell', on heat transport to the flame offers the potential for a time-varying burning rate. Such an effect was investigated and revealed in results reported here. Speculation is offered for the cause of this effect and its possible relation to soot formation.
NASA Astrophysics Data System (ADS)
Loughman, Robert; Bhartia, Pawan K.; Chen, Zhong; Xu, Philippe; Nyaku, Ernest; Taha, Ghassan
2018-05-01
The theoretical basis of the Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) Version 1 aerosol extinction retrieval algorithm is presented. The algorithm uses an assumed bimodal lognormal aerosol size distribution to retrieve aerosol extinction profiles at 675 nm from OMPS LP radiance measurements. A first-guess aerosol extinction profile is updated by iteration using the Chahine nonlinear relaxation method, based on comparisons between the measured radiance profile at 675 nm and the radiance profile calculated by the Gauss-Seidel limb-scattering (GSLS) radiative transfer model for a spherical-shell atmosphere. This algorithm is discussed in the context of previous limb-scattering aerosol extinction retrieval algorithms, and the most significant error sources are enumerated. The retrieval algorithm is limited primarily by uncertainty about the aerosol phase function. Horizontal variations in aerosol extinction, which violate the spherical-shell atmosphere assumed in the version 1 algorithm, may also limit the quality of the retrieved aerosol extinction profiles significantly.
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel.
Li, Fangjie; Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-10-19
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as "pre-alloying", has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7-4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3-5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards.
NASA Astrophysics Data System (ADS)
Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Dai, Lianrong; Draayer, Jerry P.
2018-05-01
An extended pairing Hamiltonian that describes multi-pair interactions among isospin T = 1 and angular momentum J = 0 neutron-neutron, proton-proton, and neutron-proton pairs in a spherical mean field, such as the spherical shell model, is proposed based on the standard T = 1 pairing formalism. The advantage of the model lies in the fact that numerical solutions within the seniority-zero symmetric subspace can be obtained more easily and with less computational time than those calculated from the mean-field plus standard T = 1 pairing model. Thus, large-scale calculations within the seniority-zero symmetric subspace of the model is feasible. As an example of the application, the average neutron-proton interaction in even-even N ∼ Z nuclei that can be suitably described in the f5 pg9 shell is estimated in the present model, with a focus on the role of np-pairing correlations.
Buckling Instability Causes Inertial Thrust for Spherical Swimmers at All Scales
NASA Astrophysics Data System (ADS)
Djellouli, Adel; Marmottant, Philippe; Djeridi, Henda; Quilliet, Catherine; Coupier, Gwennou
2017-12-01
Microswimmers, and among them aspirant microrobots, generally have to cope with flows where viscous forces are dominant, characterized by a low Reynolds number (Re). This implies constraints on the possible sequences of body motion, which have to be nonreciprocal. Furthermore, the presence of a strong drag limits the range of resulting velocities. Here, we propose a swimming mechanism which uses the buckling instability triggered by pressure waves to propel a spherical, hollow shell. With a macroscopic experimental model, we show that a net displacement is produced at all Re regimes. An optimal displacement caused by nontrivial history effects is reached at intermediate Re. We show that, due to the fast activation induced by the instability, this regime is reachable by microscopic shells. The rapid dynamics would also allow high-frequency excitation with standard traveling ultrasonic waves. Scale considerations predict a swimming velocity of order 1 cm /s for a remote-controlled microrobot, a suitable value for biological applications such as drug delivery.
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel
Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-01-01
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as “pre-alloying”, has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7–4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3–5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards. PMID:29048379
Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion
Theobald, W.; Solodov, A. A.; Stoeckl, C.; ...
2014-12-12
The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achievemore » areal densities in excess of 300 mg cm -2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.« less
Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion.
Theobald, W; Solodov, A A; Stoeckl, C; Anderson, K S; Beg, F N; Epstein, R; Fiksel, G; Giraldez, E M; Glebov, V Yu; Habara, H; Ivancic, S; Jarrott, L C; Marshall, F J; McKiernan, G; McLean, H S; Mileham, C; Nilson, P M; Patel, P K; Pérez, F; Sangster, T C; Santos, J J; Sawada, H; Shvydky, A; Stephens, R B; Wei, M S
2014-12-12
The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm(-2) with a nanosecond-duration compression pulse--the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.
Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals.
Li, Jing; Wei, Yong; Li, Wei; Deng, Yonghui; Zhao, Dongyuan
2012-03-07
Core-shell structured materials are of special significance in various applications. Until now, most reported core-shell structures have polycrystalline or amorphous coatings as their shell layers, with popular morphologies of microspheres or quasi-spheres. However, the single crystals, either mesoscale or atomic ones, are still rarely reported as shell layers. If single crystals can be coated on core materials, it would result in a range of new type core-shell structures with various morphologies, and probably more potential applications. In this work, we demonstrate that periodic mesoporous organosilica (PMO) single crystals can partly grow on magnetic microspheres to form incomplete Fe(3)O(4)@nSiO(2)@PMO core-shell materials in aqueous solution, which indeed is the first illustration that mesoporous single-crystal materials can be used as shell layers for preparation of core-shell materials. The achieved materials have advantages of high specific surface areas, good magnetic responses, embedded functional groups and cubic mesopore channels, which might provide them with various application conveniences. We suppose the partial growth is largely decided by the competition between growing tendency of single crystals and the resistances to this tendency. In principle, other single crystals, including a range of atomic single crystals, such as zeolites, are able to be developed into such core-shell structures.
Surface-engineered core-shell nano-size ferrites and their antimicrobial activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraliya, Jagdish D., E-mail: jdbaraliya@yahoo.co.in; Joshi, Hiren H., E-mail: jdbaraliya@yahoo.co.in
We report the results of biological study on core-shell structured MFe{sub 2}O{sub 4} (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe{sub 2}O{sub 4} nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.
Viscous forces are predominant in the zona pellucida mechanical resistance
NASA Astrophysics Data System (ADS)
Papi, Massimiliano; Maiorana, Alessandro; Douet, Cécile; Maulucci, Giuseppe; Parasassi, Tiziana; Brunelli, Roberto; Goudet, Ghylène; De Spirito, Marco
2013-01-01
The zona pellucida (ZP) is a multilayer glycoprotein spherical shell surrounding mammalian eggs. The ZP's mechanical response plays a crucial role in mammalian fertilization and is a parameter commonly adopted in "in vitro fertilization" to characterize the oocytes quality. While it is assumed that ZP mechanical response is purely elastic, here we prove that dissipative forces cannot be neglected. Physiologically, this evidence implies that an increase in the spermatozoa motility can induce dramatic changes on the ZP reaction force turning ZP shell in an impenetrable barrier leading to fertility impairments.
Surface-engineered core-shell nano-size ferrites and their antimicrobial activity
NASA Astrophysics Data System (ADS)
Baraliya, Jagdish D.; Joshi, Hiren H.
2014-04-01
We report the results of biological study on core-shell structured MFe2O4 (where M = Co, Mn, Ni) nanoparticles and influence of silica- DEG dual coating on their antimicrobial activity. Spherical MFe2O4 nanoparticles were prepared via a Co-precipitation method. The microstructures and morphologies of these nanoparticles were studied by x-ray diffraction and FTIR. The antimicrobial activity study carried out in nutrient agar medium with addition of antimicrobial synthesis compound which is tested for its activity against different types of bacteria.
Kashyap, Smita; Singh, Nitesh; Surnar, Bapurao; Jayakannan, Manickam
2016-01-11
Dual responsive polymer nanoscaffolds for administering anticancer drugs both at the tumor site and intracellular compartments are made for improving treatment in cancers. The present work reports the design and development of new thermo- and enzyme-responsive amphiphilic copolymer core-shell nanoparticles for doxorubicin delivery at extracellular and intracellular compartments, respectively. A hydrophobic acrylate monomer was tailor-made from 3-pentadecylphenol (PDP, a natural resource) and copolymerized with oligoethylene glycol acrylate (as a hydrophilic monomer) to make new classes of thermo and enzyme dual responsive polymeric amphiphiles. Both radical and reversible addition-fragmentation chain transfer (RAFT) methodologies were adapted for making the amphiphilic copolymers. These amphiphilic copolymers were self-assembled to produce spherical core-shell nanoparticles in water. Upon heating, the core-shell nanoparticles underwent segregation to produce larger sized aggregates above the lower critical solution temperature (LCST). The dual responsive polymer scaffold was found to be capable of loading water insoluble drug, such as doxorubicin (DOX), and fluorescent probe-like Nile Red. The drug release kinetics revealed that DOX was preserved in the core-shell assemblies at normal body temperature (below LCST, ≤ 37 °C). At closer to cancer tissue temperature (above LCST, ∼43 °C), the polymeric scaffold underwent burst release to deliver 90% of loaded drugs within 2 h. At the intracellular environment (pH 7.4, 37 °C) in the presence of esterase enzyme, the amphiphilic copolymer ruptured in a slow and controlled manner to release >95% of the drugs in 12 h. Thus, both burst release of cargo at the tumor microenvironment and control delivery at intracellular compartments were accomplished in a single polymer scaffold. Cytotoxicity assays of the nascent and DOX-loaded polymer were carried out in breast cancer (MCF-7) and cervical cancer (HeLa) cells. Among the two cell lines, the DOX-loaded polymers showed enhanced killing in breast cancer cells. Furthermore, the cellular uptake of the DOX was studied by confocal and fluorescence microscopes. The present investigation opens a new enzyme and thermal-responsive polymer scaffold approach for DOX delivery in cancer cells.
Kamitakahara, Masanobu; Ohtoshi, Naohiro; Kawashita, Masakazu; Ioku, Koji
2016-05-01
Spherical porous granules of hydroxyapatite (HA) containing magnetic nanoparticles would be suitable for the hyperthermia treatment of bone tumor, because porous HA granules act as a scaffold for bone regeneration, and magnetic nanoparticles generate sufficient heat to kill tumor cells under an alternating magnetic field. Although magnetic nanoparticles are promising heat generators, their small size makes them difficult to support in porous HA ceramics. We prepared micrometer-sized composites of magnetic and HA nanoparticles, and then supported them in porous HA granules composed of rod-like particles. The spherical porous HA granules containing the composites of magnetic and HA nanoparticle were successfully prepared using a hydrothermal process without changing the crystalline phase and heat generation properties of the magnetic nanoparticles. The obtained granules generated sufficient heat for killing tumor cells under an alternating magnetic field (300 Oe at 100 kHz). The obtained granules are expected to be useful for the hyperthermia treatment of bone tumors.
Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive
NASA Astrophysics Data System (ADS)
Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping
2016-08-01
The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.
Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer
2013-01-01
Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging. PMID:23962025
Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng
2016-08-15
The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and themore » final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.« less
Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian
2015-09-01
Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fabrication of bifunctional core-shell Fe3O4 particles coated with ultrathin phosphor layer
NASA Astrophysics Data System (ADS)
Atabaev, Timur Sh; Kim, Hyung-Kook; Hwang, Yoon-Hwae
2013-08-01
Bifunctional monodispersed Fe3O4 particles coated with an ultrathin Y2O3:Tb3+ shell layer were fabricated using a facile urea-based homogeneous precipitation method. The obtained composite particles were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), quantum design vibrating sample magnetometry, and photoluminescence (PL) spectroscopy. TEM revealed uniform spherical core-shell-structured composites ranging in size from 306 to 330 nm with a shell thickness of approximately 25 nm. PL spectroscopy confirmed that the synthesized composites displayed a strong eye-visible green light emission. Magnetic measurements indicated that the composite particles obtained also exhibited strong superparamagnetic behavior at room temperature. Therefore, the inner Fe3O4 core and outer Y2O3:Tb3+ shell layer endow the composites with both robust magnetic properties and strong eye-visible luminescent properties. These composite materials have potential use in magnetic targeting and bioseparation, simultaneously coupled with luminescent imaging.
DNA nanoparticles with core-shell morphology.
Chandran, Preethi L; Dimitriadis, Emilios K; Lisziewicz, Julianna; Speransky, Vlad; Horkay, Ferenc
2014-10-14
Mannobiose-modified polyethylenimines (PEI) are used in gene therapy to generate nanoparticles of DNA that can be targeted to the antigen-presenting cells of the immune system. We report that the sugar modification alters the DNA organization within the nanoparticles from homogenous to shell-like packing. The depth-dependent packing of DNA within the nanoparticles was probed using AFM nano-indentation. Unmodified PEI-DNA nanoparticles display linear elastic properties and depth-independent mechanics, characteristic of homogenous materials. Mannobiose-modified nanoparticles, however, showed distinct force regimes that were dependent on indentation depth, with 'buckling'-like response that is reproducible and not due to particle failure. By comparison with theoretical studies of spherical shell mechanics, the structure of mannobiosylated particles was deduced to be a thin shell with wall thickness in the order of few nanometers, and a fluid-filled core. The shell-core structure is also consistent with observations of nanoparticle denting in altered solution conditions, with measurements of nanoparticle water content from AFM images, and with images of DNA distribution in Transmission Electron Microscopy.
The crack problem in a specially orthotropic shell with double curvature
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1983-01-01
The crack problem of a shallow shell with two nonzero curvatures is considered. It is assumed that the crack lies in one of the principal planes of curvature and the shell is under Mode I loading condition. The material is assumed to be specially orthotropic. After giving the general formulation of the problem the asymptotic behavior of the stress state around the crack tip is examined. The analysis is based on Reissner's transverse shear theory. Thus, as in the bending of cracked plates, the asymptotic results are shown to be consistent with that obtained from the plane elasticity solution of crack problems. Rather extensive numerical results are obtained which show the effect of material orthotropy on the stress intensity factors in cylindrical and spherical shells and in shells with double curvature. Other results include the stress intensity factors in isotropic toroidal shells with positive or negative curvature ratio, the distribution of the membrane stress resultant outside the crack, and the influence of the material orthotropy on the angular distribution of the stresses around the crack tip. Previously announced in STAR as N83-16782
The crack problem in a specially orthotropic shell with double curvature
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1982-01-01
The crack problem of a shallow shell with two nonzero curvatures is considered. It is assumed that the crack lies in one of the principal planes of curvature and the shell is under Mode I loading condition. The material is assumed to be specially orthotropic. After giving the general formulation of the problem the asymptotic behavior of the stress state around the crack tip is examined. The analysis is based on Reissner's transverse shear theory. Thus, as in the bending of cracked plates, the asymptotic results are shown to be consistent with that obtained from the plane elasticity solution of crack problems. Rather extensive numerical results are obtained which show the effect of material orthotropy on the stress intensity factors in cylindrical and spherical shells and in shells with double curvature. Other results include the stress intensity factors in isotropic toroidal shells with positive or negative curvature ratio, the distribution of the membrane stress resultant outside the crack, and the influence of the material orthotropy on the angular distribution of the stresses around the crack tip.
Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2010-01-01
This elemental space radiator heat pipe is designed to operate in the 700 to 875 K temperature range. It consists of a C-C (carbon-carbon) shell made from poly-acrylonitride fibers that are woven in an angle interlock pattern and densified with pitch at high process temperature with integrally woven fins. The fins are 2.5 cm long and 1 mm thick, and provide an extended radiating surface at the colder condenser section of the heat pipe. The weave pattern features a continuous fiber bath from the inner tube surface to the outside edges of the fins to maximize the thermal conductance, and to thus minimize the temperature drop at the condenser end. The heat pipe and radiator element together are less than one-third the mass of conventional heat pipes of the same heat rejection surface area. To prevent the molten potassium working fluid from eroding the C C heat pipe wall, the shell is lined with a thin-walled, metallic tube liner (Nb-1 wt.% Zr), which is an integral part of a hermetic metal subassembly which is furnace-brazed to the inner surface of the C-C tube. The hermetic metal liner subassembly includes end caps and fill tubes fabricated from the same Nb-1Zr alloy. A combination of laser and electron beam methods is used to weld the end caps and fill tubes. A tungsten/inert gas weld seals the fill tubes after cleaning and charging the heat pipes with potassium. The external section of this liner, which was formed by a "Uniscan" rolling process, transitions to a larger wall thickness. This section, which protrudes beyond the C-C shell, constitutes the "evaporator" part of the heat pipe, while the section inside the shell constitutes the condenser of the heat pipe (see figure).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haoting; Liao, Qilong, E-mail: liaoqilong@swust.edu.cn; Dai, Yunya
2016-04-15
Highlights: • Millimeter-scale translucent La{sub 2}O{sub 3}-doped Al{sub 2}O{sub 3} hollow spheres have been prepared. • The diameters of the prepared hollow spheres are 500–1300μm. • The degree of sphericity for the prepared hollow spheres is above 98%. • The mechanisms of transparency are discussed. - Abstract: Millimeter-scale translucent La{sub 2}O{sub 3}-doped Al{sub 2}O{sub 3} ceramic hollow spheres have been successfully prepared using the oil-in-water (paraffin-in-alumina sol) droplets as precursors made by self-made T-shape micro-emulsion device. The main crystalline phase of the obtained hollow sphere is alpha alumina. The prepared translucent La{sub 2}O{sub 3}-containing Al{sub 2}O{sub 3} ceramic hollow spheresmore » have diameters of 500–1300 μm, wall thickness of about 23 μm and the degree of sphericity of above 98%. With the increase of the La{sub 2}O{sub 3} content, grains and grain-boundaries of the alumina spherical shell for the prepared millimeter-scale hollow spheres become regular and clear gradually. When the La{sub 2}O{sub 3} content is 0.1 wt.%, the crystal surface of the obtained Al{sub 2}O{sub 3} spherical shell shows optimal grains and few pores, and its transmittance reaches 42% at 532 nm laser light. This method provides a promising technique of preparing millimeter-scale translucent ceramic hollow spheres for laser inertial confined fusion.« less
Plastic buckling. [post-bifurcation and imperfection sensitivity
NASA Technical Reports Server (NTRS)
Hutchinson, J. W.
1974-01-01
The present article is concerned mainly with the post-bifurcation and imperfection-sensitivity aspects of plastic buckling. A simple two-degree-of-freedom model is used to introduce post-bifurcation behavior and a second model illustrates features of the behavior of continuous solids and structures. Hill's bifurcation criterion for a class of three-dimensional solids is applied to the Donnell-Mushtari-Vlasov (DMV) theory of plates and shells. A general treatment of the initial post-bifurcation behavior of plates and shells is given within the context of the DMV theory. This is illustrated by problems involving columns and circular plates under radial compression. Numerical results are given for a column under axial compression, a circular plate under radial compression, and spherical and cylindrical shells.
Fashina, Adedayo; Amuhaya, Edith; Nyokong, Tebello
2015-02-25
This work presents the synthesis and characterization of a new zinc phthalocyanine complex tetrasubstituted with 3-carboxyphenoxy in the peripheral position. The photophysical properties of the new complex are compared with those of phthalocyanines tetra substituted with 3-carboxyphenoxy or 4-carboxyphenoxy at non-peripheral positions. Three phthalocyanine complexes were encapsulated within silica matrix to form a core shell and the hybrid nanoparticles particles obtained were spherical and mono dispersed. When encapsulated within the silica shell nanoparticles, phthalocyanines showed improved triplet quantum yields and singlet oxygen quantum yields than surface grafted derivatives. The improvements observed could be attributed to the protection provided for the phthalocyanine complexes by the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
Hierarchically assembled theranostic nanostructures for siRNA delivery and imaging applications.
Shrestha, Ritu; Elsabahy, Mahmoud; Luehmann, Hannah; Samarajeewa, Sandani; Florez-Malaver, Stephanie; Lee, Nam S; Welch, Michael J; Liu, Yongjian; Wooley, Karen L
2012-10-24
Dual functional hierarchically assembled nanostructures, with two unique functions of carrying therapeutic cargo electrostatically and maintaining radiolabeled imaging agents covalently within separate component building blocks, have been developed via the supramolecular assembly of several spherical cationic shell cross-linked nanoparticles clustered around a central anionic shell cross-linked cylinder. The shells of the cationic nanoparticles and the hydrophobic core domain of the anionic central cylindrical nanostructure of the assemblies were utilized to complex negatively charged nucleic acids (siRNA) and to undergo radiolabeling, respectively, for potential theranostic applications. The assemblies exhibited exceptional cell transfection and radiolabeling efficiencies, providing an overall advantage over the individual components, which could each facilitate only one or the other of the functions.
HI emission from the red giant Y CVn with the VLA and FAST
NASA Astrophysics Data System (ADS)
Hoai, Do T.; Nhung, Pham T.; Matthews, Lynn D.; Gérard, Eric; Le Bertre, Thibaut
2017-07-01
Imaging studies with the Very Large Array (VLA) have revealed HI emission associated with the extended circumstellar shells of red giants. We analyze the spectral map obtained on Y CVn, a J-type carbon star on the Asymptotic Giant Branch. The HI line profiles can be interpreted with a model of a detached shell resulting from the interaction of a stellar outflow with the local interstellar medium. We reproduce the spectral map by introducing a distortion along a direction corresponding to the star’s motion in space. We then use this fitting to simulate observations expected from the Five-hundred-meter Aperture Spherical radio Telescope (FAST), and discuss its potential for improving our description of the outer regions of circumstellar shells.
NASA Astrophysics Data System (ADS)
Feng, Songlin; Yang, Xuanzong; Feng, Chunhua; Wang, Long; Rao, Jun; Feng, Kecheng
2005-06-01
Experiments on the start-up and formation of spherical tokamak plasmas by electron cyclotron heating alone without ohmic heating and electrode discharge assisted electron cyclotron wave current start-up will be carried out on the SUNIST (Sino United Spherical Tokamak) device. The 2.45 GHz/100kW/30 ms microwave power system and 1000 V/50 A power supply for electrode discharge are ready for experiments with non-inductive current drive.
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1986-01-01
For a Spacelab flight, a model experiment of the earth's atmospheric circulation has been proposed. This experiment is known as the Atmospheric General Circulation Experiment (AGCE). In the experiment concentric spheres will rotate as a solid body, while a dielectric fluid is confined in a portion of the gap between the spheres. A zero gravity environment will be required in the context of the simulation of the gravitational body force on the atmosphere. The present study is concerned with the development of pseudospectral/finite difference (PS/FD) model and its subsequent application to physical cases relevant to the AGCE. The model is based on a hybrid scheme involving a pseudospectral latitudinal formulation, and finite difference radial and time discretization. The advantages of the use of the hybrid PS/FD method compared to a pure second-order accurate finite difference (FD) method are discussed, taking into account the higher accuracy and efficiency of the PS/FD method.
Insertion and confinement of hydrophobic metallic powder in water: the bubble-marble effect.
Meir, Yehuda; Jerby, Eli
2014-09-01
Metallic powders such as thermite are known as efficient fuels also applicable in oxygen-free environments. However, due to their hydrophobicity, they hardly penetrate into water. This paper presents an effect that enables the insertion and confinement of hydrophobic metallic powders in water, based on encapsulating an air bubble surrounded by a hydrophobic metallic shell. This effect, regarded as an inverse of the known liquid-marble effect, is named here "bubble marble" (BM). The sole BM is demonstrated experimentally as a stable, maneuverable, and controllable soft-solid-like structure, in a slightly deformed hollow spherical shape of ∼1-cm diameter. In addition to experimental and theoretical BM aspects, this paper also demonstrates its potential for underwater applications, such as transportation of solid objects within BM and underwater combustion of thermite BM by localized microwaves. Hence, the BM phenomena may open new possibilities for heat and thrust generation, as well as material processing and mass transfer underwater.
Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials.
Hu, Xiaofeng; Huang, Zhanhua; Zhang, Yanhua
2014-01-30
A novel carboxymethyl cellulose (CMC)-modified melamine-formaldehyde (MF) phase change capsule with excellent encapsulation was prepared by in situ polymerization. Effects of CMC on the properties of the capsules were studied by Fourier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). The results showed that the CMC-modified capsules had an average diameter of about 50nm and good uniformity. The phase change enthalpy of the capsules was increased and the cracking ratio decreased by incorporating a suitable amount of CMC. The optimum phase change enthalpy of the nanocapsules was 83.46J/g, and their paraffin content was 63.1%. The heat resistance of the capsule shells decreased after CMC modification. In addition, the nanocapsule cracking ratio of the nanocapsules was 11.0%, which is highly attractive for their application as nano phase change materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
Insertion and confinement of hydrophobic metallic powder in water: The bubble-marble effect
NASA Astrophysics Data System (ADS)
Meir, Yehuda; Jerby, Eli
2014-09-01
Metallic powders such as thermite are known as efficient fuels also applicable in oxygen-free environments. However, due to their hydrophobicity, they hardly penetrate into water. This paper presents an effect that enables the insertion and confinement of hydrophobic metallic powders in water, based on encapsulating an air bubble surrounded by a hydrophobic metallic shell. This effect, regarded as an inverse of the known liquid-marble effect, is named here "bubble marble" (BM). The sole BM is demonstrated experimentally as a stable, maneuverable, and controllable soft-solid-like structure, in a slightly deformed hollow spherical shape of ˜1-cm diameter. In addition to experimental and theoretical BM aspects, this paper also demonstrates its potential for underwater applications, such as transportation of solid objects within BM and underwater combustion of thermite BM by localized microwaves. Hence, the BM phenomena may open new possibilities for heat and thrust generation, as well as material processing and mass transfer underwater.
Tectonic evolution of the terrestrial planets.
Head, J W; Solomon, S C
1981-07-03
The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.
IRAS observations of R Coronae Borealis - Detection and study of a fossil shell
NASA Technical Reports Server (NTRS)
Gillett, F. C.; Backman, D. E.; Beichman, C.; Neugebauer, G.
1986-01-01
IRAS observations of the extreme hydrogen-deficient supergiant R CrB are presented and discussed. The star is surrounded by an enormous cool dust cloud which is tentatively identified as a fossil remnant of the hydrogen-rich envelope of the star. The angular extent of the emission corresponds to a linear extent of 8 pc, 20 times larger than the largest previously known shell around a late-type star. The radiating material is distributed very symmetrically over a wide range of radial distances from the star. The dust temperature is nearly constant throughout the extended shell. The total mass in the shell is about 0.3 solar mass. The ejection process appears to have occurred in a spherically symmetric fashion with a nearly constant mass loss rate and expansion velocity over a period of about 150,000 yr, terminating about 26,000 yr ago.
Zhu, Xiaodong; Liu, Yu; Li, Zhao; Wang, Weicong
2018-03-05
In this paper, thermochromic microcapsules were synthesized in situ polymerization with urea formaldehyde as shell material and thermochromic compounds as core material. The effects of emulsifying agent and conditions on surface morphology and particle size of microcapsules were studied. It was found that the size and surface morphology of microcapsules were strongly depending on stirring rate and the ratio of core to shell. The stable and small size spherical microcapsules with excellent transparency can be obtained at an emulsifying agent to core to shell ratio as 1:5:7.5 under mechanical stirring at 12 krpm for 15 min. Finally, the thermochromic property was discussed by loading microcapsules in wood and wood coatings. Results indicate that microcapsules can realize the thermochromic property while incorporated with wood and coatings, and could have high potential in smart material fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yung-Chen Andrew; Engelhard, Mark H.; Baer, Donald R.
2016-03-07
Abstract or short description: Spectral modeling of photoelectrons can serve as a valuable tool when combined with X-ray photoelectron spectroscopy (XPS) analysis. Herein, a new version of the NIST Simulation of Electron Spectra for Surface Analysis (SESSA 2.0) software, capable of directly simulating spherical multilayer NPs, was applied to model citrate stabilized Au/Ag-core/shell nanoparticles (NPs). The NPs were characterized using XPS and scanning transmission electron microscopy (STEM) to determine the composition and morphology of the NPs. The Au/Ag-core/shell NPs were observed to be polydispersed in size, non-circular, and contain off-centered Au-cores. Using the average NP dimensions determined from STEM analysis,more » SESSA spectral modeling indicated that washed Au/Ag-core shell NPs were stabilized with a 0.8 nm l« less
NASA Astrophysics Data System (ADS)
Jayhooni, S. M. H.; Rahimpour, M. R.
2013-06-01
In the present paper, free convection fluid flow and heat transfer of various water based nanofluids has been investigated numerically around a spherical mini-reactor. This numerical simulation is a finite-volume, steady, two dimensions, elliptic and multi-grid solver. The wall of the spherical mini-reactor are maintained at constant temperature TH and the temperature of nanofluid far from it is considered constant (TC). Computational fluid dynamics (CFD) is used for solving the relevant mathematical expressions for free convection heat transfer around it. The numerical simulation and available correlation are valid for based fluid. The effects of pertinent parameters, such as, Rayleigh number, and the volume fraction of the nanoparticles in the fluid flow and heat transfer around the spherical mini-reactor are investigated. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid is assumed to be less than 109 (Ra < 109). Besides, the percentages of the volumetric fraction of nanoparticle which is used for preparing the nanofluids, are between 0 and 4 (0 ⩽ φ ⩽ 4%). The obtained results show that the average Nusselt number for a range of the solid volume fraction of the nanofluid increases by increasing the Rayleigh number. Finally, the heat transfer has been enhanced not only by increasing the particle volume fraction but also by decreasing the size of particle diameter. Moreover, the Churchill's correlation is approximately appropriate for predicting the free convection heat transfer inside diverse kinds of nanofluids especially for high range of Rayleigh numbers.
A platonic solid templating Archimedean solid: an unprecedented nanometre-sized Ag37 cluster
NASA Astrophysics Data System (ADS)
Li, Xiao-Yu; Su, Hai-Feng; Yu, Kai; Tan, Yuan-Zhi; Wang, Xing-Po; Zhao, Ya-Qin; Sun, Di; Zheng, Lan-Sun
2015-04-01
The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12]} cluster (1) that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4tBu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that 1 is a Td symmetric spherical molecule with a [Ag36(SC6H4tBu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of 1 belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles.The spontaneous formation of discrete spherical nanosized molecules is prevalent in nature, but the authentic structural mimicry of such highly symmetric polyhedra from edge sharing of regular polygons has remained elusive. Here we present a novel ball-shaped {(HNEt3)[Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12]} cluster (1) that is assembled via a one-pot process from polymeric {(HNEt3)2[Ag10(SC6H4tBu)12]}n and CF3COOAg. Single crystal X-ray analysis confirmed that 1 is a Td symmetric spherical molecule with a [Ag36(SC6H4tBu)24] anion shell enwrapping a AgS4 tetrahedron. The shell topology of 1 belongs to one of 13 Archimedean solids, a truncated tetrahedron with four edge-shared hexagons and trigons, which are supported by a AgS4 Platonic solid in the core. Interestingly, the cluster emits green luminescence centered at 515 nm at room temperature. Our investigations have provided a promising synthetic protocol for a high-nuclearity silver cluster based on underlying geometrical principles. Electronic supplementary information (ESI) available: detailed synthesis procedure, tables, crystal data in CIF files, IR data, TGA results and powder X-ray diffractogram for 1. CCDC 1042228. See DOI: 10.1039/c5nr01222h
Sabau, Adrian S.; Nejad, Ali H.; Klett, James W.; ...
2017-11-26
Here in this article, a novel geometry is proposed for evaporators that are used in Supercritical Organic Rankine Cycles. The proposed geometry consists of successive plenums at several length-scale levels, creating a multi-scale heat exchanger (HX). The channels at the lowest length-scale levels were considered to have their length determined by the thermal entrance-length. Numerical simulations based on turbulent flow correlations for supercritical R134a and water were used to evaluate the performance of heat exchangers. Using the data on pumping power and area of heat exchange, the total present cost was evaluated using a cost model for shell-and-tube heat exchangers.more » With respect to the shell-and-tube baseline case, the cost per heat load and total costs of new HXs is lowered by approximately 20–26% and 15–30%, respectively. This reduction in present costs of the new HXs were found to be attributed to higher operational costs for the shell-and-tube HXs, as evidenced by the higher pumping power, as well their capital investment costs. The cost savings in the new HX designs compared to those of the shell-and-tube HXs, at similar heat load performance, indicate that the new HX architectures proposed in this paper are valid alternatives to traditional HX designs.« less
Brackett, R E; Schuman, J D; Ball, H R; Scouten, A J
2001-07-01
The heat resistance of six strains of Salmonella (including Enteritidis, Heidelberg, and Typhimurium) in liquid whole egg and shell eggs was determined. Decimal reduction times (D-values) of each of the six strains were determined in liquid whole egg heated at 56.7 degrees C within glass capillary tubes immersed in a water bath. D-values ranged from 3.05 to 4.09 min, and significant differences were observed between the strains tested (alpha = 0.05). In addition, approximately 7 log10 CFU/g of a six-strain cocktail was inoculated into the geometric center of raw shell eggs and the eggs heated at 57.2 degrees C using convection currents of humidity-controlled air. D-values of the pooled salmonellae ranged from 5.49 to 6.12 min within the center of intact shell eggs. A heating period of 70 min or more resulted in no surviving salmonellae being detected (i.e., an 8.7-log reduction per egg).
Counterintuitive Constraints on Chaos Formation Set by Heat Flux through Europa's Ocean
NASA Astrophysics Data System (ADS)
Goodman, J. C.
2013-12-01
Models for the formation of disruptive chaos features on the icy surface of Europa fall into two broad categories: either chaos is formed when basal heating causes localized melting and thinning of the ice shell, or basal heating drives diapiric convection within the ice shell. We argue that in both of these cases, heating of the ice shell from below does not lead to chaos formation at the location of heating. If chaos is formed when a localized oceanic heat source, such as a hydrothermal plume, "melts through" the ice crust, we must consider what happens to the melted liquid. If Europa's ocean is salty, the melt will form a buoyant pool inside the melted cavity, leading to a stable interface between cold fresh meltwater and warm salty seawater. This stable interface acts like an ablative heat shield, protecting the ice from further damage. Some heat can be transferred across the stable layer by double diffusion, but this transfer is very inefficient. We calculate that local ocean heating cannot be balanced by local flux through the stable layer: instead, the warm ocean water must spread laterally until it is delivering heat to the ice base on a regional or global scale (a heating zone hundreds or thousands of km across, for conservative parameters.) If chaos is formed by diapiric solid-state convection within the ice shell, many investigators have assumed that diapirism and chaos should be most prevalent where the basal heat flux is strongest. We argue that this is not the case. In Rayleigh-Benard convection, increasing the heat flux will make convection more vigorous --- if and only if the convecting layer thickness does not change. We argue that increased basal heat flux will thin the ice shell, reducing its Rayleigh number and making convection less likely, not more. This insight allows us to reverse the logic of recent discussions of the relationship between ocean circulation and chaos (for instance, Soderlund et al, 2013 LPSC). We argue that global oceanic heat transport is governed by geostrophic quasi-two-dimensional convection, which delivers less heat to the tropics and more to the poles. By the argument above, this implies that the ice layer should be thicker in the tropics, and thus more prone to diapiric convection: thus, chaos should be more common there. Recent mapping efforts by other investigators have shown that this does appear to be the case.
Electrons on a spherical surface: Physical properties and hollow spherical clusters
NASA Astrophysics Data System (ADS)
Cricchio, Dario; Fiordilino, Emilio; Persico, Franco
2012-07-01
We discuss the physical properties of a noninteracting electron gas constrained to a spherical surface. In particular we consider its chemical potentials, its ionization potential, and its electric static polarizability. All these properties are discussed analytically as functions of the number N of electrons. The trends obtained with increasing N are compared with those of the corresponding properties experimentally measured or theoretically evaluated for quasispherical hollow atomic and molecular clusters. Most of the properties investigated display similar trends, characterized by a prominence of shell effects. This leads to the definition of a scale-invariant distribution of magic numbers which follows a power law with critical exponent -0.5. We conclude that our completely mechanistic and analytically tractable model can be useful for the analysis of self-assembling complex systems.
1985-04-01
and Standards .. ... ....... ....... 9 A. General . ... .. .. ... ..... .. .. ... 9 B. ASME Boiler and Pressure Vessel Code .. .. ......9 C. Foreign...several different sources. B. American Society of Mechanial Engineers (ASME) Boiler and Pressure Vessel Code A shell and tube heat exchanger is indeed a
Perry, Jennifer J; Yousef, Ahmed E
2013-02-01
Infection of laying hens with Salmonella enterica serovar Enteritidis leads to deposition of the pathogen into the albumen or yolk of forming eggs. Heat treatment can inactivate internalized Salmonella Enteritidis in shell eggs, but factors such as the nature and location of contamination may influence the efficacy of thermal treatments. In the current research, natural contamination was mimicked by introducing small inocula of Salmonella Enteritidis into different locations of shell eggs and incubating inoculated eggs. These pathogen-containing eggs were heated at 57°C for 40 min, and temperature within eggs was monitored at the locations of inocula. Comparison of inactivation at equivalent internal temperatures revealed similar levels of lethality regardless of inoculum location. Refrigeration between incubation and heat treatment did not increase thermal resistance of cells in albumen but decreased cell inactivation in yolk. Sequential application of heat and gaseous ozone allows for the development of a process capable of decontaminating shell eggs with minimal thermal treatment and impact on egg quality. Inoculated eggs were subjected to (i) an immersion heating process similar to that used in commercial pasteurization or (ii) immersion heating, at reduced duration, followed by vacuum (50.8 kPa) and treatment with ozone gas (maximum 160 g/m(3)) under pressure (∼187.5 kPa). All treatments tested produced greater than 5-log inactivation, which is required for "pasteurization" processes. Differences were observed in the visual quality of eggs depending on treatment parameters. Application of ozone subsequent to heating allows for a significant reduction in heating time without decreasing process lethality.
Dynamics of a suspension of interacting yolk-shell particles
Sánchez Díaz, L. E.; Cortes-Morales, E. C.; Li, X.; ...
2014-12-01
In this work we study the self-diusion properties of a liquid of hollow spherical particles (shells) bearing a smaller solid sphere in their interior (yolks). We model this system using purely repulsive hard-body interactions between all (shell and yolk) particles, but assume the presence of a background ideal solvent such that all the particles execute free Brownian motion between collisions, characterized by short-time self-diusion coecients D0 s for the shells and D0 y for the yolks. Using a softened version of these interparticle potentials we perform Brownian dynamics simulations to determine the mean squared displacement and intermediate scattering function ofmore » the yolk-shell complex. These results can be understood in terms of a set of eective Langevin equations for the N interacting shell particles, pre-averaged over the yolks' degrees of freedom, from which an approximate self-consistent description of the simulated self-diusion properties can be derived. Here we compare the theoretical and simulated results between them, and with the results for the same system in the absence of yolks. We nd that the yolks, which have no eect on the shell-shell static structure, in uence the dynamic properties in a predictable manner, fully captured by the theory.« less
NASA Technical Reports Server (NTRS)
Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)
1992-01-01
A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.
NASA Astrophysics Data System (ADS)
He, Yexi; Li, Xiaoyan; Gao, Zhe
2005-02-01
Strong inductive coupling between the heating field and equilibrium field is confirmed to be responsible for the poor plasma equilibrium in initial discharges on the SUNIST spherical tokamak. A modification project for the power supply system of equilibrium field coils is successfully performed to increase the duration time of plasma current flattop from much less than 1ms to about 2 ms.
1990-06-01
J) :(270, )..pTod( 301,j)s(331,j)- pcod (302.j) s(271,j)-prod(303,J)s(332,j ):prod(304,J) s(272,J) prod(305,i) s(333,j) prod(306,j) s(273,jJ.’ptod(307...j).prodf 335,J) sf348, j)-prod( 336.1) 9(288,j)-prod(337,J) of 349, j)- pcod ( 338,J) s(209, j)-prod(339,J) of 350,j)-prod( 340,J) s(290,jJ.. pCod (341,J
Apparatus for controlling molten core debris
Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA
1977-07-19
Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, P.; Bock, C.W.; Trachtman, M.
1979-04-01
The expectation energy values E/sub k/, V/sub ee/, V/sub nn/, V/sub en/, and E/sub T/ have been calculated for H/sub 2/ and the C/sub 1/, C/sub 2/, and C/sub 3/ hydrocarbons using a (9,5) basis set and the experimental geometries. Treating the theoretical reaction heat, ..delta..E/sub T/, as the resultant of the nuclear repulsion term, ..delta..V/sub nn/, and the net electron energy term, ..delta..E/sub elec/ = ..delta..E/sub k/ + ..delta..V/sub ee/ + ..delta..V/sub en/, the contribution of inner and outer shell electron energies to ..delta..E/sub elec/, and hence to ..delta..E/sub T/, has been calculated for a large number of hydrocarbonmore » reactions by evaluating the Coulson--Neilson energies eta/sub i/, where eta/sub i/ = E/sub elec/. For the vast majority of reactions, 67/84, the change in inner shell electron energy, (..delta sigma..eta/sub i/)/sub inner/, accounts for more than 10% of ..delta..E/sub elec/, in many cases being as high as 20-35%. Furthermore, in addition to these cases in which the change in inner shell electron energy serves to augment (significantly) the change in outer shell electron energy, there are other cases in which the change in inner shell electron energy either exceeds in magnitude the change in outer shell energy, or is even opposite in sign, indicative of inner and outer shell electrons acting contrariwise. Inner shell electron energies contribute to the reaction heats because they are structure dependent, like the more familiar orbital energies epsilon, but the dependence is of a different kind.« less
Divertor heat flux mitigation in the National Spherical Torus Experimenta)
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; Maingi, R.; Gates, D. A.; Menard, J. E.; Paul, S. F.; Raman, R.; Roquemore, A. L.; Bell, M. G.; Bell, R. E.; Boedo, J. A.; Bush, C. E.; Kaita, R.; Kugel, H. W.; Leblanc, B. P.; Mueller, D.; NSTX Team
2009-02-01
Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6MWm-2to0.5-2MWm-2 in small-ELM 0.8-1.0MA, 4-6MW neutral beam injection-heated H-mode discharges. A self-consistent picture of the outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.
Exploration of High Harmonic Fast Wave Heating on the National Spherical Torus Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Wilson; R.E. Bell; S. Bernabei
2003-02-11
High Harmonic Fast Wave (HHFW) heating has been proposed as a particularly attractive means for plasma heating and current drive in the high-beta plasmas that are achievable in spherical torus (ST) devices. The National Spherical Torus Experiment (NSTX) [Ono, M., Kaye, S.M., Neumeyer, S., et al., Proceedings, 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque, 1999, (IEEE, Piscataway, NJ (1999), p. 53.)] is such a device. An radio-frequency (rf) heating system has been installed on NSTX to explore the physics of HHFW heating, current drive via rf waves and for use as a tool to demonstrate the attractiveness of the STmore » concept as a fusion device. To date, experiments have demonstrated many of the theoretical predictions for HHFW. In particular, strong wave absorption on electrons over a wide range of plasma parameters and wave parallel phase velocities, wave acceleration of energetic ions, and indications of current drive for directed wave spectra have been observed. In addition HHFW heating has been used to explore the energy transport properties of NSTX plasmas, to create H-mode (high-confinement mode) discharges with a large fraction of bootstrap current and to control the plasma current profile during the early stages of the discharge.« less
NASA Astrophysics Data System (ADS)
Yuliah, Y.; Kartawidjaja, M.; Suryaningsih, S.; Ulfi, K.
2017-05-01
Rice husk and coconut shell have been disposed or burned as waste. As biomass, both of materials are the potential sources of carbon which can be utilized as alternative energy sources. The energy content can be exploited more intensively when packaged in a brief and convenient. In this work, the mixtures of rice husks and coconut shells charcoal were prepared as briquettes. After going through the carbonization process, several measurements have been taken to find out the factors that determine the value of heat energy contains by each component of the charcoals. The basic ingredients briquettes prepared from rice husk and coconut shell charcoal with varying composition and addition of tapioca starch gradually as adhesive material to obtain briquettes in solid with the maximum heat energy content. After going through pressing and drying process, the briquettes with 50:50 percent of composition and the 6% addition of adhesive was found has the highest heat energy content, equal to 4966 cal/g.
Identification and onset of inertial modes in the wide-gap spherical Couette system
NASA Astrophysics Data System (ADS)
Barik, A.; Wicht, J.; Triana, S. A.; Hoff, M.
2016-12-01
The spherical Couette system consists of two concentric rotating spheres with a fluid filling the shell in between. The system has been studied for a long time by fluid dynamicists and is ideal for studying flow instabilities due to differential rotation and the interaction of the same with magnetic fields - important for understanding dynamics of planetary and stellar interiors. The system is also a basis for a new generation of dynamo experiments because of its closer geometrical resemblance to real astrophysical objects as compared to past experiments. We simulate this system using the two different pseudo-spectral codes MagIC and XSHELLS. We focus here on a very interesting and general instability in this system - inertial modes. A rotating body of fluid is known to sustain oscillatory waves due to the restoring action of the Coriolis force. In a bounded container, these form a discrete spectrum called inertial modes. These modes have been analytically known for a rotating full sphere for over a century now. In a spherical shell, they cannot be formulated analytically. However, many of these inertial modes are observed in spherical Couette experiments as well as in simulations. Past studies have tried to explain the onset of these modes invoking wave over-reflection or critical layer instabilities on the cylinder tangent to the inner sphere. In this study, we present the inertial modes found in our simulations and try to explain their onset as secondary instabilities due to the destabilization of the fundamental non-axisymmetric instability, forming a triadic resonance with the fundamental instability. We run various simulations varying the rotation rate of the inner sphere, while keeping the rotation rate of the outer sphere constant. We track velocities and induced magnetic field and produce spectrograms similar to those of the experiments. Our results match very well the experimental data from spherical Couette set-ups at BTU Cottbus and the University of Maryland.
SIRTF thermal design modifications to increase lifetime
NASA Astrophysics Data System (ADS)
Petrick, S. W.
1993-01-01
An effort was made to increase the predicted lifetime of the SIRTF dewar by lowering the exterior shell temperature, increasing the radiated energy from the vapor cooled shields and reconfiguring the vapor cooled shields. The lifetime increases can be used to increase the scientific return from the mission and as a trade-off against mass and cost. This paper describes the configurations studied, the steady state thermal model used, the analytical methods and the results of the analysis. Much of the heat input to the outside dewar shell is radiative heat transfer from the solar panel. To lower the shell temperature, radiative cooled shields were placed between the solar panel and the dewar shell and between the bus and the dewar shell. Analysis showed that placing a radiator on the outer vapor cooled shield had a significant effect on lifetime. Lengthening the distance between the outer shell and the point where the vapor cooled shields are attached to the support straps also improved lifetime.
Evaluation of radio-frequency heating in controlling Salmonella enterica in raw shelled almonds.
Jeong, Seul-Gi; Baik, Oon-Doo; Kang, Dong-Hyun
2017-08-02
This study was conducted to investigate the efficacy of radio-frequency (RF) heating to reduce Salmonella enterica serovars Enteritidis, Typhimurium, and Senftenberg in raw shelled almonds compared to conventional convective heating, and the effect of RF heating on quality by measuring changes in the color and degree of lipid oxidation. Agar-grown cells of three pathogens were inoculated onto the surface or inside of raw shelled almonds using surface inoculation or the vacuum perfusion method, respectively, and subjected to RF or conventional heating. RF heating for 40s achieved 3.7-, 6.0-, and 5.6-log reductions in surface-inoculated S. Enteritidis, S. Typhimurium, and S. Senftenberg, respectively, whereas the reduction of these pathogens following convective heating for 600s was 1.7, 2.5, and 3.7 log, respectively. RF heating reduced internally inoculated pathogens to below the detection limit (0.7 logCFU/g) after 30s. However, conventional convective heating did not attain comparable reductions even at the end of treatment (600s). Color values, peroxide values, and acid values of RF-treated (40-s treatment) almonds were not significantly (P>0.05) different from those of nontreated samples. These results suggest that RF heating can be applied to control internalized pathogens as well as surface-adhering pathogens in raw almonds without affecting product quality. Copyright © 2017. Published by Elsevier B.V.
Is the Eagle Nebula powered by a hidden supernova remnant ?
NASA Astrophysics Data System (ADS)
Boulanger, Francois
2008-10-01
Spitzer observations of the Eagle nebula (M16) reveal the presence of a large (8 pc diameter) shell of dust heated to anomalously high temperatures. Modeling of dust excitation shows that the shell emission cannot be powered by the cluster UV radiation but that it can be accounted for by collisionally heated dust in a young (a few 1000 yrs) supernova remnant. We have re-analyzed deep Chandra observations that show diffuse emission consistent with this hypothesis, but also with galactic ridge emission. We propose a 50 ksec XMM observation to probe the spatial extent of the diffuse X-ray emission beyond the Spitzer shell. Absence of emission outside of this shell will strongly support the supernova remnant interpretation
Heat exchanger with intermediate evaporating and condensing fluid
Fraas, Arthur P.
1978-01-01
A shell and tube-type heat exchanger, such as a liquid sodium-operated steam generator for use in nuclear reactors, comprises a shell containing a primary fluid tube bundle, a secondary fluid tube bundle at higher elevation, and an intermediate fluid vaporizing at the surface of the primary fluid tubes and condensing at the surface of the secondary fluid tubes.
The nuclear shell model toward the drip lines
NASA Astrophysics Data System (ADS)
Poves, A.; Caurier, E.; Nowacki, F.; Sieja, K.
2012-10-01
We describe the 'islands of inversion' that occur when approaching the neutron drip line around the magic numbers N=20, N=28 and N=40 in the framework of the interacting shell model in very large valence spaces. We explain these configuration inversions (and the associated shape transitions) as the result of the competition between the spherical mean field (monopole) that favors magicity and the correlations (multipole) that favor deformed intruder states. We also show that the N=20 and N=28 islands are in reality a single one, which for the magnesium isotopes is limited by N=18 and N=32.
Stability analysis of ultrasound thick-shell contrast agents
Lu, Xiaozhen; Chahine, Georges L.; Hsiao, Chao-Tsung
2012-01-01
The stability of thick shell encapsulated bubbles is studied analytically. 3-D small perturbations are introduced to the spherical oscillations of a contrast agent bubble in response to a sinusoidal acoustic field with different amplitudes of excitation. The equations of the perturbation amplitudes are derived using asymptotic expansions and linear stability analysis is then applied to the resulting differential equations. The stability of the encapsulated microbubbles to nonspherical small perturbations is examined by solving an eigenvalue problem. The approach then identifies the fastest growing perturbations which could lead to the breakup of the encapsulated microbubble or contrast agent. PMID:22280568
On the control of a robot ball using two omniwheels
NASA Astrophysics Data System (ADS)
Ivanov, Alexander P.
2015-07-01
We discuss the dynamics of a balanced body of spherical shape on a rough plane, controlled by the movement of a built-in shell. These two shells are set in relative motion due to rotation of the two symmetrical omniwheels. It is shown that the ball can be moved to any point on the plane along a straight or (in the case of the initial degeneration) polygonal line. Moreover, any prescribed curvilinear trajectory of the ball center can be followed by an appropriate control strategy as far as the diameter connecting both wheels is nonvertical.
Special Features of Light Absorption by the Dimer of Bilayer Microparticles
NASA Astrophysics Data System (ADS)
Geints, Yu. É.; Panina, E. K.; Zemlyanov, A. A.
2018-05-01
Results of numerical simulation of light absorption by the dimer of bilayer spherical particles consisting of a water core and a polymer shell absorbing radiation are presented. The spatial distribution and the amplitude characteristics of the volume density of the absorbed power are investigated. It is shown that for a certain spatial dimer configuration, the maximal achievable density of the absorbed power is realized. It is also established that for closely spaced microcapsules with high shell absorption indices, the total power absorbed in the dimer volume can increase in comparison with the radiation absorption by two insulated microparticles.
Spectrophotometry at 10 microns of T Tauri stars
NASA Technical Reports Server (NTRS)
Cohen, M.; Witteborn, F. C.
1985-01-01
New 8-13 micron spectra of 32 T Tau, or related young, stars are presented. Silicate emission features are commonly seen. Absorptions occur less frequently but also match the properties of silicate materials. The shape of the emission feature suggests that a more crystalline grain is responsible in the T Tau stars than those of the Trapezium region. The evolution of the silicate component of the circumstellar shell around T Tau stars, and its dependence upon stellar wind activity, visual linear polarization, and extinction are investigated. Several correlations suggest that the shells are likely to be flattened, disklike structures rather than spherical.
Gim, Seo Yeong; Hong, Seungmi; Kim, Jisu; Kwon, YongJun; Kim, Mi-Ja; Kim, GeunHyung; Lee, JaeHwan
2017-11-15
In this study, collagen mesh structure was prepared by carrying α-tocopherol in the form of core/shell complex. Antioxidant properties of α-tocopherol loaded carriers were tested in moisture added bulk oils at 140°C. From one gram of collagen core/shell complex, 138mg α-tocopherol was released in medium chain triacylglycerol (MCT). α-Tocopherol was substantially protected against heat treatment when α-tocopherol was complexed in collagen core/shell. Oxidative stability in bulk oil was significantly enhanced by added collagen mesh structure or collagen core/shell complex with α-tocopherol compared to that in control bulk oils (p<0.05), although no significant difference was observed between oils containing collagen mesh structure and collagen core/shell with α-tocopherol (p>0.05). Results of DPPH loss in methanol demonstrated that collagen core/shell with α-tocopherol had significantly (p<0.05) higher antioxidant properties than collagen mesh structure up to a certain period. Therefore, collagen core/shell complex is a promising way to enhance the stability of α-tocopherol and oxidative stability in oil-rich foods prepared at high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster.
Ngan, Vu Thi; Pierloot, Kristine; Nguyen, Minh Tho
2013-04-21
The electronic structure of Mn@Si14(+) is determined using DFT and CASPT2/CASSCF(14,15) computations with large basis sets. The endohedrally Mn-doped Si cationic cluster has a D3h fullerene-like structure featuring a closed-shell singlet ground state with a singlet-triplet gap of ~1 eV. A strong stabilizing interaction occurs between the 3d(Mn) and the 2D-shell(Si14) orbitals, and a large amount of charge is transferred from the Si14 cage to the Mn dopant. The 3d(Mn) orbitals are filled by encapsulation, and the magnetic moment of Mn is completely quenched. Full occupation of [2S, 2P, 2D] shell orbitals by 18 delocalized electrons confers the doped Mn@Si14(+) cluster a spherically aromatic character.
Formation of superheavy elements in the capture of very heavy ions at high excitation energies
NASA Astrophysics Data System (ADS)
Royer, G.
2013-05-01
The potential barriers governing the reactions 58Fe+244Pu, 238U+64Ni, and 238U+72Ge have been determined from a liquid-drop model taking into account the proximity energy, shell energies, rotational energy, and deformation of the incoming nuclei in the quasimolecular shape valley. Double-humped potential barriers appear in these entrance channels. The external saddle-point corresponds to two touching ellipsoidal nuclei when the shell and pairing effects are taken into account, while the inner barrier is due to the shell effects at the vicinity of the spherical shape of the composite system. Between them, a large potential pocket exists and persists at very high angular momenta allowing the capture of very heavy ions at high excitation energies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Cedric J., E-mail: cedric.powell@nist.gov; Chudzicki, Maksymilian; Werner, Wolfgang S. M.
2015-09-15
The National Institute of Standards and Technology database for the simulation of electron spectra for surface analysis has been used to simulate Cu 2p photoelectron spectra for four types of spherical copper–gold nanoparticles (NPs). These simulations were made to extend the work of Tougaard [J. Vac. Sci. Technol. A 14, 1415 (1996)] and of Powell et al. [J. Vac. Sci. Technol. A 31, 021402 (2013)] who performed similar simulations for four types of planar copper–gold films. The Cu 2p spectra for the NPs were compared and contrasted with analogous results for the planar films and the effects of elastic scatteringmore » were investigated. The new simulations were made for a monolayer of three types of Cu/Au core–shell NPs on a Si substrate: (1) an Au shell of variable thickness on a Cu core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; (2) a Cu shell of variable thickness on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; and (3) an Au shell of variable thickness on a 1 nm Cu shell on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. For these three morphologies, the outer-shell thickness was varied until the Cu 2p{sub 3/2} peak intensity was the same (within 2%) as that found in our previous work with planar Cu/Au morphologies. The authors also performed similar simulations for a monolayer of spherical NPs consisting of a CuAu{sub x} alloy (also on a Si substrate) with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. In the latter simulations, the relative Au concentration (x) was varied to give the same Cu 2p{sub 3/2} peak intensity (within 2%) as that found previously. For each morphology, the authors performed simulations with elastic scattering switched on and off. The authors found that elastic-scattering effects were generally strong for the Cu-core/Au-shell and weak for the Au-core/Cu-shell NPs; intermediate elastic-scattering effects were found for the Au-core/Cu-shell/Au-shell NPs. The shell thicknesses required to give the selected Cu 2p{sub 3/2} peak intensity for the three types of core–shell NPs were less than the corresponding film thicknesses of planar samples since Cu 2p photoelectrons can be detected from the sides and, for the smaller NPs, bottoms of the NPs. Elastic-scattering effects were also observed on the Au atomic fractions found for the CuAu{sub x} NP alloys with different diameters.« less
Computation of Relative Magnetic Helicity in Spherical Coordinates
NASA Astrophysics Data System (ADS)
Moraitis, Kostas; Pariat, Étienne; Savcheva, Antonia; Valori, Gherardo
2018-06-01
Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.
Modeling and studying of white light emitting diodes based on CdS/ZnS spherical quantum dots
NASA Astrophysics Data System (ADS)
Hasanirokh, K.; Asgari, A.
2018-07-01
In this paper, we propose a quantum dot (QD) based white light emitting diode (WLED) structure to study theoretically the material gain and quantum efficiency of the system. We consider the spherical QDs with a II-VI semiconductor core (CdS) that covered with a wider band gap semiconductor acting as a shell (ZnS). In order to generate white light spectrum, we use layers with different dot size that can emit blue, green and red colors. The blue emission originating from CdS core combines to green/orange components originating from ZnS shell and creates an efficiency white light emission. To model this device, at first, we solve Schrödinger and Poisson equations self consistently and obtain eigen energies and wave functions. Then, we calculate the optical gain and internal quantum efficiency (IQE) of a CdS/ZnS LED sample. We investigate the structural parameter effects on the optical properties of the WLED. The numerical results show that the gain profile and IQE curves depend strongly on the structural parameters such as dot size, carrier density and volume scaling parameter. The gain profile becomes higher and wider with increasing the core radius while it becomes less and narrower with increasing the shell thickness. Furthermore, it is found that the volume scaling parameter can manage the system quantum efficiency.
NASA Astrophysics Data System (ADS)
Velikovich, A. L.; Schmit, P. F.
2015-11-01
Bell-Plesset effects accounting for the time dependence of the radius, velocity and acceleration of the Rayleigh-Taylor-unstable surface are ubiquitous in the instability of spherical laser targets and magnetically driven cylindrical liners. We present an analytical model that, for an ideal incompressible fluid and small perturbation amplitudes, exactly accounts for the Bell-Plesset effects in finite-thickness targets and liners through acceleration and deceleration phases. We derive the time-dependent dispersion equations determining the ``instantaneous growth rate'' and demonstrate that by integrating this growth rate over time (the WKB approximation) we accurately evaluate the number of perturbation e-foldings during the acceleration phase. In the limit of the small target/liner thickness, we obtain the exact thin-shell perturbation equations and approximate thin-shell dispersion relations, generalizing the earlier results of Harris (1962), Ott (1972) and Bud'ko et al. (1989). This research was supported by the US DOE/NNSA (A.L.V.), and in part by appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering (P.F.S.), which is part of the Laboratory Directed Research and Development (LDRD) Program, Project No. 165746, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000.
Effect of Ice-Shell Thickness Variations on the Tidal Deformation of Enceladus
NASA Astrophysics Data System (ADS)
Choblet, G.; Cadek, O.; Behounkova, M.; Tobie, G.; Kozubek, T.
2015-12-01
Recent analysis of Enceladus's gravity and topography has suggested that the thickness of the ice shell significantly varies laterally - from 30-40 km in the south polar region to 60 km elsewhere. These variations may influence the activity of the geysers and increase the tidal heat production in regions where the ice shell is thinned. Using a model including a regional or global subsurface ocean and Maxwell viscoelasticity, we investigate the impact of these variations on the tidal deformation of the moon and its heat production. For that purpose, we use different numerical approaches - finite elements, local application of 1d spectral method, and a generalized spectral method. Results obtained with these three approaches for various models of ice-shell thickness variations are presented and compared. Implications of a reduced ice shell thickness for the south polar terrain activity are discussed.
Adhesion of Silicone Elastomer Seals for NASA's Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Miller, Sharon K. R.; Smith, Ian M.; Daniels, Christopher C.; Steinetz, Bruce M
2008-01-01
Silicone rubber seals are being considered for a number of interfaces on NASA's Crew Exploration Vehicle (CEV). Some of these joints include the docking system, hatches, and heat shield-to-back shell interface. A large diameter molded silicone seal is being developed for the Low Impact Docking System (LIDS) that forms an effective seal between the CEV and International Space Station (ISS) and other future Constellation Program spacecraft. Seals between the heat shield and back shell prevent high temperature reentry gases from leaking into the interface. Silicone rubber seals being considered for these locations have inherent adhesive tendencies that would result in excessive forces required to separate the joints if left unchecked. This paper summarizes adhesion assessments for both as-received and adhesion-mitigated seals for the docking system and the heat shield interface location. Three silicone elastomers were examined: Parker Hannifin S0899-50 and S0383-70 compounds, and Esterline ELA-SA-401 compound. For the docking system application various levels of exposure to atomic oxygen (AO) were evaluated. Moderate AO treatments did not lower the adhesive properties of S0899-50 sufficiently. However, AO pretreatments of approximately 10(exp 20) atoms/sq cm did lower the adhesion of S0383-70 and ELA-SA-401 to acceptable levels. For the heat shield-to-back shell interface application, a fabric covering was also considered. Molding Nomex fabric into the heat shield pressure seal appreciably reduced seal adhesion for the heat shield-to-back shell interface application.
About mechanisms of tetonic activity of the satellites
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.
2003-04-01
ABOUT MECHANISMS OF TECTONIC ACTIVITY OF THE SATELLITES Yu.V. Barkin Sternberg Astronomical Institute, Moscow, Russia, barkin@sai.msu.ru Due to attraction of the central planet and others external bodies satellite is subjected by tidal and non-tidal deformations. Elastic energy is changed in dependence from mutual position and motion of celestial bodies and as result the tensional state of satellite and its tectonic (endogenous) activity also is changed. Satellites of the planets have the definite shell’s structure and due to own rotation these shells are characterized by different oblatenesses. Gravitational interaction of the satellite and its mother planet generates big additional mechanical forces (and moments) between the neighboring non-spherical shells of the satellite (mantle, core and crust). These forces and moments are cyclic functions of time, which are changed in the different time-scales. They generate corresponding cyclic perturbations of the tensional state of the shells, their deformations, small relative transnational displacements and slow rotation of the shells and others. In geological period of time it leads to a fundamental tectonic reconstruction of the body. Definite contribution to discussed phenomena are caused by classical tidal mechanism. of planet-satellite interaction. But in this report we discuss in first the new mechanisms of endogenous activity of celestial bodies. They are connected with differential gravitational attraction of non-spherical satellite shells by the external celestial bodies which leads: 1) to small relative rotation (nutations) of the shells; 2) to small relative translational motions of the shells (displacements of their center of mass); 3) to relative displacements and rotations of the shells due to eccentricity of their center of mass positions; 4) to viscous elastic deformations of the shells and oth. (Barkin, 2001). For higher evaluations of the power of satellite endogenous activities were obtained analytical formulae. Obtained theoretical evaluations of the force and power characteristics are in good agreement with observational date and in particular they explain some from the well known problems of planetology. The following phenomena obtain an explanation: 1. Higher endogenous activity of Io; 2. Europe crack systems; 3. high endogenous activity of Ganimede, Titan, Miranda, Enceladus, Ariel. Well known relations of tectonic activity between satellites: Ariel and Umbriel, Reiha and Diona, Titania and Oberon have been explained in terms of numerical values of force and energy characteristics. Conclusion about high endogenous activity of Titan also presents important interest. The work was accepted and financed by RFBR grant N 02-05-64176 and by grant SAB2000-0235 of Ministry of Education of Spain (Secretaria de Estado de Educacion y Universidades).
Numerical simulation for turbulent heating around the forebody fairing of H-II rocket
NASA Astrophysics Data System (ADS)
Nomura, Shigeaki; Yamamoto, Yukimitsu; Fukushima, Yukio
Concerning the heat transfer distributions around the nose fairing of the Japanese new launch vehicle H-II rocket, numerical simulations have been conducted for the conditions along its nominal ascent trajectory and some experimental tests have been conducted additionally to confirm the numerical results. The thin layer approximated Navier-Stokes equations with Baldwin-Lomax's algebraic turbulent model were solved by the time dependent finite difference method. Results of numerical simulations showed that a high peak heating would occur near the stagnation point on the spherical nose portion due to the transition to turbulent flow during the period when large stagnation point heating was predicted. The experiments were conducted under the condition of M = 5 and Re = 10 to the 6th which was similar to the flight condition where the maximum stagnation point heating would occur. The experimental results also showed a high peak heating near the stagnation point over the spherical nose portion.
Analytical modeling for heat transfer in sheared flows of nanofluids.
Ferrari, Claudio; Kaoui, Badr; L'vov, Victor S; Procaccia, Itamar; Rudenko, Oleksii; ten Thije Boonkkamp, J H M; Toschi, Federico
2012-07-01
We developed a model for the enhancement of the heat flux by spherical and elongated nanoparticles in sheared laminar flows of nanofluids. Besides the heat flux carried by the nanoparticles, the model accounts for the contribution of their rotation to the heat flux inside and outside the particles. The rotation of the nanoparticles has a twofold effect: it induces a fluid advection around the particle and it strongly influences the statistical distribution of particle orientations. These dynamical effects, which were not included in existing thermal models, are responsible for changing the thermal properties of flowing fluids as compared to quiescent fluids. The proposed model is strongly supported by extensive numerical simulations, demonstrating a potential increase of the heat flux far beyond the Maxwell-Garnett limit for the spherical nanoparticles. The road ahead, which should lead toward robust predictive models of heat flux enhancement, is discussed.
Enceladus is not in Steady State
NASA Astrophysics Data System (ADS)
Cheunchitra, T.; Stevenson, D. J.
2016-12-01
Libration data tell us there is a global ocean. Topography and gravity tell us that there is substantial compensation at degree 2, meaning that the underside of the ice shell must have topography. This topography will decay, typically on a timescale of order a million years (fortuitously similar to thermal diffusion times through the ice shell), by viscous lateral flow of the ice. This could in principle be compensated in steady state by net melting beneath the poles and a compensating net freezing at the equator. In that model, the ice shell beneath the poles is partially melted with water being continuously produced and percolating to the base (or expelled if there are cracks, as at the South Pole). We have modeled this without an a priori assumption about the strength of tidal heating. We find that even if the tidal heating is zero on average around the equator, then the latent heat release from the required freezing can only be accommodated in steady state if the ice shell is 18km. The ice thickness must be even less at the poles in order to satisfy gravity and topography. Moreover, there must then be substantial tidal heating at the poles and it is physically unreasonable to have the volumetric tidal heating at the equator be enormously less than at the North Pole. For example, if the volumetric tidal heating at the equator is on average one quarter of that at the North Pole then marginal consistency with gravity and topography may be possible for a mean ice thickness at the equator of 12km. The global heat flow may exceed 40GW, much higher than the detectable IR excess (the observed south polar tiger stripe heat flow). Recent work (Fuller et al.) admits orbital evolutions with large heat flow at least for a recent part of the orbital history. However, this thin shell steady state model has difficulty reconciling observed gravity and topography as well as the libration data. We conclude that it is unlikely that Enceladus has no net melting or freezing. The ice shell can be thicker on average if there is net freezing at present but in that case it is difficult to explain the observed topography and gravity. A more likely scenario is that Enceladus has more melting beneath the poles than the current freezing (if any) beneath the equator. In that non-steady state model, the current ice thickness can be compatible with all current data.
Revisiting chameleon gravity: Thin-shell and no-shell fields with appropriate boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamaki, Takashi; Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501; Tsujikawa, Shinji
2008-10-15
We derive analytic solutions of a chameleon scalar field {phi} that couples to a nonrelativistic matter in the weak gravitational background of a spherically symmetric body, paying particular attention to a field mass m{sub A} inside of the body. The standard thin-shell field profile is recovered by taking the limit m{sub A}r{sub c}{yields}{infinity}, where r{sub c} is a radius of the body. We show the existence of 'no-shell' solutions where the field is nearly frozen in the whole interior of the body, which does not necessarily correspond to the 'zero-shell' limit of thin-shell solutions. In the no-shell case, under themore » condition m{sub A}r{sub c}>>1, the effective coupling of {phi} with matter takes the same asymptotic form as that in the thin-shell case. We study experimental bounds coming from the violation of equivalence principle as well as solar-system tests for a number of models including f(R) gravity and find that the field is in either the thin-shell or the no-shell regime under such constraints, depending on the shape of scalar-field potentials. We also show that, for the consistency with local gravity constraints, the field at the center of the body needs to be extremely close to the value {phi}{sub A} at the extremum of an effective potential induced by the matter coupling.« less
Jammed elastic shells - a 3D experimental soft frictionless granular system
NASA Astrophysics Data System (ADS)
Jose, Jissy; Blab, Gerhard A.; van Blaaderen, Alfons; Imhof, Arnout
2015-03-01
We present a new experimental system of monodisperse, soft, frictionless, fluorescent labelled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The interesting fact about these elastic shells is that they can reversibly deform and therefore serve as sensors of local stress in jammed matter. Similar to other soft particles, like emulsion droplets and bubbles in foam, the shells can be packed to volume fractions close to unity, which allows us to characterize the contact force distribution and universal scaling laws as a function of volume fraction, and to compare them with theoretical predictions and numerical simulations. However, our shells, unlike other soft particles, deform rather differently at large stresses. They deform without conserving their inner volume, by forming dimples at contact regions. At each contact one of the shells buckled with a dimple and the other remained spherical, closely resembling overlapping spheres. We conducted 3D quantitative analysis using confocal microscopy and image analysis routines specially developed for these particles. In addition, we analysed the randomness of the process of dimpling, which was found to be volume fraction dependent.
Ren, Xiuyan; Huang, Chang; Duan, Lijie; Liu, Baijun; Bu, Lvjun; Guan, Shuang; Hou, Jiliang; Zhang, Huixuan; Gao, Guanghui
2017-05-14
Toughness, strechability and compressibility for hydrogels were ordinarily balanced for their use as mechanically responsive materials. For example, macromolecular microsphere composite hydrogels with chemical crosslinking exhibited excellent compression strength and strechability, but poor tensile stress. Here, a novel strategy for the preparation of a super-tough, ultra-stretchable and strongly compressive hydrogel was proposed by introducing core-shell latex particles (LPs) as crosslinking centers for inducing efficient aggregation of hydrophobic chains. The core-shell LPs always maintained a spherical shape due to the presence of a hard core even by an external force and the soft shell could interact with hydrophobic chains due to hydrophobic interactions. As a result, the hydrogels reinforced by core-shell LPs exhibited not only a high tensile strength of 1.8 MPa and dramatic elongation of over 20 times, but also an excellent compressive performance of 13.5 MPa at a strain of 90%. The Mullins effect was verified for the validity of core-shell LP-reinforced hydrogels by inducing aggregation of hydrophobic chains. The novel strategy strives to provide a better avenue for designing and developing a new generation of hydrophobic association tough hydrogels with excellent mechanical properties.
Porogranular materials composed of elastic Helmholtz resonators for acoustic wave absorption.
Griffiths, Stéphane; Nennig, Benoit; Job, Stéphane
2017-01-01
A theoretical and experimental study of the acoustic absorption of granular porous media made of non-cohesive piles of spherical shells is presented. These shells are either rigid or elastic, possibly drilled with a neck (Helmholtz resonators), and either porous or impervious. A description is given of acoustic propagation through these media using the effective medium models proposed by Johnson (rigid particles) and Boutin (rigid Helmholtz resonators), which are extended to the configurations studied in this work. A solution is given for the local equation of elasticity of a shell coupled to the viscous flow of air through the neck and the micropores. The models and the simulations are compared to absorption spectra measured in reflection in an impedance tube. The effective medium models and the measurements show excellent agreement for configurations made of rigid particles and rigid Helmholtz resonators that induce an additional peak of absorption at low frequency. A shift of the Helmholtz resonance toward low frequencies, due to the softness of the shells is revealed by the experiments for elastic shells made of soft elastomer and is well reproduced by the simulations. It is shown that microporous shells enhance and broaden acoustic absorption compared to stiff or elastic resonators.
Theoretical and experimental studies in support of the geophysical fluid flow experiment
NASA Technical Reports Server (NTRS)
Hart, J.; Toomre, J.
1985-01-01
Meteorologists and astrophysicists interested in large scale planetary and solar circulations have come to recognize the importance of rotation and stratification in determining the character of these flows. In particular, the effect of latitude-dependent Coriolis force on nonlinear convection is thought to play a crucial role in such phenomena as differential rotation on the Sun, cloud band orientation on Jupiter, and the generation of magnetic fields in thermally driven dynamos. The continuous low-gravity environment of the orbiting space shuttle offers a unique opportunity to make laboratory studies of such large-scale thermally driven flows under the constraint imposed by rotation and sphericity. This is possible because polarization forces in a dielectric liquid, which are linearly dependent on fluid temperature, give rise to an effectively radial buoyancy force when a radial electrostatic field is imposed. The Geophysical Fluid Flow Cell (GFFC) is an implementation of this ideal in which fluid is contained between two rotating hemispheres that are differentially heated and stressed with a large a-c voltage. The experiment, to be flown on Spacelab III (currently set for launch April 29, 1985), will explore non-linear mode selection and high Rayleigh number turbulence in a rotating convecting spherical shell of liquid. Experiments will be carried out in a low driving parameter range where some limited numerical experimentation is currently feasible, as well as in a parameter range significantly beyond numerical computation for many years.
Solutions for the conductivity of multi-coated spheres and spherically symmetric inclusion problems
NASA Astrophysics Data System (ADS)
Pham, Duc Chinh
2018-02-01
Variational results on the macroscopic conductivity (thermal, electrical, etc.) of the multi-coated sphere assemblage have been used to derive the explicit expression of the respective field (thermal, electrical, etc.) within the spheres in d dimensions (d=2,3). A differential substitution approach has been developed to construct various explicit expressions or determining equations for the effective spherically symmetric inclusion problems, which include those with radially variable conductivity, different radially variable transverse and normal conductivities, and those involving imperfect interfaces, in d dimensions. When the volume proportion of the outermost spherical shell increases toward 1, one obtains the respective exact results for the most important specific cases: the dilute solutions for the compound inhomogeneities suspended in a major matrix phase. Those dilute solution results are also needed for other effective medium approximation schemes.
Ha, Enna; Lee, Lawrence Yoon Suk; Man, Ho-Wing; Tsang, Shik Chi Edman; Wong, Kwok-Yin
2015-05-06
Copper-based chalcogenides of earth-abundant elements have recently arisen as an alternate material for solar energy conversion. Cu2FeSnS4 (CITS), a quaternary chalcogenide that has received relatively little attention, has the potential to be developed into a low-cost and environmentlly friendly material for photovoltaics and photocatalysis. Herein, we report, for the first time, the synthesis, characterization, and growth mechanism of novel Au/CITS core-shell nanostructures with controllable morphology. Precise manipulations in the core-shell dimensions are demonstrated to yield two distinct heterostructures with spherical and multipod gold nanoparticle (NP) cores (Au(sp)/CITS and Au(mp)/CITS). In photocatalytic hydrogen generation with as-synthesized Au/CITS NPs, the presence of Au cores inside the CITS shell resulted in higher hydrogen generation rates, which can be attributed to the surface plasmon resonance (SPR) effect. The Au(sp)/CITS and Au(mp)/CITS core-shell NPs enhanced the photocatalytic hydrogen generation by about 125% and 240%, respectively, compared to bare CITS NPs.
Mobile Lid Convection Beneath Enceladus' South Polar Terrain
NASA Technical Reports Server (NTRS)
Barr, Amy C.
2008-01-01
Enceladus' south polar region has a large heat flux, 55-110 milliwatts per square meter (or higher), that is spatially associated with cryovolcanic and tectonic activity. Tidal dissipation and vigorous convection in the underlying ice shell are possible sources of heat; however, prior predictions of the heat flux carried by stagnant lid convection range from F(sub conv) 15 to 30 milliwatts per square meter, too low to explain the observed heat flux. The high heat flux and increased cryovolcanic and tectonic activity suggest that near-surface ice in the region has become rheologically and mechanically weakened enough to permit convective plumes to reach close to the surface. If the yield strength of Enceladus' lithosphere is less than 1-10 kPa, convection may instead occur in the mobile lid" regime, which is characterized by large heat fluxes and large horizontal velocities in the near-surface ice. I show that model ice shells with effective surface viscosities between 10(exp 16) and 10(exp 17) Pa s and basal viscosities between 10(exp 13) and 10(exp 15) Pa s have convective heat fluxes comparable to that observed by the Cassini Composite Infrared Spectrometer. If this style of convection is occurring, the south polar terrain should be spreading horizontally with v1-10 millimeter per year and should be resurfaced in 0.1-10 Ma. On the basis of Cassini imaging data, the south polar terrain is 0.5 Ma old, consistent with the mobile lid hypothesis. Maxwell viscoelastic tidal dissipation in such ice shells is not capable of generating enough heat to balance convective heat transport. However, tidal heat may also be generated in the near-surface along faults as suggested by Nimmo et al. and/or viscous dissipation within the ice shell may occur by other processes not accounted for by the canonical Maxwell dissipation model.
Aerosol fabrication methods for monodisperse nanoparticles
Jiang, Xingmao; Brinker, C Jeffrey
2014-10-21
Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.
2010-02-01
calculated the target strength of the most intense partial wave, a quantity termed the “effective target strength” by Kaduchak and Loeffler (1998...ed., United States Naval Institute, Annapolis, 417 pp. Kaduchak, G. and Loeffler , C.M. (1998). “Relationship between material parameters and